
XIML: A Universal Language for User Interfaces

Angel Puerta and Jacob Eisenstein
RedWhale Software
277 Town & Country
Palo Alto, CA USA
+1 650 321 0348

{puerta, jacob}@redwhale.com

ABSTRACT
In recent years, there have been a number of industry and
academic efforts to standardize the representation of many
types of data in order to facilitate the interoperability of
applications. There is, however, no comparable effort aimed
at interaction data, the data that relates to user interfaces.
We introduce XIML (eXtensible Interface Markup
Language), a proposed common representation for
interaction data. We claim that XIML fulfills the
requirements that we have found essential for a language of
its type: (1) it supports design, operation, organization, and
evaluation functions, (2) it is able to relate the abstract and
concrete data elements of an interface, and (3) it enables
knowledge-based systems to exploit the captured data. In
this paper, we introduce the characteristics of XIML, its
scope and validation, and a proposed path for industry
adoption.

Keywords
User interface languages, model-based systems, user-
interface management systems, interface models

INTRODUCTION
The software industry is making a substantial effort to lay
the foundation for a new computing model that will enable a
standard way for applications to interoperate and
interchange data. This is a substantial shift from previous
computing models where individual-application capabilities
and data manipulation were the main focus of the
development process. The model is for now aimed at web-
based applications but it is nevertheless extensible to future
integration with workstation environments.

Over the past few years, both industry and academia have
contributed a number of building blocks to this new
computing model. These efforts include, among others, the
dissemination and adoption of a common data
representation format (XML), the definition of standard
protocols for application interoperability (SOAP), and a

number of proposed standard definitions for various types
of data, such as data for voice-based applications
(VoiceXML), and data for directory services (DSML) [6,12].
These and many other efforts are being channeled through
standards organizations such as the World Wide Web
Consortium [12] and the Organization for the Advancement
of Structured Information Systems [6].

The benefits of the interoperability of software applications
and the ease of data interchange among those applications
are self-evident. Not only integration of these applications
is facilitated in a significant manner, but also integrated
software support can now be devised for many complex and
multi-step workflows and business processes that
previously could not be supported.

There is, however, a problem that the user interface
software community faces as this new computing model
emerges. A standardization effort has not yet emerged for
representing and manipulating interaction data—the data
that defines and relates all the relevant elements of a user
interface. This failure is problematic in at least two fronts.
One is that an opportunity is being lost, or delayed, to
provide a mechanism to bridge the gaps that exist between
the user-interface engineering tasks of design, operation,
and evaluation (which are the three critical aspects of the
user-interface software cycle). The second one is that
without a viable solution for interaction-data representation,
user-interface engineering will be relegated to the same
secondary plane that it has suffered in basically every
previous computing model prevalent in industry.

Admittedly, one key reason why interaction data has not
been effectively captured yet is because doing so entails a
high level of complexity. Interaction data deals not only
with concrete elements, such as the widgets on a screen,
but also with abstract elements, such as the context in
which the interaction occurs. Therefore, capturing and
relating these distinct elements into a cohesive unit
presents difficult technical challenges.

In this paper, we propose a solution for the representation
and manipulation of interaction data. We introduce XIML
(eXtensible Interface Markup Language), an XML-based
language that enables a framework for the definition and
interrelation of interaction data items. As such, XIML can

© 2001 RedWhale Software. Permission to make digital or hard
copies of all of part of this work is granted without fee provided that
copies are not made or distributed for profit or commercial
advantage, and that copies bear this notice and the full citation
above. To copy otherwise, or republish, or post on servers, or to
redistribute to lists, requires written consent from RedWhale Software.

provide a standard mechanism for applications and tools to
interchange interaction data and to interoperate within
integrated user-interface engineering processes, from
design, to operation, to evaluation.

In the following sections, we first discuss the requirements
elicited for XIML. Second, we present the structure,
organization and scope of the XIML language. Third, we
continue by describing the validation process followed and
by presenting examples of user-interface engineering
functions enabled via XIML. Fourth, we proceed to discuss
a proposed plan for the dissemination and adoption of
XIML. Finally, we conclude by discussing related and
future work.

XIML REQUIREMENTS
In order to effectively define a representation mechanism for
interaction data, it is necessary to clearly establish the
requirements of such a representation in terms of
expressiveness, scope, and underlying support
technologies. Figure 1 graphically summarizes the major
types of requirements that we have found essential for
XIML. In this section, we discuss each of those types in
detail.

Figure 1. XIML represents abstract, concrete and relational
interface data items. It also enables user-interface
engineering functions of design, operation, evaluation, and
organization.

§ Central repository of data. The language must enable a
comprehensive, structured storage mechanism for
interaction data. These repositories of data may cover
in scope one user interface or a collection of user
interfaces. In this manner, purely organizational or
knowledge management functions can be supported by
XIML. For example, a cell-phone manufacturer could
use XIML to store and manage all the characteristics

and design data relevant to the user interfaces of its
entire line of products.

§ Comprehensive lifecycle support. The language must
enable support functionality throughout the complete
lifecycle of a user interface. This includes design,
operation, and evaluation phases. This requirement is
critical because it will afford an engineering framework
to connect the now disjoint stages in the life of a user
interface. For example, an interface-design tool could
output an XIML interface specification that can then be
used at runtime for the management of interaction, and
that can also be the basis for usability engineering
activities.

§ Abstract and concrete elements. XIML must be able to
represent the abstract aspects of a user interface, such
as the context in which interaction takes place, and the
concrete aspects, such as the specific widgets that are
to be displayed on a screen. This requirement is almost
a corollary of the previous one as comprehensive
lifecycle support would not be possible without it. It is
also a recognition that interaction decisions—be it in
design or in operation of a user interface—are dictated
in great part by items such as the task flow of a target
business process or the characteristics of a specific
user type.

§ Relational support. The language must be able to
effectively relate the various elements captured within
the scope of its representation. This is particularly
important in the case of relating abstract and concrete
elements of interaction data. The relational capabilities
of the language are what enable the development of
knowledge-based support throughout the lifecycle of a
user interface [7,9]. For example, model-based interface
development tools, interface agents, and intelligent
ergonomic critics are some of the technologies that can
take advantage of these relational capabilities within
their reasoning processes.

§ Underlying technology. In order to be useful within an
industry-based new computing model, XIML must
adhere to at least two imp lementation requirements .
First is the use of an underlying technology that is
compatible with that computing model. In this case, this
points to the use of XML—the representational
centerpiece of the new computing model—as the base
language for XIML. Second, the language must not
impose any particular methodologies or tools on the
design, operation, and evaluation of user interfaces. It
must be able to coexist with existing methodologies and
tools (limited, of course, by any compatibility issues
external to XIML between those tools and
methodologies and the chosen underlying
technologies). It should be nevertheless noted that
implementation issues are strictly a practical
consideration for the language. They impose certain

Abstract

Relational

Concrete

Relational
Design Evaluation

Operation

Organization

Abstract

Relational

Concrete

Relational

Abstract

Relational

Concrete

Relational
Design Evaluation

Operation

Organization

limitations as to what can be achieved in practice, but
they do not detract from the theoretical principles of
the language and its applicability to different
underlying technologies.

THE STRUCTURE OF XIML
The XIML language draws mainly from two foundations.
One is the study of ontologies and their representation [4],
and the other one is the work on interface models [8,9,10].
From the former, XIML draws the representation principles
it uses; from the latter it derives the types and nature of
interaction data.

A discussion of the entire XIML schema, or of the specific
language constructs would be beyond the scope of this
paper, but will be made available with the XIML
documentation [15]. For the purpose of this paper, we focus
within this section on describing the organization and
structure of that schema. Figure 2 shows the basic structure
of XIML. Following, we examine each of its main
representational units.

Figure 2. The basic representational structure of the XIML
language.

Components
In its most basic sense, XIML is an organized collection of
interface elements that are categorized into one or more
major interface components. The language does not limit the
number and types of components that can be defined.
Neither there is a theoretical limit on the number and types
of elements under each component. In a more practical
sense, however, it is to be expected that an XIML
specification would support a relatively small number of
components with one major type of element defined per
component.

In its first version (1.0), XIML predefines five basic interface
components, namely task, domain, user, dialog, and
presentation. The first three of these can be characterized as
contextual and abstract while the last two can be described
as implementational and concrete. We now examine each of
these five components.

§ Task. The task component captures the business
process and/or user tasks that the interface supports.
The component defines a hierarchical decomposition of
tasks and subtasks that also defines the expected flow
among those tasks and the attributes of those tasks. It
should be noted that when referring to a business
process that is captured by this component, we are
referring to that part of the business process that
requires interaction with a user. Therefore, this
component is not aimed at capturing application logic.
The granularity of tasks is not set by XIML so
examples of valid tasks can for example include “Enter
Date”, “View Map”, or “Perform Contract Analysis”.

§ Domain. The domain component is an organized
collection of data objects and classes of objects that is
structured into a hierarchy. This hierarchy is similar in
nature to that of an ontology [4] but at a very basic
level. Objects are defined via attribute-value pairings.
Objects to be included in this component are restricted
to those that are viewed or manipulated by a user and
can be either simple or complex types. For example,
“Date”, “Map”, and “Contract” can all be domain
objects.

§ User. The user component defines a hierarchy—a
tree—of users. A user in the hierarchy can represent a
user group or an individual user. Therefore, an element
of this component can be a “Doctor” or can be “Doctor
John Smith”. Attribute-value pairs define the
characteristics of these users. As defined today, the
user component of XIML does not attempt to capture
the mental model (or cognitive states) of users but
rather data and features that are relevant in the
functions of design, operation and evaluation.

§ Presentation. The presentation component defines a
hierarchy of interaction elements that comprise the
concrete objects that communicate with users in an
interface. Examples of these are a window, a push
button, a slider, or a complex widget such as an
ActiveX control to visualize stock data. It is generally
intended that the granularity of the elements in the
presentation component will be relatively high so that
the logic and operation of an interaction element are
separated from its definition. In this manner, the
rendering of a specific interaction element can be left
entirely to the corresponding target display system.
We will expand on the practical impact of this
separation below when we discuss the issue of cross-
platform interface development.

§ Dialog. The dialog component defines a structured
collection of elements that determine the interaction
actions that are available to the users of an interface.
For example, a “Click”, a “Voice response”, and a
“Gesture” are all types of interaction actions. The
dialog component also specifies the flow among the

Components Attributes

Elements

Relations

DefinitionsStatements

XIML

Components Attributes

Elements

Relations

DefinitionsStatements

XIML

interaction actions that constitute the allowable
navigation of the user interface. This component is
similar in nature to the Task component but it operates
at the concrete levels as opposed to the abstract level
of the Task component.

The components predefined in the first version of XIML
were selected by studying a large variety of previous efforts
in creating interface models [8,9]. There are other
components that have been identified by researchers in the
past as being potentially useful, such as a workstation
component (for defining the characteristics of available
target displays), or an application component (for defining
the links to application logic). We have found that in most
practical situations, we have been able to subsume all
necessary definitions for a given interface into the existing
components. XIML is in any event extensible so that other
components can be added in the future once their presence
is justified.

Relations
The interaction data elements captured by the various
XIML components constitute a body of explicit knowledge
about a user interface that can support organization and
knowledge-management functions for user interfaces. There
is, however, a more extensive body of knowledge that is
made up of the relations among the various elements in an
XIML specification. A relation in XIML is a definition or a
statement that links any two or more XIML elements either
within one component or across components. For example,
“Data type A is displayed with Presentation Element B or
Presentation Element C” (relation in italics) is a link between
a domain-component element and a presentation-
component element.

By capturing relations in an explicit manner, XIML creates a
body of knowledge that can support design, operation, and
evaluation functions for user interfaces. In particular, the
explicit nature of the relations enables knowledge-based
support for those interaction functions. In a sense, the set
of relations in an XIML specification capture the design
knowledge about a user interface. The runtime manipulation
of those relations constitutes the operation of the user
interface. A more in-depth study of the nature of relations in
a declarative interface model can be seen in [7].

XIML supports relation definitions that specify the
canonical form of a relation, and relation statements that
specify actual instances of relations. It should be noted that
XIML does not specify the semantics of those relations.
Those are left up to the specific applications that utilize
XIML.

Attributes
In XIML, attributes are features or properties of elements
that can be assigned a value. The value of an attribute can
be one of a basic set of data types or it can be an instance
of another existing element. Multiple values are allowed as

well as enumerations and ranges. The basic mechanism in
XIML to define the properties of an element is to create a
number of attribute-value pairs for that element. In addition,
relations among elements can be expressed at the attribute
level or at the element level. As in the case of relations,
XIML supports definitions and statements for attributes.

VALIDATION OF XIML
In order to validate the expressiveness and usefulness of
XIML, we undertook a number of tests and projects. These
activities have the main goal of allowing us to assess the
feasibility of XIML satisfying the requirements that we
elicited for the language. The validation activities included
among others

§ Hand coded representation of interfaces

§ Multi-platform interface development

§ Intelligent interaction management

§ Task modeling

§ Reverse Engineering

Hand Coded Interface Definition
It is useful with any new language schema to hand code a
few real-world target samples. This allows language
designers to ascertain the range of expressiveness of the
language as well as its verbosity—the size and number of
expressions that would be necessary to code one example.
The first of these properties determines if the language is
rich enough to cover common situations, the second one is
useful in understanding potential implementation
challenges to the language, such as computing resources
needed for its storage and processing. It should be noted
nevertheless that it is not expected that developers will
write XIML directly but rather that they will use tools that
will read and write the language.

An XIML specification can contain as few as one of the
standard components described in the previous section.
Therefore, our hand coded specifications ranged from a
single domain component to describe the catalog items of a
store, to a task model for a supply-chain management
application, to presentation components for simple C++
interface controls for Windows, to entire interface
definitions for a number of applications (a geographical data
visualization application, a baseball box-score keeper, and a
dictionary-based search tool among others). In all of these
examples, we found XIML to be sufficiently expressive to
capture the relevant interaction data. We did find the
language somewhat verbose but well under any threshold
that could pose implementation problems.

Multi-Platform Interface Development
One of the important uses of XIML can be in the
development of user interfaces that must be displayed in a
variety of devices. XIML can be used to effectively display
a single interface definition on any number of target

devices. This is made possible by the strict separation that
XIML makes between the definition of a user interface and
the rendering of that interface—the actual display of the
interface on a target device. In the XIML framework, the
definition of the interface is the actual XIML specification
and the rendering of the interface is left up to the target
device to handle. In the past, many model-based interface
development systems [8] and many user-interface
management systems [5] have not had this separation
established clearly and therefore developers ended up
mixing up interface logic with interface definition.

Figure 3. XIML provides a framework for the development
of user interfaces that have multiple target displays.

Figure 3 illustrates the XIML framework for multi-platform
development for a couple of sample device targets. The
language is not restricted to those two types of devices but
can theoretically support many types of stationary and
mobile devices. In the shown case, there is a single XIML
interface specification for the data to be displayed, the
navigation to be followed and the user tasks to be
supported. Then, by simply defining one presentation
component per target device the entire specification can
support multiple platforms. Specifying presentation
components simply means determining what widgets,
interactors, and controls will be used to display each data
item on each of the target devices. As far as the rendering
of the interface is concerned, an XML-capable device is
able process an XIML specification directly. For the case
when the target device is not XML-capable, a converter
needs to be used to produce the target language. To
support the XIML validation effort, we have developed
converters for popular target languages including HTML
and WML.

The multi-platform framework described above saves
development time and helps ensure consistency. However,
there is still the chore of creating a presentation component
for each target device. To solve that problem, XIML offers
additional capabilities that can provide a high-degree of
automation to the multi-platform interface development
process. Figure 4 illustrates this automation framework.

Instead of creating and managing one presentation
component per target device, developers would work with a
single “intermediate” presentation component. XIML would
then predefine via relations how the intermediate

component maps to a specific widget or control on the
target display device.

Figure 4. Automation framework for multi-platform interface
development in XIML.

As an example, a designer could specify in XIML that a
particular data type, say a geographical location, is to be
presented with an intermediate presentation element called
“map-location widget”. By using the established relations,
XIML will then automatically map the map-location widget
to an actual graphical-map control for the Web and to a text -
based data display on the PDA.

Clearly, specifying the relations between intermediate
presentation objects and device presentation objects in a
static manner would be too inflexible to be of practical use.
There are many considerations that go into selecting an
appropriate widget to use in a given instance. These
considerations would include screen size, what other
elements are on the screen at the same time, user
preferences, contextual issues and so on. Therefore, it is
expected that intelligent tools would be necessary to handle
the task of creating and updating the relations between
intermediate and device elements. As part of the validation
process for XIML, we have reported in detail elsewhere on
an intelligent system that can automate to a large degree the
development of interfaces for multiple devices [2]. We have
shown in that work an example of displaying a map-
annotation user interface on a desktop, a PDA, and a cell
phone. The intelligent system automates the multi-platform
interface-development process by managing the relations
between intermediate and device elements taking into
consideration a number of device and design constraints
and rules.

XIML
Interface
Specification

Presentation #1
Web

Presentation #2
PDA

HTML
Converter

WML
Converter PDA

Web
Browser

XIML
Interface
Specification

Presentation #1
Web

Presentation #2
PDA

HTML
Converter

WML
Converter PDA

Web
Browser

Intermediate
Presentation
Element

Web
Presentation
Element

PDA
Presentation
Element

Predefined
Relation

Predefined
Relation

Intermediate
Presentation
Element

Web
Presentation
Element

PDA
Presentation
Element

Predefined
Relation

Predefined
Relation

Intelligent Interaction Management
One of the main goals of XIML is to provide a resource for
the management of a user interface at runtime. By
centralizing in a single definition the interaction data of an
interface, it is hoped that we can build tools that will
similarly centralize a range of functions related to the
operation of that interface. In order to validate the feasibility
of using XIML for interaction-management functions, we
explored three runtime functions: (a) dynamic presentation
reorganization, (b) personalization, and (c) distributed
interface management.

Figure 5. Dynamic presentation reorganization based on
available display area.

§ Dynamic presentation reorganization. Figure 5 shows
a sequence of views of a single web page that displays
the system load of a server. The page displays different
widgets or controls according to the screen area
available for display. When that area is minimal, the
page displays the most basic data item. As the area
increases, additional text and then a graphical view is
added. Finally, when the display area is maximized, the

page displays the most sophisticated control available
for that target data item. To implement this function we
built a simple application that read the XIML
specification for the interface and dynamically adjusted
the presentation component of the specification
according to a set of thresholds on the value of the
display area available. It is clear that a system that
would support sophisticated dynamic presentation
reorganization would probably need a good degree of
sophistication itself. However, our goal at this point
was not to build such a system, but rather to validate
that this type of problems can be represented and
solved using XIML as an interaction data repository
and in a very straightforward manner.

Figure 6. Various widgets available for personalization in an
XIML specification.

§ Personalization. Figure 6 shows a simple example of a
personalization feature. The widgets display a reading
of a data source (in this case system load as in the
previous example). The corresponding XIML
specification indicates that there are a number of
widgets that can be used to display that data source. In
addition, the widgets can be oriented in various
manners on the screen. For this feature, we wrote a
small application that selected the widget to display
according to criteria based on the user component of
the XIML specification. As in the previous example, the
sophistication of the personalization issue was not the
focus of the experiment. The focus was to ensure that
XIML has capabilities to support personalization
features and that, as the various examples are added
together, that the XIML framework can offer the value
of a single repository of interaction data to support
many user-interface management functions.

§ Distributed interface management. One of the
drawbacks of any client-based software application is
that the update of the client software is problematic
since each individual client needs to be updated.
Server-side applications reduce that problem to a large
extent but then have the tradeoff that a server update
affects every user of the application at the same time
whether these users desire the change or not. In either
case, an update is not a trivial task and can be initiated
solely by the software provider.

64%64%

64%System Load 64%System Load

System LoadSystem Load

XIML provides a mechanism for the distributed update
of user interface components. Figure 7 illustrates this
mechanism. As we saw in the previous two examples,
the widget or control being displayed on a page can be
changed easily via an XIML specification. That
framework assumes that the widget to be displayed is
available, but it does not confine it to be on a specific
server or a client. It simply treats the widget as a black
box that performs a function. We have taken advantage
of that flexibility to allow the widget to simply be
available somewhere on the network be it on a client, a
peer, or a server machine. The XIML specification can
be set to link to providers of the widget or it can rely on
a search-and-supply application. In this manner, for
example, a calendar widget on a travel-reservations
page can be provided by any number of XIML-
compliant calendar-widget suppliers. The choice of
suppliers can be made dependant on any XIML-
supported criteria such as user preferences.

Figure 7. XIML mechanism for distributed interface
management.

Task Modeling
One of the critical requirements that we set for XIML was
the ability to represent abstract concepts such as user
tasks, domain objects, and user profiles (a process that can
be referred to as task modeling). Our group has previously
developed a number of model-based interface development
tools. These tools included, among others, an informal user-
task model specification tool called U-TEL [11], and a formal
interface-model development environment called MOBI-D
[8]. Both of these tools have advanced modeling facilities to
represent interface models, including the contextual
concepts of user tasks, domain objects, and user profiles.
The tools have been used to model a wide variety of
applications such as a military-logistics management tool, a
medical-data visualization application, and a supply-chain
management tool, among others. The interface modeling
language used by U-TEL and MOBI-D is a frame-based
language that shares some characteristics with XIML. To
verify that the task-modeling capabilities of XIML were at
least at the same level as those of MOBI-D, we successfully
built a converter that can take any MOBI-D model
specification and convert it into an XIML specification. We

applied the converter successfully to all models previously
built with MOBI-D.

Reverse Engineering
While the benefits of XIML are potentially many, practical
reality indicates that a very substantial amount of code has
been written in HTML. It would be ideal that in the same
way that XIML can be converted into HTML, that HTML
code could be reverse engineered into XIML. In this
manner, the benefits of XIML could be brought to existing
applications through some level of automated support. The
reverse engineering of HTML into XIML has successfully
been accomplished by a research group—working
independently from us [13]. The implementation is currently
at the prototype level and it has been applied to simple
examples such as converting the CHI conference online
registration form to XIML.

Summary of Validation
The validation tests performed for XIML allow us to
conclude that there is enough evidence to justify the
engineering feasibility of XIML as a universal interface-
definition language. This will enable us to mo ve the
development of XIML into its second phase as discussed in
the following section.

THE XIML ROADMAP
The analysis of the functional and theoretical aspects of
XIML is just one of several considerations that must be
made in order to develop a universal language for user
interfaces. It should be noted first that the meaning of the
world “universal” in this context is a language that has
broad applicability and scope. The term should not be
considered to mean a language that is used by every
developer and every application.

We have devised a number of stages that we plan to follow
to build and refine XIML into an industry resource. Each of
the stages constitutes a development and evaluation
period. The stages are as follows:

1. Definition. This phase includes the elicitation of
requirements and the definition of language constructs.

2. Validation. Experiments are conducted on the language
to assess its expressiveness and the feasibility of its
use. This is the phase being reported on this paper.

3. Dissemination. The language is made available to
interested parties in academia and industry for research
purposes (www.ximl.org). Additional applications,
tests, and language refinements are created.

4. Adoption. The language is used by industry in
commercial products.

5. Standardization. The language is adopted by a
standards body under a controlled evolution process.

There is no single measure of success in this process. The
language may prove to be very useful and successful at
certain levels but not at others. We do consider, however,

CLIENT REDWHALE SERVER

that the evidence produced so far seems to indicate that
further efforts are warranted.

RELATED WORK
The work on XIML draws principally from previous work on
three areas: model-based interface development [8] user-
interface management systems [5], and knowledge
representation for domain ontologies [4]. In general, XIML
shares some of the goals of these fields, but it is not directly
comparable in nature to them. For example, the main focus
of model-based interface development systems over the
years has been the design and construction of the user
interface. For XIML, this is just one aspect but the goal it to
have a language that can support runtime operations as
well. In this point, it mirrors the aims of user-interface
management systems but those systems have targeted
different computing models and their underlying definition
languages do not have the scope and expressiveness of
XIML.

There are also some additional efforts in the area of creating
XML-based user-interface specification languages. UIML
[1] is a language geared towards multi-platform interface
development. However, it does not capture context data, it
is not intended to support knowledge-based system
functions, does not target operation and evaluation
functions, and it does not clearly separate the rendering of
the interface from the definition of it. XUL [3] is a language
developed with the Netscape 6 browser for the definition of
user-interface elements on a web page. It is much more
limited than XIML and even UIML in scope and therefore
not directly comparable. In addition, some other groups
have implemented individual interface design and/or
operation functions using an XML-based representation
[14]. In general, those efforts are aimed at solving the
particular problem at hand and do not have the generality
sought for XIML.

CONCLUSIONS
We have introduced XIML, an interface representation
language for universal support of functionality across the
entire lifecycle of a user interface: design, development,
operation, management, organization, and evaluation. We
have described the various language-validation activities
undertaken, including among others intelligent-interface
management functions, user-task modeling activities, and
multi-platform interface development. We claim that there is
enough evidence to support the continuation of this effort
to its next phase, which is the dissemination of the language
within the academic and industry research communities.

ACKNOWLEDGMENTS
We thank the following individuals for their work on XIML:
Hung-Yut Chen, Fred Hong, Yicheng Huang, James Kim,

Simon Lai, Tunhow Ou, Justin Tan, Mark Tong and Jean
Vanderdonckt.

REFERENCES
1. Abrams, M. et al. “Appliance-Independent XML User

Interface Language”. In Proc. Eighth International
World Wide Web Conference, Toronto, Canada, 1999.

2. Eisenstein, J., Vanderdonckt, J. and Puerta, A.
“Applying Model-Based Techniques to the
Development of Uis for Mobile Computers”. In IUI01:
2001 International Conference on Intelligent User
Interfaces. Santa Fe, NW, pp. 69-76.

3. Mozilla. http://www.mozilla.org.

4. Neches, R. et al. “Enabling Technology for Knowledge
Sharing”. In AI Magazine, Volume 12, Number 3; Fall
1991, pp. 36-56.

5. Olsen, D. User Interface Management Systems: Models
and Algorithms. Morgan Kaufmann. San Mateo, CA
1992

6. Organization for the Advancement of Structured
Information Systems. http://www.oasis -open.org

7. Puerta A. and Eisenstein, J. “Towards a General
Computational Framework for Model-Based Interface
Development Systems”. In Knowledge-Based Systems,
Vol. 12, 1999, pp. 433-442.

8. Puerta, A.R. “A Model-Based Interface Development
Environment”. In IEEE Software. 1997. pp. 40-47.

9. Szekely, P. et al. “Declarative Interface Models for User
Interface Construction Tools: the MASTERMIND
Approach”. In Engineering for Human-Computer
Interaction, L.J. Bass and C. Unger (eds), Chapman &
Hall, London, 1995, pp 120-150.

10. Szekely, P., Luo, P. and Neches, R. “Beyond Interface
Builders: Model-Based Interface Tools”. In Proc. of
InterCHI’93, ACM Press, New York, 1993, pp. 383-390.

11. Tam, R.C.-M., Maulsby D., and Puerta, A. “U-TEL: A
Tool for Eliciting User Task Models from Domain
Experts”. In Proc. IUI98: 1998 International Conference
on Intelligent User Interfaces. San Francisco, CA. ACM
Press.

12. The World Wide Web Consortium. http://www.w3c.org.

13. Vanderdonckt, J., Bouillon, L., and Souchon, N.,
“Flexible Reverse Engineering of Web Pages with
Vaquita”. In Proc. WCRE'200: IEEE 8th Working
Conference on Reverse Engineering. Stuttgart, October
2001. IEEE Press.

14. Vanderdonckt, J. (ed.). Proceedings of CADUI 2002:
Computer-Aided Design of User Interfaces. In Press.

15. XIML. http://www.ximl.org.

