
XIML: A Common Representation for Interaction Data 
 

Angel Puerta and Jacob Eisenstein 
RedWhale Software 

277 Town & Country 
Palo Alto, CA USA 

+1 650 321 0348 
{puerta,jacob}@redwhale.com

  
ABSTRACT 
We introduce XIML (eXtensible Interface Markup 
Language), a proposed common representation for interaction 
data. We claim that XIML fulfills the requirements that we 
have found essential for a language of its type: (1) it supports 
design, operation, organization, and evaluation functions, (2) 
it is able to relate the abstract and concrete data elements of 
an interface, and (3) it enables knowledge-based systems to 
exploit the captured data. 

Keywords 
User interface languages, model-based user interface 
development, user-interface management systems, interface 
models 

INTRODUCTION 
The software industry is making a substantial effort to lay the 
foundation for a new computing model that will enable a 
standard way for applications to interoperate and interchange 
data. One of the basic building blocks for this model is the 
XML language. There is, however, a problem that the user 
interface software community faces as this new computing 
model emerges. A standardization effort has not yet emerged 
for representing and manipulating interaction data—the data 
that defines and relates all the relevant elements of a user 
interface.  
In this paper, we propose a solution for the representation and 
manipulation of interaction data. We introduce XIML 
(eXtensible Interface Markup Language), an XML-based 
language that enables a framework for the definition and 
interrelation of interaction data items. As such, XIML can 
provide a standard mechanism for applications and tools to 
interchange interaction data and to interoperate within 
integrated user-interface engineering processes, from design, 
to operation, to evaluation. 

XIML REQUIREMENTS 
In order to effectively define a representation mechanism for 
interaction data, it is necessary to clearly establish the 

requirements of such a representation in terms of 
expressiveness, scope, and underlying support technologies. 
These requirements are: 
 Central repository of data. The language must enable a 

comprehensive, structured storage mechanism for 
interaction data.  

 Comprehensive lifecycle support. The language must 
enable support functionality throughout the complete 
lifecycle of a user interface. 

 Abstract and concrete elements. XIML must be able to 
represent the abstract aspects of a user interface, such as 
the context in which interaction takes place, and the 
concrete aspects, such as the specific widgets that are to 
be displayed on a screen.  

 Relational support. The language must be able to 
effectively relate the various elements captured within 
the scope of its representation. 

 Underlying technology. In order to be useful within an 
industry-based new computing model, XIML must 
adhere to at least two implementation requirements. First 
is the use of an underlying technology that is compatible 
with that computing model. In this case, this points to the 
use of XML. Second, the language must not impose any 
particular methodologies or tools on the design, 
operation, and evaluation of user interfaces. 

THE STRUCTURE OF XIML 
The XIML language draws mainly from two foundations. 
One is the study of ontologies and their representation, and 
the other one is the work on interface models [2]. From the 
former, XIML draws the representation principles it uses; 
from the latter it derives the types and nature of interaction 
data. The XIML language includes the following 
representational units: 

Components 
In its most basic sense, XIML is an organized collection of 
interface elements that are categorized into one or more major 
interface components. These components are those typically 
found in an interface model [2]: user tasks, domain objects, 
user types, presentation elements, and dialog elements. 

Relations 
A relation in XIML is a definition or a statement that links 
any two or more XIML elements either within one 

Permission to make digital or hard copies of all or part of this work for 
personal or classroom use is granted without fee provided that copies are 
not made or distributed for profit or commercial advantage and that copies 
bear this notice and the full citation on the first page. To copy otherwise, or 
republish, to post on servers or to redistribute to lists, re-quires prior 
specific permission and/or a fee. 
IUI'02, January 13-16, 2002, San Francisco, California, USA. 
Copyright 2002 ACM 1-58113-459-2/02/0001…$5.00. 

214



component or across components. By capturing relations in 
an explicit manner, XIML creates a body of knowledge that 
can support knowledge-based design, operation, and 
evaluation functions for user interfaces.  

Attributes 
In XIML, attributes are features or properties of elements that 
can be assigned a value. The value of an attribute can be one 
of a basic set of data types or it can be an instance of another 
existing element. 

VALIDATION OF XIML 
In order to validate the expressiveness and usefulness of 
XIML, we undertook a number of tests and projects. These 
activities have the main goal of allowing us to assess the 
feasibility of XIML satisfying the requirements that we 
elicited for the language. The validation activities included 
among others: 

Hand Coded Interface Definition 
It is useful with any new language schema to hand code a few 
real-world target samples. This allows language designers to 
ascertain the range of expressiveness of the language as well 
as its verbosity—the size and number of expressions that 
would be necessary to code one example. Our hand coded 
specifications ranged from a single domain component to 
describe the catalog items of a store, to a task model for a 
supply-chain management application, to presentation 
components for simple C++ interface controls for Windows, 
to entire interface definitions for a number of applications (a 
geographical data visualization application, a baseball box-
score keeper, and a dictionary-based search tool among 
others). In all of these examples, we found XIML to be 
sufficiently expressive to capture the relevant interaction data.  

Multi-Platform Interface Development 
One of the important uses of XIML can be in the 
development of user interfaces that must be displayed in a 
variety of devices. XIML can be used to effectively display a 
single interface definition on any number of target devices. 
This is made possible by the strict separation that XIML 
makes between the definition of a user interface and the 
rendering of that interface—the actual display of the interface 
on a target device. In the XIML framework, the definition of 
the interface is the actual XIML specification and the 
rendering of the interface is left up to the target device to 
handle. We have reported in detail elsewhere on an intelligent 
system that can automate to a large degree the development 
of interfaces for multiple devices using XIML [1]. We have 
shown in that work an example of displaying a map-
annotation user interface on a desktop, a PDA, and a cell 
phone. 

Intelligent Interaction Management 
One of the main goals of XIML is to provide a resource for 
the management of a user interface at runtime. By 
centralizing in a single definition the interaction data of an 
interface, it is hoped that we can build tools that will similarly 
centralize a range of functions related to the operation of that 
interface. We have built prototype implementations that 
support, among others, the following runtime functions:  
Dynamic presentation reorganization. XIML can support 
the reconfiguration of the layout of a user interface based on 
knowledge about the user interface that is also captured by 
the XIML representation. For example, the widgets used in 
the interface can be automatically adapted to the screen area 
available, or to the type of data being displayed.  
Personalization. The interaction data captured by XIML can 
be exploited to provide a number or personalization 
functions, not only at the content level (as is already done by 
some commercial applications) but also at the interface layout 
and navigation levels.  
Distributed interface management. One of the drawbacks 
of any client-based software application is that the update of 
the client software is problematic since each individual client 
needs to be updated. XIML provides a mechanism for the 
distributed update of user interface components. We have 
taken advantage of that flexibility to allow the widget to 
simply be available somewhere on the network be it on a 
client, a peer, or a server machine. The XIML specification 
can be set to link to providers of the widget or it can rely on a 
search-and-supply application. In this manner, for example, a 
calendar widget on a travel-reservations page can be provided 
by any number of XIML-compliant calendar-widget 
suppliers.  

THE XIML FORUM 
The task of defining, validating, and disseminating XIML for 
its adoption and standardization will be conducted through 
the XIML Forum (www.ximl.org). This organization will 
define a road map that ensures substantial participation by 
industry and academia in the development path of XIML.  

REFERENCES 
1. Eisenstein, J., Vanderdonckt, J. and Puerta, A. “Applying 

Model-Based Techniques to the Development of UIs for 
Mobile Computers”. In IUI01: 2001 International 
Conference on Intelligent User Interfaces. Santa Fe, NW, 
pp. 69-76. 

2. Puerta, A.R. “A Model-Based Interface Development 
Environment”. In IEEE Software. 1997. pp. 40-47.

 

215


