
wd-xacml-dsigprofile-02 14 March 2003
Copyright © OASIS Open 2003. All Rights Reserved. Page 1 of 31

 1

OASIS XACML XML DSig Profile 2

Working draft 0.2, 14 March 2003 3

Document identifier: 4
wd-aha-dsigprofile-02.sxw 5

Location: 6
http://www.oasis-open.org/committees/xacml/repository/ 7

Editor: 8
Anne Anderson, Sun Microsystems <anne.anderson@sun.com> 9

Contributors: 10
 11

Abstract: 12
This working draft profiles use of the W3C XML-Signature Syntax and Processing 13
Standard in providing authentication and integrity protection for XACML schema 14
instances. 15

Status: 16
This version of the specification is a working draft of the committee. As such, it is 17
expected to change prior to adoption as an OASIS standard. 18
XACML Committee members should send comments on this specification to the 19
xacml@lists.oasis-open.org list. Others should subscribe to and send comments to the 20
xacml-comment@lists.oasis-open.org list. To subscribe, send an email message to 21
xacml-comment-request@lists.oasis-open.org with the word "subscribe" as the body of 22
the message. 23
For information on whether any patents have been disclosed that may be essential to 24
implementing this specification, and any offers of patent licensing terms, please refer to 25
the Intellectual Property Rights section of the XACML TC web page (http://www.oasis-26
open.org/committees/xacml/). 27

Copyright © OASIS Open 2003 All Rights Reserved.28

Table of Contents
1Introduction...3 29

1.1Terminology...3 30
2XML Digital Signature Concepts...5 31

2.1Message digest ...5 32
2.2Signature verification...6 33
2.3Message authentication code (MAC)..6 34
2.4Canonicalization..7 35
2.5Signature Element format ...7 36
2.6XMLDSig Signature Types..8 37

3XACML XMLDSig Profile..10 38
3.1Signature type and coverage ..10 39
3.2Namespace elements in XACML data objects..10 40

wd-xacml-dsigprofile-02 14 March 2003
Copyright © OASIS Open 2003. All Rights Reserved. Page 2 of 31

3.3Namespace elements in signatures..10 41
3.4CanonicalizationMethod..10 42
3.5Transform methods ...11 43
3.6Message Digest algorithms...12 44
3.7Signature algorithms ...12 45
3.8Use of a Manifest ..12 46
3.9Signing schemas...12 47
3.10Integrity protection for referenced external policies ..13 48
3.11Signature coverage profile ..14 49

4Examples ..15 50
4.1Basic signature for Policy1..15 51
4.2Basic signature for PolicySet1 and Policy1...15 52
4.3Enveloping signature for Manifest for PolicySet1 and Policy1..16 53
4.4SAML Envelope for PolicySet1 and Policy1 ...18 54

5References ...2055

 56

wd-xacml-dsigprofile-02 14 March 2003
Copyright © OASIS Open 2003. All Rights Reserved. Page 3 of 31

1Introduction 57

Proper use of digital signatures can provide authentication and integrity protection for XACML 58
schema instances. [XACML] Sections 9.2.1 Authentication and 9.2.4 Policy integrity describe 59
requirements and considerations for such authentication and integrity protection. 60
This document provides a profile for use of the W3C XML-Signature Syntax and Processing 61
Standard in protecting OASIS eXtensible Access Control Markup Language [XACML] schema 62
instances. Section 2 of this document defines terms used in the remainder of the document. 63
Section 3 provides background information on terms and concepts associated with digital 64
signatures and with XMLDSig in particular . Section 4 specifies guidelines for the construction of 65
XACML schema instances that are to be signed. The guidelines in Section 4 apply to XMLDSig 66
digital signatures as well as to other digital signature formats. Section 5 describes the formats for 67
an XMLDSig <Reference> element that references an XACML schema instance. Only Sections 4 68
and 5 are normative. 69
This profile assumes that the XACML schema instance being signed is embedded inside of or 70
referenced from another data object that provides information about the signer, the validity period, 71
and other information required to make a digital signature useful: such a data object will contain 72
or be associated with the actual digital signature that covers the XACML schema instance. This 73
profile does not define the format for such an enclosing or referencing data object. One 74
appropriate format that has been defined elsewhere is a [SAML] Assertion. 75
This profile SHOULD be followed when designing or using protocols that will involve the 76
transmission of XACML Policy, PolicySet, Request, and Response instances over insecure 77
channels. Consistent use of this profile will increase the portability and interoperability of signed 78
data object fragments, as well as ensuring that digital signatures are being used in a way that 79
provides the intended levels of protection. 80

wd-xacml-dsigprofile-02 14 March 2003
Copyright © OASIS Open 2003. All Rights Reserved. Page 4 of 31

1.1Terminology 81

(This section is not normative.) 82
The key words MUST, MUST NOT, REQUIRED, SHALL, SHALL NOT, SHOULD, SHOULD NOT, 83
RECOMMENDED, MAY, and OPTIONAL in this profile are to be interpreted as described in 84
[RFC2119]. 85
Other special terms used in this profile are defined below. When these terms occur in the profile, 86
they are display in bold font to indicate that they are to be interpreted according to their 87
definitions in this list. 88
authentication, message – the property that the association between an XACML data object 89
instance and its signature can be verified. 90
authentication, signer – the property that the identity of the entity that generated a given 91
XACML data object instance can be verified to be as claimed. 92
canonicalization – the process of producing a standard, reproducible representation for a data 93
object. 94
data object – used in this profile to refer to a digital object that is being signed or MACed. A data 95
object could be an XACML PolicySet, Policy, Request context, Response context, or any 96
associated schemas. A data object is referenced inside an Error! Bookmark not 97
defined.[XMLDSIG] <Reference> element using a URI as defined by [RFC2396]. 98
digest - see message digest. 99
digital signature – see signature. 100
enveloped signature – a signature that is included in the data object that is being signed. 101
enveloping signature – a signature that includes the data object that is being signed within its 102
<Signature> element. 103
detached signature – a signature that is not attached to its associated signed data object. The 104
signature neither envelopes nor is enveloped by the signed data object. 105
integrity – the property that unauthorized modifications to an XACML data object instance can 106
be detected. 107
manifest – a structure defined by Error! Bookmark not defined.[XMLDSIG] that contains one 108
or more <Reference> elements, but is not part of a <Signature> element. A <Reference> 109
element in a <Signature> element may contain the URL and message digest of a manifest. 110
message digest – the result of applying a one-way hash function to a stream of bytes. 111
Message digests are described in more detail in Section Error! Reference source not found. 112
policy – used in this profile to refer to instances of the XACML PolicySet and XACML Policy 113
schemas. 114
private key – a numeric value that is used, along with the digest of the data object to be 115
signed, as input to the signature algorithm. Each private key has one and only one associated 116
public key. The signer of a data object must not reveal the value of the private key that was 117
used to create the signature. In fact, it is possible to destroy the private key after a signature 118
has been generated. 119
public key – a numeric value that is used, along with the signature value of a data object, as 120
input to the signature verification algorithm. Each public key has one and only one associated 121
private key. The signer of a data object can freely share the value of any public key. The 122
signer must share the value of the public key with any signature verifier in order for 123
verification to be possible. Public keys can be shared securely using Public Key Certificates. 124
Public Key Certificate – a signed digital structure containing the name of some entity and the 125
value of a public key for which that entity owns the corresponding private key. A Public Key 126

wd-xacml-dsigprofile-02 14 March 2003
Copyright © OASIS Open 2003. All Rights Reserved. Page 5 of 31

Certificate is signed using a private key for which the public key can be securely obtained, 127
often using a chain of Public Key Certificates. 128
sign – the process of generating a signature. 129
signature – a value generated by the application of a private key to an XACML data object via 130
a cryptographic algorithm such that it has the properties of integrity, message authentication, 131
and/or signer authentication (adapted from [Schneier]). 132
static reference – used in this profile to mean use of a <PolicyIdReference> or 133
<PolicySetIdReference> where the policy writer wishes to refer to the snapshot of the referenced 134
policy that existed at the time the referencing policy was written, rather than to the current 135
contents of the referenced policy at the time the policy is to be evaluated. 136
transform – the process of converting an XML data object into a different XML data object, 137
often by removing, extracting, and/or re-ordering specified elements from the original XML data 138
object. Any enveloped signature must include a transform algorithm that will remove the 139
signature value from the data object before the signature value is computed or verified. 140
verify – the process of checking the signature on a data object to verify that the signature and 141
the data object are consistent. 142

wd-xacml-dsigprofile-02 14 March 2003
Copyright © OASIS Open 2003. All Rights Reserved. Page 6 of 31

2XML Digital Signature Concepts 143

[This section is not normative.) 144
This section explains certain concepts from the Error! Bookmark not defined.[XMLDSIG] 145
specification that are needed to understand the application of a digital signature to an XACML 146
data object. 147
A digital signature is a security mechanism that can provide some of the safeguards described in 148
Section 9.2 of the [XACML] specification. In particular, it can provide a means for 149
authentication of the source of an XACML data object and a means for ensuring the integrity 150
of an XACML data object. 151
An XML Digital Signature, as used in this profile, is an XML element that contains 152

 information about the data object that is being signed, 153
the digital signature value itself , and 154
information required to verify the signature. 155

In our case, the signed data object is an XACML schema instance or schema. A single digital 156
signature may cover multiple data objects, and not all such data objects need to be XACML data 157
objects. In our case, the digital signature that covers an XACML data object usually also 158
covers some data object that contains information about the signer, the validity period, and so 159
on. 160
A signature is a value computed using a cryptographic algorithm that takes as input two digital 161
values: a stream of octets representing the value of a message digest, (see below) computed 162
from the data object being signed, and a stream of octets representing the value of a private 163
key known only to the signer of the data object. Associated with the private key is a public 164
key that the signer may freely distribute to potential verifiers of data objects signed using the 165
private key. Public key values are usually distributed in the form of Public Key Certificates. 166
 The cryptographic algorithms used in generating a signature give the signature several useful 167
properties: 168

1.it is relatively easy to compute the signature value, 169
2.it is relatively easy to compute the message digest from the signature value and the 170

corresponding public key, 171
3.it is extremely difficult to determine the value of the private key, given the signature value 172

and the data object or its message digest. 173
Since there are several commonly used algorithms used for generating digital signatures, a well-174
known identifier for the algorithm used is included in the Signature element. 175

wd-xacml-dsigprofile-02 14 March 2003
Copyright © OASIS Open 2003. All Rights Reserved. Page 7 of 31

2.1Message digest 176

A message digest is a value computed using another cryptographic algorithm from a stream of 177
octets representing the value of the data object that is being digested. The cryptographic 178
algorithms used in generating a message digest give the digest value several useful properties: 179

1.the digest value is relatively short, 180
2.the digest value is relatively easy to compute, 181
3.any change to the digital representation of the data object, even by so much as one 182

bit, will cause the digest computed from the data object to have a different value, 183
4.it is extremely difficult to generate a data object that will have a given digest value, so 184

difficult that huge numbers of hours on incredibly powerful computers would be 185
required. 186

Since there are several commonly used algorithms used for generating message digests, a well-187
known identifier for the algorithm used is included in the Signature element. 188

wd-xacml-dsigprofile-02 14 March 2003
Copyright © OASIS Open 2003. All Rights Reserved. Page 8 of 31

2.2Signature verification 189

Together, the properties of the message digest and the signature mean that the receiver of a 190
data object and its associated signature can relatively easily verify that the signature goes with 191
the provided data object, that the signature was generated using the private key associated 192
with the known public key, and that the data object has not been modified since the signature 193
was generated. If the public key is provided in a Public Key Certificate, there are similar ways 194
to verify that the private key is owned by a particular identity. 195
The data object, the signature, and the Public Key Certificate may be stored separately and 196
retrieved separately by the verifier. No additional protection of the channels by which these three 197
items are transmitted are required in order to preserve the ability to perform verification of 198
message authentication, signer authentication, and integrity. 199

wd-xacml-dsigprofile-02 14 March 2003
Copyright © OASIS Open 2003. All Rights Reserved. Page 9 of 31

2.3Message authentication code (MAC) 200

A message authentication code, or MAC, performs some of the functions of a digital 201
signature, but does not require use of a digital signature algorithm: it requires only the use of a 202
message digest algorithm. It requires that the generator of the MAC and the verifier of the MAC 203
share a secret key. 204
The function for generating a MAC takes as input the stream of octets that represents the data 205
object being MACed, and the stream of octets that represents the value of the generator's copy 206
of the secret key. The MAC generation function temporarily appends the secret key octet 207
stream to the data object octet stream and computes the message digest over the combined 208
stream of octets. The resulting message digest value is the MAC. The MAC and the input data 209
object (without the secret key value) are conveyed to some entity that needs to verify message 210
authentication, signer authentication, and integrity of the data object. 211
The function for verifying a MAC takes as input the stream of octets that represents the data 212
object that was received, the stream of octets that represents the verifier's copy of the secret 213
key, and the stream of octets that represents the received MAC value. The MAC verification 214
function temporarily appends the secret key octet stream to the data object octet stream and 215
computes the message digest over the combined stream of octets. The resulting message 216
digest is compared to the MAC received with the data object. If the two values match, then the 217
message authentication, signer authentication, and integrity of the received data object 218
have been verified. If the two values do not match, then these properties have not been verified. 219
The advantages of using a MAC are that the generation of a message digest is a 220
computationally cheaper operation than the generation or verification of a digital signature, and 221
that only one cryptographic algorithm – the message digest algorithm – needs to be supported. 222
One disadvantage is that a new MAC must be generated for each sender and receiver pair, since 223
each such pair must have a different secret key. This means that a MAC can not be used to 224
protect the security of a data object that is to be stored in a repository shared by multiple data 225
object retrievers (unless a separate MAC is generated and stored in the repository for each 226
potential retriever). Another disadvantage is that the receiver is unable to pass the MAC and the 227
data object to a third party while retaining signer authentication of the original signer. For 228
these reasons, MACs will be appropriate in some environments, but not in others. 229
 230

wd-xacml-dsigprofile-02 14 March 2003
Copyright © OASIS Open 2003. All Rights Reserved. Page 10 of 31

2.4Canonicalization 231

Remember that even a one bit difference in the value of the data object will result in a different 232
message digest . This means that the value of the data object represented as an octet stream 233
used by the signer must be exactly identical to value of the data object used by the verifier. But 234
the same XML data object may exist in many different forms: it may be encoded using a different 235
character set, it may be presented in a processed form (such as a DOM or SAX representation), 236
or certain values in the data object, such as QNames or default XML attribute values, may be 237
represented in different ways. 238
In order to ensure that the digital representation of the data object used by the verifier is identical 239
to the digital representation used by the signer, the signer processes the data object using a 240
standard canonicalization method. A canonicalization method is a procedure that expresses 241
all information in a data object in a standard, invariable way to produce a stream of octets. The 242
canonicalization method used by the signer is identified in the Signature element so that the 243
signature verifier can canonicalize the received data object in the same way. 244

wd-xacml-dsigprofile-02 14 March 2003
Copyright © OASIS Open 2003. All Rights Reserved. Page 11 of 31

2.5Signature Element format 245

The Error! Bookmark not defined.[XMLDSIG] Signature element has the following structure 246
(where "?" denotes zero or one occurrence; "+" denotes one or more occurrences; and "*" 247
denotes zero or more occurrences):. 248

<Signature ID?> 249
 <SignedInfo> 250
 <CanonicalizationMethod/> 251
 <SignatureMethod/> 252
 <Reference URI? > 253
 <Transforms/>? 254
 <DigestMethod/> 255
 <DigestValue/> 256
 </Reference>+ 257
 </SignedInfo> 258
 <SignatureValue/> 259
 <KeyInfo/>? 260
 <Object ID?/>* 261
 </Signature> 262

The <Signature> element encompasses the digital signature. The <Signature> element may or 263
may not include the data object being signed. This will be described below in Section Error! 264
Reference source not found.. 265
The <SignedInfo> element is the information that is actually signed. First, the canonicalization 266
algorithm specified in the <CanonicalizationMethod> element is applied to the <SignedInfo> 267
element to produce a stream of octet values. Then the message digest algorithm specified in 268
the <SignatureMethod> element is applied to that stream of octet values, producing a message 269
digest. Finally, the signature algorithm specified in the <SignatureMethod> is applied to that 270
message digest. The resulting signature value is placed into the <SignatureValue> element. 271
If a Message Authentication Code (MAC) is being used, then first the canonicalization 272
algorithm specified in the <CanonicalizationMethod> element is applied to the <SignedInfo> 273
element to produce a stream of octet values. Then the MAC algorithm is applied to the stream of 274
octet values and the appended secret key value. The resulting MAC value is placed into the 275
<SignatureValue> element. 276
The <CanonicalizationMethod> element contains the identifier of the canonicalization algorithm 277
that is to be applied to the <SignedInfo> element. The result of this canonicalization should be 278
a stream of octets that will be identical for a given <SignedInfo> element value, regardless of its 279
representation. 280
The <SignatureMethod> element contains the identifiers of the signature and message digest 281
algorithms (or just the message digest algorithm, in the case of a MAC). Each well-known 282
algorithm has a well-known identifier. The <SignatureMethod> element> also contains the values 283
of any parameters required by the chosen algorithms. 284
<SignedInfo> may contain any number of <Reference> elements. Each <Reference> element 285
describes a data object to be signed using a URI. It also contains the message digest of the 286
data object. Once the signature value of the <SignedInfo> element has been verified, the verifier 287
can verify that any data object included in a <Reference> element in that <SignedInfo> has the 288
same digital value as the data object that was digested originally. The verifier does this by 289
independently computing the message digest value for the data object and comparing the 290
resulting value with the value in the <SignedInfo>'s <Reference> element. If they match, then the 291
data object has not been changed and is the data object that the signer intended to reference. 292

wd-xacml-dsigprofile-02 14 March 2003
Copyright © OASIS Open 2003. All Rights Reserved. Page 12 of 31

2.6XMLDSig Signature Types 293

Error! Bookmark not defined.[XMLDSIG] Supports four ways of using signatures. 294

4.Enveloped Signature: The <Reference> points to the data object that contains the 295
<SignedInfo> element itself. In this case, the transform algorithm must remove the 296
signature value from the data object before a message digest is calculated, since the 297
signature will not be known until the data object is digested, but once the signature is 298
inserted, the digest of the data object will change. 299

5.Enveloping Signature: The <Reference> points to an <Object> element that is included in 300
the <Signature> element itself. This allows a <Signature> to be a wrapper, or envelope, 301
around one or more signed data objects. 302

6.Detached Signature: The <Reference> points to a data object that does not contain the 303
signature, and the signature does not contain the data object. In this case, the data 304
object being signed may be a separate data object from the data object that contains the 305
<Signature> element, or the data object being signed may be in the same data object as 306
the <Signature>, but not containing or contained by the <Signature>. This way of using 307
signatures allows a <Signature> element to be transported to a verifier independently 308
from the data object that has been signed. 309

7.Signed Manifest: The <Reference> element points to a special Error! Bookmark not 310
defined.[XMLDSIG]-defined Element called a Manifest. A Manifest is similar to a 311
<SignedInfo> element in that it contains one or more <Reference> elements. The 312
difference is that the rules for <SignedInfo> require that every data object in its 313
<Reference> elements must be retrieved and their message digests verified as part of 314
the verification of the <SignedInfo> signature. With a Manifest, it is up to the application 315
to decide which data object message digest values must be verified, and when. This 316
makes a Manifest useful when the verifier may not want to retrieve and verify every 317
referenced data object. 318

Note that a single <Signature> can be enveloped, enveloping, and detached at the same time, 319
by including multiple <Reference> elements, each of which points to a different type of data 320
object. 321

wd-xacml-dsigprofile-02 14 March 2003
Copyright © OASIS Open 2003. All Rights Reserved. Page 13 of 31

3XACML XMLDSig Profile 322

(This section is normative.) 323
These guidelines for using XML Signatures with XACML are intended to be consistent with 324
Guidelines for using XML Signatures with the OASIS Security Assertion Markup Language 325
(SAML) [SAMLDSig] wherever possible. Where the XACML recommendations must differ from 326
the SAML recommendations below, the reasons for that difference are given. The primary source 327
of such differences is the fact that SAML mandates use of enveloped signatures while enveloped 328
signatures are not possible inside XACML 1.0 data objects. These mandates are not 329
inconsistent, since the signature covering the XACML 1.0 document can be placed inside the 330
SAML schema instance that contains the XACML document. 331

3.1Signature type and coverage 332

The only XMLDSig signature type that MUST NOT be used directly with an XACML 1.0 data 333
object is the enveloped signature. This is because there is no element defined in the XACML 334
1.0 schemas that can contain a signature that is embedded inside an XACML 1.0 schema 335
instance. 336
XACML data objects will typically be transmitted inside an enveloping data object. The envelope 337
in which an XACML data object is embedded MAY contain an enveloped signature that covers 338
the XACML data object contents. As explained above, it is not currently possible to embed the 339
signature over the XACML data object inside the XACML 1.0 data object itself. 340
When an XACML data object is enveloped by a SAML Assertion, then Guidelines for using XML 341
Signatures with the OASIS Security Assertion Markup Language (SAML) [SAMLDSig] MUST be 342
followed. 343

3.2Namespace elements in XACML data objects 344

Any XACML data object that is to be signed MUST specify all namespace elements used in the 345
data object. If this is not done, then the data object will attract namespace definitions from 346
ancestors of the data object that may differ from one envelope to another. 347
When [ExclC14N] is used as the canonicalization or transform method, then the namespace of 348
XACML schemas used by elements in an XACML data object MUST be bound to prefixes and 349
included in the InclusiveNamespacesPrefixList parameter to [ExclC14N]. 350

wd-xacml-dsigprofile-02 14 March 2003
Copyright © OASIS Open 2003. All Rights Reserved. Page 14 of 31

3.3Namespace elements in signatures 351

Since <Signature> elements are usually embedded in some protocol envelope, any <Signature> 352
element MUST specify all namespace elements used in the <Signature> itself. If this is not done, 353
then the <Signature> will attract namespace definitions from ancestors of the <Signature> that 354
may differ from one envelope to another. 355

wd-xacml-dsigprofile-02 14 March 2003
Copyright © OASIS Open 2003. All Rights Reserved. Page 15 of 31

3.4CanonicalizationMethod 356

The <CanonicalizationMethod> element in a <Signature> defines how the <SignedInfo> element 357
itself is to be canonicalized prior to being digested. The <SignedInfo> element must be 358
converted into a specific, reproducible representation as an octet string in order for the signature 359
verifier and the signature signer to produce the same message digest for the <SignedInfo> 360
element. 361
Signatures for XACML data objects MUST use Exclusive Canonicalization Version 1.0 362
[ExclC14N] (identifiers: http://www.w3.org/2001/10/xml-exc-c14n# and 363
http://www.w3.org/2001/10/xml-exc-c14n#WithComments) as the final canonicalization algorithm 364
if possible. If this canonicalization algorithm can not be used, then Canonical XML Version 1.0 365
[InclC14N] (identifiers: http://www.w3.org/TR/2001/REC-xml-c14n-20010315 or 366
http://www.w3.org/TR/2001/REC-xml-c14n-20010315#WithComments) MUST be used. 367
Support for [InclC14N] is required in any conforming Error! Bookmark not defined.[XMLDSIG] 368
implementation, and so use of that algorithm increases interoperability. [ExclC14N] however, 369
fixes deficiencies found in [InclC14N]. 370
XACML PDPs that support Error! Bookmark not defined.[XMLDSIG] MUST be able to support 371
both canonicalization algorithms. 372
See Error! Reference source not found. and Error! Reference source not found. for further 373
considerations with respect to canonicalization algorithms. 374

wd-xacml-dsigprofile-02 14 March 2003
Copyright © OASIS Open 2003. All Rights Reserved. Page 16 of 31

3.5Transform methods 375

The <Transforms> element in a <Reference> defines canonicalizations and other 376
transformations of the referenced data object that must be performed prior to being digested. 377
The referenced data object must be converted into a specific, reproducible representation as an 378
octet string in order for the signature verifier and the signature signer to produce the same 379
message digest for the referenced element. 380
Every <Signature> for an XACML data object MUST use as the final transform method the same 381
algorithm specified as the canonicalization algorithm in the <SignedInfo> element. This algorithm 382
MUST be either [ExclC14N] or [InclC14N], with [ExclC14N] preferred. 383
If the data object being signed is Base64-encoded, then the Base64 Transform (identifier: 384
http://www.w3.org/TR/xmldsig-core/#sec-Base-64 SHOULD be used first. 385
If an XACML data object includes data elements that may be represented in more than one form 386
(such as (TRUE, FALSE), (1,0), (true,false)), then a Transform method MUST be defined and 387
specified for normalizing those data elements. If this is not done, the signer and the verifier may 388
end up digesting different octet streams, and the signature verification will fail. 389
[The XACML TC should specify a transform that puts all XACML-defined datatypes into their 390
canonical form. This transform should include something like the following: 391

The Canonical XACML Datatype Transform has the following identifier: 392
urn:oasis:names:tc:xacml:1.0:transforms:canonicalDatatypeTransform 393
The following canonicalizations MUST be applied to values of the corresponding 394
datatypes, whether occurring in XML attribute values or in XACML Attributes. 395
1.Where a canonical representation for an XACML-defined datatype is defined in 396

http://www.w3.org/2001/XMLSchema, then the value of the datatype MUST be put 397
into the canonical form specified in http://www.w3.org/2001/XMLSchema. This 398
includes boolean {“true”, “false”}, double, dataTime, time, date, and hexBinary (upper-399
case). 400

2.http://www.w3.org/2001/XMLSchema#anyURI - use canonical form defined in 401
[RFC2396] 402

3.http://www.w3.org/2001/XMLSchema#base64Binary - remove all line breaks and white 403
space. Remove all characters following the first sequence of “=” characters. 404

4.http://urn:oasis:names:tc:xacml:1.0:data-type:x500Name - first normalize according to 405
[RFC2253] (leading and trailing spaces, etc.). If any RDN contains multiple 406
attributeTypeAndValue pairs, re-order the AttributeValuePairs in that RDN in 407
ascending order when compared as octet strings (described in [X.690] 408
Section 11.6 “Set-of components”). 409

5.http://urn:oasis:names:tc:xacml:1.0:data-type:rfc822Name - normalize the domain-part 410
of the name to lower case. 411

6.XPath expression – apply XPath2Filt] to put the XPath expression into canonical form. 412
Specifying this as part of Canonical XACML DataType Transform means it does not 413
have to be specified separately as a transform in the <Reference> element. 414

7.The definition of every new datatype added as an extension MUST include a canonical 415
representation. 416

All XACML PDPs that support Error! Bookmark not defined.[XMLDSIG] must support 417
the urn:oasis:names:tc:xacml:1.0:transforms:canonicalDatatypeTransform transform 418
method. 419

] 420
See Error! Reference source not found. and Error! Reference source not found.Error! 421
Reference source not found.for further considerations with respect to transform methods. 422

wd-xacml-dsigprofile-02 14 March 2003
Copyright © OASIS Open 2003. All Rights Reserved. Page 17 of 31

3.6Message Digest algorithms 423

There is only one message digest algorithm that is required for all conforming Error! Bookmark 424
not defined.[XMLDSIG] implementations: SHA-1, which has identifier 425
http://www.w3.org/2000/09/xmldsig#sha1. This algorithm MUST be used if possible for digesting 426
the XACML data object. 427
XACML PDPs that support Error! Bookmark not defined.[XMLDSIG] MUST support SHA-1. 428

wd-xacml-dsigprofile-02 14 March 2003
Copyright © OASIS Open 2003. All Rights Reserved. Page 18 of 31

3.7Signature algorithms 429

There are two signature algorithms described in the Error! Bookmark not defined.[XMLDSIG] 430
specification: DSA-SHA1, which has identifier http://www.w3.org/2000/09/xmldsig#dsa-sha1, and 431
PKCS1 (RSA-SHA1), which has identifier http://www.w3.org/2000/09/xmldsig#rsa-sha1. 432
While neither of these algorithms is required for conforming Error! Bookmark not 433
defined.[XMLDSIG] implementations, they are the algorithms most likely to be supported, and so 434
use of one of them in signing XACML data objects is recommended. 435
XACML PDPs that support Error! Bookmark not defined.[XMLDSIG] MUST support both of 436
these algorithms. 437

wd-xacml-dsigprofile-02 14 March 2003
Copyright © OASIS Open 2003. All Rights Reserved. Page 19 of 31

3.8Use of a Manifest 438

See the next two sections for a description of cases in which a Manifest may be appropriate. 439

wd-xacml-dsigprofile-02 14 March 2003
Copyright © OASIS Open 2003. All Rights Reserved. Page 20 of 31

3.9Signing schemas 440

The parsing of any XACML data object depends on having an accurate copy of all schemas on 441
which the XACML data object depends. Note that the inclusion of a schema URI in the XACML 442
schema instance attributes does not guarantee that an accurate copy of the schema will be used: 443
an attacker may substitute a bogus schema that contains the same identifier as the correct 444
schema. Signatures can help protect against substitution or modification of the schemas on 445
which an XACML data object depends. Use of signatures for this purpose are described in this 446
section. 447
In most cases, a data object signer SHOULD include a <Reference> element for each schema 448
on which the XACML data object depends in the <SignedInfo> element that contains the 449
<Reference> to or including the XACML data object itself. 450
In some cases, the data object signer knows that all PDPs that will evaluate a given XACML 451
data object will have accurate copies of certain schemas needed to parse the data object, and 452
does not want to force the PDP to verify the message digest for such schemas. In these cases 453
the data object signer MAY omit <Reference> elements for any schema whose verification is not 454
needed. 455
If the data object signer does not know for which schemas a PDP will have an accurate copy, 456
then the <SignedInfo> element that contains the <Reference> to or including the XACML data 457
object itself SHOULD contain a <Reference> to a <Manifest> element that, in turn, contains a 458
<References> to each schema needed to parse the XACML data object. Use of a Manifest 459
allows a PDP to verify the signature on only those schemas for which the accuracy may be in 460
question. 461

wd-xacml-dsigprofile-02 14 March 2003
Copyright © OASIS Open 2003. All Rights Reserved. Page 21 of 31

3.10Integrity protection for referenced external policies 462

A policy signer must know the intent of the policy writer in determining how to generate a 463
signature for a policy that contains references to other, external data objects via the XACML 464
<PolicySetIdReference> and <PolicyIdReference> elements. 465
In many cases, a policy writer wishes to reference the current version of another policy. This 466
can be done by using the URL of the other policy in a <PolicyIdReference> or 467
<PolicySetIdReference> element. Signing the referencing policy does not depend on the 468
contents of the referenced policies, so the current version of the referenced policy may be used 469
without affecting the verification of the referencing policy. 470
In other cases, a policy writer wishes to reference a specific snapshot of the contents of another 471
policy. We will call this a static reference. This can be done in either of two ways. The most 472
straightforward way is to include the desired contents of the other policy as a <PolicySet> or 473
<Policy> element. The alternative way is to use the URL of the other policy in a 474
<PolicyIdReference> or <PolicySetIdReference> element, and then to sign the referencing policy 475
in such a way that the signature includes the message digest of the referenced policy contents. 476
This second alternative is described in the rest of this section. 477
The recommended way of signing a policy along with one or more static references is to use a 478
Manifest. The <Manifest> element SHOULD contain a <Reference> element for each static 479
reference in the original referencing policy. The <Reference> element for the original 480
referencing policy MAY be in either the <Manifest> or in the <Signature> element. 481
The advantage of including the <Reference> for the original referencing policy in the Manifest is 482
that the Manifest then becomes a package defining the policy and its static references. The 483
disadvantage of including the original referencing policy in the Manifest is that verification of the 484
<Signature> will not automatically include retrieval and verification of the original referencing 485
policy, and this is almost always desired. 486
If the policy writer knows that every static reference must be retrieved as part of policy 487
evaluation, or if the policy writer wishes to confirm that static references have not changed even 488
if they are not used during evaluation, then a Manifest is not needed. In this case, the policy 489
signer can include a <Reference> element for each static reference inside the <Signature> 490
element of the original referencing policy itself , along with the <Reference> element for the 491
original referencing policy. 492

3.11Signature coverage profile 493

Only the portions of a data object that are included in the message digest that is signed are 494
actually verified when a signature is verified. In order to provide maximum protection for signed 495
XACML data objects, this profile REQUIRES that the entire XACML data object be signed. 496

The signature verifier MUST verify that the entire XACML data object was signed by computing 497
the message digest over the entire data object. 498

wd-xacml-dsigprofile-02 14 March 2003
Copyright © OASIS Open 2003. All Rights Reserved. Page 22 of 31

4Examples 499

{This section is NOT normative.} 500

wd-xacml-dsigprofile-02 14 March 2003
Copyright © OASIS Open 2003. All Rights Reserved. Page 23 of 31

4.1Basic signature for Policy1 501

This example shows a detached signature for a <Policy> instance named “Policy1”. Note that 502
the signature verifier must have some out-of-band means of ascertaining the identity of the 503
signer and the validity period of this policy, since the signature itself does not provide this 504
information. 505

 <Signature Id="Policy1Signature" 506
 xmlns="http://www.w3.org/2000/09/xmldsig#"> 507
 <SignedInfo> 508
 <CanonicalizationMethod 509
 Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#”/> 510
 <SignatureMethod 511
 Algorithm="http://www.w3.org/2000/09/xmldsig#dsa-sha1"/> 512
 <Reference 513
 URI="http://www.sun.com/policies/Policy1.xml"> 514
 <Transforms> 515
 516
<Transform Algorithm=”urn:oasis:names:tc:xacml:1.0:transforms:canonical517
DatatypeTransform”/> 518
 <Transform Algorithm="http://www.w3.org/2001/10/xml-exc-519
c14n#”> 520
 <ec:InclusiveNamespaces PrefixList="xacml #default" 521
 xmlns:ec="http://www.w3.org/2001/10/xml-exc-c14n#"/> 522
 </Transforms> 523
 <DigestMethod 524
 Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/> 525
 <DigestValue>?????</DigestValue> 526
 </Reference> 527
 </SignedInfo> 528
 <SignatureValue>?????</SignatureValue> 529
 <KeyInfo> 530
 <KeyValue> 531
 <DSAKeyValue> 532
 <P>?????</P><Q>?????</Q><G>?????</G><Y>?????</Y> 533
 </DSAKeyValue> 534
 </KeyValue> 535
 </KeyInfo> 536
 </Signature> 537

wd-xacml-dsigprofile-02 14 March 2003
Copyright © OASIS Open 2003. All Rights Reserved. Page 24 of 31

4.2Basic signature for PolicySet1 and Policy1 538

This example shows a detached signature for a <PolicySet> instance named “PolicySet1” that 539
contains a <PolicyIdReference> to a <Policy> instance named “Policy1”. A Manifest is not used 540
in this example. Again, the signature verifier must have some out-of-band means of 541
ascertaining the identity of the signer and the validity period of this policy, since the signature 542
itself does not provide this information. 543

 <Signature Id="PolicySet1Policy1Signature" 544
 xmlns="http://www.w3.org/2000/09/xmldsig#"> 545
 <SignedInfo> 546
 <CanonicalizationMethod 547
 Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#”/> 548
 <SignatureMethod 549
 Algorithm="http://www.w3.org/2000/09/xmldsig#dsa-sha1"/> 550
 <Reference 551
 URI="http://www.sun.com/policies/PolicySet1.xml"> 552
 <Transforms> 553
 554
<Transform Algorithm=”urn:oasis:names:tc:xacml:1.0:transforms:canonical555
DatatypeTransform”/> 556
 <Transform Algorithm="http://www.w3.org/2001/10/xml-exc-557
c14n#”> 558
 <ec:InclusiveNamespaces PrefixList="xacml #default" 559
 xmlns:ec="http://www.w3.org/2001/10/xml-exc-c14n#"/> 560
 </Transforms> 561
 <DigestMethod 562
 Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/> 563
 <DigestValue>?????</DigestValue> 564
 </Reference> 565
 <Reference 566
 URI="http://www.sun.com/policies/Policy1.xml"> 567
 <Transforms> 568
 569
<Transform Algorithm="urn:oasis:names:tc:xacml:1.0:transforms:canonical570
DatatypeTransform”/> 571
 <Transform Algorithm="http://www.w3.org/2001/10/xml-exc-572
c14n#”> 573
 <ec:InclusiveNamespaces PrefixList="xacml #default" 574
 xmlns:ec="http://www.w3.org/2001/10/xml-exc-c14n#"/> 575
 </Transforms> 576
 <DigestMethod 577
 Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/> 578
 <DigestValue>?????</DigestValue> 579
 </Reference> 580
 </SignedInfo> 581
 <SignatureValue>?????</SignatureValue> 582
 <KeyInfo> 583
 <KeyValue> 584
 <DSAKeyValue> 585
 <P>?????</P><Q>?????</Q><G>?????</G><Y>?????</Y> 586
 </DSAKeyValue> 587
 </KeyValue> 588
 </KeyInfo> 589
 </Signature> 590

wd-xacml-dsigprofile-02 14 March 2003
Copyright © OASIS Open 2003. All Rights Reserved. Page 25 of 31

4.3Enveloping signature for Manifest for PolicySet1 and Policy1 591

This example shows an enveloping signature for a Manifest. The Manifest includes 592
<Reference> elements for a <PolicySet> instance named “PolicySet1” and for a <Policy> named 593
“Policy1” that is referenced from “PolicySet1”. Note that the Manifest could have been kept as a 594
separate XML data object, and not included in the <Signature> element. Once again, the 595
signature verifier must have some out-of-band means of ascertaining the identity of the signer 596
and the validity period of this policy, since the signature itself does not provide this information. 597

 <Signature Id="PolicySet1Policy1ManifestSignature" 598
 xmlns="http://www.w3.org/2000/09/xmldsig#"> 599
 <SignedInfo> 600
 <CanonicalizationMethod 601
 Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#"/> 602
 <SignatureMethod 603
 Algorithm="http://www.w3.org/2000/09/xmldsig#dsa-sha1"/> 604
 <Reference 605
 URI="#PolicySet1Policy1Manifest"> 606
 <Transforms> 607
 608
<Transform Algorithm="urn:oasis:names:tc:xacml:1.0:transforms:canonical609
DatatypeTransform”/> 610
 <Transform Algorithm="http://www.w3.org/2001/10/xml-exc-611
c14n#”> 612
 <ec:InclusiveNamespaces PrefixList="xacml #default" 613
 xmlns:ec="http://www.w3.org/2001/10/xml-exc-c14n#"/> 614
 </Transforms> 615
 <DigestMethod 616
 Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/> 617
 <DigestValue>?????</DigestValue> 618
 </Reference> 619
 </SignedInfo> 620
 <SignatureValue>?????</SignatureValue> 621
 <KeyInfo> 622
 <KeyValue> 623
 <DSAKeyValue> 624
 <P>?????</P><Q>?????</Q><G>?????</G><Y>?????</Y> 625
 </DSAKeyValue> 626
 </KeyValue> 627
 </KeyInfo> 628
 <Object> 629
 <Manifest Id="PolicySet1Policy1Manifest"> 630
 <Reference 631
 URI="http://www.sun.com/policies/PolicySet1.xml"> 632
 <Transforms> 633
 634
<Transform Algorithm="urn:oasis:names:tc:xacml:1.0:transforms:canonical635
DatatypeTransform”/> 636
 <Transform Algorithm="http://www.w3.org/2001/10/xml-exc-637
c14n#”> 638
 <ec:InclusiveNamespaces PrefixList="xacml #default" 639
 xmlns:ec="http://www.w3.org/2001/10/xml-exc-c14n#"/> 640
 </Transforms> 641
 <DigestMethod 642
 643
Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/> 644
 <DigestValue>?????</DigestValue> 645
 </Reference> 646
 <Reference 647
 URI="http://www.sun.com/policies/Policy1.xml"> 648
 <Transforms> 649

wd-xacml-dsigprofile-02 14 March 2003
Copyright © OASIS Open 2003. All Rights Reserved. Page 26 of 31

 650
<Transform Algorithm="urn:oasis:names:tc:xacml:1.0:transforms:canonical651
DatatypeTransform”/> 652
 <Transform Algorithm="http://www.w3.org/2001/10/xml-exc-653
c14n#”> 654
 <ec:InclusiveNamespaces PrefixList="xacml #default" 655
 xmlns:ec="http://www.w3.org/2001/10/xml-exc-c14n "/> 656
 </Transforms> 657
 <DigestMethod 658
 659
Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/> 660
 <DigestValue>?????</DigestValue> 661
 </Reference> 662
 </Manifest> 663
 </Object> 664
 </Signature> 665
 666

4.4SAML Envelope for PolicySet1 and Policy1 667

This example shows how the policy used in the previous example might be enclosed in a SAML 668
Assertion, and signed as part of the signature on the Assertion. 669

<?xml version=”1.0” encoding=”UTF-8”?> 670
<saml:Assertion ...> 671
 <saml:AttributeStatement> 672
 <saml:Subject> 673
 <saml:NameIdentifier>ACMECorporateDatabase</saml:NameIdentifier> 674
 </saml:Subject> 675
 <saml:Attribute AttributeName=”urn:oasis:names:tc:xacml:1.0:policy” 676
 677
AttributeNamespace=”urn:oasis:names:tc:xacml:1.0:policy”> 678
 <saml:AttributeValue> 679
 ...XACML PolicySet1 Instance goes here... 680
 </saml:AttributeValue> 681
 </saml:Attribute> 682
 </saml:AttributeStatement> 683
 <ds:Signature 684
 685
 Id="PolicySet1Policy1ManifestSignature" 686
 xmlns="http://www.w3.org/2000/09/xmldsig#"> 687
 <SignedInfo> 688
 <CanonicalizationMethod 689
 Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#"/> 690
 <SignatureMethod 691
 Algorithm="http://www.w3.org/2000/09/xmldsig#dsa-sha1"/> 692
 <Reference 693
 URI="#PolicySet1Policy1Manifest"> 694
 <Transforms> 695
 696
<Transform Algorithm="urn:oasis:names:tc:xacml:1.0:transforms:canonical697
DatatypeTransform”/> 698
 <Transform Algorithm="http://www.w3.org/2001/10/xml-exc-699
c14n#”> 700
 <ec:InclusiveNamespaces PrefixList="xacml #default" 701
 xmlns:ec="http://www.w3.org/2001/10/xml-exc-c14n#"/> 702
 </Transforms> 703
 <DigestMethod 704
 Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/> 705
 <DigestValue>?????</DigestValue> 706
 </Reference> 707
 </SignedInfo> 708

wd-xacml-dsigprofile-02 14 March 2003
Copyright © OASIS Open 2003. All Rights Reserved. Page 27 of 31

 <SignatureValue>?????</SignatureValue> 709
 <KeyInfo> 710
 <KeyValue> 711
 <DSAKeyValue> 712
 <P>?????</P><Q>?????</Q><G>?????</G><Y>?????</Y> 713
 </DSAKeyValue> 714
 </KeyValue> 715
 </KeyInfo> 716
 <Object> 717
 <Manifest Id="PolicySet1Policy1Manifest"> 718
 <Reference 719
 URI="http://www.sun.com/policies/PolicySet1.xml"> 720
 <Transforms> 721
 722
<Transform Algorithm="urn:oasis:names:tc:xacml:1.0:transforms:canonical723
DatatypeTransform”/> 724
 <Transform Algorithm="http://www.w3.org/2001/10/xml-exc-725
c14n#”> 726
 <ec:InclusiveNamespaces PrefixList="xacml #default" 727
 xmlns:ec="http://www.w3.org/2001/10/xml-exc-c14n#"/> 728
 </Transforms> 729
 <DigestMethod 730
 731
Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/> 732
 <DigestValue>?????</DigestValue> 733
 </Reference> 734
 <Reference 735
 URI="http://www.sun.com/policies/Policy1.xml"> 736
 <Transforms> 737
 738
<Transform Algorithm="urn:oasis:names:tc:xacml:1.0:transforms:canonical739
DatatypeTransform”/> 740
 <Transform Algorithm="http://www.w3.org/2001/10/xml-exc-741
c14n#”> 742
 <ec:InclusiveNamespaces PrefixList="xacml #default" 743
 xmlns:ec="http://www.w3.org/2001/10/xml-exc-c14n "/> 744
 </Transforms> 745
 <DigestMethod 746
 747
Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/> 748
 <DigestValue>?????</DigestValue> 749
 </Reference> 750
 </Manifest> 751
 </Object> 752
 </ds:Signature> 753
</saml:Assertion> 754

 755
The Manifest could also contain a <Reference> element for the XACML Policy schema. 756

wd-xacml-dsigprofile-02 14 March 2003
Copyright © OASIS Open 2003. All Rights Reserved. Page 28 of 31

5References 757

 . 758
[ExclC14N] J. Boyer et al., Exclusive Canonicalization Version 1.0, 759
http://www.w3.org/TR/xml-exc-c14n/, World Wide Web Consortium, 18 January 2002 760
[InclC14N] J. Boyer et al., Canonical XML Version 1.0, HYPERLINK 761
"http://www.w3.org/TR/xml-c14n"http://www.w3.org/TR/xml-c14n, World Wide Web Consortium, 762
15 March 2001. 763
[RFC2119] S. Bradner, Key words for use in RFCs to Indicate Requirement Levels, 764
http://www.ietf.org/rfc/rfc2119.txt, IETF RFC 2119, March 1997. 765
[RFC2253] M. Wahl, et al., Lightweight Directory Access Protocol (v3): UTF-8 String 766
Representation of Distinguished Names, http://www.ietf.org/rfc/rfc2253.txt, IETF RFC 2253, 767
December 1997. 768
[RFC2396] T. Berners-Lee, et al., Uniform Resource Identifiers (URI): Generic Syntax, 769
http://ftp://ftp.isi.edu/in-notes/rfc2396.txt, August 1998. 770
[SAML] P. Hallam-Baker, E. Maler, editors, Assertions and Protocol for the OASIS 771
Security Assertion Markup Language (SAML}. http://www.oasis-772
open.org/committees/security/docs/cs-sstc-core-01.pdf, 31 May 2002. 773
[SAMLDSig] Scott Cantor, editor, Guidelines for using XML Signatures with the OASIS 774
Security Assertion Markup Language (SAML). http://www.oasis-775
open.org/committees/security/docs/draft-sstc-xmlsig-guidelines-03.pdf, Draft 03, 27 October 776
2002. 777
[Schneier] B. Schneier, Applied Cryptography: Protocols, Algorithms, and Source Code in 778
C, 2nd Edition, 1996, John Wiley & Sons, Inc. 779
[X.690] ITU-T, Information technology – ASN.1 encoding rules: Specification of Basic 780
Encoding Rules (BER), Canonical Encoding Rules (CER) and Distinguished Encoding Rules 781
(DER), ITU-T Recommendation X.690, December 1997. 782
[XACML] S. Godik, T. Moses, OASIS eXtensible Access Control Markup Language 783
(XACML), Committee Specification Version 1.0 (Revision 1), http://www.oasis-784
open.org/committees/xacml/repository/cs-xacml-specification-01.doc or http://www.oasis-785
open.org/committees/xacml/repository/cs-xacml-specification-01.pdf, 12 December 2002. 786
Error! Bookmark not defined.[XMLDSIG] D. Eastlake, et al., W3C XML-Signature Syntax 787
and Processing, W3C Recommendation, http://www.w3.org/TR/xmldsig-core, 12 February 2002. 788
[XPath2Filt] J. Boyer, M. Hughes, J. Reagle, editors, XML-Signature XPath Filter 2.0, 789
http://www.w3.org/TR/xmldsig-filter2/, 8 November 2002. 790

wd-xacml-dsigprofile-02 14 March 2003
Copyright © OASIS Open 2003. All Rights Reserved. Page 29 of 31

Appendix A.Acknowledgments 791

The following individuals were members of the committee during the development of this 792
specification: 793
• 794
In addition, the following people made contributions to this specification: 795
•. 796

wd-xacml-dsigprofile-02 14 March 2003
Copyright © OASIS Open 2003. All Rights Reserved. Page 30 of 31

Appendix B.Revision History 797

 798
Rev Date By Whom What
p-03 2003-01-15 Anne Anderson Initial version
wd-02 2003-03-14 Anne Anderson Make consistent with SAML Digital

Signature Guidelines, Incorporate MAC
usage, SAML assertion example, various
edits based on comments received.

 799

wd-xacml-dsigprofile-02 14 March 2003
Copyright © OASIS Open 2003. All Rights Reserved. Page 31 of 31

Appendix C.Notices 800

OASIS takes no position regarding the validity or scope of any intellectual property or other rights 801
that might be claimed to pertain to the implementation or use of the technology described in this 802
document or the extent to which any license under such rights might or might not be available; 803
neither does it represent that it has made any effort to identify any such rights. Information on 804
OASIS's procedures with respect to rights in OASIS specifications can be found at the OASIS 805
website. Copies of claims of rights made available for publication and any assurances of licenses 806
to be made available, or the result of an attempt made to obtain a general license or permission 807
for the use of such proprietary rights by implementors or users of this specification, can be 808
obtained from the OASIS Executive Director. 809
OASIS invites any interested party to bring to its attention any copyrights, patents or patent 810
applications, or other proprietary rights which may cover technology that may be required to 811
implement this specification. Please address the information to the OASIS Executive Director. 812
Copyright © OASIS Open 2002. All Rights Reserved. 813
This document and translations of it may be copied and furnished to others, and derivative works 814
that comment on or otherwise explain it or assist in its implementation may be prepared, copied, 815
published and distributed, in whole or in part, without restriction of any kind, provided that the 816
above copyright notice and this paragraph are included on all such copies and derivative works. 817
However, this document itself does not be modified in any way, such as by removing the 818
copyright notice or references to OASIS, except as needed for the purpose of developing OASIS 819
specifications, in which case the procedures for copyrights defined in the OASIS Intellectual 820
Property Rights document must be followed, or as required to translate it into languages other 821
than English. 822
The limited permissions granted above are perpetual and will not be revoked by OASIS or its 823
successors or assigns. 824
This document and the information contained herein is provided on an “AS IS” basis and OASIS 825
DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO 826
ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE 827
ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A 828
PARTICULAR PURPOSE. 829

