
Templates

In the last chapter, you saw how to take a well-formed HTML document and turn it into a stylesheet by
adding the XSLT elements <xsl:value-of> and <xsl:for-each> to pick out information from a
source XML document and produce an HTML result. The stylesheets that we looked at were simplified
stylesheets. Simplified stylesheets are good as a starting point when you're creating a stylesheet, and
they can be all you need in some cases. However, to utilize the more sophisticated functionality of
XSLT, you need to use full stylesheets.

In this chapter, we'll take the simplified stylesheet that we developed during the last chapter and turn it
into a full stylesheet. I'll also introduce you to templates as a way of breaking up your code and look in
a bit more detail at how XSLT processors construct a result from some source XML. You'll learn:

❑ What full stylesheets look like

❑ How the XSLT processor navigates the source document to create a result

❑ How to break up your code into separate templates

❑ How templates help with document-oriented and unpredictable XML

❑ How to create tables of contents in your pages using template modes

XSLT Stylesheet Structure
The simplified stylesheets that we used in the last chapter are a specialized form of stylesheet that make
a good starting point when we're creating an XSLT stylesheet. Simplified stylesheets aren't all that
common in larger applications because they're fairly restricted in what they can do, especially with
document-oriented XML.

Technically, simplified stylesheets are defined in the XSLT Recommendation in terms of how they map on to
full stylesheets. In the last chapter, we developed the following simplified stylesheet (HelloWorld.xsl) to
take the Hello World XML document (HelloWorld.xml) and convert it to HTML:

Chapter 4

104

<?xml version="1.0" encoding="ISO-8859-1"?>
<html xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xsl:version="1.0">
 <head><title>Hello World Example</title></head>
 <body>
 <p>
 <xsl:value-of select="/greeting" />
 </p>
 </body>
</html>

The equivalent full stylesheet for the simplified stylesheet looks very similar. The content of the
simplified stylesheet is wrapped in two elements – <xsl:template> and <xsl:stylesheet> – to
create HelloWorld2.xsl. The <xsl:stylesheet> element takes the version attribute and the
XSLT namespace declaration instead of the <html> element, giving the following:

<?xml version="1.0" encoding="ISO-8859-1"?>
<xsl:stylesheet version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
<xsl:template match="/">
 <html>
 <head><title>Hello World Example</title></head>
 <body>
 <p>
 <xsl:value-of select="/greeting" />
 </p>
 </body>
 </html>
</xsl:template>
</xsl:stylesheet>

In the next couple of sections, we'll look at what these new XSLT elements do.

Stylesheet Document Elements
The document element of a full stylesheet is <xsl:stylesheet> (a <stylesheet> element in the
namespace http://www.w3.org/1999/XSL/Transform – as usual I'm using the prefix xsl here
but you could use whatever you liked as long as it's associated with the XSLT namespace with a
namespace declaration). Like the document element in simplified stylesheets, the <xsl:stylesheet>
element needs to declare the XSLT namespace and give the version of XSLT that's used in the
stylesheet with a version attribute. This time, though, the version attribute doesn't need to be
qualified with the xsl prefix because it already lives on an element in the XSLT namespace, so the
processor knows it's part of XSLT.

You can also use <xsl:transform> as the document element in a full stylesheet, rather than
<xsl:stylesheet>. There is no difference in functionality between the two document elements
– they each use exactly the same attributes and do exactly the same thing. Some people prefer to use
<xsl:transform> when doing transformations that aren't producing presentation-oriented
formats such as XSL-FO or XHTML. Personally, I use <xsl:stylesheet> all the time.

Templates

105

Defining Templates
Inside the <xsl:stylesheet> document element, XSLT stylesheets are made up of a number of
templates, each of which matches a particular part of the source XML document and processes it
whatever way you define. The templates are rules that define how a particular part of the source XML
document maps on to the result that you want. Thus a full stylesheet has a structure that's quite similar
to the structure of CSS stylesheets – a set of rules that match different elements and describe how they
should be presented.

There are some very fundamental differences between CSS stylesheets and XSLT stylesheets, though.
First, while CSS always processes all the elements in a document, you can use XSLT to pick and
choose which elements to display. Second, while multiple rules can be applied to style a particular
element in CSS, only one template can be applied at a time in XSLT. Third, XSLT templates can
match a lot of things that CSS templates can't, such as attributes and comments.

Templates are defined using the <xsl:template> element. The match attribute on
<xsl:template> indicates which parts of the source document should be processed with the
particular template and the content of the <xsl:template> element dictates what is done with that
particular part of the source document. You can use literal result elements, <xsl:value-of>, and
<xsl:for-each> inside a template in exactly the same way as you do within a simplified stylesheet to
generate some output.

A full XSLT stylesheet has an <xsl:stylesheet> document element, which
contains a number of <xsl:template> elements, each of which defines the
processing that should be carried out on a particular part of the source XML.

Try It Out – Converting a Simplified Stylesheet to a Full Stylesheet
In this section, we'll convert the simplified stylesheet TVGuide.xsl that we created in the last chapter
into a full stylesheet and test that the full stylesheet gives exactly the same result for TVGuide.xml as
the simplified stylesheet did.

The simplified stylesheet TVGuide.xsl looks as follows:

<?xml version="1.0" encoding="ISO-8859-1"?>
<html xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xsl:version="1.0">
<head>
 <title>TV Guide</title>
 <link rel="stylesheet" href="TVGuide.css" />
 <script type="text/javascript">
 function toggle(element) {
 if (element.style.display == 'none') {
 element.style.display = 'block';
 } else {
 element.style.display = 'none';
 }
 }
 </script>

Chapter 4

106

</head>

<body>
 <h1>TV Guide</h1>
 <xsl:for-each select="/TVGuide/Channel">
 <h2 class="channel"><xsl:value-of select="Name" /></h2>
 <xsl:for-each select="Program">
 <div>
 <p>
 <xsl:value-of select="Start" />

 <xsl:value-of select="Series" />

 <xsl:value-of select="Description" />
 [Cast]
 </p>
 <div id="{Series}Cast" style="display: none;">
 <ul class="castlist">
 <xsl:for-each select="CastList/CastMember">

 <xsl:value-of select="Character" />

 <xsl:value-of select="Actor" />

 </xsl:for-each>

 </div>
 </div>
 </xsl:for-each>
 </xsl:for-each>
</body>
</html>

When you use this stylesheet with TVGuide.xml, you get the following display:

Templates

107

To create a full stylesheet from this simplified stylesheet, you need to do the following:

❑ Add an <xsl:template> element whose match attribute has the value / around the
<html> element

❑ Add an <xsl:stylesheet> element around the new <xsl:template> element

❑ Move the XSLT namespace declaration from the <html> element to the
<xsl:stylesheet> element

❑ Remove the xsl:version attribute from the <html> element and add an equivalent
version attribute on the <xsl:stylesheet> element

The result of these four steps is TVGuide2.xsl, with the following outline:

<?xml version="1.0" encoding="ISO-8859-1"?>
<xsl:stylesheet version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

<xsl:template match="/">
 <html>
 <head>
 ...
 </head>
 <body>
 ...
 </body>
 </html>
</xsl:template>

</xsl:stylesheet>

Chapter 4

108

Now run the transformation with TVGuide.xml, this time with the full stylesheet TVGuide2.xsl. Do
this by amending the xml-stylesheet processing instruction in TVGuide.xml as follows:

<?xml-stylesheet type="text/xsl" href="TVGuide2.xsl"?>

You should see exactly the same result as you had before.

The Node Tree
Before we start looking at templates in detail, we first need to look at an XML document in the way that
an XSLT processor does. When an XSLT processor reads in a document, it generates a representation
of the XML as a node tree. As you might expect from its name, the node tree is a bunch of nodes
arranged in a tree. Nodes are a general term for the components of an XML document, such as:

❑ element nodes

❑ attribute nodes

❑ text nodes

❑ comment nodes

❑ processing instruction nodes

The nodes are arranged in a tree such that the tree forms a new branch for every node contained in an
element. The relationships between the nodes in the tree are described in terms of familial relationships,
so the nodes that an element contains are called its children and an element node is its children's
parent. Similarly, all the children of an element node are siblings, and you can also talk about the
descendents of an element node or a node's ancestors.

At the very top of the node tree is the root node (for some reason node trees grow down rather than up).
You can think of the root node as being equivalent to the XML document itself. The root node's
children are the document element and any comments or processing instructions that live outside the
document element.

Attribute nodes are a bit special because attributes are not contained in elements in the same way as
other elements or text, but they are still associated with particular elements. The element that an
attribute is associated with is still known as its parent, but attributes are not their parent element's
children, just its attributes.

Note that comments and processing instructions are nodes and part of the node tree, so you need to
take them into account if you count nodes or iterate over them. As we'll see in Chapter 7, text nodes
that consist purely of whitespace might also be part of the node tree, but you have some control over
which are and which aren't.

Templates

109

The view of XML as a node tree is a very natural view because of the way that XML is structured, with
elements nesting inside each other. In XML, the relationship between an element and its contents is a one-
to-many relationship – each element can only have one parent – which fits the pattern of a tree structure.
Processing XML as a tree of nodes is also useful because it means you can focus down on a particular
branch of the tree (the content of a particular element) very easily. Other models of XML documents, such
as the Document Object Model (DOM) and the XML Infoset, also view XML documents as tree
structures, although the models are just slightly different from the node tree that XSLT uses.

You can find out more about the DOM at http://www.w3.org/DOM/Activity.html and more
about the XML Infoset at http://www.w3.org/TR/xml-infoset/.

XSLT processors treat documents as a node tree in which the contents of an element
are represented as its children. Every node in a node tree descends from the root node.

Having a picture of the node tree can be very useful because it lets you view the XML document in
the same way as the XSLT processor does. Here's a simplified version of the XML that we're using to
hold the information in our TV guide:

<?xml version="1.0" encoding="ISO-8859-1"?>
<?xml-stylesheet type="text/xsl" href="TVGuide.xsl"?>
<TVGuide start="2001-07-05" end="2001-07-05">
 <Channel>
 <Name>BBC1</Name>
 ...
 <Program>
 <Start>2001-07-05T19:30:00</Start>
 <Duration>PT30M</Duration>
 <Series>EastEnders</Series>
 ...
 </Program>
 ...
 </Channel>
 ...
</TVGuide>

Every node tree starts with the root node, so that's the starting point for our diagram. The root node of the
tree is like the document itself. The XML document has two nodes at the top level, the xml-stylesheet
processing instruction and the document element – the <TVGuide> element. The document element is
the top-most element in the node tree, but other things (like comments and processing instructions) can
occur at the same level. We can also draw the children of the root node in, as follows:

Chapter 4

110

root

processing instruction: xml-stylesheet
type="text/xsl" href="TVGuide.xsl"

element: TVGuide

An XSLT processor doesn't see the XML declaration (the first line of an XML file). The information
held in the XML declaration relates to how the XML document has been stored, which the XSLT
processor doesn't care about. Also, note that the pseudo-attributes in the xml-stylesheet
processing instruction aren't nodes (unlike proper attributes), they're just part of the value of the
processing instruction.

Now, the <TVGuide> element has a couple of attributes: start and end. These attributes shouldn't be
added to the tree in the same way as the children of the <TVGuide> would be, so we'll place them off
to one side and use a different kind of line for them, as follows:

root

processing instruction: xml-stylesheet
type="text/xsl" href="TVGuide.xsl"

element: TVGuide attribute: start
2001-07-05

attribute: end
2001-07-05

Now let's look at the content of the <TVGuide> element. The <TVGuide> element contains a
<Channel> element, which in turn contains a <Name> element and a <Program> element. The
<Name> element contains some text. Pieces of text are represented as separate nodes in the node tree,
so the <Name> element node contains a text node, as shown here:

Templates

111

root

processing instruction: xml-stylesheet
type="text/xsl" href="TVGuide.xsl"

element: TVGuide attribute: start
2001-07-05

attribute: end
2001-07-05

element: Channel

element: Name

text:
BBC1

element: Program

The child elements of the <Program> element are treated in the same way – they each have a single
text node as a child:

Chapter 4

112

root

processing instruction: xml-stylesheet
type="text/xsl" href="TVGuide.xsl"

element: TVGuide attribute: start
2001-07-05

attribute: end
2001-07-05

element: Channel

element: Name

text:
BBC1

element: Program

element: Start

text:
2001-07-05T19.30:00

element: Duration

text:
PT30M

element: Series

text:
EastEnders

The rest of the tree follows a similar pattern: element nodes having either other elements or text nodes
as children. It's often very useful to keep a picture of the node tree of the source document that you're
working with close at hand, to help you work out what nodes you're selecting and processing.

Many XSLT editors help with this by providing a simple tree view on a source document.
Alternatively, you can use a stand-alone tool such as Mike Brown's Pretty XML Tree Viewer
(http://skew.org/xml/stylesheets/treeview/html/).

Templates

113

XSLT Processing Model
Templates in stylesheets each match particular nodes in the node tree. The match attribute on a
template tells the XSLT processor what kind of nodes they match. In a full stylesheet, you tell the XSLT
processor what nodes you want to be processed (using an <xsl:apply-templates> instruction, as
you'll see later) and the XSLT processor goes through the nodes you've selected one by one trying to
find a matching template for each in turn. When it looks for a template, it searches the whole stylesheet,
so it doesn't matter where the template is within that stylesheet.

When the XSLT processor finds a matching template, it uses the content of that template to process the
matching node and generate some output. The content of the template might include instructions that
tell the processor to apply templates to a particular set of nodes, in which case it goes through those
nodes finding and processing matching templates, and so on.

In this section, we'll look at the implications of this processing model and the kinds of changes that we
can make to our stylesheet to take advantage of templates.

XSLT processing involves telling the processor to apply templates to some nodes in the
source document. The XSLT processor locates a template that matches the node, and
processes its content to generate a result. The location of the template within the
stylesheet doesn't matter.

The Starting Template
This process of applying templates to nodes in the node tree has to start somewhere. In the majority of
cases, the input to the stylesheet is an XML document, and the processor starts at the top of the node
tree, on the root node. After building the node tree, the XSLT processor takes the root node and tries to
find a template that matches it. If the XSLT processor finds one, it processes the content of that
template to generate the output.

If you're running a stylesheet from code, then you can make the stylesheet start from a node other
than the root node if you want. This is useful if you want to only process a section of a larger
document, for example. In these cases, you need templates that match the nodes that you use as the
source of the transformation – a template that matches the root node will only be used if you tell the
processor to process the root node.

A template that matches the root node has a match attribute with a value of /, one that looks like:

<xsl:template match="/">
 ...
</xsl:template>

If you're familiar with programming, you can think of this template as analogous to the main() method
on a class. Whatever happens, when you process a document with the stylesheet, the XSLT processor will
process the contents of this template, so it gives you top-level control over what the stylesheet does.

Chapter 4

114

If you look back at the full stylesheet that you created based on the simplified stylesheet from the last
chapter, you'll see that it contains only one template, which matches the root node. The stylesheet
works because the XSLT processor always activates that template.

A template that matches the root node acts as high-level control over the result of the
stylesheet.

Matching Elements with Templates
At the moment, we use <xsl:for-each> to tell the XSLT processor to go through the <Channel>
elements one by one. That's one place where we could use templates instead. In this section, we'll look
at how we can replace this <xsl:for-each> with a separate template and an <xsl:apply-
templates> instruction.

First, we need a template that tells the XSLT processor what to do when it's told to process a
<Channel> element. You can match an element with a template by giving the name of the element in
the match attribute of the <xsl:template> element. So the following template will match
<Channel> elements and process them to generate the same result as is currently generated inside
<xsl:for-each>:

<xsl:template match="Channel">
 <h2 class="channel"><xsl:value-of select="Name" /></h2>
 <xsl:for-each select="Program">
 <div>
 <p>
 <xsl:value-of select="Start" />

 <xsl:value-of select="Series" />

 <xsl:value-of select="Description" />
 [Cast]
 </p>
 <div id="{Series}Cast" style="display: none;">
 <ul class="castlist">
 <xsl:for-each select="CastList/CastMember">

 <xsl:value-of select="Character" />

 <xsl:value-of select="Actor" />

 </xsl:for-each>

 </div>
 </div>
 </xsl:for-each>
</xsl:template>

Templates

115

If a template's match attribute gives the name of an element, the XSLT processor will
use that template for elements with that name.

You can put this template wherever you like at the top level of the stylesheet (at the same level as the
other <xsl:template> elements). The XSLT processor will find it and use it whenever it needs to
process a <Channel> element. In TVGuide3.xsl, I've put this template after the template that
matches the root node, so the top level of the stylesheet looks like:

<?xml version="1.0" encoding="ISO-8859-1"?>
<xsl:stylesheet version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

<xsl:template match="/">
 ...
</xsl:template>

<xsl:template match="Channel">
 ...
</xsl:template>

</xsl:stylesheet>

I usually order the templates in my stylesheets starting from the template matching the root node and
working down the levels of the node tree. But you are free to arrange your templates however you like.

However, the XSLT processor will never use this template unless you tell the processor to process
(apply templates to) a <Channel> element. You instruct the XSLT processor to apply templates to
some nodes using the <xsl:apply-templates> instruction. Like <xsl:for-each>, the result of
the <xsl:apply-templates> instruction gets inserted into the result of the transformation at the
point where you use the instruction, so while the location of <xsl:template> doesn't matter, the
positioning of <xsl:apply-templates> is very important.

The <xsl:apply-templates> instruction has a select attribute, which tells the XSLT processor
which nodes to apply templates to. The select attribute on <xsl:apply-templates> works in the
same way as the select attribute on <xsl:for-each> – you give a path that points to the nodes to
which you want to apply templates.

We want the result to appear at the same place as the result of the original <xsl:for-each>, and we
already know the path to those nodes because we're already using it on the <xsl:for-each>. So you
can apply templates instead by replacing the <xsl:for-each> with an <xsl:apply-templates>
element that has exactly the same select attribute. Doing this in TVGuide4.xsl gives a template
matching the root node as follows:

<xsl:template match="/">
 <html>
 <head>
 <title>TV Guide</title>
 ...

Chapter 4

116

 </head>
 <body>
 <h1>TV Guide</h1>
 <xsl:apply-templates select="/TVGuide/Channel" />
 </body>
 </html>
</xsl:template>

Using templates instead of <xsl:for-each> breaks up the stylesheet into manageable chunks in a
similar way to functions and methods in standard programming languages. One advantage of this is that
you don't have XSLT with lots and lots of indentations, which can really help with readability! A bigger
advantage is that you can use the same template for similar nodes in different places or on the same
node multiple times, as we'll see later in the chapter. On the down side, the stylesheet no longer looks as
similar to the HTML document that we're producing as it used to, and to change the result of the
stylesheet, you may have to navigate between multiple templates.

You can replace an <xsl:for-each> element with a template holding its contents
and an <xsl:apply-templates> element selecting the nodes you want to process.

Try It Out – Replacing <xsl:for-each> with Templates
We've still used <xsl:for-each> in a couple of other places within TVGuide4.xsl, so let's convert
those instances in the same way as we've done with the one that iterated over <Channel> elements.

The next <xsl:for-each> is where we iterate over the <Program> elements, which is not within the
template that matches <Channel> elements. We can convert it by first replacing the <xsl:for-
each> with an <xsl:apply-templates> element that has the same value for its select attribute:

<xsl:template match="Channel">
 <h2 class="channel"><xsl:value-of select="Name" /></h2>
 <xsl:apply-templates select="Program" />
</xsl:template>

and then creating a template that matches <Program> elements. The new template has the same
contents as the old <xsl:for-each> did:

<xsl:template match="Program">
 <div>
 <p>
 <xsl:value-of select="Start" />

 <xsl:value-of select="Series" />

 <xsl:value-of select="Description" />
 [Cast]
 </p>
 <div id="{Series}Cast" style="display: none;">
 <ul class="castlist">
 <xsl:for-each select="CastList/CastMember">

Templates

117

 <xsl:value-of select="Character" />

 <xsl:value-of select="Actor" />

 </xsl:for-each>

 </div>
 </div>
</xsl:template>

This template also contains an <xsl:for-each>, one that iterates over the <CastMember> element
children of <CastList> elements. Again, we can replace this <xsl:for-each> with an
<xsl:apply-templates>:

<xsl:template match="Program">
 <div>
 <p>
 <xsl:value-of select="Start" />

 <xsl:value-of select="Series" />

 <xsl:value-of select="Description" />
 [Cast]
 </p>
 <div id="{Series}Cast" style="display: none;">
 <ul class="castlist">
 <xsl:apply-templates select="CastList/CastMember" />

 </div>
 </div>
</xsl:template>

and create a separate template that deals with giving output for <CastMember> elements:

<xsl:template match="CastMember">

 <xsl:value-of select="Character" />
 <xsl:value-of select="Actor" />

</xsl:template>

We now have four templates in TVGuide5.xsl, matching:

❑ The root node

❑ <Channel> elements

❑ <Program> elements

❑ <CastMember> elements

Chapter 4

118

If you run TVGuide5.xsl with TVGuide.xml, you should get exactly the same result as the original,
simplified stylesheet. Splitting up the processing into separate templates hasn't changed the result of
the transformation.

The Built-in Templates
We've seen that when you apply templates to a node, the XSLT processor tries to find the template that
matches that node. But what happens when there isn't a template that matches a node? For example, if
we applied templates to the <Name> child of the <Channel> element, as follows, but didn't have a
template to match the <Name> element:

<xsl:template match="Channel">
 <h2 class="channel"><xsl:apply-templates select="Name" /></h2>
 <xsl:apply-templates select="Program" />
</xsl:template>

When the XSLT processor can't find a template to match the node that it's been told to process, it uses a
built-in template. If you find that the result of your stylesheet includes text you didn't expect, the
chances are that it's due to the built-in templates. Just because there isn't a template for a particular
node that doesn't mean that it's not processed.

For elements, the built-in template is as follows:

<xsl:template match="*">
 <xsl:apply-templates />
</xsl:template>

This template uses two bits of syntax that we haven't seen before:

❑ The match attribute of the template takes the value *. Templates with a match pattern of *
match all elements.

❑ The <xsl:apply-templates> element doesn't have a select attribute. If you use
<xsl:apply-templates> without a select attribute, the XSLT processor collects all the
children of the current node (which is the node that the template matches) and applies
templates to them.

To see the effect of this, take another look at the part of the node tree containing the <Name> element:

element: Name

text:
BBC1

The <Name> element has only one child node, a text node with the value BBC1. When you tell the
XSLT processor to apply templates to the <Name> element, it will use the built-in template for
elements, and hence apply templates to the text node.

Templates

119

Now, again, we don't have a template that matches text nodes in our stylesheet, so the processor uses a
built-in template. The built-in template for text nodes is:

<xsl:template match="text()">
 <xsl:value-of select="." />
</xsl:template>

Again, this template uses a couple of new bits of syntax:

❑ The match attribute of the <xsl:template> element takes the value text(). Templates
with a match pattern of text() match text nodes.

❑ The select attribute of the <xsl:value-of> element takes the value .. The path . selects
the context node, so <xsl:value-of select="." /> gives the value of the context node,
in this case the text node.

In combination, these two built-in templates mean that if you apply templates to an element, but don't
have a template for that element (or any elements it contains), then you'll get the value of the text held
within the element. So applying templates to the <Name> element means that you get the value BBC1 in
the result.

If a processor can't find a template that matches a node, it uses the built-in template
for that node type. In effect, these give the value of the elements to which you apply
templates.

Try It Out – Using the Built-in Templates
There are quite a few places in our stylesheet where we want to just get the value of an element. Rather
than using <xsl:value-of> to get these values, we could apply templates to the elements and let the
built-in templates do their work to give us the element values.

We've already done this with the template for <Channel> elements, to get the name of the channel:

<xsl:template match="Channel">
 <h2 class="channel"><xsl:apply-templates select="Name" /></h2>
 <xsl:apply-templates select="Program" />
</xsl:template>

We can also replace the <xsl:value-of> instructions in the template for <Program> elements to get
the values of the <Start>, <Series>, and <Description> elements:

<xsl:template match="Program">
 <div>
 <p>
 <xsl:apply-templates select="Start" />

 <xsl:apply-templates select="Series" />

 <xsl:apply-templates select="Description" />

Chapter 4

120

 [Cast]
 </p>
 <div id="{Series}Cast" style="display: none;">
 <ul class="castlist">
 <xsl:apply-templates select="CastList/CastMember" />

 </div>
 </div>
</xsl:template>

and in the template for <CastMember> elements, to get the values of the <Character> and
<Actor> elements:

<xsl:template match="CastMember">

 <xsl:apply-templates select="Character" />

 <xsl:apply-templates select="Actor" />

</xsl:template>

Both the <Character> and <Actor> elements actually contain <Name> elements giving the
name of the character or actor. With the built-in templates, you get the value of the text held in
these <Name> elements.

The stylesheet TVGuide6.xsl still contains the same number of templates, but applies templates to all
the elements that it processes rather than simply getting their values. If you run TVGuide6.xsl with
TVGuide.xml you should get exactly the same result as you did before. Changing the <xsl:value-
of> elements to <xsl:apply-templates> elements hasn't altered the result of the stylesheet.

Extending Stylesheets
As we've seen in the previous section, the effect of the built-in templates is that if you apply templates to
an element, you get all the text that's contained in the element, at any level. This is the same as what
you get when you use <xsl:value-of> and select the element. In other words, if you don't have a
template that matches <Program> elements or any of their descendants then the following instructions
give you exactly the same result:

<xsl:apply-templates select="Program" />
<xsl:value-of select="Program" />

There are pluses and minuses to using <xsl:apply-templates> rather than <xsl:value-of>. The
biggest downside is that it's less efficient to use <xsl:apply-templates> because it forces the XSLT
processor to search through the stylesheet for templates that match the node rather than directly giving
the value of the node. For this reason, I would generally only apply templates to elements that I know could
contain other elements, and not to text nodes, attributes, or elements that I know only have text content.

Templates

121

On the plus side, using <xsl:apply-templates> makes it a lot easier to change the format of the
value that you get from an element, just by adding a template for that element. For example, if I wanted
to change the way I give the name of the series so that it's given as a link to a page on that series
instead, I can add a template that matches the <Series> element and generates an <a> element in the
result giving a link to the page.

<xsl:template match="Series">

 <xsl:value-of select="." />

</xsl:template>

This uses an attribute value template (which we met in the last chapter) to give the URL for the
page, using the value of the context node (the <Series> element) plus the string '.html'. For
example, the element <Series>EastEnders</Series> will result in a link to
EastEnders.html.

This flexibility is also very useful when the XML format that you're converting from isn't finalized. If we
added <Description> elements to the <Character> and <Actor> elements, as in TVGuide2.xml
in the code download, then we could update the stylesheet to cope with the change by adding templates
for these elements so that they only generate the value of the <Name> rather than including the
description. We do this in TVGuide7.xsl, which contains:

<xsl:template match="Actor">
 <xsl:apply-templates select="Name" />
</xsl:template>

<xsl:template match="Character">
 <xsl:apply-templates select="Name" />
</xsl:template>

If you didn't add these templates, then applying templates to the <Actor> or <Character>
elements would result in text containing both the name and description of the actor or
character, concatenated.

Using templates allows you to extend your stylesheet more easily than you can if you
use <xsl:for-each> and <xsl:value-of>.

Templates as Mapping Rules
We've been a little formulaic in our conversion from the simplified stylesheet to the full stylesheet that we
have now – we take every <xsl:for-each> and <xsl:value-of> and turn it into an <xsl:apply-
templates>. The introduction of templates has really just been a way of modularizing the code.

Chapter 4

122

But there's another way of thinking about templates that can make your stylesheets more elegant and
more extensible, and that's to consider them as a mapping rule. Each template describes how to map a
particular node in the source XML on to a result that you're after. In this section, we'll first look at using
templates with mixed content, and at how using templates as mapping rules is particularly useful when
processing document-oriented XML. Then, we'll go on to look at how we could apply the same kind of
technique to our stylesheet and the impact of doing so.

Processing Document-Oriented XML
Let's first look at the problem of generating output from document-oriented XML. Document-oriented
XML arises when you take a paragraph of text and mark up particular words and phrases within that
paragraph, giving mixed content – elements and text intermingled. This is in contrast to data-oriented
XML, which is concerned with storing data and usually results in element-only and text-only content.

Take another look at the XML structure that we're using to store information about TV programs:

<Program>
 <Start>2001-07-05T19:30:00</Start>
 <Duration>PT30M</Duration>
 <Series>EastEnders</Series>
 <Title></Title>
 <Description>
 Mark's health scare forces him to reconsider his future with Lisa,
 while Jamie is torn between Sonia and Zoe.
 </Description>
 ...
</Program>

While most of the XML structure is oriented around providing data, the description of the TV program
is more document-oriented. You could imagine wanting to add a bit of document-oriented markup to
the <Description> element, perhaps a link to the EastEnders biography for Jamie and highlights
around the names of the characters:

 <Description>
 <Character>Mark</Character>'s health scare forces him to reconsider his
 future with <Character>Lisa</Character>, while
 <Link
 href="http://www.bbc.co.uk/eastenders/characters/jamie_m_biog.shtml">
 <Character>Jamie</Character>
 </Link> is torn between <Character>Sonia</Character> and
 <Character>Zoe</Character>.
 </Description>

The <Description> element now holds mixed content. Looking at the node tree representation of
that piece of XML makes this clearer:

Templates

123

element: Description

element: Character

text:
Mark

text:
's health scare forces him to reconsider his future with

element: Character

text:
Lisa

text:
, while

element: Link attribute: href
http://www.bbc.co.uk/eastenders/characters/jamie_m_biog.shtml

element: Character

text:
Jamie

text:
is torn between

element: Character

text:
Sonia

text:
and

element: Character

text:
Zoe

text:
.

We want the elements that we use in the description to be transformed into HTML elements instead. In
the HTML version of the page, we want to use elements around the character names, and
transform the <Link> elements into <a> elements, to give:

Chapter 4

124

<p>
 2001-07-05T19:30:00

 EastEnders

 Mark's health scare forces him to
 reconsider his future with Lisa, while

 Jamie is torn between
 Sonia and
 Zoe.
 [Cast]
</p>

If you imagine processing the content of the <Description> element with <xsl:for-each>, you'll
see that you run into problems. We haven't looked at how to yet, but it's possible to iterate over all the
nodes that are children of the <Description> element, and test what kind of node they are to decide
what to do with them. But even if you did that, you still need to take account of nested elements, so
you'd get very long and very deep conditional processing to cover all levels of nesting.

However, with templates it's a lot easier. You can create a template for each kind of element that you
know can occur in the content of the <Description> element, which describes how to map between
that element and the result that you want. In this example, there are two elements, <Character> and
<Link>, so you need a template for each. Within the and <a> elements that these templates
create, you apply templates to the content of the <Character> or <Link> element to account for
possible nested elements:

<xsl:template match="Character">

 <xsl:apply-templates />

</xsl:template>

<xsl:template match="Link">

 <xsl:apply-templates />

</xsl:template>

Whenever you add a new type of element that you might include in the description, you can add a new
template that describes how to map that on to HTML.

Templates are particularly suited to processing document-oriented XML. Each
template acts as a mapping rule from source to result.

Try It Out – Creating Presentation Rules
We can add support for lots of different elements that we want to be able to use within the
<Description> element. Highlighting character names and providing links to other web sites is
useful, but you might also want to add elements for emphasis, foreign words, names of directors, series,
channels, films, and so on – different elements for the different types of words and phrases that can
appear in descriptions of TV programs and series.

Templates

125

We'll add just a few of these elements in TVGuide2.xml, to create TVGuide3.xml, which looks
as follows:

<?xml version="1.0" encoding="ISO-8859-1"?>
<TVGuide start="2001-07-05" end="2001-07-05">

<Channel>
 <Name>BBC1</Name>
 ...
 <Program rating="5" flag="favorite">
 <Start>2001-07-05T19:30:00</Start>
 <Duration>PT30M</Duration>
 <Series>EastEnders</Series>
 <Title></Title>
 <Description>
 <Character>Mark</Character>'s health scare forces him to reconsider
 his future with <Character>Lisa</Character>, while
 <Link
 href="http://www.bbc.co.uk/eastenders/characters/jamie_m_biog.shtml">
 <Character>Jamie</Character>
 </Link> is torn between <Character>Sonia</Character> and
 <Character>Zoe</Character>.
 </Description>
 <CastList>
 <CastMember>
 <Character>
 <Name>Zoe Slater</Name>
 <Description>
 The youngest Slater girl, <Character>Zoe</Character> really
 makes the most of the fact she's the baby of the family.
 </Description>
 </Character>
 <Actor>
 <Name>Michelle Ryan</Name>
 <Description>
 For more details, see
 <Link href="http://www.ajmanagement.co.uk/michelle-ryan.htm">
 <Actor>Michelle Ryan</Actor>'s Agency
 </Link>.
 </Description>
 </Actor>
 </CastMember>
 <CastMember>
 <Character>
 <Name>Jamie Mitchell</Name>
 <Description>
 Jamie's a bit of a heartthrob (who could resist that
 little-boy-lost look?) but until <Character>Janine
 Butcher</Character> came along he'd steered clear of girls.
 </Description>
 </Character>
 <Actor>
 <Name>Jack Ryder</Name>

Chapter 4

126

 <Description>
 Won Best Newcomer for <Character>Jamie Mitchell</Character>
 in the 1999 TV awards.
 </Description>
 </Actor>
 </CastMember>
 <CastMember>
 ...
 </CastMember>
 </CastList>
 ...
 </Program>
 ...
</Channel>
...
</TVGuide>

Try using TVGuide6.xsl with TVGuide3.xml, which uses <xsl:apply-templates> to apply
templates to the <Description> element. There aren't any templates for <Character> or <Link>
elements, so the built-in templates are used instead. The result of the transformation of the
<Description> element looks just the same as before, because the built-in templates automatically
show any text within an element.

We want a new version of the stylesheet (TVGuide8.xsl), which generates HTML where the words
and phrases in the description that we've picked out with <Character> and <Link> elements are
displayed and behave slightly differently from the rest of the text. Links should be links, for example,
and character names should be slightly larger than the surrounding text.

To make the marked-up text display and act differently, we need to introduce templates for these new
elements: one for the <Link> element, to create a hypertext link with an HTML <a> element:

<xsl:template match="Link">

 <xsl:apply-templates />

</xsl:template>

and one for the <Character> element, to create a element with a class of character
around the character names:

<xsl:template match="Character">

 <xsl:apply-templates />

</xsl:template>

To make the character names slightly bigger, we'll add a rule to TVGuide.css, to create
TVGuide2.css, which contains:

Templates

127

.character {
 font-size: larger;
}

Putting the final touches on TVGuide8.xsl, we need the HTML that it creates to point to
TVGuide2.css rather than TVGuide.css, so the <link> element generated in the template
matching the root node needs to be altered slightly:

<xsl:template match="/">
 <html>
 <head>
 <title>TV Guide</title>
 <link rel="stylesheet" href="TVGuide2.css" />
 ...
 </head>
 ...
 </html>
</xsl:template>

Having made this final change, transform TVGuide3.xml with TVGuide8.xsl. The result of the
transformation should look something like the following:

The character names are slightly larger than the rest of the text, and clicking on the word "Jamie" takes
you to the EastEnders site with Jamie Mitchell's biography. Feel free to add your own elements to that
description, and add your own templates matching them to present the document-oriented XML.

Chapter 4

128

Context-Dependent Processing
We've now introduced a number of elements into our XML structure that we're actually using elsewhere
in different ways. For example, we use the <Character> element to indicate the name of a character
in a description, and to hold information about a character within the <CastMember> element. The
template makes no distinction between these two uses of the <Character> element, and does the same
thing for each, making a element with a character class:

<xsl:template match="Character">

 <xsl:apply-templates />

</xsl:template>

At the moment, we're also creating a element when we create the cast list, in the template
matching the <CastMember> element:

<xsl:template match="CastMember">

 <xsl:apply-templates select="Character" />

 <xsl:apply-templates select="Actor" />

</xsl:template>

This means we end up with two elements around the names of the characters in the cast list.
We can get rid of the superfluous element either by reverting back to using <xsl:value-of>
to get the name of the character, or by removing the element in the template that matches
<CastMember> elements (and the same applies for the <Actor> elements as well, since we might
name actors in a description):

<xsl:template match="CastMember">

 <xsl:apply-templates select="Character" />
 <xsl:apply-templates select="Actor" />

</xsl:template>

So now we have the same template being used to process <Character> elements in different contexts.
However, one of the extensions that we made earlier in this chapter was to have the <Character> and
<Actor> elements within <CastMember> actually give both a name and a description of the character.
When we take this into account, we have a problem because we don't want the element to contain
both the name and the description of the character. We need a different template for the <Character>
and <Actor> elements when they are children of <CastMember> elements (ones that just apply
templates to the <Name> element child of the <Character> or <Actor> element). The new templates
for the <Character> elements that occur in <CastMember> elements need to look like:

Templates

129

<xsl:template match="Character">

 <xsl:apply-templates select="Name" />

</xsl:template>

But we can't use this template with the <Character> elements that occur in <Description>
elements because they don't contain <Name> elements. If we use this template with those elements, the
 elements won't have any content.

So we need some way of having different templates for the different contexts in which these elements
are allowed. We can do this by changing the value of the match attribute of <xsl:template>, and
this is where we need to use patterns, which are why they are introduced next.

Patterns
So far we've seen four kinds of values for the match attribute of <xsl:template>:

❑ / matches the root node

❑ * matches any element

❑ text() matches text nodes

❑ the name of an element matches that element

These values are all examples of patterns. An XSLT processor uses the pattern specified in the match
attribute of <xsl:template> to work out whether it can use a template to process a node to which
you've told it to apply templates. In our case, we need one pattern to match <Character> elements
that are children of <CastMember> elements, and another pattern to match <Character> elements
that appear at any level within <Description> elements. In both cases, we're checking the context in
which the <Character> element appears. The two patterns we need are:

❑ CastMember/Character to match <Character> elements that occur within
<CastMember> elements

❑ Description//Character to match <Character> elements that occur nested to any
level within <Description> elements

These types of patterns are technically known as location path patterns. As you can see, location path
patterns look a lot like the location paths that we use to select nodes to process in select attributes,
and it can be easy to get confused between the two. You use location paths to select nodes; they point
from the current node to a set of other nodes in the tree, stepping down from element to child. You use
location path patterns to match nodes; they test whether a particular node has particular ancestors,
looking up the node tree to work out the context of the node.

A location path pattern is made up of a number of step patterns, separated by either / or //. If the
separator is a /, then the pattern tests a parent-child relationship. For example, the pattern
Description/Character matches <Character> elements whose immediate parent is a
<Description> element. If the separator is //, on the other hand, then the pattern tests an ancestor-
descendent relationship. For example, the pattern Description//Character matches
<Character> elements that have a <Description> element as an ancestor at any level.

Chapter 4

130

Location path patterns enable you to match elements according to the context in
which they occur.

Identifying Elements in Different Contexts
In our XML document, TVGuide3.xml, there are some elements that have different meanings in
different contexts. If you remember back that far, it was one of our design decisions when we first put
together our XML structure that we would make use of the context an element was in, rather than use
different names for elements in different contexts, to work out what an element meant and what we
should do with it.

So now we have to deal with that decision by creating different templates with different match patterns
for the different contexts in which an element can occur. The contexts within which different elements
can occur are shown in the following table:

Element Contexts

<Name> child of <Channel>

child of <Character>

child of <Actor>

<Description> child of <Program>

child of <Character>

child of <Actor>

<Character> child of <CastMember>

descendent of <Description>

<Actor> child of <CastMember>

descendent of <Description>

<Series> child of <Program>

descendent of <Description>

<Program> child of <Channel>

descendent of <Description>

<Channel> child of <TVGuide>

descendent of <Description>

A stylesheet that deals with documents that follow our markup language really needs to have templates
that deal with elements occurring in each of these possible contexts, using patterns that include
ancestry information.

Templates

131

Try It Out – Creating Templates for Context-Dependent Elements
At this stage, we'll create a new version of the stylesheet, TVGuide9.xsl, which contains separate
templates for each of these elements in each of these contexts. You should be able to put together
different templates for the elements in their different contexts as mapping rules. For example, the
<Name> element can occur in three contexts – <Channel>, <Character>, and <Actor> – so there
should be three corresponding templates:

<xsl:template match="Channel/Name">...</xsl:template>
<xsl:template match="Character/Name">...</xsl:template>
<xsl:template match="Actor/Name">...</xsl:template>

As you add these templates, you should consider whether some of the HTML that you're currently
generating in higher-level templates can be generated in lower-level templates instead. For example, my
feeling is that the <Name> element in the <Channel> element maps on to the <h2> heading element in
the result, so the template should look like:

<xsl:template match="Channel/Name">
 <h2 class="channel"><xsl:value-of select="." /></h2>
</xsl:template>

But if you create the <h2> element in the above template, you don't need to create it in the template for
the <Channel> element. So you need to change that template too, removing the <h2> element that
you were creating within it:

<xsl:template match="TVGuide/Channel">
 <xsl:apply-templates select="Name" />
 <xsl:apply-templates select="Program" />
</xsl:template>

This template only applies to <Channel> elements that are children of the <TVGuide> element,
not those that are descendents of <Description> elements.

If you go through this process religiously, you should end up with about 19 different templates, as in
TVGuide9.xsl. Using TVGuide9.xsl with TVGuide3.xml results in a page in which both the
<Character> elements within the cast list and those within the <Description> are treated properly,
so the result looks like the following when you view it in Internet Explorer:

Chapter 4

132

This process of adding templates on an element-by-element basis, taking account of the different
contexts in which an element can occur, has left us with a lot of templates, but it has made the stylesheet
more robust. We've handled the problem that we had with <Character> elements being treated
differently in different contexts, and we've included templates to handle the possibility of things that
aren't actually present in TVGuide3.xml, but which could happen in more complete documents that
follow the markup language, such as <Channel> elements in <Description> elements.

Unnecessary Templates
Adding templates to deal with every kind of element, in every context, within a stylesheet can leave you
with a stylesheet that contains lots of templates that actually don't do very much. This makes the
stylesheet harder for you to maintain (because it's longer) and it makes more work for the processor
when it needs to identify which template to apply in a particular situation. You need to find a judicious
balance between the two.

First, you don't need to create a template for every element in every context. Remember that if the
XSLT processor can't find a template that matches a node, then it will use a built-in template. If an
element (and all its content) gets processed by the built-in templates, then you'll just get the value of the
node. So, if you have templates that look like either of the following:

<xsl:template match="...">
 <xsl:value-of select="." />
</xsl:template>

<xsl:template match="...">
 <xsl:apply-templates />
</xsl:template>

then you may as well get rid of them.

Templates

133

Second, you can get rid of templates that essentially process the children of the element that they match
in the order that they appear. For example, the revised template for the <Channel> elements that are
children of <TVGuide> elements is like that:

<xsl:template match="TVGuide/Channel">
 <xsl:apply-templates select="Name" />
 <xsl:apply-templates select="Program" />
</xsl:template>

When a <Channel> element appears as a child of a <TVGuide> element then it can only contain a
<Name> element followed by any number of <Program> elements. So telling the processor to apply
templates first to the <Name> element and then to the <Program> elements has the same effect as
telling the processor to apply templates to all the <Channel> element's children in the order they
occur, which would be the template:

<xsl:template match="TVGuide/Channel">
 <xsl:apply-templates />
</xsl:template>

This template has the same effect as the built-in template for elements, so you can delete it without
affecting the result of the stylesheet.

Finally, you can get rid of templates that match elements that are never selected for processing.
Remember that a template is never actually used if the processor never gets told to apply templates to a
node that matches that template. A template that is never matched will never be used, and can therefore
be safely removed.

Try It Out – Removing Unnecessary Templates
TVGuide9.xsl does contain a few templates that aren't really necessary, and to make it easier to
understand we could prune it to create TVGuide10.xsl.

There are three templates that do the same thing as the built-in templates, and just contain an
<xsl:apply-templates> or an <xsl:value-of> instruction that gives the value of the current
node. They are the one matching <Name> element children of <Character> elements, the one
matching <Name> element children of <Actor> elements, and the one matching <Description>
element children of <Program> elements – you can safely delete them:

<xsl:template match="Character/Name">
 <xsl:value-of select="." />
</xsl:template>

<xsl:template match="Actor/Name">
 <xsl:value-of select="." />
</xsl:template>

<xsl:template match="Program/Description">
 <xsl:apply-templates />
</xsl:template>

Chapter 4

134

We identified the template matching <Channel> element children of the <TVGuide> element as
falling into the second category. It had two <xsl:apply-templates> in it, but these selected nodes
in the same order as they occurred in the source document, essentially the same as applying templates to all
the children, which again is just what the built-in templates do. So you can safely delete the
following template:

<xsl:template match="TVGuide/Channel">
 <xsl:apply-templates select="Name" />
 <xsl:apply-templates select="Program" />
</xsl:template>

Finally, in TVGuide9.xsl there are two templates that can never be applied – the one matching
<Description> elements within <Character> elements, and the one matching <Description>
elements within <Actor> elements. These templates will never get activated because the templates that
match <Character> and <Actor> elements (within <CastMember> elements) never apply templates
to their child <Description> elements. So these two templates can also be deleted:

<xsl:template match="Character/Description" />

<xsl:template match="Actor/Description" />

Once you've done all that, you should have something like the following stylesheet, TVGuide10.xsl.
The ordering of the templates within the stylesheet doesn't matter.

<?xml version="1.0" encoding="ISO-8859-1"?>
<xsl:stylesheet version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

<xsl:template match="/">
 <html>
 ...
 </html>
</xsl:template>

<xsl:template match="Channel/Name">
 <h2 class="channel"><xsl:value-of select="." /></h2>
</xsl:template>

<xsl:template match="Channel/Program">
 <div>
 ...
 </div>
</xsl:template>

<xsl:template match="Program/Series">
 <xsl:value-of select="." />
</xsl:template>

<xsl:template match="CastMember">

 <xsl:apply-templates select="Character" />
 <xsl:apply-templates select="Actor" />

Templates

135

</xsl:template>

<xsl:template match="CastMember/Character">

 <xsl:apply-templates select="Name" />

</xsl:template>

<xsl:template match="CastMember/Actor">

 <xsl:apply-templates select="Name" />

</xsl:template>

<xsl:template match="Description//Character">

 <xsl:apply-templates />

</xsl:template>

<xsl:template match="Description//Actor">

 <xsl:apply-templates />

</xsl:template>

<xsl:template match="Link">

 <xsl:apply-templates />

</xsl:template>

<xsl:template match="Description//Program">
 <xsl:apply-templates />
</xsl:template>

<xsl:template match="Description//Series">
 <xsl:apply-templates />
</xsl:template>

<xsl:template match="Description//Channel">
 <xsl:apply-templates />
</xsl:template>

</xsl:stylesheet>

Using TVGuide10.xsl with TVGuide3.xml should give the same result as TVGuide9.xsl did.

Chapter 4

136

Resolving Conflicts Between Templates
Whenever you have rules in a language, such as rules in CSS or templates in XSLT, you need some way
to resolve conflicts when two of the rules apply to the same situation. What would happen, for example,
if you had one template that matched all <Character> elements and another template that matched
only those <Character> elements that had <CastMember> as their parent:

<xsl:template match="Character">
 <xsl:apply-templates />
</xsl:template>

<xsl:template match="CastMember/Character">
 <xsl:apply-templates select="Name" />
</xsl:template>

A <Character> element in a <Description> element only matches one of the templates, because it
doesn't have a <CastMember> element as its parent, so obviously the XSLT processor uses that
template with it. But what about a <Character> element in a <CastMember> element? It matches
both of the template's patterns, so what should the XSLT processor do?

Template Priority
Well, the XSLT processor will only ever process one template when you apply templates to a node, so it
has to choose between the two templates that it's presented with in some way. It does this by looking at
the template's priority. A template with a high priority is chosen over a template with a lower priority.

You can specifically assign a template a priority using the priority attribute on the
<xsl:template> element. The priority attribute can be set to any number, including decimal and
negative numbers. For example, you can give the two templates different specific priorities, as follows:

<xsl:template match="Character" priority="-1">
 <xsl:apply-templates />
</xsl:template>

<xsl:template match="CastMember/Character" priority="2">
 <xsl:apply-templates select="Name" />
</xsl:template>

Default Priorities
However, it would be very difficult to assign and keep track of priorities if the priority attribute was
your only option. If you don't specify a priority attribute on a template, the XSLT processor assigns
it a priority based on how specific its match pattern is. XSLT processors recognize three levels of
priority in patterns:

❑ Patterns that match a class of nodes, such as *, which matches all elements, are assigned an
implicit priority of -0.5

❑ Patterns that match nodes according to their name, such as Character, which matches
<Character> elements, are assigned an implicit priority of 0

Templates

137

❑ Patterns that match nodes according to their context, such as CastMember/Character,
which matches <Character> elements whose parent is a <CastMember> element, are
assigned an implicit priority of 0.5

When assigning priorities based on patterns, it doesn't matter how specific the context information
is: if you specify any context for a node then the template has a priority of 0.5. For example,
Description/Link/Character has exactly the same priority as
Description//Character.

Technically, it's an error if you have two templates that match the same node and the match patterns for
the two templates have the same specificity. However, most processors recover from the error and use
the template that you've defined last in the stylesheet. You should try to avoid having templates that
have the same priority and can feasibly match the same node; use the priority attribute to assign
them specific, different priorities.

If two templates match the same node, the processor uses the one with the highest
priority. Priority can be assigned explicitly with the priority attribute or
determined implicitly from the template's match pattern. As a last resort, the
processor can select the last matching template in the stylesheet.

Try It Out – Using Priorities
Currently, the templates that our stylesheet contains don't have any conflicts with each other because
each of them only matches elements in a fairly specific context. To try out priorities, let's try making
some of the templates conflict by removing some of that context information from one of them. For
example, in TVGuide11.xsl, let's change the template that matches <Program> elements within
<Description> elements to match any <Program> element:

<xsl:template match="Program">
 <xsl:apply-templates />
</xsl:template>

Now a <Program> element will always be matched by this template, and if it's a child of a <Channel>
element then it will also match the following template:

<xsl:template match="Channel/Program">
 <div>
 <p>
 <xsl:apply-templates select="Start" />

 <xsl:apply-templates select="Series" />

 <xsl:apply-templates select="Description" />
 [Cast]
 </p>
 <div id="{Series}Cast" style="display: none;">
 <ul class="castlist">
 <xsl:apply-templates select="CastList/CastMember" />

Chapter 4

138

 </div>
 </div>
</xsl:template>

However, if you run TVGuide11.xsl with TVGuide3.xml, it won't make any difference to the result
because the latter template, matching <Program> element children of <Channel> elements, has a
higher priority. When the <Program> element that the XSLT processor is trying to process is a child of
a <Channel> element, it will use the latter template, with the match pattern of Channel/Program;
when it's not (such as when it's a child of a <Description> element), the processor will use the former
template, with the match pattern of Program.

But we can change that in two ways. First, we can assign different priorities to the two templates using
the priority attribute. Assign the general template a priority of 1, to create TVGuide12.xsl:

<xsl:template match="Program" priority="1">
 <xsl:apply-templates />
</xsl:template>

This explicit priority is higher than the implicit priority of the second template. If you run
TVGuide12.xsl with TVGuide3.xml, you get the following mess:

Some of the formatting is still present because the elements inside the <Program> element still get
processed by this template. However, the parts of the result that were generated by the second template,
such as the <div> and <p> elements, are no longer present. You can get the same effect by removing
the priority on the template matching all <Program> elements and giving the template matching
<Program> elements within <Channel> elements a priority lower than -0.5.

Templates

139

A second way of manipulating the priority of the templates is to remove the context from the path for
the second template (and remove the priority attributes that you just added), so the template that's
supposed to be used to process <Program> elements within <Channel> elements looks like:

<xsl:template match="Program">
 <div>
 <p>
 <xsl:apply-templates select="Start" />

 <xsl:apply-templates select="Series" />

 <xsl:apply-templates select="Description" />
 [Cast]
 </p>
 <div id="{Series}Cast" style="display: none;">
 <ul class="castlist">
 <xsl:apply-templates select="CastList/CastMember" />

 </div>
 </div>
</xsl:template>

Now the templates both apply to the same <Program> elements and have the same priority, which is
an error. Move the template that's supposed to be for <Program> elements within <Description>
elements below the above in the stylesheet (if it's not there already), to give TVGuide13.xsl. Most
likely your processor will use the lower template in the stylesheet to process the <Program> elements,
and you'll get the same mess as when you changed the priority explicitly. Processors are within their
rights to terminate the stylesheet and give you an error, though, and some processors might warn you
that there are two templates that match the same node with the same priority. Saxon, for example, gives
reams of recoverable error messages, though it produces the result perfectly well:

Chapter 4

140

It's often simpler to make templates whose match patterns don't include any information about the ancestry
of the element, and it's easier for the processor too, because it doesn't have to check. For our TV guide
stylesheet, we could adopt one of two styles to deal with elements that need to be treated differently in
different places – add ancestry information for those templates that deal with elements in the descriptions, or
add ancestry information to the other templates, those that deal with the bulk of the result. I think it makes
more sense to keep ancestry information on the templates that deal with descriptions, because that way it's
easy to tell which templates are those that deal with descriptions and which aren't. TVGuide14.xsl shows
the result of doing that.

Processing with Push and Pull
Using templates as mapping rules really makes explicit the correspondence between a bit of the source
XML and the result that you desire from it. As we've seen in TVGuide14.xsl, we can adopt this
approach in data-oriented XML as well as document-oriented XML – you can have different templates
matching different elements, even if those elements follow the traditionally 'data-oriented' pattern of just
having element or text children. The approach that we were working with at the start of this chapter was
quite different. There, we had very few templates (we started with just one!), and where we did use them
it was really to make the stylesheet more manageable and to get reuse.

These two approaches to transformations with XSLT are termed push and pull.

Processing with Push
In the push approach, templates specify fairly low-level rules and the source XML document gets
pushed through the stylesheet to be transformed on the way. Stylesheets that use the push approach
tend to have a lot of templates, each containing a snippet of XML with an <xsl:apply-templates>
instruction that moves the processing down to all an element's children. The final structure of the result
is highly determined by the structure of the source.

Here's an example of a stylesheet, TVGuide15.xsl, which demonstrates a push approach. You can see
how multiple templates are used to build up the result, but without knowing the structure of the source
XML document it's hard to tell exactly what result you'll get (I've highlighted the main changes from
TVGuide14.xsl, though it was actually quite push-like already):

<?xml version="1.0" encoding="ISO-8859-1"?>

<xsl:stylesheet version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

<xsl:template match="/">
 <html>
 <head>
 ...
 </head>
 <body>
 <h1>TV Guide</h1>
 <xsl:apply-templates />
 </body>
 </html>
</xsl:template>

<xsl:template match="Channel/Name">

Templates

141

 <h2 class="channel"><xsl:apply-templates /></h2>
</xsl:template>

<xsl:template match="Program">
 <div>
 <p>
 <xsl:apply-templates select="Start" />

 <xsl:apply-templates select="Series" />

 <xsl:apply-templates select="Description" />
 [Cast]
 </p>
 <div id="{Series}Cast" style="display: none;">
 <ul class="castlist">
 <xsl:apply-templates select="CastList" />

 </div>
 </div>
</xsl:template>

<xsl:template match="Start">
 <xsl:apply-templates />
</xsl:template>

<xsl:template match="Series">
 <xsl:apply-templates />
</xsl:template>

<xsl:template match="CastMember">
 <xsl:apply-templates />
</xsl:template>

<xsl:template match="Character">
 <xsl:apply-templates />
</xsl:template>

<xsl:template match="Actor">
 <xsl:apply-templates />
</xsl:template>

<xsl:template match="Character/Description" />

<xsl:template match="Actor/Description" />

<xsl:template match="Description//Character">
 <xsl:apply-templates />
</xsl:template>

<xsl:template match="Description//Actor">
 <xsl:apply-templates />
</xsl:template>

<xsl:template match="Description//Link">
 <xsl:apply-templates />

Chapter 4

142

</xsl:template>

<xsl:template match="Description//Program">
 <xsl:apply-templates />
</xsl:template>

<xsl:template match="Description//Series">
 <xsl:apply-templates />
</xsl:template>

<xsl:template match="Description//Channel">
 <xsl:apply-templates />
</xsl:template>

</xsl:stylesheet>

Note that in this stylesheet I've used empty templates to do nothing with the <Description>
elements within <Character> and <Actor> elements within the cast list. I apply templates to
both the <Name> and <Description> children of these elements, but then ignore the
<Description> element. This contrasts with a pull approach, which would only apply
templates to the <Name> element in the first place.

Processing with Pull
In the pull approach, the stylesheet pulls in information from the source XML document to populate a
template structure. Stylesheets that use the pull approach tend to have only a few templates and to use
<xsl:for-each> and <xsl:value-of> to generate the result. The final structure of the result is
mainly determined by the structure of the stylesheet and how the templates fit together.

Here's an example of a stylesheet that demonstrates a pull approach (actually, it's TVGuide2.xsl – the
first stylesheet we used in this chapter, more or less). As you can see, there's only one template and its
content follows the structure of the result that it generates very closely:

<?xml version="1.0" encoding="ISO-8859-1"?>
<xsl:stylesheet version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

<xsl:template match="/">
 <html>
 <head>
 ...
 </head>
 <body>
 <h1>TV Guide</h1>
 <xsl:for-each select="/TVGuide/Channel">
 <h2 class="channel"><xsl:value-of select="Name" /></h2>
 <xsl:for-each select="Program">
 <div>
 <p>
 <xsl:value-of select="Start" />

 <xsl:value-of select="Series" />

Templates

143

 <xsl:value-of select="Description" />
 [Cast]
 </p>
 <div id="{Series}Cast" style="display: none;">
 <ul class="castlist">
 <xsl:for-each select="CastList/CastMember">

 <xsl:value-of select="Character/Name" />

 <xsl:value-of select="Actor/Name" />

 </xsl:for-each>

 </div>
 </div>
 </xsl:for-each>
 </xsl:for-each>
 </body>
 </html>
</xsl:template>

</xsl:stylesheet>

If you look carefully, you'll notice that I haven't even tried to style the content of the <Description>
element in this stylesheet – it's very hard to process document-oriented XML with a pull style.

When to Use Push and Pull
Push and pull approaches both have their own advantages and disadvantages, and the best stylesheets
use both approaches in tandem to process different parts of a particular XML document. You might use
pull for the data-oriented parts of the XML and push for the document-oriented parts, for example.
Here are some general guidelines about where to use push and where to use pull:

❑ Use multiple templates, each matching different types of nodes (a push approach) to process
document-oriented XML.

❑ Select the nodes that you specifically want to process (a pull approach) to change the order in
which the source is processed or to only process certain portions of the source. This is very
common in data-oriented XML where the order in which information is contained in the
source is not the same as the order in which it is required in the result.

❑ Apply templates to nodes, rather than getting their value directly (a push approach) to allow
for extensibility in areas where the structure of the source XML, or the result that you want to
generate from it, might change in the future.

❑ Access the values of nodes directly (a pull approach) when the structure of the source XML is
fixed and you know exactly what result you want from it.

Chapter 4

144

Taking these guidelines into account, TVGuide16.xsl gives a stylesheet that balances the push and
pull approaches. It mainly uses a push style, but selects nodes directly for processing in certain places,
notably to get only the <Name> child of <Character> and <Actor> elements and ignore the
<Description>.

Using templates to match nodes is a push approach, which is good for document-
oriented XML and for extensibility. Selecting nodes to process is a pull approach,
which is good for changing the structure of a document.

Using Moded Templates
We've seen how to use separate templates to process different nodes in different ways. However, one
thing that we might lose when we use templates like this is the ability to process the same node in
different ways in different situations. For example, say we want to create a table of contents for the
HTML page that we're generating, giving a list of the channels that the TV guide offers, as shown in the
following screenshot:

The HTML underlying the above page is as follows:

...
<h1>TV Guide</h1>
<p>
 [BBC1]
 [BBC2]
 [ITV]
 [Channel 4]
 [Channel 5]
</p>
<h2 class="channel">BBC1</h2>
...

Templates

145

We can get the table of contents by processing the <Channel> elements, but we're already processing
the <Channel> elements to get the lists of the programs available on each channel. We want to process
the same <Channel> elements twice: once for their entry in the channel list and once to get their details.

This is fairly easy with <xsl:for-each> because the content of the particular <xsl:for-each>
determines the result that you get. So we could do:

<h1>TV Guide</h1>
<p>
 <xsl:for-each select="TVGuide/Channel">
 [<xsl:value-of select="Name" />]
 </xsl:for-each>
</p>
<xsl:apply-templates />

to get the entries in the channel list, and then either use another <xsl:for-each> or apply templates
(as above) to the <Channel> elements to get their content later on.

However, you can also achieve this by using template modes. Modes allow you to process the same
node with different templates in different situations. You can apply templates in a particular mode using
the mode attribute on <xsl:apply-templates>, and you can define the mode for a template with
the mode attribute on <xsl:template>. When you apply templates in a particular mode then the
XSLT processor will only look at those templates with that mode.

With modes, then, you can apply templates to the same node in different modes to get different results.
So in this case, we can use a template in ChannelList mode to generate the result for each channel in
the channel list, as follows:

<xsl:template match="Channel" mode="ChannelList">
 [<xsl:value-of select="Name" />]
</xsl:template>

This template will only match <Channel> elements if you apply templates in ChannelList mode. So
we need to have an <xsl:apply-templates> element in the template for the root node that applies
templates in ChannelList mode:

<h1>TV Guide</h1>
<p>
 <xsl:apply-templates select="TVGuide/Channel" mode="ChannelList" />
</p>
<xsl:apply-templates />

When you apply templates without setting the mode, then the processor uses templates that don't
have a mode attribute.

You can use moded templates to get different processing for the same node in different
situations.

Chapter 4

146

Built-in Moded Templates
As you'll recall, when an XSLT processor can't find a template that matches a particular node then it
will use a built-in template instead. There are similar built-in templates for moded templates, one for
elements, which simply applies templates to their content in the same mode:

<xsl:template match="*" mode="any-mode">
 <xsl:apply-templates mode="any-mode" />
</xsl:template>

and another that matches text nodes in that mode and gives their value:

<xsl:template match="text()" mode="any-mode">
 <xsl:value-of select="." />
</xsl:template>

These built-in templates mean that you can get rid of superfluous templates and apply templates without
explicitly specifying the nodes to which you're applying them in exactly the same way as you can with
the default mode.

When applying templates in ChannelList mode, then, we don't have to specify the nodes to which
we're applying templates and can just use:

<h1>TV Guide</h1>
<p>
 <xsl:apply-templates mode="ChannelList" />
</p>
<xsl:apply-templates />

The current node in the template (which matches the root node) is the root node, so the <xsl:apply-
templates> in ChannelList mode with no select attribute will apply templates to the document
element, the <TVGuide> element in ChannelList mode. There isn't a template for the <TVGuide>
element in ChannelList mode, so the processor will apply the built-in moded template. This template
selects the children of the <TVGuide> element, the <Channel> elements, and applies templates to
them in ChannelList mode.

There are built-in moded templates in the same way as there are built-in normal
templates.

Try It Out – Creating a Channel List
There are three things that we need to do to TVGuide16.xsl to create a linked list of channels in our page:

1. Add anchors to the headings for the channels in the main body of the page

2. Create a template in ChannelList mode to give the link to each channel

3. Apply templates in ChannelList mode at the point at which the channel list should be given
on the page

Templates

147

We'll make these three changes to create a new version of our stylesheet, TVGuide17.xsl.

You can add the anchors to the headings by changing the template for the <Name> element child of the
<Channel> element to include an <a> element whose name and id attributes give the name of
the channel:

<xsl:template match="Channel/Name">
 <h2 class="channel">
 <xsl:value-of select="." />
 </h2>
</xsl:template>

The XHTML Recommendation advises that you use both the name and id attributes when creating
anchors for backward and forward compatibility. We're not yet generating proper XHTML, but it's
a good guideline to follow, as that's our final goal.

You can create the template for <Channel> elements in ChannelList mode to reference these links,
as follows:

<xsl:template match="Channel" mode="ChannelList">
 [<xsl:value-of select="Name" />]
</xsl:template>

Finally, you can apply templates in ChannelList mode in the template matching the root node to
insert the channel list just under the title. The main content of the page comes after this channel list and
is generated by applying templates in the normal mode:

<xsl:template match="/">
 <html>
 <head>
 ...
 </head>
 <body>
 <h1>TV Guide</h1>
 <p>
 <xsl:apply-templates mode="ChannelList" />
 </p>
 <xsl:apply-templates />
 </body>
 </html>
</xsl:template>

You could repeat the same list again at the bottom of the page very easily, by repeating the same
instruction after the <xsl:apply-templates> that generates the main body of the page:

<xsl:template match="/">
 <html>
 <head>
 ...

Chapter 4

148

 </head>
 <body>
 <h1>TV Guide</h1>
 <p>
 <xsl:apply-templates mode="ChannelList" />
 </p>
 <xsl:apply-templates />
 <p>
 <xsl:apply-templates mode="ChannelList" />
 </p>
 </body>
 </html>
</xsl:template>

This demonstrates one of the advantages of using templates over using <xsl:for-each> – you can
reuse the same code by applying the same template. Transforming TVGuide3.xml with
TVGuide17.xsl gives the display that we were aiming for, with a list of channel names at the top and
the bottom of the page. Clicking on the channel name takes you to the program listing for that channel.

Summary
We've covered a lot of ground in this chapter. We've looked at full stylesheets for the first time – XML
documents whose primary markup language is XSLT. You've learned how to convert from the starting
point of a simplified stylesheet into a full stylesheet, by adding an <xsl:stylesheet> document
element and an <xsl:template> element to give a template for the root node.

You've seen how an XSLT processor sees an XML document, as a node tree, and learned how to make
an XSLT processor give you the output you want by telling it to apply templates to a bunch of nodes
and providing the templates that it should use with them. You've discovered how to create templates
that match various types of nodes:

❑ The root node

❑ Text nodes

❑ All element nodes

❑ Element nodes with particular names

❑ Element nodes with particular parents or ancestors

XSLT processors can only use one template to process a node when you apply templates to it. We've
talked about how the processor deals with finding more than one template that matches a node by looking
at the templates' priorities, and how it handles not finding one at all by using the built-in templates. You've
also learned how to use modes to get the XSLT processor to use different templates in different situations.

Templates are the main constituent of a stylesheet, and the templates that you produce and the way you fit
them together has a big effect on the stylesheet. You've now experienced the two main approaches used in
stylesheets – push and pull – and we discussed the advantages and disadvantages of using each of them.

Templates

149

The XSLT that you've learned in this chapter hasn't much changed what you can generate from a
stylesheet, just the way in which you get it. In the next chapter, we'll start looking at how to get a
stylesheet to do more complicated processing dependent on the values of elements and attributes.

Review Questions
1. Turn the following simplified stylesheet into a full stylesheet:

<?xml version="1.0" encoding="ISO-8859-1"?>
<html xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xsl:version="1.0">
 <head><title>Films</title></head>
 <body>

 <xsl:for-each select="/Films/Film">
 <xsl:value-of select="Name" />
 </xsl:for-each>

 </body>
</html>

2. What is the term for the node at the top of the node tree? What relationship does it have to
the document element?

3. Draw a node tree for the following XML document:

<?xml version="1.0" encoding="ISO-8859-1"?>
<?xml-stylesheet type="text/xsl" href="Films.xsl"?>
<Films>
 <Film rating="12">
 <Name>Crouching Tiger Hidden Dragon</Name>
 <Notes>
 Directed by <Director>Ang Lee</Director>.
 </Notes>
 </Film>
</Films>

4. Which template is the first template to be processed when you use a stylesheet with an
entire document?

5. What kind of nodes does the following template process, and what does it do with them?

<xsl:template match="Description//Film">

 <xsl:value-of select="." />

</xsl:template>

Chapter 4

150

6. What will be the result of applying the following stylesheet to a document:

<?xml version="1.0" encoding="ISO-8859-1"?>
<xsl:stylesheet version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

<xsl:template match="/">
 <xsl:apply-templates />
</xsl:template>

</xsl:stylesheet>

7. Which of the following templates will be applied to a <Film> element that's a child of a
<Link> element that's a child of a <Description> element:

<xsl:template match="Description/Link/Film">...</xsl:template>
<xsl:template match="Film" priority="1">...</xsl:template>
<xsl:template match="Description//Film" priority="-1">...</xsl:template>
<xsl:template match="*">...</xsl:template>
<xsl:template match="Link/Film" mode="Description">...</xsl:template>

8. Which of the templates given in the previous question will be applied to the <Film> element
if it's selected with the instruction:

<xsl:apply-templates mode="Description" />

Templates

151

Chapter 4

152

