

WSS: SOAP Message Security 19 January 2004
Copyright © OASIS Open 2002-2004. All Rights Reserved. Page 1 of 56

 1

Web Services Security: 2

SOAP Message Security 1.0 3

Monday, 19 January 2004 4

Document identifier: 5
{draft}-{WSS: SOAP Message Security }-{1.0} (Word) (PDF) 6

Location: 7
http://www.docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-8
1.0 9
http://www.oasis-open.org/committees/documents.php 10

Editors: 11
Anthony Nadalin IBM
Chris Kaler Microsoft
Phillip Hallam-Baker VeriSign
Ronald Monzillo Sun

Contributors: 12
Gene Thurston AmberPoint
Frank Siebenlist Argonne National Lab
Merlin Hughes Baltimore Technologies
Irving Reid Baltimore Technologies
Peter Dapkus BEA
Hal Lockhart BEA
Symon Chang CommerceOne
Thomas DeMartini ContentGuard
Guillermo Lao ContentGuard
TJ Pannu ContentGuard
Shawn Sharp Cyclone Commerce
Ganesh Vaideeswaran Documentum
Sam Wei Documentum
John Hughes Entegrity
Tim Moses Entrust
Toshihiro Nishimura Fujitsu
Tom Rutt Fujitsu
Yutaka Kudo Hitachi

WSS: SOAP Message Security 19 January 2004
Copyright © OASIS Open 2002-2004. All Rights Reserved. Page 2 of 56

Jason Rouault HP
Bob Blakley IBM
Joel Farrell IBM
Satoshi Hada IBM
Maryann Hondo IBM
Hiroshi Maruyama IBM
David Melgar IBM
Anthony Nadalin IBM
Nataraj Nagaratnam IBM
Wayne Vicknair IBM
Kelvin Lawrence IBM (co-Chair)
Don Flinn Individual
Bob Morgan Individual
Bob Atkinson Microsoft
Keith Ballinger Microsoft
Allen Brown Microsoft
Paul Cotton Microsoft
Giovanni Della-Libera Microsoft
Vijay Gajjala Microsoft
Johannes Klein Microsoft
Scott Konermann Microsoft
Chris Kurt Microsoft
Brian LaMacchia Microsoft
Paul Leach Microsoft
John Manferdell Microsoft
John Shewchuk Microsoft
Dan Simon Microsoft
Hervey Wilson Microsoft
Chris Kaler Microsoft (co-Chair)
Prateek Mishra Netegrity
Frederick Hirsch Nokia
Senthil Sengodan Nokia
Lloyd Burch Novell
Ed Reed Novell
Charles Knouse Oblix
Steve Anderson OpenNetwork (Sec)
Vipin Samar Oracle
Jerry Schwarz Oracle
Eric Gravengaard Reactivity
Stuart King Reed Elsevier
Andrew Nash RSA Security
Rob Philpott RSA Security
Peter Rostin RSA Security
Martijn de Boer SAP
Pete Wenzel SeeBeyond
Jonathan Tourzan Sony
Yassir Elley Sun Microsystems
Jeff Hodges Sun Microsystems
Ronald Monzillo Sun Microsystems
Jan Alexander Systinet
Michael Nguyen The IDA of Singapore
Don Adams TIBCO

WSS: SOAP Message Security 19 January 2004
Copyright © OASIS Open 2002-2004. All Rights Reserved. Page 3 of 56

John Weiland US Navy
Phillip Hallam-Baker VeriSign
Mark Hays Verisign
Hemma Prafullchandra VeriSign
 13

 Abstract: 14
This specification describes enhancements to SOAP messaging to provide message 15
integrity and confidentiality. The specified mechanisms can be used to accommodate a 16
wide variety of security models and encryption technologies. 17
This specification also provides a general-purpose mechanism for associating security 18
tokens with message content. No specific type of security token is required, the 19
specification is designed to be extensible (i.e.. support multiple security token formats). 20
For example, a client might provide one format for proof of identity and provide another 21
format for proof that they have a particular business certification. 22
Additionally, this specification describes how to encode binary security tokens, a 23
framework for XML-based tokens, and how to include opaque encrypted keys. It also 24
includes extensibility mechanisms that can be used to further describe the characteristics 25
of the tokens that are included with a message. 26

Status: 27
This is a technical committee document submitted for consideration by the OASIS Web 28
Services Security (WSS) technical committee. Please send comments to the editors. If 29
you are on the wss@lists.oasis-open.org list for committee members, send comments 30
there. If you are not on that list, subscribe to the wss-comment@lists.oasis-open.org list 31
and send comments there. To subscribe, send an email message to wss-comment-32
request@lists.oasis-open.org with the word "subscribe" as the body of the message. For 33
patent disclosure information that may be essential to the implementation of this 34
specification, and any offers of licensing terms, refer to the Intellectual Property Rights 35
section of the OASIS Web Services Security Technical Committee (WSS TC) web page 36
at http://www.oasis-open.org/committees/wss/ipr.php. General OASIS IPR information 37
can be found at http://www.oasis-open.org/who/intellectualproperty.shtml. 38

WSS: SOAP Message Security 19 January 2004
Copyright © OASIS Open 2002-2004. All Rights Reserved. Page 4 of 56

Table of Contents 39

1 Introduction ... 6 40
1.1 Goals and Requirements .. 6 41

1.1.1 Requirements... 6 42
1.1.2 Non-Goals.. 6 43

2 Notations and Terminology... 8 44
2.1 Notational Conventions ... 8 45
2.2 Namespaces ... 8 46
2.3 Acronyms and Abbreviations .. 9 47
2.4 Terminology... 9 48

3 Message Protection Mechanisms... 11 49
3.1 Message Security Model... 11 50
3.2 Message Protection... 11 51
3.3 Invalid or Missing Claims .. 11 52
3.4 Example .. 12 53

4 ID References ... 14 54
4.1 Id Attribute ... 14 55
4.2 Id Schema ... 14 56

5 Security Header .. 16 57
6 Security Tokens .. 18 58

6.1 Attaching Security Tokens .. 18 59
6.1.1 Processing Rules ... 18 60
6.1.2 Subject Confirmation.. 18 61

6.2 User Name Token ... 18 62
6.2.1 Usernames... 18 63

6.3 Binary Security Tokens ... 19 64
6.3.1 Attaching Security Tokens ... 19 65
6.3.2 Encoding Binary Security Tokens.. 19 66

6.4 XML Tokens .. 20 67
6.4.1 Identifying and Referencing Security Tokens .. 20 68

7 Token References... 21 69
7.1 SecurityTokenReference Element .. 21 70
7.2 Direct References.. 22 71
7.3 Key Identifiers.. 23 72
7.4 Embedded References ... 23 73
7.5 ds:KeyInfo ... 24 74
7.6 Key Names.. 24 75

8 Signatures... 26 76
8.1 Algorithms ... 26 77
8.2 Signing Messages... 28 78
8.3 Signing Tokens.. 29 79
8.4 Signature Validation .. 30 80

WSS: SOAP Message Security 19 January 2004
Copyright © OASIS Open 2002-2004. All Rights Reserved. Page 5 of 56

8.5 Example .. 31 81
9 Encryption ... 32 82

9.1 xenc:ReferenceList ... 32 83
9.2 xenc:EncryptedKey ... 33 84
9.3 Processing Rules .. 33 85

9.3.1 Encryption .. 34 86
9.3.2 Decryption.. 34 87

9.4 Decryption Transformation.. 35 88
10 Security Timestamps .. 36 89
11 Extended Example.. 38 90
12 Error Handling... 41 91
13 Security Considerations .. 42 92

13.1 General Considerations .. 42 93
13.2 Additional Considerations ... 42 94

13.2.1 Replay.. 42 95
13.2.2 Combining Security Mechanisms .. 43 96
13.2.3 Challenges ... 43 97
13.2.4 Protecting Security Tokens and Keys.. 43 98
13.2.5 Protecting Timestamps and Ids ... 44 99

14 Interoperability Notes .. 45 100
15 Privacy Considerations ... 46 101
16 References.. 47 102
Appendix A: Utility Elements and Attributes .. 49 103

A.1. Identification Attribute .. 49 104
A.2. Timestamp Elements ... 49 105
A.3. General Schema Types ... 50 106

Appendix B: SecurityTokenReference Model.. 51 107
Appendix C: Revision History .. 55 108
Appendix D: Notices .. 56 109
 110

WSS: SOAP Message Security 19 January 2004
Copyright © OASIS Open 2002-2004. All Rights Reserved. Page 6 of 56

1 Introduction 111

This specification proposes a standard set of SOAP [SOAP11, SOAP12] extensions that can be 112
used when building secure Web services to implement message content integrity and 113
confidentiality. This specification refers to this set of extensions and modules as the “Web 114
Services Security: SOAP Message Security” or “WSS: SOAP Message Security”. 115
This specification is flexible and is designed to be used as the basis for securing Web services 116
within a wide variety of security models including PKI, Kerberos, and SSL. Specifically, this 117
specification provides support for multiple security token formats, multiple trust domains, multiple 118
signature formats, and multiple encryption technologies. The token formats and semantics for 119
using these are defined in the associated profile documents. 120
This specification provides three main mechanisms: ability to send security tokens as part of a 121
message, message integrity, and message confidentiality. These mechanisms by themselves do 122
not provide a complete security solution for Web services. Instead, this specification is a building 123
block that can be used in conjunction with other Web service extensions and higher-level 124
application-specific protocols to accommodate a wide variety of security models and security 125
technologies. 126
These mechanisms can be used independently (e.g., to pass a security token) or in a tightly 127
coupled manner (e.g., signing and encrypting a message or part of a message and providing a 128
security token or token path associated with the keys used for signing and encryption). 129

1.1 Goals and Requirements 130

The goal of this specification is to enable applications to conduct secure SOAP message 131
exchanges. 132
This specification is intended to provide a flexible set of mechanisms that can be used to 133
construct a range of security protocols; in other words this specification intentionally does not 134
describe explicit fixed security protocols. 135
As with every security protocol, significant efforts must be applied to ensure that security 136
protocols constructed using this specification are not vulnerable to any one of a wide range of 137
attacks. The examples in this specification are meant to illustrate the syntax of these mechanisms 138
and are not intended as examples of combining these mechanisms in secure ways. 139
The focus of this specification is to describe a single-message security language that provides for 140
message security that may assume an established session, security context and/or policy 141
agreement. 142
The requirements to support secure message exchange are listed below. 143

1.1.1 Requirements 144

The Web services security language must support a wide variety of security models. The 145
following list identifies the key driving requirements for this specification: 146

• Multiple security token formats 147
• Multiple trust domains 148
• Multiple signature formats 149
• Multiple encryption technologies 150
• End-to-end message content security and not just transport-level security 151

1.1.2 Non-Goals 152

The following topics are outside the scope of this document: 153
• Establishing a security context or authentication mechanisms. 154
• Key derivation. 155
• Advertisement and exchange of security policy. 156

WSS: SOAP Message Security 19 January 2004
Copyright © OASIS Open 2002-2004. All Rights Reserved. Page 7 of 56

• How trust is established or determined. 157
• Non-repudiation. 158

 159

WSS: SOAP Message Security 19 January 2004
Copyright © OASIS Open 2002-2004. All Rights Reserved. Page 8 of 56

2 Notations and Terminology 160

This section specifies the notations, namespaces, and terminology used in this specification. 161

2.1 Notational Conventions 162

The keywords "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", 163
"SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be 164
interpreted as described in RFC 2119. 165
When describing abstract data models, this specification uses the notational convention used by 166
the XML Infoset. Specifically, abstract property names always appear in square brackets (e.g., 167
[some property]). 168
When describing concrete XML schemas, this specification uses a convention where each 169
member of an element’s [children] or [attributes] property is described using an XPath-like 170
notation (e.g., /x:MyHeader/x:SomeProperty/@value1). The use of {any} indicates the presence 171
of an element wildcard (<xs:any/>). The use of @{any} indicates the presence of an attribute 172
wildcard (<xs:anyAttribute/>). 173
Readers are presumed to be familiar with the terms in the Internet Security Glossary [GLOS]. 174

2.2 Namespaces 175

Namespace URIs (of the general form "some-URI") represents some application-dependent or 176
context-dependent URI as defined in RFC 2396 [URI]. The XML namespace URIs that MUST be 177
used by implementations of this specification are as follows (note that elements used in this 178
specification are from various namespaces): 179
 180

 http://www.docs.oasis-open.org/wss/2004/01/oasis-200401-wss-181
wssecurity-secext-1.0.xsd 182
 http://www.docs.oasis-open.org/wss/2004/01/oasis-200401-wss-183
wssecurity-utility-1.0.xsd 184

 185
This specification is designed to work with the general SOAP [SOAP11, SOAP12] message 186
structure and message processing model, and should be applicable to any version of SOAP. The 187
current SOAP 1.1 namespace URI is used herein to provide detailed examples, but there is no 188
intention to limit the applicability of this specification to a single version of SOAP. 189
The namespaces used in this document are shown in the following table (note that for brevity, the 190
examples use the prefixes listed below but do not include the URIs – those listed below are 191
assumed). 192
 193

Prefix Namespace

ds http://www.w3.org/2000/09/xmldsig#

S11 http://schemas.xmlsoap.org/soap/envelope/

S12 http://www.w3.org/2003/05/soap-envelope

wsse http://www.docs.oasis-open.org/wss/2004/01/oasis-200401-
wss-wssecurity-secext-1.0.xsd

wsu http://www.docs.oasis-open.org/wss/2004/01/oasis-200401-
wss-wssecurity-utility-1.0.xsd

WSS: SOAP Message Security 19 January 2004
Copyright © OASIS Open 2002-2004. All Rights Reserved. Page 9 of 56

xenc http://www.w3.org/2001/04/xmlenc#

The URLs provided for the wsse and wsu namespaces can be used to obtain the schema files. 194

2.3 Acronyms and Abbreviations 195

The following (non-normative) table defines acronyms and abbreviations for this document. 196

Term Definition

HMAC Keyed-Hashing for Message Authentication

SHA-1 Secure Hash Algorithm 1

SOAP Simple Object Access Protocol

URI Uniform Resource Identifier

XML Extensible Markup Language

2.4 Terminology 197

Defined below are the basic definitions for the security terminology used in this specification. 198
Claim – A claim is a declaration made by an entity (e.g. name, identity, key, group, privilege, 199
capability, etc). 200
Claim Confirmation – A claim confirmation is the process of verifying that a claim applies to 201
an entity 202
Confidentiality – Confidentiality is the property that data is not made available to 203
unauthorized individuals, entities, or processes. 204
Digest – A digest is a cryptographic checksum of an octet stream. 205
Digital Signature – In this document, digital signature and signature are used 206
interchangeably and have the same meaning. 207
End-To-End Message Level Security - End-to-end message level security is 208
established when a message that traverses multiple applications (one or more SOAP 209
intermediaries) within and between business entities, e.g. companies, divisions and business 210
units, is secure over its full route through and between those business entities. This includes not 211
only messages that are initiated within the entity but also those messages that originate outside 212
the entity, whether they are Web Services or the more traditional messages. 213
Integrity – Integrity is the property that data has not been modified. 214
Message Confidentiality - Message Confidentiality is a property of the message and 215
encryption is the mechanism by which this property of the message is provided. 216
Message Integrity - Message Integrity is a property of the message and digital signature is a 217
mechanism by which this property of the message is provided. 218
Signature - A signature is a value computed with a cryptographic algorithm and bound 219
to data in such a way that intended recipients of the data can use the signature to verify that the 220
data has not been altered and/or has originated from the signer of the message, providing 221
message integrity and authentication. The signature can be computed and verified with 222
symmetric key algorithms, where the same key is used for signing and verifying, or with 223
asymmetric key algorithms, where different keys are used for signing and verifying (a private and 224
public key pair are used). 225
Security Token – A security token represents a collection (one or more) of claims. 226
 227

WSS: SOAP Message Security 19 January 2004
Copyright © OASIS Open 2002-2004. All Rights Reserved. Page 10 of 56

 228
 229
Signed Security Token – A signed security token is a security token that is asserted and 230
cryptographically signed by a specific authority (e.g. an X.509 certificate or a Kerberos ticket). 231
Trust - Trust is the characteristic that one entity is willing to rely upon a second entity to execute 232
a set of actions and/or to make set of assertions about a set of subjects and/or scopes. 233
 234
 235
 236

WSS: SOAP Message Security 19 January 2004
Copyright © OASIS Open 2002-2004. All Rights Reserved. Page 11 of 56

3 Message Protection Mechanisms 237

When securing SOAP messages, various types of threats should be considered. This includes, 238
but is not limited to: 239

• the message could be modified or read by antagonists or 240
• an antagonist could send messages to a service that, while well-formed, lack appropriate 241

security claims to warrant processing. 242
To understand these threats this specification defines a message security model. 243

3.1 Message Security Model 244

This document specifies an abstract message security model in terms of security tokens 245
combined with digital signatures to protect and authenticate SOAP messages. 246
Security tokens assert claims and can be used to assert the binding between authentication 247
secrets or keys and security identities. An authority can vouch for or endorse the claims in a 248
security token by using its key to sign or encrypt (it is recommended to use a keyed encryption) 249
the security token thereby enabling the authentication of the claims in the token. An X.509 [X509] 250
certificate, claiming the binding between one’s identity and public key, is an example of a signed 251
security token endorsed by the certificate authority. In the absence of endorsement by a third 252
party, the recipient of a security token may choose to accept the claims made in the token based 253
on its trust of the producer of the containing message. 254
Signatures are used to verify message origin and integrity. Signatures are also used by message 255
producers to demonstrate knowledge of the key, typically from a third party, used to confirm the 256
claims in a security token and thus to bind their identity (and any other claims occurring in the 257
security token) to the messages they create. 258
It should be noted that this security model, by itself, is subject to multiple security attacks. Refer 259
to the Security Considerations section for additional details. 260
Where the specification requires that an element be "processed" it means that the element type 261
MUST be recognized to the extent that an appropriate error is returned if the element is not 262
supported. 263

3.2 Message Protection 264

Protecting the message content from being disclosed (confidentiality) or modified without 265
detection (integrity) are primary security concerns. This specification provides a means to protect 266
a message by encrypting and/or digitally signing a body, a header, or any combination of them (or 267
parts of them). 268
Message integrity is provided by XML Signature [XMLSIG] in conjunction with security tokens to 269
ensure that modifications to messages are detected. The integrity mechanisms are designed to 270
support multiple signatures, potentially by multiple SOAP actors/roles, and to be extensible to 271
support additional signature formats. 272
Message confidentiality leverages XML Encryption [XMLENC] in conjunction with security tokens 273
to keep portions of a SOAP message confidential. The encryption mechanisms are designed to 274
support additional encryption processes and operations by multiple SOAP actors/roles. 275
This document defines syntax and semantics of signatures within a <wsse:Security> element. 276
This document does not specify any signature appearing outside of a <wsse:Security> 277
element. 278

3.3 Invalid or Missing Claims 279

A message recipient SHOULD reject messages containing invalid signatures, messages missing 280
necessary claims or messages whose claims have unacceptable values. Such messages are 281
unauthorized (or malformed). This specification provides a flexible way for the message producer 282

WSS: SOAP Message Security 19 January 2004
Copyright © OASIS Open 2002-2004. All Rights Reserved. Page 12 of 56

to make a claim about the security properties by associating zero or more security tokens with the 283
message. An example of a security claim is the identity of the producer; the producer can claim 284
that he is Bob, known as an employee of some company, and therefore he has the right to send 285
the message. 286

3.4 Example 287

The following example illustrates the use of a custom security token and associated signature. 288
The token contains base64 encoded binary data conveying a symmetric key which, we assume, 289
can be properly authenticated by the recipient. The message producer uses the symmetric key 290
with an HMAC signing algorithm to sign the message. The message receiver uses its knowledge 291
of the shared secret to repeat the HMAC key calculation which it uses to validate the signature 292
and in the process confirm that the message was authored by the claimed user identity. 293
 294

(001) <?xml version="1.0" encoding="utf-8"?> 295
(002) <S11:Envelope xmlns:S11="..." xmlns:wsse="..." xmlns:wsu="..." 296
 xmlns:ds="..."> 297
(003) <S11:Header> 298
(004) <wsse:Security 299
 xmlns:wsse="..."> 300
(005) <xxx:CustomToken wsu:Id="MyID" 301
 xmlns:xxx="http://fabrikam123/token"> 302
(006) FHUIORv... 303
(007) </xxx:CustomToken> 304
(008) <ds:Signature> 305
(009) <ds:SignedInfo> 306
(010) <ds:CanonicalizationMethod 307
 Algorithm= 308
 "http://www.w3.org/2001/10/xml-exc-c14n#"/> 309
(011) <ds:SignatureMethod 310
 Algorithm= 311
 "http://www.w3.org/2000/09/xmldsig#hmac-sha1"/> 312
(012) <ds:Reference URI="#MsgBody"> 313
(013) <ds:DigestMethod 314
 Algorithm= 315
 "http://www.w3.org/2000/09/xmldsig#sha1"/> 316
(014) <ds:DigestValue>LyLsF0Pi4wPU...</ds:DigestValue> 317
(015) </ds:Reference> 318
(016) </ds:SignedInfo> 319
(017) <ds:SignatureValue>DJbchm5gK...</ds:SignatureValue> 320
(018) <ds:KeyInfo> 321
(019) <wsse:SecurityTokenReference> 322
(020) <wsse:Reference URI="#MyID"/> 323
(021) </wsse:SecurityTokenReference> 324
(022) </ds:KeyInfo> 325
(023) </ds:Signature> 326
(024) </wsse:Security> 327
(025) </S11:Header> 328
(026) <S11:Body wsu:Id="MsgBody"> 329
(027) <tru:StockSymbol xmlns:tru="http://fabrikam123.com/payloads"> 330
 QQQ 331
 </tru:StockSymbol> 332
(028) </S11:Body> 333
(029) </S11:Envelope> 334

 335
The first two lines start the SOAP envelope. Line (003) begins the headers that are associated 336
with this SOAP message. 337
Line (004) starts the <wsse:Security> header defined in this specification. This header 338
contains security information for an intended recipient. This element continues until line (024). 339

WSS: SOAP Message Security 19 January 2004
Copyright © OASIS Open 2002-2004. All Rights Reserved. Page 13 of 56

Lines (005) to (007) specify a custom token that is associated with the message. In this case, it 340
uses an externally defined custom token format. 341
Lines (008) to (023) specify a digital signature. This signature ensures the integrity of the signed 342
elements. The signature uses the XML Signature specification identified by the ds namespace 343
declaration in Line (002). 344
Lines (009) to (016) describe what is being signed and the type of canonicalization being used. 345
Line (010) specifies how to canonicalize (normalize) the data that is being signed. Lines (012) to 346
(015) select the elements that are signed and how to digest them. Specifically, line (012) 347
indicates that the <S11:Body> element is signed. In this example only the message body is 348
signed; typically all critical elements of the message are included in the signature (see the 349
Extended Example below). 350
Line (017) specifies the signature value of the canonicalized form of the data that is being signed 351
as defined in the XML Signature specification. 352
Lines (018) to (022) provides information, partial or complete, as to where to find the security 353
token associated with this signature. Specifically, lines (019) to (021) indicate that the security 354
token can be found at (pulled from) the specified URL. 355
Lines (026) to (028) contain the body (payload) of the SOAP message. 356
 357

WSS: SOAP Message Security 19 January 2004
Copyright © OASIS Open 2002-2004. All Rights Reserved. Page 14 of 56

4 ID References 358

There are many motivations for referencing other message elements such as signature 359
references or correlating signatures to security tokens. For this reason, this specification defines 360
the wsu:Id attribute so that recipients need not understand the full schema of the message for 361
processing of the security elements. That is, they need only "know" that the wsu:Id attribute 362
represents a schema type of ID which is used to reference elements. However, because some 363
key schemas used by this specification don't allow attribute extensibility (namely XML Signature 364
and XML Encryption), this specification also allows use of their local ID attributes in addition to 365
the wsu:Id attribute. As a consequence, when trying to locate an element referenced in a 366
signature, the following attributes are considered: 367

• Local ID attributes on XML Signature elements 368
• Local ID attributes on XML Encryption elements 369
• Global wsu:Id attributes (described below) on elements 370

In addition, when signing a part of an envelope such as the body, it is RECOMMENDED that an 371
ID reference is used instead of a more general transformation, especially XPath [XPATH]. This is 372
to simplify processing. 373

4.1 Id Attribute 374

There are many situations where elements within SOAP messages need to be referenced. For 375
example, when signing a SOAP message, selected elements are included in the scope of the 376
signature. XML Schema Part 2 [XMLSCHEMA] provides several built-in data types that may be 377
used for identifying and referencing elements, but their use requires that consumers of the SOAP 378
message either have or must be able to obtain the schemas where the identity or reference 379
mechanisms are defined. In some circumstances, for example, intermediaries, this can be 380
problematic and not desirable. 381
Consequently a mechanism is required for identifying and referencing elements, based on the 382
SOAP foundation, which does not rely upon complete schema knowledge of the context in which 383
an element is used. This functionality can be integrated into SOAP processors so that elements 384
can be identified and referred to without dynamic schema discovery and processing. 385
This section specifies a namespace-qualified global attribute for identifying an element which can 386
be applied to any element that either allows arbitrary attributes or specifically allows a particular 387
attribute. 388

4.2 Id Schema 389

To simplify the processing for intermediaries and recipients, a common attribute is defined for 390
identifying an element. This attribute utilizes the XML Schema ID type and specifies a common 391
attribute for indicating this information for elements. 392
The syntax for this attribute is as follows: 393
 394

<anyElement wsu:Id="...">...</anyElement> 395
 396
The following describes the attribute illustrated above: 397
.../@wsu:Id 398

This attribute, defined as type xsd:ID, provides a well-known attribute for specifying the 399
local ID of an element. 400

Two wsu:Id attributes within an XML document MUST NOT have the same value. 401
Implementations MAY rely on XML Schema validation to provide rudimentary enforcement for 402
intra-document uniqueness. However, applications SHOULD NOT rely on schema validation 403
alone to enforce uniqueness. 404

WSS: SOAP Message Security 19 January 2004
Copyright © OASIS Open 2002-2004. All Rights Reserved. Page 15 of 56

This specification does not specify how this attribute will be used and it is expected that other 405
specifications MAY add additional semantics (or restrictions) for their usage of this attribute. 406
The following example illustrates use of this attribute to identify an element: 407
 408

<x:myElement wsu:Id="ID1" xmlns:x="..." 409
 xmlns:wsu="..."/> 410

 411
Conformant processors that do support XML Schema MUST treat this attribute as if it was 412
defined using a global attribute declaration. 413
Conformant processors that do not support dynamic XML Schema or DTDs discovery and 414
processing are strongly encouraged to integrate this attribute definition into their parsers. That is, 415
to treat this attribute information item as if its PSVI has a [type definition] which {target 416
namespace} is "http://www.w3.org/2001/XMLSchema" and which {name} is "Id." Doing so 417
allows the processor to inherently know how to process the attribute without having to locate and 418
process the associated schema. Specifically, implementations MAY support the value of the 419
wsu:Id as the valid identifier for use as an XPointer [XPointer] shorthand pointer for 420
interoperability with XML Signature references. 421

WSS: SOAP Message Security 19 January 2004
Copyright © OASIS Open 2002-2004. All Rights Reserved. Page 16 of 56

5 Security Header 422

The <wsse:Security> header block provides a mechanism for attaching security-related 423
information targeted at a specific recipient in the form of a SOAPactor/role. This may be either 424
the ultimate recipient of the message or an intermediary. Consequently, elements of this type 425
may be present multiple times in a SOAP message. An active intermediary on the message path 426
MAY add one or more new sub-elements to an existing <wsse:Security> header block if they 427
are targeted for its SOAP node or it MAY add one or more new headers for additional targets. 428
As stated, a message MAY have multiple <wsse:Security> header blocks if they are targeted 429
for separate recipients. However, only one <wsse:Security> header block MAY omit the S11: 430
actor or S12:role attributes. Two <wsse:Security> header blocks MUST NOT have the 431
same value for S11:actor or S12:role. Message security information targeted for different 432
recipients MUST appear in different <wsse:Security> header blocks. This is due to potential 433
processing order issues (e.g. due to possible header re-ordering). The <wsse:Security> 434
header block without a specified S11:actor or S12:role MAY be processed by anyone, but 435
MUST NOT be removed prior to the final destination or endpoint. 436
As elements are added to a <wsse:Security> header block, they SHOULD be prepended to 437
the existing elements. As such, the <wsse:Security> header block represents the signing and 438
encryption steps the message producer took to create the message. This prepending rule 439
ensures that the receiving application can process sub-elements in the order they appear in the 440
<wsse:Security> header block, because there will be no forward dependency among the sub-441
elements. Note that this specification does not impose any specific order of processing the sub-442
elements. The receiving application can use whatever order is required. 443
When a sub-element refers to a key carried in another sub-element (for example, a signature 444
sub-element that refers to a binary security token sub-element that contains the X.509 certificate 445
used for the signature), the key-bearing element SHOULD be ordered to precede the key-using 446
Element: 447
 448

<S11:Envelope> 449
 <S11:Header> 450
 ... 451
 <wsse:Security S11:actor="..." S11:mustUnderstand="..."> 452
 ... 453
 </wsse:Security> 454
 ... 455
 </S11:Header> 456
 ... 457
</S11:Envelope> 458

 459
The following describes the attributes and elements listed in the example above: 460
/wsse:Security 461

This is the header block for passing security-related message information to a recipient. 462
/wsse:Security/@S11:actor 463

This attribute allows a specific SOAP 1.1 [SPOAP11] actor to be identified. This attribute 464
is optional; however, no two instances of the header block may omit a actor or specify the 465
same actor. 466

/wsse:Security/@S12:role 467
This attribute allows a specific SOAP 1.2 [SOAP12] role to be identified. This attribute is 468
optional; however, no two instances of the header block may omit a role or specify the 469
same role. 470
 471

/wsse:Security/{any} 472

WSS: SOAP Message Security 19 January 2004
Copyright © OASIS Open 2002-2004. All Rights Reserved. Page 17 of 56

This is an extensibility mechanism to allow different (extensible) types of security 473
information, based on a schema, to be passed. Unrecognized elements SHOULD cause 474
a fault. 475

/wsse:Security/@{any} 476
This is an extensibility mechanism to allow additional attributes, based on schemas, to be 477
added to the header. Unrecognized attributes SHOULD cause a fault. 478

All compliant implementations MUST be able to process a <wsse:Security> element. 479
All compliant implementations MUST declare which profiles they support and MUST be able to 480
process a <wsse:Security> element including any sub-elements which may be defined by that 481
profile. It is RECOMMENDED that undefined elements within the <wsse:Security> header 482
not be processed. 483
The next few sections outline elements that are expected to be used within a <wsse:Security> 484
header. 485
When a <wsse:Security> header includes a mustUnderstand="true" attribute: 486

• The receiver MUST generate a SOAP fault if does not implement the WSS: SOAP 487
Message Security specification corresponding to the namespace. Implementation means 488
ability to interpret the schema as well as follow the required processing rules specified in 489
WSS: SOAP Message Security. 490

• The receiver must generate a fault if unable to interpret or process security tokens 491
contained in the <wsse:Security> header block according to the corresponding WSS: 492
SOAP Message Security token profiles. 493

• Receivers MAY ignore elements or extensions within the <wsse:Security> element, 494
based on local security policy. 495

WSS: SOAP Message Security 19 January 2004
Copyright © OASIS Open 2002-2004. All Rights Reserved. Page 18 of 56

6 Security Tokens 496

This chapter specifies some different types of security tokens and how they are attached to 497
messages. 498

6.1 Attaching Security Tokens 499

This specification defines the <wsse:Security> header as a mechanism for conveying 500
security information with and about a SOAP message. This header is, by design, extensible to 501
support many types of security information. 502
For security tokens based on XML, the extensibility of the <wsse:Security> header allows for 503
these security tokens to be directly inserted into the header. 504

6.1.1 Processing Rules 505

This specification describes the processing rules for using and processing XML Signature and 506
XML Encryption. These rules MUST be followed when using any type of security token. Note 507
that if signature or encryption is used in conjunction with security tokens, they MUST be used in a 508
way that conforms to the processing rules defined by this specification. 509

6.1.2 Subject Confirmation 510

This specification does not dictate if and how claim confirmation must be done; however, it does 511
define how signatures may be used and associated with security tokens (by referencing the 512
security tokens from the signature) as a form of claim confirmation. 513

6.2 User Name Token 514

6.2.1 Usernames 515

The <wsse:UsernameToken> element is introduced as a way of providing a username. This 516
element is optionally included in the <wsse:Security> header. 517
The following illustrates the syntax of this element: 518
 519

<wsse:UsernameToken wsu:Id="..."> 520
 <wsse:Username>...</wsse:Username> 521
</wsse:UsernameToken> 522

 523
The following describes the attributes and elements listed in the example above: 524
/wsse:UsernameToken 525

This element is used to represent a claimed identity. 526
/wsse:UsernameToken/@wsu:Id 527

A string label for this security token. 528
/wsse:UsernameToken/wsse:Username 529

This required element specifies the claimed identity. 530
/wsse:UsernameToken/wsse:Username/@{any} 531

This is an extensibility mechanism to allow additional attributes, based on schemas, to be 532
added to the <wsse:Username> element. 533

/wsse:UsernameToken/{any} 534
This is an extensibility mechanism to allow different (extensible) types of security 535
information, based on a schema, to be passed. Unrecognized elements SHOULD cause 536
a fault. 537

/wsse:UsernameToken/@{any} 538

WSS: SOAP Message Security 19 January 2004
Copyright © OASIS Open 2002-2004. All Rights Reserved. Page 19 of 56

This is an extensibility mechanism to allow additional attributes, based on schemas, to be 539
added to the <wsse:UsernameToken> element. Unrecognized attributes SHOULD 540
cause a fault. 541

All compliant implementations MUST be able to process a <wsse:UsernameToken> element. 542
The following illustrates the use of this: 543
 544

<S11:Envelope xmlns:S11="..." xmlns:wsse="..."> 545
 <S11:Header> 546
 ... 547
 <wsse:Security> 548
 <wsse:UsernameToken> 549
 <wsse:Username>Zoe</wsse:Username> 550
 </wsse:UsernameToken> 551
 </wsse:Security> 552
 ... 553
 </S11:Header> 554
 ... 555
</S11:Envelope> 556
 557

6.3 Binary Security Tokens 558

6.3.1 Attaching Security Tokens 559

For binary-formatted security tokens, this specification provides a 560
<wsse:BinarySecurityToken> element that can be included in the <wsse:Security> 561
header block. 562

6.3.2 Encoding Binary Security Tokens 563

Binary security tokens (e.g., X.509 certificates and Kerberos [KERBEROS] tickets) or other non-564
XML formats require a special encoding format for inclusion. This section describes a basic 565
framework for using binary security tokens. Subsequent specifications MUST describe the rules 566
for creating and processing specific binary security token formats. 567
The <wsse:BinarySecurityToken> element defines two attributes that are used to interpret 568
it. The ValueType attribute indicates what the security token is, for example, a Kerberos ticket. 569
The EncodingType tells how the security token is encoded, for example Base64Binary. 570
The following is an overview of the syntax: 571
 572

<wsse:BinarySecurityToken wsu:Id=... 573
 EncodingType=... 574
 ValueType=.../> 575

 576
The following describes the attributes and elements listed in the example above: 577
/wsse:BinarySecurityToken 578

This element is used to include a binary-encoded security token. 579
/wsse:BinarySecurityToken/@wsu:Id 580

An optional string label for this security token. 581
/wsse:BinarySecurityToken/@ValueType 582

The ValueType attribute is used to indicate the "value space" of the encoded binary 583
data (e.g. an X.509 certificate). The ValueType attribute allows a URI that defines the 584
value type and space of the encoded binary data. Subsequent specifications MUST 585
define the ValueType value for the tokens that they define. The usage of ValueType is 586
RECOMMENDED. 587

/wsse:BinarySecurityToken/@EncodingType 588
The EncodingType attribute is used to indicate, using a URI, the encoding format of the 589
binary data (e.g., base64 encoded). A new attribute is introduced, as there are issues 590

WSS: SOAP Message Security 19 January 2004
Copyright © OASIS Open 2002-2004. All Rights Reserved. Page 20 of 56

with the current schema validation tools that make derivations of mixed simple and 591
complex types difficult within XML Schema. The EncodingType attribute is interpreted 592
to indicate the encoding format of the element. The following encoding formats are pre-593
defined (note that the URI fragments are relative to the URI for this specification): 594
 595

URI Description

#Base64Binary
(default)

XML Schema base 64 encoding

 596
/wsse:BinarySecurityToken/@{any} 597

This is an extensibility mechanism to allow additional attributes, based on schemas, to be 598
added. 599

All compliant implementations MUST be able to process a <wsse:BinarySecurityToken> 600
element. 601
When a <wsse:BinarySecurityToken> is included in a signature—that is, it is referenced 602
from a <ds:Signature> element--care should be taken so that the canonicalization algorithm 603
(e.g., Exclusive XML Canonicalization [EXC-C14N]) does not allow unauthorized replacement of 604
namespace prefixes of the QNames used in the attribute or element values. In particular, it is 605
RECOMMENDED that these namespace prefixes be declared within the 606
<wsse:BinarySecurityToken> element if this token does not carry the validating key (and 607
consequently it is not cryptographically bound to the signature). 608

6.4 XML Tokens 609

This section presents framework for using XML-based security tokens. Profile specifications 610
describe rules and processes for specific XML-based security token formats. 611

6.4.1 Identifying and Referencing Security Tokens 612

This specification also defines multiple mechanisms for identifying and referencing security 613
tokens using the wsu:Id attribute and the <wsse:SecurityTokenReference> element (as 614
well as some additional mechanisms). Please refer to the specific profile documents for the 615
appropriate reference mechanism. However, specific extensions MAY be made to the 616
<wsse:SecurityTokenReference> element. 617
 618

WSS: SOAP Message Security 19 January 2004
Copyright © OASIS Open 2002-2004. All Rights Reserved. Page 21 of 56

7 Token References 619

This chapter discusses and defines mechanisms for referencing security tokens. 620

7.1 SecurityTokenReference Element 621

A security token conveys a set of claims. Sometimes these claims reside somewhere else and 622
need to be "pulled" by the receiving application. The <wsse:SecurityTokenReference> 623
element provides an extensible mechanism for referencing security tokens. 624
The <wsse:SecurityTokenReference> element provides an open content model for 625
referencing security tokens because not all tokens support a common reference pattern. 626
Similarly, some token formats have closed schemas and define their own reference mechanisms. 627
The open content model allows appropriate reference mechanisms to be used when referencing 628
corresponding token types. 629
If a <wsse:SecurityTokenReference> is used outside of the <wsse:Security> header 630
block the meaning of the response and/or processing rules of the resulting references MUST be 631
specified by the containing element and are out of scope of this specification. 632
The following illustrates the syntax of this element: 633
 634

<wsse:SecurityTokenReference wsu:Id="..."> 635
 ... 636
</wsse:SecurityTokenReference> 637

 638
The following describes the elements defined above: 639
/wsse:SecurityTokenReference 640

This element provides a reference to a security token. 641
/wsse:SecurityTokenReference/@wsu:Id 642

A string label for this security token reference which names the reference. This attribute 643
does not indicate the ID of what is being referenced, that SHOULD be done using a 644
fragment URI in a <wsse:Reference> element within the 645
<wsse:SecurityTokenReference> element. 646

/wsse:SecurityTokenReference/@wsse:Usage 647
This optional attribute is used to type the usage of the <wsse:SecurityToken>. 648
Usages are specified using URIs and multiple usages MAY be specified using XML list 649
semantics. No usages are defined by this specification. 650

/wsse:SecurityTokenReference/{any} 651
This is an extensibility mechanism to allow different (extensible) types of security 652
references, based on a schema, to be passed. Unrecognized elements SHOULD cause a 653
fault. 654

/wsse:SecurityTokenReference/@{any} 655
This is an extensibility mechanism to allow additional attributes, based on schemas, to be 656
added to the header. Unrecognized attributes SHOULD cause a fault. 657

All compliant implementations MUST be able to process a 658
<wsse:SecurityTokenReference> element. 659
This element can also be used as a direct child element of <ds:KeyInfo> to indicate a hint to 660
retrieve the key information from a security token placed somewhere else. In particular, it is 661
RECOMMENDED, when using XML Signature and XML Encryption, that a 662
<wsse:SecurityTokenReference> element be placed inside a <ds:KeyInfo> to reference 663
the security token used for the signature or encryption. 664
There are several challenges that implementations face when trying to interoperate. Processing 665
the IDs and references requires the recipient to understand the schema. This may be an 666
expensive task and in the general case impossible as there is no way to know the "schema 667
location" for a specific namespace URI. As well, the primary goal of a reference is to uniquely 668

WSS: SOAP Message Security 19 January 2004
Copyright © OASIS Open 2002-2004. All Rights Reserved. Page 22 of 56

identify the desired token. ID references are, by definition, unique by XML. However, other 669
mechanisms such as "principal name" are not required to be unique and therefore such 670
references may be not unique. 671
The following list provides a list of the specific reference mechanisms defined in WSS: SOAP 672
Message Security in preferred order (i.e., most specific to least specific): 673

• Direct References – This allows references to included tokens using URI fragments and 674
external tokens using full URIs. 675

• Key Identifiers – This allows tokens to be referenced using an opaque value that 676
represents the token (defined by token type/profile). 677

• Key Names – This allows tokens to be referenced using a string that matches an identity 678
assertion within the security token. This is a subset match and may result in multiple 679
security tokens that match the specified name. 680

• Embedded References - This allows tokens to be embedded (as opposed to a pointer 681
to a token that resides elsewhere). 682

7.2 Direct References 683

The <wsse:Reference> element provides an extensible mechanism for directly referencing 684
security tokens using URIs. 685
The following illustrates the syntax of this element: 686
 687

<wsse:SecurityTokenReference wsu:Id="..."> 688
 <wsse:Reference URI="..." ValueType="..."/> 689
</wsse:SecurityTokenReference> 690

 691
The following describes the elements defined above: 692
/wsse:SecurityTokenReference/wsse:Reference 693

This element is used to identify an abstract URI location for locating a security token. 694
/wsse:SecurityTokenReference/wsse:Reference/@URI 695

This optional attribute specifies an abstract URI for where to find a security token. If a 696
fragment is specified, then it indicates the local ID of the token being referenced. 697

/wsse:SecurityTokenReference/wsse:Reference/@ValueType 698
This optional attribute specifies a URI that is used to identify the type of token being 699
referenced. This specification does not define any processing rules around the usage of 700
this attribute, however, specifications for individual token types MAY define specific 701
processing rules and semantics around the value of the URI and how it SHALL be 702
interpreted. If this attribute is not present, the URI MUST be processed as a normal URI. 703
The usage of ValueType is RECOMMENDED for references with local URIs. 704

/wsse:SecurityTokenReference/wsse:Reference/{any} 705
This is an extensibility mechanism to allow different (extensible) types of security 706
references, based on a schema, to be passed. Unrecognized elements SHOULD cause a 707
fault. 708

/wsse:SecurityTokenReference/wsse:Reference/@{any} 709
This is an extensibility mechanism to allow additional attributes, based on schemas, to be 710
added to the header. Unrecognized attributes SHOULD cause a fault. 711

The following illustrates the use of this element: 712
 713

<wsse:SecurityTokenReference 714
 xmlns:wsse="..."> 715
 <wsse:Reference 716
 URI="http://www.fabrikam123.com/tokens/Zoe"/> 717
</wsse:SecurityTokenReference> 718

WSS: SOAP Message Security 19 January 2004
Copyright © OASIS Open 2002-2004. All Rights Reserved. Page 23 of 56

7.3 Key Identifiers 719

Alternatively, if a direct reference is not used, then it is RECOMMENDED to use a key identifier to 720
specify/reference a security token instead of a <ds:KeyName>. A KeyIdentifier is a value 721
that can be used to uniquely identify a security token (e.g. a hash of the important elements of the 722
security token). The exact value type and generation algorithm varies by security token type (and 723
sometimes by the data within the token), Consequently, the values and algorithms are described 724
in the token-specific profiles rather than this specification. 725
The <wsse:KeyIdentifier> element SHALL be placed in the 726
<wsse:SecurityTokenReference> element to reference a token using an identifier. This 727
element SHOULD be used for all key identifiers. 728
The processing model assumes that the key identifier for a security token is constant. 729
Consequently, processing a key identifier is simply looking for a security token whose key 730
identifier matches a given specified constant. 731
The following is an overview of the syntax: 732
 733

<wsse:SecurityTokenReference> 734
 <wsse:KeyIdentifier wsu:Id="..." 735
 ValueType="..." 736
 EncodingType="..."> 737
 ... 738
 </wsse:KeyIdentifier> 739
</wsse:SecurityTokenReference> 740

 741
The following describes the attributes and elements listed in the example above: 742
/wsse:SecurityTokenReference/wsse:KeyIdentifier 743

This element is used to include a binary-encoded key identifier. 744
/wsse:SecurityTokenReference/wsse:KeyIdentifier/@wsu:Id 745

An optional string label for this identifier. 746
/wsse:SecurityTokenReference/wsse:KeyIdentifier/@ValueType 747

The optional ValueType attribute is used to indicate the type of KeyIdentifier being 748
used. Each specific token profile specifies the KeyIdentifier types that may be used 749
to refer to tokens of that type. It also specifies the critical semantics of the identifier, such 750
as whether the KeyIdentifier is unique to the key or the token. If no value is specified 751
then the key identifier will be interpreted in an application-specific manner. 752

/wsse:SecurityTokenReference/wsse:KeyIdentifier/@EncodingType 753
The optional EncodingType attribute is used to indicate, using a URI, the encoding 754
format of the KeyIdentifier (#Base64Binary). The base values defined in this 755
specification are used (Note that URI fragments are relative to this document's URI): 756
 757

URI Description

#Base64Binary XML Schema base 64 encoding (default)

 758
/wsse:SecurityTokenReference/wsse:KeyIdentifier/@{any} 759

This is an extensibility mechanism to allow additional attributes, based on schemas, to be 760
added. 761

7.4 Embedded References 762

In some cases a reference may be to an embedded token (as opposed to a pointer to a token 763
that resides elsewhere). To do this, the <wsse:Embedded> element is specified within a 764
<wsse:SecurityTokenReference> element. 765
The following is an overview of the syntax: 766
 767

WSS: SOAP Message Security 19 January 2004
Copyright © OASIS Open 2002-2004. All Rights Reserved. Page 24 of 56

<wsse:SecurityTokenReference> 768
 <wsse:Embedded wsu:Id="..."> 769
 ... 770
 </wsse:Embedded> 771
</wsse:SecurityTokenReference> 772

 773
The following describes the attributes and elements listed in the example above: 774
/wsse:SecurityTokenReference/wsse:Embedded 775

This element is used to embed a token directly within a reference (that is, to create a 776
local or literal reference). 777

/wsse:SecurityTokenReference/wsse:Embedded/@wsu:Id 778
An optional string label for this element. This allows this embedded token to be 779
referenced by a signature or encryption. 780

/wsse:SecurityTokenReference/wsse:Embedded/{any} 781
This is an extensibility mechanism to allow any security token, based on schemas, to be 782
embedded. Unrecognized elements SHOULD cause a fault. 783

/wsse:SecurityTokenReference/wsse:Embedded/@{any} 784
This is an extensibility mechanism to allow additional attributes, based on schemas, to be 785
added. Unrecognized attributes SHOULD cause a fault. 786

The following example illustrates embedding a SAML assertion: 787
 788

<S11:Envelope xmlns:S11="..." xmlns:wsse="..." xmlns:wsu="..."> 789
 <S11:Header> 790
 <wsse:Security> 791
 ... 792
 <wsse:SecurityTokenReference> 793
 <wsse:Embedded wsu:Id="tok1"> 794
 <saml:Assertion xmlns:saml="..."> 795
 ... 796
 </saml:Assertion> 797
 </wsse:Embedded> 798
 </wsse:SecurityTokenReference> 799
 ... 800
 <wsse:Security> 801
 </S11:Header> 802
 ... 803
</S11:Body> 804

7.5 ds:KeyInfo 805

The <ds:KeyInfo> element (from XML Signature) can be used for carrying the key information 806
and is allowed for different key types and for future extensibility. However, in this specification, 807
the use of <wsse:BinarySecurityToken> is the RECOMMENDED mechanism to carry key 808
material if the key type contains binary data. Please refer to the specific profile documents for the 809
appropriate way to carry key material. 810
The following example illustrates use of this element to fetch a named key: 811
 812

<ds:KeyInfo Id="..." xmlns:ds="http://www.w3.org/2000/09/xmldsig#"> 813
 <ds:KeyName>CN=Hiroshi Maruyama, C=JP</ds:KeyName> 814
</ds:KeyInfo> 815

7.6 Key Names 816

It is strongly RECOMMENDED to use <wsse:KeyIdentifier> elements. However, if key 817
names are used, then it is strongly RECOMMENDED that <ds:KeyName> elements conform to 818
the attribute names in section 2.3 of RFC 2253 (this is recommended by XML Signature for 819
<ds:X509SubjectName>) for interoperability. 820
Additionally, e-mail addresses, SHOULD conform to RFC 822: 821

WSS: SOAP Message Security 19 January 2004
Copyright © OASIS Open 2002-2004. All Rights Reserved. Page 25 of 56

 EmailAddress=ckaler@microsoft.com 822
 823

WSS: SOAP Message Security 19 January 2004
Copyright © OASIS Open 2002-2004. All Rights Reserved. Page 26 of 56

8 Signatures 824

Message producers may want to enable message recipients to determine whether a message 825
was altered in transit and to verify that the claims in a particular security token apply to the 826
producer of the message. 827
Demonstrating knowledge of a confirmation key associated with a token key-claim confirms the 828
accompanying token claims. Knowledge of a confirmation key may be demonstrated using that 829
key to create an XML Signature, for example. The relying party acceptance of the claims may 830
depend on its confidence in the token. Multiple tokens may contain a key-claim for a signature 831
and may be referenced from the signature using a <wsse:SecurityTokenReference>. A 832
key-claim may be an X.509 Certificate token, or a Kerberos service ticket token to give two 833
examples. 834
Because of the mutability of some SOAP headers, producers SHOULD NOT use the Enveloped 835
Signature Transform defined in XML Signature. Instead, messages SHOULD explicitly include 836
the elements to be signed. Similarly, producers SHOULD NOT use the Enveloping Signature 837
defined in XML Signature [XMLSIG]. 838
This specification allows for multiple signatures and signature formats to be attached to a 839
message, each referencing different, even overlapping, parts of the message. This is important 840
for many distributed applications where messages flow through multiple processing stages. For 841
example, a producer may submit an order that contains an orderID header. The producer signs 842
the orderID header and the body of the request (the contents of the order). When this is received 843
by the order processing sub-system, it may insert a shippingID into the header. The order sub-844
system would then sign, at a minimum, the orderID and the shippingID, and possibly the body as 845
well. Then when this order is processed and shipped by the shipping department, a shippedInfo 846
header might be appended. The shipping department would sign, at a minimum, the shippedInfo 847
and the shippingID and possibly the body and forward the message to the billing department for 848
processing. The billing department can verify the signatures and determine a valid chain of trust 849
for the order, as well as who authorized each step in the process. 850
All compliant implementations MUST be able to support the XML Signature standard. 851

8.1 Algorithms 852

This specification builds on XML Signature and therefore has the same algorithm requirements as 853
those specified in the XML Signature specification. 854
The following table outlines additional algorithms that are strongly RECOMMENDED by this 855
specification: 856
 857

Algorithm Type Algorithm Algorithm URI

Canonicalization Exclusive XML
Canonicalization

http://www.w3.org/2001/10/xml-exc-c14n#

 858
As well, the following table outlines additional algorithms that MAY be used: 859

Algorithm Type Algorithm Algorithm URI

Transform SOAP Message
Normalization

http://www.w3.org/TR/2003/NOTE-soap12-
n11n-20030328/

 860
The Exclusive XML Canonicalization algorithm addresses the pitfalls of general canonicalization 861
that can occur from leaky namespaces with pre-existing signatures. 862

WSS: SOAP Message Security 19 January 2004
Copyright © OASIS Open 2002-2004. All Rights Reserved. Page 27 of 56

Finally, if a producer wishes to sign a message before encryption, then following the ordering 863
rules laid out in section 5, "Security Header", they SHOULD first prepend the signature element to 864
the <wsse:Security> header, and then prepend the encryption element, resulting in a 865
<wsse:Security> header that has the encryption element first, followed by the signature 866
element: 867
 868

<wsse:Security> header

[encryption element]

[signature element]

.

.

 869
Likewise, if a producer wishes to sign a message after encryption, they SHOULD first prepend 870
the encryption element to the <wsse:Security> header, and then prepend the signature 871
element. This will result in a <wsse:Security> header that has the signature element first, 872
followed by the encryption element: 873
 874

<wsse:Security> header

[signature element]

[encryption element]

.

.

 875
The XML Digital Signature WG has defined two canonicalization algorithms: XML 876
Canonicalization and Exclusive XML Canonicalization. To prevent confusion, the first is also 877
called Inclusive Canonicalization. Neither one solves all possible problems that can arise. The 878
following informal discussion is intended to provide guidance on the choice of which one to use 879
in particular circumstances. For a more detailed and technically precise discussion of these 880
issues see: [XML-C14N] and [EXC-C14N]. 881
There are two problems to be avoided. On the one hand, XML allows documents to be changed 882
in various ways and still be considered equivalent. For example, duplicate namespace 883
declarations can be removed or created. As a result, XML tools make these kinds of changes 884
freely when processing XML. Therefore, it is vital that these equivalent forms match the same 885
signature. 886
On the other hand, if the signature simply covers something like xx:foo, its meaning may change 887
if xx is redefined. In this case the signature does not prevent tampering. It might be thought that 888
the problem could be solved by expanding all the values in line. Unfortunately, there are 889
mechanisms like XPATH which consider xx="http://example.com/"; to be different from 890
yy="http://example.com/"; even though both xx and yy are bound to the same namespace. 891
The fundamental difference between the Inclusive and Exclusive Canonicalization is the 892
namespace declarations which are placed in the output. Inclusive Canonicalization copies all the 893
declarations that are currently in force, even if they are defined outside of the scope of the 894
signature. It also copies any xml: attributes that are in force, such as xml:lang or xml:base. 895
This guarantees that all the declarations you might make use of will be unambiguously specified. 896
The problem with this is that if the signed XML is moved into another XML document which has 897
other declarations, the Inclusive Canonicalization will copy then and the signature will be invalid. 898
This can even happen if you simply add an attribute in a different namespace to the surrounding 899
context. 900
Exclusive Canonicalization tries to figure out what namespaces you are actually using and just 901
copies those. Specifically, it copies the ones that are "visibly used", which means the ones that 902

WSS: SOAP Message Security 19 January 2004
Copyright © OASIS Open 2002-2004. All Rights Reserved. Page 28 of 56

are a part of the XML syntax. However, it does not look into attribute values or element content, 903
so the namespace declarations required to process these are not copied. For example 904
if you had an attribute like xx:foo="yy:bar" it would copy the declaration for xx, but not yy. (This 905
can even happen without your knowledge because XML processing tools will add xsi:type if 906
you use a schema subtype.) It also does not copy the xml: attributes that are declared outside the 907
scope of the signature. 908
Exclusive Canonicalization allows you to create a list of the namespaces that must be declared, 909
so that it will pick up the declarations for the ones that are not visibly used. The only problem is 910
that the software doing the signing must know what they are. In a typical SOAP software 911
environment, the security code will typically be unaware of all the namespaces being used by 912
the application in the message body that it is signing. 913
Exclusive Canonicalization is useful when you have a signed XML document that you wish to 914
insert into other XML documents. A good example is a signed SAML assertion which might be 915
inserted as a XML Token in the security header of various SOAP messages. The Issuer who 916
signs the assertion will be aware of the namespaces being used and able to construct the list. 917
The use of Exclusive Canonicalization will insure the signature verifies correctly every time. 918
Inclusive Canonicalization is useful in the typical case of signing part or all of the SOAP body in 919
accordance with this specification. This will insure all the declarations fall under the signature, 920
even though the code is unaware of what namespaces are being used. At the same time, it is 921
less likely that the signed data (and signature element) will be inserted in some other XML 922
document. Even if this is desired, it still may not be feasible for other reasons, for example there 923
may be Id's with the same value defined in both XML documents. 924
In other situations it will be necessary to study the requirements of the application and the 925
detailed operation of the canonicalization methods to determine which is appropriate. 926
This section is non-normative. 927
 928

8.2 Signing Messages 929

The <wsse:Security> header block MAY be used to carry a signature compliant with the XML 930
Signature specification within a SOAP Envelope for the purpose of signing one or more elements 931
in the SOAP Envelope. Multiple signature entries MAY be added into a single SOAP Envelope 932
within one <wsse:Security> header block. Producers SHOULD sign all important elements of 933
the message, and careful thought must be given to creating a signing policy that requires signing 934
of parts of the message that might legitimately be altered in transit. 935
SOAP applications MUST satisfy the following conditions: 936
A compliant implementation MUST be capable of processing the required elements defined in the 937
XML Signature specification. 938
To add a signature to a <wsse:Security> header block, a <ds:Signature> element 939
conforming to the XML Signature specification MUST be prepended to the existing content of the 940
<wsse:Security> header block, in order to indicate to the receiver the correct order of 941
operations. All the <ds:Reference> elements contained in the signature SHOULD refer to a 942
resource within the enclosing SOAP envelope as described in the XML Signature specification. 943
However, since the SOAP message exchange model allows intermediate applications to modify 944
the Envelope (add or delete a header block; for example), XPath filtering does not always result 945
in the same objects after message delivery. Care should be taken in using XPath filtering so that 946
there is no subsequent validation failure due to such modifications. 947
The problem of modification by intermediaries (especially active ones) is applicable to more than 948
just XPath processing. Digital signatures, because of canonicalization and digests, present 949
particularly fragile examples of such relationships. If overall message processing is to remain 950
robust, intermediaries must exercise care that the transformation algorithms used do not affect 951
the validity of a digitally signed component. 952
Due to security concerns with namespaces, this specification strongly RECOMMENDS the use of 953
the "Exclusive XML Canonicalization" algorithm or another canonicalization algorithm that 954
provides equivalent or greater protection. 955

WSS: SOAP Message Security 19 January 2004
Copyright © OASIS Open 2002-2004. All Rights Reserved. Page 29 of 56

For processing efficiency it is RECOMMENDED to have the signature added and then the 956
security token pre-pended so that a processor can read and cache the token before it is used. 957

8.3 Signing Tokens 958

It is often desirable to sign security tokens that are included in a message or even external to the 959
message. The XML Signature specification provides several common ways for referencing 960
information to be signed such as URIs, IDs, and XPath, but some token formats may not allow 961
tokens to be referenced using URIs or IDs and XPaths may be undesirable in some situations. 962
This specification allows different tokens to have their own unique reference mechanisms which 963
are specified in their profile as extensions to the <wsse:SecurityTokenReference> element. 964
This element provides a uniform referencing mechanism that is guaranteed to work with all token 965
formats. Consequently, this specification defines a new reference option for XML Signature: the 966
STR Dereference Transform. 967
This transform is specified by the URI #STR-Transform (Note that URI fragments are relative to 968
this document's URI) and when applied to a <wsse:SecurityTokenReference> element it 969
means that the output is the token referenced by the <wsse:SecurityTokenReference> 970
element not the element itself. 971
As an overview the processing model is to echo the input to the transform except when a 972
<wsse:SecurityTokenReference> element is encountered. When one is found, the element 973
is not echoed, but instead, it is used to locate the token(s) matching the criteria and rules defined 974
by the <wsse:SecurityTokenReference> element and echo it (them) to the output. 975
Consequently, the output of the transformation is the resultant sequence representing the input 976
with any <wsse:SecurityTokenReference> elements replaced by the referenced security 977
token(s) matched. 978
The following illustrates an example of this transformation which references a token contained 979
within the message envelope: 980
 981

... 982
<wsse:SecurityTokenReference wsu:Id="Str1"> 983
 ... 984
</wsse:SecurityTokenReference> 985
... 986
<ds:Signature xmlns:ds="http://www.w3.org/2000/09/xmldsig#"> 987
 <ds:SignedInfo> 988
 ... 989
 <ds:Reference URI="#Str1"> 990
 <ds:Transforms> 991
 <ds:Transform 992
 Algorithm="...#STR-Transform"> 993
 <wsse:TransformationParameters> 994
 <ds:CanonicalizationMethod 995
 Algorithm="http://www.w3.org/TR/2001/REC-xml-996
c14n-20010315" /> 997
 </wsse:TransformationParameters> 998
 </ds:Transform> 999
 <ds:DigestMethod Algorithm= 1000
 "http://www.w3.org/2000/09/xmldsig#sha1"/> 1001
 <ds:DigestValue>...</ds:DigestValue> 1002
 </ds:Reference> 1003
 </ds:SignedInfo> 1004
 <ds:SignatureValue></ds:SignatureValue> 1005
</ds:Signature> 1006
... 1007

 1008
The following describes the attributes and elements listed in the example above: 1009
/wsse:TransformationParameters 1010

WSS: SOAP Message Security 19 January 2004
Copyright © OASIS Open 2002-2004. All Rights Reserved. Page 30 of 56

This element is used to wrap parameters for a transformation allows elements even from 1011
the XML Signature namespace. 1012

/wsse:TransformationParameters/ds:Canonicalization 1013
This specifies the canolicalization algorithm to apply to the selected data. 1014

/wsse:TransformationParameters/{any} 1015
This is an extensibility mechanism to allow different (extensible) parameters to be 1016
specified in the future. Unrecognized parameters SHOULD cause a fault. 1017

/wsse:TransformationParameters/@{any} 1018
This is an extensibility mechanism to allow additional attributes, based on schemas, to be 1019
added to the element in the future. Unrecognized attributes SHOULD cause a fault. 1020

 1021
The following is a detailed specification of the transformation. 1022
The algorithm is identified by the URI: #STR-Transform 1023
Transform Input: 1024

• The input is a node set. If the input is an octet stream, then it is automatically parsed; cf. 1025
XML Digital Signature [XMLSIG]. 1026

Transform Output: 1027
• The output is an octet steam. 1028

Syntax: 1029
• The transform takes a single mandatory parameter, a 1030

<ds:CanonicalizationMethod> element, which is used to serialize the input node 1031
set. Note, however, that the output may not be strictly in canonical form, per the 1032
canonicalization algorithm; however, the output is canonical, in the sense that it is 1033
unambiguous. However, because of syntax requirements in the XML Signature 1034
definition, this parameter MUST be wrapped in a 1035
<wsse:TransformationParameters> element. 1036

Processing Rules: 1037
• Let N be the input node set. 1038
• Let R be the set of all <wsse:SecurityTokenReference> elements in N. 1039
• For each Ri in R, let Di be the result of dereferencing Ri. 1040
• If Di cannot be determined, then the transform MUST signal a failure. 1041
• If Di is an XML security token (e.g., a SAML assertion or a 1042

<wsse:BinarySecurityToken> element), then let Ri' be Di.Otherwise, Di is a raw 1043
binary security token; i.e., an octet stream. In this case, let Ri' be a node set consisting of 1044
a <wsse:BinarySecurityToken> element, utilizing the same namespace prefix as 1045
the <wsse:SecurityTokenReference> element Ri, with no EncodingType attribute, 1046
a ValueType attribute identifying the content of the security token, and text content 1047
consisting of the binary-encoded security token, with no white space. 1048

• Finally, employ the canonicalization method specified as a parameter to the transform to 1049
serialize N to produce the octet stream output of this transform; but, in place of any 1050
dereferenced <wsse:SecurityTokenReference> element Ri and its descendants, 1051
process the dereferenced node set Ri' instead. During this step, canonicalization of the 1052
replacement node set MUST be augmented as follows: 1053

o Note: A namespace declaration xmlns="" MUST be emitted with every apex 1054
element that has no namespace node declaring a value for the default 1055
namespace; cf. XML Decryption Transform. 1056

8.4 Signature Validation 1057

The validation of a <ds:Signature> element inside an <wsse:Security> header block 1058
SHALL fail if: 1059

• the syntax of the content of the element does not conform to this specification, or 1060
• the validation of the signature contained in the element fails according to the core 1061

validation of the XML Signature specification [XMLSIG], or 1062

WSS: SOAP Message Security 19 January 2004
Copyright © OASIS Open 2002-2004. All Rights Reserved. Page 31 of 56

• the application applying its own validation policy rejects the message for some reason 1063
(e.g., the signature is created by an untrusted key – verifying the previous two steps only 1064
performs cryptographic validation of the signature). 1065

If the validation of the signature element fails, applications MAY report the failure to the producer 1066
using the fault codes defined in Section 12 Error Handling. 1067

8.5 Example 1068

The following sample message illustrates the use of integrity and security tokens. For this 1069
example, only the message body is signed. 1070
 1071

<?xml version="1.0" encoding="utf-8"?> 1072
<S11:Envelope xmlns:S11="..." xmlns:wsse="..." xmlns:wsu="..." 1073
xmlns:ds="..."> 1074
 <S11:Header> 1075
 <wsse:Security> 1076
 <wsse:BinarySecurityToken 1077
 ValueType="...#X509v3" 1078
 EncodingType="...#Base64Binary" 1079
 wsu:Id="X509Token"> 1080
 MIIEZzCCA9CgAwIBAgIQEmtJZc0rqrKh5i... 1081
 </wsse:BinarySecurityToken> 1082
 <ds:Signature> 1083
 <ds:SignedInfo> 1084
 <ds:CanonicalizationMethod Algorithm= 1085
 "http://www.w3.org/2001/10/xml-exc-c14n#"/> 1086
 <ds:SignatureMethod Algorithm= 1087
 "http://www.w3.org/2000/09/xmldsig#rsa-sha1"/> 1088
 <ds:Reference URI="#myBody"> 1089
 <ds:Transforms> 1090
 <ds:Transform Algorithm= 1091
 "http://www.w3.org/2001/10/xml-exc-c14n#"/> 1092
 </ds:Transforms> 1093
 <ds:DigestMethod Algorithm= 1094
 "http://www.w3.org/2000/09/xmldsig#sha1"/> 1095
 <ds:DigestValue>EULddytSo1...</ds:DigestValue> 1096
 </ds:Reference> 1097
 </ds:SignedInfo> 1098
 <ds:SignatureValue> 1099
 BL8jdfToEb1l/vXcMZNNjPOV... 1100
 </ds:SignatureValue> 1101
 <ds:KeyInfo> 1102
 <wsse:SecurityTokenReference> 1103
 <wsse:Reference URI="#X509Token"/> 1104
 </wsse:SecurityTokenReference> 1105
 </ds:KeyInfo> 1106
 </ds:Signature> 1107
 </wsse:Security> 1108
 </S11:Header> 1109
 <S11:Body wsu:Id="myBody"> 1110
 <tru:StockSymbol xmlns:tru="http://www.fabrikam123.com/payloads"> 1111
 QQQ 1112
 </tru:StockSymbol> 1113
 </S11:Body> 1114
</S11:Envelope> 1115

WSS: SOAP Message Security 19 January 2004
Copyright © OASIS Open 2002-2004. All Rights Reserved. Page 32 of 56

9 Encryption 1116

This specification allows encryption of any combination of body blocks, header blocks, and any of 1117
these sub-structures by either a common symmetric key shared by the producer and the recipient 1118
or a symmetric key carried in the message in an encrypted form. 1119
In order to allow this flexibility, this specification leverages the XML Encryption standard. 1120
Specifically what this specification describes is how three elements (listed below and defined in 1121
XML Encryption) can be used within the <wsse:Security> header block. When a producer or 1122
an active intermediary encrypts portion(s) of a SOAP message using XML Encryption they MUST 1123
prepend a sub-element to the <wsse:Security> header block. Furthermore, the encrypting 1124
party MUST either prepend the sub-element to an existing <wsse:Security> header block for 1125
the intended recipients or create a new <wsse:Security> header block and insert the sub-1126
element. The combined process of encrypting portion(s) of a message and adding one of these 1127
sub-elements is called an encryption step hereafter. The sub-element MUST contain the 1128
information necessary for the recipient to identify the portions of the message that it is able to 1129
decrypt. 1130
All compliant implementations MUST be able to support the XML Encryption standard [XMLENC]. 1131

9.1 xenc:ReferenceList 1132

The <xenc:ReferenceList> element from XML Encryption [XMLENC] MAY be used to 1133
create a manifest of encrypted portion(s), which are expressed as <xenc:EncryptedData> 1134
elements within the envelope. An element or element content to be encrypted by this encryption 1135
step MUST be replaced by a corresponding <xenc:EncryptedData> according to XML 1136
Encryption. All the <xenc:EncryptedData> elements created by this encryption step 1137
SHOULD be listed in <xenc:DataReference> elements inside one or more 1138
<xenc:ReferenceList> element. 1139
Although in XML Encryption [XMLENC], <xenc:ReferenceList> was originally designed to 1140
be used within an <xenc:EncryptedKey> element (which implies that all the referenced 1141
<xenc:EncryptedData> elements are encrypted by the same key), this specification allows 1142
that <xenc:EncryptedData> elements referenced by the same <xenc:ReferenceList> 1143
MAY be encrypted by different keys. Each encryption key can be specified in <ds:KeyInfo> 1144
within individual <xenc:EncryptedData>. 1145
A typical situation where the <xenc:ReferenceList> sub-element is useful is that the 1146
producer and the recipient use a shared secret key. The following illustrates the use of this sub-1147
element: 1148
 1149

<S11:Envelope xmlns:S11="..." xmlns:wsse="..." xmlns:wsu="..." 1150
xmlns:ds="..." xmlns:xenc="..."> 1151
 <S11:Header> 1152
 <wsse:Security> 1153
 <xenc:ReferenceList> 1154
 <xenc:DataReference URI="#bodyID"/> 1155
 </xenc:ReferenceList> 1156
 </wsse:Security> 1157
 </S11:Header> 1158
 <S11:Body> 1159
 <xenc:EncryptedData Id="bodyID"> 1160
 <ds:KeyInfo> 1161
 <ds:KeyName>CN=Hiroshi Maruyama, C=JP</ds:KeyName> 1162
 </ds:KeyInfo> 1163
 <xenc:CipherData> 1164
 <xenc:CipherValue>...</xenc:CipherValue> 1165
 </xenc:CipherData> 1166

WSS: SOAP Message Security 19 January 2004
Copyright © OASIS Open 2002-2004. All Rights Reserved. Page 33 of 56

 </xenc:EncryptedData> 1167
 </S11:Body> 1168
</S11:Envelope> 1169

9.2 xenc:EncryptedKey 1170

When the encryption step involves encrypting elements or element contents within a SOAP 1171
envelope with a symmetric key, which is in turn to be encrypted by the recipient’s key and 1172
embedded in the message, <xenc:EncryptedKey> MAY be used for carrying such an 1173
encrypted key. This sub-element SHOULD have a manifest, that is, an 1174
<xenc:ReferenceList> element, in order for the recipient to know the portions to be 1175
decrypted with this key. An element or element content to be encrypted by this encryption step 1176
MUST be replaced by a corresponding <xenc:EncryptedData> according to XML Encryption. 1177
All the <xenc:EncryptedData> elements created by this encryption step SHOULD be listed in 1178
the <xenc:ReferenceList> element inside this sub-element. 1179
This construct is useful when encryption is done by a randomly generated symmetric key that is 1180
in turn encrypted by the recipient’s public key. The following illustrates the use of this element: 1181
 1182

<S11:Envelope xmlns:S11="..." xmlns:wsse="..." xmlns:wsu="..." 1183
xmlns:ds="..." xmlns:xenc="..."> 1184
 <S11:Header> 1185
 <wsse:Security> 1186
 <xenc:EncryptedKey> 1187
 ... 1188
 <ds:KeyInfo> 1189
 <wsse:SecurityTokenReference> 1190
 <ds:X509IssuerSerial> 1191
 <ds:X509IssuerName> 1192
 DC=ACMECorp, DC=com 1193
 </ds:X509IssuerName> 1194
<ds:X509SerialNumber>12345678</ds:X509SerialNumber> 1195
 </ds:X509IssuerSerial> 1196
 </wsse:SecurityTokenReference> 1197
 </ds:KeyInfo> 1198
 ... 1199
 </xenc:EncryptedKey> 1200
 ... 1201
 </wsse:Security> 1202
 </S11:Header> 1203
 <S11:Body> 1204
 <xenc:EncryptedData Id="bodyID"> 1205
 <xenc:CipherData> 1206
 <xenc:CipherValue>...</xenc:CipherValue> 1207
 </xenc:CipherData> 1208
 </xenc:EncryptedData> 1209
 </S11:Body> 1210
</S11:Envelope> 1211

 1212
While XML Encryption specifies that <xenc:EncryptedKey> elements MAY be specified in 1213
<xenc:EncryptedData> elements, this specification strongly RECOMMENDS that 1214
<xenc:EncryptedKey> elements be placed in the <wsse:Security> header. 1215

9.3 Processing Rules 1216

Encrypted parts or using one of the sub-elements defined above MUST be in compliance with the 1217
XML Encryption specification. An encrypted SOAP envelope MUST still be a valid SOAP 1218
envelope. The message creator MUST NOT encrypt the <S11:Envelope>, 1219
<S12:Envolope>,, <S11:Header>, <S12:Header>, or <S11:Body>, <S12:Body> 1220
elements but MAY encrypt child elements of either the <S11:Header>, <S12:Header> and 1221

WSS: SOAP Message Security 19 January 2004
Copyright © OASIS Open 2002-2004. All Rights Reserved. Page 34 of 56

<S11:Body> or <S12:Body> elements. Multiple steps of encryption MAY be added into a 1222
single <wsse:Security> header block if they are targeted for the same recipient. 1223
When an element or element content inside a SOAP envelope (e.g. the contents of the 1224
<S11:Body> or <S12:Body> elements) are to be encrypted, it MUST be replaced by an 1225
<xenc:EncryptedData>, according to XML Encryption and it SHOULD be referenced from the 1226
<xenc:ReferenceList> element created by this encryption step. 1227

9.3.1 Encryption 1228

The general steps (non-normative) for creating an encrypted SOAP message in compliance with 1229
this specification are listed below (note that use of <xenc:ReferenceList> is 1230
RECOMMENDED). 1231

• Create a new SOAP envelope. 1232
• Create a <wsse:Security> header 1233
• When an <xenc:EncryptedKey> is used, create a <xenc:EncryptedKey> sub-1234

element of the <wsse:Security> element. This <xenc:EncryptedKey> sub-1235
element SHOULD contain an <xenc:ReferenceList> sub-element, containing a 1236
<xenc:DataReference> to each <xenc:EncryptedData> element that was 1237
encrypted using that key. 1238

• Locate data items to be encrypted, i.e., XML elements, element contents within the target 1239
SOAP envelope. 1240

• Encrypt the data items as follows: For each XML element or element content within the 1241
target SOAP envelope, encrypt it according to the processing rules of the XML 1242
Encryption specification [XMLENC]. Each selected original element or element content 1243
MUST be removed and replaced by the resulting <xenc:EncryptedData> element. 1244

• The optional <ds:KeyInfo> element in the <xenc:EncryptedData> element MAY 1245
reference another <ds:KeyInfo> element. Note that if the encryption is based on an 1246
attached security token, then a <wsse:SecurityTokenReference> element SHOULD 1247
be added to the <ds:KeyInfo> element to facilitate locating it. 1248

• Create an <xenc:DataReference> element referencing the generated 1249
<xenc:EncryptedData> elements. Add the created <xenc:DataReference> 1250
element to the <xenc:ReferenceList>. 1251

• Copy all non-encrypted data. 1252

9.3.2 Decryption 1253

On receiving a SOAP envelope containing encryption header elements, for each encryption 1254
header element the following general steps should be processed (non-normative): 1255
Identify any decryption keys that are in the recipient’s possession, then identifying any message 1256
elements that it is able to decrypt. 1257
Locate the <xenc:EncryptedData> items to be decrypted (possibly using the 1258
<xenc:ReferenceList>). 1259
Decrypt them as follows: 1260
For each element in the target SOAP envelope, decrypt it according to the processing rules of the 1261
XML Encryption specification and the processing rules listed above. 1262
If the decryption fails for some reason, applications MAY report the failure to the producer using 1263
the fault code defined in Section 12 Error Handling of this specification. 1264
It is possible for overlapping portions of the SOAP message to be encrypted in such a way that 1265
they are intended to be decrypted by SOAP nodes acting in different Roles. In this case, the 1266
<xenc:ReferenceList> or <xenc:EncryptedKey> elements identifying these encryption 1267
operations will necessarily appear in different <wsse:Security> headers. Since SOAP does 1268
not provide any means of specifying the order in which different Roles will process their 1269
respective headers, this order is not specified by this specification and can only be determined by 1270
a prior agreement. 1271

WSS: SOAP Message Security 19 January 2004
Copyright © OASIS Open 2002-2004. All Rights Reserved. Page 35 of 56

9.4 Decryption Transformation 1272

The ordering semantics of the <wsse:Security> header are sufficient to determine if 1273
signatures are over encrypted or unencrypted data. However, when a signature is included in 1274
one <wsse:Security> header and the encryption data is in another <wsse:Security> 1275
header, the proper processing order may not be apparent. 1276
If the producer wishes to sign a message that MAY subsequently be encrypted by an 1277
intermediary then the producer MAY use the Decryption Transform for XML Signature to explicitly 1278
specify the order of decryption. 1279
 1280

WSS: SOAP Message Security 19 January 2004
Copyright © OASIS Open 2002-2004. All Rights Reserved. Page 36 of 56

10 Security Timestamps 1281

It is often important for the recipient to be able to determine the freshness of security semantics. 1282
In some cases, security semantics may be so stale that the recipient may decide to ignore it. 1283
This specification does not provide a mechanism for synchronizing time. The assumption is that 1284
time is trusted or additional mechanisms, not described here, are employed to prevent replay. 1285
This specification defines and illustrates time references in terms of the xsd:dateTime type 1286
defined in XML Schema. It is RECOMMENDED that all time references use this type. It is further 1287
RECOMMENDED that all references be in UTC time. Implementations MUST NOT generate time 1288
instants that specify leap seconds. If, however, other time types are used, then the ValueType 1289
attribute (described below) MUST be specified to indicate the data type of the time format. 1290
Requestors and receivers SHOULD NOT rely on other applications supporting time resolution 1291
finer than milliseconds. 1292
The <wsu:Timestamp> element provides a mechanism for expressing the creation and 1293
expiration times of the security semantics in a message. 1294
All times MUST be in UTC format as specified by the XML Schema type (dateTime). It should be 1295
noted that times support time precision as defined in the XML Schema specification. 1296
The <wsu:Timestamp> element is specified as a child of the <wsse:Security> header and 1297
may only be present at most once per header (that is, per SOAP actor/role). 1298
The ordering within the element is as illustrated below. The ordering of elements in the 1299
<wsu:Timestamp> element is fixed and MUST be preserved by intermediaries. 1300
The schema outline for the <wsu:Timestamp> element is as follows: 1301
 1302

<wsu:Timestamp wsu:Id="..."> 1303
 <wsu:Created ValueType="...">...</wsu:Created> 1304
 <wsu:Expires ValueType="...">...</wsu:Expires> 1305
 ... 1306
</wsu:Timestamp> 1307

 1308
The following describes the attributes and elements listed in the schema above: 1309
/wsu:Timestamp 1310

This is the element for indicating message timestamps. 1311
/wsu:Timestamp/wsu:Created 1312

This represents the creation time of the security semantics. This element is optional, but 1313
can only be specified once in a <wsu:Timestamp> element. Within the SOAP 1314
processing model, creation is the instant that the infoset is serialized for transmission. 1315
The creation time of the message SHOULD NOT differ substantially from its transmission 1316
time. The difference in time should be minimized. 1317

/wsu:Timestamp/wsu:Expires 1318
This element represents the expiration of the security semantics. This is optional, but 1319
can appear at most once in a <wsu:Timestamp> element. Upon expiration, the 1320
requestor asserts that its security semantics are no longer valid. It is strongly 1321
RECOMMENDED that recipients (anyone who processes this message) discard (ignore) 1322
any message whose security semantics have passed their expiration. A Fault code 1323
(wsu:MessageExpired) is provided if the recipient wants to inform the requestor that its 1324
security semantics were expired. A service MAY issue a Fault indicating the security 1325
semantics have expired. 1326

/wsu:Timestamp/{any} 1327
This is an extensibility mechanism to allow additional elements to be added to the 1328
element. Unrecognized elements SHOULD cause a fault. 1329

/wsu:Timestamp/@wsu:Id 1330

WSS: SOAP Message Security 19 January 2004
Copyright © OASIS Open 2002-2004. All Rights Reserved. Page 37 of 56

This optional attribute specifies an XML Schema ID that can be used to reference this 1331
element (the timestamp). This is used, for example, to reference the timestamp in a XML 1332
Signature. 1333

/wsu:Timestamp/@{any} 1334
This is an extensibility mechanism to allow additional attributes to be added to the 1335
element. Unrecognized attributes SHOULD cause a fault. 1336

The expiration is relative to the requestor's clock. In order to evaluate the expiration time, 1337
recipients need to recognize that the requestor's clock may not be synchronized to the recipient’s 1338
clock. The recipient, therefore, MUST make an assessment of the level of trust to be placed in 1339
the requestor's clock, since the recipient is called upon to evaluate whether the expiration time is 1340
in the past relative to the requestor's, not the recipient’s, clock. The recipient may make a 1341
judgment of the requestor’s likely current clock time by means not described in this specification, 1342
for example an out-of-band clock synchronization protocol. The recipient may also use the 1343
creation time and the delays introduced by intermediate SOAP roles to estimate the degree of 1344
clock skew. 1345
The following example illustrates the use of the <wsu:Timestamp> element and its content. 1346
 1347

<S11:Envelope xmlns:S11="..." xmlns:wsse="..." xmlns:wsu="..."> 1348
 <S11:Header> 1349
 <wsse:Security> 1350
 <wsu:Timestamp wsu:Id="timestamp"> 1351
 <wsu:Created>2001-09-13T08:42:00Z</wsu:Created> 1352
 <wsu:Expires>2001-10-13T09:00:00Z</wsu:Expires> 1353
 </wsu:Timestamp> 1354
 ... 1355
 </wsse:Security> 1356
 ... 1357
 </S11:Header> 1358
 <S11:Body> 1359
 ... 1360
 </S11:Body> 1361
</S11:Envelope> 1362

WSS: SOAP Message Security 19 January 2004
Copyright © OASIS Open 2002-2004. All Rights Reserved. Page 38 of 56

11 Extended Example 1363

The following sample message illustrates the use of security tokens, signatures, and encryption. 1364
For this example, the timestamp and the message body are signed prior to encryption. The 1365
decryption transformation is not needed as the signing/encryption order is specified within the 1366
<wsse:Security> header. 1367
 1368

(001) <?xml version="1.0" encoding="utf-8"?> 1369
(002) <S11:Envelope xmlns:S11="..." xmlns:wsse="..." xmlns:wsu="..." 1370
xmlns:xenc="..." xmlns:ds="..."> 1371
(003) <S11:Header> 1372
(004) <wsse:Security> 1373
(005) <wsu:Timestamp wsu:Id="T0"> 1374
(006) <wsu:Created> 1375
(007) 2001-09-13T08:42:00Z</wsu:Created> 1376
(008) </wsu:Timestamp> 1377
(009) 1378
(010) <wsse:BinarySecurityToken 1379
 ValueType="...#X509v3" 1380
 wsu:Id="X509Token" 1381
 EncodingType="...#Base64Binary"> 1382
(011) MIIEZzCCA9CgAwIBAgIQEmtJZc0rqrKh5i... 1383
(012) </wsse:BinarySecurityToken> 1384
(013) <xenc:EncryptedKey> 1385
(014) <xenc:EncryptionMethod Algorithm= 1386
 "http://www.w3.org/2001/04/xmlenc#rsa-1_5"/> 1387
(015) <ds:KeyInfo> 1388
(016) <wsse:KeyIdentifier 1389
 EncodingType="...#Base64Binary" 1390
 ValueType="...#X509v3">MIGfMa0GCSq... 1391
(017) </wsse:KeyIdentifier> 1392
(018) </ds:KeyInfo> 1393
(019) <xenc:CipherData> 1394
(020) <xenc:CipherValue>d2FpbmdvbGRfE0lm4byV0... 1395
(021) </xenc:CipherValue> 1396
(022) </xenc:CipherData> 1397
(023) <xenc:ReferenceList> 1398
(024) <xenc:DataReference URI="#enc1"/> 1399
(025) </xenc:ReferenceList> 1400
(026) </xenc:EncryptedKey> 1401
(027) <ds:Signature> 1402
(028) <ds:SignedInfo> 1403
(029) <ds:CanonicalizationMethod 1404
 Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#"/> 1405
(030) <ds:SignatureMethod 1406
 Algorithm="http://www.w3.org/2000/09/xmldsig#rsa-sha1"/> 1407
(031) <ds:Reference URI="#T0"> 1408
(032) <ds:Transforms> 1409
(033) <ds:Transform 1410
 Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#"/> 1411
(034) </ds:Transforms> 1412
(035) <ds:DigestMethod 1413
 Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/> 1414
(036) <ds:DigestValue>LyLsF094hPi4wPU... 1415
(037) </ds:DigestValue> 1416
(038) </ds:Reference> 1417
(039) <ds:Reference URI="#body"> 1418
(040) <ds:Transforms> 1419
(041) <ds:Transform 1420

WSS: SOAP Message Security 19 January 2004
Copyright © OASIS Open 2002-2004. All Rights Reserved. Page 39 of 56

 Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#"/> 1421
(042) </ds:Transforms> 1422
(043) <ds:DigestMethod 1423
 Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/> 1424
(044) <ds:DigestValue>LyLsF094hPi4wPU... 1425
(045) </ds:DigestValue> 1426
(046) </ds:Reference> 1427
(047) </ds:SignedInfo> 1428
(048) <ds:SignatureValue> 1429
(049) Hp1ZkmFZ/2kQLXDJbchm5gK... 1430
(050) </ds:SignatureValue> 1431
(051) <ds:KeyInfo> 1432
(052) <wsse:SecurityTokenReference> 1433
(053) <wsse:Reference URI="#X509Token"/> 1434
(054) </wsse:SecurityTokenReference> 1435
(055) </ds:KeyInfo> 1436
(056) </ds:Signature> 1437
(057) </wsse:Security> 1438
(058) </S11:Header> 1439
(059) <S11:Body wsu:Id="body"> 1440
(060) <xenc:EncryptedData 1441
 Type="http://www.w3.org/2001/04/xmlenc#Element" 1442
 wsu:Id="enc1"> 1443
(061) <xenc:EncryptionMethod 1444
 Algorithm="http://www.w3.org/2001/04/xmlenc#tripledes-1445
cbc"/> 1446
(062) <xenc:CipherData> 1447
(063) <xenc:CipherValue>d2FpbmdvbGRfE0lm4byV0... 1448
(064) </xenc:CipherValue> 1449
(065) </xenc:CipherData> 1450
(066) </xenc:EncryptedData> 1451
(067) </S11:Body> 1452
(068) </S11:Envelope> 1453

 1454
Let's review some of the key sections of this example: 1455
Lines (003)-(058) contain the SOAP message headers. 1456
Lines (004)-(057) represent the <wsse:Security> header block. This contains the security-1457
related information for the message. 1458
Lines (005)-(008) specify the timestamp information. In this case it indicates the creation time of 1459
the security semantics. 1460
Lines (010)-(012) specify a security token that is associated with the message. In this case, it 1461
specifies an X.509 certificate that is encoded as Base64. Line (011) specifies the actual Base64 1462
encoding of the certificate. 1463
Lines (013)-(026) specify the key that is used to encrypt the body of the message. Since this is a 1464
symmetric key, it is passed in an encrypted form. Line (014) defines the algorithm used to 1465
encrypt the key. Lines (015)-(018) specify the identifier of the key that was used to encrypt the 1466
symmetric key. Lines (019)-(022) specify the actual encrypted form of the symmetric key. Lines 1467
(023)-(025) identify the encryption block in the message that uses this symmetric key. In this 1468
case it is only used to encrypt the body (Id="enc1"). 1469
Lines (027)-(056) specify the digital signature. In this example, the signature is based on the 1470
X.509 certificate. Lines (028)-(047) indicate what is being signed. Specifically, line (039) 1471
references the message body. 1472
Lines (048)-(050) indicate the actual signature value – specified in Line (043). 1473
Lines (052)-(054) indicate the key that was used for the signature. In this case, it is the X.509 1474
certificate included in the message. Line (053) provides a URI link to the Lines (010)-(012). 1475
The body of the message is represented by Lines (059)-(067). 1476
Lines (060)-(066) represent the encrypted metadata and form of the body using XML Encryption. 1477
Line (060) indicates that the "element value" is being replaced and identifies this encryption. Line 1478
(061) specifies the encryption algorithm – Triple-DES in this case. Lines (063)-(064) contain the 1479

WSS: SOAP Message Security 19 January 2004
Copyright © OASIS Open 2002-2004. All Rights Reserved. Page 40 of 56

actual cipher text (i.e., the result of the encryption). Note that we don't include a reference to the 1480
key as the key references this encryption – Line (024). 1481

WSS: SOAP Message Security 19 January 2004
Copyright © OASIS Open 2002-2004. All Rights Reserved. Page 41 of 56

12 Error Handling 1482

There are many circumstances where an error can occur while processing security information. 1483
For example: 1484

• Invalid or unsupported type of security token, signing, or encryption 1485
• Invalid or unauthenticated or unauthenticatable security token 1486
• Invalid signature 1487
• Decryption failure 1488
• Referenced security token is unavailable 1489
• Unsupported namespace 1490

If a service does not perform its normal operation because of the contents of the Security header, 1491
then that MAY be reported using SOAP's Fault Mechanism. This specification does not mandate 1492
that faults be returned as this could be used as part of a denial of service or cryptographic 1493
attack. We combine signature and encryption failures to mitigate certain types of attacks. 1494
If a failure is returned to a producer then the failure MUST be reported using the SOAP Fault 1495
mechanism. The following tables outline the predefined security fault codes. The "unsupported" 1496
classes of errors are as follows. Note that the reason text provided below is RECOMMENDED, 1497
but alternative text MAY be provided if more descriptive or preferred by the implementation. The 1498
tables below are defined in terms of SOAP 1.1. For SOAP 1.2, the Fault/Code/Value is 1499
env:Sender (as defined in SOAP 1.2) and the Fault/Code/Subcode/Value is the faultcode below 1500
and the Fault/Reason/Text is the faultstring below. 1501
 1502

Error that occurred (faultstring) Faultcode

An unsupported token was provided wsse:UnsupportedSecurityToken

An unsupported signature or encryption algorithm
was used

wsse:UnsupportedAlgorithm

The "failure" class of errors are: 1503

Error that occurred (faultstring) faultcode

An error was discovered processing the
<wsse:Security> header.

wsse:InvalidSecurity

An invalid security token was provided wsse:InvalidSecurityToken

The security token could not be authenticated or
authorized

wsse:FailedAuthentication

The signature or decryption was invalid wsse:FailedCheck

Referenced security token could not be retrieved wsse:SecurityTokenUnavailable

WSS: SOAP Message Security 19 January 2004
Copyright © OASIS Open 2002-2004. All Rights Reserved. Page 42 of 56

13 Security Considerations 1504

 1505
 As stated in the Goals and Requirements section of this document, this specification is meant to 1506
provide extensible framework and flexible syntax, with which one could implement various 1507
security mechanisms. This framework and syntax by itself does not provide any guarantee of 1508
security. When implementing and using this framework and syntax, one must make every effort to 1509
ensure that the result is not vulnerable to any one of a wide range of attacks. 1510
 1511

13.1 General Considerations 1512

 1513
It is not feasible to provide a comprehensive list of security considerations for such an extensible 1514
set of mechanisms. A complete security analysis MUST be conducted on specific solutions based 1515
on this specification. Below we illustrate some of the security concerns that often come up with 1516
protocols of this type, but we stress that this is not an exhaustive list of concerns. 1517

• freshness guarantee (e.g., the danger of replay, delayed messages and the danger of 1518
relying on timestamps assuming secure clock synchronization) 1519

• proper use of digital signature and encryption (signing/encrypting critical parts of the 1520
message, interactions between signatures and encryption), i.e., signatures on (content 1521
of) encrypted messages leak information when in plain-text) 1522

• protection of security tokens (integrity) 1523
• certificate verification (including revocation issues) 1524
• the danger of using passwords without outmost protection (i.e. dictionary attacks against 1525

passwords, replay, insecurity of password derived keys, ...) 1526
• the use of randomness (or strong pseudo-randomness) 1527
• interaction between the security mechanisms implementing this standard and other 1528

system component 1529
• man-in-the-middle attacks 1530
• PKI attacks (i.e. identity mix-ups) 1531

There are other security concerns that one may need to consider in security protocols. The list 1532
above should not be used as a "check list" instead of a comprehensive security analysis. The 1533
next section will give a few details on some of the considerations in this list. 1534
 1535

13.2 Additional Considerations 1536

13.2.1 Replay 1537

Digital signatures alone do not provide message authentication. One can record a signed 1538
message and resend it (a replay attack).It is strongly RECOMMENDED that messages include 1539
digitally signed elements to allow message recipients to detect replays of the message when the 1540
messages are exchanged via an open network. These can be part of the message or of the 1541
headers defined from other SOAP extensions. Four typical approaches are: Timestamp, 1542
Sequence Number, Expirations and Message Correlation. Signed timestamps MAY be used to 1543
keep track of messages (possibly by caching the most recent timestamp from a specific service) 1544
and detect replays of previous messages. It is RECOMMENDED that timestamps be cached for 1545
a given period of time, as a guideline, a value of five minutes can be used as a minimum to detect 1546
replays, and that timestamps older than that given period of time set be rejected in interactive 1547
scenarios. 1548

WSS: SOAP Message Security 19 January 2004
Copyright © OASIS Open 2002-2004. All Rights Reserved. Page 43 of 56

13.2.2 Combining Security Mechanisms 1549

This specification defines the use of XML Signature and XML Encryption in SOAP headers. As 1550
one of the building blocks for securing SOAP messages, it is intended to be used in conjunction 1551
with other security techniques. Digital signatures need to be understood in the context of other 1552
security mechanisms and possible threats to an entity. 1553
Implementers should also be aware of all the security implications resulting from the use of digital 1554
signatures in general and XML Signature in particular. When building trust into an application 1555
based on a digital signature there are other technologies, such as certificate evaluation, that must 1556
be incorporated, but these are outside the scope of this document. 1557
As described in XML Encryption, the combination of signing and encryption over a common data 1558
item may introduce some cryptographic vulnerability. For example, encrypting digitally signed 1559
data, while leaving the digital signature in the clear, may allow plain text guessing attacks. 1560

13.2.3 Challenges 1561

When digital signatures are used for verifying the claims pertaining to the sending entity, the 1562
producer must demonstrate knowledge of the confirmation key. One way to achieve this is to use 1563
a challenge-response type of protocol. Such a protocol is outside the scope of this document. 1564
To this end, the developers can attach timestamps, expirations, and sequences to messages. 1565

13.2.4 Protecting Security Tokens and Keys 1566

Implementers should be aware of the possibility of a token substitution attack. In any situation 1567
where a digital signature is verified by reference to a token provided in the message, which 1568
specifies the key, it may be possible for an unscrupulous producer to later claim that a different 1569
token, containing the same key, but different information was intended. 1570
An example of this would be a user who had multiple X.509 certificates issued relating to the 1571
same key pair but with different attributes, constraints or reliance limits. Note that the signature of 1572
the token by its issuing authority does not prevent this attack. Nor can an authority effectively 1573
prevent a different authority from issuing a token over the same key if the user can prove 1574
possession of the secret. 1575
The most straightforward counter to this attack is to insist that the token (or its unique identifying 1576
data) be included under the signature of the producer. If the nature of the application is such that 1577
the contents of the token are irrelevant, assuming it has been issued by a trusted authority, this 1578
attack may be ignored. However because application semantics may change over time, best 1579
practice is to prevent this attack. 1580
Requestors should use digital signatures to sign security tokens that do not include signatures (or 1581
other protection mechanisms) to ensure that they have not been altered in transit. It is strongly 1582
RECOMMENDED that all relevant and immutable message content be signed by the producer. 1583
Receivers SHOULD only consider those portions of the document that are covered by the 1584
producer’s signature as being subject to the security tokens in the message. Security tokens 1585
appearing in <wsse:Security> header elements SHOULD be signed by their issuing authority 1586
so that message receivers can have confidence that the security tokens have not been forged or 1587
altered since their issuance. It is strongly RECOMMENDED that a message producer sign any 1588
<wsse:SecurityToken> elements that it is confirming and that are not signed by their issuing 1589
authority. 1590
When a requester provides, within the request, a Public Key to be used to encrypt the response, 1591
it is possible that an attacker in the middle may substitute a different Public Key, thus allowing the 1592
attacker to read the response. The best way to prevent this attack is to bind the encryption key in 1593
some way to the request. One simple way of doing this is to use the same key pair to sign the 1594
request as to encrypt the response. However, if policy requires the use of distinct key pairs for 1595
signing and encryption, then the Public Key provided in the request should be included under the 1596
signature of the request. 1597

WSS: SOAP Message Security 19 January 2004
Copyright © OASIS Open 2002-2004. All Rights Reserved. Page 44 of 56

13.2.5 Protecting Timestamps and Ids 1598

In order to trust wsu:Id attributes and <wsu:Timestamp> elements, they SHOULD be signed 1599
using the mechanisms outlined in this specification. This allows readers of the IDs and 1600
timestamps information to be certain that the IDs and timestamps haven’t been forged or altered 1601
in any way. It is strongly RECOMMENDED that IDs and timestamp elements be signed. 1602
 1603
This section is non-normative. 1604

WSS: SOAP Message Security 19 January 2004
Copyright © OASIS Open 2002-2004. All Rights Reserved. Page 45 of 56

14 Interoperability Notes 1605

Based on interoperability experiences with this and similar specifications, the following list 1606
highlights several common areas where interoperability issues have been discovered. Care 1607
should be taken when implementing to avoid these issues. It should be noted that some of these 1608
may seem "obvious", but have been problematic during testing. 1609

• Key Identifiers: Make sure you understand the algorithm and how it is applied to security 1610
tokens. 1611

• EncryptedKey: The <xenc:EncryptedKey> element from XML Encryption requires a 1612
Type attribute whose value is one of a pre-defined list of values. Ensure that a correct 1613
value is used. 1614

• Encryption Padding: The XML Encryption random block cipher padding has caused 1615
issues with certain decryption implementations; be careful to follow the specifications 1616
exactly. 1617

• IDs: The specification recognizes three specific ID elements: the global wsu:Id attribute 1618
and the local Id attributes on XML Signature and XML Encryption elements (because the 1619
latter two do not allow global attributes). If any other element does not allow global 1620
attributes, it cannot be directly signed using an ID reference. Note that the global 1621
attribute wsu:Id MUST carry the namespace specification. 1622

• Time Formats: This specification uses a restricted version of the XML Schema 1623
xsd:dateTime element. Take care to ensure compliance with the specified restrictions. 1624

• Byte Order Marker (BOM): Some implementations have problems processing the BOM 1625
marker. It is suggested that usage of this be optional. 1626

• SOAP, WSDL, HTTP: Various interoperability issues have been seen with incorrect 1627
SOAP, WSDL, and HTTP semantics being applied. Care should be taken to carefully 1628
adhere to these specifications and any interoperability guidelines that are available. 1629

This section is non-normative. 1630

WSS: SOAP Message Security 19 January 2004
Copyright © OASIS Open 2002-2004. All Rights Reserved. Page 46 of 56

15 Privacy Considerations 1631

In the context of this specification, we are only concerned with potential privacy violation by the 1632
security elements defined here. Privacy of the content of the payload message is out of scope. 1633
Producers or sending applications should be aware that claims, as collected in security tokens, 1634
are typically personal information, and should thus only be sent according to the producer's 1635
privacy policies. Future standards may allow privacy obligations or restrictions to be added to this 1636
data. Unless such standards are used, the producer must ensure by out-of-band means that the 1637
recipient is bound to adhering to all restrictions associated with the data, and the recipient must 1638
similarly ensure by out-of-band means that it has the necessary consent for its intended 1639
processing of the data. 1640
If claim data are visible to intermediaries, then the policies must also allow the release to these 1641
intermediaries. As most personal information cannot be released to arbitrary parties, this will 1642
typically require that the actors are referenced in an identifiable way; such identifiable references 1643
are also typically needed to obtain appropriate encryption keys for the intermediaries. 1644
If intermediaries add claims, they should be guided by their privacy policies just like the original 1645
producers. 1646
Intermediaries may also gain traffic information from a SOAP message exchange, e.g., who 1647
communicates with whom at what time. Producers that use intermediaries should verify that 1648
releasing this traffic information to the chosen intermediaries conforms to their privacy policies. 1649
This section is non-normative. 1650

WSS: SOAP Message Security 19 January 2004
Copyright © OASIS Open 2002-2004. All Rights Reserved. Page 47 of 56

16 References 1651

[GLOSS] Informational RFC 2828, "Internet Security Glossary," May 2000. 1652

[KERBEROS] J. Kohl and C. Neuman, "The Kerberos Network Authentication Service 1653
(V5)," RFC 1510, September 1993, http://www.ietf.org/rfc/rfc1510.txt . 1654

[KEYWORDS] S. Bradner, "Key words for use in RFCs to Indicate Requirement Levels," 1655
RFC 2119, Harvard University, March 1997 1656

[SHA-1] FIPS PUB 180-1. Secure Hash Standard. U.S. Department of 1657
Commerce / National Institute of Standards and Technology. 1658
http://csrc.nist.gov/publications/fips/fips180-1/fip180-1.txt 1659

[SOAP11] W3C Note, "SOAP: Simple Object Access Protocol 1.1," 08 May 2000. 1660

[SOAP12] W3C Recomendation, “http://www.w3.org/TR/2003/REC-soap12-part1-1661
20030624/”, 24 June 2003 1662

[SOAPSEC] W3C Note, "SOAP Security Extensions: Digital Signature," 06 February 1663
2001. 1664

[URI] T. Berners-Lee, R. Fielding, L. Masinter, "Uniform Resource Identifiers 1665
(URI): Generic Syntax," RFC 2396, MIT/LCS, U.C. Irvine, Xerox 1666
Corporation, August 1998. 1667

[XPATH] W3C Recommendation, "XML Path Language", 16 November 1999 1668

The following are non-normative references included for background and related material: 1669

[WS-SECURITY] "Web Services Security Language", IBM, Microsoft, VeriSign, April 2002. 1670
"WS-Security Addendum", IBM, Microsoft, VeriSign, August 2002. 1671
"WS-Security XML Tokens", IBM, Microsoft, VeriSign, August 2002. 1672

[XMLC14N] W3C Recommendation, "Canonical XML Version 1.0," 15 March 2001 1673

[EXCC14N] W3C Recommendation, "Exclusive XML Canonicalization Version 1.0," 8 1674
July 2002. 1675

[XMLENC] W3C Working Draft, "XML Encryption Syntax and Processing," 04 March 1676
2002 1677

W3C Recommendation, “Decryption Transform for XML Signature”, 10 1678
December 2002. 1679

[XML-ns] W3C Recommendation, "Namespaces in XML," 14 January 1999. 1680

[XMLSCHEMA] W3C Recommendation, "XML Schema Part 1: Structures,"2 May 2001. 1681
W3C Recommendation, "XML Schema Part 2: Datatypes," 2 May 2001. 1682

[XMLSIG] W3C Recommendation, "XML Signature Syntax and Processing," 12 1683
February 2002. 1684

[X509] S. Santesson, et al,"Internet X.509 Public Key Infrastructure Qualified 1685
Certificates Profile," 1686
http://www.itu.int/rec/recommendation.asp?type=items&lang=e&parent=1687
T-REC-X.509-200003-I 1688

[WSS-SAML] OASIS Working Draft 06, "Web Services Security SAML Token Profile", 1689
21 February 2003 1690

WSS: SOAP Message Security 19 January 2004
Copyright © OASIS Open 2002-2004. All Rights Reserved. Page 48 of 56

[WSS-XrML] OASIS Working Draft 03, "Web Services Security XrML Token Profile", 1691
30 January 2003 1692

[WSS-X509] OASIS, “Web Services Security X.509 Certificate Token Profile”, 19 1693
January 2004, http://www.docs.oasis-open.org/wss/2004/01/oasis-1694
200401-wss-x509-token-profile-1.0 1695

[WSSKERBEROS] OASIS Working Draft 03, "Web Services Security Kerberos Profile", 30 1696
January 2003 1697

[WSSUSERNAME] OASIS,”Web Services Security UsernameToken Profile” 19 January 1698
2004, http://www.docs.oasis-open.org/wss/2004/01/oasis-200401-wss-1699
username-token-profile-1.0 1700

[WSS-XCBF] OASIS Working Draft 1.1, "Web Services Security XCBF Token Profile", 1701
30 March 2003 1702

[XPOINTER] "XML Pointer Language (XPointer) Version 1.0, Candidate 1703
Recommendation", DeRose, Maler, Daniel, 11 September 2001. 1704

WSS: SOAP Message Security 19 January 2004
Copyright © OASIS Open 2002-2004. All Rights Reserved. Page 49 of 56

Appendix A: Utility Elements and Attributes 1705

These specifications define several elements, attributes, and attribute groups which can be re-1706
used by other specifications. This appendix provides an overview of these utility components. It 1707
should be noted that the detailed descriptions are provided in the specification and this appendix 1708
will reference these sections as well as calling out other aspects not documented in the 1709
specification. 1710

A.1. Identification Attribute 1711

There are many situations where elements within SOAP messages need to be referenced. For 1712
example, when signing a SOAP message, selected elements are included in the signature. XML 1713
Schema Part 2 provides several built-in data types that may be used for identifying and 1714
referencing elements, but their use requires that consumers of the SOAP message either have or 1715
are able to obtain the schemas where the identity or reference mechanisms are defined. In some 1716
circumstances, for example, intermediaries, this can be problematic and not desirable. 1717
Consequently a mechanism is required for identifying and referencing elements, based on the 1718
SOAP foundation, which does not rely upon complete schema knowledge of the context in which 1719
an element is used. This functionality can be integrated into SOAP processors so that elements 1720
can be identified and referred to without dynamic schema discovery and processing. 1721
This specification specifies a namespace-qualified global attribute for identifying an element 1722
which can be applied to any element that either allows arbitrary attributes or specifically allows 1723
this attribute. This is a general purpose mechanism which can be re-used as needed. 1724
A detailed description can be found in Section 4.0 ID References. 1725
 1726
This section is non-normative. 1727

A.2. Timestamp Elements 1728

The specification defines XML elements which may be used to express timestamp information 1729
such as creation and expiration. While defined in the context of message security, these 1730
elements can be re-used wherever these sorts of time statements need to be made. 1731
The elements in this specification are defined and illustrated using time references in terms of the 1732
dateTime type defined in XML Schema. It is RECOMMENDED that all time references use this 1733
type for interoperability. It is further RECOMMENDED that all references be in UTC time for 1734
increased interoperability. If, however, other time types are used, then the ValueType attribute 1735
MUST be specified to indicate the data type of the time format. 1736
The following table provides an overview of these elements: 1737
 1738
Element Description

<wsu:Created> This element is used to indicate the creation time associated with
the enclosing context.

<wsu:Expires> This element is used to indicate the expiration time associated
with the enclosing context.

 1739
A detailed description can be found in Section 10. 1740
 1741
This section is non-normative. 1742
 1743

WSS: SOAP Message Security 19 January 2004
Copyright © OASIS Open 2002-2004. All Rights Reserved. Page 50 of 56

A.3. General Schema Types 1744

The schema for the utility aspects of this specification also defines some general purpose 1745
schema elements. While these elements are defined in this schema for use with this 1746
specification, they are general purpose definitions that may be used by other specifications as 1747
well. 1748
Specifically, the following schema elements are defined and can be re-used: 1749
 1750
Schema Element Description

wsu:commonAtts attribute group This attribute group defines the common
attributes recommended for elements. This
includes the wsu:Id attribute as well as
extensibility for other namespace qualified
attributes.

wsu:AttributedDateTime type This type extends the XML Schema dateTime
type to include the common attributes.

wsu:AttributedURI type This type extends the XML Schema anyURI
type to include the common attributes.

 1751
This section is non-normative. 1752
 1753

WSS: SOAP Message Security 19 January 2004
Copyright © OASIS Open 2002-2004. All Rights Reserved. Page 51 of 56

Appendix B: SecurityTokenReference Model 1754

This appendix provides a non-normative overview of the usage and processing models for the 1755
<wsse:SecurityTokenReference> element. 1756
There are several motivations for introducing the <wsse:SecurityTokenReference> 1757
element: 1758
The XML Signature reference mechanisms are focused on "key" references rather than general 1759
token references. 1760
The XML Signature reference mechanisms utilize a fairly closed schema which limits the 1761
extensibility that can be applied. 1762
There are additional types of general reference mechanisms that are needed, but are not covered 1763
by XML Signature. 1764
There are scenarios where a reference may occur outside of an XML Signature and the XML 1765
Signature schema is not appropriate or desired. 1766
The XML Signature references may include aspects (e.g. transforms) that may not apply to all 1767
references. 1768
 1769
The following use cases drive the above motivations: 1770
Local Reference – A security token, that is included in the message in the <wsse:Security> 1771
header, is associated with an XML Signature. The figure below illustrates this: 1772
 1773

Security
Token

Signature

Reference

WSS: SOAP Message Security 19 January 2004
Copyright © OASIS Open 2002-2004. All Rights Reserved. Page 52 of 56

 1774
Remote Reference – A security token, that is not included in the message but may be available 1775
at a specific URI, is associated with an XML Signature. The figure below illustrates this: 1776

 1777
Key Identifier – A security token, which is associated with an XML Signature and identified using 1778
a known value that is the result of a well-known function of the security token (defined by the 1779
token format or profile). The figure below illustrates this where the token is located externally: 1780

 1781
Key Name – A security token is associated with an XML Signature and identified using a known 1782
value that represents a "name" assertion within the security token (defined by the token format or 1783
profile). The figure below illustrates this where the token is located externally: 1784

 1785
Format-Specific References – A security token is associated with an XML Signature and 1786
identified using a mechanism specific to the token (rather than the general mechanisms 1787
described above). The figure below illustrates this: 1788
 1789

Security
Token

K-I(ST)

Signature

Key
Identifier

Security
Token

Signature

Reference

Security
Token

Name: XXX

Signature

Key
Name

WSS: SOAP Message Security 19 January 2004
Copyright © OASIS Open 2002-2004. All Rights Reserved. Page 53 of 56

Non-Signature References – A message may contain XML that does not represent an XML 1790
signature, but may reference a security token (which may or may not be included in the 1791
message). The figure below illustrates this: 1792

 1793
 1794
All conformant implementations MUST be able to process the 1795
<wsse:SecurityTokenReference> element. However, they are not required to support all of 1796
the different types of references. 1797
The reference MAY include a ValueType attribute which provides a "hint" for the type of desired 1798
token. 1799
If multiple sub-elements are specified, together they describe the reference for the token. 1800
There are several challenges that implementations face when trying to interoperate: 1801
ID References – The underlying XML referencing mechanism using the XML base type of ID 1802
provides a simple straightforward XML element reference. However, because this is an XML 1803
type, it can be bound to any attribute. Consequently in order to process the IDs and references 1804
requires the recipient to understand the schema. This may be an expensive task and in the 1805
general case impossible as there is no way to know the "schema location" for a specific 1806
namespace URI. 1807
Ambiguity – The primary goal of a reference is to uniquely identify the desired token. ID 1808
references are, by definition, unique by XML. However, other mechanisms such as "principal 1809
name" are not required to be unique and therefore such references may be unique. 1810
The XML Signature specification defines a <ds:KeyInfo> element which is used to provide 1811
information about the "key" used in the signature. For token references within signatures, it is 1812
RECOMMENDED that the <wsse:SecurityTokenReference> be placed within the 1813
<ds:KeyInfo>. The XML Signature specification also defines mechanisms for referencing keys 1814
by identifier or passing specific keys. As a rule, the specific mechanisms defined in WSS: SOAP 1815
Message Security or its profiles are preferred over the mechanisms in XML Signature. 1816
The following provides additional details on the specific reference mechanisms defined in WSS: 1817
SOAP Message Security: 1818
Direct References – The <wsse:Reference> element is used to provide a URI reference to 1819
the security token. If only the fragment is specified, then it references the security token within 1820

Security
Token

MyStuff

Reference

MyToken
Security
Token

Signature

MyRef

WSS: SOAP Message Security 19 January 2004
Copyright © OASIS Open 2002-2004. All Rights Reserved. Page 54 of 56

the document whose wsu:Id matches the fragment. For non-fragment URIs, the reference is to 1821
a [potentially external] security token identified using a URI. There are no implied semantics 1822
around the processing of the URI. 1823
Key Identifiers – The <wsse:KeyIdentifier> element is used to reference a security token 1824
by specifying a known value (identifier) for the token, which is determined by applying a special 1825
function to the security token (e.g. a hash of key fields). This approach is typically unique for the 1826
specific security token but requires a profile or token-specific function to be specified. The 1827
ValueType attribute defines the type of key identifier and, consequently, identifies the type of 1828
token referenced. The EncodingType attribute specifies how the unique value (identifier) is 1829
encoded. For example, a hash value may be encoded using base 64 encoding (the default). 1830
Key Names – The <ds:KeyName> element is used to reference a security token by specifying a 1831
specific value that is used to match an identity assertion within the security token. This is a 1832
subset match and may result in multiple security tokens that match the specified name. While 1833
XML Signature doesn't imply formatting semantics, WSS: SOAP Message Security 1834
RECOMMENDS that X.509 names be specified. 1835
It is expected that, where appropriate, profiles define if and how the reference mechanisms map 1836
to the specific token profile. Specifically, the profile should answer the following questions: 1837

• What types of references can be used? 1838
• How "Key Name" references map (if at all)? 1839
• How "Key Identifier" references map (if at all)? 1840
• Are there any additional profile or format-specific references? 1841

 1842
This section is non-normative. 1843

WSS: SOAP Message Security 19 January 2004
Copyright © OASIS Open 2002-2004. All Rights Reserved. Page 55 of 56

Appendix C: Revision History 1844

Rev Date What
01 20-Sep-02 Initial draft based on input documents and editorial

review
02 24-Oct-02 Update with initial comments (technical and

grammatical)
03 03-Nov-02 Feedback updates
04 17-Nov-02 Feedback updates
05 02-Dec-02 Feedback updates
06 08-Dec-02 Feedback updates
07 11-Dec-02 Updates from F2F
08 12-Dec-02 Updates from F2F
14 03-Jun-03 Completed these pending issues - 62, 69, 70, 72, 74,

84, 90, 94, 95, 96, 97, 98, 99, 101, 102, 103, 106,
107, 108, 110, 111

15 18-Jul-03 Completed these pending issues – 78, 82, 104, 105,
109, 111, 113

16 26-Aug-03 Completed these pending issues - 99, 128, 130,
132, 134

18 15-Dec-03 Editorial Updates based on Issue List #30
19 29-Dec-03 Editorial Updates based on Issue List #31
20 14-Jan-04 Completed issue 241 and feedback updates
21 19-Jan-04 Editorial corrections for name space and document

name
 1845
This section is non-normative. 1846

WSS: SOAP Message Security 19 January 2004
Copyright © OASIS Open 2002-2004. All Rights Reserved. Page 56 of 56

Appendix D: Notices 1847

OASIS takes no position regarding the validity or scope of any intellectual property or other rights 1848
that might be claimed to pertain to the implementation or use of the technology described in this 1849
document or the extent to which any license under such rights might or might not be available; 1850
neither does it represent that it has made any effort to identify any such rights. Information on 1851
OASIS's procedures with respect to rights in OASIS specifications can be found at the OASIS 1852
website. Copies of claims of rights made available for publication and any assurances of licenses 1853
to be made available, or the result of an attempt made to obtain a general license or permission 1854
for the use of such proprietary rights by implementers or users of this specification, can be 1855
obtained from the OASIS Executive Director. 1856
OASIS invites any interested party to bring to its attention any copyrights, patents or patent 1857
applications, or other proprietary rights which may cover technology that may be required to 1858
implement this specification. Please address the information to the OASIS Executive Director. 1859
Copyright © OASIS Open 2002-2004. All Rights Reserved. 1860
This document and translations of it may be copied and furnished to others, and derivative works 1861
that comment on or otherwise explain it or assist in its implementation may be prepared, copied, 1862
published and distributed, in whole or in part, without restriction of any kind, provided that the 1863
above copyright notice and this paragraph are included on all such copies and derivative works. 1864
However, this document itself does not be modified in any way, such as by removing the 1865
copyright notice or references to OASIS, except as needed for the purpose of developing OASIS 1866
specifications, in which case the procedures for copyrights defined in the OASIS Intellectual 1867
Property Rights document must be followed, or as required to translate it into languages other 1868
than English. 1869
The limited permissions granted above are perpetual and will not be revoked by OASIS or its 1870
successors or assigns. 1871
This document and the information contained herein is provided on an “AS IS” basis and OASIS 1872
DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO 1873
ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE 1874
ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A 1875
PARTICULAR PURPOSE. 1876
 1877
This section is non-normative. 1878

