

Version 0.9
22 Nov 2002

1

Web-Services Security Quality of Protection
1. Introduction (Non-normative)

1.1. Problem statement
Using the WS Security Specification, service end-points have a standard means for securing SOAP
messages using XML Signature and XML Encryption. However, the WSS specification does not provide a
means for a Web-service consumer and provider to negotiate how the SOAP messages used in the
exchange have to be protected in order to successfully invoke the service. In this paper, a technique for
negotiating a mutually-acceptable security policy based on WSDL is proposed.

The term security policy is used in this context to mean: "a statement of the requirements for protecting
arguments in a WS API, including:

• how actors are to be authenticated, using what mechanisms and with what parameter value ranges,
• which SOAP messages, elements and attachments are to be encrypted, for what individual recipients,

recipient roles or keys, using what algorithms and key sizes,
• which SOAP messages, elements and attachments are to be integrity protected, using what

mechanisms, with which algorithms and key sizes and
• what initial parameter values are used in the signature validation procedure, including what keys or

authorities are trusted directly”.

This is a relatively restrictive use of the term "security policy". A more comprehensive definition addresses
such requirements as:

• privacy (retention period, intended usage, further disclosure),
• authorization (additional qualifications the service consumer must demonstrate in order to successfully

access the Web service) and
• non-repudiation (requirements for notarization and time-stamping).

These topics are touched on later in the paper.

In some situations (notably RPC-style service invocation), Web service interactions are conducted in a
persistent session. In such cases, the provider's security policy may indicate the requirements for
authenticity, integrity and confidentiality of the session.

In other situations (notably document-style service invocation), messages must be protected in isolation. In
these cases, while the service provider may declare a policy, the service consumer actually creates the
service request. So, the consumer actually chooses which security operations to apply to the messages.
Therefore, we need a way for the consumer to discover the service provider's policy and choose a set of
security operations that are consistent with both its own and the service-provider's security policies.

Multi-cast environments introduce unique requirements that we do not attempt to address here.

1.2. Document outline
In this document we describe an approach to solving the stated problem.

Section 1.3 describes how this problem is solved today and points out the shortcomings of the existing
solutions. Section 1.3.1 describes the proposed approach in outline. Section 1.5 describes a number of
potential process models for applying the proposed approach. Section 2 describes the data model of the
proposed elements, and Section 3 describes their schema. Section 4 contains an example WSDL
<definitions> element to illustrate the approach. Section 5 lists the identifiers used in the specification.

Version 0.9
22 Nov 2002

2

Section 6 discusses some security and privacy considerations. Section 7 examines whether the approach
described here can serve as a basis for other types of security policy. Section 8 lists some issues that
remain to be resolved. Section 9 lists the individuals who contributed to the preparation of this paper.
Appendix A contains the schema listing for the proposed elements. Appendix B contains the proposed
schema for the WSDL definition of a secured SOAP interface. Appendix C contains the proposed schema
for the WSS header contents for conveying the service consumer’s policy for responses in a service request.

1.3. Existing solutions
Three main solutions to this problem already exist:

1. the consumer and provider agree, in some unspecified manner, which protection mechanisms to apply
to which elements and messages,

2. the provider is capable of accepting, and willing to accept, a broad range of mechanisms, and the
consumer chooses which mechanism to use and which elements and messages to apply them to, and

3. the CPP/CPA approach described by ebXML.

The first approach is probably satisfactory when the provider and consumer are governed by the same
policy authority. This situation exists most commonly where the provider and consumer are in applications
owned and operated by the same corporate entity.

The second approach is probably satisfactory in circumstances where the security policy may be set entirely
by the consumer.

Neither of these solutions is satisfactory in a federated environment, where both provider and consumer
independently define their own security policies, and messages have to be exchanged in a way that satisfies
both policies.

1.3.1. The ebXML CPA Negotiation Protocol

The ebXML Collaboration-Protocol Profile and Agreement Specification describes a technique for deriving
(amongst other things) mutually-acceptable quality of protection for exchanges between a service provider
and a service consumer.

As described here, the WSDL document of a Web-service would include a security policy description
representing the types of security operations that are required and supported by the Web-service for its
SOAP message exchanges with consumers. However, since Web-service consumers may themselves be
implemented as a Web-service, both the consumer and provider of the service may have a security policy
defined in their WSDL documents. This implies that there is a need for the Web-service consumers and
providers to agree on the applied security policy to be used to protect the SOAP message exchange between
them.

The process of agreement of the effective security policy to be used by two Web-services is part of the
domain of negotiation protocols. The OASIS ebXML CPP/CPA group has an effort currently underway to
develop a negotiation protocol to generate a CPA using the collaborative business party profile that
includes information about the security, transport and message exchange characteristics of the two parties
involved in the ebXML/SOAP message exchange. The ebXML Negotiation protocol scope includes
negotiation of the contents of a CPA including security policies. These negotiations could be applicable for
both long-term relationships and single message exchanges between a Web-service consumer and provider.
Furthermore, the specific parts of a Web-services security policy negotiation protocol that may be useful to
address relate to the messages that are publicly exchanged between two web services that may have their

Version 0.9
22 Nov 2002

3

own WSDL security policy descriptions defined. These negotiation messages may have interoperability
issues, and therefore, the documents that are exchanged between the two Web-services, as part of the
negotiation messages, need to be standardized.

The following are two of the issues pertaining to use of the ebXML CPA negotiation protocol that need to
be factored in as part of the development of a run-time model for security policy processing.

1) Status of ebXML CPA Negotiation Protocol. The OASIS ebXML negotiation protocol is a work in
progress. Hence, there are some dependencies with the OASIS CPP/CPA TC.

2) WSDL Mapping of CPP/CPA. CPP/CPA is basically a super-set of WSDL, since WSDL provides
binding and service information, while CPP additionally provides organizational information about the
participating Web-service parties (e.g., role of organization) in context of a particular service, as well as
error-handling and other failure scenarios.

Finally, during any standards effort related to this paper, a decision may need to be made whether
negotiation protocols should be out-of-scope for the first version or whether a simplistic model in which a
service provider controls the effective security policy used in the SOAP message exchanges is sufficient

1.4. Basic approach
We describe an approach that allows a service-consumer to discover and retrieve a service-provider’s
security policy for service requests, and allows a service-consumer to send its own security policy for
service responses to the service-provider, as illustrated in Figure 1. The service consumer combines its
own policy for service requests with that of the service provider to obtain the “applied security policy” for
requests, which specifies the set of security operations that the consumer must perform on the request. The
combining takes place in such a way that the applied security policy is consistent with both the consumer’s
and provider’s security policies. Likewise, the service provider combines its own policy for responses with
that of the consumer, to obtain the applied security policy for responses.

We propose to introduce a new WSDL binding to support the publication of the security policy in the case
that a provider offers a secured interface. Specifically, elements called <SecurityMechanisms> and
<SecurityServices> are associated with message definitions in the service’s WSDL instance.

In addition, we specify a WSS header for conveying the consumer’s policy for service responses using the
same element definitions.

The <SecurityMechanisms> element describes a set of security mechanism, which may be applied to one or
more nodes of the SOAP document. Examples of security mechanisms include: transport level security
(e.g. SSL 2.0, SSL 3.0, TLS, etc.) and message level security (e.g. XML Digital Signatures). Additionally,
parameters of a security mechanism may be specified in the element. Examples of a mechanism
parameters include the minimum size of the data-encryption key. A reference to the mechanism definition
is contained in the <SecurityServices> element, and for each mechanism the nodes to which it must be
applied are listed.

Version 0.9
22 Nov 2002

4

Provider
security
manager

Consumer
security
manager

Applied
security policy

for request

Applied
security policy
for response

Consumer
security policy

for request
and response

Provider security
policy for request
Provider security
policy for request

Provider
security policy

for request
and response

Consumer security
policy for response
Consumer security
policy for response

WSDL

SOAP

Figure 1 - Basic approach

1.5. Process models
This paper does not specify an architectural model or protocols. It only specifies the syntax and semantics
of data structures. However, this section describes an architectural model and protocols to help illustrate
the approach.

Two process models are described:

• The deployment-time model and

• The run-time model.

In the deployment-time model, the provider’s policy for requests is discovered by the service-consumer at
the time at which the consumer class is deployed. And in the run-time model, the service-provider security
policy is discovered by the service-consumer at run-time. In both cases, the service-provider receives the
consumer’s policy for responses at the time the service is invoked.

1.5.1. Deployment-time model

Security policy is set and managed by an authority separately from the activities of the class developer.
The security policy manager must be capable of including the <SecurityMechanisms> and
<SecurityServices> elements in the provider class's WSDL instance, in accordance with the WSDL secure-
soap binding provided in Appendix B.

One further model taxonomy applies. The security service could be implemented "out-of-line" (see Section
1.5.2) or "in-line" (see Section 1.5.3).

1.5.2. Out-of-line model

The out-of-line model is illustrated in Figure 2.

Version 0.9
22 Nov 2002

5

Figure 2 - Out-of-line model

And the sequence of exchanges is illustrated in Figure 3 and Figure 4.

Consumer class Provider class

Security policy
manager

Security
service

Security
service

<wsdl:definitions><wsdl:definitions>

WSS-
SOAP

WSS-
SOAP

Security policy
manager

<defintions>
<SecurityMechanisms>
<SecurityServices>

<defintions>
<SecurityMechanisms>
<SecurityServices>

<SOAP>
<SecurityMechanisms>
<SecurityServices>

<SOAP>
<SecurityMechanisms>
<SecurityServices>

Version 0.9
22 Nov 2002

6

Consumer security
manager

Consumer security
service

WS
consumer WS provider Provider security

service
Provider security

manager

1. protect
request()

2. get applied request
policy() 3. get provider request

policy()
4. ()

6. ()

8. ()
9. get

service()
10. unprotect

request()
11. get provider request

policy()
12. ()

15. ()

5. derive applied request
policy()

7. protect
request()

13. check conformance with
policy()

14. unprotect
request()

Figure 3 - Request sequence

In steps 1-8, the consumer’s security service protects the service request for transmission to the service
provider in step 9. In steps 10-15, the provider’s security service unprotects the request for presentation to
the service interface.

In steps 2-6, the consumer’s security service requests the applied security policy for the service request type
from its security manager. The applied security policy is the set of security operations that are actually to
be performed on a service request of that type.

In steps 7 and 8, the consumer’s security service protects the request, in accordance with the applied
security policy, and return it to the consumer.

In steps 3 and 4, the consumer’s security manager obtains the provider’s security policy for the request
type, embedded in the service’s WSDL <definitions> element. In step 5, the consumer’s security manager
derives the applied security policy from both the consumer’s and provider’s security policies for the request
type, in such a way that it is consistent with both policies. In step 6, it returns the applied policy to the
consumer’s security service.

In steps 11-13, the provider’s security service verifies that the request conforms with its security policy for
the request type. In steps 11 and 12, the provider’s security service requests the provider’s security policy
for the request from the provider’s security manager.

Version 0.9
22 Nov 2002

7

As a byproduct of this process, in steps 6-10, the consumer’s security policy for the corresponding response
is transmitted to the provider’s security service. In step 6, the consumer’s security manager sends the
consumer’s security policy for the corresponding response to the consumer’s security service. The
consumer’s security service formats the policy as a WSS header (see Appendix C) and returns it to the
consumer in step 8. The consumer appends the header and sends it with the service request to the service
provider in step 9. The service provider then sends it to the provider’s security service in step 10. The
provider’s security service must retain the consumer’s security policy for the response type for use in
protecting the response.

Consumer security
manager

Consumer security
service

WS
consumer WS provider Provider security

service
Provider security

manager

16. protect
response()

17. get applied response
policy()

19. ()

21. ()

23. unprotect
response()

24. get consumer response
policy()
25. ()

28. ()

22. ()

18. derive applied response
policy()

20. protect
response()

26. check conformance with
policy()

27. unprotect
response()

Figure 4 - Response sequence

In steps 16-21, the provider’s security service protects the service response for transmission to the service
consumer in step 22. In steps 23-28, the consumer’s security service unprotects the response for return to
the service consumer.

In steps 17-19, the provider’s security service requests the applied security policy for the service response
type from its security manager. The provider’s security service includes the consumer’s security policy for
the response type in the request. In step 18, the provider’s security manager derives the applied security
policy from both the consumer’s and provider’s security policies for this response type.

In step 20, the provider’s security service protects the response, in accordance with the applied security
policy.

In steps 24-26, the consumer’s security service verifies that the response conforms with its security policy
for this response type. In steps 24 and 25, the consumer’s security service requests the consumer’s security
policy for this response type from the consumer’s security manager. And in step 27, it unprotects the
response.

Version 0.9
22 Nov 2002

8

1.5.3. In-line model

The in-line model works similarly, with the exception that the containers hosting the consumer and
provider classes emit a SOAP message, which is intercepted by the security service. The consumer and
provider classes could provide the <SecurityMechanisms> and <SecurityServices> elements to their
security services, in a WSS header, with the security service module identified as the target role.
Alternatively, the security service could obtain the <SecurityMechanisms> and <SecurityServices>
elements directly on its own (see Figure 5).

1.5.4. Run-time model

The only thing that distinguishes the run-time model from the deployment-time model is that the service's
WSDL instance and its <SecurityMechanisms> and <SecurityServices> elements are retrieved at the time
the service is invoked. This approach may be useful if the consumer may obtain the service from any one
of a number of providers, each with differing security policies. It may also be useful if the
<SecurityMechanisms> and <SecurityServices> elements are generated automatically, using a separate
security-policy negotiation protocol.

While this approach ensures that the <SecurityMechanisms> and <SecurityServices> elements are fresh,
since they are always retrieved dynamically, the impact on performance may be unacceptable in many
situations.

2. Data model (non-normative)
The data model of the <SecurityMechanisms> element is shown in Figure 6.

Consumer
class

Provider
class

Security policy
manager

<wsdl:definitions><wsdl:definitions>

SOAP SOAP

Security
service

WSS-
SOAPSOAP

Security
service

WSS-
SOAPSOAP
WSS-
SOAPSOAP

Security
service

SOAP
WSS-
SOAP

Security
service

SOAP
WSS-
SOAP SOAP
WSS-
SOAP

Security policy
manager

<defintions>
<SecurityMechanisms>
<SecurityServices>

<defintions>
<SecurityMechanisms>
<SecurityServices>

<SOAP>
<SecurityMechanisms>
<SecurityServices>

<SOAP>
<SecurityMechanisms>
<SecurityServices>

Figure 5 - In-line model

Version 0.9
22 Nov 2002

9

Figure 6 – <SecurityMechanisms> data model

The data model of the <SecurityServices> element is shown in Figure 7.

Figure 7 – <SecurityServices> data model

3. Functional specification (normative with the exception of
schema fragments and examples)

3.1. <SecurityMechanisms> element
The <SecurityMechanisms> element is a container for security mechanism definitions. The order of the
security mechanism definitions is not significant. Mechanisms are linked to message elements in the
security service definitions (see Section 3.5).
 <xs:element name="SecurityMechanisms" type="wssqop:SecurityMechanismsType"/>
 <xs:complexType name="SecurityMechanismsType">
 <xs:sequence>
 <xs:element ref="wssqop:SecurityMechanism" maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>

Here is an example of its use:
 <secure-soap:SecurityMechanisms>
 <wssqop:SecurityMechanism SecurityMechanismRef="IWijxQjUrcXBYoCe"
SecurityMechanismId="wssqop:xml-dsig-v1.0">
….
 </wssqop:SecurityMechanism>
 <wssqop:SecurityMechanism SecurityMechanismRef="IWijxQjUrcXBYoCf"
SecurityMechanismId="wssqop:xml-dsig-v1.0">
…
 </wssqop:SecurityMechanism>
 <wssqop:SecurityMechanism SecurityMechanismRef="IWijxQjUrcXBYoCg"
SecurityMechanismId="wssqop:xml-dsig-v1.0">
…
 </wssqop:SecurityMechanism>
 </secure-soap:SecurityMechanisms>

It contains a list of mechanism definitions. In this example each mechanism is a variant of XML Digital
Signature.

Version 0.9
22 Nov 2002

10

3.2. <SecurityMechanism> element
The <SecurityMechanism> element identifies a single security operation. It contains a
SecurityMechanismRef attribute by which security services may reference the operation and link them to
message elements. It also contains a SecurityMechanismId attribute that identifies the security operation
and zero or more <SecurityMechanismParameter> elements containing parameters for the operation. There
is no significance to the order of the parameters. Standard values for the SecurityMechanismId can be
found in Section 5.3.
 <xs:element name="SecurityMechanism" type="wssqop:SecurityMechanismType"/>
 <xs:complexType name="SecurityMechanismType">
 <xs:sequence>
 <xs:element ref="wssqop:SecurityMechanismParameter" minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>
 <xs:attribute name="SecurityMechanismRef" type="xs:NCName"/>
 <xs:attribute name="SecurityMechanismId" type="xs:anyURI"/>
 </xs:complexType>

Note: Some security operations may not require any parameters.

Here is an example of its use.
 <wssqop:SecurityMechanism SecurityMechanismRef="IWijxQjUrcXBYoCe"
SecurityMechanismId="wssqop:xml-dsig-v1.0">
 <wssqop:SecurityMechanismParameter SecurityParameterId="wssqop:digital-signature-algorithm">
 <xs:anyURI>ds#rsa-sha1</xs:anyURI>
 </wssqop:SecurityMechanismParameter>
 <wssqop:SecurityMechanismParameter SecurityParameterId="wssqop:minimum-key-size">
 <xs:nonNegativeInteger>2048</xs:nonNegativeInteger>
 </wssqop:SecurityMechanismParameter>
 </wssqop:SecurityMechanism>

It defines a variant of the XML Digital Signature mechanism that uses 2048-bit RSA with the SHA-1 digest
algorithm.

3.3. <SecurityMechanismParameter> element
A <SecurityMechanismParameter> element contains a single parameter for a security operation. It
contains a single SecurityParameterId attribute and a single security parameter value. Standard values for
the SecurityParameterId can be found in Section 5.4 and standard values for certain parameters can be
found in Section 5.5.
 <xs:element name="SecurityMechanismParameter" type="wssqop:SecurityMechanismParameterType"/>
 <xs:complexType name="SecurityMechanismParameterType">
 <xs:sequence>
 <xs:any/>
 </xs:sequence>
 <xs:attribute name="SecurityParameterId" type="xs:anyURI"/>
 </xs:complexType>

Here is an example of its use.
 <wssqop:SecurityMechanismParameter SecurityParameterId="wssqop:digital-signature-algorithm">
 <xs:anyURI>ds#rsa-sha1</xs:anyURI>
 </wssqop:SecurityMechanismParameter>

It illustrates the use of a digital-signature algorithm identifier, in this case RSA with the SHA-1 digest
algorithm.

3.4. <SecurityServices> element
The <SecurityServices> element is a container for security service definitions. All the security services
identified by a <SecurityServices> element MUST be applied to the request message by the service-

Version 0.9
22 Nov 2002

11

consumer, and to the response message by the service-provider, in the order in which they appear in the
<wsdl:definitions> element, and they must be removed from the request message by the service-provider,
and from the response message by the service-consumer in the reverse order.
 <xs:element name="SecurityServices" type="wssqop:SecurityServicesType"/>
 <xs:complexType name="SecurityServicesType">
 <xs:sequence>
 <xs:element ref="wssqop:SecurityService" maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>

Here is an example of its use.
 <secure-soap:SecurityServices>
 <wssqop:SecurityService SecurityServiceId="wssqop:message-integrity">
…
 </wssqop:SecurityService>
 <wssqop:SecurityService SecurityServiceId="wssqop:message-integrity">
…
 </wssqop:SecurityService>
 </secure-soap:SecurityServices>

It illustrates the use of two security services, both for message-integrity. Both services are required to be
applied. Contents of the service elements indicate which mechanism is to be used and which elements are
to be protected with the mechanism.

3.5. <SecurityService> element
Each <SecurityService> element defines a set of payload nodes and mechanisms that apply to those nodes.
A <SecurityService> element contains a <SecurityServiceTargets> element that identifies the payload
nodes and a <SecurityMechanismRefs> element that identifies the security operations to be applied to the
payload nodes. It also contains a SecurityServiceId attribute that identifies the security service. Standard
values for the SecurityServiceId can be found in Section 5.2.
 <xs:element name="SecurityService" type="wssqop:SecurityServiceType"/>
 <xs:complexType name="SecurityServiceType">
 <xs:sequence>
 <xs:element ref="wssqop:SecurityServiceTargets"/>
 <xs:element ref="wssqop:SecurityMechanismRefs"/>
 </xs:sequence>
 <xs:attribute name="SecurityServiceId" type="xs:anyURI"/>
 </xs:complexType>

Here is an example of its use.
 <wssqop:SecurityService SecurityServiceId="wssqop:message-integrity">
 <wssqop:SecurityServiceTargets>
…
 </wssqop:SecurityServiceTargets>
 <wssqop:SecurityMechanismRefs>
…
 </wssqop:SecurityMechanismRefs>
 </wssqop:SecurityService>

It illustrates the application of the message-integrity service, with sub-elements to indicate to which nodes
the service is to be applied and which mechanisms are to be used.

3.6. <SecurityServiceTargets> element
A <SecurityServiceTargets> element identifies a set of payload nodes. It contains one or more
<SecurityServiceTarget> elements, each of which identifies a single payload node. The originator of a
message under this policy MUST apply the corresponding security mechanisms to (at least) all the
identified payload nodes.

Version 0.9
22 Nov 2002

12

 <xs:element name="SecurityServiceTargets" type="wssqop:SecurityServiceTargetsType"/>
 <xs:complexType name="SecurityServiceTargetsType">
 <xs:sequence>
 <xs:element ref="wssqop:SecurityServiceTarget" maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>

Here is an example of its use.
 <wssqop:SecurityServiceTargets>
 <wssqop:SecurityServiceTarget>
…
 </wssqop:SecurityServiceTarget>
 </wssqop:SecurityServiceTargets>

It illustrates a single target definition.

3.7. <SecurityServiceTarget> element
A <SecurityServiceTarget> element identifies a payload node to which a mechanism is to be applied and
(optionally) assigns an identifier to the resulting element, so that subsequent operations can be applied to
the result, if necessary.
 <xs:element name="SecurityServiceTarget" type="wssqop:SecurityServiceTargetType"/>
 <xs:complexType name="SecurityServiceTargetType">
 <xs:choice>
 <xs:element ref="wssqop:SecurityServiceTargetRef"/>
 <xs:element ref="wssqop:SecurityServiceTargetPath"/>
 </xs:choice>
 <xs:attribute name="SecurityServiceTargetId" type="xs:string" use="optional"/>
 </xs:complexType>
 <xs:element name="SecurityServiceTargetRef" type="xs:string"/>
 <xs:element name="SecurityServiceTargetPath" type="xs:anyURI"/>

The <SecurityServiceTargetRef> child element carries location information about the payload.
Consequently, this could contain a URI representing a MIME content or href. The
<SecurityServiceTargetPath> element may contain an XPath/Xpointer value to identify the payload. The
<SecurityServiceTargetRef> element could also point to a remotely located payload component that may
need specific protection schemes. The <SecurityServiceTargetId> attribute is used to identify the element
that may be created as a result of applying the security operation, so that it can be identified as the target of
subsequent security operations in their <SecurityServiceTargetRef> elements. The value of this attribute
may not actually be attached to any element produced by the security operation. It may simply be used
internal to the security service that performs the security operations.

Here is an example of its use.
 <wssqop:SecurityServiceTarget>
 <wssqop:SecurityServiceTargetRef>quote</wssqop:SecurityServiceTargetRef>
 </wssqop:SecurityServiceTarget>

It illustrates the definition of the message “quote” as the target of the security service.

3.8. <SecurityMechanismRefs> element
The <SecurityMechanismRefs> element is a container for references to security mechanisms. If multiple
<SecurityMechanismRef> elements are present, then one and only one of the identified mechanisms
SHALL be applied to the message. A reference is valid if the value of the <SecurityMechanismRef>
element in the <SecurityMechanismRefs> element is equal to the SecurityMechanismRef attribute in the
<SecurityMechanism> element (see Section 3.2).
 <xs:element name="SecurityMechanismRefs" type="wssqop:SecurityMechanismRefsType"/>

Version 0.9
22 Nov 2002

13

 <xs:complexType name="SecurityMechanismRefsType">
 <xs:sequence>
 <xs:element name="SecurityMechanismRef" type="xs:QName" maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>

Here is an example of its use.
 <wssqop:SecurityMechanismRefs>
 <wssqop:SecurityMechanismRef>IWijxQjUrcXBYoCf</wssqop:SecurityMechanismRef>
 </wssqop:SecurityMechanismRefs>

It illustrates a reference to the mechanism whose MechanismRef attribute is “IWijxQjUrcXBYoCf” that
defines an XML Digital Signature mechanism (see Section 3.1).

4. Example (non-normative)
This section contains an example illustrating a WSDL document of a Web-service that offers two
operations: buying stocks and getting stock quotes. The WSDL description includes security service and
mechanism definitions that express the characteristics of security operations applicable to the request and
response SOAP messages to and from the Web-service.

We show here the two ways of including the security policy elements in a WSDL document. The first
involves adding security mechanism definitions as a direct child of the <wsdl:definitions> element. The
second involves adding security service definitions as an extensibility element of the <wsdl:binding>
element of a WSDL document. Both approaches require new processing behaviour for WSDL processors.

To support the binding extension approach, the WSDL example uses a new SOAP binding called WSDL
secure-soap binding, which is described in Appendix B. Furthermore, the WSDL document example is for
RPC-style request-response SOAP messages. However, the WSDL secure-soap binding could also be
applied for document-style SOAP messages. Lastly, the WSDL example here uses the standard HTTP
transport binding, i.e., http://schemas.xmlsoap.org/soap/http, for transmission of SOAP messages. Other
transport bindings may also be used as part of the wsdl:binding component.

The <wssqop:SecurityMechanism> associated with the getStockQuote operation requires no authentication,
but the message is signed by the Web-service provider to provide integrity. The
<wssqop:SecurityMechanism> associated with the buyStock operation requires that the input and output
messages be signed. The security-related parts of the WSDL document are highlighted in the example
below.

[01] <?xml version="1.0" encoding="UTF-8"?>
[02] <definitions name="StockQuoteService" targetNamespace="http://qop.oasis.net"

xmlns:tns="http://example.net/Stocks.wsdl" xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:secure-soap="http://schemas.xmlsoap.org/wsdl/secure-soap/" xmlns:soap-
env="http://schemas.xmlsoap.org/soap/envelope/" xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
xmlns:wssqop="urn:oasis:names:tc:wssqop:1.0" xmlns:wsse="http://wsse.oasis.net"
xmlns="http://schemas.xmlsoap.org/wsdl/" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:ds="http://www.w3.org/2000/09/xmldsig#"
xsi:schemaLocation="http://schemas.xmlsoap.org/wsdl/

[03] http://schemas.xmlsoap.org/wsdl/" xsi:schemaLocation="http://schemas.xmlsoap.org/wsdl/secure-
soap/ C:\dev\schema\wsdl._sec.xsd">

[04] <secure-soap:SecurityMechanisms>
[05] <wssqop:SecurityMechanism SecurityMechanismRef="IWijxQjUrcXBYoCe"

SecurityMechanismId="wssqop:xml-dsig-v1.0">
[06] <wssqop:SecurityMechanismParameter SecurityParameterId="wssqop:digital-signature-

algorithm">
[07] <xs:anyURI>ds#rsa-sha1</xs:anyURI>
[08] </wssqop:SecurityMechanismParameter>
[09] <wssqop:SecurityMechanismParameter SecurityParameterId="wssqop:minimum-key-

Version 0.9
22 Nov 2002

14

size">
[10] <xs:nonNegativeInteger>2048</xs:nonNegativeInteger>
[11] </wssqop:SecurityMechanismParameter>
[12] </wssqop:SecurityMechanism>
[13] <wssqop:SecurityMechanism SecurityMechanismRef="IWijxQjUrcXBYoCf"

SecurityMechanismId="wssqop:xml-dsig-v1.0">
[14] <wssqop:SecurityMechanismParameter SecurityParameterId="wssqop:digital-signature-

algorithm">
[15] <xs:anyURI>ds#dsa-sha1</xs:anyURI>
[16] </wssqop:SecurityMechanismParameter>
[17] <wssqop:SecurityMechanismParameter SecurityParameterId="wssqop:minimum-key-

size">
[18] <xs:nonNegativeInteger>1024</xs:nonNegativeInteger>
[19] </wssqop:SecurityMechanismParameter>
[20] </wssqop:SecurityMechanism>
[21] <wssqop:SecurityMechanism SecurityMechanismRef="IWijxQjUrcXBYoCg"

SecurityMechanismId="wssqop:xml-dsig-v1.0">
[22] <wssqop:SecurityMechanismParameter SecurityParameterId="wssqop:trust-anchor">
[23] <ds:keyInfo>
[24] <ds:RetrievalMethod>http://example.xyz-

bank.com/certificate</ds:RetrievalMethod>
[25] </ds:keyInfo>
[26] </wssqop:SecurityMechanismParameter>
[27] </wssqop:SecurityMechanism>
[28] </secure-soap:SecurityMechanisms>
[29] <message name="stockQuoteRequest">
[30] <part name="stock" type="xsd:string"/>
[31] </message>
[32] <message name="stockQuoteResponse">
[33] <part name="quote" type="xsd:string"/>
[34] <part name="date" type="xsd:date"/>
[35] </message>
[36] <message name="buyStockRequest">
[37] <part name="stock" type="xsd:string"/>
[38] <part name="number" type="xsd:integer"/>
[39] <part name="limit" type="xsd:string"/>
[40] <part name="validUntil" type="xsd:date"/>
[41] </message>
[42] <message name="buyStockResponse">
[43] <part name="confirmationNumber" type="xsd:string"/>
[44] </message>
[45] <portType name="StockPortType">
[46] <operation name="getStockQuote">
[47] <input message="tns:stockQuoteRequest" name="stock"/>
[48] <output message="tns:stockQuoteResponse" name="quote"/>
[49] </operation>
[50] <operation name="buyStock">
[51] <input message="tns:buyStockRequest" name="stockToBuy"/>
[52] <output message="tns:buyStockResponse" name="confirmationNumber"/>
[53] </operation>
[54] </portType>
[55] <binding name="StockBinding" type="tns:StockPortType">
[56] <secure-soap:binding style="rpc" transport="http://schemas.xmlsoap.org/soap/http"/>
[57] <secure-soap:operation name="buyStock">
[58] <secure-soap:operation soapAction=""/>
[59] <secure-soap:SecurityServices>
[60] <wssqop:SecurityService SecurityServiceId="wssqop:message-integrity">
[61] <wssqop:SecurityServiceTargets>
[62] <!--classify operation for input/output/fault-->
[63] <wssqop:SecurityServiceTarget>
[64] <!-- perform operation on message:sign-->

<!—message refers to the message as it is defined in portType/operation�
[65] <wssqop:SecurityServiceTargetRef>stockToBuy

</wssqop:SecurityServiceTargetRef>
[66] </wssqop:SecurityServiceTarget>
[67] </wssqop:SecurityServiceTargets>

Version 0.9
22 Nov 2002

15

[68] <!--These are references to mechanism, which need to be applied/-->
[69] <wssqop:SecurityMechanismRefs>
[70] <wssqop:SecurityMechanismRef>IWijxQjUrcXBYoCe

</wssqop:SecurityMechanismRef>
[71] </wssqop:SecurityMechanismRefs>
[72] </wssqop:SecurityService>
[73] <wssqop:SecurityService SecurityServiceId="wssqop:message-integrity">
[74] <wssqop:SecurityServiceTargets>
[75] <!--classify operation for input/output/fault-->
[76] <wssqop:SecurityServiceTarget>
[77] <!-- perform operation on message:sign-->
[78] <wssqop:SecurityServiceTargetRef

type="message">confirmationNumber</wssqop:SecurityServiceTargetRef>
[79] </wssqop:SecurityServiceTarget>
[80] </wssqop:SecurityServiceTargets>
[81] <!--These are references to mechanism, which need to be applied/-->
[82] <wssqop:SecurityMechanismRefs>
[83] <wssqop:SecurityMechanismRef>IWijxQjUrcXBYoCf

</wssqop:SecurityMechanismRef>
[84] </wssqop:SecurityMechanismRefs>
[85] </wssqop:SecurityService>
[86] </secure-soap:SecurityServices>
[87] <secure-soap:input name=" stockToBuy ">
[88] <secure-soap:body use="encoded" namespace="urn:stock"

encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>
[89] </secure-soap:input>
[90] <secure-soap:output name="confirmationNumber">
[91] <secure-soap:body use="encoded" namespace="urn:stock"

encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>
[92] </secure-soap:output>
[93] </secure-soap:operation>
[94] <secure-soap:operation name="getStockQuote">
[95] <secure-soap:operation soapAction=""/>
[96] <secure-soap:SecurityServices>
[97] <wssqop:SecurityService SecurityServiceId="wssqop:message-integrity">
[98] <wssqop:SecurityServiceTargets>
[99] <!--classify operation for input/output/fault-->

[100] <wssqop:SecurityServiceTarget>
[101] <!-- perform operation on message:sign-->
[102] <wssqop:SecurityServiceTargetRef>quote

</wssqop:SecurityServiceTargetRef>
[103] </wssqop:SecurityServiceTarget>
[104] </wssqop:SecurityServiceTargets>
[105] <!--These are references to mechanism, which need to be applied/-->
[106] <wssqop:SecurityMechanismRefs>
[107] <wssqop:SecurityMechanismRef>IWijxQjUrcXBYoCf

</wssqop:SecurityMechanismRef>
[108] </wssqop:SecurityMechanismRefs>
[109] </wssqop:SecurityService>
[110] </secure-soap:SecurityServices>
[111] <secure-soap:input name="stock">
[112] <secure-soap:body use="encoded" namespace="urn:stock"

encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>
[113] </secure-soap:input>
[114] <secure-soap:output name="quote">
[115] <secure-soap:body use="encoded" namespace="urn:stock"

encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>
[116] </secure-soap:output>
[117] </secure-soap:operation>
[118] </binding>
[119] <service name="StockService">
[120] <documentation>Provides access to the stocks</documentation>
[121] <port name="StockPort" binding="tns:StockBinding">
[122] <secure-soap:address location="https://a.b.c:80/soap/stocks"/>
[123] </port>
[124] </service>

Version 0.9
22 Nov 2002

16

[125] </definitions>

Lines [04] - [28] contain the <SecurityMechanisms> element for the parent <definition> element. It
contains three security mechanism definitions in lines [05] – [12], lines [13] – [20] and lines [21] - [27],
respectively. The security mechanisms have references “IWijxQjUrcXBYoCe”, etc..

Lines [59] – [86] contain the <SecurityServices> element for the getStockQuote “stockToBuy” ([65]) input
message and “confirmationNumber” output message ([78]). It identifies a two security mechanisms, either
one of which is acceptable for protecting the message. See lines [70] and [83]. Line [65] and [78] identify
the target of the security service.

Lines [96] – [110] contain the <SecurityServices> element for the “quote” output message. It identifies a
single security service that will be applied by the service-provider on the response message, see line [107].
Line [102] identifies the message to which the security services will be applied.

5. Identifiers (normative)
This section defines the names, types and value ranges for the identifiers used in the specification.

5.1. Declaration
xmlns:wssqop=”urn:oasis:names:tc:wssqop:1.0:identifier”
xmlns:ds=”http://www.w3.org/2000/09/xmldsig#”
xmlns:xenc=”http://www.w3.org/2001/04/xmlenc#”

5.2. Service identifiers
Service name Service id Type Value range
Transport
confidentiality

wssqop:transport-
confidentiality

Set of
Mechanism uris

subset-of(wssqop:ssl-v2.0
wssqop:ssl-v3.0 wssqop:tls-
v1.0 wssqop:kerberos-v5.0)

Transport integrity wssqop:transport-integrity Set of
Mechanism uris

subset-of(wssqop:ssl-v2.0
wssqop:ssl-v3.0 wssqop:tls-
v1.0 wssqop:kerberos-v5.0)

Message
confidentiality

wssqop:message-
confidentiality

Set of
Mechanism uris

subset-of(xenc#rsa-1_5
wssqop:xml-enc-v1.0)

Message integrity wssqop:message-integrity Set of
Mechanism uris

subset-of(xenc#rsa-1_5
wssqop:xml-dsig-v1.0)

Originator
authenticity

wssqop:originator-
authenticity

Set of
Mechanism uris

subset-of(wssqop:username-
password wssqop:xml-dsig)

5.3. Mechanism identifiers
Mechanism name Mechanism id Type Value range
SSL V2.0 wssqop:ssl-v2.0 Set of Parameter

uris
all-of(wssqop:digest-algorithm
wssqop:key-management-
algorithm wssqop:data-
encryption-algorithm
wssqop:trust-anchor
wssqop:minimum-key-size)

SSL V3.0 wssqop:ssl-v3.0 Set of Parameter
uris

all-of(wssqop:digest-algorithm
wssqop:key-management-
algorithm wssqop:data-
encryption-algorithm
wssqop:trust-anchor
wssqop:minimum-key-size)

http://www.w3.org/2000/09/xmldsig

Version 0.9
22 Nov 2002

17

TLS V1.0 wssqop:tls-v1.0 Set of Parameter
uris

all-of(wssqop:digest-algorithm
wssqop:key-management-
algorithm wssqop:data-
encryption-algorithm
wssqop:trust-anchor
wssqop:minimum-key-size)

Kerberos V5.0 wssqop:kerberos-v5.0 Set of Parameter
uris

all-of(wssqop:digest-algorithm
wssqop:key-management-
algorithm wssqop:data-
encryption-algorithm
wssqop:minimum-key-size)

PKCS#1 V1.5 xenc#rsa-1_5 Set of Parameter
uris

all-of(wssqop:digest-algorithm
wssqop:key-management-
algorithm wssqop:data-
encryption-algorithm
wssqop:trust-anchor
wssqop:minimum-key-size
wssqop:content-type)

XML Encryption V1.0 wssqop:xml-enc-v1.0 Set of Parameter
uris

all-of(wssqop:key-management-
algorithm wssqop:data-
encryption-algorithm
wssqop:minimum-key-size
wssqop:token-type)

XML Digital signature
V1.0

wssqop:xml-dsig-v1.0 Set of Parameter
uris

all-of(wssqop:digest-algorithm
wssqop:key-management-
algorithm wssqop:digital-
signature wssqop:trust-anchor
wssqop:token-type)

5.4. Parameter identifiers
Parameter name Parameter id Type Value range
Digest algorithm wssqop:digest-algorithm Set of Value uris subset-of(wssqop:md5

ds#sha1)
Message
authentication

wssqop:message-
authentication

Set of Value uris subset-of(ds#hmac-sha1)

Key management
algorithm

wssqop:key-management-
algorithm

Set of Value uris subset-of(ds#rsa-sha1
xenc#dh)

Digital signature wssqop:digital-signature Set of Value uris subset-of(ds#rsa-sha1
ds#dsa-sha1)

Data-encryption
algorithm

wssqop:data-encryption-
algorithm

Set of Value uris subset-of(wssqop:rc4
xenc#tripledes-cbc
xenc#aes128-cbc)

Minimum key size wssqop:minimum-key-size Non-negative
integer

Content type wssqop:content-type Urn subset-of(wssqop:signed-
data wssqop:enveloped-data
wssqop:signed-and-
enveloped-data)

Trust anchor wssqop:trust-anchor ds:keyInfo Set of self-signed certificates
Token type wssqop:token-type Set of Value uris subset-of(wssqop:x.509-v3.0

wssqop:saml-v1.0)

Version 0.9
22 Nov 2002

18

5.5. Parameter values
Name Parameter value
MD5 wssqop:md5
SHA-1 Ds#sha1
HMAC-SHA-1 Ds#hmac-sha1
RSA Ds#rsa-sha1
Diffie-Hellman xenc#dh
DSA Ds#dsa-sha1
RC-4 wssqop:rc4
Triple DES xenc#tripledes-cbc
AES wssqop:aes128-cbc
Signed data wssqop:signed-data
Enveloped data wssqop:enveloped-data
Signed and enveloped data wssqop:signed-and-enveloped-data
X.509 V3 wssqop:x.509-v3.0
SAML V1.0 wssqop:saml-v1.0

6. Security and privacy considerations (non-normative)
If the <SecurityServices> element were to be distributed without integrity/authenticity protection, an
adversary could successfully substitute a weaker policy, thereby tricking the consumer into protecting its
messages weakly. This situation is avoided if each domain enforces its own security policy. Alternatively,
or additionally, the <SecurityServices> element could be signed and verified.

Naturally, despite having stipulated a policy, an end-point may receive a message that violates the policy.
The policy SHOULD specify how to address this situation. The message may be processed anyway; it
could be argued that, in the case of confidentiality, any damage is already done and the situation cannot be
mitigated by a refusal to process the message. However, in order to avert a repeat of this failure, it is
RECOMMENDED that a fault be returned, and the message should not be processed.

7. Authorization, Privacy and non-repudiation (non-normative)
The approach outlined above is designed to address the policy requirements of WSS. It needs to be
understood whether it can also serve as a suitable basis for the other aspects of security policy.

7.1. Authorization
It has been argued that quality of protection and authorization lie on the continuum of security policies, and
that it is artificial to draw a sharp distinction between the two. It has also been argued that service-
providers will be unwilling to publish authorization policy for an interface, because that information assists
adversaries to discover and exploit vulnerabilities in the interface.

If we accept that quality of protection and authorization do indeed lie on a continuum, then solutions put
forward for quality of protection should be able to satisfy the requirements of authorization as well. Only
experience will help us to understand whether there is a need for service-providers to publish their
authorization policies. So, the safe course of action is to assume that such a requirement exists, and if this
premise turns out to be wrong, then the outcome is simply that the facility will not be used in practice.

We propose as a working definition that authorization policy places limits on the acceptable values of, and
relationships amongst, the identities and attributes of actors (also known as subjects), parts (also known as
resources) and operations (also known as actions) as well as attributes of the environment of a service-
provider interface. Note: this definition casts message-integrity as a QoP service when it used for
accountability, but as an authorization service when it is used for access control.

Version 0.9
22 Nov 2002

19

The language for expressing these limitations should have the following characteristics: it must be capable
of expressing requirements for multiple subjects, it must include mathematical operators and it must be
capable of expressing actions that must be performed in conjunction with access to the interface.

A number of well-established languages exist with these characteristics. So, the only remaining question is
how statements in the chosen language should be attached to a service interface definition. Here is an
example, based on XACML.

Name Value
SecurityServiceId “wssqop:authorization”
SecurityMechanismId “wssqop:xacml”
SecurityParameterId “wssqop:condition”
Parameter value an <xacml:Policy> element

Perhaps, it will, one day, prove possible to generate a workflow definition directly from an interface’s
authorization policy, so that a qualified service-consumer will be able to automatically select the sequence
of steps required to create a conformant service request. But, that is in the future.

7.2. Privacy
Perhaps the main way in which a privacy policy differs from an authorization policy is that privacy-policy
statements apply to other interfaces of the service-provider’s business process rather than to the one being
accessed by the service-consumer. It is through these other interfaces that information supplied by the
service-consumer will be further disclosed.

In addition to the characteristics cited above, in order to support privacy requirements, the chosen policy
language must be capable of combining authorization policies written by the service-consumer and the
service-provider. Similarly, perhaps it will become possible to define the service-provider’s workflow
directly from the combined policies of the service-consumer and provider, so that the provider’s business
process can be automatically adapted to conform with the combined policy.

Privacy policy, then, could be attached to a service-provider’s interface definition in exactly the same way
that authorization policy can be.

7.3. Non-repudiation
WSS is intended to protect messages during their transfer between service end-points. Upon arrival at its
destination, it is assumed that all associated protection mechanisms may be replaced with protection
mechanisms that are more appropriate to the service-execution environment.

The topic of non-repudiation deals with long-term protection of the payload between arm-length corporate
entities (because it contemplates a dispute-resolution phase that follows service invocation by potentially a
lengthy period of time). Therefore, a service’s non-repudiation requirements may apply to the payload,
rather than to the envelope. Nevertheless, such requirements could be stated in the service’s interface
definition.

Long-term integrity and authenticity protection depends upon ensuring that private keys were used within
their non-revoked, non-expired, validity period and that suitable procedures govern key management.
These types of procedure are commonly simply aggregated under an identifier. Unless the service-provider
obtains the required timestamp, the interface definition may have to indicate that a timestamp must be
provided by the consumer. Otherwise, no special requirements are identified for the interface definition.

Version 0.9
22 Nov 2002

20

7.4. Conclusion
It appears that the framework described here is suitable for expressing requirements for authorization,
privacy and non-repudiation. More work is required for fuller definition of the solution in these areas.

8. Open Issues (non-normative)
The following issues remain to be addressed.

• Make use of SOAP 1.2 “features”.
• Consider providing a means for type-checking security parameters.
• Provide a document-style example.
• Provide an example involving a protected attachment.
• Provide an example using the <SecurityServiceTargetPath> element.
• Confirm consistency of the approach with that adopted by WSDL 1.2.
• Clarify any IPR issues in relation to ebXML CPP/CPA and other applicable techniques.

9. Contributors (non-normative)
The following individuals contributed to the preparation of this paper.
Zahid Ahmed, Commerce One Inc.
Martijn de Boer, SAP AG
Monica Martin, Drake Certivo Inc.
Prateek Mishra, Netegrity Inc.
Dale Moberg, Cyclone Commerce
Ron Monzillo, Sun Microsystems
Tim Moses, Entrust Inc.
Rob Philpott, RSA Security Inc
Gene Thurston, AmberPoint Inc.

Version 0.9
22 Nov 2002

21

Appendix A – Schema (normative)
Following is the schema for the <SecurityServices> and <SecurityMechanisms> elements.
<?xml version="1.0" encoding="UTF-8"?>
<xs:schema targetNamespace="urn:oasis:names:tc:wssqop:1.0" xmlns:xs="http://www.w3.org/2001/XMLSchema"
xmlns:wssqop="urn:oasis:names:tc:wssqop:1.0" elementFormDefault="unqualified"
attributeFormDefault="unqualified">
 <xs:element name="SecurityMechanisms" type="wssqop:SecurityMechanismsType"/>
 <xs:complexType name="SecurityMechanismsType">
 <xs:sequence>
 <xs:element ref="wssqop:SecurityMechanism" maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>
 <xs:element name="SecurityMechanism" type="wssqop:SecurityMechanismType"/>
 <xs:complexType name="SecurityMechanismType">
 <xs:sequence>
 <xs:element ref="wssqop:SecurityMechanismParameter" minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>
 <xs:attribute name="SecurityMechanismRef" type="xs:NCName"/>
 <xs:attribute name="SecurityMechanismId" type="xs:anyURI"/>
 </xs:complexType>
 <xs:element name="SecurityMechanismParameter" type="wssqop:SecurityMechanismParameterType"/>
 <xs:complexType name="SecurityMechanismParameterType">
 <xs:sequence>
 <xs:any/>
 </xs:sequence>
 <xs:attribute name="SecurityParameterId" type="xs:anyURI"/>
 </xs:complexType>
 <xs:element name="SecurityServices" type="wssqop:SecurityServicesType"/>
 <xs:complexType name="SecurityServicesType">
 <xs:sequence>
 <xs:element ref="wssqop:SecurityService" maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>
 <xs:element name="SecurityService" type="wssqop:SecurityServiceType"/>
 <xs:complexType name="SecurityServiceType">
 <xs:sequence>
 <xs:element ref="wssqop:SecurityServiceTargets"/>
 <xs:element ref="wssqop:SecurityMechanismRefs"/>
 </xs:sequence>
 <xs:attribute name="SecurityServiceId" type="xs:anyURI"/>
 </xs:complexType>
 <xs:element name="SecurityServiceTargets" type="wssqop:SecurityServiceTargetsType"/>
 <xs:complexType name="SecurityServiceTargetsType">
 <xs:sequence>
 <xs:element ref="wssqop:SecurityServiceTarget" maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>
 <xs:element name="SecurityServiceTarget" type="wssqop:SecurityServiceTargetType"/>
 <xs:complexType name="SecurityServiceTargetType">
 <xs:choice>
 <xs:element ref="wssqop:SecurityServiceTargetRef"/>
 <xs:element ref="wssqop:SecurityServiceTargetPath"/>
 </xs:choice>
 <xs:attribute name="SecurityServiceTargetId" type="xs:string" use="optional"/>
 </xs:complexType>
 <xs:element name="SecurityServiceTargetRef" type="xs:string"/>
 <xs:element name="SecurityServiceTargetPath" type="xs:anyURI"/>
 <xs:element name="SecurityMechanismRefs" type="wssqop:SecurityMechanismRefsType"/>
 <xs:complexType name="SecurityMechanismRefsType">
 <xs:sequence>
 <xs:element name="SecurityMechanismRef" type="xs:QName" maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>
</xs:schema>

Version 0.9
22 Nov 2002

22

Version 0.9
22 Nov 2002

23

Appendix B – WSDL secure-soap binding (normative)

This appendix indicates how <SecurityServices> and <SecurityMechanisms> elements are included in a
WSDL for a secured SOAP interface definition. Additions to the WSDL 1.1 SOAP binding are
highlighted.

<?xml version="1.0" encoding="UTF-8"?>
<schema targetNamespace="http://schemas.xmlsoap.org/wsdl/secure-soap/"
xmlns="http://www.w3.org/2001/XMLSchema" xmlns:secure-soap="http://schemas.xmlsoap.org/wsdl/secure-
soap/" xmlns:wssqop="urn:oasis:names:tc:wssqop:1.0">
 <xs:import namespace="urn:oasis:names:tc:wssqop:1.0" schemaLocation="D:\My
Data\Standards\QoP\v09\QoPSpec v09.xsd"/>
 <element name="SecurityMechanisms" type="wssqop:SecurityMechanismsType"/>
 <element name="binding" type="secure-soap:bindingType"/>
 <complexType name="bindingType">
 <attribute name="transport" type="anyURI" use="optional"/>
 <attribute name="style" type="secure-soap:styleChoice" use="optional"/>
 </complexType>
 <simpleType name="styleChoice">
 <restriction base="string">
 <enumeration value="rpc"/>
 <enumeration value="document"/>
 </restriction>
 </simpleType>
 <element name="operation" type="secure-soap:operationType"/>
 <complexType name="operationType">
 <sequence>
 <element ref="secure-soap:SecurityServices"/>
 </sequence>
 <attribute name="soapAction" type="anyURI" use="optional"/>
 <attribute name="style" type="secure-soap:styleChoice" use="optional"/>
 </complexType>
 <element name="SecurityServices" type="wssqop:SecurityServicesType"/>
 <element name="body" type="secure-soap:bodyType"/>
 <complexType name="bodyType">
 <attribute name="encodingStyle" type="anyURI" use="optional"/>
 <attribute name="parts" type="NMTOKENS" use="optional"/>
 <attribute name="use" type="secure-soap:useChoice" use="optional"/>
 <attribute name="namespace" type="anyURI" use="optional"/>
 </complexType>
 <simpleType name="useChoice">
 <restriction base="string">
 <enumeration value="literal"/>
 <enumeration value="encoded"/>
 </restriction>
 </simpleType>
 <element name="fault" type="secure-soap:faultType"/>
 <complexType name="faultType">
 <complexContent>
 <restriction base="secure-soap:bodyType">
 <attribute name="parts" type="NMTOKENS" use="prohibited"/>
 </restriction>
 </complexContent>
 </complexType>
 <element name="header" type="secure-soap:headerType"/>
 <complexType name="headerType">
 <all>
 <element ref="secure-soap:headerfault"/>
 </all>
 <attribute name="message" type="QName" use="required"/>
 <attribute name="parts" type="NMTOKENS" use="required"/>

Version 0.9
22 Nov 2002

24

 <attribute name="use" type="secure-soap:useChoice" use="required"/>
 <attribute name="encodingStyle" type="anyURI" use="optional"/>
 <attribute name="namespace" type="anyURI" use="optional"/>
 </complexType>
 <element name="headerfault" type="secure-soap:headerfaultType"/>
 <complexType name="headerfaultType">
 <attribute name="message" type="QName" use="required"/>
 <attribute name="parts" type="NMTOKENS" use="required"/>
 <attribute name="use" type="secure-soap:useChoice" use="required"/>
 <attribute name="encodingStyle" type="anyURI" use="optional"/>
 <attribute name="namespace" type="anyURI" use="optional"/>
 </complexType>
 <element name="address" type="secure-soap:addressType"/>
 <complexType name="addressType">
 <attribute name="location" type="anyURI" use="required"/>
 </complexType>
</schema>

Version 0.9
22 Nov 2002

25

Appendix C – WSS header schema (normative)
The consumer policy for a service response is conveyed to the provider in a WSS header. Below is the
schema for the header contents. The message to which a policy conveyed in this manner applies is
indicated in the wssqop:SecurityServices/SecurityService/SecurityServiceTargets/SecurityServiceTarget
element of the header contents. This may be an output or fault message associated with the operation to
which the <ConsumerPolicy> element is attached, or (in the case of a privacy policy) it may be a message
in another interface offered by the service provider.
<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:wssqop="urn:oasis:names:tc:wssqop:1.0"
elementFormDefault="qualified" attributeFormDefault="unqualified">
 <xs:import namespace="urn:oasis:names:tc:wssqop:1.0" schemaLocation="D:\My
Data\Standards\QoP\v09\QoPSpec v09.xsd"/>
 <xs:element name="ConsumerPolicy" type="ConsumerPolicyType"/>
 <xs:complexType name="ConsumerPolicyType">
 <xs:sequence>
 <xs:element ref="wssqop:SecurityMechanisms"/>
 <xs:element ref="wssqop:SecurityServices"/>
 </xs:sequence>
 </xs:complexType>
</xs:schema>

	Web-Services Security Quality of Protection
	Introduction (Non-normative)
	Problem statement
	Document outline
	Existing solutions
	The ebXML CPA Negotiation Protocol

	Basic approach
	Process models
	Deployment-time model
	Out-of-line model
	In-line model
	Run-time model

	Data model (non-normative)
	Functional specification (normative with the exception of schema fragments and examples)
	<SecurityMechanisms> element
	<SecurityMechanism> element
	<SecurityMechanismParameter> element
	<SecurityServices> element
	<SecurityService> element
	<SecurityServiceTargets> element
	<SecurityServiceTarget> element
	<SecurityMechanismRefs> element

	Example (non-normative)
	Identifiers (normative)
	Declaration
	Service identifiers
	Mechanism identifiers
	Parameter identifiers
	Parameter values

	Security and privacy considerations (non-normative)
	Authorization, Privacy and non-repudiation (non-normative)
	Authorization
	Privacy
	Non-repudiation
	Conclusion

	Open Issues (non-normative)
	Contributors (non-normative)
	Appendix B – WSDL secure-soap binding (normative)
	Appendix C – WSS header schema (normative)

