
Web Services for Remote Portlets 1.0 Primer Version 0.9 30 August 2004

Web Services for Remote Portlets 1.0
Primer
Draft 0.9, 30 August 2004
Document identifier: 5

wsrp-primer-1.0 (Word)

Location:
http://www.oasis-open.org/committees/wsrp

Editors:
Subbu Allamaraju, BEA Systems <subbu@bea.com> 10
Rex Brooks, Starbourne Communications <rexb@starbourne.com>

Contributors:
Atul Batra, Sun Microsystems Inc <Atul.Batra@Sun.COM>
Clinton Davidson, Plumtree Software <Clinton.Davidson@plumtree.com>
Alan Kropp, Vignette Corporation <akropp@vignette.com> 15
Gil Tayar, WebCollage <Gil.Tayar@webcollage.com>

Abstract:
This is the WSRP 1.0 primer. The purpose of this document is to provide a tutorial-oriented
explanation of the main concepts of the WSRP 1.0 specification. Although this primer is not
normative, its tutorial approach is intended as a guide for implementers and other technical 20
readers. This document explains the abstractions of the specification using sample scenarios,
and provides guidance and best practices for implementers and advanced users of the WSRP
Specification.

Status:
This version is a draft of the non-normative WSRP 1.0 primer. Comments about points needing 25
clarification are much appreciated and may be emailed to wsrp-primer@lists.oasis-open.org.

If you are on wsrp@lists.oasis-open.org list for committee members, send comments there. If you
are not on that list, subscribe to wsrp-comment@lists.oasis-open.org list and send comments
there. To subscribe, send an email message to wsrp-comment-request@lists.oasis-open.org with
the word "subscribe" as the body of the message. 30

Copyright © 2004 The Organization for the Advancement of Structured Information Standards
[OASIS]

35

Web Services for Remote Portlets 1.0 Primer Page 2 of 53

Table of Contents
1 Introduction... 3
2 Basic Scenario.. 4

2.1 Useful References .. 5
2.2 Conventions .. 6 5

3 Service Description Interface... 6
3.1 Introduction ... 6
3.2 Descriptions of Operations... 7
3.3 Recommendations.. 8

4 Registration Interface .. 9 10
4.1 Introduction ... 9
4.2 Descriptions of Operations... 10

4.2.1 Registration.. 10
4.2.2 Modifying a Registration ... 13
4.2.3 Terminating a Registration ... 14 15

4.3 Recommendations.. 16
5 Markup Interface... 16

5.1 Introduction ... 16
5.1.1 Markup Fragments.. 16
5.1.2 Two Step Protocol... 17 20
5.1.3 State Management.. 18
5.1.4 URLs in Markup... 18

5.2 Descriptions of Operations... 19
5.2.1 Get Markup .. 19
5.2.2 Perform Blocking Interaction .. 22 25
5.2.3 State Changes and Implicit Cloning... 26
5.2.4 Initialize Cookies ... 28
5.2.5 Release Sessions ... 29

5.3 Modes and Window States .. 29
5.4 CSS Portlet Classes ... 30 30
5.5 Caching of Markup ... 30
5.6 Recommendations.. 33

6 Portlet Management Interface.. 34
6.1 Introduction ... 34

6.1.1 Portlet Persistent State ... 34 35
6.1.2 Portlet Lifecycle ... 34

6.2 Descriptions of Operations... 35
6.2.1 Get Portlet Description.. 35
6.2.2 Get Portlet Property Description .. 37
6.2.3 Get Portlet Properties ... 38 40
6.2.4 Clone Portlet.. 39
6.2.5 Set Portlet Properties.. 40
6.2.6 Destroy Portlets... 42

6.3 Recommendations.. 43
7 Use Profiles ... 44 45

8 Practical Considerations .. 47
8.1 Fault Handling ... 47

8.1.1 AccessDenied Fault .. 47
8.1.2 InconsistentParameters Fault .. 48

Web Services for Remote Portlets 1.0 Primer Page 3 of 53

8.1.3 InvalidRegistration Fault ... 48
8.1.4 InvalidCookie Fault.. 48
8.1.5 InvalidHandle Fault ... 48
8.1.6 InvalidSession Fault.. 48
8.1.7 InvalidUserCategory Fault .. 49 5
8.1.8 MissingParameters Fault.. 49
8.1.9 OperationFailed Fault ... 49
8.1.10 PortletStateChangeRequired Fault.. 49
8.1.11 UnsupportedLocale Fault ... 49
8.1.12 UnsupportedMimeType Fault ... 50 10
8.1.13 UnsupportedMode Fault ... 50
8.1.14 UnsupportedWindowState Fault .. 50

8.2 Localization ... 50
8.3 Extensions... 51
8.4 Form Parameters and Multipart Upload.. 52 15

9 References .. 52
Appendix: Acknowledgements ... 53

1 Introduction
Web Services for Remote Portlets (WSRP) is a web services protocol for aggregating content
and interactive web applications from remote sources. Web Services for Remote Portlets 1.0 20
Primer is a non-normative document intended to help interpret the WSRP 1.0 Specification [1]
with usage scenarios and typical interactions that must happen to achieve such aggregation.
There are numerous sources of high-level introductory information about WSRP 1.0, including the
introductory section of the specification itself, and the WSRP White Paper [2]. If you are reading
about WSRP for the first time, we encourage you to explore these resources before proceeding 25
with the extended examples and explanations contained in this primer.

The guiding perspective on which WSRP specification was built should be of primary interest to
potential implementers. This perspective is framed by the question of what problems WSRP is
intended to solve. The specification’s procedural approach addresses the following main areas:

(a) Standard remote content protocol: As a standard remote content protocol, WSRP 30
replaces many proprietary, product-specific solutions for aggregating remote content and
interactive applications. This benefits all parties, consumers (e.g. portals), portlet
developers (developers of content and applications), and producers (applications hosting
portlets) as well.

(b) Promote rigorous portlet implementations: WSRP raises the bar of conformance for this 35
standard in many respects for what constitutes a “good or effective” portlet implementation.
The specification makes specific recommendations regarding markup fragment rules,
representing state, ensuring security, etc., with an eye toward maximizing the usefulness
and integrity of portlet services. This is not to suggest that WSRP mandates a “one size fits
all” approach. 40

(c) Framework for sophisticated scenarios: WSRP 1.0 is the foundation on which
increasingly sophisticated implementations can be specified. These include the ability for
Consumers to customize a portlet’s content, and to create application process flows that
coordinate the activities of multiple portlets, from multiple portlet Producers.

WSRP builds on a few fundamental standards, most notably XML, SOAP and WSDL, while 45
allowing for the implementation of evolving standards, to deliver a protocol rich in abstractions
and operations that web service implementers and portlet Consumers require.

Web Services for Remote Portlets 1.0 Primer Page 4 of 53

2 Basic Scenario
The WSRP specification uses the terms Producer and Consumer to describe parties
implementing the specification.

The Producer is a web service that offers one or more portlets and implements various WSRP
interfaces/operations. Depending on the implementation, a producer may offer just one portlet, or 5
may provide a runtime (or a container) for deploying and managing several portlets.

The Consumer is a web service client that invokes producer-offered WSRP web services and
provides an environment for users to interact with portlets offered by one or more such
Producers.

You can use WSRP to implement a very broad range of portlet Producers and Consumers. 10
However, in this primer, for the sake of simplicity, we use simpler examples. It is not our intention
to address the entire range of problems that WSRP can solve, or to replace the material already
in the specification. Therefore, when you uncover your own questions, and discover that any
particular question is not discussed here, we suggest that you have a copy of the specification
available for quick reference. 15

In this Primer, we use interactions between two parties, viz., P Inc (a WSRP Producer), and C Inc
(a WSRP Consumer) to discuss various WSRP interfaces.

In the examples we will use, P Inc is a financial services company, providing services online to
their customers and partners. C Inc is on online portal company, providing personalized
collaboration, banking, and financial services. C Inc offers these services to end-users by 20
subscription.

P Inc would like to host a number of applications including a web based portfolio management
application. C Inc would like to offer this application to its end users via its portal pages.

In order to offer this portfolio management application to end users, C Inc and P Inc agree on the
following: 25

(a) P Inc makes some metadata of the portfolio management application available to C Inc. C
Inc. uses this metadata to prepare a page that users can use to manage their portfolios.

(b) A user of C Inc visits C Inc’s web site, and clicks on a link to portfolio management
application.

(c) C Inc then sends a request to P Inc to get the initial view of the portfolio management 30
application. P Inc then responds by returning HTML markup that represents the first page
of the application.

(d) C Inc processes the returned markup and prepares it for aggregation. If the returned
markup has links and forms, C Inc transforms the markup such that such links and forms,
when activated return to C Inc. 35

(e) C Inc aggregates the markup into a page, writes it into the response of the browser’s
connection, and transmits the aggregated page to the user’s browser.

(f) User reviews the page, and finds a form to submit a new stock symbol. User then fills in the
symbol of a stock and other details, and submits the form.

(g) C Inc receives the request containing the form data submitted by the user. Upon 40
determining that this request is meant for the portfolio management application, C Inc
sends another request to P Inc to process the user interaction.

(h) P Inc processes the user interaction, adds the symbol to user’s portfolio, and returns new
state for the portfolio.

(i) C Inc then sends a request to get the changed markup based on the current state of the 45
portfolio. P Inc generates markup and returns.

(j) C Inc then repeats steps (d) and (e).

Web Services for Remote Portlets 1.0 Primer Page 5 of 53

(k) User receives a new page containing the updated portfolio.
This scenario captures some of the essentials of the WSRP 1.0 Specification. Instead of
developing a proprietary application protocol to accomplish the above steps, P Inc and C Inc can
agree to use WSRP as the protocol. In this scenario, P Inc is a WSRP Producer offering portlets,
and C Inc is a WSRP Consumer consuming portlets and aggregating portlets for users to access 5
aggregated portlet pages. The portfolio management application is a Portlet offered by the
Producer.

Note: This version of the Primer will not address how C Inc may discover the web service end-
point offered by P Inc.

To implement this scenario, P Inc and C Inc can use WSRP to define various interactions, with P 10
Inc implementing the following required WSRP interfaces and operations:

(a) Service Description Interface: P Inc implements this interface to provide metadata of
itself and the list of portlets it offers. C Inc invokes the getServiceDescription
operation of this interface to obtain this metadata in step (a) of the above scenario.

(b) Markup Interface: To generate markup and to process interaction requests, P Inc 15
implements the markup interface specified by WSRP. C Inc invokes the getMarkup
operation of this interface to obtain the portlet’s markup in steps (c) and (i), and invokes the
performBlockingInteraction operation to propagate user’s interactions to P Inc in
step (g).

By implementing these interfaces, and agreeing to conform to WSRP, both P Inc and C Inc can 20
use a standard mechanism to offer and consume portlets. In addition, P Inc can offer the same
portlet to X Inc as long as X Inc adheres to WSRP, and C Inc can consume portlets offered by Y
Inc provided Y Inc also implements WSRP interfaces.

The Service Description and Markup interfaces are the two required interfaces that any WSRP
Producer must implement. In addition, WSRP specifies the following optional interfaces: 25

(a) Registration Interface: Registration interface provides an in-band mechanism for a
Consumer to register with a Producer and let the Producer customize its behavior for each
Consumer based on the registration information. As described in Section 4, WSRP also
allows out-of-band mechanisms for registration, and Producers that do not require
registration. 30

(b) Portlet Management Interface: The Portlet Management interface allows Consumers to
clone/destroy portlets, and also customize portlets by changing any associated properties.

In the following sections, we will discuss these interfaces in detail by considering each aspect of
the above scenario. To keep the discussions focused on the purpose and usage of these
interfaces, we postpone any discussion on faults to Section 8.1. Refer to the WSRP specification 35
for the list of faults that various operations in each of the interfaces may return. Also, note that the
data structures used in the messages through out this Primer do not necessarily include all
optional elements.

2.1 Useful References
You can find the normative WSDL of all WSRP interfaces in [3], and the data types in [4]. We 40
encourage you to refer to these documents for more complete descriptions of various messages
presented in this Primer.

If you have questions about implementing WSRP, post your questions to the wsrp-
dev@lists.oasis-open.org mailing list.

During the development of WSRP, the WSRP technical committee experimented with various 45
well-known web services stacks such as .NET, JAX-RPC reference implementation, Apache Axis
etc. For a discussion of stack related issues considered during the development of WSRL WSDL
and data types, refer to [5].

Web Services for Remote Portlets 1.0 Primer Page 6 of 53

To verify that your implementation conforms to the WSRP Specification, you can use the
conformance test kit [6]. You can also review the conformance requirements at [7].

2.2 Conventions
Throughout this Primer, we use illustrative scenarios, sample SOAP message fragments, and
highlight implementation choices that Producers and Consumers could make. We use the 5
following formatting conventions to aide readability:

• Sample scenario: In this Primer, we use the following format to describe sample
scenarios between a Producer and a Consumer.

Scenario: This is a sample scenario, and describes a particular interaction
between P Inc and C Inc. 10

• Messages: We use the following format to present sample SOAP message fragments
between a Producer and a Consumer. Note that these message fragments are
illustrative and are not valid SOAP messages.

<urn:getServiceDescription
 xmlns:urn="urn:oasis:names:tc:wsrp:v1:types"> 15
 <urn:registrationContext xsi:nil="true"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"/>
</urn:getServiceDescription>

• Hints: We use the following format to highlight possible implementation choices and/or
hints for advanced readers. 20

This is a hint.

• XML elements and attributes: We use fixed-width font to indicate XML elements
and attributes used in running text.

3 Service Description Interface
3.1 Introduction 25

In order to set up a Consumer to aggregate portlets offered by a Producer, the Consumer must
first obtain a description of the Producer, and the list of portlets that the Producer offers. Based
this information, the Consumer will be able determine if it can successfully aggregate those
portlets, and setup its environment (for example, a page aggregating portlets) for such
aggregation. 30

The getServiceDescription operation of the service description interface provides the
Producer’s metadata including the list of offered portlets and their properties.

C
on

su
m

er Get service description

Metadata + Offered Portlets

Pr
od

uc
er

Figure 1: Getting Service Description

All portlet Producers are required to implement this operation. Usually, the first request a 35
Consumer ever sends to a Producer is the getServiceDescription request. This operation
returns the following:

Web Services for Remote Portlets 1.0 Primer Page 7 of 53

(a) Producer’s Capabilities (i.e., metadata): The response of this operation indicates to the
Consumer whether the Producer requires registration to access its portlets, whether the
Consumer must explicitly initialize cookies for all markup related operations, the locales
supported by the producer etc. We shall discuss the details of this metadata as we
introduce various other WSRP interfaces. This information helps you set up a Consumer to 5
interact with the Producer.

(b) Offered Portlets: The response of this operation also includes a list of portlets that the
Producer offers. The portlet metadata includes a unique handle, modes, window states,
and content types supported by the portlet, in addition to a description of the portlet. In this
sense, the Producer acts as a portlet repository that the Consumer must access to discover 10
portlets.

3.2 Descriptions of Operations
Consider the following scenario.

Scenario: C Inc would like to discover the capabilities of P Inc, and the list of
portlets offered by P Inc. 15

Scenario 1: Discover Portlets
In order to get P Inc’s service description, C Inc must first send a getServiceDescription
request to P Inc. Here is the most basic form of a getServiceDescription request that a
consumer could send to a producer.

<urn:getServiceDescription 20
 xmlns:urn="urn:oasis:names:tc:wsrp:v1:types">
 <urn:registrationContext xsi:nil="true"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"/>
</urn:getServiceDescription>

Message 1: Service Description Request 25

To this request, P Inc responds with a getServiceDescriptionResponse document that
includes the following:

(a) Registration is not required: P Inc does not require C Inc to register before sending other
WSRP requests. We shall discuss registration in Section 4.

(b) Supported Locales: P Inc supports “en” and “en-US” locales. This does not necessarily 30
mean that portlets offered by this Producer are limited to generating markup in these
locales, but simply that the Producer’s metadata is available in these locales.

(c) Offered Portlets: P Inc offers a single portlet, uniquely identified by a portletHandle
“portfolioManager”. The portletHandle is an opaque reference assigned by the
Producer, and both the Consumer and the Producer use this handle to refer to this portlet 35
in all interactions

(d) Supported MIME types: The portfolio manager portlet returns content of MIME type
“text/html”. As with locales, this portlet is not limited to generating markup in this MIME
type.

(e) Modes and window states supported: Modes and window states indicate the many ways a 40
portlet may be rendered. The portfolio manager portlet could be rendered in the
“wsrp:view” mode, and “wsrp:normal”, “wsrp:minimized”, and “wsrp:maximized”
window states.

(f) Description: The description of the portfolio manager portlet also includes a description and
a title. The Consumer may use these values for describing or presenting this portlet to its 45
end users. For example, the Consumer may provide a title bar that includes this title with
the portlet’s markup.

Web Services for Remote Portlets 1.0 Primer Page 8 of 53

Here is the response message from P Inc. containing the above data:

<urn:getServiceDescriptionResponse
xmlns:urn="urn:oasis:names:tc:wsrp:v1:types">
 <urn:requiresRegistration>false</urn:requiresRegistration>
 <urn:offeredPortlets> 5
 <urn:portletHandle>portfolioManager</urn:portletHandle>
 <urn:markupTypes>
 <urn:mimeType>text/html</urn:mimeType>
 <urn:modes>wsrp:view</urn:modes>
 <urn:windowStates>wsrp:normal</urn:windowStates> 10
 <urn:windowStates>wsrp:minimized</urn:windowStates>
 <urn:windowStates>wsrp:maximized</urn:windowStates>
 <urn:locales>en</urn:locales>
 <urn:locales>en-US</urn:locales>
 </urn:markupTypes> 15
 <urn:description xml:lang="en">
 <urn:value>Manages portfolios</urn:value>
 </urn:description>
 <urn:title xml:lang="en">
 <urn:value>Manage Your Portfolios</urn:value> 20
 </urn:title>
 </urn:offeredPortlets>
 <urn:locales>en</urn:locales>
 <urn:locales>en-US</urn:locales>
</urn:getServiceDescriptionResponse 25

Message 2: Service Description Response
C Inc can now use this response to setup a page to aggregate this portlet, and offer that page to
its users.

The portlets described in the getServiceDescriptionResponse are “producer-offered”
portlets. In Section 5.2.3 and 6.2.4, we will see how Consumers can cause cloning of these 30
portlets to create consumer-configured portlets. This distinction is important because all
Consumers are allowed to access/use producer-offered portlets and therefore no Consumer is
allowed to customize them.

3.3 Recommendations
Producers’ capabilities as well as the metadata of portlets offered by a Producer may change 35
over time. When such changes happen, it is very likely that Consumers/portlets may not function
correctly. To prevent such failures, and since WSRP does not provide a mechanism for
Producers to notify Consumers of such changes automatically, we recommend that Producers
keep such metadata unchanged, or notify Consumers of changes. In general, the guiding
principle is that Producers must treat service descriptions and portlet descriptions as a published 40
contract with all the Consumers.

Secondly, a Producer offering a fixed set of portlets with the same behavior to all Consumers
without requiring any knowledge of the Consumer may follow the style of service description
response described in this section. However, in most cases, Producers and Consumers may find
it necessary to customize their behavior based on certain properties of the other party. For 45
example, P Inc may want to offer the portfolio manager portlet only to those Consumers that enter
into a service contract. Another Producer may want to customize its responses depending on the
capabilities of the Consumer. As discussed in Section 4, Consumers and Producers may use the
notion of registration to deal with such scenarios.

Web Services for Remote Portlets 1.0 Primer Page 9 of 53

4 Registration Interface
4.1 Introduction
The purpose of the registration interface is to provide a means within the WSRP protocol for a
Consumer to register with a Producer. Registration allows the Producer to associate portlets and
any portlet customization data with the Consumer that is interacting with it. The Producer can also 5
use the registration context to scope the artifacts offered/created during interactions to
Consumers that caused those interactions. Note that the purpose of registration is not to uniquely
identify a Consumer, but to establish a scope for a Consumer’s use of a Producer.

The WSRP specification does not specify/restrict any possible application of registration. Here
are some possible applications: 10

(a) Consumer can use registration to let the Producer know of its capabilities. The Producer
can use such metadata to tailor its portlets.

(b) Producer can keep track of portlets used by each Consumer, by associating any persistent
state of portlets and any cloned portlets with the Consumer’s registration.

(c) Producer can tailor the list of portlets offered to each Consumer. For example, Producers 15
may offer a separate set of portlets for each Consumer.

(d) Producer may offer/deny certain capabilities (such as the ability to customize or clone
portlets) for a given Consumer.

Depending on the nature of services offered by the Producer and the nature of the business, the
registration process may be as simple as sending a registration request to a Producer using the 20
Registration interface, or may be as complex as fulfilling legal, billing and other contractual
obligations to establish registration. Keeping this in mind, the WSRP 1.0 specification considers
two forms of registration:

(a) In-band registration: In this process, using the Registration interface, the Consumer sends
a request to register to the Producer, along with any properties required by the Producer. If 25
required by the Producer, the Consumer may have to go through some out-of-band
communications before being able to send such a request.

(b) Out-of-band registration: The Producer and Consumer go through Producer/Consumer
specific business processes (such as other business web applications, or email or other
manual means) to establish registration. Since the actual processes tend to be very 30
specific to each Consumer and Producer, WSRP specification does not attempt to
standardize these processes. Further discussion on out-of-band registration is therefore
outside the scope of this Primer.

By following one of these forms of registration, the Consumer obtains a registrationContext
from the Producer. The registrationContext includes a registrationHandle, and 35
optionally some registrationState. Of these, the registrationHandle is a unique handle
assigned by the Producer to the Consumer and remains unchanged during the lifetime of a
Consumer’s registration with a Producer. The optional registrationState contains any
persistent state for the registration which the Producer requires the Consumer to store and
resupply on future invocations. 40

The registration interface specifies the following operations:

(a) register: This operation lets a Consumer register with a Producer. The Consumer may
have to supply certain producer-specified registration properties for registration. Upon
registration, the Producer assigns a unique registrationContext for the Consumer.
The Consumer must then supply this registrationContext with each request it makes 45
to the Producer.

Web Services for Remote Portlets 1.0 Primer Page 10 of 53

(b) modifyRegistration: This operation lets a Consumer modify an existing registration. If
required, the Consumer may supply registration properties with this request. The Producer
may not assign a new registrationHandle to the Consumer, but may return new
registrationState.

(c) deregister: This operation lets a Consumer terminate a registration. 5
A Producer indicates that registration is required and that certain data is required for registration
via its response to a getServiceDescription request.

4.2 Descriptions of Operations

4.2.1 Registration
Let us now consider the following variation to Scenario 1 to see some of the details of 10
registration.

P Inc requires that only registered Consumers can see its metadata or use any of
its offered portlets. P Inc also requires Consumers to fulfill a service agreement
and certain contractual obligations prior to registration.

C Inc enters into a service agreement with P Inc and fulfills all the necessary 15
obligations. P Inc then issues a service ID to C Inc. P Inc. requires that C Inc
supply C Inc’s DUNS (Data Universal Numbering System, assigned by Dun and
Bradstreet Corp for enterprises) number and the service ID for registration. Note
that the transactions establishing these numbers happen outside the scope of
WSRP. 20

C Inc then uses the in-band registration procedure to register with P Inc by
supplying its DUNS number and the service ID.

Scenario 2: Registration
Since P Inc now requires registration, P Inc sends the following response to the previous simple
getServiceDescription request from C Inc. 25

<urn:getServiceDescriptionResponse
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns:urn="urn:oasis:names:tc:wsrp:v1:types">
 <urn:requiresRegistration>true</urn:requiresRegistration>
 <urn:registrationPropertyDescription> 30
 <urn:propertyDescriptions type="urn:stringValue" name="dunsNum">
 <urn:label xml:lang="en">
 <urn:value>DUNS Number</urn:value>
 </urn:label>
 </urn:propertyDescriptions> 35
 <urn:propertyDescriptions type="urn:stringValue" name="serviceId">
 <urn:label xml:lang="en">
 <urn:value>Service ID</urn:value>
 </urn:label>
 </urn:propertyDescriptions> 40
 </urn:registrationPropertyDescription>
</urn:getServiceDescriptionResponse>

Message 3: Service Description Response from Producer Requiring Registration
The first point to note from this response is that P Inc now requires registration, and that it
requires Consumers to supply two registration properties for registration. 45

Web Services for Remote Portlets 1.0 Primer Page 11 of 53

In this response, both the properties are of type stringValue in the
urn:oasis:names:tc:wsrp:v1:types namespace. Producers can use
either the stringValue type or any arbitrary schema type (other than those
defined in the urn:oasis:names:tc:wsrp:v1:types namespace) to
describe a registration property. 5

Other than these requirements, this service description response does not provide much
information about P Inc. Specifically P Inc chose to omit portlet metadata in its response.

C Inc then sends the following request to P Inc supplying the DUNS number and service ID that P
Inc. assigned.

<urn:register xmlns:urn="urn:oasis:names:tc:wsrp:v1:types"> 10
 <urn:consumerName>C Inc</urn:consumerName>
 <urn:consumerAgent>C Inc Portal.1.0</urn:consumerAgent>
 <urn:methodGetSupported>false</urn:methodGetSupported>
 <urn:registrationProperties xml:lang="en" name="dunsNum">
 <urn:stringValue>CIncDunsNumber</urn:stringValue> 15
 </urn:registrationProperties>
 <urn:registrationProperties xml:lang="en" name="serviceId">
 <urn:stringValue>CIncServiceID</urn:stringValue>
 </urn:registrationProperties>
</urn:register> 20

Message 4: Registration Request
In addition to the registration properties, the Consumer sends some additional metadata of itself:

(a) Consumer name: Name of the Consumer
(b) Consumer agent: Name and version of the Consumer
(c) Method GET support: A boolean to indicate if the consumer can aggregate markup 25

containing forms with method GET.
Support for forms with method GET requires some special considerations. This is
because Consumer implementations are likely to embed implementation-specific
parameters in URLs.

However, as any web developer would be familiar with, HTML forms using GET 30
as the method type cannot include query parameters in action URLs. To support
such forms, Consumers will have to use hidden parameters or cookies, or some
other technique to embed implementation-specific data. If a given Consumer is
not capable of supporting such forms, it can indicate so to the Producer by
supplying false for the methodGetSupported element. The Producer can 35
then avoid offering portlets that generate forms with method GET to the
Consumer.

Refer to the WSRP specification for a list of other optional data that the Consumer can supply
during registration.

The Producer P Inc validates this request for registration, creates a registration context, and 40
returns the following response:

<urn:registerResponse xmlns:urn="urn:oasis:names:tc:wsrp:v1:types">
 <urn:registrationHandle>CIncRegnHandle</urn:registrationHandle>
</urn:registerResponse>

Message 5: Registration Response 45

Web Services for Remote Portlets 1.0 Primer Page 12 of 53

In this response, the registrationContext represents a registration relationship between the
P Inc and C Inc, and contains a registrationHandle assigned to C Inc by P Inc. Once a
Consumer obtains a registrationContext, the Consumer must supply the
registrationContext with all subsequent requests to the Producer. For this reason, the
Consumer must persistently maintain the registrationContext for all future invocations. 5

If the Producer is capable of managing persistent storage of registration data, the
Producer may just create a registrationHandle and return the same in the
registrationContext as shown above.

However, if the Producer is not capable of managing persistent storage of
registration data, the Producer may choose to send the persistent state of 10
registration as registrationState to the Consumer. In such cases, the
Consumer would be responsible for persistently storing the
registrationState along with the registrationHandle and return these
to the Producer in future invocations.

Having completed the registration process, C Inc can now send another service description 15
request to P Inc, this time supplying the registrationContext.

<urn:getServiceDescription
 xmlns:urn="urn:oasis:names:tc:wsrp:v1:types">
 <urn:registrationContext>
 <urn:registrationHandle>CIncRegnHandle</urn:registrationHandle> 20
 </urn:registrationContext>
</urn:getServiceDescription>

Message 6: Service Description Request after Registration
The registrationContext in this request helps P Inc to tailor its response. Upon validating
the registrationContext, P Inc sends a response that includes portlets it offers. 25

<urn:getServiceDescriptionResponse
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns:urn="urn:oasis:names:tc:wsrp:v1:types">
 <urn:requiresRegistration>true</urn:requiresRegistration>
 <urn:offeredPortlets> 30
 <urn:portletHandle>portfolioManager</urn:portletHandle>
 <urn:markupTypes>
 <urn:mimeType>text/html</urn:mimeType>
 <urn:modes>wsrp:view</urn:modes>
 <urn:windowStates>wsrp:normal</urn:windowStates> 35
 <urn:windowStates>wsrp:minimized</urn:windowStates>
 <urn:windowStates>wsrp:maximized</urn:windowStates>
 <urn:locales>en</urn:locales>
 <urn:locales>en-US</urn:locales>
 </urn:markupTypes> 40
 <urn:description xml:lang="en">
 <urn:value>Manages portfolios</urn:value>
 </urn:description>
 <urn:title xml:lang="en">
 <urn:value>Manage Your Portfolios</urn:value> 45
 </urn:title>
 </urn:offeredPortlets>
 <urn:requiresInitCookie>none</urn:requiresInitCookie>
 <urn:registrationPropertyDescription>
 <urn:propertyDescriptions type="xs:string" name="dunsNum"> 50
 <urn:label xml:lang="en">

Web Services for Remote Portlets 1.0 Primer Page 13 of 53

 <urn:value>DUNS Number</urn:value>
 </urn:label>
 </urn:propertyDescriptions>
 <urn:propertyDescriptions type="xs:string" name="serviceId">
 <urn:label xml:lang="en"> 5
 <urn:value>Service ID</urn:value>
 </urn:label>
 </urn:propertyDescriptions>
 </urn:registrationPropertyDescription>
 <urn:locales>en</urn:locales> 10
 <urn:locales>en-US</urn:locales>
</urn:getServiceDescriptionResponse>

Message 7: Service Description Response after Registration
Note that this message is similar to the response shown in Message 2, but has only been
received after C Inc fulfilled P Inc’s registration requirements. 15

4.2.2 Modifying a Registration
Once a Consumer establishes a registration relationship with a Producer, in some conditions,
Consumers may have to modify an existing registration relationship either to be able to continue
to use a Producer or alter certain properties of the registration. Here are some possible situations
that may warrant such an operation: 20

(a) Changes to registration properties: Producer requires a different set of registration
properties than were previously used at the time of registration. In this case, the Consumer
may be required to supply the new registration properties to be able to continue to use the
Producer.

(b) Changes to Consumer’s capabilities: Consumer has decided to send optional data not 25
previously supplied.

Consider the following scenario.

P Inc now requires an email address of the Consumer to be supplied for each
Consumer’s registration.

C Inc sends a modifyRegistration request to P Inc supplying the email address. 30

Scenario 3: Modify Registration
At this point, P Inc has the following options:

(a) P Inc may return OperationFailed faults until C Inc. supplies the new property (email
address).

(b) Inform C Inc (out of band) that a new property is required. 35
In the former case, C Inc will have to send getServiceDescription request (without the
registrationContext) to discover the current set of registration properties. Upon discovering
the new registration property, C Inc sends the following modifyRegistration request to P Inc.

<urn:modifyRegistration xmlns:urn="urn:oasis:names:tc:wsrp:v1:types">
 <urn:registrationContext> 40
 <urn:registrationHandle>CIncRegnHandle</urn:registrationHandle>
 </urn:registrationContext>
 <urn:registrationData>
 <urn:consumerName>C Inc</urn:consumerName>
 <urn:consumerAgent>C Inc Portal.1.0</urn:consumerAgent> 45
 <urn:methodGetSupported>false</urn:methodGetSupported>
 <urn:registrationProperties xml:lang="en" name="dunsNum">

Web Services for Remote Portlets 1.0 Primer Page 14 of 53

 <urn:stringValue>CIncDuncNumber</urn:stringValue>
 </urn:registrationProperties>
 <urn:registrationProperties xml:lang="en" name="serviceId">
 <urn:stringValue>CIncServiceID</urn:stringValue>
 </urn:registrationProperties> 5
 <urn:registrationProperties xml:lang="en" name="email">
 <urn:stringValue>admin@cinc.com</urn:stringValue>
 </urn:registrationProperties>
 </urn:registrationData>
</urn:modifyRegistration> 10

Message 8: Request to Modify Registration with an Additional Registration Property
This request is similar to the registration request in Message 4 except for a new value for a
registration property.

P Inc validates the new values for registration properties, modifies registration, and responds with
the following message: 15

<urn:modifyRegistrationResponse
 xmlns:urn="urn:oasis:names:tc:wsrp:v1:types"/>

Message 9: Modify Registration Response
The response simply indicates that P Inc. has accepted the request for modification of
registration. 20

If the Producer is not capable of managing persistent storage of the registration
data, the Producer may return the updated registration state as
registrationState in the modifyRegistrationResponse.

After modifying the registration relationship, C Inc can continue to use the
registrationHandle. 25

4.2.3 Terminating a Registration
Registration relationships are not permanent. Either the Consumer or the Producer may terminate
a registration relationship. Here are some scenarios that could prompt for a termination:

(a) Consumer decides not to aggregate portlets from a Producer. To notify the Producer that it
no longer has to manage any cloned portlets and other persistent state created during the 30
course of the registration, the Consumer can sends a request to the Producer to terminate
the registration

(b) Producer decides not to offer portlets to a given Consumer. Producer may unilaterally
terminate the registration, or notify (out of band) the Consumer that it will no longer offer
any portlets to the Consumer. 35

(c) Consumer wants to recreate registration due to some changes in Consumer’s environment.
In cases (a) and (c) above, the Consumer can send a deregister request to the Producer to
terminate the current registration relationship. Note that, Consumer is not required to deregister
always. However, by formally deregistering, Consumer lets the Producer cleanup any persistent
data maintained for that registration. 40

Consider that C Inc now wants to terminate its registration with P Inc. In order to do so, C Inc
sends a deregister request with its registrationHandle to P Inc as shown below.

<urn:deregister xmlns:urn="urn:oasis:names:tc:wsrp:v1:types">
 <urn:registrationHandle>CIncRegnHandle</urn:registrationHandle>
</urn:deregister> 45

Message 10: Deregister Request

Web Services for Remote Portlets 1.0 Primer Page 15 of 53

P Inc then deregisters C Inc and cleans up any resources/state created (including any cloned
portlets) for C Inc, and returns the following response.

<urn:deregisterResponse xmlns:urn="urn:oasis:names:tc:wsrp:v1:types"/>

Message 11: Deregister Response
After this step, C Inc can no longer use the registrationHandle “CIncRegnHandle” for its 5
requests to P Inc.

Terminating a registration has some consequences for both the Producer and the Consumer:

(a) Consumer can delete any registration-specific persistent state created.
(b) Producer can also delete any registration-specific persistent state created.
(c) Consumer can register again with the Producer, but may not refer to any cloned portlets 10

created during a terminated registration.
Figure 2 shows possible interactions between C Inc and P Inc and the registration life cycle.

C
on

su
m

er

Get Service Description as an unregistered consumer

Metadata + Offered Portlets

Pr
od

uc
er

Metadata indicates that registration is required , and
certain data is required for registration

Register (with registration properties)

Registration Context (unique to the consumer)

Get Service Description (as a registered consumer)

Metadata + Offered Portlets

Register

Modify registration (with registration properties)

Updated Registration

Subsequent calls to Producer with the
Registration Context

Subsequent calls to Producer with the
Registration Context

Deregister

Update
registration

Terminate registration

Figure 2: Registration Impact on Consumer-Producer Interactions

Web Services for Remote Portlets 1.0 Primer Page 16 of 53

4.3 Recommendations
Once you establish a registration between a Producer and a Consumer, the registration becomes
long lasting. This is because the registration relationship is tied to any persistent data stored on
both the Producer and Consumer. Deregistering a Consumer from a Producer will invalidate such
persistent data, and your users will not be able to use their portlet settings. 5

Due to the reasons discussed in Section 4.2.2, if a Consumer modifies an existing registration,
we recommend that the Consumer obtain the service description from the Producer again. This is
because Producers may use registration data to tailor service description to each Consumer.

Note that registration does not address the question of Consumer identity in the security sense.
You may need other means of trust to address the question of Consumer identity. 10

5 Markup Interface
5.1 Introduction
In order for a Consumer to generate a page that aggregates portlets offered by one or more
Producers, the Consumer must first obtain the markup of each portlet from each Producer. As
users interact with the portlet (e.g. by submitting a form from the portlet’s markup), the Consumer 15
must be able to send such interaction requests to the Producer, and then receive markup
reflecting the user interaction. The Markup interface specifies operations for achieving these
tasks. All Producers are required to support this interface.

The markup interface includes the following operations:

(a) getMarkup: The purpose of this operation is let the Consumer collect markup fragment for 20
for a given portlet.

(b) performBlockingInteraction: Consumers use this operation to dispatch each user
interaction to the Producer hosting the portlet that sourced the markup the user is
interacting with.

(c) initCookie: The purpose of this operation is to let the Producer initialize any cookies, 25
and set those cookies to the Consumer. As we shall discuss shortly, using this operation
Producers may return cookies to Consumers for load-balancing or other implementation
specific purposes.

(d) releaseSessions: As we shall see shortly, during a getMarkup or a
performBlockingInteraction, portlets can initialize sessions. When a portlet creates 30
a session, the Producer returns a sessionID for the session to the Consumer in its
response to the getMarkup or performBlockingInteraction response. Consumers
can use the releaseSessions operation to let the Producer release those sessions.

Collecting markup and aggregating it into a page poses several challenges such as creating
correct links in the markup, managing transient state, propagating user interactions etc. In this 35
section, before reviewing the operations in this interface, let us discuss some of the most
important issues that the markup interface addresses.

5.1.1 Markup Fragments
One of the primary goals of WSRP 1.0 was to allow the aggregation of multiple content units,
portlets, from different sources on the same web page. HTML 4.01 and XHTML 1.1 treat pages 40
as separate documents and disallow multiple BODY Elements, represented as <body> tags, in a
single document. Therefore, the Consumer cannot aggregate individual documents with individual
BODY elements from individual portlets into a single page. Portlets are therefore required to
generate markup fragments.

Web Services for Remote Portlets 1.0 Primer Page 17 of 53

The Consumer is most likely to aggregate the portlet’s markup fragment (such as HTML or
XHTML) into a page that also includes markup from other portlets. For rules on what
differentiates full markup from markup fragments, refer to Section 10.5 of the WSRP 1.0
specification. Along with the markup fragment, the Producer also returns certain properties of the
markup fragment, such as the content type, character encoding, locale etc. 5

5.1.2 Two Step Protocol
With WSRP, the Consumer aggregates markup from different portlets hosted on Producers, and
users interact with those portlets via the Consumer. The Consumer is therefore responsible for
presenting portlets’ markup as well as receiving user interactions from portlets. Moreover, a
user’s interaction with one portlet may affect the markup for another portlet due to any shared 10
state between portlets.

Unlike a JSP or ASP web page, where obtaining the page resulting from an interaction such as
clicking a submit button can be performed in a single operation; such a single step process is not
adequate for processing interactions with a page aggregating multiple portlets. During such an
interaction, it is most likely that only one portlet processes the request, while all the portlets 15
(including the one that processed the request) on the page regenerate their markup taking into
account any state shared between those portlets. In an aggregated page, each portlet should be
able to generate markup without any user interaction. This will allow the user to interact with one
portlet, and yet see markup of all portlets on the aggregated page.

When a user interacts with a portlet’s markup (e.g. by submitting a form), the Consumer forwards 20
the interaction to the Producer identifying the portlet that generated the markup. This allows the
portlet to process the user interaction (e.g. by performing queries/updates in some backend
system, or updating some persistent state). During this process, the portlet processing the
interaction can also update some shared state that other portlets rely on. Once this process is
complete, the Consumer can get markup for each portlet from each Producer, and regenerate the 25
aggregated page. In order to approach this sequence, WSRP specifies a two-step protocol.

The first step of the protocol is to process user interactions, as specified by the
performBlockingInteraction operation of the WSRP protocol. The purpose of this
operation is to let a portlet process the user interaction, update any transient and persistent state,
and possibly return the new state to the Consumer. 30

The second step of the protocol is to get markup from the Producer, as specified by the
getMarkup operation of the WSRP protocol. This operation returns the portlet’s markup (a
fragment), and properties of the markup (such as a preferred title, character encoding, locale and
content type of the markup).

The Consumer can get markup for each portlet from each Producer even in the absence of a user 35
interaction. This can happen, e.g. when a user visits the aggregated page for the first time, or
when the user refreshes the page. The two-step protocol allows for such interaction-free
rendering and using this protocol, Producers can generate markup for portlets with their current
state even in the absence of any interaction for any given portlet.

As the name implies, the performBlockingInteraction operation is a blocking operation. 40
That is, the Consumer waits for this operation to complete before sending getMarkup requests.
Due to the blocking nature of this operation, Producers can allow changes made to a portlet’s
state during a blocking interaction visible to other portlets during their markup generation. For
example, the portlet processing the blocking interaction can store some data in a relational
database, and other portlets can read that data during markup generation. 45

Web Services for Remote Portlets 1.0 Primer Page 18 of 53

5.1.3 State Management
During various getMarkup and performBlockingInteraction requests, Producers and/or
portlets can return state to Consumers. Consumers are required to supply such state in future
interactions for the portlet to the Producer. The markup interface accounts for the following kinds
of state: 5

(a) Transient state: Transient state usually represents application-level state. Transient state
includes the following.

(i) Navigational state: Producers can return navigational state to Consumers in response to
performBlockingInteraction requests. Portlets can also embed navigational state
in each URL in the markup. In either case, Consumer returns this navigational state to 10
the Producer with subsequent getMarkup requests. Navigational state typically
encapsulates data required by Producers to generate markup for a given portlet several
times without having to keep track of the interaction that caused the current state of the
portlet.

(ii) Session State: This state corresponds to sessions initiated by portlets. When a portlet 15
initializes a session, the Producer assigns a sessionID for the session, and returns it to
the Consumer. Consumers return this sessionID in future requests to that portlet. This
mechanism is similar to HTTP state management as specified in RFC 2965 [8].

The difference between navigational state and session state is that navigational state allows
the Producer to free itself from holding transient state locally and makes that state of the 20
portlet bookmarkable by the user.

(b) Persistent State: While processing interactions, Producers and/or portlets can make
changes to the persistent state of the portlet. The persistent state could be properties
exposed by the Producer via the portlet management interface, or some opaque state.

5.1.4 URLs in Markup 25

With WSRP, the Consumer is the intermediary between the Producer and the end user. Here are
some advantages of the Consumer being the intermediary:

(a) By being an intermediary, the Consumer can offer value-added features such as
personalization, customization, security etc besides aggregation. In order to offer these
features, Consumers may want to force the user to always access portlets and other 30
Producer hosted resources via the Consumer.

(b) In most cases, end users may not be able to access Producer hosted resources directly.
The Consumer should therefore be able to act as a proxy for such Producer hosted
resources.

(c) Producers may not offer a web interface (i.e., offer http/https ports) for content. 35
URLs in the markup presented to the end user should therefore refer to the Consumer and not to
the Producer. Either the Producer or the Consumer must take the responsibility of creating or
converting URLs in the markup to refer to the Consumer. The markup interface accounts for such
URL generation.

WSRP specifies two kinds of URL generation, viz. Consumer URL rewriting and Producer URL 40
writing. Of these, the former approach requires the Consumer to rewrite URLs in the markup to
refer to the Consumer. On the other hand, the latter approach lets the Producer generate URLs
using Consumer supplied URL templates. We shall discuss these techniques briefly in Section
5.2.1.

Web Services for Remote Portlets 1.0 Primer Page 19 of 53

5.2 Descriptions of Operations

5.2.1 Get Markup
The purpose of the getMarkup operation is to obtain a portlet’s markup. In order to discuss the
semantics of this operation, consider the following scenario.

A user visits a page containing the portfolio manager portlet on C Inc’s website. 5

C Inc sends a request to P Inc to get markup for the portfolio manager portlet.

P Inc generates a markup fragment containing a form to enter a stock symbol.
This markup fragment contains some instructions to C Inc on how to transform
the URLs so that the URLs refer to C Inc.

C Inc rewrites the URLs in the markup returned from P Inc, aggregates the 10
markup into a page, and returns the page to the user.

Scenario 4: Get Initial Markup
In addition to the information about the Consumer and the portlet, the Producer needs some more
data about the user (for personalizing the markup), user’s device (e.g. browser), type of
connection (e.g. secure or normal), and what kind of markup is acceptable to the Consumer and 15
to the end user. The getMarkup request encapsulates all such information.

For the current scenario, C Inc. sends a getMarkup request the producer, P Inc. with the
following data:

(a) RegistrationContext: This element carries the registrationHandle assigned by P
Inc during registration. 20

(b) PortletContext: This element includes the portletHandle, which the Consumer uses
to identify the portlet to the Producer.

(c) RuntimeContext: This element includes the authentication mechanism (represented by
userAuthetication) C Inc used to authenticate the user along with optional elements
such as the sessionID, URL templates, etc. 25

(d) UserContext: This element carries a userContextKey the Consumer assigns to the
user. In the current scenario, C Inc sends a nil UserContext as C Inc has not assigned any
userContextKey to the user.

(e) MarkupParams: This element carries information about the request from the user to C
Inc, such as whether the user used a secure communication channel (represented as 30
boolean value for secureClientCommunication), an array for accepted locales for the
markup (represented as locale elements), an array of accepted MIME types (represented
as mimeTypes elements), the mode and window state for the portlet markup, accepted
character sets for the markup (represented with markupCharacterSets elements).

Here is the request from C Inc to P Inc. 35
<urn:getMarkup xmlns:urn="urn:oasis:names:tc:wsrp:v1:types">
 <urn:registrationContext>
 <urn:registrationHandle>CIncRegnHandle</urn:registrationHandle>
 </urn:registrationContext>
 <urn:portletContext> 40
 <urn:portletHandle>portfolioManager</urn:portletHandle>
 </urn:portletContext>
 <urn:runtimeContext>
 <urn:userAuthentication>wsrp:password</urn:userAuthentication>
 </urn:runtimeContext> 45
 <urn:userContext xsi:nil="true"

Web Services for Remote Portlets 1.0 Primer Page 20 of 53

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"/>
 <urn:markupParams>
 <urn:secureClientCommunication>false</urn:secureClientCommunication>
 <urn:locales>en-US</urn:locales>
 <urn:mimeTypes>text/html</urn:mimeTypes> 5
 <urn:mode>wsrp:view</urn:mode>
 <urn:windowState>wsrp:normal</urn:windowState>
 <urn:clientData>
 <urn:userAgent>Mozilla/5.0 (Windows; U; Windows NT 5.1; en-US;
rv:1.6) Gecko/20040206 Firefox/0.8</urn:userAgent> 10
 </urn:clientData>
 <urn:markupCharacterSets>UTF-8</urn:markupCharacterSets>
 </urn:markupParams>
</urn:getMarkup>

Message 12: Get Markup Request 15

Note the following from this request:

(a) RegistrationContext: The registrationHandle is CIncRegnHandle assigned by P Inc
during registration..

(b) PortletContext: The portletHandle is portfolioManager.
(c) RuntimeContext: The userAuthentication is wsrp:password. This value indicates 20

the user supplied a username and password to authenticate with C Inc.
(d) UserContext: The userContext is nil. When supplied, the UserContext includes a

userContextKey. This key is an arbitrary reference assigned by C Inc for the user.
Producers typically use this key for personalizing the portlets markup and behavior. In
addition to this key, C Inc can also include a profile of the user (such as the name, gender, 25
home/work information etc) and an array of userCategories with the UserContext.
The purpose of these items is to allow the Producer to personalize the behavior and/or
markup of the portlet. Refer to Section 6.17 and 6.10 of the WSRP 1.0 Specification for
more details.

(e) MarkupParams: The Boolean for secureClientCommunications is false indicating 30
that the user did not user a secure connection (such as SSL) to C Inc. This element also
specifies that the accepted locale is en, the accepted MIME type for markup is
“text/html”, the accepted character set for the markup is UTF-8, the mode is
wsrp:view, the windowState is wsrp:normal (modes and window states to be
discussed later in this section). This element also includes the clientData element with 35
a value for userAgent identifying the browser and operating system of the user.

This is a basic form of a getMarkup request that a Consumer could send to a Producer. To this
request, P Inc responds with a getMarkupResponse that includes:

(a) MarkupContext, which contains the markup for the portlet, a title, locale and MIME type
of the markup. 40

(b) SessionContext (optional) with a sessionID, and an expiry time interval (in seconds)
for the sessionID. The Producer returns the SessionContext element when it
establishes new session. The Consumer should supply this sessionID on future
invocations in order to not lose state the Producer is storing for the user’s interactions. If a
Consumer does not invoke this portlet before this interval, the Producer may terminate the 45
session associated with the sessionID.

Here is the response from P Inc.

<urn:getMarkupResponse xmlns:urn="urn:oasis:names:tc:wsrp:v1:types">
 <urn:markupContext>
 <urn:mimeType>text/html; charset=UTF-8</urn:mimeType> 50

Web Services for Remote Portlets 1.0 Primer Page 21 of 53

 <urn:markupString><![CDATA[
 <form method=”post”
 action="wsrp_rewrite?wsrp-urlType=blockingAction/wsrp_rewrite"
 id="wsrp_rewrite_stockForm">
 <table border="0" width="100%"> 5
 <tr>
 <td>Enter Stock Symbol</td>
 <td><input name="symbol"></td>
 </tr>
 <tr> 10
 <td><input type="submit" value="Submit"></td>
 </tr>
 </table>
 </form>
]]></urn:markupString> 15
 <urn:locale>en-US</urn:locale>
 <urn:requiresUrlRewriting>true</urn:requiresUrlRewriting>
 <urn:preferredTitle>Portfolio Manager</urn:preferredTitle>
 </urn:markupContext>
 <urn:sessionContext> 20
 <urn:sessionID>sessionID_1</urn:sessionID>
 <urn:expires>300</urn:expires>
 </urn:sessionContext>
</urn:getMarkupResponse>

Message 13: Get Markup Response 25

Note in our example:

(a) P Inc returned a markupContext with a markup fragment, a preferred title “Portfolio
Manager”, locale “en-US” and MIME type “text/html; charset=UTF-8”. C Inc can
use the preferred title to render a title bar with the portlet’s markup.

(b) During this interaction, P Inc initialized a session with an ID “sessionID_1”. C Inc is 30
required to keep track of this ID and return it with future getMarkup and
performBlockingRequest requests for this portlet.

(c) The portfolio manager portlet can process only one kind of user interaction, which is to
collect a stock symbol and show the stock value.

In this response, P Inc returned the markup as a markupString. This is an XML-35
escaped string with XML entities such as “<” individually escaped as “<” or
escaped in bulk by the use of a CDATA block as per this example.

Producers can also return the markup as Base64-encoded binary data via a
markupBinary element in the markupContext.

Also, note the action and the ID attributes of the form in the markup. By inserting special tokens in 40
the values of these attributes, P Inc is indicating that C Inc must rewrite the values before sending
the markup to the user. Let us review this form more closely.

(a) Form action URL: P Inc prefixed the value of this URL with a “wsrp_rewrite” token and
suffixed with a “/wsrp_rewrite” token. The URL itself between these tokens is not a
complete URL. When C Inc encounters these tokens, C Inc rewrites the URL to a string 45
that refers to C Inc. The tokens contained between these markers are instructions on what
the Consumer is to do to invoke the Producer when an end-user activates the resulting
URL.

(b) URL parameter wsrp-urlType: This is the first parameter in the URL and indicates the
type of the URL. WSRP specifies three kinds of URL types – blockingAction, render, 50
and resource. When the value of this parameter is blockingAction, C Inc converts the

Web Services for Remote Portlets 1.0 Primer Page 22 of 53

URL into a URL that when activated, causes a user interaction (i.e., a
performBlockingInteraction request). When the URL type is render, C Inc simply
needs the URL to request that it invoke getMarkup without an additional
performBlockingInteraction invocation. The URL type “resource” is used for
generating links to resources such as images, files etc. Refer to Section 10.2.1 of the 5
WSRP 1.0 Specification for more details.

(c) ID Parameter: P Inc prefixed the value of the ID parameter with the wsrp_rewrite_
token. This is an indication to C Inc that it must rewrite the value (“stockForm”) such that it
is unique within the generated page. Since the portlet is not aware whether names such as
this are unique within an aggregated page, portlets use this token to let the Consumer 10
generate a unique name.

Since the Producer is requesting the Consumer to rewrite URLs and namespaces, WSRP terms
this approach of URL generation as “consumer rewriting”. Refer to Section 10.2.1 of the WSRP
1.0 Specification for rules governing consumer rewriting. Using these rules, C Inc might rewrite
the markup fragment into what is shown below. 15
<form method=”post”
 action="financePage?portletID=portfolioManager&type=blockingAction"
 id="portfolioManager_1_stockForm">
 <table border="0" width="100%">
 <tr> 20
 <td>Enter Stock Symbol</td>
 <td><input name="symbol"></td>
 </tr>
 <tr>
 <td><input type="submit" value="Submit"></td> 25
 </tr>
 </table>
</form>

In this example, the Consumer rewrote the action URL to refer to a finance page containing the
portfolio manager portlet. The actual values of the URL and names in the above markup depend 30
on the Consumer’s implementation. Another Consumer interacting with P Inc may rewrite the
URLs and names differently.

The WSRP specification specifies an alternative form of URL generation called
as “producer-writing”. Producer writing involves URL templates and a namespace
prefix that the Consumer sends to the Producer. Instead of using tokens, 35
Producer uses the templates and the namespace prefix to create URLs and
names in the markup. For more details of this approach, refer to Section 10.2.2
of the WSRP 1.0 Specification.

5.2.2 Perform Blocking Interaction
Consumers can use the performBlockingInteraction operation to send user interactions to 40
the Producer. During this operation, portlets can process user interactions while letting the
Producer affect their state. Note that the scope of the getMarkup operation is limited to
generating markup for a portlet without affecting the current state of the portlet.
When a user interacts with a portlet (e.g. by submitting a form), the Consumer uses the
performBlockingInteraction to send the submitted data to the Producer. During the 45
course of this operation, any/all of the following may happen.

(a) Portlets can access and process the request data during a
performBlockingInteraction request.

(b) Portlets can change their navigational state.
(c) Portlets can make persistent changes to the state of the portlet. 50

Web Services for Remote Portlets 1.0 Primer Page 23 of 53

(d) Portlets can ask the Consumer to redirect the user to arbitrary URLs.
(e) Portlets can change their current mode and/or window state.
(f) The Producer can choose to generate and return the portlet’s markup as an optimization.

Let us extend Scenario 4 to let the user cause an interaction affecting the portlet’s state.

The user enters a value of “PINC” for the stock symbol in the form displayed by C 5
Inc for the portfolio manager portlet, and submits the form.

C Inc collects the form data from the incoming HTTP request, and sends an
interaction request to P Inc.

The portfolio manager portlet stores the symbol and returns.

C Inc then sends a getMarkup request to P Inc for an updated markup of the 10
portlet. The portlet determines what symbols it is generating markup for with this
user and returns markup showing the value of the stock entered by the user
along with any other symbols it had already been showing this user.

Scenario 5: Blocking Interaction
After the user submits the form, C Inc sends a performBlockingInteraction request to P 15
Inc so that the portfolio manager portlet can process the user interaction. The
performBlockingInteraction request contains all the data elements contained in the
earlier getMarkup request, plus an additional InteractionParams element. This element
includes the form data submitted by the user.

In this example, this portlet is capable of processing only one user interaction. 20
However, if this portlet is capable of processing more interactions, it may add an
interactionState parameter to the action URL. This parameter can describe
the kind of user interaction associated with the request. For example, if this
portlet can also delete a stock symbol from the list of symbols, it could add an
interactionState parameter such as “deleteSymbol”. The actual value of 25
the state is opaque and is implementation specific.

Producers or portlets can embed arbitrary state within URLs as interaction state.
When a user activates a URL with interaction state, Consumers extract the
interaction state from the HTTP request, and include it in the
performBlockingInteraction request to process the interaction. Interaction 30
state is similar to form parameters except for the difference that Producers or
portlets pre-populate interaction state in URLs.

The following message shows a performBlockingInteraction request message as it would
be generated if the form from our preceding getMarkup is submitted by the user to the
Consumer requesting the PINC stock symbol. Note that the portletStateChange field has 35
been set to “readOnly” to indicate that a state change is not acceptable to the Consumer. We
will discuss the purpose of this field later in this section.

The runtimeContext element of this request also includes the sessionID previously returned
by C Inc.

<urn:performBlockingInteraction 40
xmlns:urn="urn:oasis:names:tc:wsrp:v1:types">
 <urn:registrationContext>
 <urn:registrationHandle>CIncRegnHandle</urn:registrationHandle>
 </urn:registrationContext>
 <urn:portletContext> 45
 <urn:portletHandle>portfolioManager</urn:portletHandle>
 </urn:portletContext>
 <urn:runtimeContext>

Web Services for Remote Portlets 1.0 Primer Page 24 of 53

 <urn:userAuthentication>wsrp:password</urn:userAuthentication>
 <urn:sessionID>sessionID_1</urn:sessionID>
 </urn:runtimeContext>
 <urn:userContext xsi:nil="true"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"/> 5
 <urn:markupParams>
 <urn:secureClientCommunication>false</urn:secureClientCommunication>
 <urn:locales>en-US</urn:locales>
 <urn:mimeTypes>text/html</urn:mimeTypes>
 <urn:mode>wsrp:view</urn:mode> 10
 <urn:windowState>wsrp:normal</urn:windowState>
 <urn:clientData>
 <urn:userAgent>Mozilla/5.0 (Windows; U; Windows NT 5.1; en-US;
rv:1.6) Gecko/20040206 Firefox/0.8</urn:userAgent>
 </urn:clientData> 15
 <urn:markupCharacterSets>UTF-8</urn:markupCharacterSets>
 </urn:markupParams>
 <urn:interactionParams>
 <urn:portletStateChange>readOnly</urn:portletStateChange>
 <urn:formParameters name="symbol"> 20
 <urn:value>PINC</urn:value>
 </urn:formParameters>
 </urn:interactionParams>
</urn:performBlockingInteraction>

Message 14: Blocking Interaction Request 25

To this request, P Inc responds with the message shown below.

<urn:performBlockingInteractionResponse
 xmlns:urn="urn:oasis:names:tc:wsrp:v1:types">
 <urn:updateResponse>
 <urn:navigationalState>symbol=PINC</urn:navigationalState> 30
 </urn:updateResponse>
</urn:performBlockingInteractionResponse>

Message 15: Blocking Interaction Response
The UpdateResponse element of this response contains new navigationalState created by
P Inc. This navigational state represents state that P Inc expects C Inc to return with subsequent 35
getMarkup requests. In this specific example, P Inc created a string that contains the name of
the stock symbol and returned it as the navigational state. When C Inc returns this state with a
future getMarkup request, P Inc extracts the name of the stock symbol from the navigational
state, looks up for the value of the stock symbol, and generates a markup fragment that shows
the name and value of the stock symbol. As far as the Consumer is concerned, the 40
navigationalState is completely opaque.

Navigational state is similar to a query string on a standard URL. Producers can express the
result of processing the interaction as the navigationalState and use this state to generate
markup as many times as requested by the Consumer. For instance, if a Consumer sends a
performBlockingInteraction request with the data necessary to create a purchase order in 45
a database, the Producer could return a reference to the primary key of the purchase order
created as navigational state, and use that state in subsequent getMarkup requests to show
pertinent information of the purchase order created.

Web Services for Remote Portlets 1.0 Primer Page 25 of 53

Consumers may embed the navigationalState (or a reference to the
navigationalState) in portlet URLs so that users can bookmark pages
including the navigational state of each portlet. When a user activates such a
bookmarked URL, the Consumer extracts the navigationalState and sends
it to the Producer to get imilar markup as was obtained at the time of book 5
marking.

Depending on the results of processing the performBlockingInteraction request, the
performBlockingInteraction response could include the following:

(a) An updated portletContext with a portletHandle and/or portletState element.
In this case, the Consumer prevented this by setting the portletStateChange element 10
to a value of readOnly.

(b) A sessionContext with a new sessionID. Consumer is required to send this
sessionID with future getMarkup or performBlockingInteraction requests.

(c) New window state and/or mode.
(d) A redirectURL in place of the updateResponse element. The value of this element is 15

an absolute URL that the Consumer is required to direct the user to.
(e) A markupContext element with the portlet markup. Note that to let the Producer generate

this, the performBlockingInteraction includes the full MarkupParams structure.
When a Producer returns markupContext in the performBlockingInteractionResponse,
Consumers can avoid calling getMarkup and use this markup instead, presuming any requested 20
changes in mode or window state or honored. Consumers can also discard this
markupContext, and send a usual getMarkup request for the markup.

The following figure shows the overall sequence of getMarkup and
performBlockingInteraction requests.

C
on

su
m

er

Get Markup (with default mode/state)

Markup
Pr

od
uc

er

Perform Blocking Interaction (with form data)

Navigational state and/or new mode and/or window state

User requests for a portal
page containing a portlet

Rewrite

Portal page with portlet
markup

User submits a form in
the portlet Collect form data

Process
form data

Get Markup (with navigational state, mode, window state)

Markup

Portal page with
updated portlet markup

Rewrite

25
Figure 3: Two Step Protocol

Web Services for Remote Portlets 1.0 Primer Page 26 of 53

In this two-step protocol, the following key differences between getMarkup and
performBlockingInteraction are worth noting.

(a) Consumers send performBlockingInteraction requests only when a user interacts
with a portlet URL specifying a value for url-type of blockingAction or
secureBlockingAction. On the other hand, Consumers send getMarkup requests 5
only whenever the portlet’s markup is required or when the url-type is render or
secureRender. For example, a simple browser reload of a Consumer’s aggregated page
or user interactions with other portlets on aggregated page may cause getMarkup
invocations without any performBlockingInteraction invocation.

(b) Apart from a new sessionContext, Producers cannot return any state changes in the 10
response to a getMarkup request. However, in the case of
performBlockingInteraction requests, Producers can return such changes to the
Consumer.

(c) Although Producers cannot reflect state changes to the Consumer, portlets can still make
transient/persistent state changes internally. However, Producers must be prepared to 15
process any number of getMarkup requests without negative affects. In particular, a
portlet making transient and/or persistent changes to its state during markup generation
must be prepared to generate markup any number of times.

5.2.3 State Changes and Implicit Cloning
While processing a performBlockingInteraction request, if allowed by the Consumer, the 20
Producer can clone the portlet, and return a portletContext with a new portletHandle
and/or portletState. This is often called implicit cloning because the Consumer did not
directly ask the Producer to clone the portlet, rather the Consumer indicated that under certain
circumstances the Producer was to generate a clone and return it. For the Consumer, the new
portletContext replaces the current portletContext for this user. 25

To illustrate how such implicit cloning may occur, consider the following variation to Scenario 5.

C Inc allows several of its users access the portfolioManager portlet.

One of the users accessing this portlet enters a value of “PINC” for the stock
symbol in the form displayed by C Inc for the portfolio manager portlet, and
submits the form. 30

C Inc collects the form data from the incoming HTTP request, and sends an
interaction request to P Inc.

The portlet adds this symbol to the user’s preferred symbols in a database and
returns.

Scenario 6: Perform Interaction with Implicit Cloning 35

The portlet can use its portletHandle as a primary key for storing the list of symbols.
However, before letting the portlet add the stock symbol to the list of preferred symbols, P Inc
should ensure that the portletHandle of this portlet is specific to the current user and is not
shared with other users accessing the same portlet. Since P Inc offered this portlet with a
portletHandle portfolioManager via its service description, there may be several 40
Consumers (or several users from the same Consumer) using this portlet with the same
portletHandle. In order to avoid sharing the list with other users, P Inc must first create a new
portletHandle and let the portlet store the list against the new portletHandle.

Web Services for Remote Portlets 1.0 Primer Page 27 of 53

However, P Inc does not know whether C Inc allows several users to access the same portlet or
not. That is, without the Consumer supplying additional information, P Inc cannot determine if it
must clone the portlet before letting the portlet store the list of symbols. C Inc must therefore
inform P Inc that, in case the portlet is trying to make state changes, P Inc must first clone the
portlet. 5

This scenario illustrates one of the ways implicit cloning may occur. Other possibilities depend on
how a Producer associates persistent state with portlets.

When a Producer implicitly clones a portlet, it returns the new portletHandle (along with
portletState, if it is not capable of storing state persistently) to the Consumer. However,
Consumers may not always be ready to accept a new a portletHandle or portletState. 10
For instance, the Consumer may not have persistent storage capabilities. Or, the Consumer may
not want to allow a given user affect the persistent state of a portlet as the user lacks adequate
privileges. To account for these situations, WSRP specifies a portletStateChange element in
the performBlockingInteractionRequest. Consumer can supply one of the following
values for this element: 15

(a) readOnly: This value indicates that the Producer is not allowed to return a new
portletHandle and/or portletState. If the portlet tries to update persistent state that may
cause a new portletHandle or portletState, the Producer will return a
PortletStateChangeRequired fault to the Consumer.

(b) cloneBeforeWrite: This value indicates that the Producer must first clone the portlet 20
before attempting to make persistent state changes.

(c) readWrite: This value indicates that the Producer can make persistent state changes
without cloning the portlet.

Typically, Consumers capable of accepting implicit cloning initially send a value of
cloneBeforeWrite, and replace it with readWrite once implicit cloning occurs. Producers are 25
required to depend on the Consumer to properly indicate whether or not the user is allowed to
update the persistent state for the current portletHandle.

The following figure illustrates the persistent lifecycle of a portlet caused by implicit cloning.

Producer Offered Portlet Consumer Configured Portlet

performBlockingInteraction
with portletStateChange set to readOnly

performBlockingInteraction
with portletStateChange set to readWrite

performBlockingInteraction
with portletStateChange
set to cloneBeforeWrite

Figure 4: Persistent Lifecycle of Portlets with Implicit Cloning 30

In this figure, rounded rectangles show two of the states in the persistent lifecycle of a portlet. The
arrows between these states show transitions between states.

(d) Producer-Offered Portlet: A Producer-offered portlet is one that is described in the
getServiceDescriptionResponse (e.g. as in Message 2). In our sample scenario, the
portfolio manager portlet with portfolioManager as the portletHandle is a producer-offered 35
portlet.

(e) Consumer-Configured Portlet: A Producer can create a consumer-configured implicitly,
when the Consumer sends a value of cloneBeforeWrite for portletStateChange
with the performBlockingInteraction request.

In Section 6, we will discuss an explicit method of cloning and destroying portlets. 40

Web Services for Remote Portlets 1.0 Primer Page 28 of 53

5.2.4 Initialize Cookies
Between typical browser-server interactions, web servers use cookies to set state to the browser,
which the browser returns with subsequent requests. RFC 2965 [8] describes the rules governing
cookies.

In the case of WSRP, Producers may set cookies on responses to Consumers, requiring the 5
Consumers to return those cookies with future getMarkup and
performBlockingInteraction requests. Here is a sample scenario that motivates the use of
cookies.

P Inc uses a load-balancing cluster of Producers for handling Consumers’
requests. The portlets deployed on these Producers manage some transient 10
state in memory. For any one sequence of interactions on behalf of a user, P Inc
requires the load balancer to direct a given Consumer’s requests for any
particular portlet to a given Producer in the cluster.

P Inc would like to use HTTP cookies to achieve this load-balancing scheme.

Scenario 7: Initializing Cookies 15

P Inc can use the requiresInitCookie element in its service description (refer to Section
5.1.18 of the WSRP 1.0 Specification for the allowed values) to inform Consumers of this need
and C Inc then uses the initCookie operation of the markup interface to implement the
scenario.

When C Inc sends an initCookie request, P Inc can set HTTP cookies with the response, and 20
require C Inc return those cookies with getMarkup and performBlockingInteraction
requests.

For example, consider that P Inc sets the value of requiresInitCookie to any value other
than “none” in its service description. C Inc then sends the following initCookie request to P Inc.

<urn:initCookie xmlns:urn="urn:oasis:names:tc:wsrp:v1:types"> 25
 <urn:registrationContext>
 <urn:registrationHandle>CIncRegnHandle</urn:registrationHandle>
 </urn:registrationContext>
</urn:initCookie>

Message 16: Init Cookie Request 30

In return, P Inc sends the following response along with Set-Cookie headers (at the HTTP
transport level). In the current scenario, the value of the cookie may contain some information to
let the load-balancing mechanism identity the Producer instance in the cluster.

<urn:initCookieResponse xmlns:urn="urn:oasis:names:tc:wsrp:v1:types"/>

Message 17: Init Cookie Response 35

C Inc collects these cookies, and resends them with subsequent getMarkup and
performBlockingInteraction requests.

Web Services for Remote Portlets 1.0 Primer Page 29 of 53

5.2.5 Release Sessions
In Message 13, we saw that the Producer, P Inc. initialized a session for the portfolio manager
portlet, and returned a reference to that session as a sessionID in its response. The Producer
and/or the portlet may also be managing in-memory state in those sessions. As a Consumer
interacts with a Producer for different portlets on behalf of a given user, the Producer may 5
initialize sessions for these portlets, and return sessionIDs of those sessions. Since the
Consumer is required to supply these IDs to the Producer on subsequent invocations, the
Consumer will have to store those temporarily, for example, in the user’s session on the
Consumer itself.

What happens if the user stops interacting with the Consumer, or the user’s session on the 10
Consumer has timed out? In these cases, the sessions on the Producer will remain alive until
they timeout naturally. To let the Producer reclaim storage consumed by such sessions in a
timely manner, the Consumer can send a releaseSessions request to the Producer to inform
it that those sessions will not be referenced by future invocations.

In our scenario, C Inc can send the following request to P Inc to release the session created for 15
the portfolio manager portlet.

<urn:releaseSessions xmlns:urn="urn:oasis:names:tc:wsrp:v1:types">
 <urn:registrationContext>
 <urn:registrationHandle>CIncRegnHandle</urn:registrationHandle>
 </urn:registrationContext> 20
 <urn:sessionIDs>sessionID_1</urn:sessionIDs>
</urn:releaseSessions>

Message 18: Release Sessions Request
The Consumer can add several sessionIDs in this request. To this request, P Inc terminates
the session, and returns the following response. The response merely indicates that the Producer 25
has released the session, and the Consumer can no longer use those sessionIDs.

<urn:releaseSessionsResponse
xmlns:urn="urn:oasis:names:tc:wsrp:v1:types"/>

Message 19: Release Sessions Response
While Producers are required to support the releaseSessions operation, Consumers may or 30
may not send a releaseSessions request to the Producer. Therefore, we recommend that
Producers expire sessions after meaningful time interval or inactivity interval, and not depend on
the releaseSessions operation alone.

5.3 Modes and Window States
Consumers can use modes and window states to influence the behavior and markup of a portlet. 35

Portlets can expose their functionality with different modes, with each mode catering to a
particular function. For example, a portlet can provide its default functionality in one mode (e.g.
wsrp:view mode) and provide customization functionality under a different mode (e.g.
wsrp:edit mode). WSRP 1.0 Specification specifies wsrp;view, wsrp:edit, wsrp:help,
and wsrp:preview modes as standard modes that portlets can support. 40

Window states, on the other hand, let Consumers indicate how much markup a portlet should
generate. WSRP 1.0 Specification specifies wsrp:normal, wsrp:minimized,
wsrp:maximized, and wsrp:solo as standard window states. Portlets could generate different
length/style of markup in each of these window states. For example, a portlet could generate its
complete view (with more markup, images etc) in wsrp:maximized window state, while 45
generating no displayable markup in wsrp:minimized state.

Web Services for Remote Portlets 1.0 Primer Page 30 of 53

In addition to these standard modes and window states, portlets could offer markup in additional
modes (known as custom modes) and window states (known as custom window states).
Producers advertise the modes supported by a portlet in the description of the portlet. Consumers
typically provide decorations (such as a title bar with buttons) to let users request portlet markup
in various modes and window states. WSRP 1.0 Specification requires that portlets support 5
wsrp:view mode and wsrp:normal window state so that Consumers are able to obtain
markup in at least one mode and window state they support.

Portlets could request a change to the current mode and/or window state while processing a
performBlockingInteraction by returning the requested new values within the
performBlockingInteractionResponse. Consumers are expected (although, not required) 10
to honor such mode and window state changes. If a Consumer does not understand a portlet’s
mode or window state (including custom modes and custom window states), the Consumer is
unlikely to request markup using that mode or window state. In such cases, the Consumer can
request for markup in one of the known modes and window states.

A Consumer could have its own set of custom modes and window states, and attempt to request 15
a portlet render in one of these. If the portlet does not comprehend the requested mode or
window state, the Producer returns an appropriate fault message.

5.4 CSS Portlet Classes
HTML 4.01 states: “Since style sheets are now the preferred way to specify a document's
presentation, the presentational attributes of BODY have been deprecated.” Accordingly, WSRP 20
1.0 has adopted an initial basic set of CSS classes designed to provide a standard set of display
options for portlets. For a list with tables of these portlet classes, see Section 10.6 of WSRP 1.0
specification. Use of CSS portlet classes are optional and only appropriate for those markup
types supporting CSS.

5.5 Caching of Markup 25

WSRP allows the Consumer to cache markup fragments returned by the Producer. This enables
the Consumer to avoid calling getMarkup again to obtain the same markup fragments that the
Producer had returned previously and had indicated as cacheable. In addition to improved
performance at the Consumer, caching makes the Producer more efficient since the Producer
does not have to regenerate identical markup fragments across a series of requests. Note that 30
the Consumer must take into account the MarkupParams structure that the Consumer sent to
compute any key used to locate cached markup fragments in the Consumer’s caching
mechanism.

The presence of a valid (i.e., non-null) CacheControl in the MarkupContext sent by the
Producer when returning markup is the hint given by the Producer to the Consumer that it may 35
choose to cache the returned markup for subsequent invocations. The CacheControl structure
includes information such as the duration that the cached markup is valid for, the user scope of
the markup (e.g. whether the Consumer can share the markup for other users as well), as well as
a tag that the Consumer can use to send to the Producer to validate if the cached markup can still
be used by the Consumer even after the expiry of the cache. 40

To illustrate how caching works, let us revisit Scenario 4, wherein C Inc made a request to P Inc
for the initial markup of the portfolio manager portlet.

Here is the response from P Inc.

<urn:getMarkupResponse xmlns:urn="urn:oasis:names:tc:wsrp:v1:types">
 <urn:markupContext> 45
 <urn:mimeType>text/html; charset=UTF-8</urn:mimeType>
 <urn:markupString><![CDATA[
 <form method=”post”

Web Services for Remote Portlets 1.0 Primer Page 31 of 53

 action="wsrp_rewrite?wsrp-urlType=blockingAction/wsrp_rewrite"
 id="wsrp_rewrite_stockForm">
 <table border="0" width="100%">
 <tr>
 <td>Enter Stock Symbol</td> 5
 <td><input name="symbol"></td>
 </tr>
 <tr>
 <td><input type="submit" value="Submit"></td>
 </tr> 10
 </table>
 </form>
]]>
 </urn:markupString>
 <urn:locale>en-US</urn:locale> 15
 <urn:requiresUrlRewriting>true</urn:requiresUrlRewriting>
 <urn:cacheControl>
 <urn:expires>60</urn:expires>
 <urn:userScope>wsrp:perUser</urn:userScope>
 <urn:validateTag>portfolioManagerPValidateTag</urn:validateTag> 20
 </urn:cacheControl>
 <urn:preferredTitle>Portfolio Manager</urn:preferredTitle>
 </urn:markupContext>
 <urn:sessionContext>
 <urn:sessionID>sessionID_1</urn:sessionID> 25
 <urn:expires>300</urn:expires>
 </urn:sessionContext>
</urn:getMarkupResponse>

Message 20: Get Markup response that includes caching information
This message is similar to Message 14, except for the parts shown in bold. In this response, P Inc 30
returned a CacheControl element as part of the MarkupContext that indicates to C Inc that
the markup fragment returned is cacheable.

In this particular response, the CacheControl structure includes the following elements:

(a) expires: This field indicates that the markup fragment referenced by this cache control
is valid for 60 seconds (counting from point in time when the markup was returned). 35

(b) userScope: A value of “wsrp:perUser” specifies that the markup is specific to the
userContext for which it was generated.

(c) validateTag: The value “portfolioManagerPValidateTag” is for the purpose of
the Consumer to verify with the Producer if this particular cached markup fragment is still
valid even after it has expired (i.e. in the situation whereby, even though the cache had 40
expired, calling getMarkup would result in the same markup fragment being returned).

Next, let us suppose that the user at C Inc refreshed the page in the browser. In the absence of
any caching, this would have caused the Consumer to get the markup for the portlet from the
Producer again. However, since the markup that was just returned did contain a valid
CacheControl, the Consumer can use the cached markup.. 45

Now let us explore the scenario whereby the user refreshed the page after the expiry of the
cached markup (i.e., after 60 seconds). Since the Producer returned a validateTag element as
part of the CacheControl, the Consumer has the option of sending the value of that element
back to the Producer to determine if it can still reuse that cached markup.

Here is the new getMarkup request from C Inc to P Inc. 50
<urn:getMarkup xmlns:urn="urn:oasis:names:tc:wsrp:v1:types">

Web Services for Remote Portlets 1.0 Primer Page 32 of 53

 <urn:registrationContext>
 <urn:registrationHandle>CIncRegnHandle</urn:registrationHandle>
 </urn:registrationContext>
 <urn:portletContext>
 <urn:portletHandle>portfolioManager</urn:portletHandle> 5
 </urn:portletContext>
 <urn:runtimeContext>
 <urn:userAuthentication>wsrp:password</urn:userAuthentication>
 </urn:runtimeContext>
 <urn:userContext xsi:nil="true" 10
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"/>
 <urn:markupParams>
 <urn:secureClientCommunication>false</urn:secureClientCommunication>
 <urn:locales>en-US</urn:locales>
 <urn:mimeTypes>text/html</urn:mimeTypes> 15
 <urn:mode>wsrp:view</urn:mode>
 <urn:windowState>wsrp:normal</urn:windowState>
 <urn:clientData>
 <urn:userAgent>Mozilla/5.0 (Windows; U; Windows NT 5.1; en-US;
rv:1.6) Gecko/20040206 Firefox/0.8</urn:userAgent> 20
 </urn:clientData>
 <urn:markupCharacterSets>UTF-8</urn:markupCharacterSets>
 <urn:validateTag>portfolioManagerPValidateTag</urn:validateTag>
 </urn:markupParams>
</urn:getMarkup> 25

Message 21: Get Markup Request with a validate tag
The above request from the C Inc to P Inc is similar to Message 12 except for the line shown in
bold. The MarkupParams structure now also contains a validateTag element with the value
portfolioManagerPValidateTag that P Inc returned earlier as part of the CacheControl
structure. The Consumer is supplying this as a means for the portfolio manager portlet to avoid 30
generating new markup if it can valid this tag.

Let us assume that the markup is indeed still valid. P Inc responds to the getMarkup request as
shown below.

<urn:getMarkupResponse xmlns:urn="urn:oasis:names:tc:wsrp:v1:types">
 <urn:markupContext> 35
 <urn:useCachedMarkup>true</urn:useCachedMarkup>
 <urn:cacheControl>
 <urn:expires>180</urn:expires>
 <urn:userScope>wsrp:perUser</urn:userScope>
 <urn:validateTag>portfolioManagerPValidateTag</urn:validateTag> 40
 </urn:cacheControl>
 </urn:markupContext>
 <urn:sessionContext>
 <urn:sessionID>sessionID_1</urn:sessionID>
 <urn:expires>300</urn:expires> 45
 </urn:sessionContext>
</urn:getMarkupResponse>

Message 22: Get Markup Response that includes a CacheControl structure

Web Services for Remote Portlets 1.0 Primer Page 33 of 53

In the response above, the Producer indicates that the cached markup fragment is still valid for
this request by setting the useCachedMarkup to “true”. Note that the Producer intentionally
omits the markupString field from the response. Also, note that it is mandatory for the
Producer to send back a new cacheControl structure to the Consumer to indicate a new
expiry field for the given markup fragment. The Consumer should replace this with any other 5
value it had stored earlier.

Lastly, with respect to caching invalidation, we recommend Consumers discard any cached
markup for the given portlet once they invoke performBlockingInteraction since the
operation may result in the cached markup becoming invalid. Future versions of WSRP may
provide a means for a portlet to indicate that the markup cached by the Consumer is no longer 10
valid.

5.6 Recommendations
The markup interface deals with markup, user interactions, and the state associated. Due to the
complexities associated with these, Producer and Consumer implementers must take into
account a variety of issues and choices. During the lifetime of a portlet, the markup interface gets 15
more heavily used than other interfaces, and hence implementers must take into account
performance and scalability issues as well. In addition, Producers invoke portlet(s) during this
interface, portlet developers must also be aware of certain intricacies. In this section, we present
some guidelines for implementers and portlet developers.

The first thing to note about the markup interface is the two-phase protocol. Producers must 20
capture the result of an interaction as navigational state or some other form transient/persistent
state and be prepared to generate markup any number of times with the help of that state.

Producers can use navigationalState or sessions (or both) to manage transient state.
However, navigationalState has some advantages over using sessions. In particular,
Producers/Consumers can embed navigationalState in URLs in markup returned to end 25
users. Users can therefore bookmark URLs and be able to view the same/similar content at a
future time. Since sessions usually have limited lifetime, after the Producer terminates a session,
users may not be able to view same/similar content at a future time.

Use of navigationalState to represent transient state also improves cacheability of markup
by Consumers. Consumers can use the navigationalState as part of the cache key for 30
caching the markup, and serve cached markup whenever the same navigationalState is
found for a given getMarkup request.

Another point to consider is the network traffic. In order to reduce network overhead, we
recommend the following practices:

(a) If a Producer can return markup with its response to performBlockingInteraction, 35
Consumers can avoid invoking the getMarkup request for the same portlet on the same
Producer, saving one network roundtrip.

(b) We also encourage Producers and Consumers to cache markup whenever possible.
Particularly, markup caching by Consumers can significantly reduce network traffic.

(c) If a Consumer is aggregating several portlets from several Producers, the Consumer 40
should try to invoke getMarkup requests concurrently instead of serially. Provided the
Consumer has sufficient network bandwidth, this approach will help improve
responsiveness of the Consumer as far as end users are concerned.

Web Services for Remote Portlets 1.0 Primer Page 34 of 53

Another issue for consideration is URL generation. Producers must carefully evaluate their
portlets and usage to support one of the forms of URL generation. In general, URL template
based URL generation offers better performance when the markup is personalized for each user
and the Consumer is able to supply URL templates and not post-process the markup returned
from the Producer. On the other hand, Consumer URL rewriting has the advantage of 5
cacheability. With Consumer URL rewriting, the markup returned by the Producer does not
include references to the Consumer, and therefore the Producer can cache the markup and serve
the cached markup to several Consumers.

Although Producers can choose to support either Producer writing or Consumer rewriting,
Consumers must be prepared to support both so that the Consumer can easily work with diverse 10
Producer implementations.

6 Portlet Management Interface
6.1 Introduction
The purpose of the portlet management interface is to let Consumers manage the persistent state
and lifecycle of portlets explicitly. 15

6.1.1 Portlet Persistent State
In addition to the transient state (such as navigational state) of portlets we discussed in the
previous section, portlets can have persistent state as well. WSRP allows Producers to expose a
transparent view on such persistent state as “properties”. Portlet properties are data associated
with a portlet. Using the portlet management interface, Consumers can access and change those 20
properties.

An example of a portlet property is the list of stock symbols for the portfolio manager portlet.
While this portlet encapsulates the functionality necessary to manage portfolios, the portlet may
declare the list of the stock symbols as a property. Each Consumer can use the portlet
management interface to clone this portlet for each user, and set the values of the stock symbol 25
property for each user.

Note that the persistent state of producer-offered portlets is not explicitly modifiable by
Consumers. However, when a Producer exposes such persistent state via properties, Consumers
can use the portlet management interface to create a consumer-configured portlet, and modify
the exposed portion of its persistent state explicitly. 30

6.1.2 Portlet Lifecycle
The Portlet Management interface provides for the following persistent lifecycle of portlets.

Producer Offered Portlet
(Not Modifiable)

Consumer Configured Portlet
(Modifiable)

performBlockingInteraction
(Implicitly cloned by Producer when

portletStateChange is set to cloneBeforeWrite)

clonePortlet
(Explicitly cloned)

Destroyed

clonePortlet

destroyPortlets

Web Services for Remote Portlets 1.0 Primer Page 35 of 53

Figure 5: Lifecycle of Portlets
The lifecycle of portlets consists of three states (shown in rounded rectangles). The arrows
between these states indicate transitions between these states. The bold arrows show the
transitions that a Consumer can cause explicitly using the portlet management interface.

(a) Producer-Offered Portlet: A Producer-offered Portlet is one that is described in the 5
getServiceDescriptionResponse (e.g. as in Message 2). Consumers cannot
explicitly modify the persistent state of such portlets.

(b) Consumer-Configured Portlet: A consumer-configured Portlet can be created in two ways –
implicitly, or explicitly. As discussed in Section 5.2.3, a Producer can implicitly create such
a portlet during a performBlockingInteraction operation when the Consumer sends 10
a value of cloneBeforeWrite for the portletStateChange flag. A Consumer can
explicitly create such a portlet by sending a request to clone the portlet to the Producer.
Consumers can change the properties of consumer-configured portlets. Consumers can
also clone Consumer-configured portlets.

(c) Destroyed Portlet: This is the final state of a consumer-configured portlet. A Consumer can 15
request the Producer to destroy a consumer-configured Portlet. After a Producer destroys a
portlet, the Consumer can no longer use it. Note that Consumers cannot destroy producer-
offered portlets.

In addition to the operations to manage this lifecycle explicitly, the portlet management interface
offers methods to get the descriptions of producer-offered or consumer-configured portlets, and to 20
get/set properties of a portlet.

The portlet Management Interface offers the following operations:

(a) getPortletDescription: Consumers can invoke this operation to get a description of a
producer-offered or consumer-configured portlet.

(b) getPortletPropertyDescription: Consumers can invoke this operation to obtain a 25
description of properties (if any) of a portlet. This operation returns the metadata (such as
names, and schema types) of properties.

(c) getPortletProperties: Consumers can invoke this operation to obtain the properties
(including their current values) of a producer-offered or a consumer-configured portlet.

(d) clonePortlet: Consumers can invoke this operation to explicitly clone a portlet, such 30
that any properties associated with the cloned portlet may be modified without affecting the
properties of the portlet that it is cloned from. Consumers can clone both producer-offered
and consumer-configured portlets.

(e) setPortletProperties: Consumers can invoke this operation to modify the values of
properties of a consumer-configured portlet. 35

(f) destroyPortlets: Consumers can explicitly destroy consumer-configured portlets using
this operation.

6.2 Descriptions of Operations

6.2.1 Get Portlet Description
While the getServiceDescription operation of the service description interface returns 40
descriptions of all portlets offered to a given Consumer, the getPortletDescription
operation returns the description of a single portlet. This operation serves two purposes:

(a) Given the portletHandle of a portlet, the Producer returns the description of a producer-
offered or a consumer-configured portlet.

(b) The Producer can optionally tailor the description of a portlet based on the user context and 45
registration context supplied by the Consumer.

Web Services for Remote Portlets 1.0 Primer Page 36 of 53

For producer-offered portlets, in response to a getPortletDescription request, Producers
are free to return the same portlet description as is returned in the
getServiceDescriptionResponse.

Let us consider the following scenario, and discuss the semantics of this operation.

C Inc provides a page for its users to view the description of the portfolio 5
manager portlet.

C Inc sends a request to P Inc to get the description of the portfolio manager
portlet, and uses the returned description to display a user-friendly page with the
description of the portlet.

Scenario 8: Get Portlet Description 10

To get the description of the portfolio manager portlet, C Inc has two options. If the
portletHandle of the portlet is producer-offered, C Inc can send a
getServiceDescription request and search the response for a description of the portfolio
manager portlet. Alternatively, it can send a getPortletDescription request to get a
description of the portlet. Some advantages of the later option is that C Inc can use the same 15
operation for producer-offered as well as consumer-configured portlets and that the returned data
is likely to represent any filtering that P Inc does for the user.

C Inc. sends the following message to obtain the description of the portfolio manager portlet.

<urn:getPortletDescription
 xmlns:urn="urn:oasis:names:tc:wsrp:v1:types"> 20
 <urn:registrationContext>
 <urn:registrationHandle>CincRegnHandle</urn:registrationHandle>
 </urn:registrationContext>
 <urn:portletContext>
 <urn:portletHandle>portfolioManager</urn:portletHandle> 25
 </urn:portletContext>
 <urn:userContext xsi:nil="true"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"/>
 <urn:desiredLocales>en</urn:desiredLocales>
</urn:getPortletDescription> 30

Message 23: Get Portlet Description Request
In response, P Inc sends the following message with the description of the portlet:

<urn:portletDescription xmlns:urn="urn:oasis:names:tc:wsrp:v1:types">
 <urn:portletHandle>portfolioManager</urn:portletHandle>
 <urn:markupTypes> 35
 <urn:mimeType>text/html</urn:mimeType>
 <urn:modes>wsrp:view</urn:modes>
 <urn:windowStates>wsrp:normal</urn:windowStates>
 <urn:locales>en</urn:locales>
 </urn:markupTypes> 40
 <urn:description xml:lang="en">
 <urn:value>Manages portfolios</urn:value>
 </urn:description>
 <urn:title xml:lang="en">
 <urn:value>Title</urn:value> 45
 </urn:title>
</urn:portletDescription>

Web Services for Remote Portlets 1.0 Primer Page 37 of 53

Message 24: Get Portlet Description Response
The portletDescription returned in this message is the same as the one returned by the
getServiceDescription operation of the service description interface shown in Message 7.
Some advanced Producer implementations may tailor (for example, not advertise certain window
states or modes) the returned description based on the registrationContext and 5
userContext supplied by the Consumer.

6.2.2 Get Portlet Property Description
The getPortletPropertyDescription operation returns a description and metadata of
properties of a given portlet. Consumers can use the returned metadata to design user interfaces
or applications to view/modify portlet properties. Note that this method does not return the values 10
of properties.

Let us consider the following scenario.

P Inc exposes the list of stock symbols and the refresh interval as properties that
Consumers of the portfolio manager portlet can modify.

C Inc would like to setup a page to let users/administrators view and modify 15
these properties.

To setup such a page, C Inc must first know the descriptions and the data types
of properties of the portfolio manager portlet.

Scenario 9: Get Portlet Property Description
In order to implement this scenario, C Inc sends a getPortletPropertyDescription 20
request to P Inc. Using the returned descriptions and data types of these properties, C Inc
designs a page to view/modify the properties.

<urn:getPortletPropertyDescription
 xmlns:urn="urn:oasis:names:tc:wsrp:v1:types">
 <urn:registrationContext> 25
 <urn:registrationHandle>CIncRegnHandle</urn:registrationHandle>
 </urn:registrationContext>
 <urn:portletContext>
 <urn:portletHandle>portfolioManager</urn:portletHandle>
 </urn:portletContext> 30
 <urn:userContext xsi:nil="true"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"/>
</urn:getPortletPropertyDescription>

Message 25: Get Portlet Property Description Request
The portfolio manager portlet has two properties viz., stockSymbolList and 35
refreshInterval. P Inc therefore returns the following response:

<urn:getPortletPropertyDescriptionResponse
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns:urn="urn:oasis:names:tc:wsrp:v1:types">
 <urn:modelDescription> 40
 <urn:propertyDescriptions type="urn:stringValue"
 name="stockSymbolList">
 <urn:label xml:lang="en">
 <urn:value>Stock Symbols</urn:value>
 </urn:label> 45
 </urn:propertyDescriptions>
 <urn:propertyDescriptions type="xs:int" name="refreshInterval">

Web Services for Remote Portlets 1.0 Primer Page 38 of 53

 <urn:label xml:lang="en">
 <urn:value>Refresh Interval</urn:value>
 </urn:label>
 </urn:propertyDescriptions>
 </urn:modelDescription> 5
</urn:getPortletPropertyDescriptionResponse>

Message 26: Portlet Property Description Response
This response includes two properties – a stockSymbolList property of type xs:string, and
a refreshInterval property of type xs:int. The names, descriptions, and data types of
these properties help C Inc. design a user interface for displaying and entering new values for the 10
properties. In addition to the standard schema types, Producers can use any arbitrary schema
types (other than those defined in the urn:oasis:names:tc:wsrp:v1:types namespace) to
describe portlet properties.

In addition to the type, a Producer may optionally supply a label and a hint. In the above
message, labels provide a short description of each property. 15

6.2.3 Get Portlet Properties
The purpose of getPortpetProperties operation of the portlet management interface is to
return all or some properties of a given portlet. Consumers can use this operation in conjunction
with the getPortletPropertyDescription operation to show portlet properties to users.

Let us consider the following scenario. 20

Having obtained the descriptions of portlets, C Inc prepares a page with user
interface to display the properties of the portfolio manager portlet.

A user enters this page to view the properties.

Scenario 10: Get Portlet Properties
To implement this scenario, C Inc sends the following message to get the current values of 25
properties of the portfolio manager portlet.

<urn:getPortletProperties
 xmlns:urn="urn:oasis:names:tc:wsrp:v1:types">
 <urn:registrationContext>
 <urn:registrationHandle>CIncRegnHandle</urn:registrationHandle> 30
 </urn:registrationContext>
 <urn:portletContext>
 <urn:portletHandle>portfolioManager</urn:portletHandle>
 </urn:portletContext>
 <urn:userContext xsi:nil="true" 35
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"/>
 <urn:names xsi:nil="true"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"/>
</urn:getPortletProperties>

Message 27: Get Portlet Properties Request 40

In this request, the value of the portlet handle is the same that of the portfolio manager portlet
offered in the service description of P Inc.

Web Services for Remote Portlets 1.0 Primer Page 39 of 53

With the getPortletProperties request, the Consumer can optionally indicate if it wants the
values of all properties, or only for specific properties. When the names element is set “nil”, this
request implies that the Producer must return values for all properties of this portlet. In case the
Consumer is interested only in the values of certain properties, it can specify the names for which
it needs values. This option is particularly useful when the portlet has a large number of 5
properties. In the following request, C Inc specifies the stockSymbolList property.

<urn:getPortletProperties
 xmlns:urn="urn:oasis:names:tc:wsrp:v1:types">
 <urn:registrationContext>
 <urn:registrationHandle>CIncRegnHandle</urn:registrationHandle> 10
 </urn:registrationContext>
 <urn:portletContext>
 <urn:portletHandle>portfolioManager</urn:portletHandle>
 </urn:portletContext>
 <urn:userContext xsi:nil="true" 15
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"/
 <urn:names>stockSymbolList</urn:names>
</urn:getPortletProperties>

Message 28: Get Portlet Properties Request (For Specific Properties)
The default value of the stockSymbolList property is “AMZN” and the default value of the 20
refreshInterval field is 180 seconds. For the request in Message 27, P Inc returns the
following response with these values.

<urn:getPortletPropertiesResponse
 xmlns:urn="urn:oasis:names:tc:wsrp:v1:types">
 <urn:properties name="stockSymbolList"> 25
 <urn:stringValue>AMZN</urn:stringValue>
 </urn:properties>
 <urn:properties name="refreshInterval">
 <xs:int xmlns:xs="http://www.w3.org/2001/XMLSchema">180</xs:int>
 </urn:properties> 30
</urn:getPortletPropertiesResponse>

Message 29: Get Portlet Properties Response
C Inc can now populate the user interface with these values filled in. Note that, as the first
property is of type stringValue, P Inc returned a stringValue element, and for the second
property, P Inc returned a namespaced xs:int element. 35

6.2.4 Clone Portlet
As we discussed above, Consumers cannot modify persistent state of producer-offered portlets.
In order to be able to change persistent state, Consumers must first let the Producer clone a
portlet. In WSRP, Consumers use the portletHandle to uniquely refer to a portlet. After
cloning, Producers associate a new portletHandle to the portlet. As long as the Consumer or 40
the Producer makes no changes to the cloned portlet, the cloned portlet and the portlet it is
cloned from have identical persistent state, and should behave the same.

Once a Consumer clones a portlet, the Consumer can modify its persistent state without affecting
the portlet it is cloned from.

Note that cloning does not imply any hierarchical relationship between the cloned portlet and the 45
portlet it is cloned from.

Let us consider the following scenario.

Web Services for Remote Portlets 1.0 Primer Page 40 of 53

C Inc would like to let each user customize the properties of the portfolio
manager portlet. Using the descriptions of the properties and their values, C Inc
prepares a page with a user interface to view and modify the values.

Using this user interface, users can update the values of the properties.

Scenario 11: Clone the Portlet 5

In order to implement this scenario, C Inc must first clone the portfolio manager portlet because it
cannot directly modify the properties of a producer-offered portlet.

C Inc sends the following clonePortlet request to P Inc.

<urn:clonePortlet xmlns:urn="urn:oasis:names:tc:wsrp:v1:types">
 <urn:registrationContext> 10
 <urn:registrationHandle>CIncRegnHandle</urn:registrationHandle>
 </urn:registrationContext>
 <urn:portletContext>
 <urn:portletHandle>portfolioManager</urn:portletHandle>
 </urn:portletContext> 15
 <urn:userContext xsi:nil="true"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"/>
</urn:clonePortlet>

Message 30: Clone Portlet Request
P Inc creates a clone of this portlet, and returns the following response with a new portlet handle. 20

<urn:clonePortletResponse
 xmlns:urn="urn:oasis:names:tc:wsrp:v1:types">
 <urn:portletContext>
 <urn:portletHandle>portfolioManager.1</urn:portletHandle>
 </urn:portletContext> 25
</urn:clonePortletResponse>

Message 31: Clone Portlet Response
The returned portlet handle corresponds to a consumer-configured portlet created explicitly by
cloning a producer-offered portlet, and is valid for the duration of the Consumer’s registration.

If the Producer is capable of storing state of cloned portlet, the Producer may just 30
return a portletHandle.

However, if the Producer is not capable of storing the state of the cloned portlet
persistently, the Producer may choose to return such state as portletState to
the Consumer. In such cases, the Consumer would be responsible for
persistently storing the portletState along with the portletHandle and 35
return these to the Producer in future invocations.

C Inc now uses the new portlet handle during all subsequent requests for the portfolio manager
portlet for that user. Note that C Inc may also use the new portlet handle with a
getPortletDescription request to get a description of the portlet.

6.2.5 Set Portlet Properties 40

Consumers can use the setPortletProperties operation of the portlet management
interface to modify the properties of consumer-configured portlets. Note that it is an error to use
this operation to attempt to modify the properties of producer-offered portlets.

Web Services for Remote Portlets 1.0 Primer Page 41 of 53

Referring to our scenario, having cloned the portfolio manager portlet, C Inc can change the
persistent state of the cloned portlet. When a user fills in new values for the values of these
properties, and submits a form, C Inc uses the setPortletProperties operation to let P Inc
change properties.

A User enters “AMZN YHOO” for the stockSymbolList property and “60” for 5
refreshInterval and submits a form.

Scenario 12: Setting Portlet Properties
C Inc sends the following request to P Inc. This request includes a cloned portletHandle
obtained via the clonePortlet request in the previous section, and the new values of the
properties. 10

<urn:setPortletProperties
 xmlns:urn="urn:oasis:names:tc:wsrp:v1:types">
 <urn:registrationContext>
 <urn:registrationHandle>CIncRegnHandle</urn:registrationHandle>
 </urn:registrationContext> 15
 <urn:portletContext>
 <urn:portletHandle>portfolioManager.1</urn:portletHandle>
 </urn:portletContext>
 <urn:userContext xsi:nil="true"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"/> 20
 <urn:propertyList>
 <urn:properties name="stockSymbolList">
 <urn:stringValue>AMZN YHOO</urn:stringValue>
 </urn:properties>
 <urn:properties name="refreshInterval"> 25
 <xs:int xmlns:xs="http://www.w3.org/2001/XMLSchema">60</xs:int>
 </urn:properties>
 </urn:propertyList>
</urn:setPortletProperties>

Message 32: Set Portlet Properties Request 30

P Inc. updates the values of the properties, and returns the following response. Note that the
WSRP specification does not allow the Producer to change the portletHandle in this
response. The purpose of the portletContext structure in this response is only to allow the
Producer to return any portletState.

<urn:setPortletPropertiesResponse 35
 xmlns:urn="urn:oasis:names:tc:wsrp:v1:types">
 <urn:portletContext>
 <urn:portletHandle>portfolioManager.1</urn:portletHandle>
 </urn:portletContext>
</urn:setPortletPropertiesResponse> 40

Message 33: Set Portlet Properties Response
If the Producer is unable to store updated portlet properties, it may serialize
updated properties and return those as portletState in the
setPortletPropertiesResponse.

When a Consumer receives such portletState, it is required to supply the 45
same with PortletContext in all future invocations for that portlet.

The following sequence shows the sequence of interactions for setting portlet properties with
cloning.

Web Services for Remote Portlets 1.0 Primer Page 42 of 53

C
on

su
m

er

Clone portlet (original portlet context)

New Portlet Context

Pr
od

uc
er

Portal admin creates a new
portal page for a user

Clones the portlet

Get Portlet Properties (new portlet context)

Portlet Properties

Get portlet properties

Update portlet
properties

Set Portlet Properties (new portlet context)

Same Portlet Context

Figure 6: Cloning and Setting Portlet Properties

6.2.6 Destroy Portlets
In the above scenarios, the Consumer cloned a producer-offered portlet, so that it can update the 5
persistent state of the portlet. In most cases, Producer implementations will have to store some
state in a persistent store such as a relational database. Once the Consumer determines that a
consumer-configured portlet is no longer in use, the Consumer should request the Producer to
destroy that portlet as this will allow the Producer to clean or archive any stored state.

The destroyPortlets operation serves this purpose. It allows a Consumer to request a 10
Producer to destroy one more consumer-configured portlets. Consider the following scenario.

A user requests C Inc to terminate his user account with C Inc. Since that user’s
customizations are no longer required, C Inc sends a request P Inc to destroy
portlets cloned for that user.

Scenario 13: Destroy Portlets 15

In order to destroy portlets, C Inc sends the following request to P Inc.

<urn:destroyPortlets xmlns:urn="urn:oasis:names:tc:wsrp:v1:types">
 <urn:registrationContext>
 <urn:registrationHandle>CIncRegnHandle</urn:registrationHandle>
 </urn:registrationContext> 20
 <urn:portletHandles>portfolioManager.1</urn:portletHandles>
</urn:destroyPortlets>

Scenario 14: Destroy Portlets Request
Note that C Inc may send more than one portlet handle in this request, so that the Producer can
destroy several portlets in a single request. 25

Upon verifying that the portlet handle refers to a consumer–configured portlet, P Inc can delete or
archive any persistent state, and return the following response.

<urn:destroyPortletsResponse
 xmlns:urn="urn:oasis:names:tc:wsrp:v1:types"/>

Message 34: Destroy Portlets Response 30

However, if the Consumer attempts to destroy a producer-offered portlet, or if the Producer fails
to destroy a portlet due to some internal failure, the Producer may include the portlets that it failed
to destroy and a reason for the failure in the destroyPortletsResponse. The following
message shows the response from P Inc when it fails to destroy a portlet.

Web Services for Remote Portlets 1.0 Primer Page 43 of 53

<urn:destroyPortletsResponse
 xmlns:urn="urn:oasis:names:tc:wsrp:v1:types">
 <urn:destroyFailed>
 <urn:portletHandle>portfolioManager.1</urn:portletHandle>
 <urn:reason>Failed to destroy the portlet. </urn:reason> 5
 </urn:destroyFailed>
</urn:destroyPortletsResponse>

Message 35: Destroy Portlets Response When Failed
This response indicates the P Inc failed to destroy the portlet with handle
portfolioManager.1. 10

After the Producer destroys a consumer–configured portlet, it can no longer use the portlet with
that handle.

The following sequence illustrates a Consumer aggregating cloned portlets for several users, and
destroying the cloned portlets when such portlets are no longer required.

C
on

su
m

er

Clone portlet (original Portlet Context)

New Portlet Context

Pr
od

uc
er

Portal admin creates a new
portal page for a user

Clones the portlet

Clone portlet (original Portlet Context)

New Portlet Context

Portal admin creates a new
portal page for another user

Clones the portlet

Subsequent calls to Producer with
new Portlet Context

Destroy portlet (Cloned Portlet Context)

Deleted

Portal admin removes the portal
page for the first user

Deletes the portlet

Destroy portlet (Cloned Portlet Context)

Deleted

Portal admin removes the portal
page for the second user

Deletes the portlet

 15
Figure 7: Cloning and Destroy for Managing Portlet Customizations

6.3 Recommendations
The portlet management interface is an optional interface, and the WSRP specification does not
require Producers to implement this interface. If you are implementing a Producer, consider
implementing the portlet management interface to allow users/Consumers of your portlets to 20
explicitly manage the lifecycle and customize the properties of portlets. You can thus allow each
usage to behave differently while sharing the same implementation (i.e., code) of portlets. To take
full advantage of this interface, your portlets must be able to expose some/all of their persistent
state as properties. If none of your portlets is capable of doing so, you may not find much value in
implementing this interface. . Note that the WSRP specification requires support for this interface 25
if portlet clones are ever created.

One of the common choices faced by Producers implementing this interface is whether to expose
portlet properties as simple types (such as strings, integers etc) or as complex types. Exposing
properties as complex types has the advantage of granularity and typing. However, for
Consumers, it may prove to be complex to generate a generic user interface to show/modify 30
complex portlet properties. If a Producer exposes properties as complex types, Consumers may
have to generate special purpose user interfaces for each complex type. In order to let
Consumers generate a generic user interface, we recommend using simple types.

Web Services for Remote Portlets 1.0 Primer Page 44 of 53

7 Use Profiles
The purpose of use profiles is to provide a well-defined palette of functionality for Producers and
Consumers. By qualifying a Producer or a Consumer implementation with a use profile palette,
implementers can indicate the level of functionality supported. WSRP use profiles are non-
normative, and should be regarded as general guidelines. Implementers will likely compose their 5
implementations by selecting from a “palette” of functionality, and this section provides some
guidance on how to map these use profiles across several functional axes. Refer to [9] for a
complete description of use profiles.

WSRP use profiles declare following levels for Producers:

a. Base Level: The Producer implements just the required elements of the WSRP 10
Specification.

b. Simple Level: The Producer implements certain optional/advanced features in addition to
whatever is required at the base level.

c. Complex Level: Complex level Producers implement most of the optional/advanced
features of the WSRP specification. 15

The following are the use profiles for Consumers:

a. Base Level: The Consumer implements just the required elements of the WSRP
Specification.

b. Simple Level: The Consumer implements certain optional/advanced features in addition
to whatever is required at the base level. 20

c. Medium Level: Medium level Consumers may implement a larger set of the
optional/advanced features of the WSRP specification.

d. Complex Level: Complex level Consumers provide extended features (such as custom
modes and window states).

The use profiles are intended to simplify the possible combinations of support for optional areas 25
of the WSRP specification. Each profile specifies a certain set of functionality as supported. While
an implementation may also support other optional functions, specifying the supported use profile
helps customers to compare the support offered by implementations.

A Consumer and Producer have different motivations in achieving higher levels. A Producer need
only implement the functionality required by the portlets it is offering. Unless a Consumer knows 30
that it will only be consuming portlets from a Producer of a given level, it should provide all levels
so that any portlet can function properly. The Consumer should not assume that there is graceful
degradation of functionality if it does not implement certain functionality. For example, if a
Consumer does not provide, say, registration, a portlet from a Producer requiring registration will
not function at all. 35

Also note that there is not a one-to one correspondence with Producer Levels and Consumer
levels; e.g. the base consumer level is expected to handle the initCookie operation, while the
base Producer level does not require this operation.

The following table illustrates some common scenarios that Producers and Consumers
implement, and provides a mapping of those implementations to user profiles. 40

Functionality/Use
Case

Notes

Consumer
Level

Producer
Level

Implements all
required interfaces

The required interfaces are markup and
service description interfaces. These
interfaces are required so that the Producer

Base Base

Web Services for Remote Portlets 1.0 Primer Page 45 of 53

and Consumer can offer some minimal level
of portlet aggregation.

Markup Interface

Producer requires
cookie initialization
for markup
operations

Base level Consumer must honor the
requiresInitCookie element of the
service description of a Producer.

Base Simple

Support Consumer-
rewriting of URLs

Consumers should at least support consumer
rewriting of URLs. In our sample scenario, P
Inc and C In rely consumer-rewriting for
generating URLs and rewriting names in
markup fragments.

Base Base

Producer URL
Writing

For Producer to be able to create URLs,
Consumer submits URL templates. In our
sample scenario, P Inc does not support
producer-writing of URLs

Complex Complex

Support
wsrp:normal
window state and
wsrp:view mode

Producers must be able to support at least
one mode and window state. Normal window
state (wsrp:normal) and view mode
(wsrp:view) are the values that Producers
and Consumers must support. In our sample
scenario, P Inc supports wsrp:view mode
and wsrp:normal window state.

Base Base

Support markup
types markup

Portlets must be able to support at least one
type of markup. In our sample scenario, the
portfolio manager portlet offers “text/html”
markup.

Base Base

Support
Navigational State

Navigational state is one of the basic form of
representing transient state of a portlet. In our
sample scenario, P Inc includes the user
supplied stock symbol and its value as the
navigational state for C Inc to return with
getMarkup requests.

Base Simple

Session State For Producers, managing session state is
optional. However, Consumers must support
sessions to guarantee a basic level of
aggregation of portlets. In our sample
scenario, P Inc manages session state.

Base Simple

Markup Caching Producer supplies a cacheControl element
to indicate Consumer whether it can cache
the markup.

Simple Simple

Supports Standard
Modes

wsrp:edit, wsrp:help, and
wsrp:preview modes. P Inc uses standard
modes.

Simple Simple

Web Services for Remote Portlets 1.0 Primer Page 46 of 53

Supports Standard
Window States

wsrp:maximized, wsrp:minimized and
wsrp:solo window states. P Inc uses
standard window states

Simple Simple

Caching validation Use the validateTag field of
MarkupParams

Complex Complex

Multiple Markup
Types

Portlets could support multiple markup types
(e.g. text/html and text/wml). This would
allow Consumers to provide portlet
aggregation for various devices and non-
browser environments.

Complex Simple

Supports Custom
Modes

e.g. a print mode Complex Complex

Supports Custom
Window States

e.g. a half-page mode Complex Complex

Registration Interface

In-band
Registration

Base level Consumers cannot display portlets
that require registration. P Inc uses in-band
registration.

Simple Simple

Out-of-band
Registration

Complex level producers could allow out-of-
band registration by creating a
registrationHandle by other means than
the register operation.

Complex Complex

Portlet Management Interface

Implicit or explicit
cloning of portlets

Base level Consumer and Producer do not
support cloning.

Simple Simple

Grouping of
Portlets

Producers could group portlets to allow
portlets in a group share transient/persistent
state. Refer to Section 3.8 of the WSRP 1.0
Specification for details.

Complex Complex

Persistent local
state

Producers could manage persistent state
locally and not return portletState or
registrationState. In our sample
scenario, P Inc is capable of managing
persistent state locally.

Simple Complex

Advanced

Portlet
Management
Interface

Consumers can use the portlet management
interface to manage persistent lifecycle of
portlets explicitly. Consumer may create a
user interface for property management using

Complex Simple

Web Services for Remote Portlets 1.0 Primer Page 47 of 53

this interface.

Localization Producers may be able to supply localized
values for resources such as names,
descriptions etc. In our scenario, P Inc
supports en and en-US locales. A complex
Consumer would support multiple locales.

Complex Complex

User Categories Producers may be able to personalize portlet
markup/behavior based on user
categorization. Producers and Consumer
typically agree on (out-of-band) the semantics
of user categories.

Complex Complex

8 Practical Considerations
8.1 Fault Handling
WSRP specifies a number of faults that a Producer may return in response to various requests
from a Consumer. If you are setting up a Consumer to aggregate portlets from a Producer, 5
knowledge of the implication of these faults would help debug any problems. Note that Producers
may return additional faults as dictated by underlying web service stack.

Each WSRP fault has an associated faultcode. Here is an example message from a Producer
that requires registration in response to a request from a Consumer without the
registrationContext. 10

<soapenv:Envelope
 xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/">
 <soapenv:Body>
 <soapenv:Fault xmlns:urn="urn:oasis:names:tc:wsrp:v1:types">
 <faultcode>urn:InvalidRegistration</faultcode> 15
 <faultstring>Registration is required.</faultstring>
 <detail>
 <urn:InvalidRegistration/>
 </detail>
 </soapenv:Fault> 20
 </soapenv:Body>
</soapenv:Envelope>

Message 36: Fault Response
The faultstring in this message explains that the Consumer must supply
registrationContext with the request. Also, note the detail element. This element 25
contains the name of the faultcode qualified by oasis:names:tc:wsrp:v1:types
namespace.

8.1.1 AccessDenied Fault
A Producer may return this fault when the Producer is unable to provide access to a portlet for a
given operation due to security policy reasons. 30

Web Services for Remote Portlets 1.0 Primer Page 48 of 53

Action: Since such security policy restrictions are implementation specific, consult the entity
hosting the Producer to determine an appropriate action.

8.1.2 InconsistentParameters Fault
A Producer may return the InconsistentParameters fault when a Consumer supplies
inconsistent data. For example, a Producer returns this fault when a Consumer tries to access a 5
portlet with a portletHandle that was created during a different registrationContext than
the one the Consumer supplied.

Action: This fault may occur because of implementation errors in the Consumer. Make sure that
the portletHandle included in the request corresponds to either a portletHandle returned
in the service description response, or one returned during performBlockingInteraction or 10
clonePortlet operations invoked using the same registrationContext. If not, use the
correct registrationContext or reset the portletHandle to one of those offered in the
service description response.

8.1.3 InvalidRegistration Fault
This fault indicates that the Consumer did not supply a registrationContext when 15
registration is required, or the supplied registrationContext is invalid.

Action: This fault may occur because of implementation errors in the Consumer. Check the
Producer’s service description to see if the Producer requires registration. If so, register the
Consumer with the Producer and resend the request with a valid registrationContext. If you
have already registered your Consumer with the Producer, make sure that the 20
registrationContext is included in the request. Also make sure that the
registrationContext is the same as the one returned by the Producer. If the Producer still
returns the same fault, check the message to see if you need to reregister the Consumer as the
Producer may have invalidated previous registration.

8.1.4 InvalidCookie Fault 25

HTTP cookies are transient and may become invalid. A Producer returns this fault when the
Consumer supplied cookie is no longer valid.

Action: The fault may occur due to Producer imposed timeout of cookies. Invoke the
initCookie operation again and then invoke the operation that caused this fault with the new
cookie. Since cookies returned by the Producer may be related to the session IDs returned in an 30
implementation-specific manner, resend any data stored that the Producer stores in the session.
For example, if the Producer indicated that it stores URL templates and/or user context data in
sessions, resend URL templates and user context data with the request.

8.1.5 InvalidHandle Fault
A Producer returns this fault when the Consumer supplied portletHandle or 35
registrationHandle is invalid.

Action: This fault may occur because of implementation errors in the Consumer. Make sure that
the portletHandle included in the request corresponds to either a portletHandle returned
in the Service Description response, or one returned by either performBlockingInteraction
or clonePortlet operations invoked using the same registrationContext. 40

8.1.6 InvalidSession Fault
A Producer returns this fault when a Consumer-supplied session ID is invalid.

Web Services for Remote Portlets 1.0 Primer Page 49 of 53

Action: This fault may occur due to Producer imposed timeout of sessions. Invoke the same
operation without the sessionID and with any data that the Producer has indicated that it stores
in the session. For example, if the Producer stores URL templates and/or user context data in
sessions, resend URL templates and user context data with the request.

8.1.7 InvalidUserCategory Fault 5

A Producer returns this fault when a Consumer supplied userCategory name is not valid. Note
that Consumer should not supply user categories not recognized by Producers.

Action: This fault may occur as a result of implementation errors in the Consumer. Make sure
that the userCategory is one of those supplied by the Producer in its Service Description
response. 10

8.1.8 MissingParameters Fault
A Producer returns this fault when some required data is missing in the request.

Action: This fault may occur because of implementation errors in the Consumer. Since the set of
parameters required are specific to each operation, refer to the description of the operation and
make sure that all the required parameters are included in the request. 15

8.1.9 OperationFailed Fault
This is the most generic fault that a Producer can return for any request from a Consumer. In
general, well-behaving Producers return this fault only when the condition that caused the fault
cannot be described with any other WSRP fault.

Action: If you encounter this fault, look into the faultstring for any clues, and if no 20
meaningful explanation is found, contact the entity hosting the Producer for help.

8.1.10 PortletStateChangeRequired Fault
A Producer throws this fault when the portlet needs to update its persistent state during a
performBlockingInteraction but the Producer cannot allow it since the Consumer is not
ready for state changes. 25

During performBlockingInteraction, the portletStateChange flag in the request
dictates persistent state changes. When the value of this flag is set to readWrite or
cloneBeforeWrite, the producer can allow the portlet to make persistent state changes. A
persistent state change may cause the Producer to return a new portletContext. In case the
Consumer is not capable of accepting the new portletContext, it may instead set the value of 30
the portletStateChange flag to readOnly, which would cause this fault.

Action: If possible, configure the Consumer to allow state changes. Note that portlets may not
function correctly when prevented from making persistent state changes. If you find that the
portlet is not usable without persistent state changes and if you are unable to configure the
Consumer to allow state changes, consider not using the portlet. 35

8.1.11 UnsupportedLocale Fault
A Producer may throw this fault when a portlet is unable to generate markup in the requested
locale.

Action: This fault may occur because of implementation errors in the Consumer. Since the portlet
is not capable of generating markup in the requested locale, restrict the Consumer to supply one 40
of the locales indicated as supported by the portlet’s metadata.

Web Services for Remote Portlets 1.0 Primer Page 50 of 53

8.1.12 UnsupportedMimeType Fault
This is similar to the UnsupportedLocale fault, and a Producer throws this fault when a portlet
cannot generate markup in the requested MIME type.

Action: This fault may occur because of implementation errors in the Consumer. Since the portlet
is not capable of generating markup in the requested MIME type, restrict the Consumer to supply 5
one of the MIME types indicated as supported by the portlet’s metadata.

8.1.13 UnsupportedMode Fault
A Producer throws this fault when it cannot invoke a portlet in a given mode.

Action: This fault may occur because of implementation errors in the Consumer. Restrict the
Consumer to supply a mode indicated as supported by the portlet’s metadata. 10

8.1.14 UnsupportedWindowState Fault
A Producer throws this fault when a portlet cannot be invoked in a given window state.

Action: This fault may occur because of implementation errors in the Consumer. Restrict the
Consumer to supply a window state supported by the portlet

8.2 Localization 15

Most of the responses from a Producer include string values, such as names, descriptions, hints,
etc. For example, the description of a portlet includes description, title, short-title,
keywords etc expressed each with a string value and a locale. By default, Producers often use a
fixed locale (usually the Producer’s default locale) for these values. In order to let Consumers
obtain such values in some other locale (or more than one locale), WSRP allows Consumers to 20
supply a list of preferred locales. Here are the operations that allow Consumers to pass locales:

(a) getServiceDescription: Consumer can send a desiredLocales array with a
getServiceDescription request. If supported, the Producer will return all strings in the
given locales.

(b) getPortletDescription: Consumer can send a desiredLocales array with a 25
getPortletDescription request. If supported, the Producer will return all strings in the
given locales.

(c) getPortletPropertyDescription: Consumer can send a desiredLocales array
with a getPortletPropertyDescription request. If supported, the Producer will
describe the portlet’s properties in the given locales. 30

(d) getMarkup: With a getMarkup request, the Consumer can send an array of locales to
request the Producer to return the markup and the preferredTitle in one of the given
locales.

In all these cases, the Producer has the following options to send a localized string value:

(a) Return the value as a LocalizedString, with a string value and a locale. For example, in 35
Message 2, P Inc returned the description and title with a string value and an
xml:lang attribute for the locale.

(b) Return the value as a LocalizedString with a string value, an xml:lang attribute for
the locale of the string value, and a resourceName attribute. The purpose of the
resourceName attribute is to return string values in multiple locales with 40
getServiceDescriptionResponse, getPortletDescriptionResponse and
getPortletPropertyDescriptionResponse messages. Each of the messages can
include a resourceList array. The resourceList array can contain several Resource

Web Services for Remote Portlets 1.0 Primer Page 51 of 53

elements. Each Resource element includes the resourceName, and a ResourceValue
with string values expressed in the locale indicated by an xml:lang attribute.

To illustrate how a Producer can localize its response with resources, let us revisit Scenario 1,
and consider that C Inc requested for strings in “en” and “de” locales. To such a request, P Inc
may return the following response. 5

<urn:getServiceDescriptionResponse
xmlns:urn="urn:oasis:names:tc:wsrp:v1:types">
 <urn:requiresRegistration>false</urn:requiresRegistration>
 <urn:offeredPortlets>
 <urn:portletHandle>portfolioManager</urn:portletHandle> 10
 <urn:markupTypes>
 <urn:mimeType>text/html</urn:mimeType>
 <urn:modes>wsrp:view</urn:modes>
 <urn:windowStates>wsrp:normal</urn:windowStates>
 <urn:windowStates>wsrp:minimized</urn:windowStates> 15
 <urn:windowStates>wsrp:maximized</urn:windowStates>
 <urn:locales>en</urn:locales>
 <urn:locales>de</urn:locales>
 </urn:markupTypes>
 <urn:description resourceName="_description" xml:lang="en"> 20
 <urn:value>Manages portfolios</urn:value>
 </urn:description>
 <urn:title resourceName="_title" xml:lang="en">
 <urn:value>Manage Your Portfolios</urn:value>
 </urn:title> 25
 </urn:offeredPortlets>
 <urn:locales>en</urn:locales>
 <urn:locales>de</urn:locales>
 <urn:resourceList>
 <urn:resources resourceName="_description"> 30
 <urn:values xml:lang="de">
 <urn:value>Verwaltet die Portfolios</urn:value>
 </urn:values>
 </urn:resources>
 <urn:resources resourceName="_title"> 35
 <urn:values xml:lang="de">
 <urn:value>Ihr Portfolio verwalten</urn:value>
 </urn:values>
 </urn:resources>
 </urn:resourceList> 40
</urn:getServiceDescriptionResponse>

Message 37: Get Service Description Response with Resources
This message is similar to Message 2, except for the parts shown in bold. In this response, both
the description and title include resourceName attributes and corresponding resources.
For each resourceName, the response includes a resources element with the resource value 45
in “de” locale.

8.3 Extensions
Although the WSRP 1.0 Specification accounts for the most common scenarios, implementers
may find a need to extend WSRP to deal with more advanced scenarios or scenarios not
addressed by the specification. To account for such scenarios, WSRP Specification allows 50
implementations to extend most of the WSRP data structures to include additional data as
extensions.

Web Services for Remote Portlets 1.0 Primer Page 52 of 53

Extensions are implementation-specific. A Producer and Consumer must agree to the purpose
and semantics of the extension before extending any WSRP data structure. Note that Producers
using extensions are not guaranteed to function correctly if a Consumer does not supply
extended data required by the Producer. If you are implementing a Producer, consider making
any extensions optional so that the Producer can interoperate with Consumers that do not supply 5
extensions.

The WSRP specification requires that Producers and Consumers declare extension in
namespace other than the one used by the WSRP specification to avoid conflicts with future
versions of the WSRP specification.

If you find that WSRP specification does not represent any specific use case and you are relying 10
on extensions to address the use case, please email your use case to wsrp-
comment@lists.oasis-open.org.

8.4 Form Parameters and Multipart Upload
When a Consumer sends a performBlockingInteraction request, Producers reconstruct
the input from the supplied InteractionParams. The InteractionParams can include form 15
parameters as well as uploaded data. For example, when a HTML markup includes a form with
an enctype attribute with value "multipart/form-data", and one or more input controls of
type “file”, the Consumer must extract the uploaded data from the incoming HTTP request, and
send the same to the Producer. The Consumer has the following options of passing such data via
InteractionParams to the Producer: 20

(a) The Consumer can send the entire multipart request (including all uploaded files and other
form parameters) as a single uploadContexts element, or one uploadContexts
element per part in the incoming multiple request.

(b) If the form also includes input controls of types other than file, the Consumer can send
each value of the control as a formParameters element, or as an uploadContexts 25
element.

The uploadContexts element includes the uploaded data (as uploadData), its MIME type (as
mimeType), and any MIME headers sent by the browser to the Consumer (as
mimeAttributes). Since browsers may send a variety of headers while uploading files, we
recommend Consumer implementations to include all those attributes to let the Producer 30
reconstruct the request.

9 References
1. Web Services for Remote Portlets 1.0 Specification, http://www.oasis-open.org/committees

/download.php/3343/oasis-200304-wsrp-specification-1.0.pdf

2. Web Services for Remote Portlets 1.0 White Paper, http://www.oasis-open.org/committees 35
/download.php /2634/WSRP Whitepaper - rev 2.doc

3. WSDL for WSRP Interfaces, http://www.oasis-open.org/committees/wsrp/specifications
/version1/wsrp_v1_interfaces.wsdl

4. WSRP data types, http://www.oasis-open.org/committees/wsrp/specifications/version1/
wsrp_v1_types.xsd 40

5. WSRP WSDL Report, http://www.oasis-open.org/committees/wsrp/presentations/012003
/wsrp-wsdl-report.doc

6. WSRP Conformance Test Kit, http://www.alphaworks.ibm.com/tech/wsrptk

Web Services for Remote Portlets 1.0 Primer Page 53 of 53

7. WSRP Conformance Statements, http://www.oasis-open.org/apps/org/workgroup/wsrp/
wsrp-conformance /download.php/6018

8. RFC 2965, HTTP State Management Mechanism, http://www.ietf.org/rfc/rfc2965.txt

9. WSRP Use Profiles, http://www.oasis-open.org/apps/org/workgroup/wsrp/wsrp-confor
mance/download.php/3073/WSRP Use Profiles.doc 5

Appendix: Acknowledgements
The editors/contributors of this Primer would like to acknowledge the ideas, material, and
feedback provided by Olin Atkinson, Christopher Coco, William Cox, Howard Crow, Michael
Freedman, Scott Goldstein, Richard Jacob, Andre Kramer, Avi Klein, Jon Klein, Carsten Leue,
Farrukh Najmi, Fubini Ross, and Rich Thompson, 10

