
Web Services Events (WS-Events) Version 2.0

16 July 2003

Authors:
Nicolas Catania (editor), Hewlett-Packard Company
Pankaj Kumar, Hewlett-Packard Company
Bryan Murray, Hewlett-Packard Company
Homayoun Pourhedari, Hewlett-Packard Company
William Vambenepe, Hewlett-Packard Company
Klaus Wurster, Hewlett-Packard Company

Copyright Notice

Copyright © 2003 Hewlett-Packard Development Company, L.P.
PERMISSION TO COPY AND DISPLAY THIS WSMF PAPER, IN ANY MEDIUM WITHOUT FEE OR
ROYALTY, IS HEREBY GRANTED PROVIDED THAT YOU INCLUDE THE ABOVE COPYRIGHT
NOTICE ON *ALL* COPIES OF THIS WSMF SPECIFICATION, OR PORTIONS THEREOF, THAT
YOU MAKE.
DISCLAIMER OF WARRANTEES. USER ACKNOWLEDGES THAT THE SPECIFICATION MAY
HAVE ERRORS OR DEFECTS AND IS PROVIDED "AS IS." HEWLETT-PACKARD MAKES NO
EXPRESS OR IMPLIED WARRANTIES OF ANY KIND WITH RESPECT TO THE SPECIFICATION,
AND SPECIFICALLY DISCLAIM THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE, EVEN IF THAT PURPOSE IS KNOWN TO HEWLETT-
PACKARD. NO LICENSE, EXPRESS OR IMPLIED, IS PROVIDED TO ANY PATENT OR
TRADEMARK RIGHT.
LIMITATION OF LIABILITY. HEWLET-PACKARD SHALL NOT BE RESPONSIBLE FOR ANY LOSS
TO ANY THIRDS PARTIES CAUSED BY USING THE SPECIFICATION IN ANY MANNER
WHATSOEVER. HEWLETT-PACKARD SHALL NOT BE LIABLE FOR ANY DIRECT, INDIRECT,
SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, WHETHER BASED ON CONTRACT,
TORT OR ANY OTHER LEGAL THEORY, ARISING OUT OF ANY USE OF THE SPECIFICATION OR
ANY PERFORMANCE OF HEWLETT-PACKARD RELATED TO THIS SPECIFICATION. USER
FURTHER ACKNOWLEDGES THAT THE SPECIFICATION IS PROVIDED FOR EVALUATION
PURPOSES ONLY, AND USER ASSUMES ALL RISKS ASSOCIATED WITH ITS USE.

Abstract

This document describes Web Services Events (WS-Events) Version 2.0, an XML syntax and a set of
processing rules for advertising, subscribing, producing and consuming Web Services Events. An Event
is an abstract concept that is physically represented by a Notification. Notifications flow from Event
producer to Event consumer using asynchronous or synchronous delivery modes (push/pull).

Status of this Document

This WS-Events Specification is an initial public draft release and is provided for review and evaluation
only. Hewlett-Packard Company hopes to solicit your contributions and suggestions in the near future.
Hewlett-Packard Company makes no warranties or representations regarding the specification in any
manner whatsoever.

Page 1 of 23

Table of Contents

1. Introduction
 1.1 Notational Conventions
 1.2 Versions, Namespaces and Identifiers
 1.3 Compliance
 1.4 Terminology
2. Examples
 2.1 Event discovery example
 2.2 Event Notification Subscription example
 2.3 Example of a Notification message
3. Event Notification Advertising and Discovery
 3.1 Operations overview
 3.2 The GetAllEventTypes operation
 3.3 The GetEventTypeDefinition operation
 3.4 The GetEventInstanceInfo operation
 3.5 Notifications For Event Type Discovery
 3.6 The NewEventTypeNotification
 3.7 The EventTypeUpdatedNotification
4. Event Notification Subscription
 4.1 Push/Pull Mode Overview
 4.2 Subscription Request: The Subscribe message
 4.3 Subscription Response
 4.4 Extending Subscription
 4.5 Cancelling Subscription
5. Event Notification Retrieval (Pull Mode)
 5.1 GetEventsSinceUUID
 5.2 GetEventsSinceDate
 5.3 GetEventsRangeByDate
6. Event Notification Syntax
 6.1 The NotificationList Element
7. Common Types
 7.1 The EventTypeList and EventType Element Types
 7.2 The UUID Element Type
 7.3 The dateTime Type
8. Transport Considerations
 8.1 Message encoding
 8.2 Default Binding
 8.3 Reliability
9. Security
 9.1 Transport
 9.2 Authentication and Authorization
10. Future Directions (Non-Normative)
11. Appendix A: Extended notification examples
 11.1 Notification for a management plate form
12. References

1. Introduction

This document describes Web Services Events (WS-Events) Version 2.0, an XML syntax and a set of
processing rules for advertising, subscribing, producing and consuming Web Services Events using a
push and pull mode. In the push mode, the event notification producer calls a method (callback) on the
event consumer passing one or more notifications as parameter. In effect the producer pushes
asynchronously notifications to the consumer. In the pull mode, the consumer invokes methods on the
producer the retrieve the buffered notifications. WS-Events defines the following:

An extensible XML representation of event notifications.

Page 2 of 23

A simple subscription protocol between notification consumers, producers and brokers.
Mechanisms to advertise and discover events.
Support for both asynchronous and synchronous communication of notifications from the
producer to the consumer through a push and pull mode.
A lightweight XML syntax to describe event filters.

WS-Events does not define a general-purpose event mechanism, rather, it defines one suitable for the
Web services infrastructure.
WS-Events builds upon the existing Web services framework. It uses Web Service Defnition Language
(WSDL 1.1) [WSDL], and the XML schema specifications [XML Schema: Structures] and [XML Schema:
Datatypes] to describe management interfaces and message structure. WS-Events is applicable to any
version of SOAP and its message processing model, as well as to other protocols that may be
described in WSDL documents.A mapping to WSDL 1.1 is included as part of this specification.
However, there is ongoing work in the definition of WSDL 1.2 [WSDL 1.2] which may be useful in future
versions of WS-Events. It is expected that a mapping of WS-Events to WSDL 1.2 will be made when
that specification is released.

1.1 Notational Conventions

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD
NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as
described in [KEYWORDS].
WS-Events is designed to work with the general Web Services framework including WSDL service
descriptions and the [SOAP] message structure and message processing model. WS-Events should be
applicable to any version of [SOAP]. The SOAP 1.1 namespace URI [URI] is used herein to provide
detailed examples, but there is no intention to limit the applicability of this specification to a single
version of SOAP.
All parts of this specification are normative, with the exception of examples and sections explicitly
marked as "Non-Normative". In cases where this document and the WSDL or XML Schema Definitions
differ, the WSDL and XSD files are considered normative.

1.2 Versions, Namespaces and Identifiers

This specification does not provision for an explicit version number in this syntax. Any future version of
this specification will use a different namespace identifier. The namespace that MUST be used by
implementations of this (dated) specification is:
 http://devresource.hp.com/drc/specifications/wsmf/2003/07/events/
This URI designates a namespace that is under the control of this specification. The following
namespaces are also used in this document:

1.3 Compliance

An implementation is not WS-Events compliant if it fails to satisfy one or more of the MUST or
REQUIRED level requirements defined in this specification.
A SOAP receiver MUST comply with this specification in order to process a WS-Events message
successfully. A SOAP sender MUST NOT use the
http://devresource.hp.com/drc/specifications/wsmf/2003/07/events/ XML Namespace identifier

Prefix Namespace
xs http://www.w3.org/2001/XMLSchema
wsdl http://schemas.xmlsoap.org/wsdl/
soap http://schemas.xmlsoap.org/wsdl/soap/
evt http://devresource.hp.com/drc/specifications/wsmf/2003/07/events/

Page 3 of 23

unless it is WS-Events compliant. A Web service provider MUST NOT use the
http://devresource.hp.com/drc/specifications/wsmf/2003/07/events/ XML Namespace identifier in
its WSDL description unless it is WS-Events compliant.

1.4 Terminology

We introduce the following terms which are used throughout this document:

Event
An event is a change in the state of a resource or request for processing.

Event Producer
An event producer is an entity which generates notifications.

Event Consumer
An event consumer is a receiver of notifications.

Event Broker
An event broker is an entity which routes notifications. Brokers typically aggregate and publish
events from other producers. An event broker can also apply some transformation to the
notifications it processes.

Notification
A notification is an XML element representing an event. One or more notifications are emitted by
an event producer and received or retrieved by one or more event consumers possibly through a
broker.

Resource
A resource is defined in [URI] as:
"A resource can be anything that has identity. Familiar examples include an electronic document,
an image, a service (e.g., 'today's weather report for Los Angeles'), and a collection of other
resources. [...] The resource is the conceptual mapping to an entity or set of entities, not
necessarily the entity which corresponds to that mapping at any particular instance in time. Thus,
a resource can remain constant even when its content---the entities to which it currently
corresponds---changes over time, provided that the conceptual mapping is not changed in the
process."
A resource is identified by one or more URIs. If there is more than one URI, the most specific
should be used (e.g. http://www.example.com/news.html.en instead of
http://www.example.com/news).

Web Service
This specification uses a slightly modified definition of the one from the W3C WS-Architecture
group. Namely it make WSDL the standard way to define and describe interfaces:
"A Web service is a software system identified by a URI, whose public interfaces and bindings
are defined and described using XML. Its definition can be discovered by other software
systems. These systems may then interact with the Web service in a manner prescribed by its
definition, using XML based messages conveyed by internet protocols."
This specification restricts this definition by making WSDL mandatory to describe a Web Service.

2. Examples

2.1 Event discovery example

This examples shows how an event producer such as a managed service communicates the list of
events accessible by an event consumer like a management console.
Usually, this discovery step happens before the subscription set-up using the methods

Page 4 of 23

GetAllEventTypes and GetEventTypeDefinition to discover which events it is interested in.
An event notification consumer may be interested in events that have happened before it started its
subscription if, for instance, it is the first time it monitors the service. By analogy, if a file were used to
store events, the event notification consumer would read from either:

1. Last file position.
2. From the beginning of the file
3. From a random position in the file

This is done using the GetEventInstanceInfo. The management application would then know how
much historical information it could retrieve assuming that this past events could shed some light on a
future problem.

The management application would query the managed service for all the event notifications it can
subscribe to. If one (say wsee:ClusterStarted) is of particular interest, it would ask for a more detailled
definition and how many past instances can still be retrieved.
Below is an example of what the EventTypeDefinition and EventInstanceInfo could look like:

 Management Application Managed Service

 | |
 | GetAllEventTypes() |
 | ---> |
 | |
 | EventTypeList |
 | <--- |
 | |
 | GetEventTypeDefinition(wsee:ClusterStarted) |
 | ---> |
 | |
 | EventTypeDefinitionList |
 | <--- |
 | |
 | GetEventInstanceInfo(wsee:ClusterStarted) |
 | ---> |
 | |
 | EventInstanceInfoList |
 | <--- |
 | |

 <EventTypeDefinition>
 <EventType>
 ns:ClusterStarted
 </EventType>
 <SchemaLocation>
 http://schemas.examples.com/2003/04/ClusterStarted.xsd
 </SchemaLocation>
 <SubscriptionURL>
 http://a.service.examples.com/
 </SubscriptionURL>
 <Description>
 Indicates that the WS execution environment cluster was started
 </Description>
 <SubscriptionMode>
 push
 </SubscriptionMode>
 </EventTypeDefinition>

 <EventInstanceInfo>
 <EventType>
 ns:ClusterStarted
 </EventType>
 <Available>
 200
 </Available>
 </EventInstanceInfo>

Page 5 of 23

2.2 Event Notification Subscription example

To achieve scalability, WS-Events uses a subscription mechanism by which an event consumer informs
the producer that it is interested in receiving notifications.
Subscriptions allow the notification producer to plan and allocate resources depending on the number of
subscribers, event notification types and access modes and length of subscriptions.
Subscriptions have a limited duration in time. For instance, it might last for an hour. This ensures that if
a subscriber went away and forgot to cancel its subscription, resources would not be held indefinitely
and recovered by the event producer. Subscription can be renewed before it expires.
The diagram below illustrates an Event Consumer (EC) that subscribe to an event evt1 published by a
Event Producer (EP).
EC sends a request to EP indicating for which event it is interested to receive notification from as well
as a suggested duration for the subscription. Since no callback URL was given it is a pull mode
subscription.
If EP accepted the subscription request, it replies with a unique subscription ID. This ID is used by EC
later when it invokes operations to extend or cancel the subscription.

2.3 Example of a Notification message

Notifications are used to communicate events. Typically zero or more notification are packed in a
NotificationList and sent using operations described using WSDL. In this example the Notify
method of the consumer is invoked by the producer to push a list of 1 notification over SOAP.
This example also demonstrates how the basic Notification format can be extended by a 3rd party
(mngmt) to include other application specific information.

 Event consumer(EC) Event producer(EP)

 | |
 | subscribe(evt1, 100s) |
 | ---> |
 | |
 | subsId_1234 |
 | <--- |
 | |
 | extend(subsId_1234, 200s) |
 | ---> |
 | |
 | OK |
 | <--- |
 | |
 | cancel(subsId_1234) |
 | ---> |
 | |
 | |
 | OK |
 | <--- |
 | |

 <SOAP-ENV:Envelope
 xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">
 <SOAP-ENV:Header>
 ...
 </SOAP-ENV:Header>
 <SOAP-ENV:Body>
[e01] <evt:Notify xmlns:evt="http://devresource.hp.com/drc/specifications/wsmf/2003/07/events/"
 xmlns:mngmt="http://samples.com/management">
[e02] <evt:NotificationList>
[e03] <evt:Notification Id="notification-1">
[e04] <evt:Source>http://myservice.com</evt:Source>
[e05] <evt:Type>http://openview.hp.com/shutdown</evt:Type>
[e06] <evt:Timestamp>2001-04-02T13:20:00Z</evt:Timestamp>
[e07] <evt:Duration>20S</evt:Duration>
[e08] <evt:ExpiresOn>2001-04-02T15:20:00Z</evt:ExpiresOn>
[e09] <evt:UUID>uuid:84b9f5d0-33fb-4a81-b02b-5b760641c1d8</evt:UUID>

Page 6 of 23

[e01-e15] Notify call to push a notification to a subscriber.
[e02-e14] A list of notifications. In this case, there is only one notification in the list.
[e03] Start of a notification. The Id attribute identifies the notification in the list. In this example there is
only one notification so the Id is optional. However when there is more than one notification in the list,
the Id attribute SHOULD be used to make potential XML transformation easier (e.g. XML digital
signature).
[e04] Source is the URI of the source of the notification.
[e05] The Type element identifies the kind of notification.
[e06] Each notification has a creation date captured by the Timestamp element. This time should be
equal to the time of the associated event.
[e07] Events can be instantaneous but they also can have a duration. The optional element Duration
contains the time period of the associated event.
[e08] A notification may expire. In that case a ExpiresOn element contains the date. This element is
optional but if present, the MUST be greater than the date and time specified by the Timestamp
element. A event producer could make use of this element to implement the policy to cache unretrieved
notifications in the pull mode.
[e09] A notification has a identifier that is unique across time and space also called UUID. An element
named UUID contains the identifier value. The UUID value is used to create causality chains and
hierarchy of events.
[e10-e12] These are examples of extra elements from a foreign namespace that carry some extra data
related to this notification. It demonstrates how the notification mechanism can be extended.

3. Event Notification Advertising and Discovery

WS-Events provides a publish/subscribe mechanism for a notification consumer to discover the list of
events the producer exposes. This information can be retrieved in different ways including:

1. A standard API to support dynamic/run-time discovery.
2. An XML fragment published in a well-known registry (e.g. UDDI, event broker).
3. Some out-of-band mechanism (e.g. mail).

Currently, this specification addresses only the first method since it truly enables dynamic discovery of
published events. The event producer can use the programmatic method to limit the scope of the events
published based on the requesters identity and/or some internal policies. Solution based on a global
registry to disclose events are more static and the producer loses access control rights on the
information published this way.
This specification uses three operations and two reserved events to discover information about event
notifications exposed by a resource.

3.1 Operations overview

The following methods are grouped in the DiscoveryInterface of the WSDL associated with this
specification.

[e10] <mngmt:Severity>warning</mngmt:Severity>
[e11] <mngmt:Message>A message</mngmt:Message>
[e12] <mngmt:CorrectiveMessage>Try this</mngmt:CorrectiveMessage>
[e13] </evt:Notification>
[e14] </evt:NotificationList>
[e15] </evt:Notify>
 </SOAP-ENV:Body>
 </SOAP-ENV:Envelope>

Page 7 of 23

1. GetAllEventTypes takes no argument and returns a list of all the event types URI that can be
subscribed to.

2. GetEventTypeDefinition takes a list (possibly empty) of event types and returns a list of
EventTypeDefinition elements describing the corresponding types. When invoked without any
argument, all subscribable event definitions are returned.

3. GetEventInstanceInfo takes a list (possibly empty) of event types and returns a list of
EventInstanceInfo elements. EventInstanceInfo contains information on notifications of past
events that the producer still holds. These past events may be of interest to a potential
subscriber and could be retrieved using the pull mode.

To indicate runtime changes in the list of event definitions exposed by a producer, two reserved events
are defined and sent over the implicit control subscription:

1. NewEventType indicates that a new event type is available for subscription.
2. EventTypeUpdated is used to signal a change in an event type definition. This is sent when any

element or attribute of the EventTypeDefinition has changed. In particular this can be used to
indicate when an event type becomes obsolete.

3.2 The GetAllEventTypes operation

This operation is used to retrieve all the event types (encoded as URIs) that can be subscribed to. The
caller may or may not be able to associate a meaning to all the event type returned. In that case, further
information on one or more type can be obtained by using the GetEventTypeDefinition operation.
Below is the structure returned by the call. It uses the common EventTypeList to encapsulate the
event types. The list may be empty.

3.3 The GetEventTypeDefinition operation

This method is used to provide detailed and meaningful information about an event type. As we have
seen above, the type of an event is a simple unique string. There is no additional information associated
with it. To enable true dynamic discovery, one should be able to get more complete info on an event
type to make a decision whether the event should be subscribed to or not. GetEventTypeDefinition
takes a list (possibly empty) of event types and returns a list of EventTypeDefinition elements
describing the corresponding type.
When invoked without any argument, all event definitions that can be subscribed to are returned.

3.3.1 The EventTypeDefinitionList Element

This is the root element that encapsulates zero or more event type info elements.

Schema Definition:

<element name="GetAllEventTypesResponse">
 <complexType>
 <sequence>
 <element ref="evt:EventTypeList"/>
 </sequence>
 </complexType>
</element>

Schema Definition:

<element name="EventTypeDefinitionList" type="evt:EventTypeDefinitionListType"/>
<complexType name="EventTypeDefinitionListType">
 <sequence>
 <element ref="evt:EventTypeDefinition" minOccurs="0" maxOccurs="unbounded"/>
 </sequence>
</complexType>

Page 8 of 23

3.3.1.1 The EventTypeDefinition element

This is the main element that carries all the information describing an event type. To make the discovery
process as exhaustive as possible, both human and machine targeted information are included in an
EventTypeDefinition element:

Below is an explaination of the various attributes and elements:

1. EventType is the URI representing the event type and its definition. This information is used in a
subscription call.

2. Obsolete is an optional element to indicate that the event type has been obsoleted. If non nil,
the content of this element is the new type that superseeded this one. All the other infos
contained in the subsequents elements were correct when this event type was active but may
not longer be (e.g. URIs may not be dereferencable anymore).

3. SchemaLocation is the URI to the notification schema. It should point to an XML document that
the subscriber can use to validate notifications against.

4. Description is an optional description of the purpose and semantic of the event. It should be
explicit enough so that the requester can make a decision whether or not it should subscribe to
the event.

5. SubscriptionURL is a dereferencable URL that points to a WSDL document of the service
implementing the subscription interface.

6. SubscriptionMode is an indication if this event can be retrieved or not. If it is retrievable, the
pull and/or push mode is indicated. The producer can chose the allowed retrival mode as
needed, depending for instance on the identity of the requester, the network bandwith available,
the frequency of the event.

7. Any other events that this type is dependant upon aggregation or causality (optional). This can
be used to create high-level events from low-level ones and reduces the number of notificatins
sent.

8. Any known event that depend on this type (optional).
9. any and anyAttribute can be used to extend this base EventTypeDefinition to create new

Schema Definition:

<complexType name="EventTypeDefinitionType">
 <sequence>
 <element name="EventType" type="xs:anyURI"/>
 <element name="Obsolete" type="xs:anyURI" minOccurs="0"/>
 <element name="SchemaLocation" type="xs:anyURI"/>
 <element name="Description" type="string" minOccurs="0"/>
 <element name="SubscriptionURL" type="xs:anyURI"/>
 <element name="SubscriptionMode">
 <simpleType>
 <restriction base="token">
 <enumeration value="push"/>
 <enumeration value="pull"/>
 <enumeration value="pushAndPull"/>
 <enumeration value="none"/>
 </restriction>
 </simpleType>
 </element>

 <choice minOccurs="0">
 <element name="Aggregates" type="evt:EventTypeListType"/>
 <element name="CausalityExpression" type="string"/>
 </choice>
 <element name="Causes" type="evt:EventTypeListType" minOccurs="0"/>

 <any minOccurs="0" maxOccurs="unbounded" namespace="##other" processContents="lax"/>
 </sequence>
 <anyAttribute namespace="##other" processContents="skip"/>
</complexType>

Page 9 of 23

definitions.

3.4 The GetEventInstanceInfo operation

An event producer may keep some event instances stored for some time. A potential event consumer
may be interested in retrieving events that occured before subscription time using the synchronous
calls.
The GetEventInstanceInfo call gives a way for the potential subscriber to discover if the producer has
stored some past events and if that is the case, how many and during what period of time.
If some notification can be retrieved, the producer gives an estimate of the time left before it will discard
the event.
The data returned by that call is only informational and may have changed when the subscriber actually
retrieve the notification depending on the policy used by the producer to manage its resources.

3.4.1 The EventInstanceInfoList Element

This is the root element that encapsulates zero, or more event instance info elements.

3.4.1.1 The EventInstanceInfo element

This element contains information about the set of notification instances that may be retrieved for a
specific event type.

Below is an explaination of the various attribute and elements:

1. EventType is the URI representing the event type and its definition. This information is used in a
subscription call.

2. Available is the number of instances that can be retrieved at the time of the call.
3. LastInstance is an optional element that contains info on the oldest instance that can be

retrieved.

Schema Definition:

<element name="EventInstanceInfoList" type="evt:EventInstanceInfoListType"/>
<complexType name="EventInstanceInfoListType">
 <sequence>
 <element ref="evt:EventInstanceInfo" minOccurs="0" maxOccurs="unbounded"/>
 </sequence>
</complexType>

Schema Definition:

<complexType name="EventInstanceInfoType">
 <sequence>
 <element name="EventType" type="xs:anyURI"/>
 <element name="Available" type="xs:integer"/>
 <element name="LastInstance" minOccurs="0">
 <attribute name="UUID" type="xs:anyURI"/>
 <attribute name="Date" type="xs:dateTime"/>
 <attribute name="AvailableUntil" type="xs:dateTime"/>
 </element>
 <element name="FirstInstance" minOccurs="0">
 <attribute name="UUID" type="xs:anyURI"/>
 <attribute name="Date" type="xs:dateTime"/>
 <attribute name="AvailableUntil" type="xs:dateTime"/>
 </element>
 <any minOccurs="0" maxOccurs="unbounded" namespace="##other" processContents="lax"/>
 </sequence>
 <anyAttribute namespace="##other" processContents="skip"/>
</complexType>

Page 10 of 23

4. FirstInstance is an optional element that contails info on the newest notification that can be
retrieved.

5. UUID Is the UUID of the event.
6. Date is the time when the event was created.
7. AvailableUntil is the time when notifications associated with the event will be discarded.

3.5 Notifications For Event Type Discovery

To indicate changes in the event definitions exposed by a producer, two reserved events are defined
and can be subscribed to in order to get notifications when event type gets created, deleted or updated:

1. NewEventType indicates that a new event type is available for subscription.
2. EventTypeUpdated is used to signal a change in an event type definition. This is sent when any

element or attribute of the event type info has changed. In particular this can be used to indicate
when an event type becomes obsolete.

3.6 The NewEventTypeNotification

This event is used by a producer to inform a consumer that one or more new events are available for
subscription. The URI for this event type is
http://devresource.hp.com/drc/specifications/wsmf/2003/07/events/new-event-type. The base
Notification type is restricted so that the value of the Type element is fixed and equal to the URI above.
Also the new EventTypeDefinition has been append at end of the base notification.

3.7 The EventTypeUpdatedNotification

This event is used by a producer to inform a consumer that one or more events definition have been
updated. The URI for this event type is
http://devresource.hp.com/drc/specifications/wsmf/2003/07/events/event-type-updated. The base
Notification type is restricted so that the value of the Type element is fixed and equal to the URI above.
Also the new EventTypeDefinition has been append at end of the base notification.

Schema Definition:

 <complexType name="NewEventTypeNotification">
 <complexContent>
 <restriction base="evt:NotificationType">
 <sequence>
 <element ref="evt:Source"/>
 <element name="Type" type="xs:anyURI"
 fixed="http://devresource.hp.com/drc/specifications/wsmf/2003/07/events/new-event-type"/>
 <element ref="evt:Timestamp"/>
 <element ref="evt:ExpiresOn" minOccurs="0" maxOccurs="1"/>
 <element ref="evt:Duration" minOccurs="0"/>
 <element name="UUID" type="xs:anyURI"/>
 <element ref="evt:EventTypeDefinition"/>
 </sequence>
 </restriction>
 </complexContent>
 </complexType>

Schema Definition:

 <complexType name="EventTypeUpdatedNotification">
 <complexContent>
 <restriction base="evt:NotificationType">
 <sequence>
 <element ref="evt:Source"/>
 <element name="Type" type="xs:anyURI"
 fixed="http://devresource.hp.com/drc/specifications/wsmf/2003/07/events/event-type-update
 <element ref="evt:Timestamp"/>

Page 11 of 23

4. Event Notification Subscription

4.1 Push/Pull Mode Overview

This specification describes two modes to retrieve events: synchronous and asynchronous also known
as pull and push modes. In the push mode, the event notification producer calls a method (callback) on
the event consumer passing one or more notifications as parameter. In effect the producer pushes
asynchronously notifications to the consumer. In the pull mode, the consumer invokes methods on the
producer the retrieve the buffered notifications.
While the push mode is what people associate naturally with an event subsystem, WS-Event also
specifies a pull version to retrieve events. In that case, the consumer initiates the notifications retrieval
by first calling the event producer. Notifications are returned by that call.
There is no general rule to chose between the two modes however the following should be considered
to make a decision:

Network bandwidth and connectivity: The push mode tends to be more network intensive since
the notifications are typically sent as soon as they are created. Sometimes the network topology
(firewalls) does not allow asynchronous traffic. In that case, the pull mode is preferable.
Latency: The push mode is more suitable for real-time or near real time systems while the pull
one does not, the granularity being the period used to do the pulling calls.
Producer resources: The pull mode requires more resources on the producer side. It needs to
buffer notifications between calls to retrieve them.

4.2 Subscription Request: The Subscribe message

An event notificaion consumer subscribes to events using the Subscribe message. It contains the
information needed to set up the subscription: a selector for the types, a proposed duration for the
subscription, optionally a filter and a callback for the asynchronous mode.
In the pull mode, the subscription request message contains enough information to create a pull based
subscription:

1. An event selector that could be an EventType (URI), a regular expression matching event types
or the string token all to match all the events exposed by the producer.

2. The expiration time is either an absolute time expressed in the producer timezone or the 'infinite'
string token to indicates that the subscription should last forever..

3. An optional filter represented by a QName or a well formed XML document. A QName value can
be used to reference a well known filter. It is expected that both the events producer and
consumer have a common understanding of the filter capabilities. Alternatively any XML
document representing a filter can be passed to the producer. The description of the syntax and
sematic of such a filter is out of the scope of this document.
When a filter is present, the producer will silently discard notifications that match the filter

4. A nil callback element. Because the callback is nil, this subscription is interpreted as a pull one.

 <element ref="evt:ExpiresOn" minOccurs="0" maxOccurs="1"/>
 <element ref="evt:Duration" minOccurs="0"/>
 <element name="UUID" type="xs:anyURI"/>
 <element ref="evt:EventTypeDefinition"/>
 </sequence>
 </restriction>
 </complexContent>
 </complexType>

Page 12 of 23

In the push mode, the subscription to a set of event types is similar to the pull mode, except that an
extra callback element is given. The callback contains a URL where Notify messages should be sent.

4.2.1 The Notify Message and CallbackUrl Element

In the push mode, notifications are still packed in a NotificationList element but the delivery
mechanism is different: the producer sends the NotificationList to the consumer in an
asynchronous fashion using a Notify message sent to the CallbackUrl specified at subscription time.
The Notify operation has a default SOAP over HTTP binding but more bindings will be added to future
version of this specification as necessary.
WS-Events cannot standardize the WSDL port used by asynchronous event consumers because the
WSDL port describes how a binding is associated with protocol-specific address.
The CallbackType is used by the event notification consumer to communicate one or more port(s) it
wants the producer to push the Notification to. CallbackType leverages the port type definition from
WSDL 1.1.

For instance this is what the callback of a service using the soap over http (see WS-Event.wsdl) binding
could look like:

The event notification producer would forward notifications associated with this subscription to the given
HTTP URL using the SOAP over HTTP binding.

4.3 Subscription Response

The response to the a subscription request is either an opaque string that is used as a subscription ID
or a Fault element containing the fault message.

 WSDL subscription message type

<!-- Subscription -->
<xs:element name="Subscribe">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="EventSelector" type="evt:EventSelectorType"/>
 <xs:element name="ExpirationTime" type="xs:dateTime"/>
 <xs:element name="Filter" type="evt:FilterType" minOccurs="0"/>
 <xs:element name="CallbackUrl" type="evt:CallbackType" minOccurs="0" maxOccurs="1"/>
 </xs:sequence>
 </xs:complexType>
</xs:element>

Schema Definition:

<xs:element name="Callback" type="evt:CallbackType"/>
 <xs:complexType name="CallbackType">
 <xs:sequence>
 <xs:element name="port" type="wsdl:tPort" maxOccurs="unbounded"/>
 <xs:any minOccurs="0" maxOccurs="unbounded" namespace="##other" processContents="lax"/>
 </xs:sequence>
 <xs:anyAttribute namespace="##other" processContents="skip"/>
</xs:complexType>

<evt:CallbackUrl>
 <evt:port binding="evt:NotifySoapHttpBinding">
 <soap:address location="http://example.org/aservice/notify"/>
 </evt:port>
</evt:CallbackUrl>

 WSDL subscription response message type

 <xs:element name="SubscribeResponse">
 <xs:complexType>

Page 13 of 23

If the expiration time is not acceptable for the producer. An error message is returned with a suggested
expiration time.
If the filter is unknown to the producer, an error message should be returned.

4.4 Extending Subscription

Subscription MAY have a finite duration. If that is the case, a subscriber could extend a subscription
before it expires. This is done using the ExtendSubscription call to provide a new ExpirationTime
for the given SubscriptionId. The new expiration time should be greater than the current one.
If the subscription ID is invalid, the producer MUST return a fault message.

4.5 Cancelling Subscription

The message CancelSubscription containing the SubscriptionId to be cancelled can be sent to the
producer to end a subscription. If the subscription ID is invalid, the producer MUST return a fault
message.

5. Event Notification Retrieval (Pull Mode)

In the push mode, the callback entry point is used to forward event notification to the consumer. In the
pull mode, some standard getters are defined to do so. Currently three operations are defined:

GetEventsSinceUUID: Retrieve all events that happened after the one with a given UUID.
GetEventsSinceDate: Retrieve all events that occured on or after the given date.
GetEventsRangeByDate: Retrieve all events that occured on or after the start date up to the end
date (included).

For these 3 calls, the first element in the request document is named SubscriptionId. It is a string
which value should be the one returned by a successful subscription call. All the selectors apply to a
specific subscription. Events that are not part of the original subscription will not be matched.
These 3 calls return a NotificationList that contains zero or more Notification elements matching
the request.
These 3 calls MUST return a fault if the SubscriptionId did not exist or if it does not belong to the
caller or if it refers to a push subscription.
The next sections cover the specifics for each call

5.1 GetEventsSinceUUID

The EventId element specifies the event uuid from which events will be returned. If this a valid UUID
and if the producer still has a copy of the event, the list returned start with this event followed by any
events that occured after if any.
If the UUID is wrong or if the producer does not hold a copy of the event anymore, a fault message
MUST be returned. This could be the indication that the consumer has missed some events.

 <xs:choice>
 <xs:element name="SubscriptionId" type="xs:string"/>
 <xs:element name="Fault" type="xs:string"/>
 </xs:choice>
 </xs:complexType>
 </xs:element>

 WSDL:

Page 14 of 23

5.2 GetEventsSinceDate

The Date element specifies the date and time from which events will be returned.
If the date is in the future a fault message MUST be returned.

5.3 GetEventsRangeByDate

The BeginDate element specifies the date and time from which events will be returned. The
GetEventInstanceInfo call can be used to get a sample of the producer clock and timezone
indication.
The EndDate element specifies the ending date and time from which events will be returned. The date
should be expressed in the producer timezone. It should be greater than the value specified in the
BeginDate element.
If a date is in the future or if the end date is smaller than the begin date value, a fault message MUST
be returned.

6. Event Notification Syntax

A notification is the XML representation of one state change, also called an event in the producer.

6.1 The NotificationList Element

This is the root element that encapsulates zero or more Notifications. It is a named complex type used

 <!-- Get since Id -->
 <xs:element name="GetEventsSinceUUID">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="SubscriptionId" type="xs:string"/>
 <xs:element name="EventId" type="xs:anyURI"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>

 WSDL:

 <!-- Get since Id -->
 <xs:element name="GetEventsSinceDate">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="SubscriptionId" type="xs:string"/>
 <xs:element name="Date" type="xs:dateTime"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>

 WSDL:

 <!-- Get since Id -->
 <xs:element name="GetEventsRangeByDate">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="SubscriptionId" type="xs:string"/>
 <xs:element name="BeginDate" type="xs:dateTime"/>
 <xs:element name="EndDate" type="xs:dateTime"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>

Page 15 of 23

in the WSDL to define the message that carries notifications. There are no constraints on how the
Notification elements are grouped in a NotificationList. For instance, a NotificationList can
contain Notification elements of various types or from different sources in any order.

6.1.1 The Notification Element

The Notification element is the basic building block used to convey information about events. It
contains the minimal set of information to:

Be able to order event according to time but also causality. This allows representation of chain of
events.
Support aggregation of events.
Provide for extension to support more complex notification syntax.

While a notification is uniquely identified by its UUID, a notification is also uniquely identified by the
result of the concatenation of the content of the Source, Type and Timestamp elements. That is to say
that 2 events of the same type cannot happen at a same time in a same event producer. It is the
responsability of the source to make sure that the time granularity used to timestamp notifications is
small enough so that two subsequent occurences of the same event have different Timestamp values.
This is equivalent to saying that given a source, no two events of the same type can happen at the
same time.

6.1.1.1 The Source Element

This element contains the URI of the event producer. It MAY be different from the URL of the
Notification sender. For instance an event consumer MAY subscribe to a broker to receive notifications
when a particular event happens. In this case, the address of the event source and the notification
source are different.

The notification source URL MAY be different from the one of the sender of the notification if, for
instance, there is a broker acting as an intermediary between the event producer and consumer.

Schema Definition:

<element name="NotificationList" type="evt:NotificationListType"/>
<complexType name="NotificationListType">
 <sequence>
 <element ref="evt:Notification" minOccurs="0" maxOccurs="unbounded"/>
 </sequence>
</complexType>

Schema Definition:

<element name="Notification" type="evt:NotificationType"/>
<complexType name="NotificationType">
 <sequence>
 <element ref="evt:Source"/>
 <element ref="evt:Type"/>
 <element ref="evt:Timestamp"/>
 <element ref="evt:Duration" minOccurs="0"/>
 <element ref="evt:ExpiresOn" minOccurs="0"/>
 <element ref="evt:UUID"/>
 <any minOccurs="0" maxOccurs="unbounded" namespace="##other" processContents="lax"/>
 </sequence>
 <anyAttribute namespace="##other" processContents="skip"/>
</complexType>

Schema Definition:

<element name="Source" type="xs:anyURI"/>

Page 16 of 23

6.1.1.2 The Type Element

AnyURI describes the type of the notification. Unlike the Type element used in subscription and
advertising, wildcard are not allowed and any kind of structure of the type space is ignored.

6.1.1.3 The Timestamp Element

The date and time that uniquely identify the instant when the notification was created. This time should
be equal to the time the event or events which generated this notification happened. This is not always
the same as the time the notification itself was created.
The dateTime XML Schema type can have an arbitrary number of decimal after the second field.
Howver when the granularity of the source clock is too big, it may happen that two or more event
notifications are created with the same Timestamp value. In this case it is not possible to order the
nofication according to time.

6.1.1.4 The Duration Element

Events can be instantaneous but they also can last in time. The time the event lasts can be set in the
optional Duration element. If this element is absent, it means that the associated event had a duration
time of 0s.

6.1.1.5 The ExpiresOn Element

An optional element to indicate how long the notification is valid for. Events happen at a single point in
time but notification can last longer since they are a physical representation of the event that
propagates through systems.
If ExpiresOn is present, the values MUST be greater than one in Timestamp.
If omitted, the notification will never expire.
A system SHOULD not propagate any notification that have expired though the mechanisms described
in this specification.

6.1.1.6 The UUID Element

The UUID element uniquely identify an event across time and space. The implementation is free to use
any algorithm to generate UUID. However, this specification recommends that this well known algorithm
and format (See UUIDType) should be used. The recommended UUID generation algorithm does not
require any centralized authority and supports high generation rate.

7. Common Types

Schema Definition:

<element name="Type" type="xs:anyURI"/>

Schema Definition:

<element name="Timestamp" type="xs:dateTime"/>

Schema Definition:

<element name="Duration" type="evt:DurationType"/>

Schema Definition:

<element name="ExpiresOn" type="evt:DateTimeType"/>

Page 17 of 23

7.1 The EventTypeList and EventType Element Types

EventType is a URI that is not intended to be dereferencable. Even when that is the case, there is
currently no way to retrieve the event definition from an event type directly. Instead the client must use
the GetEventTypeDefinition call on the event producer.
EventTypeList is used to encapsulate 0 or more EventType.

7.2 The UUID Element Type

[Definition: UUID] The UUID element uniquely identify an event across time and space.
This document recommends the following UUID generation algorithm and format [UUID]. The
generation does not require any centralized authority and support high generation rate. UUIDs are
statistically unique.
The UUID format is made of the concatenation of the uuid: scheme [uuid Scheme]and a pseudo
random number. The random number part is made of hexadecimal digits arranged in the common 8-4-
4-4-12 format pattern.
Here is an example of such a UUID:

7.3 The dateTime Type

The XML Schema type is used many time in this specification. Eventhough the time is part of the value
of an xs:dateTime attribute or element, it is RECOMMENDED to use the UTC timezone for
consistency. However, local timezone MAY be used.

8. Transport Considerations

8.1 Message encoding

The Web Services community has defined two XML encoding styles that map between SOAP data
models and SOAP messages: RPC style with SOAP encoding (RPC/encoded) and Document style with
literal encoding (document/literal). Having two accepted styles creates a degree of ambiguity that can
produce potential conflicts. This specification recognizes both styles, but recommends standardizing on
the document/literal style in order to guarantee interoperability.
With RPC/SOAP encoded style, the method calls, parameters and return values are mapped to XML
elements according to the schema described in Section 5 of the SOAP [SOAP] specification. Section 5
also describes how the RPC/SOAP encoded style handles the request/response sequence and
exception serialization. This style constrains each element in the message Body. However, the
message as a whole is not constrained by any schema. As a consequence, schema validation cannot
happen on the Body of the SOAP message. Additionally SOAP encoding allows the use of id and href
attributes to reference elements and avoid duplication.
On the other hand, the Document style with literal encoding means that the Body of the SOAP message
conforms to an XML schema typically available as message elements from the target WSDL. With literal
encoding, there is no standard rule for encoding a method invocation as a SOAP message.

Schema Definition:

<element name="EventTypeList" type="evt:EventTypeListType"/>
<complexType name="EventTypeListType">
 <sequence>
 <element name="EventType" type="xs:anyURI" minOccurs="0" maxOccurs="unbounded"/>
 </sequence>
</complexType>

uuid:84b9f5d0-33fb-4a81-b02b-5b760641c1d8

Page 18 of 23

Even though RPC/SOAP encoded style was historically developed first, the web services industry is
adopting and recommending the document/literal style. As a result, the major web services
standardization bodies (WS-I, W3C WSDL) recommend against the use of the RPC/SOAP encoding
style. To be compatible with the rest of the industry this specification also adopts the document/literal
style to describe defined interfaces and messages.

8.2 Default Binding

SOAP 1.1 defines only one binding: HTTP 1.1. To comply with the WS-I basic profile all messages
SHOULD be sent over HTTP/1.1 and comply with section 4.3 of the basic profile 1.0 [WS-I-basic-
profile]. In the future other transports MAY be supported.

8.3 Reliability

Reliability is a key feature for event systems. Today Web services are widely relying on HTTP, a non-
reliable point-to-point protocol. However, Web services may use other transport protocols to provide
reliability, or one of the SOAP-based reliability mechanisms, such as WS-ReliableMessaging [WS-
ReliableMessaging]. To address reliability needs, the appropriate protocol should be chosen.
Nevertheless, all WS-Events implementations MUST support SOAP HTTP binding.

9. Security

Security for Web services is a big concern for the industry. Since WS-Events is built on top of WS
technology, some recommendations with regard to security should be provided to prevents attacks.
Here is a non-exhaustive list of examples of potential threats:

1. A malicious party could spoof a subscription packet and use the ID to cancel the subscription,
impersonating the original subscriber.

2. An attacker could generate extra meaningless event notifications, in the push mode.

WS-Events require some confidentiality and/or integrity at the transport level, as well as some access
control mechanisms.

9.1 Transport

Some attempts have been made to provide transport level security for XML payloads with WS-Security
and XML firewalls. However, in their current state, these solutions fall short of creating a usable
framework to create secure sessions for the transport of SOAP messages. Furthermore, how WS-
Security affects performance is a concern. There are other concerns also, such as the slow rate WS-
Security is being adopted and the fact that WS-I current basic profile was left out of WS-Security
because of its shortcomings. The current recommendation is to only use HTTPS as a transport level
security.

HTTPS has been around for a while now, is widely accepted and provides a robust way of securing the
transport of event notifications. However, because HTTPS cannot be relayed, security applies only to
the first hop. If the peer is not the final destination (e.g, a broker), the sender cannot assume anything
with regard to the security used by the peer to forward the data to the final recipient. In that scenario,
WS-security COULD be used to provide end-to-end security.

Messages SHOULD be sent using HTTP/1.1.

When integrity and/or confidentiality of the SOAP payload are required at the transport level, HTTPS
SHOULD be used.

When the integrity and/or confidentiality of the SOAP payload is required at the transport level in a multi-hops
path, WS-Security MAY be used.

Page 19 of 23

9.2 Authentication and Authorization

For the access control part, most of the modern execution environments support client side
authentication and provide a way to map SSL client side certificates to their proprietary access control
mechanisms. Until the Web services community comes up with a standard solution, client side
certificates should be used to perform authentication and the access control rights should be derived
from the assessed identity.

Even though Web services is a machine-to-machine framework, HTTP basic authentication
(username/password) MAY be used when the security requirements are very light or when XML
cryptography is not suitable for the environement (heavyweight). SSL MUST be used to perform the
HTTP authetication process.

The adoption of HTTPS and a firewall-friendly transport will facilitate adoption of WS-Events as a cross-
enterprise solution. However, this flexibility comes at a cost: firewalls cannot apply security policies on
an encrypted stream, in effect by-passing corporate security. While this has been a concerned for some
time now, it is a current practice. Since the authentication is now done at the end-point, HTTPS with
client side authentication is recommended to carry WS-Events between two distinct security domains.

Since all the operations of the same type (e.g, monitoring, configuration) are grouped in Interfaces, one
should be able to specify its access level down to that level since these operations belong to the same
management domain. A more coarse granularity at the Service level COULD also be achieved, as well
as, a finer one at the Operation level.

10. Future Directions (Non-Normative)

There are several areas which WS-Events may address in the future. Some of these include the
following:

In the pull mode, a generic GetEvents call which would take an expression defined in a grammar
to select events. These expressions would be able to select events according to time and/or
causality.
A filtering syntax and semantic to indicate at subscription time a complex condition under which
event notification should be sent. For instance if there is an event that is generated when a CPU
load changes, the subscriber should be able to specify that it wishes to receive the associated
notification when the CPU load reaches 95% and above.
A new call to retrieve the EventTypes associated with a given subscription. The producer would
return the list of event types subscribed. This would be useful when the 'all' selector or a regular
expression was used at subscription time.
Brokering is an important concept in events systems. The current version of this specifications
touches on that but needs to explain this concept in more details. More specifically, how a broker
can relay event notification advertising and subscription and how notification are transmitted
through one or more broker in both the push and pull modes.
Fault messages need more details.
The callback element is a URL and assumes SOAP over HTTP. However to support multiple
binding, the URL could be a WSDL URL, forcing the producer to retrieve the consumer WSDL
which would be inefficient. A better solution would be for the consumer to send a fragment of its
WSDL containing the service element and all the endpoints (ports) for the bindings defined
by this specification.

Access control MAY be applied to the subscription and notification operations.

When authentication is needed, HTTPS with mutual authentication is RECOMMENDED.

HTTP Basic authentication over SSL MAY be used.

When going across firewalls, HTTPS with client side authentication SHOULD be used.

Access control SHOULD be implemented at the Interface level.

Page 20 of 23

EventTypeDefinition for the NewEventType and EventTypeUpdated is missing.

11. Appendix A: Extended notification examples

This appendix contains examples of nofitication schemas extending the basic notification.

11.1 Notification for a management plate form

Below is an example of a notification type that can be used to notify a management console. The
schema defines a EventSeverityType and a RelationType types. EventSeverityType is used to
indicates the severity of the event according the source rating policy. RelationType is used to indicate
what was the change in the managed object relationships that triggered the notification.

<?xml version="1.0" encoding="utf-8"?>

<s:schema xmlns:s="http://www.w3.org/2001/XMLSchema"
 xmlns:tns="http://devresource.hp.com/drc/specifications/wsmf/2003/07/events/notification-info"
 xmlns:core="http://devresource.hp.com/drc/specifications/wsmf/2003/07/foundation/"
 targetNamespace="http://devresource.hp.com/drc/specifications/wsmf/2003/07/events/notification-info
 version="2.0" elementFormDefault="qualified">

 <s:simpleType name="EventSeverityType">
 <s:annotation>
 <s:documentation>
 This type represents enum used to indicate the severity of an
 event. This is a standard list of severity values used in
 management software.
 </s:documentation>
 </s:annotation>

 <s:restriction base="s:string">
 <s:enumeration value="Critical" />
 <s:enumeration value="Major" />
 <s:enumeration value="Minor" />
 <s:enumeration value="Warning" />
 <s:enumeration value="Normal" />
 <s:enumeration value="Unknown" />
 </s:restriction>
 </s:simpleType>

 <s:complexType name="NotificationInfoType">
 <s:sequence>
 <s:element name="Severity" type="tns:EventSeverityType"/>
 <s:element name="Message" type="s:string"/>
 <s:element name="ResourceHostName" type="s:string" />
 <s:element name="CorrectiveMessage" type ="s:string" nillable="true" />
 <s:element name="ApplicationName" type="s:string" nillable="true" />
 </s:sequence>
 </s:complexType>

 <!-- NotificationInfo -->
 <s:annotation>
 <s:documentation>
 This type represents the operational notification information
 returned by the managed object.
 </s:documentation>
 </s:annotation>

 <s:element name="NotificationInfo" type="tns:NotificationInfoType"/>

 <s:simpleType name="RelationType">
 <s:annotation>
 <s:documentation>
 This type represents the relational notification information
 returned by the managed object.
 </s:documentation>
 </s:annotation>

 <s:restriction base="s:string">

Page 21 of 23

12. References

[URI]
RFC2396. Uniform Resource Identifiers (URI): Generic Syntax, T. Berners-Lee, R. Fielding, L.
Masinter, Authors. Internet Engineering Task Force, August 1998. Available at
http://www.ietf.org/rfc/rfc2396.txt. (See http://www.ietf.org/rfc/rfc2396.txt.)

[KEYWORDS]
RFC2119. Key words for use in RFCs to Indicate Requirement Levels , S. Bradner, Author.
Internet Engineering Task Force, June 1999. Available at http://www.ietf.org/rfc/rfc2119.txt. (See
http://www.ietf.org/rfc/rfc2119.txt.)

[SOAP]
Simple Object Access Protocol (SOAP) 1.1 , D. Box, D. Ehnebuske, G. Kakivaya, A. Layman, N.
Mendelsohn, H. Frystyk Nielsen, S. Thatte, D. Winer, Editors. World Wide Web Consortium, 8
May 2000. This version of the Simple Object Access Protocol 1.1 Note is
http://www.w3.org/TR/2000/NOTE-SOAP-20000508. The latest version of Simple Object Access
Protocol 1.1 is available at http://www.w3.org/TR/SOAP. (See
http://www.w3.org/TR/2000/NOTE-SOAP-20000508/.)

[WSDL]
Web Services Description Language (WSDL) 1.1, E. Christensen, F. Curbera, G. Meredith, and
S. Weerawarana, Authors. World Wide Web Consortium, 15 March 2002. This version of the
Web Services Description Language Note is http://www.w3.org/TR/2001/NOTE-wsdl-20010315.
The latest version of Web Services Description Language is available at
http://www.w3.org/TR/wsdl. (See http://www.w3.org/TR/2001/NOTE-wsdl-20010315.)

[WSDL 1.2]
Web Services Description Language (WSDL) Version 1.2 , R, Chinnici, M. Gudgin, J. Moreau,
and S. Weerawarana, Editors. World Wide Web Consortium. The latest version of Web Services
Description Language, Version 1.2 is available at http://www.w3.org/TR/wsdl12. (See
http://www.w3.org/TR/2003/WD-wsdl12-20030303.)

[UUID]
UUIDs and GUIDs , Paul J. Leach, Rich Salz, Authors. Internet Engineering Task Force,
February 1998. Available at latest version of UUIDs and GUIDs is available at
http://hegel.ittc.ukans.edu/topics/internet/internet-drafts/draft-l/draft-leach-uuids-guids-01.txt.
(See http://hegel.ittc.ukans.edu/topics/internet/internet-drafts/draft-l/draft-leach-uuids-guids-
01.txt.)

[uuid Scheme]
The uuid: URI scheme , Charlie Kindel, Author. Internet Engineering Task Force, February 1997.
Available at latest version of the uuid: scheme is available at
http://www.globecom.net/ietf/draft/draft-kindel-uuid-uri-00.html. (See
http://www.globecom.net/ietf/draft/draft-kindel-uuid-uri-00.html.)

[WS-ReliableMessaging]
Web Services Reliable Messaging Protocol (WS-ReliableMessaging) , BEA, IBM, Microsoft,
TIBCO, March 2003. Available at latest version of the WS-ReliableMessaging specification is
available at http://msdn.microsoft.com/webservices/default.aspx?pull=/library/en-
us/dnglobspec/html/ws-reliablemessaging.asp. (See
http://msdn.microsoft.com/webservices/default.aspx?pull=/library/en-us/dnglobspec/html/ws-
reliablemessaging.asp.)

[XML 1.0]
Extensible Markup Language (XML) 1.0 (Second Edition), T. Bray, J. Paoli, C. M. Sperberg-
McQueen, and E. Maler, Editors. World Wide Web Consortium, 10 February 1998, revised 6
October 2000. This version of the XML 1.0 Recommendation is
http://www.w3.org/TR/2000/REC-xml-20001006. The latest version of XML 1.0 is available at
http://www.w3.org/TR/REC-xml. (See http://www.w3.org/TR/2000/REC-xml-20001006.)

 <s:enumeration value="RelationCreate" />
 <s:enumeration value="RelationDelete" />
 </s:restriction>
 </s:simpleType>

</s:schema>

Page 22 of 23

[XML Namespaces]
Namespaces in XML, T. Bray, D. Hollander, and A. Layman, Editors. World Wide Web
Consortium, 14 January 1999. This version of the XML Information Set Recommendation is
http://www.w3.org/TR/1999/REC-xml-names-19990114. The latest version of Namespaces in
XML is available at http://www.w3.org/TR/REC-xml-names. (See
http://www.w3.org/TR/1999/REC-xml-names-19990114.)

[XML Schema: Structures]
XML Schema Part 1: Structures, H. Thompson, D. Beech, M. Maloney, and N. Mendelsohn,
Editors. World Wide Web Consortium, 2 May 2001. This version of the XML Schema Part 1
Recommendation is http://www.w3.org/TR/2001/REC-xmlschema-1-20010502. The latest
version of XML Schema Part 1 is available at http://www.w3.org/TR/xmlschema-1. (See
http://www.w3.org/TR/2001/REC-xmlschema-1-20010502/.)

[XML Schema: Datatypes]
XML Schema Part 2: Datatypes, P. Byron and A. Malhotra, Editors. World Wide Web
Consortium, 2 May 2001. This version of the XML Schema Part 2 Recommendation is
http://www.w3.org/TR/2001/REC-xmlschema-2-20010502. The latest version of XML Schema
Part 2 is available at http://www.w3.org/TR/xmlschema-2. (See http://www.w3.org/TR/2001/REC-
xmlschema-2-20010502/.)

[IETF RFC 2616]
Hypertext Transfer Protocol -- HTTP/1.1, R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter,
P. Leach, T. Berners-Lee, Authors. Internet Engineering Task Force, June 1999. Available at
http://www.ietf.org/rfc/rfc2616.txt. (See http://www.ietf.org/rfc/rfc2616.txt.)

Page 23 of 23

