

Web Services Business
Process Execution Language
Version 2.0
Working Draft, 23 August 2005
Document identifier:

wsbpel-specification-draft-01

Location:

http://www.oasis-open.org/apps/org/workgroup/wsbpel/

Editors:

Assaf Arkin <arkin@intalio.com>
Sid Askary <saskary@nuperus.com>
Ben Bloch <ben_b54@hotmail.com>
Francisco Curbera, IBM <curbera@us.ibm.com>
Yaron Goland, BEA <ygoland@bea.com>
Neelakantan Kartha, Sterling Commerce <N_Kartha@stercomm.com>
Canyang Kevin Liu, SAP <kevin.liu@sap.com>
Satish Thatte, Microsoft <satisht@microsoft.com>
Prasad Yendluri, webMethods <pyendluri@webmethods.com>
Alex Yiu, Oracle <alex.yiu@oracle.com>

Contributors:

{FirstName} {Last Name}, {Organization}

Editor’s Notes – KevinL – this section should be consolidated with Appendix H

Abstract:

This document defines a notation for specifying business process behavior based
on Web Services. This notation is called Web Services Business Process
Execution Language (abbreviated to WS-BPEL in the rest of this document).
Processes in WS-BPEL export and import functionality by using Web Service
interfaces exclusively.

Business processes can be described in two ways. Executable business processes
model actual behavior of a participant in a business interaction. Business
protocols, in contrast, use process descriptions that specify the mutually visible
message exchange behavior of each of the parties involved in the protocol,
without revealing their internal behavior. The process descriptions for business
protocols are called abstract processes. WS-BPEL is meant to be used to model
the behavior of both executable and abstract processes.

WS-BPEL provides a language for the formal specification of business processes
and business interaction protocols. By doing so, it extends the Web Services
interaction model and enables it to support business transactions. WS-BPEL
defines an interoperable integration model that should facilitate the expansion of
automated process integration in both the intra-corporate and the business-to-
business spaces.

Status:

This is a draft version of the WS-BPEL TC specification, updated from the
origninal BPEL4WS V1.1 specification dated May 5, 2003 that was submitted to
the WS BPEL TC. See: http://www.oasis-
open.org/apps/org/workgroup/wsbpel/download.php/2046/BPEL%20V1-
1%20May%205%202003%20Final.pdf

If you are on the <wsbpel@lists.oasis-open.org> list for committee members,
send comments there. If you are not on that list, subscribe to the <wsbpel-
comment@lists.oasis-open.org> list and send comments there. To subscribe,
send an email message to <mailto:wsbpel-comment-request@lists.oasis-
open.org> with the word "subscribe"as the body of the message.

For information on whether any patents have been disclosed that may be essential
to implementing this specification, and any offers of patent licensing terms, please
refer to the Intellectual Property Rights section of the WS-BPEL TC web page
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsbpel

Copyright © 2004 OASIS Open, Inc. All Rights Reserved.

Table of Contents

1. Introduction
2. Notational Conventions
3. Relationship with Other Specifications
4. This Section Has Been Deleted
5. Core Concepts and Usage Patterns
6. Defining a Business Process

6.1. Initial Example
6.2. The Structure of a Business Process
6.3. Language Extensibility
6.4. The Lifecycle of a Business Process

7. Partner Link Types, Partner Links, and Endpoint References
7.1. Partner Link Types
7.2. Partner Links
7.3. This Section Has Been Deleted
7.4. Endpoint References

8. Message Properties
8.1. Motivation
8.2. Defining Properties

9. Data Handling
9.1. Expressions
9.2. Variables
9.3. Assignment

10. Correlation
10.1. Message Correlation
10.2. Defining and Using Correlation Sets

11. Basic Activities
11.1. Standard Attributes for Each Activity
11.2. Standard Elements for Each Activity
11.3. Invoking Web Service Operations
11.4. Providing Web Service Operations
11.5. Updating Variable Contents
11.6. Signaling Faults
11.7. Waiting
11.8. Doing Nothing

12. Structured Activities
12.1. Sequence
12.2. If
12.3. While
12.4. Pick
12.5. Flow

13. Scopes
13.1. Data Handling and Partner Links
13.2. Error Handling in Business Processes
13.3. Compensation Handlers
13.4. Fault Handlers
13.5. Event Handlers

13.6. Isolated Scopes
14. Extensions for Executable Processes

14.1. Expressions
14.2. Variables
14.3. Assignment
14.4. Correlation
14.5. Web Service Operations
14.6. Terminating a Service Instance
14.7. Compensation
14.8. Event Handlers

15. Extensions for Business Protocols
15.1. Variables
15.2. Assignment

16. Examples
16.1. Shipping Service
16.2. Loan Approval
16.3. Multiple Start Activities

17. Security Considerations

Appendixes

A. Standard Faults
B. Attributes and Defaults
C. XSD Schemas
D. Notices
E. Intellectual Property Rights
F. Revision History
G. References
H. Committee Members (Non-Normative)

1. Introduction
The goal of the Web Services effort is to achieve universal interoperability between
applications by using Web standards. Web Services use a loosely coupled integration
model to allow flexible integration of heterogeneous systems in a variety of domains
including business-to-consumer, business-to-business and enterprise application
integration. The following basic specifications originally defined the Web Services space:
SOAP, Web Services Description Language (WSDL), and Universal Description,
Discovery, and Integration (UDDI). SOAP defines an XML messaging protocol for basic
service interoperability. WSDL introduces a common grammar for describing services.
UDDI provides the infrastructure required to publish and discover services in a
systematic way. Together, these specifications allow applications to find each other and
interact following a loosely coupled, platformindependent model.

Systems integration requires more than the ability to conduct simple interactions by using
standard protocols. The full potential of Web Services as an integration platform will be
achieved only when applications and business processes are able to integrate their
complex interactions by using a standard process integration model. The interaction
model that is directly supported by WSDL is essentially a stateless model of synchronous
or uncorrelated asynchronous interactions. Models for business interactions typically
assume sequences of peer-to-peer message exchanges, both synchronous and
asynchronous, within stateful, long-running interactions involving two or more parties.
To define such business interactions, a formal description of the message exchange
protocols used by business processes in their interactions is needed. The definition of
such business protocols involves precisely specifying the mutually visible message
exchange behavior of each of the parties involved in the protocol, without revealing their
internal implementation. There are two good reasons to separate the public aspects of
business process behavior from internal or private aspects. One is that businesses
obviously do not want to reveal all their internal decision making and data management
to their business partners. The other is that, even where this is not the case, separating
public from private process provides the freedom to change private aspects of the process
implementation without affecting the public business protocol.

Business protocols must clearly be described in a platform-independent manner and must
capture all behavioral aspects that have cross-enterprise business significance. Each
participant can then understand and plan for conformance to the business protocol
without engaging in the process of human agreement that adds so much to the difficulty
of establishing cross-enterprise automated business processes today.

What are the concepts required to describe business protocols? And what is the
relationship of these concepts to those required to describe executable processes? To
answer these questions, consider the following::

• Business protocols invariably include data-dependent behavior. For example, a
supply-chain protocol depends on data such as the number of line items in an
order, the total value of an order, or a deliver-by deadline. Defining business
intent in these cases requires the use of conditional and time-out constructs.

• The ability to specify exceptional conditions and their consequences, including
recovery sequences, is at least as important for business protocols as the ability to
define the behavior in the "all goes well" case.

• Long-running interactions include multiple, often nested units of work, each with
its own data requirements. Business protocols frequently require cross-partner
coordination of the outcome (success or failure) of units of work at various levels
of granularity.

If we wish to provide precise predictable descriptions of service behavior for
crossenterprise business protocols, we need a rich process description notation with many
features reminiscent of an executable language. The key distinction between public
message exchange protocols and executable internal processes is that internal processes
handle data in rich private ways that need not be described in public protocols.

In thinking about the data handling aspects of business protocols it is instructive to
consider the analogy with network communication protocols. Network protocols define
the shape and content of the protocol envelopes that flow on the wire, and the protocol
behavior they describe is driven solely by the data in these envelopes. In other words,
there is a clear physical separation between protocol-relevant data and "payload" data.
The separation is far less clear cut in business protocols because the protocol-relevant
data tends to be embedded in other application data.

WS-BPEL uses a notion of message properties , which are a type of variable property, to
identify protocol-relevant data embedded in messages. Properties can be viewed as
"transparent" data relevant to public aspects as opposed to the "opaque" data that
internal/private functions use. Transparent data affects the public business protocol in a
direct way, whereas opaque data is significant primarily to back-end systems and affects
the business protocol only by creating nondeterminism because the way it affects
decisions is opaque. We take it as a principle that any data that is used to affect the
behavior of a business protocol must be transparent and hence viewed as a property.

The implicit effect of opaque data manifests itself through nondeterminism in the
behavior of services involved in business protocols. Consider the example of a
purchasing protocol. The seller has a service that receives a purchase order and responds
with either acceptance or rejection based on a number of criteria, including availability of
the goods and the credit of the buyer. Obviously, the decision processes are opaque, but
the fact of the decision must be reflected as behavior alternatives in the external business
protocol. In other words, the protocol requires something like an if activity in the
behavior of the seller's service but the selection of the branch taken is nondeterministic.
Such nondeterminism can be modeled by allowing the assignment of a nondeterministic
or opaque value to a message property, typically from an enumerated set of possibilities.
The property can then be used in defining conditional behavior that captures behavioral
alternatives without revealing actual decision processes. WS-BPEL explicitly allows the
use of nondeterministic data values to make it possible to capture the essence of public
behavior while hiding private aspects.

The basic concepts of WS-BPEL can be applied in one of two ways. A WS-BPEL
process can define a business protocol role, using the notion of abstract process. For
example, in a supply-chain protocol, the buyer and the seller are two distinct roles, each
with its own abstract process. Their relationship is typically modeled as a partner link.
Abstract processes use all the concepts of WS-BPEL but approach data handling in a way
that reflects the level of abstraction required to describe public aspects of the business
protocol. Specifically, abstract processes handle only protocol-relevant data. WS-BPEL
provides a way to identify protocol-relevant data as message properties. In addition,
abstract processes use nondeterministic data values to hide private aspects of behavior.

It is also possible to use WS-BPEL to define an executable business process. The logic
and state of the process determine the nature and sequence of the Web Service
interactions conducted at each business partner, and thus the interaction protocols. While
a WS-BPEL process definition is not required to be complete from a private

implementation point of view, the language effectively defines a portable execution
format for business processes that rely exclusively on Web Service resources and XML
data. Moreover, such processes execute and interact with their partners in a consistent
way regardless of the supporting platform or programming model used by the
implementation of the hosting environment.

Even where private implementation aspects use platform-dependent functionality, which
is likely in many if not most realistic cases, the continuity of the basic conceptual model
between abstract and executable processes in WS-BPEL makes it possible to export and
import the public aspects embodied in business protocols as process or role templates
while maintaining the intent and structure of the protocols. This is arguably the most
attractive prospect for the use of WS-BPEL from the viewpoint of unlocking the potential
of Web Services because it allows the development of tools and other technologies that
greatly increase the level of automation and thereby lower the cost in establishing cross-
enterprise automated business processes.

In summary, we believe that the two usage patterns of business protocol description and
executable business process description require a common core of process description
concepts. In this specification we clearly separate the core concepts from the extensions
required specifically for the two usage patterns. The WS-BPEL specification is focused
on defining the common core, and adds only the essential extensions required for each
usage pattern.

WS-BPEL defines a model and a grammar for describing the behavior of a business
process based on interactions between the process and its partners. The interaction with
each partner occurs through Web Service interfaces, and the structure of the relationship
at the interface level is encapsulated in what we call a partner link. The WS-BPEL
process defines how multiple service interactions with these partners are coordinated to
achieve a business goal, as well as the state and the logic necessary for this coordination.
WS-BPEL also introduces systematic mechanisms for dealing with business exceptions
and processing faults. Finally, WS-BPEL introduces a mechanism to define how
individual or composite activities within a process are to be compensated in cases where
exceptions occur or a partner requests reversal.

WS-BPEL is layered on top of several XML specifications: WSDL 1.1, XML Schema
1.0, and XPath1.0. WSDL messages and XML Schema type definitions provide the data
model used by WS-BPEL processes. XPath provides support for data manipulation. All
external resources and partners are represented as WSDL services. WS-BPEL provides
extensibility to accommodate future versions of these standards, specifically the XPath
and related standards used in XML computation.

2. Notational Conventions
The keywords "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in
this document are to be interpreted as described in [RFC 2119].

Namespace URIs of the general form "some-URI" represent some application-dependent
or context-dependent URI as defined in [RFC 2396].

This specification uses an informal syntax to describe the XML grammar of the XML
fragments that follow:

• The syntax appears as an XML instance, but the values indicate the data types
instead of values.

• Grammar in bold has not been introduced earlier in the document, or is of
particular interest in an example.

• <-- description --> is a placeholder for elements from some "other" namespace
(like ##other in XSD).

• Characters are appended to elements, attributes, and as follows: "?" (0 or 1), "*"
(0 or more), "+" (1 or more). The characters "[" and "]" are used to indicate that
contained items are to be treated as a group with respect to the "?", "*", or "+"
characters.

• Elements and attributes separated by "|" and grouped by "(" and ")" are meant to
be syntactic alternatives.

• The XML namespace prefixes (defined below) are used to indicate the namespace
of the element being defined.

• Examples starting with <?xml contain enough information to conform to this
specification; other examples are fragments and require additional information to
be specified in order to conform.

• XSD schemas and WSDL definitions are provided as a formal definition of
grammars [XML Schema Part 1] and [WSDL 1.1].

This specification uses a number of namespace prefixes throughout; their associated
URIs are listed below. Note that the choice of any namespace prefix is arbitrary and not
semantically significant.

• xsi - "http://www.w3.org/2001/XMLSchema-instance"
• xsd - "http://www.w3.org/2001/XMLSchema"
• wsdl - "http://schemas.xmlsoap.org/wsdl/"
• plnk – http://schemas.xmlsoap.org/ws/2004/03/partner-link/”
• bpws – “http://schemas.xmlsoap.org/ws/2004/03/business-process/”

3. Relationship with Other Specifications
WS-BPEL depends on the following XML-based specifications: WSDL 1.1, XML
Schema 1.0 and XPath 1.0.

Among these, WSDL has the most influence on the WS-BPEL language. The WS-BPEL
process model is layered on top of the service model defined by WSDL 1.1. At the core

of the WS-BPEL process model is the notion of peer-to-peer interaction between services
described in WSDL; both the process and its partners are modeled as WSDL services. A
business process defines how to coordinate the interactions between a process instance
and its partners. In this sense, a WS-BPEL process definition provides and/or uses one or
more WSDL services, and provides the description of the behavior and interactions of a
process instance relative to its partners and resources through Web Service interfaces.
That is, WS-BPEL defines the message exchange protocols followed by the business
process of a specific role in the interaction.

The definition of a WS-BPEL business process also follows the WSDL model of
separation between the abstract message contents used by the business process and
deployment information (messages and portType versus binding and address
information). In particular, a WS-BPEL process represents all partners and interactions
with these partners in terms of abstract WSDL interfaces (portTypes and operations); no
references are made to the actual services used by a process instance.

However, the abstract part of WSDL does not define the constraints imposed on the
communication patterns supported by the concrete bindings. Therefore a WS-BPEL
process may define behavior relative to a partner service that is not supported by all
possible bindings, and it may happen that some bindings are invalid for a WS-BPEL
process definition.

While WS-BPEL attempts to provide as much compatibility with WSDL 1.1 as possible
there are three areas where such compatibility has proven impossible. One area, discussed
later in this document, is in fault naming. Another area is in support for overloaded
operation names in WSDL portTypes. A BPEL processor MUST reject any WSDL
portType definition that includes overloaded operation names. This restriction was
deemed appropriate as overloaded operations are rare, they are actually banned in the
WS-I Basic Profile and supporting them was felt to introduce more complexity than
benefit. Finally a WS-BPEL processor MUST reject a WS-BPEL that refers to a
portType that contain solicit-response or notification operations as defined in the WSDL
1.1 specification, this requirement MUST be statically enforced.

BPEL does not make any assumptions about the WSDL binding. Constraints, ambiguities,
provided or missing capabilities of WSDL bindings are out of scope of this specification.

A WS-BPEL process is a reusable definition that can be deployed in different ways and
in different scenarios, while maintaining a uniform application-level behavior across all
of them. Note that the description of the deployment of a WS-BPEL process is out of
scope for this specification.

Introduction of service reference container (“bpws:service-ref”) is meant to avoid
inventing a private WS-BPEL mechanism for web service endpoint references and to
provide pluggability of different versions of service referencing or endpoint addressing
schemes being used within a BPEL program without having explicit dependency to a
particular version of specification.

With respect to [WS-I Basic Profile] (Basic Profile 1.1) all BPEL implementations
SHOULD be configurable such that they can participate in Basic Profile 1.1 compliant
interactions. A BPEL implementation MAY allow the Basic Profile 1.1 configuration to
be disabled, even for scenarios encompassed by the Basic Profile 1.1. At the time this
specification was completed, the WSDL v2.0 work was ongoing and not ready for
consideration for WS-BPEL v2.0. Future versions of WS-BPEL may provide support for
WSDL v2.0.

4. This Section Has Been Deleted

5. Core Concepts and Usage Patterns
As noted in the introduction, we believe that the two usage patterns of business protocol
description and executable business process description require a common core of
process description concepts. In this specification we clearly separate the core concepts
from the extensions required specifically for the two usage patterns. The WS-BPEL
specification is focused on defining the common core, and adds only the essential
extensions required for each usage pattern. These extensions are described in separate
sections (Extensions for Executable Processes and Extensions for Business Protocols).

In a number of cases, the behavior of a process in a certain combination of circumstances
is undefined, e.g., when a variable is used before being initialized. In the definition of the
core concepts we simply note that the semantics in such cases is not defined.

WS-BPEL takes it as a general principle that compliant implementations MAY choose to
perform static analysis to detect and reject process definitions that may have undefined
semantics. Such analysis is necessarily pessimistic and therefore might in some cases
prevent the use of processes that would not, in fact, create situations with undefined
semantics, either in specific uses or in any use.

In the executable usage pattern for WS-BPEL, situations of undefined semantics always
result in standard faults in the WS-BPEL namespace. These cases will be described as
part of the Extensions for Executable Processes in the specification. However, it is
important to note that WS-BPEL uses exactly one standard internal fault for its core
control semantics, namely, bpws:joinFailure. This is the only standard fault that plays a
role in the core concepts of WS-BPEL. Of course, the occurrence of faults specified in
WSDL portType definitions during web service invocation is accounted for in the core
concepts as well.

6. Defining a Business Process
6.1. Initial Example

Before describing the structure of business processes in detail, this section presents a
simple example of a WS-BPEL process for handling a purchase order. The aim is to
introduce the most basic structures and some of the fundamental concepts of the language.

The operation of the process is very simple, and is represented in the following figure.
Dotted lines represent sequencing. Free grouping of sequences represents concurrent
sequences. Solid arrows represent control links used for synchronization across
concurrent activities. Note that this is not meant to be a definitive graphical notation for
WS-BPEL processes. It is used here informally as an aid to understanding.

On receiving the purchase order from a customer, the process initiates three tasks
concurrently: calculating the final price for the order, selecting a shipper, and scheduling
the production and shipment for the order. While some of the processing can proceed
concurrently, there are control and data dependencies between the three tasks. In
particular, the shipping price is required to finalize the price calculation, and the shipping
date is required for the complete fulfillment schedule. When the three tasks are completed,
invoice processing can proceed and the invoice is sent to the customer.

The WSDL portType offered by the service to its customers (purchaseOrderPT) is shown
in the following WSDL document. Other WSDL definitions required by the business
process are included in the same WSDL document for simplicity; in particular, the
portTypes for the Web Services providing price calculation, shipping selection and
scheduling, and production scheduling functions are also defined there. Observe that

there are no bindings or service elements in the WSDL document. A WS-BPEL process
is defined "in the abstract" by referencing only the portTypes of the services involved in
the process, and not their possible deployments. Defining business processes in this way
allows the reuse of business process definitions over multiple deployments of compatible
services.

The partner link types included at the bottom of the WSDL document represent the
interaction between the purchase order service and each of the parties with which it
interacts (see Partner Link Types, Partner Links, and Endpoint References). Partner link
types can be used to represent dependencies between services, regardless of whether a
WS-BPEL business process is defined for one or more of those services. Each partner
link type defines up to two "role" names, and lists the portTypes that each role must
support for the interaction to be carried out successfully. In this example, two partner link
types, "purchasingLT" and "schedulingLT", list a single role because, in the
corresponding service interactions, one of the parties provides all the invoked operations:
The "purchasingLT" partner link represents the connection between the process and the
requesting customer, where only the purchase order service needs to offers a service
operation ("sendPurchaseOrder"); the "schedulingLT" partner link represents the
interaction between the purchase order service and the scheduling service, in which only
operations of the latter are invoked. The two other partner link types, "invoicingLT" and
"shippingLT", define two roles because both the user of the invoice calculation and the
user of the shipping service (the invoice or the shipping schedule) must provide callback
operations to enable asynchronous notifications to be asynchronously sent
("invoiceCallbackPT" and "shippingCallbackPT" portTypes).

1234567890123456789012345678901234567890123456789012345678901234567890
 1 2 3 4 5 6
<definitions targetNamespace="http://manufacturing.org/wsdl/purchase"
 xmlns:sns="http://manufacturing.org/xsd/purchase"
 xmlns:pos="http://manufacturing.org/wsdl/purchase"
 xmlns="http://schemas.xmlsoap.org/wsdl/">

 <types>
 <xsd:schema >
 <xsd:import
 namespace="http://manufacturing.org/xsd/purchase"
 schemalocation="http://manufacturing.org/xsd/purchase.xsd"/>
 </xsd:schema>
 </types>

 <message name="POMessage">
 <part name="customerInfo" type="sns:customerInfo"/>
 <part name="purchaseOrder" type="sns:purchaseOrder"/>
 </message>
 <message name="InvMessage">
 <part name="IVC" type="sns:Invoice"/>
 </message>
 <message name="orderFaultType">
 <part name="problemInfo" element=”sns:OrderFault"/>
 </message>
 <message name="shippingRequestMessage">

 <part name="customerInfo" element="sns:customerInfo"/>
 </message>
 <message name="shippingInfoMessage">
 <part name="shippingInfo" element="sns:shippingInfo"/>
 </message>
 <message name="scheduleMessage">
 <part name="schedule" element="sns:scheduleInfo"/>
 </message>

<!-- portTypes supported by the purchase order process -->
 <portType name="purchaseOrderPT">
 <operation name="sendPurchaseOrder">
 <input message="pos:POMessage"/>
 <output message="pos:InvMessage"/>
 <fault name="cannotCompleteOrder"
 message="pos:orderFaultType"/>
 </operation>
 </portType>
 <portType name="invoiceCallbackPT">
 <operation name="sendInvoice">
 <input message="pos:InvMessage"/>
 </operation>
 </portType>
 <portType name="shippingCallbackPT">
 <operation name="sendSchedule">
 <input message="pos:scheduleMessage"/>
 </operation>
 </portType>

<!-- portType supported by the invoice services -->
 <portType name="computePricePT">
 <operation name="initiatePriceCalculation">
 <input message="pos:POMessage"/>
 </operation>
 <operation name="sendShippingPrice">
 <input message="pos:shippingInfoMessage"/>
 </operation>
 </portType>

<!-- portType supported by the shipping service -->
 <portType name="shippingPT">
 <operation name="requestShipping">
 <input message="pos:shippingRequestMessage"/>
 <output message="pos:shippingInfoMessage"/>
 <fault name="cannotCompleteOrder"
 message="pos:orderFaultType"/>
 </operation>
 </portType>

<!-- portType supported by the production scheduling process -->
 <portType name="schedulingPT">
 <operation name="requestProductionScheduling">
 <input message="pos:POMessage"/>
 </operation>
 <operation name="sendShipingSchedule">
 <input message="pos:scheduleMessage"/>
 </operation>

 </portType>

<plnk:partnerLinkType name="purchasingLT">
 <plnk:role name="purchaseService"
 portType="pos:purchaseOrderPT"/>
</plnk:partnerLinkType>

<plnk:partnerLinkType name="invoicingLT">
 <plnk:role name="invoiceService"
 portType="pos:computePricePT"/>

 <plnk:role name="invoiceRequester"
 portType="pos:invoiceCallbackPT"/>

</plnk:partnerLinkType>

<plnk:partnerLinkType name="shippingLT">
 <plnk:role name="shippingService"
 portType="pos:shippingPT"/>

 <plnk:role name="shippingRequester"
 portType="pos:shippingCallbackPT"/>

</plnk:partnerLinkType>

<plnk:partnerLinkType name="schedulingLT">
 <plnk:role name="schedulingService"
 portType="pos:schedulingPT"/>

</plnk:partnerLinkType>
</definitions>

The business process for the order service is defined next. There are four major sections
in this process definition:

• The <variables> section defines the data variables used by the process, providing
their definitions in terms of WSDL message types, XML Schema types (simple or
complex), or XML Schema elements. Variables allow processes to maintain state
data and process history based on messages exchanged.

• The <partnerLinks> section defines the different parties that interact with the
business process in the course of processing the order. The four partnerLinks
shown here correspond to the sender of the order (customer), as well as the
providers of price (invoicingProvider), shipment (shippingProvider), and
manufacturing scheduling services (schedulingProvider). Each partner link is
characterized by a partner link type and a role name. This information identifies
the functionality that must be provided by the business process and by the partner
service for the relationship to succeed, that is, the portTypes that the purchase
order process and the partner need to implement.

• The <faultHandlers> section contains fault handlers defining the activities that
must be performed in response to faults resulting from the invocation of the
assessment and approval services. In WS-BPEL, all faults, whether internal or
resulting from a service invocation, are identified by a qualified name. In

particular, each WSDL fault is identified in WS-BPEL by a qualified name
formed by the target namespace of the WSDL document in which the relevant
portType and fault are defined, and the ncname of the fault. It is important to note,
however, that because WSDL 1.1 does not require that fault names be unique
within the namespace where the operation is defined, all faults sharing a common
name and defined in the same namespace are indistinguishable. In spite of this
serious WSDL limitation, WS-BPEL provides a uniform naming model for faults,
in the expectation that future versions of WSDL will provide a better fault-naming
model.

• The rest of the process definition contains the description of the normal behavior
for handling a purchase request. The major elements of this description are
explained in the section following the process definition.

1234567890123456789012345678901234567890123456789012345678901234567890
 1 2 3 4 5 6

<process name="purchaseOrderProcess"
 targetNamespace="http://acme.com/ws-bp/purchase"
 xmlns="http://schemas.xmlsoap.org/ws/2004/03/business-process/"
 xmlns:lns="http://manufacturing.org/wsdl/purchase">

<documentation xml:lang="EN">A simple example of a WS-BPEL process for
handling a purchase order.</documentation>

<partnerLinks>
 <partnerLink name="purchasing"
 partnerLinkType="lns:purchasingLT"
 myRole="purchaseService"/>
 <partnerLink name="invoicing"
 partnerLinkType="lns:invoicingLT"
 myRole="invoiceRequester"
 partnerRole="invoiceService"/>
 <partnerLink name="shipping"
 partnerLinkType="lns:shippingLT"
 myRole="shippingRequester"
 partnerRole="shippingService"/>
 <partnerLink name="scheduling"
 partnerLinkType="lns:schedulingLT"
 partnerRole="schedulingService"/>
</partnerLinks>

<variables>
 <variable name="PO" messageType="lns:POMessage"/>
 <variable name="Invoice" messageType="lns:InvMessage"/>
 <variable name="POFault" messageType="lns:orderFaultType"/>
 <variable name="shippingRequest"
messageType="lns:shippingRequestMessage"/>
 <variable name="shippingInfo"
messageType="lns:shippingInfoMessage"/>
 <variable name="shippingSchedule"
messageType="lns:scheduleMessage"/>
</variables>

<faultHandlers>
 <catch faultName="lns:cannotCompleteOrder"
 faultVariable="POFault"
 faultMessageType="lns:orderFaultType">
 <reply partnerLink="purchasing"
 portType="lns:purchaseOrderPT"
 operation="sendPurchaseOrder"
 variable="POFault"
 faultName="cannotCompleteOrder"/>
 </catch>
</faultHandlers>

<sequence>
 <receive partnerLink="purchasing"
 portType="lns:purchaseOrderPT"
 operation="sendPurchaseOrder"
 variable="PO">
 </receive>

 <flow>
 <documentation>
 A parallel flow to handle shipping, invoicing and scheduling
 </documentation>
 <links>
 <link name="ship-to-invoice"/>
 <link name="ship-to-scheduling"/>
 </links>
 <sequence>
 <assign>
 <copy>
 <from>$PO.customerInfo</from>
 <to>$shippingRequest.customerInfo</to>
 </copy>
 </assign>
 <invoke partnerLink="shipping"
 portType="lns:shippingPT"
 operation="requestShipping"
 inputVariable="shippingRequest"
 outputVariable="shippingInfo">
 <sources>
 <source linkName="ship-to-invoice"/>
 </sources>
 </invoke>
 <receive partnerLink="shipping"
 portType="lns:shippingCallbackPT"
 operation="sendSchedule"
 variable="shippingSchedule">
 <sources>
 <source linkName="ship-to-scheduling"/>
 </sources>
 </receive>
 </sequence>
 <sequence>
 <invoke partnerLink="invoicing"
 portType="lns:computePricePT"
 operation="initiatePriceCalculation"
 inputVariable="PO">

 </invoke>
 <invoke partnerLink="invoicing"
 portType="lns:computePricePT"
 operation="sendShippingPrice"
 inputVariable="shippingInfo">
 <targets>
 <target linkName="ship-to-invoice"/>
 </targets>
 </invoke>
 <receive partnerLink="invoicing"
 portType="lns:invoiceCallbackPT"
 operation="sendInvoice"
 variable="Invoice"/>
 </sequence>
 <sequence>
 <invoke partnerLink="scheduling"
 portType="lns:schedulingPT"
 operation="requestProductionScheduling"
 inputVariable="PO">
 </invoke>
 <invoke partnerLink="scheduling"
 portType="lns:schedulingPT"
 operation="sendShippingSchedule"
 inputVariable="shippingSchedule">
 <targets>
 <target linkName="ship-to-scheduling"/>
 </targets>
 </invoke>
 </sequence>
 </flow>
 <reply partnerLink="purchasing"
 portType="lns:purchaseOrderPT"
 operation="sendPurchaseOrder"
 variable="Invoice"/>
 </sequence>
</process>

6.2. The Structure of a Business Process

This section provides a quick summary of the WS-BPEL syntax. It provides only a brief
overview; the details of each language construct are described in the rest of this document.

The basic structure of the language is:

1234567890123456789012345678901234567890123456789012345678901234567890
 1 2 3 4 5 6

<process name="ncname" targetNamespace="uri"
 queryLanguage="anyURI"?
 expressionLanguage="anyURI"?
 suppressJoinFailure="yes|no"?
 abstractProcess="yes|no"?
 xmlns="http://schemas.xmlsoap.org/ws/2004/03/business-process/">

<import namespace="uri" location="uri" importType="uri"/>*

<partnerLinks>?
<!-- Note: At least one role must be specified. -->
 <partnerLink name="ncname" partnerLinkType="qname"
 myRole="ncname"? partnerRole="ncname"?>+
 </partnerLink>
</partnerLinks>

<variables>?
 <variable name="ncname" messageType="qname"?
 type="qname"? element="qname"?/>+
</variables>

<correlationSets>?
 <correlationSet name="ncname" properties="qname-list"/>+
</correlationSets>

<faultHandlers>?
<!-- Note: There must be at least one fault handler or default. -->
 <catch faultName="qname"? faultVariable="ncname"?
 faultMessageType="qname"?
 faultElement="qname"?>*
 activity
 </catch>
 <catchAll>?
 activity
 </catchAll>
</faultHandlers>

<eventHandlers>?
<!-- Note: There must be at least one onEvent or onAlarm handler. -->
 <onEvent partnerLink="ncname" portType="qname"?
 operation="ncname" messageType="qname" variable="ncname"
 messageExchange="ncname"? >*
 <correlationSets>?
 <correlationSet name="ncname"
 properties="qname-list"/>+
 </correlationSets>
 <correlations>?
 <correlation set="ncname"
 initiate="yes|join|no"?/>+
 </correlations>
 activity
 </onEvent>
 <onAlarm>*
 (<for expressionLanguage="anyURI"?>duration-expr</for> |
 <until expressionLanguage="anyURI"?>deadline-expr</until>)?
 <repeatEvery expressionLanguage="anyURI"?>
 duration-expr
 </repeatEvery>?
 activity
 </onAlarm>
</eventHandlers>
 activity
</process>

The top-level attributes are as follows:

• queryLanguage. This attribute specifies the default XML query language used for
selection of nodes in assignment, property definition, and other uses. The default
value for this attribute is: "urn:oasis:names:tc:wsbpel:2.0:sublang:xpath1.0",
which represents the usage of XPath 1.0 within WS-BPEL 2.0. The URI of the
corresponding XPath 1.0 specification is: http://www.w3.org/TR/1999/REC-
xpath-19991116.

• expressionLanguage. This attribute specifies the expression language used in the
process. The default value for this attribute is:
"urn:oasis:names:tc:wsbpel:2.0:sublang:xpath1.0", which represents the usage of
XPath 1.0 within WS-BPEL 2.0. The URI of the corresponding XPath 1.0
specification is: http://www.w3.org/TR/1999/REC-xpath-19991116.

• suppressJoinFailure. This attribute determines whether the joinFailure fault will
be suppressed for all activities in the process. The effect of the attribute at the
process level can be overridden by an activity using a different value for the
attribute. The default for this attribute is "no" at the process level. When this
attribute is not specified for an activity, it inherits its value from its closest
enclosing activity or from the process if no enclosing activity specifies this
attribute.

• exitOnStandardFault. This attribute specifies if the process must exit if a WS-
BPEL standard fault other than bpws:joinFailure is encountered1. If the value of
this attribute is set to “yes”, then the process MUST exit immediately as if an
<exit> activity has been reached, when a WS-BPEL standard fault other than
bpws:joinFailure is enountered. If the value of this attribute is set to “no”, then the
process can handle a standard fault using a fault handler. The default value for
this attribute is “no”. When this attribute is not specified on a <scope> it inherits
its value from its enclosing <scope> or <process>.

If the value of exitOnStandardFault of a <scope> or <process> is set to “yes”,
then a fault handler that explicitly targets the WS-BPEL standard faults MUST
NOT be used in that scope. A process definition that violates this condition
MUST be detected and rejected by static analysis.

• abstractProcess. This attribute specifies whether the process being defined is
abstract (rather than executable). The default for this attribute is "no".

The value of the queryLanguage and expressionLanguage attributes on the
<process> element are global defaults and can be overridden on
specific activities like <assign> using the mechanisms defined later in
this specification. In addition the queryLanguage attribute is also
available for use in defining BPEL property aliases in WSDL. BPEL processors
MUST:

1 bpws:joinFailure generally represents a modeling error and hence is excluded from other standard faults
in this case.

• statically determine which languages are referenced by queryLanguage or
expressionLanguage attributes either in the BPEL process definition itself or in
any BPEL property definitions in associated WSDLs and

• if any referenced language is unsupported by the BPEL processor then the
processor MUST NOT process the submitted BPEL process definition.

Note that: <documentation> construct may be added to virtually all WS-BPEL constructs
as the formal way to annotate processes definition with human documentation. Examples
of <documentation> construct can be found in previous section. Detailed description of
<documention> is provided in next section, as it is a part of “Language Extensibility”.

The token "activity" can be any of the following:

• <receive>
• <reply>
• <invoke>
• <assign>
• <throw>
• <exit>
• <wait>
• <empty>
• <sequence>
• <if>
• <while>
• <repeatUntil>
• <pick>
• <flow>
• <scope>
• <compensate>
• <rethrow>
• <validate>

The syntax of each of these elements, except <exit>, <compensate> and <rethrow>, is
considered in the following paragraphs.

• Although <exit> is permitted as an interpretation of the token activity, it is only
available in executable processes and as such is defined in the section on
Extensions for Executable Processes.

• <compensate> activity can be used ONLY within a fault handler or a
compensation handler (i.e. <catch>, <catchAll> and <compensationHandler>
elements).

• <rethrow> activity can be used ONLY within a fault handler (i.e. <catch> and
<catchAll> elements).

The <receive> construct allows the business process to do a blocking wait for a matching
message to arrive. The portType attribute on the <receive> activity is optional. If the

portType attribute is included for readability, the value of the portType attribute MUST
match the portType value implied by the combination of the specified partnerLink and
the role implicitly specified by the activity (See also partnerLink description in the next
section). The optional messageExchange attribute is used to associate a <reply> activity
with a <receive> activity. (For details of messageExchange, please see “Providing Web
Service Operations” section).

1234567890123456789012345678901234567890123456789012345678901234567890
 1 2 3 4 5 6

<receive partnerLink="ncname" portType="qname"? operation="ncname"
 variable="ncname"? createInstance="yes|no"?
 messageExchange="ncname"?
 standard-attributes>
 standard-elements
 <correlations>?
 <correlation set="ncname" initiate="yes|join|no"?/>+
 </correlations>
 <fromPart part="ncname" toVariable="ncname"/>*
</receive>

The <reply> construct allows the business process to send a message in reply to a
message that was received through a <receive>. The combination of a <receive> and a
<reply> forms a request-response operation on the WSDL portType for the process. The
portType attribute on the <reply> activity is optional. If the portType attribute is included
for readability, the value of the portType attribute MUST match the portType value
implied by the combination of the specified partnerLink and the role implicitly specified
by the activity (See also partnerLink description in the next section). The optional
messageExchange attribute is used to associate a <reply> activity with an inbound
message activity, such as, <receive>, <onMessage> and <onEvent>. (For details of
messageExchange, please see “Providing Web Service Operations” section).

1234567890123456789012345678901234567890123456789012345678901234567890
 1 2 3 4 5 6

<reply partnerLink="ncname" portType="qname"? operation="ncname"
 variable="ncname"? faultName="qname"?
 messageExchange="ncname"?
 standard-attributes>
 standard-elements
 <correlations>?
 <correlation set="ncname" initiate="yes|join|no"?/>+
 </correlations>
 <toPart part="ncname" fromVariable="ncname"/>*
</reply>

The <invoke> construct allows the business process to invoke a one-way or
requestresponse operation on a portType offered by a partner. The portType attribute on
the <invoke> activity is optional. If the portType attribute is included for readability, the
value of the portType attribute MUST match the portType value implied by the

combination of the specified partnerLink and the role implicitly specified by the activity
(See also partnerLink description in the next section).

1234567890123456789012345678901234567890123456789012345678901234567890
 1 2 3 4 5 6

<invoke partnerLink="ncname" portType="qname"? operation="ncname"
 inputVariable="ncname"? outputVariable="ncname"?
 standard-attributes>
 standard-elements
 <correlations>?
 <correlation set="ncname" initiate="yes|join|no"?
 pattern="in|out|out-in"/>+
 </correlations>
 <catch faultName=“qname”? faultVariable="ncname"?
 faultMessageType="qname"?>*
 activity
 </catch>
 <catchAll>?
 activity
 </catchAll>
 <compensationHandler>?
 activity
 </compensationHandler>
 <toPart part="ncname" fromVariable="ncname"/>*
 <fromPart part="ncname" toVariable="ncname"/>*
</invoke>

The <assign> construct can be used to update the values of variables with new data. An
<assign> construct can contain any number of elementary assignments, including <copy>
assign elements or data update operations defined as extension under other namespaces.
The syntax of the assignment activity is:

1234567890123456789012345678901234567890123456789012345678901234567890
 1 2 3 4 5 6

<assign validate="yes|no"? standard-attributes>
 standard-elements
 (<copy>
 from-spec
 to-spec
 </copy> |
 <extensibleAssign>
 ...assign-element-of-other-namespace...
 </extensibleAssign>) +
</assign>

The <validate> construct can be used to validate the values of variables against their
associated XML and WSDL data definition. The construct has a variables attribute,
which points to the variables being validated. The syntax of the validate activity is:

<validate variables="ncnames" />

The <throw> construct generates a fault from inside the business process.

1234567890123456789012345678901234567890123456789012345678901234567890
 1 2 3 4 5 6

<throw faultName="qname" faultVariable="ncname"? standard-attributes>
 standard-elements
</throw>

The <wait> construct allows you to wait for a given time period or until a certain time
has passed. Exactly one of the expiration criteria must be specified.

1234567890123456789012345678901234567890123456789012345678901234567890
 1 2 3 4 5 6

<wait standard-attributes>
 standard-elements
 (<for expressionLanguage="anyURI"?>duration-expr</for> |
 <until expressionLanguage="anyURI"?>deadline-expr</until>)
</wait>

The <empty> construct allows you to insert a "no-op" instruction into a business process.
This is useful for synchronization of concurrent activities, for instance.

1234567890123456789012345678901234567890123456789012345678901234567890
 1 2 3 4 5 6

<empty standard-attributes>
 standard-elements
</empty>

The <sequence> construct allows you to define a collection of activities to be performed
sequentially in lexical order.

1234567890123456789012345678901234567890123456789012345678901234567890
 1 2 3 4 5 6

<sequence standard-attributes>
 standard-elements
 activity+
</sequence>

The <if> construct allows you to select exactly one branch of activity from a set of
potential choices.

1234567890123456789012345678901234567890123456789012345678901234567890
 1 2 3 4 5 6
<if standard-attributes>
 standard-elements
 <condition expressionLanguage="anyURI"?>
 ... bool-expr ...
 </condition>

 <then>
 activity
 </then>
 <elseif>*
 <condition expressionLanguage="anyURI"?>
 ... bool-expr ...
 </condition>
 activity
 </elseif>
 <else>?
 activity
 </else>
</if>

The <while> construct allows you to indicate that an activity is to be repeated until a
certain success criteria has been met.

1234567890123456789012345678901234567890123456789012345678901234567890
 1 2 3 4 5 6

<while standard-attributes>
 standard-elements
 <condition expressionLanguage="anyURI"?>
 ... bool-expr ...
 </condition>

 activity
</while>

The <repeatUntil> constructs allows you to indicate the repeated performance of a
specified iterative activity. The iterative activity will continue to be performed so long as
after it executes the given Boolean <repeatUntil> condition holds true.

1234567890123456789012345678901234567890123456789012345678901234567890
 1 2 3 4 5 6

<repeatUntil standard-attributes>
 standard-elements
 activity
 <condition expressionLanguage="anyURI"?>
 ... bool-expr ...
 </condition>
</repeatUntil>

The <pick> construct allows you to block and wait for a suitable message to arrive or for
a time-out alarm to go off. When one of these triggers occurs, the associated activity is
performed and the pick completes.

1234567890123456789012345678901234567890123456789012345678901234567890
 1 2 3 4 5 6

<pick createInstance="yes|no"? standard-attributes>

 standard-elements
 <onMessage partnerLink="ncname" portType="qname"?
 operation="ncname" variable="ncname"?
 messageExchange="ncname"? >+
 <correlations>?
 <correlation set="ncname" initiate="yes|join|no"?/>+
 </correlations>
 <fromPart part="ncname" toVariable="ncname"/>*
 activity
 </onMessage>
 <onAlarm>*
 (<for expressionLanguage="anyURI"?>duration-expr</for> |
 <until expressionLanguage="anyURI"?>deadline-expr</until>)?
 <repeatEvery expressionLanguage="anyURI"?>duration-
expr</repeatEvery>?
 activity
 </onAlarm>
</pick>

The portType attribute on the <onMessage> activity is optional. If the portType attribute
is included for readability, the value of the portType attribute MUST match the portType
value implied by the combination of the specified partnerLink and the role implicitly
specified by the activity (See also partnerLink description in the next section). The
optional messageExchange attribute is used to associate a <reply> activity with a
<onMessage> activity. (For details of messageExchange, please see “Providing Web
Service Operations” section).

The <flow> construct allows you to specify one or more activities to be performed
concurrently. Links can be used within concurrent activities to define arbitrary control
structures.

1234567890123456789012345678901234567890123456789012345678901234567890
 1 2 3 4 5 6

<flow standard-attributes>
 standard-elements
 <links>?
 <link name="ncname">+
 </links>
 activity+
</flow>

The <scope> construct allows you to define a nested activity with its own associated
variables, fault handlers, and compensation handler.

1234567890123456789012345678901234567890123456789012345678901234567890
 1 2 3 4 5 6

<scope isolated="yes|no" standard-attributes>
 standard-elements
 <partnerLinks>?
 ... see above under <process> for syntax ...
 </partnerLinks>

 <variables>?
 ... see above under <process> for syntax ...
 </variables>
 <correlationSets>?
 ... see above under <process> for syntax ...
 </correlationSets>
 <faultHandlers>?
 ... see above under <process> for syntax ...
 </faultHandlers>
 <compensationHandler>?
 ... see above under <process> for syntax ...
 </compensationHandler>
 <terminationHandler>?
 ...
 </terminationHandler>
 <eventHandlers>?
 ...
 </eventHandlers>
 activity
</scope>
1234567890123456789012345678901234567890123456789012345678901234567890
 1 2 3 4 5 6

The <compensate> construct is used to invoke compensation on an inner scope that has
already completed normally. This construct can be invoked only from within a fault
handler or another compensation handler.

1234567890123456789012345678901234567890123456789012345678901234567890
 1 2 3 4 5 6

<compensate scope="ncname"? standard-attributes>
 standard-elements
</compensate>

Note that the "standard-attributes" referred to above are:

1234567890123456789012345678901234567890123456789012345678901234567890
 1 2 3 4 5 6

name="ncname"? suppressJoinFailure="yes|no"?

where the default values are as follows:

• name: No default value (that is, the default is unnamed)

• suppressJoinFailure: When this attribute is not specified for an activity, it inherits
its value from its closest enclosing activity or from the process if no enclosing
activity specifies this attribute.

and that the "standard-elements" referred to above are:

1234567890123456789012345678901234567890123456789012345678901234567890
 1 2 3 4 5 6
<targets>?
 <joinCondition expressionLanguage="anyURI"?>?
 ... bool-expr ...
 </joinCondition>
 <target linkName="ncname" />+
</targets>
<sources>?
 <source linkName="ncname">+
 <transitionCondition expressionLanguage="anyURI"?>?
 ... bool-expr ...
 </transitionCondition>
 </source>
</sources>

6.3. Language Extensibility

WS-BPEL contains constructs that are generally sufficient for expressing abstract and
executable business processes. In some cases, however, it might be necessary to “extend”
the WS-BPEL language with additional constructs from other XML namespaces.

WS-BPEL supports extensibility by allowing namespace-qualified attributes to appear on
any WS-BPEL element and by allowing elements from other namespaces to appear
within WS-BPEL defined elements. This is allowed in the XML Schema specifications
for WS-BPEL.

If, during the processing of a BPEL process an element is encountered that is not
recognized by the processor then the element and its children MUST be treated as if they
were not present in the BPEL process instance. The previously defined ignore semantics
make it possible to add optional attributes or elements to BPEL that can be safely ignored
if not recognized. In the case of unsupported mandatory extensions (see section 13.7) the
previous logic is unnecessary as the entire process instance will be rejected.

Extensions MUST NOT contradict the semantics of any element or attribute defined by
the WS-BPEL specification. Extensions that affect the semantics of WS-BPEL processes
MUST appear in the WS-BPEL process definition or its directly referenced WSDL
portTypes, property alias definitions or property definitions.

The <documentation> construct is designed to be an integral part of Language
Extensibility. The content of <documentation> are for human-consumption. Example
types for those content are: plain text, HTML and XHTML. Tool-implementation
specific information (e.g. the graphical layout details) should be added through elements
and attributes of other namespaces, using the general WS-BPEL Language Extensibility
mechanism.

6.4. Document Linking

A WS-BPEL process definition relies on XML Schema and WSDL 1.1 for the definition
of datatypes and service interfaces. Process definitions also rely on other constructs such
as partner link types, variable properties and property aliases (defined later in this
specification) which are defined within WSDL 1.1 documents using the WSDL 1.1
language extensibility feature.

The <import> element is used within a WS-BPEL process to explicitly indicate a
dependency on external XML Schema or WSDL definitions. Any number of <import>
elements may appear as initial children of the <process> element, before any other child
element. Each <import> element contains three mandatory attributes

• namespace. The namespace attribute specifies the URI namespace of the imported
definitions.

• location. The location attribute contains a URI indicating the location of a
document that contains relevant definitions in the namespace specified. The
document located at the URI MUST contain definitions belonging to the same
namespace as indicated by the namespace attribute.

• importType. The importType attribute identifies the type of document being
imported by providing the URI of the encoding language. The value MUST be set
to "http://www.w3.org/2001/XMLSchema" when importing XML Schema 1.0
documents, and to "http://schemas.xmlsoap.org/wsdl/" when importing WSDL
1.1 documents.

The presence of an <import> element should be interpreted as a hint to the WS-BPEL
processor. In particular, processors are not required to retrieve the imported document
from the location specified on the <import> element.

6.5 The Lifecycle of a Business Process

As noted in the introduction, the interaction model that is directly supported by WSDL is
essentially a stateless client-server model of synchronous or uncorrelated asynchronous
interactions. WS-BPEL, builds on WSDL by assuming that all external interactions of the
business process occur through Web Service operations. However, WS-BPEL business
processes represent stateful long-running interactions in which each interaction has a
beginning, defined behavior during its lifetime, and an end. For example, in a supply
chain, a seller's business process might offer a service that begins an interaction by
accepting a purchase order through an input message, and then returns an
acknowledgement to the buyer if the order can be fulfilled. It might later send further
messages to the buyer, such as shipping notices and invoices. The seller's business
process remembers the state of each such purchase order interaction separately from other
similar interactions. This is necessary because a buyer might be carrying on many
simultaneous purchase processes with the same seller. In short, a WS-BPEL business
process definition can be thought of as a template for creating business process instances.

The creation of a process instance in WS-BPEL is always implicit; activities that receive
messages (that is, receive activities and pick activities) can be annotated to indicate that

the occurrence of that activity causes a new instance of the business process to be created.
This is done by setting the createInstance attribute of such an activity to "yes". When a
message is received by such an activity, an instance of the business process is created if it
does not already exist (see Providing Web Service Operations and Pick).

To be instantiated, each business process must contain at least one such "start activity."
That is, a receive/pick activity annotated with a createInstance="yes" attribute. See
section 11.4 for more details on start activities.

If more than one start activity is enabled concurrently, then all such activities MUST
share at least one common correlation set (see Correlation and the Multiple Start
Activities example).

If a process contains exactly one start activity then the use of
correlation sets is unconstrained. This includes a pick with multiple
onMessage branches; each such branch can use different correlation sets or no correlation
sets.

A business process instance is terminated in one of the following ways:

• When the activity that defines the behavior of the process as a whole completes.
In this case the termination is normal.

• When a fault reaches the process scope, and is either handled or not handled. In
this case the termination is considered abnormal even if the fault is handled and
the fault handler does not rethrow any fault. A compensation handler is never
installed for a scope that terminates abnormally.

• When a process instance is explicitly terminated by an exit activity (see
Terminating the Service Instance). In this case the termination is abnormal.

The structure of the main processing section is defined by the outer <sequence> element,
which states that the three activities contained inside are performed in order. The
customer request is received (<receive> element), then processed (inside a <flow>
section that enables concurrent behavior), and a reply message with the final approval
status of the request is sent back to the customer (<reply>). Note that the <receive> and
<reply> elements are matched respectively to the <input> and <output> messages of the
"sendPurchaseOrder" operation invoked by the customer, while the activities performed
by the process between these elements represent the actions taken in response to the
customer request, from the time the request is received to the time the response is sent
back (reply).

A receive activity for an inbound request/response operation is said to be open if
that activity has been performed and no corresponding reply activity has been
performed. If the process instance reaches the end of its behavior, and one or
more receive activities remain open, then the status of the instance becomes
undefined. This condition indicates a modeling error that was not detected by
static analysis.

The example makes the implicit assumption that the customer request can be processed in
a reasonable amount of time, justifying the requirement that the invoker wait for a
synchronous response (because this service is offered as a request-response operation).
When that assumption does not hold, the interaction with the customer is better modeled
as a pair of asynchronous message exchanges. In that case, the "sendPurchaseOrder"
operation is a one-way operation and the asynchronous response is sent by invoking a
second one-way operation on a customer "callback" interface. In addition to changing the
signature of "sendPurchaseOrder" and defining a new portType to represent the customer
callback interface, two modifications need to be made in the preceding example to
support an asynchronous response to the customer. First, the partner link type
"purchasingLT" that represents the process-customer connection needs to include a
second role ("customer") listing the customer callback portType. Second, the <reply>
activity in the process needs to be replaced by an <invoke> on the customer callback
operation.

The processing taking place inside the <flow> element consists of three <sequence>
blocks running concurrently. The synchronization dependencies between activities in the
three concurrent sequences are expressed by using "links" to connect them. The links are
defined inside the flow and are used to connect a source activity to a target activity. (Note
that each activity declares itself as the source or target of a link by using the nested
<source> and <target> elements.) In the absence of links, the activities nested directly
inside a flow proceed concurrently. In the example, however, the presence of two links
introduces control dependencies between the activities performed inside each sequence.
For example, while the price calculation can be started immediately after the request is
received, shipping price can only be added to the invoice after the shipper information
has been obtained; this dependency is represented by the link (named "ship-to-invoice")
that connects the first call on the shipping provider ("requestShipping") with sending
shipping information to the price calculation service ("sendShippingPrice"). Likewise,
shipping scheduling information can only be sent to the manufacturing scheduling service
after it has been received from the shipper service; thus the need for the second link
("ship-to-scheduling").

Observe that information is passed between the different activities in an implicit way
through the sharing of globally visible data variables. In this example, the control
dependencies represented by links are related to corresponding data dependencies, in one
case on the availability of the shipper rates and in another on the availability of a shipping
schedule. The information is passed from the activity that generates it to the activity that
uses it by means of two global data variables ("shippingInfo" and "shippingSchedule").

Certain operations can return faults, as defined in their WSDL definitions. For simplicity,
it is assumed here that the two operations return the same fault ("cannotCompleteOrder").
When a fault occurs, normal processing is terminated and control is transferred to the
corresponding fault handler, as defined in the <faultHandlers> section. In this example
the handler uses a <reply> element to return a fault to the customer (note the "faultName"
attribute in the <reply> element).

Finally, it is important to observe how an assignment activity is used to transfer
information between data variables. The simple assignments shown in this example
transfer a message part from a source variable to a message part in a target variable, but
more complex forms of assignments are also possible.

7. Partner Link Types, Partner Links, and
Endpoint References
A very important, if not the most important, use case for WS-BPEL will be in describing
cross-enterprise business interactions in which the business processes of each enterprise
interact through Web Service interfaces with the processes of other enterprises. An
important requirement for realistic modeling of business processing in this environment
is the ability to model the required relationship with a partner process. WSDL already
describes the functionality of a service provided by a partner, at both the abstract and
concrete levels. The relationship of a business process to a partner is typically peer-to-
peer, requiring a two-way dependency at the service level. In other words, a partner
represents both a consumer of a service provided by the business process and a provider
of a service to the business process. This is especially the case when the interactions are
based on asynchronous messaging rather than on remote procedure calls. The notion of
Partner links is used to directly model peer-to-peer conversational partner relationships.
Partner links define the shape of a relationship with a partner by defining the message
and port types used in the interactions in both directions. However, the actual partner
service may be dynamically determined within the process. WS-BPEL uses a notion of
endpoint reference, manifested as a service reference container (“bpws:service-ref”), to
represent the dynamic data required to describe a partner service endpoint.

It is important to emphasize that the notions of partner link and endpoint reference used
here are preliminary. The specification for these concepts as they relate to Web Services
is still evolving, and we expect normative definitions for them to emerge in future. The
WS-BPEL specification will be updated to conform to the expected future standards.

7.1. Partner Link Types

A partner link type characterizes the conversational relationship between two services by
defining the "roles" played by each of the services in the conversation and specifying the
portType provided by each service to receive messages within the context of the
conversation. The following example illustrates the basic syntax of a partner link type
declaration:

1234567890123456789012345678901234567890123456789012345678901234567890
 1 2 3 4 5 6

<partnerLinkType name="BuyerSellerLink"
 xmlns="http://schemas.xmlsoap.org/ws/2004/03/partner-link/">
 <role name="Buyer" portType="buy:BuyerPortType"/>

 <role name="Seller" portType="sell:SellerPortType"/>
</partnerLinkType>

Each role specifies exactly one WSDL portType.

In the common case, portTypes of the two roles originate from separate namespaces.
However, in some cases, both roles of a partner link type can be defined in terms of
portTypes from the same namespace. The latter situation occurs for partner link types that
define "callback" relationships between services.

The partner link type definition can be a separate artifact independent of either service's
WSDL document. Alternatively, the partner link type definition can be placed within the
WSDL document defining the portTypes from which the different roles are defined.

The extensibility mechanism of WSDL 1.1 is used to define partnerLinkType as a new
definition type to be placed as an immediate child element of a <wsdl:definitions>
element in all cases. This allows reuse of the WSDL target namespace specification and,
more importantly, its import mechanism to import portTypes. For cases where a
partnerLinkType declaration is linking the portTypes of two different services, the
partnerLinkType declaration can be placed in a separate WSDL document (with its own
targetNamespace).

The syntax for defining a partnerLinkType is:

1234567890123456789012345678901234567890123456789012345678901234567890
 1 2 3 4 5 6

<definitions name="ncname" targetNamespace="uri"
 xmlns="http://schemas.xmlsoap.org/wsdl/">
 ...
 <plnk:partnerLinkType name="ncname">
 <plnk:role name="ncname" portType="qname"/>
 <plnk:role name="ncname" portType="qname"/>?

 </plnk:partnerLinkType>
 ...
</definitions>

This defines a partner link type in the namespace indicated by the value of the
"targetNamespace" attribute of the WSDL document element. The portTypes identified
within roles are referenced by using QNames as for all top-level WSDL definitions.

Note that in some cases it can be meaningful to define a partner link type containing
exactly one role instead of two. That defines a partner linking scenario where one service
expresses a willingness to link with any other service, without placing any requirements
on the other service.

Examples of partnerLinkType declarations are found in various business process
examples in this specification.

7.2. Partner Links

The services with which a business process interacts are modeled as partner links in WS-
BPEL. Each partner link is characterized by a partnerLinkType. More than one partner
link can be characterized by the same partnerLinkType. For example, a certain
procurement process might use more than one vendor for its transactions, but might use
the same partnerLinkType for all vendors.

1234567890123456789012345678901234567890123456789012345678901234567890
 1 2 3 4 5 6

<partnerLinks>
 <partnerLink name="ncname" partnerLinkType="qname"
 myRole="ncname"? partnerRole="ncname"?
 initializePartnerRole="yes|no"?>+
 </partnerLink>
</partnerLinks>

Each partnerLink is named, and this name is used for all service interactions via that
partnerLink. This is critical, for example, in correlating responses to different
partnerLinks for simultaneous requests of the same kind (see Invoking Web Service
Operations and Providing Web Service Operations).

The role of the business process itself is indicated by the attribute myRole and the role of
the partner is indicated by the attribute partnerRole. In the degenerate case where a
partnerLinkType has only one role, one of these attributes is omitted as appropriate.

Note that the partnerLink declarations specify the shape of the relationships that the WS-
BPEL process will employ in its behavior. Before operations on a partner's service can be
invoked via a partnerLink, the binding and communication data for the partner service
must be available. The relevant information about a partner service can be set as part of
business process deployment. This is outside the scope of WS-BPEL. However, it is also
possible to select and assign actual partner services dynamically, and WS-BPEL provides
the mechanisms to do so via assignment of endpoint references. In fact, because the
partners are likely to be stateful, the service endpoint information needs to be extended
with instance-specific information. WS-BPEL allows the endpoint references implicitly
present in partnerLinks to be both extracted and assigned dynamically, and also to be set
more than once. See Assignment for the mechanisms used for dynamic assignment of
endpoint references to partner services.

The initializePartnerRole attribute specifies if the BPEL processor is required to initialize
a partnerLink's partnerRole value. The attribute has no affect on the partnerRole's value
after its initialization. The initializePartnerRole attribute MUST NOT be used on a
partnerLink that does not have a partner role; this restriction MUST be statically enforced.
If the initializePartnerRole attribute is set to "yes" then the BPEL processor MUST
initialize the EPR for the specified partnerLink/partnerRole combination before that
partnerRole is first referenced by the BPEL process. If the initializePartnerRole attribute
is set to "no" then the BPEL processor MUST NOT initialize the EPR for the specified

partnerLink/partnerRole combination before that partnerRole is first referenced by the
BPEL process. If the initializePartnerRole attribute is omitted then its value MUST be
treated as "no".

A partnerLink can be declared within a process or scope element. The name of a
partnerLink should be unique within its own scope. Access to partnerLink follows
common lexical scoping rules, similar to the rules for variables. A partnerLink resolves to
the nearest enclosing scope, regardless of the type of the partnerLink. If a local
partnerLink declared in an enclosing scope, the local partnerLink will be used in local
assignments and message sending/receiving activities. The lifecyle of a partnerLink is
same as the lifecycle of the scope declaring the partnerLink. The initial binding
information of a partnerLink can be set as a part of business process deployment,
regardless whether it is declared on the process or scope element level.

7.4. Endpoint References

WSDL makes an important distinction between portTypes and ports. PortTypes define
abstract functionality by using abstract messages. Ports provide actual access information,
including communication service endpoints and (by using extension elements) other
deployment related information such as public keys for encryption. Bindings provide the
glue between the two. While the user of a service must be statically dependent on the
abstract interface defined by portTypes, some of the information contained in port
definitions can typically be discovered and used dynamically.

The fundamental use of endpoint references is to serve as the mechanism for dynamic
communication of port-specific data for services. An endpoint reference makes it possible
in WS-BPEL to dynamically select a provider for a particular type of service and to
invoke their operations. WS-BPEL provides a general mechanism for correlating
messages to stateful instances of a service, and therefore endpoint references that carry
instance-neutral port information are often sufficient. However, in general it is necessary
to carry additional instance-identification tokens in the endpoint reference itself.

Every partner role in a partnerLink in a WS-BPEL process instance is assigned a unique
endpoint reference in the course of the deployment of the process or dynamically by an
activity within the process.

Endpoint references associated with parterRole and myRole of partnerLinks are
manifested as service reference containers (“bpws:service-ref”). This container is used as
envelope to wrap around the actual endpoint reference value, when a WS-BPEL process
interacts the endpoint reference of a partnerLink. It provides pluggability of different
versions of service endpoint referencing schemes being used within a BPEL program.
The design pattern here is similar to those of expression language, also known as open-
content models.

The “bpws:service-ref” has an optional attribute called “reference-scheme” to to denote
the URI of the reference interpretation scheme of service endpoint, which is the child
element of bpws:service-ref.

Most likely, the URI of reference scheme and the namespace URI of the child element of
bpws:service-ref are not necessarily the same. Typically, this optional attribute is used
ONLY when the child element of the “bpws:service-ref” is ambiguous by itself. The
optional attribute supplies further information to disambiguate the usage of the content.
One example would be: different treatments of wsdl:service element, if wsdl:service is
used as the endpoint reference.

If that attribute is not specified, use the namespace URI of the content element within the
wrapper to determine the reference scheme of service endpoint.

If the attribute is specified, use the URI as the reference scheme of service endpoint and
treat the content element within the wrapper accordingly. When the "reference-scheme"
attribute is specified, the URI value is most likely different from the namespace URI of
the content element for EPR.

When the BPEL container fails to interpret the combination of the "reference-scheme"
attribute and the content element OR just the content element alone, a standard fault
"bpws:unsupportedReference" must be thrown.

When WS-BPEL users interact and manipulate endpoint references of partnerLinks, The
“bpws:service-ref” element are NOT exposed to WS-BPEL users in all cases. For
example, when people try to do an assignment from the endpoint reference of myRole of
partnerLink-A to that of partnerRole of partner-B. On the contrary, if people try to do
assignment from a messageType or element based variable through expression or from a
service-ref -form of from-spec, the “bpws:service-ref” is visible to WS-BPEL users.

8. Variable Properties
8.1. Motivation

8.1.1 Motivation for Message Properties

The data in a message consists conceptually of two parts: application data and protocol
relevant data, where the protocols can be business protocols or infrastructure protocols
providing higher quality of service. An example of business protocol data is the
correlation tokens that are used in correlation sets (see Correlation). Examples of
infrastructure protocols are security, transaction, and reliable messaging protocols. The
business protocol data is usually found embedded in the application-visible message parts,
whereas the infrastructure protocols almost always add implicit extra parts to the message
types to represent protocol headers that are separate from application data. Such implicit
parts are often called message context because they relate to security context, transaction

context, and other similar middleware context of the interaction. Business processes
might need to gain access to and manipulate both kinds of protocol-relevant data. The
notion of message properties is defined as a general way of naming and representing
distinguished data elements within a message, whether in application-visible data or in
message context. For a full accounting of the service description aspects of infrastructure
protocols, it is necessary to define notions of service policies, endpoint properties, and
message context. This work is outside the scope of
WS-BPEL. Message properties are defined here in a sufficiently general way to cover
message context consisting of implicit parts, but the use in this specification focuses on
properties embedded in application-visible data that is used in the definition of business
protocols and abstract business processes.

8.1.2 Motivation for Variable Properties

Message properties are an instance of a more generic mechanism, variable properties. All
variables in BPEL can have properties defined on them. Properties are useful on non-
message variables as a way to isolate the BPEL process’s logic from the details of a
particular variable’s definition. Using properties a BPEL process can isolate its variable
initialization logic in one place and then set and get properties on that variable in order to
manipulate it. If the variable’s definition is later changed the bulk of the BPEL process
definition that manipulates that variable can remain unchanged.

8.2. Defining Properties

A property definition creates a globally unique name and associates it with an XML
Schema type. The intent is not to create a new type. The intent is to create a name that
has greater significance than the type itself. For example, a sequence number can be an
integer, but the integer type does not convey this significance, whereas a globally named
sequence-number property does. Properties can occur anywhere in a variable.

A typical use for a property in WS-BPEL is to name a token for correlation of service
instances with messages. For performance reasons, properties used for correlation MUST
be defined using XML Schema simple types, this restriction MUST be statically enforced.
For example, a social security number might be used to identify an individual taxpayer in
a long-running multiparty business process regarding a tax matter. A social security
number can appear in many different message types, but in the context of a tax-related
process it has a specific significance as a taxpayer ID. Therefore a global name is given
to this use of the type by defining a property, as in the following example:

1234567890123456789012345678901234567890123456789012345678901234567890
 1 2 3 4 5 6

<definitions name="properties"
 targetNamespace="http://example.com/properties.wsdl"
 xmlns:tns="http://example.com/properties.wsdl"
 xmlns:txtyp="http://example.com/taxTypes.xsd"
 xmlns="http://schemas.xmlsoap.org/wsdl/">

 <! -- import schema taxTypes.xsd -- >
 <!-- define a correlation property -->
 <bpws:property name="taxpayerNumber"
 type="txtyp:SSN"/>
 ...
</wsdl:definitions>

In correlation, the property name must have global significance to be of any use.
Properties such as price, risk, response latency, and so on, which are used in conditional
behavior in a business process, have similar global and public significance. It is likely
that they will be mapped to multiple messages, and therefore they need to be globally
named as in the case of correlation properties. Such properties are essential, especially in
abstract processes.

Even in the general case of properties on XML typed WS-BPEL variables the property
name should maintain its generic nature. The name is intended to identify a certain kind
of value, often with an implied semantic. Any variable the property is available on is
therefore expected to provide a value that meets not just the syntax of the property
definition but also its semantics.

The WSDL extensibility mechanism is used to define properties so that the target
namespace and other useful aspects of WSDL are available.

The WS-BPEL standard namespace,
"http//schemas.xmlsoap.org/ws/2004/03/business-process/", is used for
property definitions. The syntax for a property definition is a new kind of WSDL
definition as follows:

1234567890123456789012345678901234567890123456789012345678901234567890
 1 2 3 4 5 6

<wsdl:definitions name="ncname">
 <bpws:property name="ncname" type="qname"? element="qname"?/>
 ...
</wsdl:definitions>

Either the type or element attributes MUST be present but not both. Properties used in
business protocols are typically embedded in application-visible message data. The
notion of aliasing is introduced to map a global property to a field in a specific message
part or a value in a XML variable. The property name becomes an alias for the message
part and location or XML variable value, and can be used as such in Expressions and
Assignment in abstract business processes. As an example, consider the following
WSDL message definition:

1234567890123456789012345678901234567890123456789012345678901234567890
 1 2 3 4 5 6

<definitions name="messages"
 targetNamespace="http://example.com/taxMessages.wsdl"

 xmlns:txtyp="http://example.com/taxTypes.xsd"
 xmlns="http://schemas.xmlsoap.org/wsdl/">

 <!-- define a WSDL application message -->
 <message name="taxpayerInfo">
 <part name="identification" element="txtyp:socialsecnumber"/>
 </message>
 ...
</definitions>

The definition of a global property and its location in a particular field of the message are
shown in the next WSDL fragment:

1234567890123456789012345678901234567890123456789012345678901234567890
 1 2 3 4 5 6

<definitions name="properties"
 targetNamespace="http://example.com/properties.wsdl"
 xmlns:tns="http://example.com/properties.wsdl"
 xmlns:txtyp="http://example.com/taxTypes.xsd"
 xmlns:txmsg="http://example.com/taxMessages.wsdl"

 xmlns="http://schemas.xmlsoap.org/wsdl/">

 <!-- define a correlation property -->
 <bpws:property name="taxpayerNumber" type="txtyp:SSN"/>
 ...
 <bpws:propertyAlias propertyName="tns:taxpayerNumber"
 messageType="txmsg:taxpayerInfo" part="identification">
 <query>
 /txtyp:socialsecnumber
 </query>
 </bpws:propertyAlias>
</definitions>

The bpws:propertyAlias defines a globally named property tns:taxpayerNumber as
an alias for a location in the identification part of the message type
txmsg:taxpayerInfo.

The syntax for a propertyAlias definition is:

1234567890123456789012345678901234567890123456789012345678901234567890
 1 2 3 4 5 6

<definitions name="ncname"
 ...
>

 <bpws:propertyAlias propertyName="qname"
 messageType="qname" part="ncname">
 <query queryLanguage="anyURI"?>?
 ... queryString ...
 </query>

 </bpws:propertyAlias>
 ...
</wsdl:definitions>

The interpretation of the message and part attributes, as well as the <query> element is
the same as in the corresponding from-spec in copy assignments (see Assignment).

8.3 Defining Property Aliases

Properties used in business protocols are typically embedded in application-visible
variables. The notion of aliasing is introduced to map a global property to a field in a
specific message part or variable value. The property name becomes an alias for the
message part and/or location, and can be used as such in Expressions and Assignment in
abstract business processes. As an example, consider the following WSDL message
definition:

<definitions name="messages"
 targetNamespace="http://example.com/taxMessages.wsdl"
 xmlns:txtyp="http://example.com/taxTypes.xsd"
 xmlns="http://schemas.xmlsoap.org/wsdl/">
 <!-- define a WSDL application message -->
 <message name="taxpayerInfoMsg">
 <part name="identification"
element="txtyp:taxPayerInfoElem"/>
 </message>
 ...
</definitions>

The definition of a global property and its location in a particular field of the message are
shown in the next WSDL fragment:

<definitions name="properties"
 targetNamespace="http://example.com/properties.wsdl"
 xmlns:tns="http://example.com/properties.wsdl"
 xmlns:txtyp="http://example.com/taxTypes.xsd"
 xmlns:txmsg="http://example.com/taxMessages.wsdl"
 xmlns="http://schemas.xmlsoap.org/wsdl/">
 <!-- define a correlation property -->
 <bpws:property name="taxpayerNumber" type="txtyp:SSN"/>
 ...
 <bpws:propertyAlias propertyName="tns:taxpayerNumber"
messageType="txmsg:taxpayerInfoMsg" part="identification">
 <query>
 txtyp:socialsecnumber
 </query>
 </bpws:propertyAlias>
 <bpws:propertyAlias propertyName="tns:taxpayerNumber"
 element="txtyp:taxPayerInfoElem">
 <query>
 txtyp:socialsecnumber
 </query>
 </bpws:propertyAlias>
</definitions>

The first bpws:propertyAlias defines a globally named property tns:taxpayerNumber as
an alias for a location in the identification part of the message type txmsg:taxpayerInfo.

The second bpws:propertyAlias provides a second definition for the same globally named
property tns:taxpayerNumber but this time as an alias for a location inside of the element
txtyp:taxPayerInfoElem.

The presence of both aliases means that it is possible to retrieve the social security
number from both a variable holding a message of messageType txmsg:taxpayerInfo as
well as an element defined using txtyp:taxPayerInfoElem.

The syntax for a propertyAlias definition is:

<definitions name="ncname"
 ... >
 <bpws:propertyAlias propertyName="qname"
 messageType="qname"? part="ncname"?
 type="qname"? element="qname"?>
 <query queryLanguage="anyURI"?>?
 ... queryString ...
 </query>
 </bpws:propertyAlias>
 ...
</wsdl:definitions>

A property alias element MUST use one of the three following combinations of attributes:

• messageType and part,
• type or
• element.

When a propertyAlias is used with the messageType/part combination then the property
MUST be available on all BPEL variables where the qname value used in the
messageType attribute on the declaration of both the variable and the propertyAlias are
identical. The part attribute and query element is applied against the BPEL messageType
variable to either set or get the property variable in the same way that the part attribute
and query element are used in the first from and to specs in copy assignments.

Using the same “tns:taxpayerNumber” example from above, for a message variable
“myTaxPayerInfoMsg” of type “txmsg:taxpayerInfo”:

<from variable="myTaxPayerInfoMsg" property="tns:taxpayerNumber" />

and

<from>$myTaxPayerInfoMsg.identification/txtyp:socialsecnumber</from>

have the same output. Please see Assignment for details.

If a propertyAlias is used with a type attribute then the property MUST be available on
all BPEL variables where the qname value used in the type attribute on the declaration of
both the variable and the propertyAlias are identical. The query is applied against the
BPEL variable to either set or get the property variable in the same way that the query is
used in the first from and to specs in copy assignments when applied against BPEL
variables defined using a type.

If a propertyAlias is used with an element attribute then the property MUST be available
on all BPEL variables where the qname value used in the element attribute on the
declaration of both the variable and the propertyAlias are identical. The query is applied
against the BPEL variable to either set or get the property variable in the same way that
the query is used in the first from and to specs in copy assignments when applied against
BPEL variables defined using an element definition.

A BPEL process MUST NOT be accepted for processing if it defines two or more
propertyAlias’s for the same property name and BPEL variable type. For example, it is
not legal to define two propertyAlias’s for the property taxpayernumber and the
messageType txmsg:taxpayerInfoMsg. The same logic would prohibit having two
propertyAliases on the same element qname and property name value or two
propertyAliases on the same type qname and property name value.

9. Data Handling
Business processes model stateful interactions. The state involved consists of messages
received and sent as well as other relevant data such as time-out values. The maintenance
of the state of a business process requires the use of state variables, which are called
variables in WS-BPEL. Furthermore, the data from the state needs to be extracted and
combined in interesting ways to control the behavior of the process, which requires data
expressions. Finally, state update requires a notion of assignment. WS-BPEL provides
these features for XML data types and WSDL message types. The XML family of
standards in these areas is still evolving, and using the process-level attributes for query
and expression languages provides for the incorporation of future standards.

The extensions required for abstract and executable processes are concentrated in the
datahandling feature set. Executable processes are permitted to use the full power of data
selection and assignment but are not permitted to use nondeterministic values. Abstract
processes are restricted to limited manipulation of values contained in variable properties
but are permitted to use nondeterministic values to reflect the consequences of hidden
private behavior. Detailed differences are specified in the following sections.

9.3. Expressions

(Editor note: re-arranging the order of this section later for ease of tracking for this
version)

WS-BPEL uses several types of expressions. The kinds of expressions used are as
follows (relevant usage contexts are listed in parentheses):

• Boolean-valued expressions (transition conditions, join conditions, while
condition, and if conditions)

• Deadline-valued expressions ("until" attribute of onAlarm and wait)
• Duration-valued expressions ("for" attribute of onAlarm and wait, repeatEvery

attribute of onAlarm)
• General expressions (assignment)

WS-BPEL provides an extensible mechanism for the language used in these expressions.
The language is specified by the expressionLanguage attribute of the process element.
In addition, language constructs that require or allow conditional expressions (such as
“if”, “while” and others) provide the ability to override the default expression language
for individual expressions. Compliant implementations of the current version of WS-
BPEL MUST support the use of XPath 1.0 as the expression language. XPath 1.0 is
indicated by the default value of the expressionLanguage attribute, which is:

urn:oasis:names:tc:wsbpel:2.0:sublang:xpath1.0

which represents the usage of XPath 1.0 within WS-BPEL 2.0. The URI of the
corresponding XPath 1.0 specification is:

http://www.w3.org/TR/1999/REC-xpath-19991116

Given an expression language, it must be possible to query data from variables, to extract
property values, and to query the status of links from within expressions. This
specification defines those functions for XPath 1.0 only, and it is expected that other
expressionlanguage bindings will provide equivalent functionality. The rest of this
section is specific to XPath 1.0.

WS-BPEL introduces several extension functions to XPath's built-in functions to enable
XPath 1.0 expressions to access information from the process. The extensions are defined
in the standard WS-BPEL namespace
http://schemas.xmlsoap.org/ws/2004/03/businessprocess/. The prefix "bpws:" is
associated with this namespace.

Any qualified names used within XPath expressions are resolved by using namespace
declarations currently in scope in the WS-BPEL document at the location of the
expression.

The arguments to all XPath functions defined in this specification MUST be given as
quoted strings. The previous requirement MUST be statically enforced. It is therefore

illegal to pass into a BPEL XPath function any XPath variables, the output of XPath
functions, a XPath location path or any other value that is not a quoted string. This means,
for example, that getVariableProperty("varA","propB") meets the previous
requirement while getVariableProperty($varA,
string(getVariableProperty("varB","propB")) does not. Note that the previous
requirement institutes a restriction which does not exist in the XPath standard.

The following functions are defined by this specification:

bpws:getVariableProperty ('variableName', 'propertyName')

This function extracts global property values from variables. The first argument names
the source variable for the data and the second is the qualified name (QName) of the
global property to select from that variable (see Variable Properties). If the referenced
property is not defined or if there does not exist a propertyAlias to associate the property
with the referenced variable then the semantics of the process is undefined. The return
value of this function is calculated by applying the appropriate propertyAlias for the
requested property to the current value of the submitted variable. If the application of the
XPATH in the propertyAlias to the variable value results in a response that contains
anything other than exactly one information item and/or a collection of Character
information items then a bpws:selectionFailure fault MUST be thrown.

 These WS-BPEL-defined extension functions are available for use within all XPath 1.0
expressions.

The syntax of XPath 1.0 expressions for WS-BPEL is considered in the following
paragraphs.

9.3.1. Boolean Expressions

These are expressions that conform to the XPath 1.0 Expr production where the
evaluation results in Boolean values.

9.3.2. Deadline-Valued Expressions

These are expressions that conform to the XPath 1.0 Expr production where the
evaluation results in values that are of the XML Schema types dateTime or date. Note
that XPath 1.0 is not XML Schema aware. As such, none of the built-in functions of
XPath 1.0 are capable of producing or manipulating dateTime or date values. However, it
is possible to write a constant (literal) that conforms to XML Schema definitions and use
that as a deadline value or to extract a field from a variable (part) of one of these types
and use that as a deadline value. XPath 1.0 will treat that literal as a string literal, but the
result can be interpreted as a lexical representation of a dateTime or date value.

9.3.3. Duration-Valued Expressions

These are expressions that conform to the XPath 1.0 Expr production where the
evaluation results in values that are of the XML Schema type duration. The preceding
discussion about XPath 1.0's XML Schema unawareness applies here as well.

9.3.4. General Expressions

These are expressions that conform to the XPath 1.0 Expr production where the
evaluation results in any XPath value type (string, number, or Boolean).

If the execution of an expression results in an unhandled expression language execution
fault, then the WS-BPEL standard fault bpws:subLanguageExecutionFault MUST be
thrown.

9.1. Variables

(Editor note: re-arranging the order of this section later for ease of tracking for this
version)

Business processes specify stateful interactions involving the exchange of messages
between partners. The state of a business process includes the messages that are
exchanged as well as intermediate data used in business logic and in composing messages
sent to partners.

Variables provide the means for holding messages that constitute the state of a business
process. The messages held are often those that have been received from partners or are
to be sent to partners. Variables can also hold data that are needed for holding state
related to the process and never exchanged with partners.

The type of each variable may be a WSDL message type, an XML Schema type (simple
or complex) or an XML Schema element. The syntax of the variables declaration is:

<variables>
 <variable name="ncname" messageType="qname"?
 type=”qname”? element=”qname”?/>+
 from-spec?
</variables>

The name of a variable should be unique within its own scope. Variable names are
NCNames (as defined in XML Schema specification) but in addition they MUST NOT
contain the “.” character. This restriction is necessary because the “.” character is used as
a delimiter in variable names in BPEL's default binding to XPath 1.0 (i.e. the binding
identified by "urn:oasis:names:tc:wsbpel:2.0:sublang:xpath1.0"). The delimiter separates
the WS-BPEL message type variable name and the name of one of its WSDL message
parts. The concatenation of the WSDL message variable name, the delimiter and the
WSDL part name is used as an XPath variable reference which manifests the XML

Infoset of the corresponding WSDL message part. Variable access follows common
lexical scoping rules. A variable resolves to the nearest enclosing scope, regardless of the
type of the variable. If a local variable has the same name as a variable defined in an
enclosing scope, the local variable will be used in local assignments and/or
getVariableProperty functions.

The messageType, type or element attributes are used to specify the type of a variable.
Exactly one of these attributes must be used. Attribute messageType refers to a WSDL
message type definition. Attribute type refers to an XML Schema type (simple or
complex). Attribute element refers to an XML Schema element.

Using [Infoset] terminology, the infoset for a BPEL element variable consists of a
document information item (DII) that contains exactly one child, an element information
item (EII) which is pointed at by the document element property. The EII is the value of
the element variable.

If a BPEL implementation chooses to manifest a simpleType variable as an XML infoset,
the infoset should consist of a DII that contains exactly one child, an EII which is pointed
at by the document element property. The properties of the document element,
specifically the namespace name and local name properties, are undefined by this
specification, as such an implementation MUST specify whatever namespace name/local
name values it likes. However the children of the document element MUST exclusively
consist of a series of character information items (CharIIs) that represent the simpleType
value.A BPEL implementation MAY choose to map simpleType variables to non-XML-
infoset data-models defined in the expression/query language being used. (e.g. Boolean in
XPath 1.0)

A variable can optionally be initialized by using an in-line from-spec. From-spec is
defined in section 9.3. Conceptually the in-line variable initializations are modeled as a
virtual sequence activity that contains a series of virtual assign activities, one for each
variable being initialized in the order they are listed in the variable declarations. The
virtual assigns then each contain a single virtual copy whose from-spec is as given in the
variable initialization and the to-spec points to the variable being created. The previous
discussion of virtual sequences and assigns is only meant for modeling purposes. The
description is strictly intended to describe initialization behavior in terms of previously
understood concepts but there is no intention that the behavior be seen as actually
implying that any of the 'virtual' sequences or assigns exist as anything other than a
model of the expected behavior.

Variable initialization logic contained in scopes that contain or whose progeny contain a
start activity MUST only use idempotent functions. The use of idempotent functions
allows for all the values for such variables to be pre-computed and re-used on each
process instance.

The infoset for a complexType variable consists of a document information item that
contains exactly one child, an element information item which is pointed at by the
document element property. The properties of the document element, specifically the
namespace name and local name properties, are undefined by this specification, as such
an implementation MUST specify whatever legal property values it likes. However the
children of the document element MUST exclusively consist of the complexType values
assigned to the variable. In order to simplify data access, WSDL parts of WSDL message
variables are manifested in BPEL as infosets, one infoset per WSDL message part. BPEL
engines MUST follow the following algorithm when manifesting a WSDL message part
as an infoset.
For each part in the WSDL message definition:
Step 1 – Create a synthetic DII which has no children other than as specified below.
Step 2a – If the WSDL message part is defined using the type attribute then create an

EII as a child of the document element. The local name and namespace name
of the newly created EII are determined by the WS-BPEL 2.0 engine and are
not specified by this document. The handling of this EII is similar to how WS-
BPEL 2.0 handles the containers for complex and simple type XML variables.
The contents of the new EII are required to conform to the contents defined by
the referenced type definition.

Step 2b – If the WSDL message part is defined using the element attribute then create
an EII as a child of the document element which manifests the element
defined by the referenced type definition.

The previous models are conceptual; they define how WS-BPEL 2.0 submits and
retrieves XML variable values using infoset definitions. But these models are not
intended to require that WS-BPEL 2.0 implementations actually implement an infoset
model, only that however variable binding is handled the end result duplicates the
behaviors defined using the infoset model. For example, a WS-BPEL 2.0 implementation
may choose to bind a simple type BPEL variable of type xs:string directly to a String
object in XPath 1.0. The choice of mapping MUST be consistently applied to variables
and WSDL message part values of the same XML schema type. E.g. if a xs:string
variable is manifested as a string object, a xs:string message part MUST be manifested as
a string object also. For detailed definition of manifestation of BPEL variables in XPath
1.0, please see “Binding BPEL Variables In XPath 1.0” section.

In summary, a BPEL variable is manifested as XML Infoset items in one of the following
ways:

(1) a single XML infoset item: e.g. an element or complexType variable or a WSDL
message part

(2) a sequence of Character Information Items for simple type data: e.g. used to
manifest string (Please note these items may be manifested as a non XML infoset
item when needed. e.g. Boolean)

An example of a variable declaration using a message type declared in a WSDL
document with the targetNamespace "http://example.com/orders":

<variable xmlns:ORD="http://example.com/orders"
 name="orderDetails" messageType="ORD:orderDetails"/>

Variables associated with message types can be specified as input or output variables for
invoke, receive, and reply activities (see Invoking Web Service Operations and
Providing Web Service Operations). When an invoke operation returns a fault message,
this causes a fault in the current scope. The fault variable in the corresponding fault
handler is initialized with the fault message received (see Scopes and Fault Handlers).

Each variable is declared within a scope and is said to belong to that scope. Variables that
belong to the global process scope are called global variables. Variables may also belong
to other, non-global scopes, and such variables are called local variables. Each variable is
visible only in the scope in which it is defined and in all scopes nested within the scope it
belongs to. Thus, global variables are visible throughout the process. It is possible to
"hide" a variable in an outer scope by declaring a variable with an identical name in an
inner scope. These rules are exactly analogous to those in programming languages with
lexical scoping of variables.

A global variable is in an uninitialized state at the beginning of a process. A local
variable is in an uninitialized state at the start of the scope it belongs to. Note that non-
global scopes in general start and complete their behavior more than once in the lifetime
of the process instance they belong to. Variables can be initialized by a variety of means
including assignment and receiving a message. Variables can be partially initialized with
property assignment or when some but not all parts in the message type of the variable
are assigned values.

Values stored in variables can be mutated during the course of process execution. The
validate activity can be used explicitly to ensure that values of variables are valid
against their associated XML data definition, including XML Schema simple type,
complex type, element definition and XML definitions of WSDL parts. The validate
activity has a variables attribute, which has a NCNAMES value. The variables
attribute points to the variables being validated. The syntax of the validate activity is:

<validate variables="ncnames" />

When one or more variables are invalid against their correponding XML definition, a
standard fault of "bpws:invalidVariables" fault MUST be thrown.

A BPEL implementation MAY provide a mechanism to turn on/off any explicit
validation. E.g. validate activity.

9.2 Usage of Query and Expression Languages

This section models the interaction between Query/Expression languages and the BPEL
process from two different perspectives. The first perspective is BPEL's view of the
query/expression languages. That view is restricted to what information BPEL will make
available for use by the Query/Expression language. The second perspective is the
Query/Expression language's view of BPEL, specifically XPath 1.0 and how XPath 1.0's
execution context is initialized by BPEL.

9.2.1 Enclosing Elements

In order to describe the view that BPEL provides to Query/Expression languages it is
necessary to introduce a new term - Enclosing Element.

Definition of an Enclosing Element of a Query or Expression language: Whenever a
query or expression language is used in BPEL (e.g. XPath 1.0), the Enclosing Element is
defined as the parent element in the BPEL process definition that contains the Query or
Expression. For example, in the following from specification example:

<process>
 ...
 <from>$myVar/abc/def</from>
 ...
</process>

The "from" element is the Enclosing Element.

The in-scope namespaces of the enclosing element are the namespaces visible to the
Query/Expression language. (Note: XPath 1.0 does not have default namespace concept.)

The links, variables, partnerLinks, fault handlers, compensation handlers, etc. that are
visible to a Query/Expression language are defined based on the visibility of those
entities to the activity that the enclosing element is contained within. There is no
requirement that a Query/Expression language must manifest all the different objects
previously described, only that if such objects are accessible within the Query/Expression
language then only the objects in scope to the enclosing element’s enclosing activity
SHOULD be visible from within the Query/Expression language.

Evaluation of a BPEL expression or query will yield one of the following: (here we use
XPath 1.0 expressions as examples)

(1) a single XML infoset item: e.g. $myFooVar/lines/line[2]
(2) a collection of XML infoset items e.g. $myFooVar/lines
(3) a sequence of Character Information Items for simple type data

e.g. $myFooVar/lines/line[2]/text()
(Please note this sequence of items may be manifested as a non XML infoset item
when needed. e.g. boolean)

(4) a variable reference: e.g. <from>$myFooVar</from> <to>$myBarVar</to>

9.2.2 Binding BPEL Variables In XPath 1.0

With the exception of Link expressions whose variable access syntax and semantics are
described in section 9.2.4, BPEL variables are accessible in XPath expressions in BPEL
processes via XPath 1.0 variable bindings. Specifically, all BPEL variables visible from
the enclosing element of an XPath 1.0 expression MUST be made available to the XPath
1.0 processor by manifesting the BPEL variable as an XPath variable binding whose
name is the same as the BPEL variable's name, except the case of WSDL message
variables declared with a messageType, which requires some special handling (discussed
below).

BPEL variables declared using an element are manifested as a node-set XPath variable
with a single member node. That node is a synthetic DII that contains a single child, the
document element, which is the value of the BPEL variable. The XPath variable binding
will bind to the document element. For example, given the following schema definition:

<xsd:element name="StatusContainer">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="statusDescription" type="xs:string"
form="qualified" />
 </xsd:sequence>
 </xsd:complexType>
</xsd:element>

And given the following variable declaration:

<variable name="AStatus" element="e:StatusContainer" />

Then a BPEL XPath expression to access the value of the statusDescription element,
assuming the AStatus variable is in scope, would look like:

$Astatus/e:statusDescription

$AStatus points at the variable's document element, StatusContainer. So to access
StatusMessage's child statusDescription it is only necessary to specify the child's element
name.

BPEL variables declared using a complex type are manifested as a node-set XPath
variable with one member node that contains the anonymous document element that itself
contains the actual value of the BPEL complex type variable. The XPath variable binding
will bind to the document element. For example, given the following schema definition:

<xs:complexType name="AuctionResults">
 <xs:sequence>
 <xs:element name="AuctionResult" maxOccurs="unbounded"
form="qualified">
 <xs:complexType>
 <xs:attribute name="AuctionID" type="xs:int"/>

 <xs:attribute name="Result" type="xs:string"/>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
</xs:complexType>

And given the following variable declaration:

<variable name="AuctionResults" type="e:AuctionResults" />

Then a BPEL XPath expression to access the value of the second AuctionID attribute
would look like:

$AuctionResults/e:AuctionResult[2]/@AuctionID

$AunctionResults points at the variable’s document element, AuctionResult[2] points to
the second AuctionResult child of the document element, and @AuctionID points to the
AuctionID attribute on the selected AuctionResult element.

WS-BPEL 2.0 messageType variables are manifested in XPath 1.0 as a series of variables,
one variable per part in the messageType. Each variable is named by concatenating the
message variable's name, the "." character and the local name of the part. The data in a
BPEL messageType variable is NOT made available as one single XPath variable to
general XPath processing under the default query and expression language binding. For
example, if a messageType variable was named "myMessageTypeVar" and it contained
two parts, "msgPart1" and "msgPart2" then XPath 1.0 binding that had
"myMessageTypeVar" in scope would manifest two XPath 1.0 variables,
$myMessageTypeVar.msgPart1 and $myMessageTypeVar.msgPart2. Please note that
section 2.3 of [WSDL 1.1] requires that all part names within the same WSDL message
definition must be unique.

WSDL message parts are always defined using either an XSD element, an XSD complex
type or a XSD simple type. As such the manifestation of these message parts in XPath
can be handled in the same manner as specified herein for element, complex type and
simple type WS-BPEL 2.0 variables.

Below is a full example of how a WSDL message type is manifested in WS-BPEL 2.0
XPath.

<message name="StatusMessage">
 <part name="StatusPart1" element="e:StatusContainer"/>
 <part name="StatusPart2" element="e:StatusContainer"/>
</message>

And given the following variable declaration:

<variable name="StatusVariable" messageType="e:StatusMessage" />

Then a BPEL XPath expression to access the second part’s statusDescription element
would look like:

$StatusVariable.StatusPart2/e:statusDescription

Note: It is possible to write XPath 1.0 queries that can simultaneously query across
multiple parts of a WSDL message variable by applying a union operator to create one
single nodeset. For example:

($StatusVariable.StatusPart1 | $StatusVariable.StatusPart2)//e:amount

BPEL simpleType variables are manifested directly as either an XPath string, Boolean or
float object. If the XML schema type of the BPEL simpleType variable is xs:Boolean or
any types that are restrictions of xs:Boolean then the BPEL variable will be manifested as
an XPath Boolean object. If the XML schema type of the BPEL simpleType variable is
xs:float, xs:int, xs:unsignedInt or any restrictions of those types then the BPEL variable
will be manifested as an XPath float object. Any other XML schema types will be
manifested as an XPath string object.

XPath 1.0 only has a single numeric object, float. Float is a 64 bit IEEE floating point
number. However the resolution of the float object is not sufficient to capture the full
value of some XML Schema data types. For example, a XSD decimal number must
support at least 18 digits where as an XPath float only has to support approximately 16
digits. XSD numeric values that cannot be expressed without loss of accuracy as XPath
float objects are instead translated into XPath string objects. XPath string objects can be
explicitly translated into XPath float objects using the XPath number() function.
Similarly if an XPath string object is used in a situation that calls for an XPath float
object the XPath processor will automatically translate the XPath string object to an
XPath float object. But implementers should be aware that if the accuracy of the XML
schema type is greater than supported by the XPath float object then accuracy will be lost
during the translation from string object to float object.

9.2.3 XPath 1.0 perspective and WS-BPEL

Section 1 of the XPath 1.0 specification [XPATH 1.0] defines five points that define the
context in which an XPath expression is evaluated. Those points are reproduced below:

• a node (the context node)
• a pair of non-zero positive integers (the context position and the context size)
• a set of variable bindings
• a function library
• the set of namespace declarations in scope for the expression

The following sections define how these contexts are initialized in BPEL for different
types of BPEL expression and query language contexts.

9.2.4 Default use of XPath 1.0 for Expression and Query Languages

When XPath 1.0 is used for a Query or Expression Language, except as otherwise
specified, the XPath context is initialized as follows:

• Context node = none
• Context position = none ; Context Size = none
• A set of variable bindings = variables visible to the Enclosing Element as defined

by the BPEL scope rules
• A function library = core XPath and BPWS function libraries MUST be available

and an engine specific function library MAY be available
• Namespace declaration = in-scope namespace declarations from Enclosing

Element

It is worth emphasizing that as defined by the XPath 1.0 standard when resolving an
XPath the namespace prefixes used inside of the variable (e.g. BPEL variables) are
irrelevant. The only prefixes that matter are the in-scope namespaces.

For example, imagine a BPEL variable named “FooVar” of “foo” element type with
value:
<a:foo xmlns:a="http://example.com"><a:bar >23</a:bar></a:foo>

The following XPath would return the value 23:
<from xmlns:b="http://example.com">$FooVar/b:bar/text()</from>

Notice that in the previous example the bar element is referred to use the 'b' namespace
prefix rather than the 'a' namespace prefix that is used inside the actual value.

It is also worth emphasizing that XPath 1.0 explicitly requires that any element or
attribute used in an XPath expression that does not have a namespace prefix must be
treated as being namespace unqualified. That is, even if there is a default namespace
defined on the enclosing element, the default namespace will not be applied.

Using the same value for Foo as provided previously the following would return a
bpws:selectionFailure fault (in executable BPEL), because it fails to select any node:

<bpws:from xmlns="http://example.com">$FooVar/bar/text()</bpws:from>

The values inside of the XPath do not inherit the default namespace of the enclosing
element. So the 'bar' element referenced in the XPath does not have any namespace value
what so ever and therefore does not match with the bar element in the FooVar variable
which has a namespace value of http://example.com.

Allowing BPEL variables to manifest as XPath variable bindings enables BPEL
programmers to create powerful XPath expressions involving multiple BPEL variables.
For example:

<assign>
 <copy>
 <from>$po/lineItem[@prodCode=$myProd]/amt * $exchangeRate</from>
 <to>$convertedPO/lineItem[@prodCode=$myProd]/amt</to>

 </copy>
</assign>

When XPath 1.0 is used as an expression or query language in BPEL, with the exception
of propertyAlias definitions, there is no context node available. Therefore the legal values
of the XPath Expr (http://www.w3.org/TR/xpath#NT-Expr) production must be restricted
in order to prevent access to the context node.

Specifically, the "LocationPath" (http://www.w3.org/TR/xpath#NT-LocationPath)
production rule of "PathExpr" (http://www.w3.org/TR/xpath#NT-PathExpr) production
rule MUST NOT be used when XPath is used as an expression or query language (except
in the case of propertyAlias which is covered separately). The previous restrictions on the
XPath Expr production for the use of XPath as an expression language MUST be
statically enforced.

The result of this restriction is that the "PathExpr" will always start with a "PrimaryExpr"
(http://www.w3.org/TR/xpath#NT-PrimaryExpr) for BPEL expression or query language
XPaths. It is worth remembering that PrimaryExprs are either variable references,
expressions, literals, numbers or function calls, none of which can access the context
node.

A query language is used when an lvalue needs to be returned. In addition to the
previously listed restrictions, which except where otherwise indicated MUST apply to
XPaths used as a query language, additional restrictions are also needed to ensure that the
returned value of a query language expression is an lvalue. Specifically, when XPath is
used as a query language the XPath MUST begin with a "VariableReference" and this
restriction MUST be statically enforced.

9.2.5 Use of XPath 1.0 for Expression Languages in Join Conditions

When XPath 1.0 is used as an Expression Language for a join condition, the XPath
context is initialized as follows:

• Context node = none
• Context position = none ; Context Size = none
• A set of variable bindings = links that the target the activity that the Enclosing

Element is contained within
• A function library = the core XPath function library MUST be available, the

BPWS function library MUST NOT be available and an engine specific function
library MAY be available.

• Namespace declaration = in-scope namespace declarations from Enclosing
Element

As explained in section 12.5.1 expressions in join conditions may only access the status
of links that target the join condition's enclosing activity. No other data may be made
available. To this end the only variable bindings made available to join conditions are

ones that access link status. Also note that link status is only available in join conditions
which is why links are not bound to XPath variables in any other context.

Link status is made available via XPath variable bindings by manifesting links that target
the activity that contains the Enclosing Element as XPath variable bindings of identical
name. That is, if there is a link called "ABC" that targets the activity then there must be
an XPath variable binding called "ABC". Link variables are manifested as XPath
Boolean objects whose value will be set to the Link's value.

Below is an example of a joinCondition inside of a <targets> element:

<targets>
 <target linkName="link1"/>
 <target linkName="link2"/>
 <joinCondition>$link1 and $link2</joinCondition>
</targets>

9.2.6 Use of XPath 1.0 for Query Languages in propertyAliases

When XPath 1.0 is used as Query Language for a propertyAlias, the XPath context is
initialized as follows:

• Context node =
• When messageType/part attributes are used:

o If the message part is based on a complex type or an element, the
context node will point to node-list containing a single node which
is the EII for the referenced part where the EII is defined as
specified in section 9.2.2.

o If the message part is based on a simple type, the context node will
point to the XPath object specified for the particular variable type
in section 9.2.2.

• When type attribute is used:
o If the type is a complex type, the context node will point to node-

list containing a single node which is the EII for the referenced part
where the EII is defined as specified in section 9.2.2.

o If the type is a simple type, the context node will point to the
XPath object specified for the particular variable type in section
9.2.2.

• When element attribute is used, the context node will point to node-list
containing a single node which is the EII for the referenced part where the
EII is defined as specified in section 9.2.2.

• Context position = 1 ; Context Size = 1
• A set of variable bindings = There MUST NOT be any variable bindings available

when XPath is used as query language in propertyAlias
• A function library = The core XPath function library MUST be available, the

BPWS function library MUST NOT be available and an engine specific function
library MAY be available.

• Namespace declaration = in-scope namespace declarations from Enclosing
Element (note that in the past enclosing elements were always themselves
enclosed within an activity, that is not the case here since propertyAliases are
defined in WSDL files. But since there are no variable bindings to worry about
this difference should not matter.)

propertyAlias is unique in BPEL in that it has a defined context node. Therefore none of
the previously listed restrictions on the syntax of the XPath expression apply here. Any
legal XPath expression may be used. It does not matter if an absolute or relative path is
used in a propertyAlias as both will resolve to the context node since the context node in
this case is the root node.

For example:
<propertyAlias propertyName="p:poId"
 messageType="my:POMsg" part="poPart">
 <query> po/id</query>
</propertyAlias>

Or

<propertyAlias propertyName="p:poId"
 messageType="my:POMsg" part="poPart">
 <query>(po/id + 1)</query>
</propertyAlias>

There is no requirement that property aliases return lvalues but it is worth pointing out
that an attempt to assign to a property alias that doesn’t specify a lvalue will, as defined
in section 9.3, fail with a bpws:selectionFailure.

9.4. Assignment

Copying data from one variable to another is a common task within a business process.
The assign activity can be used to copy data from one variable to another, as well as to
construct and insert new data using expressions. The use of expressions is primarily
motivated by the need to perform simple computation (such as incrementing sequence
numbers) that is required for describing business protocol behavior. Expressions operate
on message selections, properties, and literal constants to produce a new value for a
variable property or selection. This activity can also be used to copy endpoint references
to and from partner links. Finally, it is possible to include extensible data manipulation
operations defined as extension elements under namespaces different from the WS-BPEL
namespace.

The assign assign contains one or more elementary assignments.

<assign validate="yes|no"? standard-attributes>
 standard-elements
 (<copy>
 from-spec
 to-spec
 </copy> |
 <extensibleAssign>
 ...assign-element-of-other-namespace...
 </extensibleAssign>) +
</assign>

The assign activity allows copying a type-compatible value from the source ("from-spec")
to the destination ("to-spec"), using the <copy> element. The from-spec MUST be one
of the following forms except for the opaque form available in abstract processes:

<from variable="ncname" part="ncname"?/>
<from partnerLink="ncname" endpointReference="myRole|partnerRole"/>
<from variable="ncname" property="qname"/>
<from expressionLanguage="anyURI"?>expression</from>
<from> <literal> ... literal value ... </literal> </from>

The to-spec MUST be one of the following forms:

<to variable="ncname" part="ncname"?/>
<to partnerLink="ncname"/>
<to variable="ncname" property="qname"/>
<to queryLanguage="anyURI"?>… query … </to>

To-specs MUST identify Lvalues so that assignment is possible. A Lvalue, in the context
of XPATH 1.0, is a node-list containing a single node from the value store, e.g. variable,
partnerLink, property, etc., identified by the to-spec that is to be replaced by the
assignment. If a to-spec does not identify a Lvalue then a bpws:selectionFailure MUST
be thrown.

In the first from-spec and to-spec variants the variable attribute provides the name of a
variable. If the type of the variable is a WSDL messge type the optional part attribute
MAY be used to provide the name of a part within that variable. When the variable is
defined using XML Schema types (simple or complex)or element, the part attribute
MUST NOT be used.

The second from-spec and to-spec variants allow dynamic manipulation of the
endpoint references associated with partner links. The value of the partnerLink attribute
is the name of a partnerLink declared in the process. In the case of from-specs, the role
must also be specified because a process might need to communicate an endpoint
reference corresponding to either its own role or the partner's role within the partnerLink.
The value “myRole” means that the endpoint reference of the process with respect to that
partnerLink is the source, while the value “partnerRole” means that the partner’s
endpoint reference for the partnerLink is the source. For the to-spec, the assignment is

only possible to the partnerRole, hence there is no need to specify the role. The type of
the value used in partnerLink-style from/to-specs is always an endpoint reference (see
Partner Link Types, Partner Links, and Endpoint References).

The third from-spec and to-spec variants allow explicit manipulation of varialbe
properties (see Varialbe Properties) occurring in variables. The property value generated
by the from-spec is generated in the same manner and with the same faults as the value
returned by the getVariableProperty() function. The property forms are especially useful
for abstract processes, because they provide a way to clearly define how distinguished
data elements in messages are being used.

In the fourth (“expression”) from-spec variant, an expression language, identified by the
optional expression language attribute, is used to return a value. In the fourth to-spec
(“query”) variant, a query language, identified by the optional query language attribute, is
used to return a value. Both from-spec and to-spec allow processes to perform simple
computations on properties and variables (for example, increment a sequence number).
This computed value MUST be one of the followings:

• a single XML information item other than a character information item
(CharII): examples are element information item (EII) and attribute information
item (AII)

• a sequence of one or more character information items: this is mapped to a Text
Node in the data model of XPath 1.0

In the case of to-spec, the computed value MUST be a lvalue.

Please note that it is possible to use either the first form of from-spec/to-spec or the fourth
form of from-spec/to-spec to perform copy on non-message-variables and parts of
message variables, as this specification defines how to manifest non-message variables
and parts of message variables as XML Infoset information items. However, only the first
form of from-spec/to-spec is able to copy an entire message variable including all of its
parts. Other from and to-spec forms are only able to refer to a single part in a WSDL
message type variable and so cannot copy all of the parts at once.

If the execution of the query expression yields an unhandled query language fault, the
WS-BPEL standard fault bpws:subLanguageExecutionFault MUST be thrown.

The fifth from-spec variant allows a literal value to be given as the source value to
assign to a destination. The type of the literal value MUST be the type of the destination
(to-spec). The type of the literal value MAY be optionally indicated inline with the value
by using XML Schema's instance type mechanism (xsi:type).

The fifth from-spec variant allows a literal value to be given as the source value to assign
to a destination. The type of the literal value MUST be the type as the destination (to-
spec). The literal value to be assigned is included within a <literal> element in order
prevent conflicts with standard extensibility elements under <from>; note that the
<literal> element itself does not allow standard extensibility. The type of the literal value

MAY be optionally indicated inline with the value by using XML Schema's instance type
mechanism (xsi:type).

The fifth from-spec variant also allows an endpoint reference literal value to be assign to
a partnerLink directly, when used with the second variant of the to-spec. (see Partner
Link Types, Partner Links, and Endpoint References).

In addition to <copy> specifications, other extensibility data manipulation elements
MAY be included in an assign activity, inside an <extensibleAssign> element. The
extensible assign elements MUST belong to a namespace different from the WS-BPEL
namespace. Note also that the <extensibleAssign> element does not allow standard
extensibility.

An optional validate attribute can be used with the assign activity. When validate is
set to "yes", it can be seen as a convenient marco of a combination of assign and
validate activities. With validate="yes", the assign activity will validate all the
variables being modified by the activity. E.g. variables being referenced in the to-specs.

The logic related to the validate attribute and assignment logic is considered as one unit
of operation. If the "validate" parts of the operation fail, the whole assignment operation
is considered as a failure also. When one of the variables is invalid against its
correponding XML definition, a standard fault of "bpws:invalidVariables" fault
MUST be thrown. Please note that the default of the validate attribute is "no".

A BPEL implementation MAY provide a mechanism to turn on/off any explicit
validation. E.g. validate attribute at assign.

9.4.1. Type Compatibility in Assignment

For an assignment to be valid, the data referred to by the from and to specifications
MUST be of compatible types. The following points make this precise:

• The from-spec is a variable of a WSDL message type and the to-spec is a variable
of a WSDL message type. In this case both variables MUST be of the same
message type, where two message types are said to be equal if their qualified
names are the same.

• The from-spec is a variable of a WSDL message type and the to-spec is not, or
vice versa. This is not legal because parts of variables, selections of variable parts,
or endpoint references cannot be assigned to/from variables of WSDL message
types directly.

• In all other cases, the types of the source and destination are XML Schema types
or elements, and the constraint is that the source value MUST possess the element
or type associated with the destination. Note that this does not require the types
associated with the source and destination to be the same. In particular, the source
type MAY be a subtype of the destination type. In the case of variables defined by

reference to an element, moreover, both the source and the target MUST be the
same element.

The semantics of a process in which any of the matching constraints above is violated is
undefined.

9.4.2. Assignment Example

The example assumes the following complex type definition in the namespace
"http://tempuri.org/bpws/example":

<complexType name="tAddress">
 <sequence>
 <element name="number" type="xsd:int"/>
 <element name="street" type="xsd:string"/>
 <element name="city" type="xsd:string"/>
 <element name="phone">
 <complexType>
 <sequence>
 <element name="areacode" type="xsd:int"/>
 <element name="exchange" type="xsd:int"/>
 <element name="number" type="xsd:int"/>
 </sequence>
 </complexType>
 </element>
 </sequence>
</complexType>

<element name = “address” type = “tAddress”/>

Assume that the following WSDL message definition exists for the same target
namespace:

<message name="person" xmlns:x="http://tempuri.org/bpws/example">
 <part name="full-name" type="xsd:string"/>
 <part name="address" element="x:address"/>
</message>

Also assume the following WS-BPEL variable declarations:

<variable name="c1" messageType="x:person"/>
<variable name="c2" messageType="x:person"/>
<variable name="c3" element="x:address"/>

The example illustrates copying one variable to another as well as copying a variable part
to a variable of compatible element type:

<assign>
 <copy>
 <from variable="c1"/>
 <to variable="c2"/>
 </copy>

 <copy>
 <from>$c1.address</from>
 <to variable="c3"/>
 </copy>
</assign>

10. Correlation
The information provided so far suggests that the target for messages that are delivered to
a business process service is the WSDL port of the recipient service. This is an illusion
because, by their very nature, stateful business processes are instantiated to act in
accordance with the history of an extended interaction. Therefore, messages sent to such
processes need to be delivered not only to the correct destination port, but also to the
correct instance of the business process that provides the port. The infrastructure
hosting the process must do this in a generic manner, to avoid burdening every process
implementation with the need to implement a custom mechanism for instance routing.
Messages, which create a new business process instance, are a special case, as described
in The Lifecycle of a Business Process.

In the object-oriented world, such stateful interactions are mediated by object references,
which intrinsically provide the ability to reach a specific object (instance) with the right
state and history for the interaction. This works reasonably well in tightly coupled
implementations where a dependency on the structure of the implementation is normal. In
the loosely coupled world of Web Services, the use of such references would create a
fragile web of implementation dependencies that would not survive the independent
evolution of business process implementation details at each business partner. In this
world, the answer is to rely on the business data and communication protocol headers that
define the wirelevel contract between partners and to avoid the use of implementation-
specific tokens for instance routing whenever possible.

Consider the usual supply-chain situation where a buyer sends a purchase order to a seller.
Suppose that the buyer and seller have a stable business relationship and are statically
configured to send documents related to the purchasing interaction to the URLs
associated with the relevant WSDL service ports. The seller needs to asynchronously
return an acknowledgement for the order, and the acknowledgement must be routed to the
correct business process instance at the buyer. The obvious and standard mechanism to
do this is to carry a business token in the order message (such as a purchase order number)
that is copied into the acknowledgement for correlation. The token can be in the message
envelope in a header or in the business document (purchase order) itself. In either case,
the exact location and type of the token in the relevant messages is fixed and instance
independent. Only the value of the token is instance dependent. Therefore, the structure
and position of the correlation tokens in each message can be expressed declaratively in
the business process description. The WS-BPEL notion of correlation set, described in
the following section, provides this feature. The declarative information allows a WS-
BPEL-compliant infrastructure to use correlation tokens to provide instance routing
automatically.

The declarative specification of correlation relies on declarative properties of messages.
A property is simply a "field" within a message identified by a query—by default the
query language is XPath 1.0. This is only possible when the type of the message part or
binding element is described by using an XML Schema. The use of correlation tokens
and endpoint references is restricted to message parts described in this way. To be clear,
the actual wire format of such types can still be non-XML, for example, EDI flat files,
based on different bindings for port types.

10.1. Message Correlation

During its lifetime, a business process instance typically holds one or more conversations
with partners involved in its work. Conversations may be based on sophisticated transport
infrastructure that correlates the messages involved in a conversation by using some form
of conversation identity and routes them automatically to the correct service instance
without the need for any annotation within the business process. However, in many cases
correlated conversations involve more than two parties or use lightweight transport
infrastructure with correlation tokens embedded directly in the application data being
exchanged. In such cases, it is often necessary to provide additional application-level
mechanisms to match messages and conversations with the business process instances for
which they are intended.

Correlation patterns can become quite complex. The use of a particular set of correlation
tokens does not, in general, span the entire interaction between a service instance and a
partner (instance), but spans a part of the interaction. Correlated exchanges may nest and
overlap, and messages may carry several sets of correlation tokens. For example, a buyer
might start a correlated exchange with a seller by sending a purchase order (PO) and
using a PO number embedded in the PO document as the correlation token. The PO
number is used in the PO acknowledgement by the seller. The seller might later send an
invoice that carries the PO number, to correlate it with the PO, and also carries an invoice
number so that future payment-related messages need to carry only the invoice number as
the correlation token. The invoice message thus carries two separate correlation tokens
and participates in two overlapping correlated exchanges.

WS-BPEL addresses correlation scenarios by providing a declarative mechanism to
specify correlated groups of operations within a service instance. A set of correlation
tokens is defined as a set of properties shared by all messages in the correlated group.
Such a set of properties is called a correlation set.

Correlation sets are declared within scopes and associated with them in a manner that is
analogous to variable declarations. Each correlation set is declared within a scope and is
said to belong to that scope. Correlation sets that belong to the global process scope are
called global correlation sets. Correlation sets may also belong to other, non-global
scopes, and such correlation sets are called local correlation sets. Each correlation set is
only visible in the scope in which it is defined and in all scopes nested within the scope it
belongs to. Thus, global correlation sets are visible throughout the process. It is possible

to "hide" a correlation set in an outer scope by declaring a correlation set with an
identical name in an inner scope.

A global correlation set is in an uninitiated state at the beginning of a process. A local
correlation set is in an uninitiated state at the start of the scope it belongs to. Note that
non-global scopes in general start and complete their behavior more than once in the
lifetime of the process instance they belong to.

Correlation sets resemble late-bound constants rather than variables in their semantics.
The binding of a correlation set is triggered by a specially marked message send or
receive operation. A correlation set can be initiated only once during the lifetime of the
scope it belongs to. Thus, a global correlation set can only be initiated at most once
during the lifetime of the process instance. Its value, once initiated, can be thought of as
an alias for the identity of the business process instance. A local correlation set is
available for binding each time the corresponding scope starts, but once initiated must
retain its value until the scope completes.

In multiparty business protocols, each participant process in a correlated message
exchange acts either as the initiator or as a follower of the exchange. The initiator process
sends the first message (as part of an operation invocation) that starts the conversation,
and therefore defines the values of the properties in the correlation set that tag the
conversation. All other participants are followers that bind their correlation sets in the
conversation by receiving an incoming message that provides the values of the properties
in the correlation set. Both initiator and followers must mark the first activity in their
respective groups as the activity that binds the correlation set.

10.2. Defining and Using Correlation Sets

The examples in this section show correlation being used on almost every messaging
activity (receive, reply, and invoke). This is because WS-BPEL does not assume the use
of any sophisticated conversational transport protocols for messaging. In cases where
such protocols are used, the explicit use of correlation in WS-BPEL can be reduced to
those activities that establish the conversational connections.

Each correlation set in WS-BPEL is a named group of properties that, taken together,
serve to define a way of identifying an application-level conversation within a business
protocol instance. A given message can carry multiple correlation sets. After a correlation
set is initiated, the values of the properties for a correlation set must be identical for all
the messages in all the operations that carry the correlation set and occur within the
corresponding scope until its completion. This correlation consistency constraint
MUST be observed in all cases of initiate values. The legal values of the initiate
attribute are: "yes", "join", "no". The default value of the initiate attribute is "no".

• When the initiate attribute is set to "yes", the related activity MUST attempt to
initiate the correlation set.

o If the correlation set is already initiated and the initiate attribute is set
to "yes", the semantics is undefined.

• When the initiate attribute is set to "join", the related activity MUST attempt
to initiate the correlation set, if the correlation set is NOT initiated yet.

o If the correlation set is already initiated and the initiate attribute is set
to "join", the correlation consistency constraint MUST be observed. If
the constraint is violated, the semantics is undefined.

• When the initiate attribute is set to "no", the related activity MUST NOT
attempt to initiate the correlation set.

o If an activity with the "initiate" attribute set to "no" attempts to use a
correlation set that has not been previously initiated, the semantics is
undefined.

o If the correlation set is already initiated and the initiate attribute is set
to "no", the correlation consistency constraint MUST to be observed. If
the constraint is violated, the semantics is undefined.

If multiple correlation sets are used in a message activity, then the consistency constraint
MUST be observed for all correlation sets used. For example, the correlation sets used in
an inbound message activity (e.g. receive) must all match message for that message to be
delivered to the activity in the given process instance. If one of initiated correlation set
does NOT match with the message, the semantics is undefined.

As the following examples illustrate, a correlation set is initiated when the activity within
which it is used applies the attribute initiate="yes" to the set.

<correlationSets>?
 <correlationSet name="ncname" properties="qname-list"/>+
</correlationSets>

Following is an extended example of correlation. It begins by defining four message
properties: customerID, orderNumber, vendorID and invoiceNumber. All of these
properties are defined as part of the "http://example.com/supplyCorrelation.wsdl"
namespace defined by the document.

<definitions name="properties"
 targetNamespace="http://example.com/supplyCorrelation.wsdl"
 xmlns:tns="http://example.com/supplyCorrelation.wsdl"

 xmlns="http://schemas.xmlsoap.org/wsdl/">

 <!-- define correlation properties -->

 <bpws:property name="customerID" type="xsd:string"/>
 <bpws:property name="orderNumber" type="xsd:int"/>
 <bpws:property name="vendorID" type="xsd:string"/>
 <bpws:property name="invoiceNumber" type="xsd:int"/>
</definitions>

Note that these properties are global names with known (simple) XMLSchema types.
They are abstract in the sense that their occurrence in variables needs to be separately
specified (see Variable Properties). The example continues by defining purchase order
and invoice messages and by using the concept of aliasing to map the abstract properties
to fields within the message data identified by selection.

<definitions name="correlatedMessages"
 targetNamespace="http://example.com/supplyMessages.wsdl"
 xmlns:tns="http://example.com/supplyMessages.wsdl"
 xmlns:cor=http://example.com/supplyCorrelation.wsdl
 xmlns:po = “http://example.com/po.xsd”
 xmlns="http://schemas.xmlsoap.org/wsdl/">

<!—define schema types for PO and invoice information -->
<types>
 <xsd:schema targetNamespace = “http://example.com/po.xsd”>
 <xsd:complexType name="PurchaseOrder">
 <xsd:element name="CID" type="xsd:string"/>
 <xsd:element name="order" type="xsd:int"/>
 ...
 </xsd:complexType>
 <xsd:complexType name="PurchaseOrderResponse">
 <xsd:element name="CID" type="xsd:string"/>
 <xsd:element name="order" type="xsd:int"/>
 <xsd:element name="VID" type="xsd:string"/>
 <xsd:element name="invNum" type="xsd:int"/>
 ...
 </xsd:complexType>
 <xsd:complexType name="PurchaseOrderRejectType">
 <xsd:element name="CID" type="xsd:string"/>
 <xsd:element name="order" type="xsd:int"/>
 <xsd:element name="reason" type="xsd:string"/>
 ...
 </xsd:complexType>
 <xsd:complexType name="InvoiceType">
 <xsd:element name="VID" type="xsd:string"/>
 <xsd:element name="invNum" type="xsd:int"/>
 </xsd:complexType>
 <xsd:element name = “PurchaseOrderReject” type=
“po:PurchaseOrderRejectType”>
 <xsd:element name = “Invoice” type= “po:invoiceType”>
 </xsd:schema>

</types>
<message name="POMessage">
 <part name="PO" type="po:PurchaseOrder"/>
</message>
<message name="POResponse">
 <part name="RSP" type="po:PurchaseOrderResponse"/>
</message>
<message name="POReject">
 <part name="RJCT" element="po:PurchaseOrderReject"/>
</message>
<message name="InvMessage">
 <part name="IVC" element = “po:Invoice"/>

</message>
<bpws:propertyAlias propertyName="cor:customerID"
 messageType="tns:POMessage" part="PO">
 <bpws:query>
 CID
 </bpws:query>
</bpws:propertyAlias>
<bpws:propertyAlias propertyName="cor:orderNumber"
 messageType="tns:POMessage" part="PO">
 <query>
 Order
 </query>
</bpws:propertyAlias>
<bpws:propertyAlias propertyName="cor:customerID"
 messageType="tns:POResponse" part="RSP">
 <bpws:query>
 CID
 </bpws:query>
</bpws:propertyAlias>
<bpws:propertyAlias propertyName="cor:orderNumber"
 messageType="tns:POResponse" part="RSP">
 <query>
 Order
 </query>
</bpws:propertyAlias>
<bpws:propertyAlias propertyName="cor:vendorID"
 messageType="tns:POResponse" part="RSP">
 <query>
 VID
 </query>
</bpws:propertyAlias>
<bpws:propertyAlias propertyName="cor:invoiceNumber"
 messageType="tns:POResponse" part="RSP">
 <query>
 InvNum
 </query>
</bpws:propertyAlias>
<bpws:propertyAlias propertyName="cor:vendorID"
 messageType="tns:InvMessage" part="IVC">
 <query>
 VID
 </query>
</bpws:propertyAlias>
<bpws:propertyAlias propertyName="cor:invoiceNumber"
 messageType="tns:InvMessage" part="IVC">
 <query>
 InvNum
 </query>
</bpws:propertyAlias>
 ...
</definitions>

Finally, the portType used is defined, in a separate WSDL document.

<definitions name="purchasingPortType"
 targetNamespace="http://example.com/puchasing.wsdl"
 xmlns:smsg="http://example.com/supplyMessages.wsdl"
 xmlns="http://schemas.xmlsoap.org/wsdl/">

 <! – import supplyMessage.wsdl -- >

 <portType name="PurchasingPT">
 <operation name="SyncPurchase">
 <input message="smsg:POMessage"/>
 <output message="smsg:POResponse"/>
 <fault name="tns:RejectPO" message="smsg:POReject"/>
 </operation>
 <operation name="AsyncPurchase">
 <input message="smsg:POMessage"/>
 </operation>
 </portType>
 <portType name="BuyerPT">
 <operation name="AsyncPurchaseResponse">
 <input message="smsg:POResponse"/>
 </operation>
 <operation name="AsyncPurchaseReject">
 <input message="smsg:POReject"/>
 </operation>
 </portType>
</definitions>

Both the properties and their mapping to purchase order and invoice messages will be
used in the following correlation examples.

<correlationSets
 xmlns:cor="http://example.com/supplyCorrelation.wsdl">

 <!-- Order numbers are particular to a customer,
 this set is carried in application data -->
 <correlationSet name="PurchaseOrder"
 properties="cor:customerID cor:orderNumber"/>
 <!-- Invoice numbers are particular to a vendor,
 this set is carried in application data -->
 <correlationSet name="Invoice"
 properties="cor:vendorID cor:invoiceNumber"/>
</correlationSets>

Correlation set names are used in invoke, receive, and reply activities (see Invoking Web
Service Operations and Providing Web Service Operations), in the onMessage branches
of pick activities, and in the onEvent variant of event handlers (see Pick and Message
Events). These sets are used to indicate which correlation sets (i.e., the corresponding
property sets) occur in the messages being sent and received. The initiate attribute is
used to indicate whether the set is being initiated. When the attribute is set to "yes" the set
is initiated with the values of the properties occurring in the message being sent or
received. (Please see the beginning of this section for details of of initiate attribute.)
Finally, in the case of invoke, when the operation invoked is synchronous
request/response, a pattern attribute is used to indicate whether the correlation applies

to the outbound (request) message, the inbound (response) message, or both. These ideas
are explained in more detail in the context of the use of correlation in the rest of this
example.

A message can carry the tokens of one or more correlation sets. The first example shows
an interaction in which a purchase order is received in a one-way inbound request and a
confirmation including an invoice is sent in the asynchronous response. The
PurchaseOrder correlationSet is used in both activities so that the asynchronous
response can be correlated to the request at the buyer. The receive activity initiates the
PurchaseOrder correlationSet. The buyer is therefore the initiator and the receiving
business process is a follower for this correlationSet. The invoke activity sending the
asynchronous response also initiates a new correlationSet Invoice. The business process
is the initiator of this correlated exchange and the buyer is a follower. The response
message is thus a part of two separate conversations, and forms the bridge between them.

In the following, the prefix SP: represents the namespace
"http://example.com/puchasing.wsdl".

<receive partnerLink="Buyer" portType="SP:PurchasingPT"
 operation="AsyncPurchase"
 variable="PO">

 <correlations>
 <correlation set="PurchaseOrder" initiate="yes"/>
 </correlations>
</receive>

<invoke partnerLink="Buyer" portType="SP:BuyerPT"
 operation="AsyncPurchaseResponse" inputVariable="POResponse">

 <correlations>
 <correlation set="PurchaseOrder" initiate="no"
pattern="out"/>
 <correlation set="Invoice" initiate="yes" pattern="out"/>
 </correlations>
</invoke>

Alternatively, the response might have been a rejection (such as an "out-of-stock"
message), which in this case terminates the conversation correlated by the correlationSet
PurchaseOrder without starting a new one correlated with Invoice. Note that the
initiate attribute is missing. It therefore has the default value of "no".

<invoke partnerLink="Buyer" portType="SP:BuyerPT"
 operation="AsyncPurchaseReject" inputVariable="POReject">

 <correlations>
 <correlation set="PurchaseOrder" pattern="out"/>
 </correlations>
</invoke>

The use of correlation with synchronous Web Service invocation is illustrated by the
alternative synchronous purchasing operation used by an invoke activity used in the
buyer's business process.

<invoke partnerLink="Seller" portType="SP:PurchasingPT"
 operation="SyncPurchase"
 inputVariable="sendPO"
 outputVariable="getResponse">

 <correlations>
 <correlation set="PurchaseOrder" initiate="yes"
pattern="out"/>
 <correlation set="Invoice" initiate="yes" pattern="in"/>
 </correlations>

 <catch faultName="SP:RejectPO" faultVariable="POReject"
 faultMessageType="smsg:POReject">
 <!-- handle the fault -->
 </catch>
</invoke>

Note that an invoke consists of two messages: an outgoing request message and an
incoming reply message. The correlation sets applicable to each message must be
separately considered because they can be different. In this case the PurchaseOrder
correlation applies to the outgoing request that initiates it, while the Invoice correlation
applies to the incoming reply and is initiated by the reply. Because the PurchaseOrder
correlation is initiated by an outgoing message, the buyer is the initiator of that
correlation but a follower of the Invoice correlation because the values of the correlation
properties for Invoice are initiated by the seller in the reply received by the buyer.

11. Basic Activities
11.1. Standard Attributes for Each Activity

Each activity has optional standard attributes: a name and an indicator whether a join
fault should be suppressed if it occurs. See Flow for a full discussion of these two
attributes.

name="ncname"?
suppressJoinFailure="yes|no"?>
When the suppressJoinFailure attribute is not specified for an activity, it inherits
its value from its closest enclosing activity or from the process if no enclosing activity
specifies this attribute.

11.2. Standard Elements for Each Activity

Each WS-BPEL activity has nested standard elements <source> and <target> within the
optional containers <sources> and <targets>. The use of these elements is required for

establishing synchronization relationships through links (see Flow). Each link is defined
independently and given a name. The link name is used as value of the linkName
attribute of the <source> element. An activity MAY declare itself to be the source of one
or more links by including one or more <source> elements. Each <source> element
MUST use a distinct link name. Similarly, an activity MAY declare itself to be the target
of one or more links by including one or more <target> elements. Each <source> element
associated with a given activity MUST use a link name distinct from all other <source>
elements at that activity. Each <target> element associated with a given activity MUST
use a link name distinct from all other <target> elements at that activity. Each <source>
element MAY optionally specify a transition condition that functions as a guard for
following this specified link (see Flow). If the transition condition is omitted, it is deemed
to be present with the constant value true.

<sources>?
 <source linkName="ncname">+
 <transitionCondition expressionLanguage="anyURI"?>?
 ... bool-expr ...
 </transitionCondition>
 </source>
</sources>
<targets>?
 <joinCondition expressionLanguage="anyURI"?>?
 ... bool-expr ...
 </joinCondition>
 <target linkName="ncname"/>+
</targets>?

The value of the <joinCondition> element is a Boolean-valued expression in the
expression language indicated by the expressionLanguage attribute, or in the default
expression language for this process (see Expressions). If no join condition is specified,
the join condition is the logical OR of the link status of all incoming links of this activity
(see 12.5.1 Link semantics).

11.3. Invoking Web Service Operations

Web Services provided by partners (see Partner Link Types, Partner Links, and
Endpoint References) can be used to perform work in a WS-BPEL business process.
Invoking an operation on such a service is a basic activity. Recall that such an operation
can be a synchronous request/response or an asynchronous one-way operation. WS-
BPEL uses the same basic syntax for both with some additional options for the
synchronous case.

An asynchronous invocation requires only the input variable of the operation because it
does not expect a response as part of the operation (see Providing Web Service
Operations). A synchronous invocation requires both an input variable and an output
variable. Note however that if a WSDL message definition does not contain any parts
then the associated variable attribute, inputVariable or outputVariable, MAY be omitted.
One or more correlation sets can be specified to correlate the business process instance
with a stateful service at the partner’s side (see Correlation). However, these attributes

are both syntactically optional since they are absolutely required only in executable
processes. Note however that if a WSDL message definition does not contain any parts
then the variable attribute MAY be omitted.

In the case of a synchronous invocation, the operation might return a WSDL fault
message. This results in a WS-BPEL fault. Such a fault can be caught locally by the
activity, and in this case the specified activity will be performed. If a fault is not caught
locally by the activity it is thrown to the scope that encloses the activity (see Scopes and
Fault Handlers).

Note that a WSDL fault is identified in WS-BPEL by a qualified name formed by the
target namespace of the corresponding portType and the fault name. This uniform
naming mechanism must be followed even though it does not accurately match WSDL’s
faultnaming model. WSDL 1.1 does not require that fault names be unique within the
namespace where the service operation is defined. In WSDL 1.1 it is necessary to specify
a portType name, an operation name, and the fault name to uniquely identify a fault. This
limits the ability to use fault-handling mechanisms to deal with invocation faults.

BPEL faults are defined exclusively in terms of a fault name and optional fault data. This
means, for example, that if a fault is generated from a messaging activity (as opposed to
the throw activity or a system fault) no record will be made in the fault of the portType or
operation the message activity was using when the fault was received. A consequence of
this model is that all faults sharing a common name, defined in the same namespace and
sharing the same data type (or lack there of) are indistinguishable in WS-BPEL. Faults of
a particular fault name MAY be associated with multiple variable types and the <catch>
construct in WS-BPEL facilitates differentiation of faults with different message /
variable types of the same fault name. For details regarding the <faultHandlers> and
<catch>, please see section "Fault Handlers".

Implementer's Note: WS-BPEL treats faults based on abstract WSDL 1.1 operation
definitions, without reference to binding details. Normally, when sending or receiving a
fault, a WS-BPEL process only deals with the fault information in the abstract fault
message and a WSDL 1.1 binding is required to transform the abstract fault message data
to or from specific communication media. In the case of SOAP bindings this would mean
providing transformation between abstract fault message data and the sub elements of of
the SOAP Fault element, namely the faultcode, faultstring, faultactor and detail elements.
However the WSDL 1.1 standard SOAP binding explicitly precludes mapping any
information from an abstract fault message to a SOAP Fault other than the contents of the
detail element. In other words, there is no standard way to relate the faultcode, faultstring
and faultactor sub-elements of a SOAP Fault element to data visible to a WS-BPEL
process. This specification does not provide a resolution for this problem.

Finally, an activity can be associated with another activity that acts as its compensation
action. This compensation handler can be invoked either explicitly or by the default
compensation handler of the enclosing scope (see Scopes and Compensation Handlers).

Semantically, the specification of local fault and/or compensation handlers is equivalent
to the presence of an implicit <scope> activity immediately enclosing the <invoke>
activity providing those handlers. The implicit <scope> activity assumes the name of the
<invoke> activity it encloses, its suppressJoinFailure attribute, its join condition, as well
as its link sources and targets. For example, the following:

<invoke name="purchase" suppressJoinFailure="yes" partnerLink="Seller"
 portType="SP:Purchasing" operation="SyncPurchase" inputVariable="sendPO"
 outputVariable="getResponse">
 <targets>
 <target linkName="linkA"/>
 </targets>
 <sources>
 <source linkName="linkB">
 <transitionCondition>
 ...
 </transitionCondition>
 </source>
 </sources>
 <compensationHandler>
 <invoke partnerLink="Seller" portType="SP:Purchasing"
 operation="CancelPurchase" inputVariable="getResponse"
 outputVariable="getConfirmation">
 </compensationHandler>
</invoke>

is equivalent to:

<scope name"purchase" suppressJoinFailure="yes" >
 <targets>
 <target linkName="linkA"/>
 </targets>
 <sources>
 <source linkName="linkB">
 <transitionCondition>
 ...
 </transitionCondition>
 </source>
 </sources>
 <compensationHandler>
 <invoke partnerLink="Seller" portType="SP:Purchasing"
 operation="CancelPurchase" inputVariable="getResponse"
 outputVariable="getConfirmation">
 </compensationHandler>

 <invoke name="purchase" suppressJoinFailure="no" partnerLink="Seller"

 portType="SP:Purchasing" operation="SyncPurchase"
 inputVariable="sendPO" outputVariable="getResponse"/>
</scope>

The syntax of the invoke activity is summarized below.

<invoke partnerLink="ncname" portType="qname"? operation="ncname"
 inputVariable="ncname"? outputVariable="ncname"?
 standard-attributes>

standard-elements
<correlations>?
 <correlation set="ncname" initiate="yes|no"?
 pattern="in|out|out-in"/>+
</correlations>
<catch faultName=“qname”? faultVariable="ncname"?
 faultMessageType="qname"?
 faultElement="qname"?>*
 activity
</catch>
<catchAll>?
 activity
</catchAll>
<compensationHandler>?
 activity
</compensationHandler>
<toPart part="ncname" fromVariable="ncname"/>*
<fromPart part="ncname" toVariable="ncname"/>*
</invoke>

See Correlation for an explanation of the correlation semantics. The following example
shows an invocation with a nested compensation handler. Other examples are shown
throughout the specification.

<invoke partnerLink="Seller" portType="SP:Purchasing"
 operation="SyncPurchase"
 inputVariable="sendPO"
 outputVariable="getResponse">
 <compensationHandler>
 <invoke partnerLink="Seller" portType="SP:Purchasing"
 operation="CancelPurchase"
 inputVariable="getResponse"
 outputVariable="getConfirmation">
 </compensationHandler>
</invoke>

If the WSDL operation used to send and/or receive a message in an invoke activity is
defined as a message containing exactly one part which itself is defined using an element
then a BPEL variable of the same element type as used to define the part MAY be
submitted directly to the invoke activity. The result of submitting a BPEL variable in the
previously defined circumstance MUST be the equivalent of declaring an anonymous
temporary WSDL message variable based on the associated WSDL message type. In the

case of an inputVariable the value of the submitted BPEL variable will be used to set the
value of the part in the anonymous temporary WSDL message variable. In the case of an
outputVariable the value of the received part in the temporary WSDL message variable
will be used to set the value of the submitted BPEL variable.

<toPart> elements provide another short cut that makes it easier to create outgoing multi-
part WSDL messages from the contents of BPEL variables. The inputVariable attribute
MUST NOT be used on an Invoke activity that also contains a <toPart> element. The
<toPart> elements, as a group, act as a single virtual assign where each <toPart> is turned
into a copy in the virtual assign. The destination of all the copies is an anonymous
temporary WSDL variable, of the type specified by the relevant WSDL operation, which
will then be used to send the actual message created by the virtual assign. Each <toPart>
is turned into a copy in which data from the variable indicated in the “fromVariable”
attribute is copied into the part of the anonymous temporary WSDL variable referenced
in the “part” attribute of the <toPart> element.

The virtual assign MUST follow the same semantics and use the same faults as a real
assign. When this mechanism is used in an Invoke, it is not required that there be a
<toPart> for every part in the WSDL message definition, nor is the order in which parts
are specified relevant. Parts not explicitly represented by <toPart> elements result in
empty parts in the target anonymous WSDL variable used by the <invoke> activity.

<fromPart> elements are a similar short cut to <toPart> elements, but in the inverse.
<fromPart> elements are used to pull data out of an incoming multi-part WSDL message
and place it into individual BPEL variables. The outputVariable attribute MUST NOT be
used on an Invoke activity that also contains a <fromPart> element. The <fromPart>
elements, as a group, act as a single virtual assign. When a WSDL message is received on
an <invoke> activity that uses <fromPart> the message is placed in an anonymous
temporary WSDL variable, of the type specified by the relevant WSDL operation. The
<fromPart> elements are then gathered together to form a single virtual assign where
each <fromPart> is turned into a copy. Each <fromPart> is turned into a copy in which
the data at the part of the anonymous temporary WSDL variable referenced in the
<fromPart> is copied into the BPEL variable indicated in the “toVariable” attribute. The
virtual assign MUST follow the same semantics and use the same faults as a real assign.
When this mechanism is used in an Invoke, it is not required that there be a <fromPart>
for every part in the WSDL message definition, nor is the order in which parts are
specified relevant. Parts not explicitly represented by <fromPart> elements are simply not
copied from the anonymous WSDL variable to a BPEL variables.

A single <invoke> can contain any combination of <toPart> elements, <fromPart>
elements, outputVariable and inputVariable with the exception, as previously specified,
that if <toPart> elements are used then the inputVariable attribute cannot be used and if
<fromPart> elements are used then the outVariable attribute cannot be used. The virtual
assign created as a consequence of the use of input or output elements occurs as part of
the scope of the <invoke> activity and therefore any faults that are thrown can be caught

by the invoke’s inline fault handler. Also note that it is legal to use <toPart>/<fromPart>
with WSDL messages that only have a single part.

If an invoke activity is used on a partnerLink whose partnerRole endpoint reference is not
initialized then a bpws:uninitializedPartnerRole fault MUST be thrown.

11.4. Providing Web Service Operations

A business process provides services to its partners through receive activities and
corresponding reply activities. A receive activity specifies the partner link that contains
the myRole used to receive messages, the port type (optional) and operation that it
expects the partner to invoke. The value of the partnerRole in the partner link is not used
when processing a receive activity. In addition, it may specify a variable, using the
variable attribute, that is to be used to receive the message data received. However, this
attribute is syntactically optional since it is absolutely required only in executable
processes. An alternative to the variable attribute are <fromPart> elements. The syntax
and semantics of the <fromPart> elements as used on the receive activity are the same as
specified in section 11.3 for the invoke activity. This includes the restriction that if
<fromPart> elements are used on a receive activity then the variable attribute MUST
NOT be used on the same activity.

In addition, receive activities play a role in the lifecycle of a business process. The only
way to instantiate a business process in WS-BPEL is to annotate a receive activity with
the createInstance attribute set to "yes" (see Pick for a variant). The default value of
this attribute is "no". A "start activity" is a receive/pick activity that is annotated with a
createInstance="yes" attribute. NO other "non-start activities" but scope, flow,
sequence or empty activities may potentially be performed prior to or simultaneously
with a "start activity". The logical order of performing activities is determined by static
analysis.

It is permissible to have multiple start activities. As specified in section 6.5, the initial
start activity must complete execution before any other start activities are allowed to
execute. In this case the intent is to express the possibility that any one of a set of
required inbound messages can create the process instance because the order in which
these messages arrive cannot be predicted. If a process has multiple start activities then
all such activities MUST share at least one common correlation set and all correlation
sets defined on all the activities MUST be set to "join" (see Correlation). Compliant
implementations MUST ensure that only one of the inbound messages that will match to
a single process instance actually instantiates the business process (usually the first one to
arrive, but this is implementation dependent). The other incoming messages in the
concurrent initial set MUST be delivered to the corresponding receive activities in the
already created instance.

The following example is illegal, since assign activity cannot be a start activity:

<flow>
 <receive ... createInstance="yes" />
 <assign ... />
</flow>

The following example is legal, since the assign activity will not be performed prior to
or simultaneously with the receive activity:

<flow>
 <links>
 <link name="RecvToAssign"/>
 </links>
 <sequence>
 <receive ... createInstance="yes">
 <sources> <source linkName="RecvToAssign" /> <sources>
 </receive>
 ...
 </sequence>
 <sequence>
 <assign>
 <targets> <target linkName="RecvToAssign" /> </targets>
 ...
 </assign>
 </sequence>
</flow>

If the WSDL operation used to receive or send a message in a request or a reply activity
is defined as a message containing exactly one part which itself is defined using an
element then a BPEL variable of the same element type as used to define the part MAY
be submitted directly to the request/reply activity. The result of submitting a BPEL
variable in the previously defined circumstance MUST be the equivalent of declaring an
anonymous temporary WSDL message variable based on the associated WSDL message
type. In the case of a receive activity, the incoming part’s value will be used to set the
value of the submitted BPEL variable. In the case of a reply activity the value of the
submitted BPEL variable will be used to set the value of the part in the anonymous
temporary WSDL message variable that is sent out. In the case of a reply that is sending a
fault the same logic applies but using a fault name rather than an operation name.
Aletrnatively, it is possible to use <fromPart> elements in a receive activity to indicate
how the data from a received message is to be directly copied to BPEL variables from a
corresponding anonymous WSDL message variable. Similarly, in the case of a reply
activity, <toPart> elements may be used to have data from BPEL variables directly
copied into an anonymous WSDL message used by the reply activity.

A business process instance MUST NOT simultaneously enable two or more receive
activities for the same partnerLink, portType, operation and correlation set(s). Note that
receive is a blocking activity in the sense that it will not complete until a matching
message is received by the process instance. The semantics of a process in which two or
more receive actions for the same partnerLink, portType, operation and correlation set(s)
may be simultaneously enabled is undefined. For the purposes of this constraint, an

onMessage clause in a pick and an onEvent event handler are equivalent to a receive
(see Pick and Message Events).

It is worth pointing out that race conditions may occur in business process
execution. Messages that target a particular process instance may arrive before the
corresponding receive activity is started. For example, it is perfectly reasonable to
model a process that receives a series of messages in a while loop where all the messages
use the same correlation. At run time, the messages will arrive independent of the
iterations of the loop. But the fact that the correlation is already initiated should enable
the runtime engine and messaging platform to recognize that these messages are
correlated to the process instance and handle those messages appropriately. For another
example, a process may invoke a remote service, initiate a correlation set for an expected
callback message, and the callback message may arrive before the corresponding
receive activity is started for a variety of reasons. The correlation data in the arriving
message should enable the engine to recognize the message is targeted for this process
instance and handle it appropriately. Process engines may employ different mechanisms
to handle such race conditions. This specification does not mandate any specific
mechanism. For the purposes of handling race conditions, an onMessage clause in a pick
and an onMessage event handler are equivalent to a receive (see Pick and Message
Events).

<receive partnerLink="ncname" portType="qname"? operation="ncname"
 variable="ncname"? createInstance="yes|no"?
 messageExchange="ncname"?
 standard-attributes>

 standard-elements
 <correlations>?
 <correlation set="ncname" initiate="yes|no"?/>+
 </correlations>
 <fromPart part="ncname" toVariable="ncname"/>*
</receive>

A reply activity is used to send a response to a request previously accepted through a
receive activity. Such responses are only meaningful for synchronous interactions. An
asynchronous response is always sent by invoking the corresponding one-way operation
on the partner link. A reply activity may specify a variable that contains the message
data to be sent in reply. However, this attribute is syntactically optional since it is
absolutely required only in executable processes. Note however that if a WSDL message
definition does not contain any parts then the variable attribute MAY be omitted. An
alternative to the variable attribute are <toPart> elements. The syntax and semantics of
the <toPart> elements as used on the reply activity are the same as specified in section
11.3 for the invoke activity. This includes the restriction that if <toPart> elements are
used on a receive activity then the variable attribute MUST NOT be used on the same
activity.

The correlation between a request and the corresponding reply is based on the constraint
that more than one outstanding synchronous request from a specific partner link for a

particular portType, operation and correlation set(s) MUST NOT be outstanding
simultaneously. The semantics of a process in which this constraint is violated is
undefined. For the purposes of this constraint, an onMessage clause in a pick is
equivalent to a receive (see Pick). Moreover, a reply activity must always be preceded
by a receive activity for the same partner link, portType and (request/response)
operation, such that no reply has been sent for that receive activity. The semantics of a
process in which this constraint is violated is undefined.

<reply partnerLink="ncname" portType="qname"? operation="ncname"
 variable="ncname"? faultName="qname"?
 messageExchange="ncname"?
 standard-attributes>

 standard-elements
 <correlations>?
 <correlation set="ncname" initiate="yes|no"?/>+
 </correlations>
 <toPart part="ncname" fromVariable="ncname"/>*
</reply>

Note that the <reply> activity corresponding to a given request has two potential forms. If
the response to the request is normal, the faultName attribute is not used and the
variable attribute, when present, will indicate a variable of the normal response
message type. If, on the other hand, the response indicates a fault, the faultName
attribute is used and the variable attribute, when present, will indicate a variable of the
message type for the corresponding fault. Observe that WS-BPEL treats faults based on
abstract WSDL 1.1 operation definitions, without reference to binding details. This limits
te ability of a WS-BPEL process to determine the information transmitted when faults are
returned over a SOAP binding. We refer to the Implementer’s Note in Section 11.3 for
additional details.

The optional messageExchange attribute is used to associate a <reply> activity with an
inbound message activity, such as, <receive>, <onMessage> and <onEvent>, when there
are multiple simultaneously incomplete inbound message activities which requires a reply
message to complete.

A reply activity is associated with a inbound message activity based on the tuple -
partnerLink, operation, and messageExchange. The value defined in messageExchange is
scoped to the combination of partnerLink and operation. That is, it is legal to use the
same messageExchange value in multiple simultaneously incomplete receive activities so
long as the combination of partnerLink and operation on the receives are all different
from each other. An incomplete inbound message activity describes the state of a BPEL
process from the point that a request/response receive activity starts execution until its
associated reply begins execution.

If there should ever be multiple simultaneous incomplete inbound message activities
which have the same partnerLink, operation and messageExchange tuple then the
bpws:conflictingRequest fault MUST be thrown within the BPEL process on the

conflicting inbound message activities subsequent to the execution of the successful
incomplete receive.

If a reply activity cannot be associated with an incomplete receive activity by matching
the tuples and this error situation is not caught during static analysis, then
bpws:missingRequest fault MUST be thrown within the BPEL process on the reply
activity. Because conflicting requests should have been rejected at the time inbound
message activity is executed, there cannot be more than one corresponding inbound
message activity at the time <reply> is executed.

If the messageExchange attribute is not specified on a receive then its value is taken to be
empty. For matching purposes two empty messageExchange values with the same
partnerLink and operation values are said to match. Empty value does not match with
other non-empty values.

11.5. Updating Variable Contents

Variable update occurs through the assignment activity, which is described in
Assignment.

11.6. Signaling Faults

The throw activity can be used when a business process needs to signal an internal fault
explicitly. Every fault is required to have a globally unique QName. The throw activity is
required to provide such a name for the fault and can optionally provide a variable of data
that provides further information about the fault. A fault handler can use such data to
analyze and handle the fault and also to populate any fault messages that need to be sent
to other services.

WS-BPEL does not require fault names to be defined prior to their use in a throw element.
An application or process-specific fault name can be directly used by using an
appropriate QName as the value of the faultName attribute and providing a variable with
the fault data if required. This provides a very lightweight mechanism to introduce
application-specific faults. The throw activity MAY be used to throw faults defined by
this specification.

<throw faultName="qname" faultVariable="ncname"? standard-attributes>
 standard-elements
</throw>

A simple example of a throw activity that does not provide a variable of fault data is:

<throw xmlns:FLT="http://example.com/faults"
faultName="FLT:OutOfStock"/>

11.7. Waiting

The wait activity allows a business process to specify a delay for a certain period of time
or until a certain deadline is reached (see Expressions for the grammar of duration
expressions and deadline expressions).

<wait standard-attributes>
 standard-elements
 (<for expressionLanguage="anyURI"?>duration-expr</for> |
 <until expressionLanguage="anyURI"?>deadline-expr</until>)

</wait>

A typical use of this activity is to invoke an operation at a certain time (in this case a
constant, but more typically an expression dependent on process state):

<sequence>
 <wait><until>'2002-12-24T18:00+01:00'</until></wait>
 <invoke partnerLink="CallServer" portType="AutomaticPhoneCall"
 operation="TextToSpeech"
 inputVariable="seasonalGreeting">
 </invoke>
</sequence>

11.8. Doing Nothing

There is often a need to use an activity that does nothing, for example when a fault needs
to be caught and suppressed. The empty activity is used for this purpose. The syntax is
obvious and minimal.

<empty standard-attributes>
 standard-elements
</empty>

12. Structured Activities
Structured activities prescribe the order in which a collection of activities take place.
They describe how a business process is created by composing the basic activities it
performs into structures that express the control patterns, data flow, handling of faults
and external events, and coordination of message exchanges between process instances
involved in a business protocol.

The structured activities of WS-BPEL include:

• Ordinary sequential control between activities is provided by sequence, if, and
while.

• Concurrency and synchronization between activities is provided by flow.
• Nondeterministic choice based on external events is provided by pick.

The set of structured activities in WS-BPEL is not intended to be the minimal required
set. There are cases where one activity can replace another. For example, the sequence
activity, used to structure sequential processing, may be emulated by a properly
configured flow with additional links. The purpose in providing what are, strictly
speaking, redundant activities is to make it easier for BPEL process designers to both
read and write BPEL processes using familiar, even if functionally redundant, activity
constructs.

Structured activities can be used recursively in the usual way. A key point to understand
is that structured activities can be nested and combined in arbitrary ways. This provides a
somewhat unusual but very attractive free blending of the graph-like and program-like
control regimes that have traditionally been seen as alternatives rather than orthogonal
composable features. A simple example of such blended usage is found in the Initial
Example.

It is important to emphasize that the word activity is used throughout the following to
include both basic and structured activities.

12.1. Sequence

A sequence activity contains one or more activities that are performed sequentially, in
the order in which they are listed within the <sequence> element, that is, in lexical order.
The sequence activity completes when the final activity in the sequence has completed.

<sequence standard-attributes>
 standard-elements
 activity+
</sequence>

Example:

<sequence>
 <flow>
 ...
 </flow>
 <scope>
 ...
 </scope>
 <pick>
 ...
 </pick>
</sequence>

12.2. If

The if structured activity supports conditional behavior in a pattern that occurs quite
often. The activity consists of an ordered list of one or more conditional branches defined
by if, elseif elements, followed optionally by an optional else branch. The if and

elseif branches of the if activity are considered in the order in which they appear.
The first branch whose condition holds true is taken and provides the activity performed
for the if activity. If no branch with a condition is taken, then the else branch is taken if
specified. If the else branch is not explicitly specified, then an else branch with an
empty activity is deemed to be present. The if activity is complete when the activity of
the selected branch completes.

<if standard-attributes>
 standard-elements
 <condition expressionLanguage="anyURI"?>
 ... bool-expr ...
 </condition>
 <then>
 activity
 </then>
 <elseif>*
 <condition expressionLanguage="anyURI"?>
 ... bool-expr ...
 </condition>
 activity
 </elseif>
 <else>?
 activity
 </else>
</if>

Example:

<if xmlns:inventory="http://supply-chain.org/inventory"
 xmlns:FLT="http://example.com/faults">
 <condition>
 bpws:getVariableProperty('stockResult','level') > 100
 </condition>
 <then>
 <flow>
 <!-- perform fulfillment work -->
 </flow>
 </then>
 <elseif>
 <condition>
 bpws:getVariableProperty('stockResult','level') >= 0
 </condition>
 <throw faultName="FLT:OutOfStock"
 variable="RestockEstimate"/>
 </elseif>
 <else>
 <throw faultName="FLT:ItemDiscontinued"/>
 </else>
</if>

12.3. While

The while activity supports repeated performance of a specified iterative activity. The
iterative activity is performed as long as the given Boolean while condition holds true at
the beginning of each iteration.

<while standard-attributes>
 standard-elements
 <condition expressionLanguage="anyURI"?>
 ... bool-expr ...
 </condition>
 activity
</while>

Example:

 ...
<variable name="orderDetails" type="xsd:integer"/>
 ...
<while>
 <condition>
 $orderDetails > 100
 </condition>
 <scope>
 ...
 </scope>
</while>

12.4 RepeatUntil

The repeatUntil activity supports repeated performance of a specified iterative activity.
The iterative activity will continue to be performed so long as after it executes the given
Boolean <repeatUntil> condition holds true.

<repeatUntil standard-attributes>
 standard-elements
 activity
 <condition expressionLanguage="anyURI"?>
 ... bool-expr ...
 </condition>
</repeatUntil>

12.5. Pick

The pick activity awaits the occurrence of one of a set of events and then performs the
activity associated with the event that occurred. The occurrence of the events is often
mutually exclusive (the process will either receive an acceptance message or a rejection
message, but not both). If more than one of the events occurs, then the selection of the
activity to perform depends on which event occurred first. If the events occur almost
simultaneously, there is a race and the choice of activity to be performed is dependent on
both timing and implementation.

The form of pick is a set of branches of the form event/activity, and exactly one of the
branches will be selected based on the occurrence of the event associated with it before
any others. Note that after the pick activity has accepted an event for handling, the other
events are no longer accepted by that pick. The possible events are the arrival of some
message in the form of the invocation of an inbound one-way or request/response
operation, or an "alarm" based on a timer (in the sense of an alarm clock).

A special form of pick is used when the creation of an instance of the business process
could occur as a result of receiving one of a set of possible messages. In this case, the
pick itself has a createInstance attribute with a value of yes (the default value of the
attribute is no). In such a case, the events in the pick must all be inbound messages and
each of those is equivalent to a receive with the attribute "createInstance=yes". No
alarms are permitted for this special case.

Each pick activity MUST include at least one onMessage event.

The semantics of the onMessage event are identical to a receive activity regarding the
optional nature of the variable attribute, the handling of race conditions, the single
element-based part message short cut, the constraint regarding simultaneous enablement
of conflicting receive actions and the optional use of <fromPart> elements. For the last
case, recall that the semantics of a process in which two or more receive actions for the
same partner link, portType, operation and correlation set(s) may be simultaneously
enabled is undefined (see Providing Web Service Operations). Enablement of each
onMessage handler is equivalent to enablement of the corresponding receive activity
for the purposes of this constraint. The optional messageExchange attribute is used to
associate an <onMessage> activity with a <reply> activity. (For details, see Providing
Web Service Operations).

<pick createInstance="yes|no"? standard-attributes>

 standard-elements

 <onMessage partnerLink="ncname" portType="qname"?
 operation="ncname" variable="ncname"?
 messageExchange="ncname"? >+
 <correlations>?
 <correlation set="ncname" initiate="yes|no"?/>+
 </correlations>
 <fromPart part="ncname" toVariable="ncname"/>*
 activity
 </onMessage>
 <onAlarm>*
 (<for expressionLanguage="anyURI"?>duration-expr</for> |
 <until expressionLanguage="anyURI"?>deadline-expr</until>)?
 <repeatEvery expressionLanguage="anyURI"?>duration-
expr</repeatEvery>?
 activity
 </onAlarm>
</pick>

The pick activity completes when one of the branches is triggered by the occurrence of
its associated event and the corresponding activity completes. The following example
shows a typical usage of pick. Such a pick activity can occur in a loop that is accepting
line items for a large order, but a completion action is enabled as an alternative event.

<pick>
 <onMessage partnerLink="buyer"
 portType="orderEntry"
 operation="inputLineItem"
 variable="lineItem">
 <!-- activity to add line item to order -->
 </onMessage>
 <onMessage partnerLink="buyer"
 portType="orderEntry"
 operation="orderComplete"
 variable="completionDetail">
 <!-- activity to perform order completion -->
 </onMessage>
<!-- set an alarm to go after 3 days and 10 hours -->
 <onAlarm>
 <for>'P3DT10H'</for>
 <!-- handle timeout for order completion -->
 </onAlarm>
</pick>

12.6. Flow

The flow construct provides concurrency and synchronization. The grammar for flow is:

<flow standard-attributes>
 standard-elements
 <links>?
 <link name="ncname">+
 </links>
 activity+
</flow>

The standard attributes and standard elements for activities nested within a flow are
especially significant because the standard attributes and elements primarily exist to
provide flow-related semantics to activities.

The most fundamental semantic effect of grouping a set of activities in a flow is to
enable concurrency. A flow completes when all of the activities in the flow have
completed. Completion of an activity in a flow includes the possibility that it will be
skipped if its enabling condition turns out to be false (see Dead-Path-Elimination). Thus
the simplest use of flow is equivalent to a nested concurrency construct. In the following
example, the two invoke activities are enabled to start concurrently as soon as the flow is
started. The completion of the flow occurs after both the seller and the shipper respond
(assuming the invoke operations were synchronous request/response). The bank is
invoked only after the flow completes.

<sequence>
 <flow>
 <invoke partnerLink="Seller" .../>
 <invoke partnerLink="Shipper" .../>
 </flow>
 <invoke partnerLink="Bank" .../>
</sequence>

More generally, a flow activity creates a set of concurrent activities directly nested within
it. It further enables expression of synchronization dependencies between activities that
are nested directly or indirectly within it. The link construct is used to express these
synchronization dependencies. A link has a name and all the links of a flow activity
MUST be defined separately within the flow activity. The standard source and target
elements of an activity are used to link two activities. The source of the link MUST
specify a source element specifying the link's name and the target of the link MUST
specify a target element specifying the link's name. The source activity MAY also
specify a transition condition by including a <transitionCondition> element under the
<source> element. If the transition condition is omitted, it is deemed to be present with a
value of "true". Targets MAY also specify a joinCondition by including the
<joinCondition> element. This is described further in 12.5.1. Every link declared within
a flow activity MUST have exactly one activity within the flow as its source and exactly
one activity within the flow as its target. Moreover, at most one link may be used to
connect two activities; that is, two different links MUST NOT share the same source and
target activities. Finally, the source and target of a link MAY be nested arbitrarily deeply
within the (structured) activities that are directly nested within the flow, except for the
boundary-crossing restrictions.

The following example shows that links can cross the boundaries of structured activities.
There is a link named "CtoD" that starts at activity C in sequence Y and ends at activity
D, which is directly nested in the enclosing flow. The example further illustrates that
sequence X must be performed prior to sequence Y because X is the source of the link
named "XtoY" that is targeted at sequence Y.

<flow>
 <links>
 <link name="XtoY"/>
 <link name="CtoD"/>
 </links>
 <sequence name="X">
 <sources>
 <source linkName="XtoY"/>
 </sources>
 <invoke name="A" .../>
 <invoke name="B" .../>
 </sequence>
 <sequence name"Y">
 <targets>
 <target linkName="XtoY"/>
 </targets>
 <receive name="C" ...>
 <sources>

 <source linkName="CtoD"/>
 </sources>
 </receive>
 <invoke name="E" .../>
 </sequence>
 <invoke partnerLink="D" ...>
 <targets>
 <target linkName="CtoD"/>
 </targets>
 </invoke>
</flow>

A link is said to cross the boundary of a syntactic construct if the source or target activity
for the link is nested within the construct while the link is declared outside the construct.
Note that it is possible for a link to cross the boundary of a syntactic construct even in
those cases where both the source and the target activities are nested within the same
construct (so long as the link is declared outside that construct).A link MUST NOT cross
the boundary of a while or forEach activity, an isolated scope, an event handler or a
compensation handler (see Scopes for the specification of event, fault and compensation
handlers). In addition, a link that crosses a fault-handler boundary MUST be outbound,
that is, it MUST have its source activity within the fault handler and its target activity
within a scope that encloses the scope associated with the fault handler. Finally, a link
MUST NOT create a control cycle, that is, the source activity must not have the target
activity as a logically preceding activity, where an activity A logically precedes an
activity B if the initiation of B semantically requires the completion of A. Therefore,
directed graphs created by links are always acyclic.

12.6.1. Link Semantics

In the rest of this section, the links for which activity A is the source will be referred to as
A's outgoing links, and the links for which activity A is the target will be referred to as
A's incoming links. If activity X is the target of a link that has activity Y as the source, X
has a synchronization dependency on Y.

Every activity that is the target of a link has an implicit or explicit “join condition”
associated with it. This applies even when an activity has exactly one incoming link.
Explicit join conditions are provided by the <joinCondition> element under the <targets>
element. If the explicit join condition is missing, the implicit condition requires the status
of at least one incoming link to be positive (see below for an explanation of link
status). A join condition is a Boolean expression (see Expressions). The expression for a
join condition for an activity MUST be constructed using only Boolean operators and the
control links variable values for the incoming links at the activity.

Without considering links, the semantics of business processes, scopes, and structured
activities determine when a given activity is ready to start. For example, the second
activity in a sequence is ready to start as soon as the first activity completes. An activity
that defines the behavior of a branch in an if is ready to start if and when that branch is

chosen. Similarly, an activity nested directly within a flow is ready to start as soon as the
flow itself starts, because flow is fundamentally a concurrency construct.

If an activity that is ready to start in this sense has incoming links, then it does not start
until the status of all its incoming links has been determined and the (implicit or explicit)
join condition associated with the activity has been evaluated.

The link status is a tri-state flag associated with each declared link. This flag may be in
the following three states: "positive", "negative", or "unset". Each time a certain flow
activity is activated, the link status of all the links declared in that activity is "unset", that
is the lifetime of the status of a link is exactly the lifetime of the flow activity within
which it is declared.

The precise semantics of link status evaluation are as follows:

When activity A completes, the following steps are performed to determine the effect of
the synchronization links on other activities:

• Determine the status of all outgoing links for A. The status will be either
positive or negative. To determine the status for each link its
transitionCondition is evaluated. Note that the evaluation is carried out with
the actual values of the variables referenced in the transition condition expression.
If some of the variables are modified in a concurrent behavior path, the result of
the transition condition evaluation may depend nondeterministically on the timing
of behavior among concurrent activities. If the value is true the status is positive,
otherwise it is negative.

NOTE: The transition condition is evaluated after the activity has completed. If an
error occurs while evaluating the transition condition, that error does not affect
the completion status of the activity and is handled by the source activity's
enclosing scope. If the target of the link is outside the source activity's enclosing
scope then the status of the link is negative (see the Dead-Path-Elimination
section below). If the target is within the enclosing scope the status is irrelevant
since the scope has faulted. It is important to keep in mind that in the case of
source activities that are themselves scopes, completion does not necessarily
imply successful completion. A scope may suffer an internal fault and yet
complete (unsuccessfully) if there is a corresponding fault handler associated with
the scope and that fault handler completes without throwing a fault. In the case of
a link L with a scope S as its source activity, a fault resulting from an error in
evaluating the transition condition for L would be propagated to the enclosing
scope for S.

• For each activity B that has a synchronization dependency on A, check whether:
o B is ready to start (except for its dependency on incoming links) in the

sense described above.
o The status of all incoming links for B has been determined.

• If both these conditions are true, then evaluate the join condition for B. If the join
condition evaluates to false, a standard bpws:joinFailure fault is thrown,
otherwise activity B is started.

If, during the performance of structured activity S, the semantics of S dictate that activity
X nested within S will not be performed as part of the behavior of S, then the status of all
outgoing links from X is set to negative. An example is an activity within a branch that is
not taken in an if activity, or activities that were not completed in a scope in which
processing was halted due to a fault, including a bpws:joinFailure (see Scopes and
Compensation Handlers).

Note that onEvent event handlers are permitted to have several simultaneously active
instances. A private copy of all process data and control behavior defined within an
event handler is provided to each instance of an event handler. This includes the
behavior of links defined within an event handler. Each instance of the event handler
must independently evaluate the status of the link as needed.

Note that in general multiple target activities will be enabled based on the completion of
an activity with multiple outgoing links; because of this, such an activity is often called a
fork activity.

When a flow activity is nested within another flow activity, the inner flow activity may
define a link with the same name as in the enclosing flow activity. When this happens, a
source or target reference to such link from an activity matches the innermost link visible
to the activity and hides all other links with the same name. Consider the following
example:

 <flow name="F1">
 <links>
 <link name="L1"/> <!-- L1 is defined here and ... -->
 </links>
 <sequence name="S1">
 <flow name="F2">
 <links>
 <link name="L1"/> <!-- ... here -->
 </links>
 <sequence name="S2">
 <receive name="R">
 <sources>
 <source linkName="L1"/> <!—This matches F2.L1
and not F1.L1 -->
 </sources>
 </receive>
 <invoke name="I" .../>
 </sequence>
 ...
 </flow>
 ...
 </sequence>
 ...

</flow>A link with the name “L1” is defined in the flow “F1” as well in its nested flow
“F2”. The source reference to link with the name L1 from the receive activity R, matches
the link L1 defined in F2 as it is the inner most link with that name visible to the activity.

12.6.2. Dead-Path-Elimination (DPE)

In cases where the control flow is largely defined by networks of links, the normal
interpretation of a false join condition for activity A is that A should not be performed,
rather than that a fault has occurred. Moreover, there is a need to propagate the
consequences of this decision by assigning a negative status to the outgoing links for A.
WS-BPEL makes it easy to express these semantics by using an attribute
suppressJoinFailure on an activity. A value of "yes" for this attribute has the effect of
suppressing the bpws:joinFailure fault for the activity and all nested activities, except
where the effect is overridden by using the suppressJoinFailure attribute with a value
of "no" in a nested activity. Suppressing the bpws:joinFailure is equivalent to
surrounding each affected activity with a <scope> activity that defines an "empty" fault
handler for the bpws:joinFailure fault. For example, the following:

<process suppressJoinFailure="yes" ..>
 <invoke name="invokeA" ... />
</process>

is equivelent to:

<process...>
 <scope name="invokeA">
 <faultHandlers>
 <catch faultName="bpws:joinFailure">
 <empty/>
 </catch>
 </faultHandlers>
 <invoke name="invokeA" ... />
 </scope>
</process>

The default handler behavior is an empty activity, that is, the handler suppresses the fault
and does nothing about it. However, because the activity with the join condition was not
performed, its outgoing links are automatically assigned a negative status according to
the rules of Link Semantics. Thus within an activity with the value of the
suppressJoinFailure attribute set to "yes", the semantics of a join condition that
evaluates to false are to skip the associated activity and to set the status of all outgoing
links from that activity to negative. This is called dead-pathelimination because in a
graph-like interpretation of networks of links with transition conditions, these semantics
have the effect of propagating negative link status transitively along entire paths formed
by consecutive links until a join condition is reached that evaluates to true.

Note that the name of the scope created to suppress the bpws:joinFailure fault that
immediately encloses an activity with a join condition is exactly the same as the name of
the activity itself. In case this is an invoke activity (see Invoking Web Service Operations)

with an inlined fault or compensation handler, join failure suppression is applied to the
implied scope of the <invoke> activity; i.e. effectively two scopes are implied: an outer
scope containing an empty fault handler for the bpws:joinFailure fault and an inner scope
containing the links, fault handlers, and compensation handlers of the original <invoke>
activity. Identical rules apply to <scope> activities: a <scope> with join failure
suppression enabled implies an additional surrounding scope..

The default value of the suppressJoinFailure attribute of the global process element is
"no". This is to avoid unexpected behavior in simple use cases where complex graphs are
not involved and links without transition conditions are used for synchronization. The
designers of such use cases are likely to be naive about link semantics and are likely to be
surprised by the consequences of a default interpretation that suppresses a well-defined
fault. For example, consider the interpretation of the Initial Example with the
suppressJoinFailure attribute set to "yes". Suppose further that the invocations of the
shippingProvider are enclosed in a scope that provides a fault handler (see Scopes and
Fault Handlers). If one of these invocations were to fault, the status of the outgoing link
from the invocation would be negative, and the (implicit) join condition at the target of
the link would be false, but the resulting bpws:joinFailure would be implicitly
suppressed and the target activity would be silently skipped within the sequence instead
of causing the expected fault.

If universal suppression of the bpws:joinFailure is desired, it is easy to achieve by
using the suppressJoinFailure attribute with a value of "yes" in the overall process
element at the root of the business process definition.

12.6.3. Flow Graph Example

In the following example, the activities with the names getBuyerInformation,
getSellerInformation, settleTrade, confirmBuyer, and confirmSeller are
nodes of a graph defined through the flow activity. The following links are defined:

• The link named buyToSettle starts at getBuyerInformation (specified through
the corresponding source element nested in getBuyerInformation) and ends at
settleTrade (specified through the corresponding target element nested in
settleTrade).

• The link named sellToSettle starts at getSellerInformation and ends at
settleTrade.

• The link named toBuyConfirm starts at settleTrade and ends at confirmBuyer.
• The link named toSellConfirm starts at settleTrade and ends at

confirmSeller.

Based on the graph structure defined by the flow, the activities getBuyerInformation
and getSellerInformation can run concurrently. The settleTrade activity is not
performed before both of these activities are completed. After settleTrade completes
the two activities, confirmBuyer and confirmSeller are performed concurrently again.

<flow suppressJoinFailure="yes">
 <links>
 <link name="buyToSettle"/>
 <link name="sellToSettle"/>
 <link name="toBuyConfirm"/>
 <link name="toSellConfirm"/>
 </links>
 <receive name="getBuyerInformation">
 <sources>
 <source linkName="buyToSettle"/>
 </sources>
 </receive>
 <receive name="getSellerInformation">
 <sources>
 <source linkName="sellToSettle"/>
 </sources>
 </receive>
 <invoke name="settleTrade"
 <targets>
 <joinCondition>
 $buyToSettle and $sellToSettle
 </joinCondition>
 <target linkName="buyToSettle"/>
 <target linkName="sellToSettle"/>
 </targets>
 <sources>
 <source linkName="toBuyConfirm"/>
 <source linkName="toSellConfirm"/>
 </sources>
 </invoke>
 <reply name="confirmBuyer">
 <targets>
 <target linkName="toBuyConfirm"/>
 </targets>

 </reply>
 <reply name="confirmSeller">
 <targets>
 <target linkName="toSellConfirm"/>
 </targets>

 </reply>
</flow>

12.6.4. Links and Structured Activities

Links can cross the boundaries of structured activities. When this happens, care must be
taken to ensure the intended behavior of the business process. The following example
illustrates the behavior when links target activities within structured constructs.

The following flow is intended to perform the sequence of activities A, B, and C. Activity
B has a synchronization dependency on the two activities X and Y outside of the
sequence, that is, B is a target of links from X and Y. The join condition at B is missing,
and therefore implicitly assumed to be the default, which is the disjunction of the status

of the links targeted to B. The condition is therefore true if at least one of the incoming
links has a positive status. In this case that condition reduces to the Boolean condition
P(X,B) OR P(Y,B) based on the transition conditions on the links.

In the flow, the sequence S and the two receive activities X and Y are all concurrently
enabled to start when the flow starts. Within S, after activity A is completed, B cannot
start until the status of its incoming links from X and Y is determined and the implicit
join condition is evaluated. When activities X and Y complete, the join condition for B is
evaluated.

Suppose that the expression P(X,B) OR P(Y,B) evaluates to false. In this case, the
standard fault bpws:joinFailure will be thrown, because the environmental attribute
suppressJoinFailure is set to "no". Thus the behavior of the flow is interrupted and
neither B nor C will be performed.

If, on the other hand, the environmental attribute suppressJoinFailure is set to "yes",
then B will be skipped but C will be performed because the bpws:joinFailure will be
suppressed by the implicit scope associated with B.

<flow suppressJoinFailure="no">
 <links>
 <link name="XtoB"/>
 <link name="YtoB"/>
 </links>
 <sequence name="S">
 <receive name="A" ...>
 ...
 </receive>
 <receive name="B" ...>
 <targets>
 <target linkName="XtoB"/>
 <target linkName="YtoB"/>
 </targets>

 ...
 </receive>
 <receive name="C" ...>
 ...
 </receive>
 </sequence>
 <receive name="X" ...>
 <sources>
 <source linkName="XtoB">
 <transitionCondition>P(X,B)</transitionCondition>
 </source>
 </sources> ...
 </receive>
 <receive name="Y" ...>
 <sources>
 <source linkName="YtoB">
 <transitionCondition>P(Y,B)</transitionCondition>

 </source>
 </sources>
 ...
 </receive>
</flow>

Finally, assume that the preceding flow is slightly rewritten by linking A, B, and C
through links (with transition conditions with constant truth-value of "true") instead of
putting them into a sequence. Now, B and thus C will always be performed. Because the
join condition is a disjunction and the transition condition of link AtoB is the constant
"true", the join condition will always evaluate to "true", independent from the values of
P(X,B) and P(Y,B).

<flow suppressJoinFailure="no">
 <links>
 <link name="AtoB"/>
 <link name="BtoC"/>
 <link name="XtoB"/>
 <link name="YtoB"/>
 </links>
 <receive name="A">
 <sources>
 <source linkName="AtoB"/>
 </sources>
 </receive>
 <receive name="B">
 <targets>
 <target linkName="AtoB"/>
 <target linkName="XtoB"/>
 <target linkName="YtoB"/>
 </targets>
 <sources>
 <source linkName="BtoC"/>
 </sources>
 </receive>
 <receive name="C">
 <targets>
 <target linkName="BtoC"/>
 </targets>
 </receive>
 <receive name="X">
 <sources>
 <source linkName="XtoB">
 <transitionCondition>P(X,B)</transitionCondition>
 </source>
 </sources>
 </receive>
 <receive name="Y">
 <sources>
 <source linkName="YtoB">
 <transitionCondition>P(Y,B)</transitionCondition>
 </source>
 </sources>
 </receive>
</flow>

12.7 ForEach

<forEach counterName="ncname" parallel="yes|no" standard-attributes>
 standard-elements
 <startCounterValue expressionLanguage="anyURI">
 ...
 </startCounterValue>
 <finalCounterValue expressionLanguage="anyURI">
 ...
 </finalCounterValue>
 activity
</foreach>

The foreach activity is an iterator that will repeat its contained scope activity exactly N+1
times where N equals the <finalCounterValue> minus the <startCounterValue>.

When the foreach activity is started the expressions in <startCounterValue> and
<finalCounterValue> are evaluated for the first and only time. That is, once the two
values are returned they remain constant for the lifespan of the activity. Both expressions
MUST each return a TII (meaning they contain at least one character) that can be
validated as a xs:unsignedint, if any of these restrictions are violated then the
bpws:forEachCounterError fault MUST be thrown. If the startCounterValue is less than
or equal to the finalCounterValue, then no iteration will be performed.

If parallel="no" then this is a serial foreach where the enclosed scope activity will be
repeated N+1 times. During each repetition a variable of type xs:unsignedint will be
created with the name specified in the counterName attribute in an implicit scope
contained within the forEach activity; this implicit scope in turn contains the activities
specified within the forEach element. The counter variable is local to the implicit scope
and although its value can be changed during an iteration that value will be lost at the end
of each iteratoin, and will not affect the value that the next iteration's counter will be set
to. The first iteration of the scope will see the counter variable set to the
startCounterValue. The next iteration will cause the counter variable to be set to the
startCounterValue plus one. Each subsequent iteration will increment the previously
initialized counter value by one until the final iteration where the counter will be set to
the finalCounterValue.

If parallel="yes" then this is a parallel foreach where the N+1 instances of the enclosed
activity will occur in parallel. In essence an implicit flow is dynamically created with
N+1 copies of the foreach's implicit scope activity as children. Each copy of the implicit
scope activity will have the same counter variable defined in the same manner as
specified for serial foreach with the exception that each counter variable will be uniquely
initialized to one of the integer values starting with startCounterValue and covering all
integer values, incremented by one, up to and including finalCounterValue.

13. Scopes

The behavior context for each activity is provided by a scope. A scope can provide fault
handlers, event handlers, a compensation handler, data variables, partner links, and
correlation sets.

All scope elements are syntactically optional and some have default semantics when
omitted. The syntax and semantics of scopes are explained in detail below.

<scope isolated="yes|no" standard-attributes>
 standard-elements
 <partnerLinks>?
 ...
 </partnerLinks>
 <variables>?
 ...
 </variables>
 <correlationSets>?
 ...
 </correlationSets>
 <faultHandlers>?
 ...
 </faultHandlers>
 <compensationHandler>?
 ...
 </compensationHandler>
 <terminationHandler>?
 ...
 </terminationHandler>
 <eventHandlers>?
 ...
 </eventHandlers>
 activity
</scope>

All handlers on a scope are lexically subordinate to the scope and so can access all
variables, partnerLinks and correlation sets defined on the scope and its linear ancestors
subject to any restrictions unique to the handler type specified elsewhere in this document.

Each scope has a primary activity that defines its normal behavior. The primary activity
can be a complex structured activity, with many nested activities within it to arbitrary
depth. The scope is shared by all the nested activities.

When a process/scope is entered scope initialization occurs. Scope initialization consists
of instantiating the scope's fault handlers, termination handlers, partner links, correlation
sets and variables, including variable initializations. Any partner links defined in the
scope MUST be created before variables defined in the same scope whose initialization
logic refers to those partner links. Scope initialization is an all or nothing behavior, either
it all occurs successfully or a bpws:scopeInitializationFailure fault is thrown which
MUST be caught by the parent scope of the failed scope. In the case of a failure at the
process level the entire process is treated as faulted. Once scope initialization completes
the main activity of the scope and the scope's event handlers are instantiated in parallel
with each other. An exception to the previous rule applies to scopes that contain a

process's initial start activity. An initial start activity is the start activity that caused a
particular process instance to be instantiated. If a scope contains an initial start activity
then the start activity MUST complete before the event handlers are instantiated.

In the following example, the scope has a primary flow activity, which contains two
concurrent invoke activities. Either of the invoke activities can receive one or more types
of fault responses. The fault handlers for the scope are shared by both invoke activities
and can be used to catch the faults caused by the possible fault responses.

<scope>
 <faultHandlers>?
 ...
 </faultHandlers>
 <flow>
 <invoke partnerLink="Seller" portType="Sell:Purchasing"
 operation="SyncPurchase"
 inputVariable="sendPO"
 outputVariable="getResponse"/>
 <invoke partnerLink="Shipper"
 portType="Ship:TransportOrders"
 operation="OrderShipment"
 inputVariable="sendShipOrder"
 outputVariable="shipAck"/>
 </flow>
</scope>

13.1. Data Handling and Partner Links

A scope can declare variables and parter links that live only within the scope. For further
information see the chapter about Data Handling and Partner Links respectively.

13.2. Error Handling in Business Processes

Business processes are often of long duration and use asynchronous messages for
communication. They also manipulate sensitive business data in back-end databases and
line-of-business applications. Error handling in this environment is both difficult and
business critical. The use of ACID transactions is usually limited to local updates because
of trust issues and because locks and isolation cannot be maintained for the long periods
during which technical and business errors and fault conditions can occur in a business
process instance. As a result, the overall business transaction can fail or be cancelled after
many ACID transactions have been committed during its progress, and the partial work
done must be undone as best as possible. Error handling in business processes therefore
relies heavily on the well-known concept of compensation, that is, application-specific
activities that attempt to reverse the effects of a previous activity that was carried out as
part of a larger unit of work that is being abandoned. There is a long history of work in
this area regarding the use of Sagas [Sagas] and open nested transactions [Trends]. WS-
BPEL provides a variant of such a compensation protocol by providing the ability for

flexible control of the reversal. WS-BPEL achieves this by providing the ability to define
fault handling and compensation in an application-specific manner, resulting in a feature
called Long-Running (Business) Transactions (LRTs).

It is important to understand that the notion of LRT described here is meant to be used
purely within a platform-specific implementation. There is no prescribed requirement that
the business process be distributed or span multiple vendors and platforms. Additionally,
it is important to understand that the notion of LRT described here is purely local and
occurs within a single business process instance. There is no distributed coordination
regarding an agreed-upon outcome among multiple-participant services. The achievement
of distributed agreement is an orthogonal problem outside the scope of WS-BPEL.

As an example of an LRT, consider the planning and fulfillment of a travel itinerary. This
can be viewed as an LRT in which individual service reservations can use nested
transactions within the scope of the overall LRT. If the itinerary is cancelled, the
reservation transactions must be compensated for by cancellation transactions, and the
corresponding payment transactions must be compensated accordingly. For ACID
transactions in databases the transaction coordinator(s) and the resources that they control
know all of the uncommitted updates and the order in which they must be reversed, and
they are in full control of such reversal. In the case of business transactions, the
compensation behavior is itself a part of the business logic and protocol, and must be
explicitly specified. For example, there might be penalties or fees applied for cancellation
of an airline reservation depending on the class of ticket and the timing. If a payroll
advance has been given to pay for the travel, the reservation must be successfully
cancelled before the payroll advance for it can be reversed in the form of a payroll
deduction. This means the compensation actions might need to run in the same order as
the original transactions, which is not the standard or default in most transaction systems.
Using activity scopes as the definition of logical units of work, the LRT feature of WS-
BPEL addresses these requirements.

13.3. Compensation Handlers

Scopes can delineate a part of the behavior that is meant to be reversible in an
applicationdefined way by a compensation handler. Scopes with compensation and fault
handlers can be nested without constraint to arbitrary depth.

13.3.1. Defining a Compensation Handler

A compensation handler is simply a wrapper for a compensation activity as shown below.

<compensationHandler>?
 activity
</compensationHandler>

As explained in Invoking Web Service Operations, there is a special shortcut for the
invoke activity to inline a compensation handler rather than explicitly using an
immediately enclosing scope. For example:

<invoke partnerLink="Seller" portType="SP:Purchasing"
 operation="SyncPurchase"
 inputVariable="sendPO"
 outputVariable="getResponse">
 <correlations>
 <correlation set="PurchaseOrder" initiate="yes"
 pattern="out"/>
 </correlations>
 <compensationHandler>
 <invoke partnerLink="Seller" portType="SP:Purchasing"
 operation="CancelPurchase"
 inputVariable="getResponse"
 outputVariable="getConfirmation">
 <correlations>
 <correlation set="PurchaseOrder" pattern="out"/>
 </correlations>
 </invoke>
 </compensationHandler>
</invoke>

In this example, the original invoke activity makes a purchase and in case that purchase
needs to be compensated, the compensationHandler invokes a cancellation operation at
the same port of the same partnerLink, using the response to the purchase request as the
input.

In standard syntax (without the invoke shortcut) this example would be equivalently
expressed as follows:

<scope>
 <compensationHandler>
 <invoke partnerLink="Seller" portType="SP:Purchasing"
 operation="CancelPurchase"
 inputVariable="getResponse"
 outputVariable="getConfirmation">
 <correlations>
 <correlation set="PurchaseOrder" pattern="out"/>
 </correlations>
 </invoke>
 </compensationHandler>
 <invoke partnerLink="Seller" portType="SP:Purchasing"
 operation="SyncPurchase"
 inputVariable="sendPO"
 outputVariable="getResponse">
 <correlations>
 <correlation set="PurchaseOrder" initiate="yes"
 pattern="out"/>
 </correlations>
 </invoke>
</scope>

Note that the variable getResponse is not local to the scope to which the compensation
handler is attached and can be reused later for other purposes before compensation for
this scope is invoked. The current state of non-local variables is available in
compensation handlers as explained more fully below. But assuming the compensation

handler needs the specific response to the invoke operation that is being reversed, that
response would most conveniently be stored in a variable local to the scope, e.g., by
making getResponse local to the scope.

13.3.2. Process State Usage in Compensation Handlers

Compensation handlers always use the current state of the process, specifically the state
of variables declared in their associated scope and all enclosing scopes. The variables
include partnerLinks at the process scope. Compensation handlers are able to both get
and set the values of all such variables. Other parts of the process will see the changes
made to shared variables by compensation handlers, and conversely, compensation
handlers will see changes made to shared variables by other parts of the process,
including situations where a compensation handler runs concurrently with other parts of
the process. Compensation handlers will need to use isolated scopes when they touch
state in enclosing scopes to avoid interference if concurrency is expected.

The current state of the process consists of the current local state of all scopes that have
been started. This includes scopes that have completed successfully but for which the
associated compensation handler has not been invoked. For successfully completed
uncompensated scopes their current local state is the state as it was at the time of
completion. Such scopes are in suspended animation because their compensation
handlers are still available and therefore their execution may continue in compensation
mode. Note that a scope may have been executed several times in a loop, and the current
state of the process includes the state of each successfully completed (and uncompensated)
iteration through the scope. We refer to the preserved state of a successfully completed
uncompensated scope as a scope snapshot.

The behavior of a compensation handler can be thought of as an optional continuation of
the behavior of the associated scope and as such its usage of variables is similar to the
usage that occurred in the body of the scope itself, including update actions. This
includes variables in both the local scope and all enclosing scopes. For the variables in
the local scope, the compensation handler starts with the scope snapshot. Note that the
compensation handler may itself have been called from an enclosing compensation
handler. It will then share the continuation of the state of the enclosing scope that its
caller is using. In the picture below showing three nested scopes S1, S2 and S3, and their
compensation handlers C1, C2, C3, and failure handlers F1 and F2, we may have an
error handling call stack F1->C2->C3. In that case C3 will share the state of S2 as it is
being seen and used by C2, and the current state of the uncompleted scope S1.

13.3.3. Invoking a Compensation Handler

The compensation handler can be invoked by using the compensate activity, which
names the scope for which the compensation is to be performed, that is, the scope whose
compensation handler is to be invoked. A compensation handler for a scope is available
for invocation only when the scope completes normally. The first attempt to invoke a
compensation handler that has never been installed is equivalent to the empty activity (it
is a no-op) – this ensures that fault handlers do not have to rely on state to determine
which nested scopes have completed successfully. Any subsequent attempts to invoke the
never installed compensation handler will also result in a no-op (as does any attempt to
invoke an installed compensation more than once)

Note that in case an invoke activity has a compensation handler defined inline, the name
of the activity is the name of the scope to be used in the compensate activity.

<compensate scope="ncname"? standard-attributes>
 standard-elements
</compensate>

The ability to explicitly invoke the compensate activity is the underpinning of the
application-controlled error-handling framework of WS-BPEL. This activity can be used
only in the following parts of a business process:

• In a fault handler of the scope that immediately encloses the scope for which
compensation is to be performed.

• In the compensation handler of the scope that immediately encloses the scope for
which compensation is to be performed.

Example:

<compensate scope="RecordPayment"/>

If a scope being compensated by name was nested in a loop, the instances of the
compensation handlers in the successive iterations are invoked in reverse order.

In order for a compensation handler to be invoked by name, all scopes and activities
directly nested in a scope MUST be uniquely named. If the value of the scope attribute
specified on a compensate activity does not resolve to a unique scope or activity name,
the behavior of the process is undefied.

If the explicit compensation handler for a scope is absent, the default compensation
handler for the scope is invoked.

The <compensate/> form, in which the scope name is omitted in a compensate activity,
causes the default compensation behavior for the current scope to be invoked explicitly.
This is useful when an enclosing fault or compensation handler needs to perform
additional work, such as updating variables or sending external notifications, in addition
to performing default compensation for the associated scope. Note that the
<compensate/> activity in a fault or compensation handler attached to scope S causes the
default-order invocation of compensation handlers for completed scopes directly nested
within S. The use of this activity can be mixed with any other user-specified behavior
except the explicit invocation of <compensate scope="Sx"/> for scope Sx nested
directly within S. Explicit invocation of compensation for such a scope nested within S
disables the availability of default-order compensation, as expected.

13.4. Fault Handlers

Fault handling in a business process can be thought of as a mode switch from the normal
processing in a scope. Fault handling in WS-BPEL is always treated as "reverse work" in
that its sole aim is to undo the partial and unsuccessful work of a scope in which a fault
has occurred. The completion of the activity of a fault handler, even when it does not
rethrow the fault handled, is never considered successful completion of the attached
scope and compensation is never enabled for a scope that has had an associated fault
handler invoked.

The optional fault handlers attached to a scope provide a way to define a set of custom
fault-handling activities, syntactically defined as catch activities. Each catch activity is
defined to intercept a specific kind of fault, defined by a globally unique fault QName
and a variable for the data associated with the fault. If the fault name is missing, then the
catch will intercept all faults with the right type of fault data. The fault variable is
specified using the faultVariable attribute in a catch handler. The variable is deemed to be
declared by virtue of being used as the value of this attribute and is local to the fault
handler. It is not visible or usable outside the fault handler in which it is declared. The
fault variable is optional because a fault might not have additional data associated with it.

A fault response to an invoke activity is one source of faults, with name and data aspects
based on the definition of the fault in the WSDL operation (please refer to the
Implementer’s Note in Section 11.3 for important details regarding access to fault
information when faults are transmitted using SOAP). A programmatic throw activity is
another source, again with explicitly given name and data. The core concepts and
executable pattern extensions of WS-BPEL define several standard faults with their
names and data, and there might be other platform-specific faults such as communication
failures that can occur in a business process instance. A catchAll clause can be added to
catch any fault not caught by a more specific fault handler.

<faultHandlers>?
 <!-- there must be at least one fault handler or default -->
 <catch faultName="qname"? faultVariable="ncname"?
 faultMessageType="qname"?
 faultElement="qname"?>*
 activity
 </catch>
 <catchAll>?
 activity
 </catchAll>
</faultHandlers>

Data thrown with a fault can be a WSDL message type or a XML schema element. Each
catch which specifies a faultName can only catch a fault of a single type. This one-to-one
relationship is necessary in order to guarantee proper typing. If the data to be caught is a
WSDL message type then the faultMessageType attribute MUST be used to specify the
message type’s qname. If the data to be caught is a XML element definition then the
faultElement attribute MUST be used to specify the element definition’s qname.

The faultName may reflect a purely internal custom fault in a process, or the faultName
may be missing. In such cases, the faultVariable, which is local to the fault handler and
declared by its occurrence in the catch element, will not have a defined type. To avoid
this possibility faultVariable MUST only be used if either the faultMessageType or
faultElement attributes, but not both, accompany it. faultMessageType and faultElement
MUST NOT be used unless accompanied by faultVariable.

Because of the flexibility allowed in expressing the faults that a catch activity can handle,
it is possible for a fault to match more than one fault handler.

In the case of faults thrown without associated data the fault will be caught as follows:

1. If there is a catch activity with a matching faultName value that does not specify a
faultVariable attribute then the fault is passed to the identified catch activity.

2. Otherwise if there is a catchAll handler then the fault is passed to the catchAll
handler.

3. Otherwise, the fault will be handled by the default fault handler.

In the case of faults thrown with associated data the fault will be caught as follows:

1. If there is a catch activity with a matching faultName value that has a
faultVariable whose type matches the type of the fault data then the fault is passed
to the identified catch activity.

2. Otherwise if the fault data is a WSDL message type where the message contains a
single part defined by an element and there exists a catch activity with a matching
faultName value that has a faultVariable whose type matches the type of the
element used to define the part then the fault is passed to the identified catch
activity with the faultVariable initialized to the value in the single part’s element.

3. Otherwise if there is a catch activity with a matching faultName value that does
not specify a faultVariable or faultMessageType value then the fault is passed to
the identified catch activity. Note that in this case the fault value will not be
available from within the fault handler but will be available to the <rethrow>
activity.

4. Otherwise if there is a catch activity without a faultName attribute that has a
faultVariable whose type matches the type of the fault data then the fault is passed
to the identified catch activity.

5. Otherwise if the fault data is a WSDL message type where the message contains a
single part defined by an element and there exists a catch activity without a
faultName attribute that has a faultVariable whose type matches the type of the
element used to define the part then the fault is passed to the identified catch
activity with the faultVariable initialized to the value in the single part’s element.

6. Otherwise if there is a catchAll handler then the fault is passed to the catchAll
handler.

7. Otherwise, the fault will be handled by the default fault handler.

If the fault occurs in (or is rethrown to) the global process scope, and there is no matching
fault handler for the fault at the global level, the process terminates abnormally, as though
an exit activity had been performed. See Implicit Fault and Compensation Handlers for a
more complete description of the default fault and compensation handling behavior.

Consider the following example:

<faulthandlers>
 <catch faultName="x:foo">
 <empty/>
 </catch>
 <catch faultVariable="bar" faultMessageType="tns:barType">
 <empty/>
 </catch>
 <catch faultName="x:foo" faultVariable="bar"
 faultMessageType="tns:barType">
 <empty/>
 </catch>
 <catchAll>
 <empty/>
 </catchAll>
</faulthandlers>

Assume that a fault named ”x:foo” is thrown. The first catch will be selected if the fault
carries no fault data. If there is fault data associated with the fault, the third catch will be
selected if and only if the type of the fault’s data matches the type of variable “bar”,
otherwise the default catchall handler will be selected. Finally, a fault with a fault
variable whose type matches the type of “bar” and whose name is not “x:foo” will be
processed by the second catch. All other faults will be processed by the default catchall
handler.

It is sometimes necessary to rethrow a caught fault. However the <throw> activity
requires a fault name and an optional fault value. In the case of a <catchAll> handler or a
custom fault handler that does not specify a faultName the fault name will not be
accessible for use in the <throw> activity. In the case that a fault with associated data was
caught by a custom fault handler that only specified the fault name, the fault value will
not be accessible for use in the <throw> activity. Hence all fault handlers are allowed to
rethrow the original fault with a <rethrow> activity that is defined to be an empty element.
In essence <rethrow> can be considered a macro for a <throw> that rethrows the fault
that was originally caught by the immediately enclosing fault handler. For example if a
fault handler should modify the fault data and then call <rethrow> the original fault data
would be rethrown and not the modified fault data. Similarly if a fault is caught using the
shortcut that allows message type faults with one part defined using an element to be
caught by fault handlers looking for the same element type, then a <rethrow> would
rethrow the original message type data.

An example is shown below:

<faulthandlers>
 <catch faultName="x:foo">
 <empty/>
 </catch>
 <catch faultVariable="bar" faultMessageType="y:myMsgType">
 ….
 <rethrow/> <!- rethow of original fault -->
 </catch>
 <catchAll>
 ….
 <rethrow/> <!- rethow of original fault -->
 </catchAll>
</faulthandlers>

Although the use of compensation can be a key aspect of the behavior of fault handlers,
each handler performs an arbitrary activity, which can even be <empty/>. When a fault
handler is present, it is in charge of handling the fault. It might rethrow the same fault or
a different one, or it might handle the fault by performing cleanup and allowing normal
processing to continue in the enclosing scope.

A scope in which a fault occurred is considered to have ended abnormally, whether or not
the fault was caught and handled without rethrow by a fault handler. A compensation
handler is never installed for a scope in which a fault occurred.

When a fault handler for scope S handles a fault that occurred in S without rethrowing,
links that have S as the source will be subject to regular evaluation of status after the fault
has been handled, because processing in the enclosing scope is meant to be continued.

As explained in Invoking Web Service Operations, there is a special shortcut for the
invoke activity to inline fault handlers rather than explicitly using an immediately
enclosing scope. For example:

<invoke partnerLink="Seller"
 portType="SP:Purchasing"
 operation="SyncPurchase"
 inputVariable="sendPO"
 outputVariable="getResponse">
 <catch faultName="SP:POFault" faultVariable="POFault"
 faultMessageType="lns:orderFaultType">
 <!-- handle the fault -->
 </catch>
</invoke>

In this example, the original invoke makes a purchase and a fault handler is inlined to
handle the case where the purchase request results in a fault response. In standard syntax
(without the invoke shortcut), this example would be equivalently expressed as follows:

<scope>
 <faultHandlers>
 <catch faultName="SP:POFault" faultVariable="POFault">
 faultMessageType="lns:orderFaultType">
 <!-- handle the fault -->
 </catch>
 </faultHandlers>
 <invoke partnerLink="Seller"
 portType="SP:Purchasing"
 operation="SyncPurchase"
 inputVariable="sendPO"
 outputVariable="getResponse">
 </invoke>
</scope>

The compensation handler for scope C becomes available for invocation by the fault and
compensation handlers for its immediately enclosing scope exactly when scope C
completes normally. A fault handler for scope C is available for invocation exactly when
C has commenced but has not been completed. If the scope faults before completion, then
the appropriate fault handler gets control and all other fault handlers are uninstalled. It is
never possible to run more than one fault handler for the same scope under any
circumstances.

Note that availability also applies to Implicit Fault and Compensation Handlers.

The behavior of a fault handler for scope C begins by implicitly terminating all activities
that are currently active and directly enclosed within C (see Semantics of Activity
Termination). The termination of these activities occurs before the specific behavior of a
fault handler is started. This also applies to the implicit fault handlers described below.
The activity of a fault handler is deemed to occur in the scope to which the fault handler
is attached.

13.4.1. Implicit Fault and Compensation Handlers

Because the visibility of scope names and therefore of compensation handlers is limited
to the next enclosing scope, the ability to compensate a scope would be lost if the
enclosing scope did not have a compensation handler or was missing a fault handler for
some fault. Because many faults are not programmatic or the result of operation
invocation, it is not reasonable to expect an explicit handler for every fault in every scope.
WS-BPEL therefore provides default compensation and fault handlers when these are
missing. Whenever a fault handler (for any fault) or the compensation handler is missing
for any given scope, they are implicitly created with the following behavior:

Fault handler:

• Run all available compensation handlers for all directly and indirectly enclosed
scopes in any order consistent with the rules for default compensation order
defined below. Note that a compensation handler is available for a scope exactly
when that scope has completed successfully.

• Rethrow the fault to the next enclosing scope.

Compensation handler:

• Run all available compensation handlers for all directly and indirectly enclosed
scopes in any order consistent with the rules for default compensation order
defined below. Note that a compensation handler is available for a scope exactly
when that scope has completed successfully.

13.4.2 Default Compensation Order

There are two rules for default compensation order that address different aspects of the
order relation. Note that they are additive, i.e., they MUST both be obeyed in every case
in performing default compensation.

Informally, Rule 1 states that default compensation must respect the forward order of
execution for the scopes being compensated, but only in so far as that order is mandated
by the process definition. In cases where concurrency is permitted as a result of the use
of the <flow> construct, and not otherwise constrained by links, any actual temporal
order during execution is not a part of the constraint defined by the first rule. More
formally, we state the rule based on a precise notion of control dependency.

Definition: Control Dependency. If an activity A must complete before activity B
begins, as a result of the existence of a control path from A to B in the process definition,
then we say that B has a control dependency on A. Note that control dependencies may
occur due to control links in a <flow> as well as due to constructs like <sequence>.
Control flow due to explicit <throw> is not considered a control dependency.

Rule 1: Consider scopes A and B such that B has a control dependency on A. Assuming
both A and B completed successfully and both must be compensated as part of default
compensation behavior, the compensation handler of B must run to completion before the
compensation handler of A is started.

This rule permits scopes that executed concurrently on the forward path to also be
compensated concurrently in the reverse path. Of course, if one follows the strict reverse
order of completion, then that necessarily respects control dependencies and is also
consistent with this rule. The rule imposes a constraint on the order in which
compensation handlers run during default compensation, and is not meant to be fully
prescriptive about the exact order and concurrency.

Informally, the second rule is needed as a result of the fact that all scopes are not isolated.
It is syntactically possible for two scopes to have links crossing from activities within one
to activities within the other, and moreover such links may cross in both directions. If
both such scopes were isolated, this would be illegal because the semantics of links
crossing isolated scope boundaries would imply that such bidirectional links constitute a
cycle. The simple way to state the intent of Rule 2 is that we should treat all scopes as if
they were isolated, but only for purposes of cycle detection regarding links crossing
scope boundaries. This allows us to apply Rule 1 to any pair of scopes to decide
unambiguously if there is a control dependency between them, and if so, in which
direction. Formally, we need three definitions to state the rule precisely.

Definition: Peer-Scopes. Two scopes S1 and S2 are said to be peer scopes if they are
both directly nested within the same parent scope (including process scope).

Definition: Scope-controlled set. An activity A is within the scope-controlled set of
activities of scope S if either A is S itself, or A is nested within S, at any depth.

Definition: Peer-Scope Dependency. If S1 and S2 are peer scopes then we say that S2
has a direct peer-scope dependency on S1 if there is an activity B within the scope-
controlled set of S2 and an activity A within the scope-controlled set of S1 such that B
has a control dependency on A. The peer-scope dependency relation is the transitive
closure of the direct peer-scope dependency relation.

Rule 2: The peer-scope dependency relation MUST NOT include cycles. In other words,
WS-BPEL forbids a process in which there are peer scopes S1 and S2 such that S1 has a
peer-scope dependency on S2 and S2 has a peer-scope dependency on S1.

One of the side effects of Rule 2 is to permit a depth-first traversal of the lexical scope
tree for default compensation, respecting the control dependency relation among peer
scopes as dictated by Rule 1. Thus, we no longer have any difficulty in defining default
compensation of any scope, since depth-first order implies that such compensation is only
dependent on the compensation of its nested scopes. A related point is also worth
pointing out. The default compensation order mandated by the rules here is consistent
with strict reverse order of completion, but not in depth-first order. Strict reverse order
of completion applied to compensation of all scopes may require interleaving of nested
compensations across peer scopes.

13.4.3. Compensation handlers and Isolated Scopes

Given that compensation handlers may run concurrently with other activities including
other compensation handlers, it is necessary to allow compensation handlers to use
isolation scope semantics. Compensation handlers do not run within the isolation domain
of their associated scopes, but fault handlers do. This creates difficulties in the isolation
semantics of compensation handlers for scopes nested inside an isolated scope. Such
handlers cannot use isolated scopes themselves because isolated scopes cannot be nested.
However, their isolation environment is uncertain because they may be invoked from
either a fault handler within the isolation domain of their enclosing scope or within the
compensation handler of the same enclosing scope which is not in that isolation domain.

In order to ensure consistency of behavior, WS-BPEL mandates that the compensation
handler of an isolated scope will itself have isolated behavior implicitly, although it will
create a separate isolation domain from that of its associated scope.

13.4.4. Semantics of Activity Termination

As stated above, the behavior of a fault handler for scope C begins by implicitly
terminating all activities directly enclosed within C that are currently active. The
following paragraphs define what this means for all WS-BPEL activity types.

The assign activities are sufficiently short-lived that they are allowed to complete rather
than being interrupted when termination is forced. The evaluation of expressions when
already started is also allowed to complete. Each wait, receive, reply and invoke
activity is interrupted and terminated prematurely. When a synchronous invoke activity
(corresponding to a request/reply operation) is interrupted and terminated prematurely,
the response (if received) for such a terminated activity is silently discarded. The notion
of termination does not apply to empty, exit, and throw.

All structured activity behavior is interrupted. The iteration of while is interrupted and
termination is applied to the loop body activity. If an <if> activity has selected a branch,
then the termination is applied to the activity of the selected branch. The same applies to
pick. If either of these activities has not yet selected a branch, then the if activity and
the pick activity are terminated immediately. The sequence and flow constructs are

terminated by terminating their behavior and applying termination to all nested activities
currently active within them.

Scopes provide the ability to control the semantics of forced termination to some degree.
When the activity being terminated is in fact a scope, the forced termination of a scope
begins by terminating all activities directly enclosed within its associated scope that are
currently active. Following this, the custom termination handler for the scope, if present,
is run. If the custom termination handler is missing, the default termination handler
performs compensation of all successfully completed nested scopes in the same order as
in the case of a default fault handler.

Forced termination for a scope applies only if the scope is in normal processing mode. If
the scope has already experienced an internal fault and invoked a fault handler, then the
termination handler is uninstalled, and the forced termination has no effect. The already
active fault handler is allowed to complete.

The termination handler for a scope is permitted to use the same range of activities as a
fault handler, including the <compensate/> activity. However, a termination handler
cannot throw any fault. Even if an uncaught fault occurs during its behavior, it is not
rethrown to the next enclosing scope. This is because the enclosing scope has already
either faulted or is in the process of being terminated, which is what is causing the forced
termination of the nested scope.

Forced termination of nested scopes occurs in innermost-first order as a result of the rule
(stated above) that the termination handler is run after terminating all activities (including
scope activities) directly enclosed within its associated scope that are currently active.

13.4.5. Handling Faults That Occur Inside Fault and Compensation
Handlers

Compensation handlers are always invoked directly or indirectly as part of the processing
of some fault handler E. The behavior of a compensation handler invoked by E can cause
a fault to be thrown. Such a fault, if uncaught by scopes within the chain of compensation
handlers invoked by E, is treated as being a fault within E.

If a fault occurs in a fault handler E for a scope C, the fault can be caught through the use
of a scope within E. If the fault is not caught by a scope within E, it is immediately
thrown to the parent scope of C and the behavior of E terminates prematurely. In effect,
no distinction is made between faults that E rethrows deliberately and faults that occur as
undesired faults in E.

13.4.6. Handling WS-BPEL Standard Faults

If the value of the exitOnStandardFault attribute on a <scope> is set to “yes”, then the
process MUST exit immediately as if an <exit> activity has been reached, when any WS-
BPEL standard fault other than bpws:joinFailure is enountered. If the value of this

attribute is set to “no”, then the process can handle a WS-BPEL standard fault using a
fault handler. The default value for this attribute is “no”. When this attribute is not
specified on a <scope> it inherits its value from its enclosing <scope> or <process>.

13.5. Event Handlers

The whole process as well as each scope can be associated with a set of event handlers
that are invoked concurrently if the corresponding event occurs. The actions taken within
an event handler can be any type of activity, such as sequence or flow, but invocation of
compensation handlers using the <compensate/> activity is not permitted. As stated
earlier, the <compensate/> activity can only be used in fault and compensation handlers.
There are two types of events. First, events can be incoming messages that correspond to
a request/response or one-way operation in WSDL. For instance, a status query is likely
to be a request/response operation, whereas a cancellation may be a oneway operation.
Second, events can be alarms, that go off after user-set times. The grammar for the set of
event handlers associated with a scope or process is

<eventHandlers>?
<!-- Note: There must be at least one onEvent or onAlarm handler. -->
 <onEvent partnerLink="ncname" portType="qname"?
 operation="ncname" messageType="qname" variable="ncname"
 messageExchange="ncname"? >*
 <correlationSets>?
 <correlationSet name="ncname"
 properties="qname-list"/>+
 </correlationSets>
 <correlations>?
 <correlation set="ncname"
 initiate="yes|join|no"?/>+
 </correlations>
 <fromPart part="ncname" toVariable="ncname"/>*
 activity
 </onEvent>
 <onAlarm>*
 (<for expressionLanguage="anyURI"?>duration-expr</for> |
 <until expressionLanguage="anyURI"?>deadline-expr</until>)?
 <repeatEvery expressionLanguage="anyURI"?>
 duration-expr
 </repeatEvery>?
 activity
 </onAlarm>
</eventHandlers>

The portType attribute on <onEvent> is optional. If the portType attribute is included for
readability, the value of the portType attribute MUST match the portType value implied
by the combination of the partnerLink specified and the associated role. All instances of
onEvent MUST use either the messageType or element attribute but not both.

It is important to emphasize that event handlers are considered a part of the normal
behavior of the scope, unlike fault and compensation handlers.

13.5.1. Message Events

The onEvent tag indicates that the specified event waits for a message to arrive. The
interpretation of this tag and its attributes is very similar to a receive activity. The
partnerLink attribute defines the partner link that contains the myRole endpoint reference
on which the request is expected to arrive; the <partnerLink> must be defined in the
<partnerLinks> section. As with <receive> the partnerRole endpoint reference is ignored
for purposes of executing the receive semantics of an event handler. The portType and
operation attributes define the appropriate port type and operation that is invoked by the
partner in order to cause the event.

The variable attribute identifies a variable local to the eventHandler that will contain the
message received from the partner. The messageType attribute specifies the type of the
variable by referencing a message type definition using its QName. The type of the
variable (as specified by the messageType attribute) must be the same as the type of the
input message defined by operation referenced by the operation attribute. Optionally the
messageType attribute may be omitted and instead the element attribute substituted if the
message to be received has a single part and that part is defined with an element type that
matches the element type referenced by the element attribute. The variable and
messageType/element attribute constitute the declaration of a variable of that name and
type within an implicit scope associated with the event handler. If an element attribute is
used then the binding of the incoming message to the variable declared in the onEvent
handler occurs as specified for the receive activity in section 11.4.

An alternative to the variable attribute are <toPart> elements. The syntax and semantics
of the <toPart> elements as used on the onEvent tag are the same as specified in section
11.3 for the invoke activity. This includes the restriction that if <toPart> elements are
used on an onEvent tag then the variable attribute MUST NOT be used on the same tag.

Upon receipt of the input message the event handler assigns the input message to the
variable before proceeding to perform the event handler activity. Since the variable is
declared within a scope associated with the event handler, each instance of the event
handler (whether executed serially or concurrently relative to other instances) contains a
private copy of the variable, which is not shared with other instances.

Note that the operation specified in the onEvent handler may be either an asynchronous
(oneway) or a synchronous (request/response) operation. In the latter case the event
handler is expected to use a reply activity to send the response. The usage and
interpretation of correlation is exactly the same as for receive activities with the addition
that it is possible to declare correlation sets inline to an onEvent handler instance. These
inline correlation sets can then be used as part of onEvent’s receive. In effect something
like a virtual scope is declared around the onEvent handler which contains a local
variable declaration for the variable used to receive the incoming message, a local
correlation set declaration for any correlation sets declared inline to the onEvent handler
and a sequence with a receive, reflecting the receive parameters of the onEvent handler,
and finally the actual activity contained within the onEvent handler declaration. However

this virtual scope is fundamentally different than a real scope in that it has neither fault
nor compensation handlers, default or otherwise, it also has no name. The scope exists,
such as it can be said to exist at all given that it is only intended as a model to understand
the onEvent handler's variable behavior and not as an actual entity, only to provide
lexical scoping for the local message variable and inline correlation sets. For example:

<scope name="S1">
 <compensationHandler>
 <sequence>
 <compensate scope="S2"/>
 </sequence>
 </compensationHandler>
 <eventHandlers>
 <onEvent partnerLink=”travelAgency” portType=”ns:agent”
 operation=”travelUpdate” messageType=”ns:travelStatsUpdate”
 variable=”travelUpdate”>
 <correlationSets>
 <correlationSet name=”updateCode”
 properties=”ns:updateCode”/>
 </correlationSets>
 <correlations>
 <correlation set=”travelCode” initialize=”no”/>
 <correlation set=”updateCode” initialize=”yes”/>
 </correlations>
 <scope name="S2">
 ...
 </scope>
 </eventHandlers>
 ...
</scope>

In this example a process is managing travel reservations for a customer and needs to
handle reservation updates from the travel booking system. The onEvent handler is used
to receive the update messages which are correlated using the travelCode property, which
is defined and initialized elsewhere in the process. However sometimes the event handler
needs to contact the travel booking system to follow up on an update message. To do that
the outgoing message needs both the value in the travelCode property but also the value
in an update code included in the travel update message. This is where the updateCode
correlation set, declared locally to the onEvent handler comes in. When the update
message is received the updateCode correlation set is initialized and its value made
available only to the onEvent handler instance. Note that the compensation handler on
scope S1 directly invokes the compensation handler on scope S2 defined inside the
onEvent handler. This invocation is legal because the 'notional' virtual scope described
above to handle lexical scoping issues for the onEvent handler does not exist for purposes
of determining which scopes are considered a child of the parent scope S1. Therefore,
from the perspective of the compensation handler scope S2 is a child of scope S1. Note
however that if S2's compensation handler was invoked the variable used to receive the
message for the onEvent handler as well as any in-line correlation sets would be visible
as the 'notional' virtual scope does have existence for the purpose of defining the lexical
scope for the onEvent handler's variables.

The semantics of the onEvent event is identical to a receive activity regarding the
optional nature of the variable attribute, the handling of race conditions, and the
constraint regarding simultaneous enablement of conflicting receive actions. For the last
case, recall that the semantics of a process in which two or more receive actions for the
same partner link, portType, operation and correlation set(s) may be simultaneously
enabled is undefined (see Providing Web Service Operations). Enablement of each
onEvent event handler is equivalent to enablement of the corresponding receive activity
for the purposes of this constraint.

The optional messageExchange attribute is used to associate an <onEvent> activity with
a <reply> activity. (For details, see Providing Web Service Operations).

As specified in the grammar above, event handlers for message events are not permitted
to carry the createInstance attribute. A business process instance cannot be created by a
message event. This is because the event handler cannot be enabled until the instance is
created.

When the message constituting an event arrives, the activity specified in the
corresponding handler is carried out. The key point to understand is that the business
process is enabled to receive such messages concurrently with the normal activity of the
scope to which the event handler is attached. This allows such events to occur (or not
occur) at arbitrary times and an arbitrary number of times while the corresponding scope
(which may be the entire business process instance) is active.

The following example shows the usage of an event handler to support the termination of
a process instance through an external message. Alternatively, the event handler could
throw a fault to cause the ongoing work to be undone and compensated.

<process name=“orderCar”>
 ...
 <eventHandlers>
 <onEvent partnerLink=“buyer”
 portType=“ns:car”
 operation=“cancel”
 messageType=“ns:cancelOrder”
 variable=“cancelDetails”>
 <exit/>
 </onEvent>
 ...
 </eventHandlers>
 ...
</process>

In this example, if the buyer invokes the cancel operation on the port type car, the exit
activity is carried out, which results in immediate termination of the process instance
without the ongoing work being undone and compensated. And this event is attached to
the global process scope and is therefore available during the lifetime of the entire
business process instance.

13.5.2. Alarm events

The onAlarm tag marks a timeout event. The for expression specifies the duration after
which the event will be signaled. The clock for the duration starts at the point in time
when the associated scope starts. The alternative until expression specifies the specific
point in time when the alarm will be fired. Only one of these two expressions may occur
in any onAlarm event. The third alternate repeatEvery expression also specifies a
duration. When the repeatEvery expression is specified, the alarm will be fired
repeatedly once each time the duration period expires, while the associate scope is active.
The repeatEvery expression may be specified on its own or with either the for or the
until expression. If the repeatEvery expression is specified alone, the clock for the
very first duration starts at the point in time when the associated scope starts. If the
repeatEvery is expression is specified with either the for or the until expression, the
first alarm is not fired until the time specified in the for or until expression expires;
thereafter it is fired repeatedly at the interval specified by the repeatEvery expression.

13.5.3. Enablement of Events

The event handlers associated with a scope are enabled when the associated scope starts .

If the event handler is associated with the global process scope, the event handler is
enabled as soon as the process instance is created. The process instance is created when
the first receive activity that provides for the creation of a process instance (indicated
via the createInstance attribute set to "yes") has received and processed the
corresponding message. This allows the alarm time for a global alarm event to be
specified using the data provided within the message that creates a process instance, as
shown in the following example:

<wsdl:definitions
 targetNamespace="http://www.example.com/wsdl/exmple"
 ...>
 <wsdl:message name=“orderDetails”>
 <part name=“processDuration” type=“xsd:duration”/>
 </wsdl:message>
</wsdl:definitions>

The message type above is used in

<process name=“orderCar”
 xmlns:def="http://www.example.com/wsdl/example" ...>
 ...
 <eventHandlers>
 <onAlarm>
 <for>$orderDetails.processDuration</for>
 ...
 </onAlarm>
 ...
 </eventHandlers>
 ...

 <variable name="orderDetails" messageType="def:orderDetails"/>
 </variable>
 ...
 <receive name=“getOrder”
 partnerLink=“buyer”
 portType=“car”
 operation=“order”
 variable=“orderDetails”
 createInstance=“yes”/>

</process>

The onAlarm tag specifies a timer event that is fired when the duration specified in the
processDuration field in the orderDetails variable is exceeded. The value of the field
is provided via the getOrder activity that receives message containing the order details
and causes the creation of a process instance for that order.

13.5.4. Processing of Events

13.5.4.1. ALARM EVENTS

The counting of time for an alarm event with a duration starts when the enclosing event
handler is activated. An alarm event goes off when the specified time or duration has
been reached. Except for the repeatEvery alarm, an alarm event is carried out at most
once while the corresponding scope is active; the event is disabled for the rest of the
activity of the corresponding scope after it has occurred and the specified processing has
been carried out. The repeatEvery alarm event is created repeatedly each time the
duration expires, while the associated scope is active.

13.5.4.2. MESSAGE EVENTS

A message event occurs when the appropriate message is received on the specified
partner link using the specified port type and operation. When such an event occurs, the
corresponding activity is carried out. However, the event remains enabled, even for
concurrent use. Thus a particular message event can occur multiple times while the
corresponding scope is active. See below for concurrency considerations.

13.5.5. Disablement of Events

All event handlers associated with a scope are disabled when the normal processing of
the scope is complete. The already dispatched event handlers are allowed to complete.
The completion of the scope as a whole is delayed until all active event handlers have
completed.

13.5.6. Fault Handling Considerations

As we stated above, event handlers are considered a part of the normal processing of the
scope, i.e., active event handlers are concurrent activities within the scope. Faults within
event handlers are therefore faults within the associated scope. Moreover, if a fault occurs

within a scope, the behavior of the fault handler begins by implicitly terminating all
activities directly enclosed within the scope that are currently active. This includes the
activities within currently active event handlers.

13.5.7. Concurrency Considerations

Multiple onEvent and onAlarm events can occur concurrently and they are treated as
concurrent activities even if they are request/response events representing the same
partner link, port type, operation and correlation sets. The constraint that there can be at
most one outstanding synchronous request on a given partner link at a given port type and
operation applies here as well (see Providing Web Service Operations). Concurrent
invocation of event handlers necessarily relies heavily on the use of isolated scoping to
ensure consistent access to shared variables.

Note that, unlike onAlarm event handlers, individual onEvent event handlers are
permitted to have several simultaneously active instances. A private copy of all process
data and control behavior defined within an event handler is provided to each instance of
an event handler. This includes the behavior of links defined within an event handler.
Each instance of the event handler must independently evaluate the status of the link as
needed.

13.6. Isolated Scopes

When the isolated attribute is set to "yes", the scope provides concurrency control in
governing access to shared variables. Such a scope is called a isolated scope. Isolated
scopes must not be nested. A scope marked with isolated="yes" must not contain other
isolated scopes, but may contain scopes that are not marked as isolated. In the latter case,
access to shared variables from within such enclosed scopes is controlled by the
enclosing isolated scope.

Suppose two concurrent isolated scopes, S1 and S2, access a common set of variables
(external to them) for read or write operations. The semantics of isolated scopes ensure
that the results of their behavior would be no different if all conflicting activities
(read/write and write/write activities) on any shared variable were conceptually reordered
in such a way that either all activities within S1 are completed before those in S2 or vice
versa. The actual mechanisms used to ensure this are implementation dependent.

Note that isolation of variable access cannot lead to internal deadlock in a BPEL process
instance. The reason being that, conceptually, an isolated scope is not started until it can
gain sufficiently exclusive access to all the non-local variables it needs.

The use of error handling features in an isolated scope is governed by the following rules:

• The fault handlers for an isolated scope share the isolation domain of the
associated scope, that is, in case a fault occurs in an isolated scope, the behavior
of the fault handler is considered part of the isolated behavior (in commonly used

implementation terms, locks are not released when making the transition to the
fault handler). This is because the repair of the fault needs a shared isolation
environment to provide predictable behavior.

• The compensation handler for an isolated scope does not share the isolation
domain of the associated scope.

For an isolated scope with a compensation handler, the creation of the scope snapshot for
compensation is part of the isolated behavior. In other words, it is always possible to
reorder behavior steps as if the scope had sufficiently exclusive access to the shared
variables all the way to completion, including the creation of the scope snapshot. Note
that the isolation semantics does not extend to the compensation handler. It is useful to
note that the semantics of isolated scopes are very similar to the standard isolation level
"serializable" used in database transactions.

Finally, if an isolated scope has an event handler associated with it, no scope within the
body of the event handler can be isolated. If on the other hand a non-isolated scope has an
event handler associated with it, a scope in the body of the event handler can be isolated.

14. Extensions for Executable Processes
In this section we define the essential extensions required for the use of WS-BPEL to
define executable processes. The extensions are grouped by the core concepts to which
they apply.

[Editor Note: The old section “14.1 Expressions” has been merged into section “9.1/9.3
Expressions”.]

14.1. Variables

These extensions apply to the Variables feature of WS-BPEL.

An attempt during process execution to use a variable or in the case of a message type
variable a part of a variable before it is initialized MUST result in the standard
bpws:uninitializedVariable fault.

14.2. Assignment

The from-spec and to-spec MUST yield a node-set that contains exactly one node. If the
from-spec or to-spec selects zero nodes or more than one node during execution, then the
standard fault bpws:selectionFailure MUST be thrown by a compliant implementation.

If any of the matching constraints defined in the section Type Compatibility in
Assignment is violated during execution, the standard fault
bpws:mismatchedAssignmentFailure MUST be thrown by a compliant implementation.

The assign activity is treated as if it were atomic. This means that the assign activity
MUST be executed as if, for the duration of its execution, it was the only activity in the
process being executed. The mechanisms used to implement the previous requirement are
implementation dependent.If there is any fault during the execution of an assignment
activity, the destination variables are left unchanged as they were at the start of the
activity. This applies regardless of the number of assignment elements within the overall
assignment activity.

14.3. Correlation

After a correlation set is initiated, the values of the properties for a correlation set must
be identical for all the messages in all the operations that carry the correlation set and
occur within the corresponding scope until its completion. This correlation consistency
constraint must be observed in all cases of initiate values. The legal values of the
initiate attribute are: "yes", "join", "no", where "no" is the default value.

• When the initiate attribute is set to "yes", the related activity MUST attempt to
initiate the correlation set.

o If the correlation set is already initiated and the initiate attribute is set
to "yes", the standard fault bpws:correlationViolation MUST be
thrown by a compliant implementation.

• When the initiate attribute is set to "join", the related activity MUST attempt
to initiate the correlation set, if the correlation set is NOT initiated yet.

o If the correlation set is already initiated and the initiate attribute is set
to "join", the correlation consistency constraint MUST be observed. If
the constraint is violated, the standard fault bpws:correlationViolation
MUST be thrown by a compliant implementation.

• When the initiate attribute is set to "no", the related activity MUST NOT
attempt to initiate the correlation set.

o If an activity with the initiate attribute set to "no" attempts to use a
correlation set that has not been previously initiated, the standard fault
bpws:correlationViolation MUST be thrown by a compliant
implementation.

o If the correlation set is already initiated and the initiate attribute is set
to "no", the correlation consistency constraint MUST to be observed. If
the constraint is violated, the standard fault bpws:correlationViolation
MUST be thrown by a compliant implementation.

If multiple correlation sets are used in a message activity, then the consistency constraint
MUST be observed for all correlation sets used. If one of initiated correlation set does

NOT match with the message, the standard fault bpws:correlationViolation MUST
be thrown by a compliant implementation.

14.4. Web Service Operations

The first extension defines a standard fault for the case where multiple conflicting receive
activities create ambiguity about message delivery.

If during the execution of a business process instance, two or more receive activities for
the same partner link, portType, operation and correlation set(s) are in fact
simultaneously enabled, then the standard fault bpws:conflictingReceive MUST be
thrown by a compliant implementation.

The second extension defines a standard fault for the case where multiple outstanding
synchronous requests create an ambiguity about response correlation.

If more than one outstanding synchronous request on a specific partner link for a
particular portType, operation and correlation set(s) is outstanding simultaneously during
the execution of a business process instance, then the standard fault
bpws:conflictingRequest MUST be thrown by a compliant implementation. Note that
this is semantically different from the bpws:conflictingReceive, because it is possible
to create the conflictingRequest by consecutively receiving the same request on a
specific partner link for a particular portType, operation and correlation set(s). If a reply
activity is being carried out during the execution of a business process instance and no
synchronous request is outstanding for the specified partnerLink, portType, operation and
correlation set(s), then the standard fault bpws:invalidReply MUST be thrown by a
compliant implementation.

The third extension specifies that the inputVariable attribute for invoke and the
variable attribute for receive and reply activities are not optional in executable
processes. In addition, the outputVariable attribute is not optional for invokewhen the
operation concerned is a request/response operation.

The fourth extension concerns incompleted inbound requests. A receive activity
for an inbound request/response operation is said to be open if that activity has
been performed and no corresponding reply activity has been performed. If the
process instance reaches the end of its behavior, and one or more receive activities
remain open, then the standard fault bpws:missingReply MUST be thrown by a
compliant implementation.

14.5. Terminating a Service Instance

The exit activity can be used to immediately terminate the behavior of a business
process instance within which the exit activity is performed. All currently running

activities MUST be terminated as soon as possible without any termination handling,
fault handling, or compensation behavior.

<exit standard-attributes>
 standard-elements
</exit>

14.6. Compensation

If an installed compensation handler is invoked more than once during the execution of a
process instance, a compliant implementation MUST throw the standard
bpws:repeatedCompensation fault.

14.7. Event Handlers

This extension explains the relationship of onEvent event handlers to the standard fault
extension in Web Service Operations for multiple conflicting receive activities create
ambiguity about message delivery Enablement of an onEvent event handler is equivalent
to enablement of a receive activity for the semantics of the occurrence of the
bpws:conflictingReceiveFault fault (see Providing Web Service Operations).

The variable (inputVariable) attribute of onEvent handlers is not optional. In addition,
the outputVariable attribute is not optional for invoke when the operation concerned is
a request/response operation.

15. Extensions for Business Protocols
There are two extensions for the business protocol usage pattern.

15.1. Variables

This extension clarifies the rules regarding variable initialization in abstract processes.
Unlike executable processes, variables in abstract processes do not need to be fully
initialized before being used since some computation is left implicit in abstract processes.
However, since message properties are meant to represent "transparent," i.e., protocol
relevant data, WS-BPEL requires that all message properties in a message must be
initialized before the message can be used, for example before the variable of the
message is used as the inputVariable in a Web Service operation invocation.

In many cases, the level of abstraction appropriate in abstract processes makes it
unnecessary to use message variables in web service interaction activities, when the
intent is to simply constrain the sequencing of such activities, and the actual message data
is not relevant. To simplify these common cases it is permissible, in abstract processes, to
omit the variable reference attributes from the <invoke/>, <receive/>, and <reply/>
activities. The meaning of such an omission must be stated clearly. If no variable is

specified for an incoming message, then the abstract process may not refer subsequently
to the message or its properties (if any). If the variable reference is omitted for an
outgoing message, then any properties of the message are considered to have been
initialized through opaque assignment, as described in the following section.

When variable references are omitted, correlation set references may be interpreted as
follows:

• For an incoming message which initializes a correlation set (initiator case), the
correlation set is deemed to be initialized.

• For an outgoing message which initializes a correlation set (initiator case), the
correlation tokens (which are message properties) are initialized through implicit
opaque assignment as described above.

• For an outgoing message which references but does not initialize a correlation set
(follower case), the proper initialization of the message properties is implicit. In
this case, the already initialized correlation set itself provides the token values for
the outgoing message.

Note that it is not possible to mix the variable-using and variable-less web service
interaction styles freely. If a correlation set is initialized by rule 1 or 2 above, then
outgoing messages in the same correlated exchange must also refrain from referencing a
message variable. This restriction applies because it is not possible to initialize the
properties of the outgoing messages from the correlation set alone.

15.2. Assignment

This extension adds a special form of assignment to abstract processes to permit the
modeling of the non-deterministic effects of private computation on external protocol
behavior.

Abstract processes add a sixth from-spec variant to allow an opaque value to be assigned
based on non-deterministic choice, yielding the form:

<from opaque="yes">

The value of this form in the interpretation of assignment is chosen nondeterministically
from the XSD value space of the target. It can only be used in assignments where the
"tospec" refers to a variable property. Two distinct use cases exist for opaque assignment.
If the value space of the target is suitably constrained, then opaque assignment is a useful
way to describe behavioral alternatives where the mechanism for choosing the alternative
is private or otherwise external to the process specification. For this use case, the XSD
type of the target property must be one of the following:

• xsd:boolean
• A type derived from xsd:string and restricted by enumeration

• A type derived from any XSD integral numeric type restricted by either
enumeration or a combination of minExclusive or minInclusive and
maxExclusive or maxInclusive

A second use cases exists for target properties which don’t meet these requirements.
When the target’s value space is not constrained, it is useful to think of opaque
assignment as providing a unique identifier. Semantically, each opaque assignment of
this form should be considered to generate a unique value similar to a GUID. This style
of opaque assignment is most useful to model the initialization of properties used for
correlation.

A process that uses assignment of opaque values is clearly not executable in the normal
sense. However, it is feasible to emulate possible execution traces using assignment of
random values of the correct type.

16. Examples
16.1. Shipping Service

This example presents the use of a WS-BPEL abstract process to describe a rudimentary
shipping service. This service handles the shipment of orders. From the service point of
view, orders are composed of a number of items. The shipping service offers two types of
shipment: shipments where the items are held and shipped together and shipment where
the items are shipped piecemeal until all of the order is accounted for.

16.1.1. Service Description

The context for the shipping service is a two-party interaction between a customer and
the service. This is modeled in the following partnerLinkType definition:

<plnk:partnerLinkType name="shippingLT">
 <plnk:role name="shippingService"
 portType ="shippingServicePT"/>

 <plnk:role name="shippingServiceCustomer">
 portType ="shippingServiceCustomerPT"/>

</plnk:partnerLinkType>

The corresponding message and portType definitions are as follows:

<wsdl:definitions
 targetNameSpace="http://ship.org/wsdl/shipping"
 xmlns:ship= ...>

 <! -- import ship schema -- >
 <message name="shippingRequestMsg">
 <part name="shipOrder" type="ship:shipOrder"/>

 </message>
 <message name="shippingNoticeMsg">
 <part name="shipNotice" type="ship:shipNotice"/>
 </message>
 <portType name="shippingServicePT">
 <operation name="shippingRequest">
 <input message="shippingRequestMsg"/>
 </operation>
 </portType>
 <portType name="shippingServiceCustomerPT">
 <operation name="shippingNotice">
 <input message="shippingNoticeMsg"/>
 </operation>
 </portType>
</wsdl:definitions>

16.1.2. Message Properties

The properties relevant to the service behavior are:

• The ship order ID that is used to correlate the ship notice(s) with the ship order
(shipOrderID)

• Whether the order is to be shipped complete or not (shipComplete)
• The total number of items in the order (itemsTotal)
• The number of items referred to in a ship notice so that, when partial shipments

are acceptable, we can use this, along with itemsTotal, to track the overall
fulfillment of the shipment (itemsCount)

Here are the definitions for the properties and their aliases:

<wsdl:definitions
 targetNamespace="http://example.com/shipProps/"
 xmlns:sns="http://ship.org/wsdl/shipping"
 xmlns:ship = “http://example.com/ship.xsd”>

 <!-- types used in abstract processes are required to be finite
domains.
 The itemCountType is restricted by range -->
 <wsdl:types>
 <xsd:schema targetNamespace =“http://example.com/ship.xsd”>
 <xsd:simpleType name="itemCountType">
 <xsd:restriction base="xsd:int">
 <xsd:minInclusive value="1"/>
 <xsd:maxInclusive value="50"/>
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:schema>
 </wsdl:types>

 <bpws:property name="shipOrderID" type="xsd:int"/>
 <bpws:property name="shipComplete" type="xsd:boolean"/>
 <bpws:property name="itemsTotal" type="ship:itemCountType"/>
 <bpws:property name="itemsCount" type="ship:itemCountType"/>

 <bpws:property name="numItemsShipped"
type="ship:itemCountType"/>

<bpws:propertyAlias propertyName="tns:shipOrderID"
 messageType="sns:shippingRequestMsg"
 part="shipOrder">
 <query>
 ShipOrderRequestHeader/shipOrderID
 </query>
</bpws:propertyAlias>
<bpws:propertyAlias propertyName="tns:shipOrderID"
 messageType="sns:shippingNoticeMsg"
 part="shipNotice">
 <query>
 ShipNoticeHeader/shipOrderID
 </query>
</bpws:propertyAlias>
<bpws:propertyAlias propertyName="tns:shipComplete"
 messageType="sns:shippingRequestMsg"
 part="shipOrder">
 <query>
 ShipOrderRequestHeader/shipComplete
 </query>
</bpws:propertyAlias>
<bpws:propertyAlias propertyName="tns:itemsTotal"
 messageType="sns:shippingRequestMsg"
 part="shipOrder">
 <query>
 ShipOrderRequestHeader/itemsTotal
 </query>
</bpws:propertyAlias>
<bpws:propertyAlias propertyName="tns:itemsCount"
 messageType="sns:shippingNoticeMsg"
 part="shipNotice">
 <query>
 ShipNoticeHeader/itemsCount
 </query>
</bpws:propertyAlias>
</wsdl:definitions>

16.1.3. Process

Next is the process definition. For brevity, the abstract process definition does not include,
for example, the handling of error conditions (business or otherwise) that a complete
description would account for. The rough outline of the process is as follows:

receive shipOrder
if
 condition shipComplete
 send shipNotice
 else
 itemsShipped := 0
 while itemsShipped < itemsTotal
 itemsCount := opaque // non-deterministic assignment
 // corresponding e.g. to

 // internal interaction with
 // back-end system
 send shipNotice
 itemsShipped = itemsShipped + itemsCount

And here is the more complete version:

<process name="shippingService"
 targetNamespace="http://acme.com/shipping"
 xmlns="http://schemas.xmlsoap.org/ws/2004/03/business-process/"
 xmlns:sns="http://ship.org/wsdl/shipping"
 xmlns:props="http://example.com/shipProps/"
 abstractProcess="yes">

<partnerLinks>
 <partnerLink name="customer"
 partnerLinkType="sns:shippingLT"
 partnerRole="shippingServiceCustomer"
 myRole="shippingService"/>
</partnerLinks>

<variables>
 <variable name="shipRequest"
 messageType="sns:shippingRequestMsg"/>
 <variable name="shipNotice"
 messageType="sns:shippingNoticeMsg"/>
 <variable name="itemsShipped"
 type="props:itemCountType"/>
</variables>

<correlationSets>
 <correlationSet name="shipOrder"
 properties="props:shipOrderID"/>
</correlationSets>

<sequence>
 <receive partnerLink="customer"
 portType="sns:shippingServicePT"
 operation="shippingRequest"
 variable="shipRequest">
 <correlations>
 <correlation set="shipOrder" initiate="yes"/>
 </correlations>
 </receive>
 <if>

 <condition>
bpws:getVariableProperty('shipRequest','props:shipComplete')
 </condition>
 <then>
 <sequence>
 <assign>
 <copy>
 <from variable="shipRequest"
property="props:itemsCount"/>
 <to variable="shipNotice"

property="props:itemsCount"/>
 </copy>
 </assign>
 <invoke partnerLink="customer"
 portType="sns:shippingServiceCustomerPT"
 operation="shippingNotice"
 inputVariable="shipNotice">
 <correlations>
 <correlation set="shipOrder" pattern="out"/>
 </correlations>
 </invoke>
 </sequence>
 </then>
 <else>
 <sequence>
 <assign>
 <copy>
 <from>0</from>
 <to>$itemsShipped</to>
 </copy>
 </assign>
 <while>
 <condition>
 $itemsShipped <
 bpws:getVariableProperty('shipRequest','props:itemsTotal')
 </condition>
 <sequence>
 <assign>
 <copy>
 <from opaque="yes"/>
 <to variable="shipNotice"
property="props:itemsCount"/>
 </copy>
 </assign>
 <invoke partnerLink="customer"
 portType="sns:shippingServiceCustomerPT"
 operation="shippingNotice"
 inputVariable="shipNotice">
 <correlations>
 <correlation set="shipOrder"
pattern="out"/>
 </correlations>
 </invoke>
 <assign>
 <copy>
 <from>
 $itemsShipped
 +
 bpws:getVariableProperty('shipNotice',
 'props:itemsCount')
 </from>
 <to>$itemsShipped</to>
 </copy>
 </assign>
 </sequence>
 </while>
 </sequence>

 </else>
 </if>
</sequence>
</process>

16.2. Loan Approval

This example considers a simple loan approval Web Service that provides a port where
customers can send their requests for loans. Customers of the service send their loan
requests, including personal information and amount being requested. Using this
information, the loan service runs a simple process that results in either a "loan approved"
message or a "loan rejected" message. The approval decision can be reached in two
different ways, depending on the amount requested and the risk associated with the
requester. For low amounts (less than $10,000) and low-risk individuals, approval is
automatic. For high amounts or medium and high-risk individuals, each credit request
needs to be studied in greater detail. Thus, to process each request, the loan service uses
the functionality provided by two other services. In the streamlined processing available
for lowamount loans, a "risk assessment" service is used to obtain a quick evaluation of
the risk associated with the requesting individual. A full-fledged "loan approval" service
(possibly requiring direct involvement of a loan expert) is used to obtain in-depth
assessments of requests when the streamlined approval process does not apply.

16.2.1. Service Description

The WSDL portType supported by this service is shown below ("loanServicePT"
portType). It is assumed that an independent "loan.org" consortium has provided
definitions of the loan service portType as well as the risk assessment and in-depth loan
approval service, so all the required WSDL definitions appear in the same WSDL
document. In particular, the portTypes for the Web Services providing the risk
assessment and approval functions, and all the required partner link types that relate to
the use of these portTypes, are also defined there.

<definitions
 targetNamespace="http://loans.org/wsdl/loan-approval"
 xmlns="http://schemas.xmlsoap.org/wsdl/"
 xmlns:lns=http://loans.org/wsdl/loan-approval
 xmlns:ens = “http://loans.org/xsd/error-messages” >

 <! -- import schemas -- >
 <message name="creditInformationMessage">
 <part name="firstName" type="xsd:string"/>
 <part name="name" type="xsd:string"/>
 <part name="amount" type="xsd:integer"/>
 </message>

 <message name="approvalMessage">
 <part name="accept" type="xsd:string"/>
 </message>

 <message name="riskAssessmentMessage">

 <part name="level" type="xsd:string"/>
 </message>
 <message name="errorMessage">
 <part name="errorCode" element ="ens:integer"/>
 </message>

 <portType name="loanServicePT">
 <operation name="request">
 <input message="lns:creditInformationMessage"/>
 <output message="lns:approvalMessage"/>
 <fault name="unableToHandleRequest"
 message="lns:errorMessage"/>
 </operation>
 </portType>

 <portType name="riskAssessmentPT">
 <operation name="check">
 <input message="lns:creditInformationMessage"/>
 <output message="lns:riskAssessmentMessage"/>
 <fault name="loanProcessFault"
 message="lns:errorMessage"/>
 </operation>
 </portType>

 <portType name="loanApprovalPT">
 <operation name="approve">
 <input message="lns:creditInformationMessage"/>
 <output message="lns:approvalMessage"/>
 <fault name="loanProcessFault"
 message="lns:errorMessage"/>
 </operation>
 </portType>

 <plnk:partnerLinkType name="loanPartnerLinkType">
 <plnk:role name="loanService"
 portType="lns:loanServicePT"/>

 </plnk:partnerLinkType>

 <plnk:partnerLinkType name="loanApprovalLinkType">
 <plnk:role name="approver"
 portType="lns:loanApprovalPT"/>

 </plnk:partnerLinkType>

 <plnk:partnerLinkType name="riskAssessmentLinkType">
 <plnk:role name="assessor"
 portType="lns:riskAssessmentPT"/>

 </plnk:partnerLinkType>
</definitions>

16.2.2. Process

In the business process defined below, the interaction with the customer is represented by
the initial <receive> and the matching <reply> activities. The use of risk assessment and

loan approval services is represented by <invoke> elements. All these activities are
contained within a <flow>, and their (potentially concurrent) behavior is staged
according to the dependencies expressed by corresponding <link> elements. Note that the
transition conditions attached to the <source> elements of the links determine which links
get activated. Dead path elimination is enabled by the value "yes" taken by the
"suppressJoinFailure" attribute on the <process> element. This implies that as certain
links are set false the consequences of this decision can be propagated and the excecution
of certain activities can be skipped.

Because the operations invoked can return a fault of type "loanProcessFault", a fault
handler is provided. When a fault occurs, control is transferred to the fault handler, where
a <reply> element is used to return a fault response of type "unableToHandleRequest" to
the loan requester.

<process name="loanApprovalProcess"
 targetNamespace="http://acme.com/loanprocessing"
 xmlns="http://schemas.xmlsoap.org/ws/2004/03/business-process/"
 xmlns:lns="http://loans.org/wsdl/loan-approval"
 suppressJoinFailure="yes">

 <partnerLinks>
 <partnerLink name="customer"
 partnerLinkType="lns:loanPartnerLinkType"
 myRole="loanService"/>
 <partnerLink name="approver"
 partnerLinkType="lns:loanApprovalLinkType"
 partnerRole="approver"/>
 <partnerLink name="assessor"
 partnerLinkType="lns:riskAssessmentLinkType"
 partnerRole="assessor"/>
 </partnerLinks>
 <variables>
 <variable name="request"
 messageType="lns:creditInformationMessage"/>
 <variable name="risk"
 messageType="lns:riskAssessmentMessage"/>
 <variable name="approval"
 messageType="lns:approvalMessage"/>
 <variable name="error"
 messageType="lns:errorMessage"/>
 </variables>

 <faultHandlers>
 <catch faultName="lns:loanProcessFault"
 faultVariable="error"
 faultMessageType="lns:errorMessage">
 <reply partnerLink="customer"
 portType="lns:loanServicePT"
 operation="request"
 variable="error"
 faultName="unableToHandleRequest"/>
 </catch>
 </faultHandlers>

 <flow>
 <links>
 <link name="receive-to-assess"/>
 <link name="receive-to-approval"/>
 <link name="approval-to-reply"/>
 <link name="assess-to-setMessage"/>
 <link name="setMessage-to-reply"/>
 <link name="assess-to-approval"/>
 </links>

 <receive partnerLink="customer"
 portType="lns:loanServicePT"
 operation="request"
 variable="request" createInstance="yes">
 <sources>
 <source linkName="receive-to-assess">
 <transitionCondition>
 $request.amount < 10000
 </transitionCondition>
 </source>
 <source linkName="receive-to-approval">
 <transitionCondition>
 $request.amount >=10000
 </transitionCondition>
 </source>
 </sources>

 </receive>

 <invoke partnerLink="assessor"
 portType="lns:riskAssessmentPT"
 operation="check"
 inputVariable="request"
 outputVariable="risk">
 <targets>
 <target linkName="receive-to-assess"/>
 </targets>
 <sources>
 <source linkName="assess-to-setMessage">
 <transitionCondition>
 $risk.level='low'
 </transitionCondition>
 </source>
 <source linkName="assess-to-approval">
 <transitionCondition>
 $risk.level!='low'
 </transitionCondition>
 </source>
 </sources>
 </invoke>

 <assign>
 <targets>
 <target linkName="assess-to-setMessage"/>
 </targets>
 <sources>

 <source linkName="setMessage-to-reply"/>>
 </sources>

 <copy>
 <from><expression>'yes'</expression></from>
 <to variable="approval" part="accept"/>
 </copy>
 </assign>

 <invoke partnerLink="approver"
 portType="lns:loanApprovalPT"
 operation="approve"
 inputVariable="request"
 outputVariable="approval">
 <targets>
 <target linkName="receive-to-approval"/>
 <target linkName="assess-to-approval"/>
 </targets>
 <sources>
 <source linkName="approval-to-reply" />
 </sources>
 </invoke>

 <reply partnerLink="customer"
 portType="lns:loanServicePT"
 operation="request"
 variable="approval">
 <targets>
 <target linkName="setMessage-to-reply"/>
 <target linkName="approval-to-reply"/>
 </targets>
 </reply>
 </flow>
</process>

16.3. Multiple Start Activities

A process can have multiple activities that create a process instance. An example of this
situation is a (simplified) business process run by an auction house. The purpose of the
business process is to collect information from the buyer and the seller of a particular
auction, report the appropriate auction results to some auction registration service, and
then send the registration result back to the seller and the buyer. Thus the business
process starts with two activities, one for receiving the seller information and one for
receiving the buyer information. Because a particular auction is uniquely identified by an
auction ID, the seller and the buyer need to provide this information when sending in
their data. The sequence in which the seller and buyer requests arrive at the auction house
is random. Thus, when such a request comes in, it needs to be checked whether a
business process instance exists already or not. If not, a business process instance is
created. After both requests have been received, the auction registration service is
invoked. Because the invocation is done asynchronously, the auction house passes the
auction ID to the auction registration service. The auction registration service returns this
auction ID in its answer so that the auction house can locate the proper business process

instance. Because there are many buyers and sellers, each of them needs to provide their
endpoint references, so that the auction service can respond properly. In addition, the
auction house needs to provide its own endpoint reference to the auction registration
service so that the auction registration service can send the response back to the auction
house.

16.3.1. Service Description

The auction service offers two port types, called sellerPT and buyerPT, with appropriate
operations for accepting the data provided by the seller and the buyer. Because the
processing time of the business process is lengthy, the auction service responds to the
seller and buyer through appropriate port types, sellerAnswerPT and buyerAnswerPT.
These portTypes are properly combined into two partner link types, one for the seller
called sellerAuctionHouseLT and one for the buyer called buyerAuctionHouseLT.

The auction service needs two port types, called auctionRegistrationPT and
auctionRegistrationAnswerPT, that provide for the invocation of the auction registration
service. The port types are part of the appropriate partner link type
auctionHouseAuctionRegistrationServiceLT.

<definitions
 targetNamespace="http://www.auction.com/wsdl/auctionService"
 xmlns:tns="http://www.auction.com/wsdl/auctionService"
 xmlns="http://schemas.xmlsoap.org/wsdl/">

<!-- Messages for communication with the seller -->

 <message name="sellerData">
 <part name="creditCardNumber" type="xsd:string"/>
 <part name="shippingCosts" type="xsd:integer"/>
 <part name="auctionId" type="xsd:integer"/>
 <part name="endpointReference" type="bpws:ServiceRefType"/>
 </message>
 <message name="sellerAnswerData">
 <part name="thankYouText" type="xsd:string"/>
 </message>

<!-- Messages for communication with the buyer -->

 <message name="buyerData">
 <part name="creditCardNumber" type="xsd:string"/>
 <part name="phoneNumber" type="xsd:string"/>
 <part name="ID" type="xsd:integer"/>
 <part name="endpointReference" type="bpws:ServiceRefType"/>
 </message>
 <message name="buyerAnswerData">
 <part name="thankYouText" type="xsd:string"/>
 </message>

<!-- Messages for communication with the auction registration service -
->

 <message name="auctionData">
 <part name="auctionId" type="xsd:integer"/>
 <part name="amount" type="xsd:integer"/>
 </message>
 <message name="auctionAnswerData">
 <part name="registrationId" type="xsd:integer"/>
 <part name="auctionId" type="xsd:integer"/>
 <part name="auctionHouseEndpointReference"
 type="bpws:ServiceRefType"/>
 </message>

<!-- Port types for interacting with the seller -->

 <portType name="sellerPT">
 <operation name="submit">
 <input message="tns:sellerData"/>
 </operation>
 </portType>
 <portType name="sellerAnswerPT">
 <operation name="answer">
 <input message="tns:sellerAnswerData"/>
 </operation>
 </portType>

<!-- Port types for interacting with the buyer -->

 <portType name="buyerPT">
 <operation name="submit">
 <input message="tns:buyerData"/>
 </operation>
 </portType>

 <portType name="buyerAnswerPT">
 <operation name="answer">
 <input message="tns:buyerAnswerData"/>
 </operation>
 </portType>

<!-- Port types for interacting with the auction registration service -
->

 <portType name="auctionRegistrationPT">
 <operation name="process">
 <input message="tns:auctionData"/>
 </operation>
 </portType>

 <portType name="auctionRegistrationAnswerPT">
 <operation name="answer">
 <input message="tns:auctionAnswerData"/>
 </operation>
 </portType>

<!-- Context type used for locating business process via auction Id -->
 <bpws:property name="auctionId"
 type="xsd:string"/>
 <bpws:propertyAlias propertyName="tns:auctionId"

 messageType="tns:sellerData"
 part="auctionId"/>
 <bpws:propertyAlias propertyName="tns:auctionId"
 messageType="tns:buyerData"
 part="ID"/>
 <bpws:propertyAlias propertyName="tns:auctionId"
 messageType="tns:auctionData"
 part="auctionId"/>
 <bpws:propertyAlias propertyName="tns:auctionId"
 messageType="tns:auctionAnswerData"
 part="auctionId"/>

<!-- Partner link type for seller/auctionHouse -->

 <plnk:partnerLinkType name="tns:sellerAuctionHouseLT">
 <plnk:role name="auctionHouse"
 portType="tns:sellerPT"/>

 <plnk:role name="seller"
 portType="tns:sellerAnswerPT"/>

 </plnk:partnerLinkType>

<!-- Partner link type for buyer/auctionHouse -->

 <plnk:partnerLinkType name="buyerAuctionHouseLT">
 <plnk:role name="auctionHouse"
 portType="tns:buyerPT"/>

 <plnk:role name="buyer"
 portType="tns:buyerAnswerPT"/>

 </plnk:partnerLinkType>

<!-- Partner link type for auction house/auction
registration service -->

 <plnk:partnerLinkType
name="auctionHouseAuctionRegistrationServiceLT">
 <plnk:role name="auctionRegistrationService"
 portType="tns:auctionRegistrationPT"/>

 <plnk:role name="auctionHouse"
 portType="tns:auctionRegistrationAnswerPT"/>

 </plnk:partnerLinkType>

</definitions>

16.3.2. Process

The WS-BPEL definition for the business process offered by the auction house follows:

<process name="auctionService"
 targetNamespace="http://www.auction.com"
 isolated="no"

 xmlns:as="http://www.auction.com/wsdl/auctionService"
 xmlns:addr="http://www.some.org/addressing"
 xmlns="http://schemas.xmlsoap.org/ws/2004/03/business-process/">

<!-- Partners -->

 <partnerLinks>
 <partnerLink name="seller"
 partnerLinkType="as:sellerAuctionHouseLT"
 myRole="auctionHouse" partnerRole="seller"/>
 <partnerLink name="buyer"
 partnerLinkType="as:buyerAuctionHouseLT"
 myRole="auctionHouse" partnerRole="buyer"/>
 <partnerLink name="auctionRegistrationService"
 partnerLinkType=
 "as:auctionHouseAuctionRegistrationServiceLT"
 myRole="auctionHouse"
 partnerRole="auctionRegistrationService"/>
 </partnerLinks>

<!-- Variables -->

 <variables>
 <variable name="sellerData"
messageType="as:sellerData"/>
 <variable name="sellerAnswerData"
messageType="as:sellerAnswerData"/>
 <variable name="buyerData" messageType="as:buyerData"/>
 <variable name="buyerAnswerData"
messageType="as:buyerAnswerData"/>
 <variable name="auctionData"
 messageType="as:auctionData"/>
 <variable name="auctionAnswerData"
 messageType="as:auctionAnswerData"/>
 </variables>

<!-- Correlation set for correlating buyer and seller request
as well as auction house and auction registration service exchange -->

 <correlationSets>
 <correlationSet name="auctionIdentification"
 properties="as:auctionId"/>
 </correlationSets>

<!-- Structure of the business process -->

 <sequence>

<!-- Process buyer and seller request concurrently
Either one can create a process instance -->
 <flow>

<!-- Process seller request -->
 <receive name="acceptSellerInformation"
 partnerLink="seller"
 portType="as:sellerPT"
 operation="provide"

 variable="sellerData"
 createInstance="yes">
 <correlations>
 <correlation set="auctionIdentification"
 initiate="join"/>
 </correlations>
 </receive>

<!-- Process buyer request -->

 <receive name="acceptBuyerInformation"
 partnerLink="buyer"
 portType="as:buyerPT"
 operation="provide"
 variable="buyerData"
 createInstance="yes">
 <correlations>
 <correlation set="auctionIdentification"
 initiate="join"/>
 </correlations>
 </receive>
 </flow>

<!-- Invoke auction registration service by setting the target endpoint
reference and setting my own endpoint reference for call back
and receiving the answer Correlation of request and answer is
via auction Id -->

 <assign>
 <copy>
 <from>
 <literal>
 <service-ref>
 <addr:EndpointReference>
 <addr:Address>xs:anyURI</addr:Address>

<addr:ServiceName>as:RegistrationService</addr:ServiceName>
 </addr:EndpointReference>
 </service-ref>
 </literal>
 </from>
 <to partnerLink="auctionRegistrationService"/>
 </copy>
 </assign>

 <assign>
 <copy>
 <from partnerLink="auctionRegistrationService"
 endpointReference="myRole"/>
 <to>$auctionData.auctionHouseServiceRef</to>
 </copy>
 </assign>

 <invoke name="registerAuctionResults"
 partnerLink="auctionRegistrationService"
 portType="as:auctionRegistrationPT"
 operation="process"

 inputVariable="auctionData">
 <correlations>
 <correlation set="auctionIdentification"/>
 </correlations>
 </invoke>

 <receive name="receiveAuctionRegistrationInformation"
 partnerLink="auctionRegistrationService"
 portType="as:auctionRegistrationAnswerPT"
 operation="answer"
 variable="auctionAnswerData">
 <correlations>
 <correlation set="auctionIdentification"/>
 </correlations>
 </receive>

<!-- Send responses back to seller and buyer -->

 <flow>

<!-- Process seller response by setting the seller to
the endpoint reference provided by the seller
and invoking the response -->

 <sequence>
 <assign>
 <copy>
 <from>$sellerDataendpointReference</from>
 <to partnerLink="seller"/>
 </copy>
 </assign>

 <invoke name="respondToSeller"
 partnerLink="seller"
 portType="as:sellerAnswerPT"
 operation="answer"
 inputVariable="sellerAnswerData"/>
 </sequence>

<!-- Process buyer response by setting the buyer to
the endpoint reference provided by the buyer
and invoking the response -->

 <sequence>
 <assign>
 <copy>
 <from>$buyerData.endpointReference</from>
 <to partnerLink="buyer"/>
 </copy>
 </assign>

 <invoke name="respondToBuyer"
 partnerLink="buyer"
 portType="as:buyerAnswerPT"
 operation="answer"
 inputVariable="buyerAnswerData"/>
 </sequence>

 </flow>
 </sequence>
</process>

17. Security Considerations
Because messages can be modified or forged, it is strongly RECOMMENDED that
business process implementations use WS-Security to ensure messages have not been
modified or forged while in transit or while residing at destinations. Similarly, invalid or
expired messages could be re-used or message headers not specifically associated with
the specific message could be referenced. Consequently, when using WS-Security,
signatures MUST include the semantically significant headers and the message body (as
well as any other relevant data) so that they cannot be independently separated and re-
used.

Messaging protocols used to communicate among business processes are subject to
various forms of replay attacks. In addition to the mechanisms listed above, messages
SHOULD include a message timestamp (as described in WS-Security) within the
signature. Recipients can use the timestamp information to cache the most recent
messages for a business process and detect duplicate transmissions and prevent potential
replay attacks.

It should also be noted that business process implementations are subject to various forms
of denial-of-service attacks. Implementers of business process execution systems
compliant with this specification should take this into account.

A. Standard Faults
The following list specifies the standard faults defined within the WS-BPEL specification.
All these faults are named within the WS-BPEL namespace standard prefix bpws:
corresponding to URI "http://schemas.xmlsoap.org/ws/2004/03/business-process/".

Table A.1. Standard Faults

Fault name Reason

selectionFailure
Thrown when a selection operation performed either in a
function such as bpws:getVariableProperty, or in an
assignment, encounters an error.

conflictingReceive

Thrown when more than one receive activity or
equivalent (currently, onMessage branch in a pick
activity) are enabled simultaneously for the same partner
link, port type, operation and correlation set(s).

conflictingRequest Thrown when more than one synchronous inbound
request on the same partner link for a particular port

Fault name Reason
type, operation and correlation set(s) are active.

mismatchedAssignmentFailure Thrown when incompatible types are encountered in an
assign activity.

joinFailure Thrown when the join condition of an activity evaluates
to false.

correlationViolation
Thrown when the contents of the messages that are
processed in an invoke, receive, or reply activity do not
match specified correlation information.

uninitializedVariable
Thrown when there is an attempt to access the value of
an uninitialized variable or in the case of a message type
variable one of its uninitialized parts.

repeatedCompensation Thrown when an installed compensation handler is
invoked more than once.

invalidReply
Thrown when a reply is sent on a partner link, portType
and operation for which the corresponding receive with
the same correlation has not been carried out.

missingReply
Thrown when a receive has been executed, and the
process instance reaches the end of its execution without
a corresponding reply having been executed.

missingRequest
Thrown when a reply activity cannot be associated with
an incomplete receive activity by matching the partner
link, operation and messageExchange tuple.

subLanguageExecutionFault
Thrown when the execution of an expression results in
an unhandled expression / query language execution
fault.

unsupportedReference
Thrown when a BPEL implementation fails to interpret
the combination of the "reference-scheme" attribute and
the content element OR just the content element alone

invalidVariables Thrown when any XML validation (implicit or explicit:
e.g. <validate> or <assign validate="yes">) fails.

uninitializedPartnerRole

Thrown when an Invoke activity is used on a partnerLink
whose partnerRole endpoint reference is not initialized.

bpws:scopeInitializationFailure
Thrown if there is any problem creating any of the
objects defined as part of scope initialization. This fault
is always caught by the parent scope of the faulted scope.

B. Attributes and Defaults

The following list specifies the defaults for all standard attributes at the process and
activity level. The table does not include activity-specific attributes (such as
partnerLink in an invoke activity).

Table B.1. Attributes and Defaults

Parameter Default
queryLanguage urn:oasis:names:tc:wsbpel:2.0:sublang:xpath1.0
expressionLanguage urn:oasis:names:tc:wsbpel:2.0:sublang:xpath1.0

suppressJoinFailure

no — but for process element only. When this attribute is not
specified for an activity, it inherits its value from its closest
enclosing activity, or from the process if no enclosing activity
specifies this attribute.

isolated no
abstractProcess no
initiate no
pattern No default
createInstance no
joinCondition Disjunction of the status of the incoming links
transitionCondition true

C. XSD Schemas
WS-BPEL Schema

[Editor Note: Sept 01, 2004: Before the finalization of the specification, if there are any
discrepancies (caused by manual mistakes) between the XSD Schemas Appendix of the
specification and standalone XSD files, the standalone XSD files would be the primary
source of truth. We copy XML Schemas and their changes into this appendix mainly for
the convenience of reviewers.]

[Editor Note: Jun 23, 2005: To make editing of XSD easier and less error-prone for
inconsistencies, we temporarily remove the XSD from this document. The master copy
will be maintained in the CVS, until we are ready to release the next draft.]

<?xml version="1.0" encoding="UTF-8"?>

Partner Link Type Schema

<?xml version='1.0' encoding="UTF-8"?>

Message Properties Schema

<?xml version='1.0' encoding="UTF-8"?>

D. Notices
Copyright © The Organization for the Advancement of Structured Information Standards
[OASIS] 2001, 2002, 2003. All Rights Reserved.

OASIS takes no position regarding the validity or scope of any intellectual property or
other rights that might be claimed to pertain to the implementation or use of the
technology described in this document or the extent to which any license under such
rights might or might not be available; neither does it represent that it has made any effort
to identify any such rights. Information on OASIS's procedures with respect to rights in
OASIS specifications can be found at the OASIS website. Copies of claims of rights
made available for publication and any assurances of licenses to be made available, or the
result of an attempt made to obtain a general license or permission for the use of such
proprietary rights by implementors or users of this specification, can be obtained from the
OASIS Executive Director.

OASIS invites any interested party to bring to its attention any copyrights, patents or
patent applications, or other proprietary rights which may cover technology that may be
required to implement this specification. Please address the information to the OASIS
Executive Director.

This document and translations of it may be copied and furnished to others, and
derivative works that comment on or otherwise explain it or assist in its implementation
may be prepared, copied, published and distributed, in whole or in part, without
restriction of any kind, provided that the above copyright notice and this paragraph are
included on all such copies and derivative works. However, this document itself may not
be modified in any way, such as by removing the copyright notice or references to
OASIS, except as needed for the purpose of developing OASIS specifications, in which
case the procedures for copyrights defined in the OASIS Intellectual Property Rights
document must be followed, or as required to translate it into languages other than
English.

The limited permissions granted above are perpetual and will not be revoked by OASIS
or its successors or assigns.

This and the information contained and the information is provided on an "AS IS" basis
and DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT
NOT LIMITED TO WARRANTY THAT THE USE OF THE INFORMATION

HEREIN NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

OASIS has been notified of intellectual property rights claimed in regard to some or all of
the contents of this specification. For more information consult the online list of claimed
rights.

E. Intellectual Property Rights
For information on wether any patents have been disclosed that may be essential to
implementing this specification, and any offers of patent licensing terms, please refer to
the Intellectual Property Rights section of the WS-BPEL Technical Committee web page
(http://www.oasis-open.org/committees/wsbpel)

F. Revision History
Revision
01.000 10 June 2003 First Draft. Produced from May 05

2003 version of BPEL 1.1
Prasad
Yendluri

Revision
01.001 16 Oct 2003 First Draft uploaded to CVS system Kevin Liu

Revision
01.002 16 Oct 2003 Notes to editor for to do items Kevin Liu

Revision
01.003 18 Oct 2003

Applied Issue-27 Resolution (impact
of error on evaluation condition on a
link)

Prasad
Yendluri

Revision
01.004 21 Oct 2003

Applied Issue-36 Resolution (Change
onMessage Event Handler to
onEvent)

Prasad
Yendluri

Revision
01.005 22 Oct 2003 Created this revision history section Prasad

Yendluri

Revision
01.006

22 October
2003

Applied Issue-23 Resolution (clarify
that redundancy of structured activities
is desirable)

Yaron Y.
Goland

Revision
01.007

27 October
2003

Added the words "properly
configured" to the change made in
Revision 006 per Satish's request.

Yaron Y.
Goland

Revision
01.008 2 Nov 2003

Incorporated resolution of Issue 3
(current state influence in
compensation handlers)

Satish R.
Thatte

Revision
01.009 2 Nov 2003

Incorporated resolutions of issues 41
and 45 and corrected a number of
XML errors

Revision
01.010

10 November
2003

Applied resolution to issue 32 (link
semantics in event handlers) Sid Askary

Revision
01.011

17 November
2003 Applied resolution of issues 7, 39, 46 Francisco

Curbera

Revision
01.012 23 Nov 2003

Revisited all previous changes and
corrected them for clarity and
completeness

Satish R.
Thatte

Revision
01.013

01 February
2004 Applied resolution of issues 72, 73, 74 Ben Bloch

Revision
01.014

09 February
2004 Applied resolution of issues 67, 68, 79 Satish R.

Thatte

Revision
01.015

17 February
2004

Applied resolution of issues 13, 85.
Added example to Section 14.3

Francisco
Curbera

Revision
01.016

19 February
2004

Fixed Section 12.5 sentence about
<joinCondition> and added BP/use
case comment in Section 3

Ben Bloch

Revision
01.017

20 February
2004

Applied resolution of issue 70.
Removed editor’s notes for “Editors”
section

Kevin Liu

Revision
01.018

27 February
2004

Applied resolution of issue 50. Added
a new standard fault missingReply

Neelakantan
Kartha

Revision
01.019 09 March 2004 Miscellaneous revisions of prior edits Satish R.

Thatte

Revision
01.020 12 March 2004

Applied resolutions 13 and 68 to
schema, corrected xsd definitions for
<import> element

Francisco
Curbera

Revision
01.021 14 March 2004

Applied resolutions for issues 80 and
95 (rethrow in <catchAll> etc. and
corresponding schema changes to add
the <rethrow> definition)

Prasad
Yendluri

Revision
01.022 24 March 2004

Added namespace prefix list to end of
section 2; added editor notes for to do
items

Kevin Liu

Revision 6 April 2004 Incorporated 104 and fixed examples Satish R.

01.023 and pseudo syntax to reflect resolution
of issue 68

Thatte

Revision
01.024 07 April 2004

Corrected the namespace for bpws and
plnk to be in sync with the latest
schema and updated all examples not
to declare the namespace explicitly so
that when we update the namespace
the examples are not impacted.

Prasad
Yendluri

Revision
01.025 07 April 2004 Fixed the default namespace values

that were missed in the last pass.
Prasad
Yendluri

Revision
01.026

07 April 2004 (1) Copy and paste the updated and
corrected schema back to the main
spec doc
(2) Applied resolution for Issue 69
from Maciej Szefle in Section 12.5
and 12.5.1

Alex Yiu

Revision
01.027 23 April 2004

Applied resolution of issue 62.
Checked that issue 45 had already
been applied.

Francisco
Curbera

Revision
01.028 05 May 2004 Picked up the new OASIS Logo Prasad

Yendluri

Revision
01.029 06 May 2004 Applied resolution of issue101 Prasad

Yendluri

Revision
01.030 06 May 2004 Inserted the lost pictures (with proper

hyperlinks) back into the document.
Prasad
Yendluri

Revision
01.031 06 May 2004 Applied resolution of issue117 Prasad

Yendluri

Revision
01.032 11 May 2004 Incorporated resolution for issue 33 Kevin Liu

Revision
01.033 02 June 2004 Revised wording for resolution of

issue 33 Kevin Liu

Revision
01.034 20 June 2004 Applied resolution of issues 25 and 53 Satish

Thatte

Revision
01.035 28 June 2004

Applied resolution:
issue 94 in Section 6.2 and schema;
issue 75 in Section 6.2, 7.2, 13, 13.1
and schema;
issue 37 in Section 6.2, 10.2, 14.4 and

Alex Yiu

schema;
issue 114 in Section 10.2 and 14.4

Revision
01.036 15 July 2004

Applied resolution of issue 43.
Changed schema in the doc and
pseudo-schema fragments scattered
thruought the specification.

Prasad
Yendluri

Revision
01.037 15 July 2004 Applied resolution of issue 44. Prasad

Yendluri

Revision
01.038 19 July 2004 Applied resolution of issue 34 Alex Yiu

Revision
01.039 28 July 2004 Applied resolution of issue 128, plus

made all examples WS-I BP compliant Kevin Liu

Revision
01.040 01 Sept 2004 Re-sychronize XSD Appendix with

XSD files from CVS Alex Yiu

Revision
01.041 01 Sept 2004

Applying Issue 146: Making tVariable
Extensible
Applying Issue 149: Adding formal
documentation support to BPEL

Alex Yiu

Revision
01.042 01 Sept 2004 Fixed a Typo in XSD Alex Yiu

Revision
01.043 01 Sept 2004 A bunch of misc cleanup for Issue 13 Alex Yiu

Revision
01.044 08 Sept 2004

Created the first clean copy and
performed misc clean-up that surfaced
after clean-up, including messed
formatting, TOC links, Appendix
ordering and numbering and messed
formatting.

Prasad
Yendluri

Revision
01.045 20 Oct 2004

Fixing joinCondition syntax typo in
Section 6.2
Applied Issue 134 to Section 9.1.4
Applied Issue 123 to Section 11.4 and
other sections
Fixing schema problems discovered
by Dieter Koenig

Alex Yiu

Revision
01.046 21 Oct 2004

Applying some non-normative
changes in XSD suggested by Paul
Brown
Applying changes in XSD for “tRole”

Alex Yiu

for Issue 129 (Other spec text changes
will be done by Kevin Liu)

Revision
01.047 28 Oct 2004

Applied to section 6.2 the resolution
for issue 89.(note the resolution
proposal was friendly amended by the
editors group)
Appled resolution for issue 129:
portType is now an attribute of <role>

Kevin Liu

Revision
01.048 17 Nov 2004

Applied resolutions for issues 98, 135
and 176. For 176 the section content
was deleted but the section number
was left in, since the headers are not
using auto numbering yet

Satish
Thatte

Revision
01.049 18 Nov 2004

Applied resolution for Issue 10.
Noted that the level 3 headers are
using the Header 4 style and decided
against making a heroic effort to fix
all the headers.

Satish
Thatte

Revision
01.050 22 Nov 2004 Applied resolution for issues 172 and

173. Assaf Arkin

Revision
01.051 23 Nov 2004 Applied resolutions for issues 137,

166, 175 & 178
Yaron Y.
Goland

Revision
01.052 29 Nov 2004 Revised edits for issue 137 Yaron Y.

Goland

Revision
01.053 30 Nov 2004 Applied resolutions for issues 152 and

165 Alex Yiu

Revision
01.054 01 Dec 2004

Revised sections 9.1 and 14.1 per the
discussion on the editors list on
resolution for issue 137.

Prasad
Yendluri

Revision
01.055 11 Jan 2005 Applied resolution for issue 145, 155,

and 171. Kevin Liu

Revision
01.056 26 Jan 2005 Applied resolution for issue 162. Prasad

Yendluri

Revision
01.057 27 Jan 2005 Applied resolution for issue 167. Prasad

Yendluri

Revision
01.058 30 Jan 2005 Applied resolution for issue 170. Francisco

Curbera

Revision
01.059 26 Feb 2005 Applied resolution for issue 130. Francisco

Curbera

Revision
01.060 27 Feb 2005 Applied resolutions for issues 12.1,

186.
Francisco
Curbera

Revision
01.061 27 Feb 2005 Reflect the spec update date for

publication.
Prasad
Yendluri

Revision
01.062 2 April 2005 Applied resolution for issues 93 and

111.1
Francisco
Curbera

Revision
01.063 24 April 2005 Applied resolution of issue 112 Francisco

Curbera

Revision
01.064 01 May 2005

Synchronizing XSD changes into
Appendix C for issue 112 and fixing
some XSD syntax typo for issue 112

Alex Yiu

Revision
01.065 02 May 2005

Fixing misc typo in the spec:
(a) Moving terminationHandler from
process level to scope level
(b) removing compensationHandler
from the process level
(c) renaming an attribute of "scope"
from "variableAccessSerializable" to
"isolated"
(d) removing
"enableInstanceCompensation"
attribute from XSD

Alex Yiu

Revision
01.066 07 May 2005

Applied issues 29, 81, 160 Assaf Arkin

Revision
01.067 07 May 2005

Applied issues 29, 81, 160 Assaf Arkin

Revision
01.068 20 May 2005 Updated Appendix H Prasad

Yendluri

Revision
01.069 21 June 2005 Accepted all changes todate to create a

clean TC approved Draft
Prasad
Yendluri

Revision
01.070 23 June 2005

XSD are removed temporarily from
this doc for ease of editing and will be
maintained in the CVS tree

Alex Yiu

Revision
01.071 28 June 2005

Apply Issues 182, 148, 140
(with renaming <until> activity to
<repeatUntil> activity to avoid

Alex Yiu

conflict in <onAlarm>)

Revision
01.072 08 July 2005 Applied issues 198, 181, 92.2, 86 Assaf Arkin

Revision
01.073 13 July 2005 Changes related to resolution of issue

183
Prasad
Yendluri

Revision
01.074 13 July 2005 Changes related to resolution of issue

187
Prasad
Yendluri

Revision
01.075 13 July 2005 Changes related to resolution of issue

194
Prasad
Yendluri

Revision
01.076 26 July 2005

Apply Issues 102, 103, 199 and 203.
Apply Issue 196 also – pure XSD
changes

Alex Yiu

Revision
01.077

14 August
2005

Apply issues 138, 139, 139.1, 147,
150, 154, 119, 126

Francisco
Curbera

Revision
01.078

20 August
2005 Applied 202, 206, 209,214,132 (??) Assaf Arkin

Revision
01.079

23 August
2005

Changes related to resolution of Issue
190. Note: Alex needs to add the
@exitOnStandardFault to WS-BPEL
schema (impacts tProcess and tScope).

Prasad
Yendluri

Revision
01.080

23 August
2005

Changes related to resolution of Issue
163.

Prasad
Yendluri

Revision
01.081

23 August
2005

Changes related to resolution of Issue
136. Note: Alex needs to apply the
schema changes to change <swith> to
<if>

Prasad
Yendluri

G. References (Normative)
[XMLSpec] XML Specification, W3C Recommendation.

[SOAP 1.1] Simple Object Access Protocol (SOAP) 1.1, W3C Note

[WSDL 1.1] Web Services Definition Language (WSDL) 1.1, W3C Note

[UDDI] Universal Description, Discovery and Integration, Industry Initiative

[XLANG] Web Services for Business Process Design

[WSFL] Web Service Flow Language 1.0

[XML Schema Part 1] XML Schema Part 1: Structures, W3C Recommendation

[XML Schema Part 2] XML Schema Part 2: Datatypes, W3C Recommendation

[XPATH 1.0] XML Path Language (XPath) Version 1.0, W3C Recommendation

[Sagas] Sagas H. Garcia-Molina and K. Salem, Proc. ACM SIGMOD (1987).

[Trends] Trends in systems aspects of database management," I.L. Traiger, Proc. 2nd
Intl. , Conf. on Databases (ICOD-2), Wiley and Sons 1983.

[RFC 2119] RFC 2119: Key words for use in RFCs to Indicate Requirement Levels, S.
Bradner. IETF (Internet Engineering Task Force), 1997.

[RFC 2396] RFC 2396: Uniform Resource Identifiers (URI): Generic Syntax, T. Berners-
Lee, R. Fielding, L. Masinter, MIT/LCS, U.C. Irvine, Xerox Corporation, August 1998.

[BPEL4WS 1.0] Business Process Execution Language for Web Services Version 1.0,
BEA, IBM and Microsoft, August 2002.

[WS-I Basic Profile] WS-I Basic Profile, Web Services Interoperability Organization

[Infoset] XML Information Set (Second Edition), W3C Recommendation

H. Committee Members (Non-Normative)
The following individuals were members of the committee during the formulation of this
document:

• Lars Abrell
• Ashish Agarwal, Adobe
• Kristofer Agren, Pakalert
• Ravi Akireddy
• Hedy Alban
• Randall Anderson, Macgregor
• Tony Andrews, Microsoft
• Assaf Arkin, Intalio
• Sid Askary, Nuperus
• Kent Below, IBM
• Dave Bettin, Attachmate
• Terry Bjornsen, Booz Allen Hamilton
• Mike Blevins, BEA

• Ben Bloch, Systinet
• Alex Boisvert, Intalio, Inc.
• Subhra Bose, Reuters America
• Allen Brookes, Roguewave
• George Brown, Intel
• Steve Brown, Metastorm
• Justin Brunt, WfMC
• David Burdett, CommerceOne
• Laurence Cable
• Ryan Cairnsi, OpenStorm Software
• Arun Candadai
• Greg Carter, Metastorm
• Brian Carroll, Serena
• Andy Chan, FileNet
• Sarat Chand, PeopleSoft
• Chia Chao, IONA
• Martin Chapman, Oracle
• Dave Chappell, Sonic Software
• Jamie Clark, OASIS
• Doron Cohen, BMC Software
• Ugo Corda, SeeBeyond
• Robin Cover, OASIS
• Fred Cummins, EDS
• Francisco Curbera, IBM
• Dennis Curry, EDS
• Sanjay Dalal, BEA
• Khoi Dang, FileNet
• Michael DeBellis, Fujitsu
• Linda DeMichiel, Sun Microsystems
• Jens Doerpmund, Hewlett-Packard
• Wolfgang Dostal, IBM
• Bernd Eckenfels, Seeburger, AG
• Rami Elron, BMC Software
• John Evdemon, Microsoft (TC-Chair)
• Charls Fenton, Sterling Commerce
• B.J. Fesq
• Rabih Filfili, Microsoft
• Layna Fischer, BPMI.org
• Layna Fischer, WfMC
• Tony Fletcher, Choreology
• Bill Flood, Sybase
• Daniel Foody, Actional
• Steven Forgey, SeeBeyond
• Andrew Francis, McGill
• Franz Fritz, SAP
• Yuzo Fujishima, NEC Corporation

• Shoichi Fukuda, Fujitsu
• Peter Furniss, Choreology
• Jean-Luc Giraud, Axway software
• Yaron Goland, BEA
• Alastair Green, Choreology
• Ajay Gummadi
• Michael Hafner, SAP
• Tommy Hansen, FileNet
• Kevin Hein, Teamplate
• Scott Hinkelman, IBM
• Patrick Hogan, Sino Technologies
• Chunbo Huang, BEA
• Yin-Leng Husband, Hewlett-Packard
• David Ingham, Arjuna Technologies
• Ricardo Jimenez-Peris, UPM
• Ram Jeyaraman, Sun Microsystems
• Diane Jordan, IBM (TC-Chair)
• Bala Kamallakharan, Cap Gemini Ernst and Young
• Neelakantan Kartha, Sterling Commerce
• Nicholas Kassem, Sun Microsystems
• Richard Katz
• Nickolas Kavantzas, Oracle
• Michael Keay
• Christopher Keller, Active-Endpoints
• Debra Kellington, Convergys
• Rania Khalaf, IBM
• Edwin Khodabakchian, Collaxa
• Sun-Ho Kim
• Yoav Kirsch, Business Layers
• Doug Knowels, Novell
• Dieter Koenig, IBM
• Melanie Kudela, Uniform Code Council
• Pradeep Kumar, MRO Software
• Sanjeev Kumar
• Chris Kurt, Microsoft
• Kelvin Lawrence, IBM
• Philip Lee, BPMI.org
• Frank Leymann, IBM
• Yanming Li, France Telecom
• Paul Lipton, Computer Associates
• Mark Little, Arjuna Technologies
• Melton Littlepage, Booz Allen Hamilton
• Canyang Kevin Liu, SAP
• Brian Lorenz, Sybase
• Hop Luu, FileNet
• Art Machado, PeopleSoft

• Balinder Malhi, Microsoft
• Sumeet Malhotra, Unisys
• Rajesh Manglani, Uniform Code Council
• Bernard Manouvrier, Axway software
• Mike Marin, FileNet
• Axel Martens, IBM
• Fabienne Marquardt, IBM
• Monica Martin, Sun Microsystems
• Tod Matola, Sterling Commerce
• carol mcdonald, Sun Microsystems
• Bimal Mehta, Microsoft
• Vinkesh Mehta, Deloitte
• Glenn Mi, Collaxa
• Jeff Mischkinsky, Oracle
• JP Morgenthal, Software AG
• Simon Moser, IBM
• Tim Moses, Entrust
• Kenji Nagahashi, Fujitsu
• Trevor Naidoo, IDS Scheer
• Goran Olsson, Oracle
• Srinivas Padmanabhuni, Infosys
• John Parkinson, Cap Gemini Ernst and Young
• James Pasley, Capeclear
• Sanjay Patil, IONA
• Mark Potts, Talking Blocks
• Rajesh Pradhan, Iopsis Software
• Lalitha Prakash, Bahwancybertek
• Matthew Pryor, BPMI.org
• Ken Pugsley, PeopleSoft
• Andrew Pugsley, Hewlett-Packard
• Roshan Punnoose
• Jon Pyke, WfMC
• Harvey Reed, Mitre
• Sundari Revanur, IONA
• Greg Ritzinger, Novell
• Anthony Roby, Accenture
• Jorge Rodriguez, IBM
• Dieter Roller, IBM
• Darran Rolls, Waveset Technologies
• Muthu Ramadoss, Bahwancybertek
• Phil Rossomando, Unisys
• Steve Ross-Talbot, Enigmatec
• Michael Rowley, BEA
• Frank Ryan, Active-Endpoints
• Waqar Sadiq, EDS
• Yuji Sakata

• Nobuyuki Sambuichi, Hitachi
• Krishna Sankar, Cisco Systems
• Bob Schmidt, Microsoft
• Marc-Thomas Schmidt, IBM
• Yoko Seki, Hitachi
• Pinaki Shah, E2Open
• Vishwanath Shenoy, Infosys
• Frank Siebenlist, Argonne National Laboratory
• Parijat Sinha, Convergys
• Dale Skeen, Vitria
• Howard Smith, BPMI.org
• Gavenraj Sodhi, Business Layers
• Rajaraman Sowmya
• Vinay Srinivasaiah, SeeBeyond
• Venkat Srinivasan, SeeBeyond
• Nallan Sriraman, Reuters America
• Sally St. Amand
• Donald Steiner, WebV2
• Karl-Heinz Sternemann, BizTalk Competence Center
• Nikola Stojanovic
• Goutham Sukumar, Microsoft
• Keith Swenson, Fujitsu
• Maciej Szefler, FiveSight Technologies
• Pal Takacsi-Nagy, BEA
• Ran Tamir, BMC Software
• Bob Taylor, Hewlett-Packard
• Sazi Temel, BEA
• Ron Ten-Hove, Sun Microsystems
• Aniruddha Thakur, Oracle
• Satish Thatte, Microsoft
• Darrel Thomas, EDS
• Steve Towers, BPM Group
• Derick Townsend, OpenStorm Software
• Ivana Trickovic, SAP
• Kenwood Tsai, Documentum
• William Vambenepe, Hewlett-Packard
• Danny van der Rijn, Tibco
• Gloria Vargas, Reuters America
• Ganesh Vednere, Cap Gemini Ernst and Young
• Claus von Riegen, SAP
• Jim Webber, Arjuna Technologies
• David Webber
• Michael Weiner, IBM
• Pete Wenzel, SeeBeyond
• Stuart Wheater,Arjuna Technologies
• Stephen White

• Rob Williams, Concurrence
• Scott Woodgate, Microsoft
• John Wunder, Imco
• Prasad Yendluri, webMethods
• Alex Yiu, Oracle
• Eric Yuan, Booz Allen Hamilton
• Hadrian Zbarcea, Iona
• Sinisa Zimek, SAP
• Michael zur Muehlen, WfMC

