
Web Services Business Activity Framework
S-BusinessActivity)

icrosoft
land, Microsoft

BM
in, Microsoft

, Microsoft (Editor)

Tony Storey, IBM
ish Thatte, Microsoft

(W
Authors

Luis Felipe Cabrera, M
George Cope
William Cox, BEA Systems
Tom Freund, I
Johannes Kle
David Langworthy
Ian Robinson, IBM

Sat

Copyright Notice
(c) 2001-2004 BEA Systems Inc, IBM Corporation, Microsoft Corporat
reserved.

ion. All rights

BEA, IBM and Microsoft (collectively, the "Authors") hereby grant you permission to copy
d display the Web Services Business Activity Framework Specification (the

clude the
ake:

tions,
ubject matter in the

OPYRIGHT LICENSE GRANTED ABOVE, THE AUTHORS DO
TO ANY INTELLECTUAL

IES, OWN OR
h the Authors.

ail addresses, logos,
h any real

erson, places, or
events is intended or should be inferred.

OR WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, BUT NOT
ULAR PURPOSE,

TITLE; THAT THE CONTENTS OF THE SPECIFICATION ARE
ENTATION OF SUCH CONTENTS WILL

NOT INFRINGE ANY THIRD PARTY PATENTS, COPYRIGHTS, TRADEMARKS OR OTHER
RIGHTS.

THE AUTHORS WILL NOT BE LIABLE FOR ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL OR
CONSEQUENTIAL DAMAGES ARISING OUT OF OR RELATING TO ANY USE OR DISTRIBUTION
OF THE SPECIFICATION.

The Specification may change before final release and you are cautioned against relying on
the content of this specification.

No other rights are granted by implication, estoppel or otherwise.

an
"Specification"), in any medium without fee or royalty, provided that you in
following on ALL copies of the Specification, or portions thereof, that you m

1. A link or URL to the Specification at this location

2. The copyright notice as shown in the Specification.

The Authors and\or any other third party may have patents, patent applica
trademarks, copyrights, or other intellectual property rights covering s
Specification. EXCEPT FOR THE C
NOT GRANT, EITHER EXPRESSLY OR IMPLIEDLY, A LICENSE
PROPERTY, INCLUDING PATENTS, THEY, OR ANY OTHER THIRD PART
CONTROL. Title to copyright in the Specification will at all times remain wit
The example companies, organizations, products, domain names, e-m
people, places, and events depicted herein are fictitious. No association wit
company, organization, product, domain name, email address, logo, p

THE SPECIFICATION IS PROVIDED "AS IS," AND THE AUTHORS MAKE NO
REPRESENTATIONS
LIMITED TO, WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTIC
NON-INFRINGEMENT, OR
SUITABLE FOR ANY PURPOSE; NOR THAT THE IMPLEM

Page 1 of 21

Abstract
This specification provides the definition of the business activity coordinati
be used with the extensible coordination framework described in the WS
specification. The specification defines two specific agreement coordinat
business activity coordination type: BusinessAgreementWithParticipantCom
BusinessAgreementWithCoo

on type that is to
-Coordination
ion protocols for the

pletion, and
rdinatorCompletion. Developers can use any or all of these

ns that require consistent agreement on the outcome of
long-running distributed activities.
protocols when building applicatio

Composable Architecture
By using the SOAP [SOAP]and WSDL [WSDL] extensibility model, SOAP
based specifications are designed to work together to define a rich Web serv
environment. As such, WS-BusinessActiv

-based and WSDL-
ices

ity by itself does not define all features required
for a complete solution. WS-BusinessActivity is a building block used with other

ations of web services (e.g., WS-Coordination, WS-Security) and application-specific
cols related to

d related specifications are provided for use as-is and for review and
d suggestions in

EA, and IBM make no warrantees or representations regarding
y manner whatsoever.

duals have provided invaluable input into the design of the WS-
n:

Francisco Curbera, IBM

Don Ferguson, IBM
M

ri, Microsoft
hewchuk, Microsoft

, IBM

 thank the technical writers and development reviewers who provided
he readability of the specification.

nts

1.1 Model
1.2 Notational Conventions
1.3 Namespace
1.4 XSD and WSDL Files

2 Using WS-Coordination
2.1 CoordinationContext
2.2 CreateCoordinationContext Operation

specific
protocols that are able to accommodate a wide variety of coordination proto
the coordination actions of distributed applications.

Status
WS-BusinessActivity an
evaluation only. Microsoft, BEA, and IBM will solicit your contributions an
the near future. Microsoft, B
the specification in an

Acknowledgments
The following indivi
Transaction specificatio

Gert Drapers, Microsoft

Frank Leymann, IB
Jagan Pe
John S
Sanjiva Weerawarana

We also wish to
feedback to improve t

Table of Conte
1 Introduction

Page 2 of 21

3 Coordination Protocols
3.1 BusinessAgreementWithParticipantCompletion Protocol

 BusinessAgreementWithCoordinatorCompletion Protocol
4 Policy

ity Considerations
rability Considerations

7 Glossary

Completion
A.2 Coodinator view of BusinessAgreementWithParticipantCompletion

 view of BusinessAgreementWithCoordinatorCompletion
ion

1 Introduction

3.2

4.1. Spec Version
4.2 Protocols

5 Secur
6 Interope

8 References
Appendix A: State Tables for the Agreement Protocols

A.1 Participant view of BusinessAgreementWithParticipant

A.3 Participant

A.4 Coordinator view of BusinessAgreementWithCoordinatorComplet

The current set of Web service specifications [WSDL] [SOAP] defines pr
service interoperability. Web services increasingly tie t

otocols for Web
ogether a number of participants

ave complex structure

ning coordination
h intended to

s exchanged
Context includes a

ice. Participants use that
ore of the protocols supported by that activity.

T oordination type used to
c iness exceptions. Actions are
a invoked in the
e enable existing
b hanisms and
i ions.

B

• A business activity may consume many resources over a long duration.

• There may be a significant number of atomic transactions involved.

• Individual tasks within a business activity can be seen prior to the completion of the
business activity, their results may have an impact outside of the computer system.

• Responding to a request may take a very long time. Human approval, assembly,
manufacturing, or delivery may have to take place before a response can be sent.

• In the case where a business exception requires an Activity to be logically undone, abort
is typically not sufficient. Exception handling mechanisms may require business logic, for

forming large distributed applications. The resulting activities may h
and relationships.

The WS-Coordination specification defines an extensible framework for defi
types. A coordination type can have multiple coordination protocols, eac
coordinate a different role that a Web service plays in the activity.

To establish the necessary relationships between participants, message
between participants carry a CoordinationContext. The Coordination
Registration service Endpoint Reference of a Coordination serv
Registration service to register for one or m

his specification provides the definition of a business activity c
oordinate activities that apply business logic to handle bus
pplied immediately and are permanent. Compensating actions may be
vent of an error. The Business Activity specification defines protocols that
usiness process and work flow systems to wrap their proprietary mec

nteroperate across trust boundaries and different vendor implementat

usiness Activities have the following characteristics:

Page 3 of 21

example in the form of a compensation task, to reverse the effects of a completed

• Participants in a business activity may be in different domains of trust where all trust
relationships are established explicitly.

design point, with the following assumptions:

nd coordination

 view of state
rticipant.

quest/response
-end agreement

 activities.

siness activities.
n and by

own Coordination protocols.

aints that Business Activity puts on WS-Coordination protocols are described in
 The Business Activity Coordination protocols are defined in Section 3.

 and summarized in

business task.

These characteristics lead to a

• All state transitions are reliably recorded, including application state a
metadata.

• All notifications are acknowledged in the protocol to ensure a consistent
between the coordinator and pa

• Each notification is defined as an individual message. Transport level re
retry and time out are not sufficient mechanisms to achieve end-to
coordination for long-running

This specification leverages WS-Coordination by extending it to support bu
It does this by adding constraints to the protocols defined in WS-Coordinatio
defining its

The constr
Section 2.

Terms introduced in Part II are explained in the body of the specification
the [Glossary].

1.1 Model
Business Activity Coordination protocols provide the following flexibility:

• . A business
omputation carried out

uire a mutually
ls. Nested

• Allow a business application to select which child tasks are included in the overall
ht solicit an estimate

west-cost.

 child task, apply an
ocessing even if something goes wrong. When a

ion that is registered

ctivity may specify that it is leaving a business
usiness

ic transactions,
 time

without waiting for the outcome of the protocol.

• It allows a participant task w siness activity to specify its outcome directly
without waiting for solicitation. Such a feature is generally useful when a task fails so
that the notification can be used by a business activity exception handler to modify the
goals and drive processing in a timely manner.

• It allows participants in a coordinated business activity to perform "tentative" operations
as a normal part of the activity. The result of such "tentative" operations may become
visible before the activity is complete and may require business logic to run in the event

A business application may be partitioned into business activity scopes
activity scope is a business task consisting of a general-purpose c
as a bounded set of operations on a collection of Web services that req
agreed outcome. There can be any number of hierarchical nesting leve
scopes:

outcome processing. For example, a business application mig
from a number of suppliers and choose a quote or bid based on lo

• Allow a business application to catch an exception thrown by a
exception handler, and continue pr
child completes its work, it may be associated with a compensat
with the parent activity.

• A participant task within a business a
activity. This provides the ability to exit a business activity and allows b
programs to delegate processing to other scopes. In contrast to atom
the participant list is dynamic and a participant may exit the protocol at any

ithin a bu

Page 4 of 21

that the operation needs to be compensated. Such a feature is critical w
work of a business ac

hen the joint
tivity requires many operations performed by independent services

UIRED", "SHALL", "SHALL NOT", "SHOULD",
nt are to be

ORDS]

over a large period of time.

1.2 Notational Conventions
The keywords "MUST", "MUST NOT", "REQ
"SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this docume
interpreted as described in RFC2119 [KEYW .

of the general form "some-URI" represent some application-dependent or Namespace URIs
context-dependent URI as defined in RFC2396 [URI].

1.3 Namespace
The XML namespace [XML-ns] URI that MUST be used by implementations of this
specification is:

 http://sc ap.org/ws/2004/01/wsba
This URI is the busin

e following names

ix

S http://www.w3.org/2001/12/soap-envelope

hemas.xmlso
ess coordination type identifier.

Th paces are used in this document:

Pref Namespace

wsu http://schemas.xmlsoap.org/ws/2002/07/utility

s/2003/09/wscoor

ttp://schemas.xmlsoap.org/ws/2004/01/wsba

tion URI is used then the action URI MUST consist of the wsba namespace URI
eration name. For example:

wscoor http://schemas.xmlsoap.org/w

wsba h

If an ac
concatenated with the "#" character and the op

 http://schemas.xmlsoap.org/ws/2004/01/wsba#Complete

 WSDL Files
d the WSDL declarations defined in this

http://schemas.xmlsoap.org/ws/2004/01/wsba/wsba.xsd

1.4 XSD and
The following links hold the XML schema an
document.

http://schemas.xmlsoap.org/ws/2004/01/wsba/wsba.wsdl

ents defined in this specification MUST use "document"

This section describes the Business Activity usage of WS-Coordination protocols.

2.1 CoordinationConte
A business activity uses the WS-Coordination CoordinationContext with the
CoordinationType set to the following URI:

Soap bindings for the WSDL docum
for the style attribute.

2 Using WS-Coordination

xt

 http://schemas.xmlsoap.org/ws/2004/01/wsba
A coordination context may have an Expires attribute. This attribute specifies the earliest
point in time at which a long-running activity may be terminated solely due to its length of

Page 5 of 21

http://schemas.xmlsoap.org/ws/2004/01/wsba/wsba.xsd
http://schemas.xmlsoap.org/ws/2004/01/wsba/wsba.wsdl

operation. A participant could terminate its participation in the long running activity using

ordination
en a coordinator

 For example, it may
e its outcome

icipants, or that it will use a specific
ts participants.

s depend on the arguments passed in the

s created. The returned
sents the new business activity.

posed as the
inationContext represents

 but has the Endpoint Reference of the interposed

entations MAY extend the
ents in the

plementations MAY provide support for capturing additional
opes in their respective

thin the
ervice to add

ationContext

sure that all implementations properly recognize such requests the
ttribute MUST be added to the extension element. If an
rt myService:NestedCreate the implementation MUST

Misunderstood NestedCreate ent.

S-BusinessActivity
ample, it is also

uld have additional semantics on the

3 Coordination Protocols
The Coordination protocols for business activities are summarized below with names relative
to the wsba base name:

• BusinessAgreementWithParticipantCompletion: A participant registers for this
protocol with its coordinator, so that its coordinator can manage it. A participant must
know when it has completed all work for a business activity.

• BusinessAgreementWithCoordinatorCompletion: A participant registers for this
protocol with its coordinator, so that its coordinator can manage it. A participant relies

the Exit protocol message.

A CoordinationContext can have additional elements for extensibility.

Due to the extensibility of WS-Coordination it is also possible to define a co
protocol type that, in addition to specifying the agreement protocol betwe
and a participant, also specifies the behavior of the coordination logic.
specify that the coordinator will act in an all-or-nothing manner to determin
based on the outcomes communicated by its part
majority rule when determining its final outcome based on the outcomes of i

2.2 CreateCoordinationContext Operation
The CreateCoordinationContext operation semantic
CreateCoordinationContext message. The cases are:

• When a CurrentContext is not included, a new business activity i
CoordinationContext repre

• When a CurrentContext is included, the target coordinator is inter
subordinate to the current coordinator. The returned Coord
the same business activity
coordinator's RegistrationService.

As described in the WS-Coordination specification, implem
CreateCoordinationContext operation by including additional elem
CreateCoordinationContext message.

For example, some im
information related to parent-child relationships between sc
CoordinationContexts. An implementation MAY place, for example, a
<myService:NestedCreate wsu:MustUnderstand="true"> element wi
CreateCoordinationContext message in order to cause the respective s
information specific to the nesting relationship to the newly created Coordin
returned in the response.

To en
wsu:MustUnderstand="true" a
implementation does not suppo
return a standard SOAP fault referring to the elem

The overall coordination framework described in WS-Coordination and W
also enables extensibility by the creation of a new CoordinationType; for ex
possible to define a nested business activity that wo
create.

Page 6 of 21

on its coordinator to tell it when it has received all requests to perform work within the

Protocol
 a coordinator

participant knows of
o be delivered, the views

nd a participant may temporarily differ. Omitted are details such as
g of messages or the exchange of error messages due to protocol error.

ation, the coordinator knows that the participant has
completed all processing related to the protocol instance. For the next protocol message

nal

eceipt of this notification, the coordinator knows that the participant has failed
he coordinator

should send a Faulted notification. This notification carries a QName defined in schema

d
on receipt of this notification, the coordinator knows that the participant has recorded

Closed
nt has finalized

 this notification, the coordinator knows that the participant has finalized
successfully processing the Cancel notification.

ordinator knows that the participant will no longer
articipate in the business activity. For the next protocol message the coordinator

ance is to
cipant should send a

ce.

Cancel
Upon receipt of this notification, the participant knows that the work being done has to
be canceled. For the next protocol message the participant should send a Canceled
notification to end the protocol instance.

Compensate
Upon receipt of this notification, the participant knows that the work being done should
be compensated. For the next protocol message the participant should send a
Compensated notification to end the protocol instance.

Faulted

business activity.

3.1 BusinessAgreementWithParticipantCompletion
The state diagram in Figure 1 specifies the behavior of the protocol between
and a participant. The agreement coordination state reflects what each
their relationship at a given point in time. As messages take time t
of the coordinator a
resendin

The coordinator accepts:

Completed
Upon receipt of this notific

the coordinator should send a Close or Compensate notification to indicate the fi
outcome of the protocol instance.

Fault
Upon r
from the active or compensating state. For the next protocol message t

indicating the cause of the fault.

Compensate
Up
a compensation request for a protocol.

Upon receipt of this notification, the coordinator knows that the participa
successfully.

Canceled
Upon receipt of

Exit
Upon receipt of this notification, the co
p
should send an Exited notification.

The participant accepts:

Close
Upon receipt of this notification, the participant knows the protocol inst
complete successfully. For the next protocol message the parti
Closed notification to end the protocol instan

Page 7 of 21

Upon receipt of this notification, the participant knows that the coordinator is aware of a
t and no further actions are required of the participant.

the participant knows that the coordinator is aware the
icipant will no longer participate in the activity.

e current state of a coordinator or participant. In response the
nator or participant returns a Status message containing a QName indicating

 in. GetStatus

S
ipt of this message the target service returns a QName defined in schema

indicating the current state of the coordinator or participant. For example, if a
participant is in the closing state as indicated by the state table, it would return
wsba:Closing.

Figure 1: BusinessAgreementWithParticipantCompletion abstract state diagram.

faul

Exited
Upon receipt of this notification,
part

Both the coordinator and participant accept:

GetStatus
This message requests th
coordi
which row of the state table the coordinator or participant is currently
never provokes a state change.

tatus
Upon rece

The coordinator can enter a condition in which it has sent a protocol mes
receives a protocol message from the participant that is consistent with t

sage and it
he former state,

oordinator to revert to the
prior state, accept the notification from the participant, and continue the protocol from that
point. If the participant detects this condition, it must discard the inconsistent protocol
message from the coordinator.

A party should be prepared to receive duplicate notifications. If a duplicate message is
received it should be treated as specified in the state tables described in this document.

3.2 BusinessAgreementWithCoordinatorCompletion Protocol
The BusinessAgreementWithCoordinatorCompletion protocol is the same as the
BusinessAgreementWithParticipantCompletion protocol, except that a participant relies on

not the current state. In this case, it is the responsibility of the c

Page 8 of 21

its coordinator to tell it when it has received all requests to do work
activity. In addition to the notification

within the business
s in Section 3.1, Business agreement with

tion supports the following:

ion the participant knows that it will receive no new requests
ation processing and

transmit the Completed notification.

Figure 2: BusinessAgreementWithCoordinatorCompletion abstract state diagram.

coordinator comple

The participant accepts:

Complete
Upon receipt of this notificat
for work within the business activity. It should complete applic

4 Policy
WS-Policy [WSPOLICY] defines a framework, model and grammar for expre
capabilities, requirements, and general characteristics of entities in an XM
based system. This specification leverages the WS-Policy family of specifica
participants and coordinators to describe and advertise their capabilities

ssing the
L Web services-

tions to enable
and/or

requirements. The set of policy assertions for WS-Business Activity is defined below.

 Version
ermines invariants maintained by the reliable messaging endpoints and the

 The assertion that will be
col (and version) either used or supported (depending on context)

is the wsp:SpecVersion assertion that is defined in the WS-PolicyAssertions specification
[WSPOLICYASSERTION

4.1. Spec
The protocol det
directives used to track and manage the delivery of messages.
used to identify the proto

].

An example use of this assertion to indicate an endpoint's support for the business activity
protocol follows:

<wsp:SpecVersion
wsp:URI="http://schemas.xmlsoap.org/ws/2004/01/wsba"
wsp:Usage="wsp:Required"/>

Page 9 of 21

4.2 Protocols
This section establishes well-known names for the protocols supported by business

activities.

The following pseudo schema defines these elements:

<wsba:BusinessAgreementWithParticipantCompletion ... />
<wsba:BusinessAgreementWithCoordinatorCompletion ... />

ompletion
dicates support

tion 3.1

rticipantCompletion
t indicates support

It is strongly RECOMMENDED that the communication between services be secured using

The following describes the attributes and tags listed in the syntax above:

/wsba:BusinessAgreementWithParticipantC
This element is a policy assertion as defined in WS-PolicyAssertions. It in
for the protocol defined in Sec

/wsba:BusinessAgreementWithPa
This element is a policy assertion as defined in WS-PolicyAssertions. I
for the protocol defined in Section 3.2

5 Security Considerations

the mechanisms described in WS-Security [WSSec]. In order to p
the body and all relevant headers need t

roperly secure messages,
Specifically, the

> header needs to be signed with the body and other key

or, it is
isms described in

WS-Trust [WSTrust

o be included in the signature.
<wscoor:CoordinationContext
message headers in order to "bind" the two together.

In the event that a participant communicates frequently with a coordinat
RECOMMENDED that a security context be established using the mechan

] and WS-SecureConversation [WSSecConv] allowing for potentially
m t means of authentication.

I hange multiple messages. As a
r For this reason it is
s "re-keying" can be

ues:

tion with the

ated keys)

)

ed that the mechanisms listed above are independent of the SCT and secret
d to secure the

 prove the right to register with the activity.

The security context MAY be re-established using the mechanisms described in WS-Trust
[WSTrust

ore efficien

t is common for communication with coordinators to exc
esult, the usage profile is such that it is susceptible to key attacks.
trongly RECOMMENDED that the keys be changed frequently. This

effected a number of ways. The following list outlines four common techniq

• Attaching a nonce to each message and using it in a derived key func
shared secret

• Using a derived key sequence and switch "generations"

• Closing and re-establishing a security context (not possible for deleg

• Exchanging new secrets between the parties (not possible for delegated keys

It should be not
returned when the coordination context is created. That is, the keys use
channel may be independent of the key used to

] and WS-SecureConversation [WSSecConv]. Similarly, secrets can be exchanged
using the mechanisms describe st. Note, however, that the current shared
secret SHOULD NOT be used to encrypt the new shared secret. Derived keys, the preferred
solution from this list, can be specified using the mechanisms described in WS-
SecureConversation.

The following list summarizes common classes of attacks that apply to this protocol and
identifies the mechanism to prevent/mitigate the attacks:

d in WS-Tru

Page 10 of 21

• Message alteration – Alteration is prevented by including signatures of the message
information using WS-Security [WSSec].

• Message disclosure – Confidentiality is preserved by encrypting sensitive data using

ity – Key integrity is maintained by using the strongest algorithms possible

WS-Security.

• Key integr
(by comparing secured policies – see WS-Policy [WSPOLICY] and WS-Securi
[WSSecPolicy

tyPolicy
]).

• Authentication – Authentication is established using the mechanisms described in WS-
Security and WS-Trust [WSTrust]. Each message is authenticated
mechanisms described in WS-Security [WSSec

using the
].

• Accountability – Accountability is a function of the type of and string o
algorithms being used. In many cases, a strong symmetric key provides
accountability. However, in some environments, strong PKI signatures a

• Availability – Many services are subject to a variety of availability at

f the key and
 sufficient
re required.

tacks. Replay is a
cribed in the next

s are harder to avoid
e taken to

ating sequences.

• Replay – Messages may be replayed for a variety of reasons. To detect and eliminate
d to identify replayed messages such as the

common attack and it is RECOMMENDED that this be addressed as des
bullet. Other attacks, such as network-level denial of service attack
and are outside the scope of this specification. That said, care should b
ensure that minimal processing be performed prior to any authentic

this attack, mechanisms should be use
timestamp/nonce outlined in WS-Security [WSSec]. Alternatively, an
technologies, such as sequencing, can also be used to prevent

d optionally, other
 replay of application

.

6 Interoperability Considerations
on the protocols

his agreement and thus interoperability.

vorable outcome.

 to execute its

elling it that it has been given
is message is part of the

 protocol.

Completed – A message from a participant telling a coordinator that the participant has
successfully executed everything asked of it and needs to continue participating in the
protocol. This message is part BusinessAgreementWithParticipantCompletion
and BusinessAgreementWithCoordinatorCompletion protocols.

Exit – A message from a participant telling a coordinator that the participant does not need
to continue participating in the protocol. This message is part of both the
BusinessAgreementWithParticipantCompletion and
BusinessAgreementWithCoordinatorCompletion protocols.

messages

In order for two parties to communicate, both parties will need to agree
provided. This specification facilitates t

7 Glossary
Cancel – Back out of a business activity.

Close – Terminate a business activity with a fa

Compensate – A message to a Completed participant from a coordinator
compensation. This message is part of both the
BusinessAgreementWithParticipantCompletion and
BusinessAgreementWithCoordinatorCompletion protocols.

Complete – A message to a participant from a coordinator t
all of the work for that business activity. Th
BusinessAgreementWithCoordinatorCompletion

of both the

Page 11 of 21

Fault – A message from a participant telling a coordinator that the participant could not

s activity
-lived business processes and allows business logic

st know when it has

 activity
coordination protocol that supports long-lived business processes and allows business logic

lies on its coordinator to
ity.

ess activity instance. A scope integrates coordinator and application logic.
pplication can be partitioned into a hierarchy of scopes, where the

ation understands the relationship between the parent scope and its child scopes.

nces

b Services Business Process Execution Language, Microsoft, BEA and IBM.

. Bradner, "Key words for use in RFCs to Indicate Requirement Levels," RFC 2119

execute successfully.

BusinessAgreementWithParticipantCompletion protocol – A busines
coordination protocol that supports long
to handle business logic exceptions. A participant in this protocol mu
completed with its tasks in a business activity.

BusinessAgreementWithCoordinatorCompletion protocol – A business

to handle business logic exceptions. A participant in this protocol re
tell it when it has received all requests to do work within a business activ

Scope – A busin
A web services a
applic

8 Refere
[BPEL]

We

[KEYWORDS]
S ,

Harvard University, March 1997.

[SOAP]
W3C Note, "SOAP: Simple Object Access Protocol 1.1," 08 May 2000.

e Identifiers (URI): Generic
FC 2396

[URI]
T. Berners-Lee, R. Fielding, L. Masinter, "Uniform Resourc
Syntax," R , MIT/LCS, U.C. Irvine, Xerox Corporation, August 1998.

s] [XML-n
W3C Recommendation, "Namespaces in XML," 14 January 1999.

hema1] [XML-Sc
W3C Recommendation, "XML Schema Part 1: Structures," 2 May 2001.

[
endation, "XML Schema Part 2: Datatypes

XML-Schema2]
W3C Recomm ," 2 May 2001.

[WSSec]
Web Services Security (WS-Security), IBM, Microsoft and VeriSign.

[WSCOOR]
Web Services Coordination (WS-Coordination), Microsoft, BEA and IBM.

g/TR/2001/NOTE-
[WSDL]

Web Services Description Language (WSDL) 1.1 "http://www.w3.or
wsdl-20010315"

[WSPOLICY]
Web Services Policy Framew olicy)ork (WS-P , Microsoft, BEA Systems, IBM and SAP.

[WSPOLICYASSERTION]
Web Services Policy Assertions Language (WS-PolicyAssertions), Microsoft, BEA
Systems, IBM and SAP.

Appendix A: State Tables for the Agreement Protocols

Page 12 of 21

http://www.w3.org/TR/2000/NOTE-SOAP-20000508/
http://www.w3.org/TR/1999/REC-xml-names-19990114
http://www.w3.org/TR/2001/REC-xmlschema-1-20010502/
http://msdn.microsoft.com/ws/2002/04/Security/
http://msdn.microsoft.com/ws/2002/08/WSCoor/
http://www.w3.org/TR/2001/NOTE-wsdl-20010315
http://msdn.microsoft.com/ws/2002/08/WSCoor/

The following state tables show state transitions that occur in the receiver w
message is recei

hen a protocol
ved or in the sender when a protocol message is sent. Each table uses the

following convention:

where the next state refers to the next agreement protocol state. An Action of Invalid State
means the sent or received protocol message cannot occur in the current state.

The document:

and recipient
e different.

n the message

when the message
is first received.

protocol message
cipant that is consistent with the former state of the coordinator then

the coordinator reverts to its prior state, accepts the notification from the
participant, and continues the protocol from that point.

The GetStatus and Status protocol messages are not included in the tables as these never
result in a change of state.

 following rules need to be applied when reading the state tables in this

• For the period of time that a protocol message is in-flight the sender
states will b
The sender of a protocol message transitions to the "next state" whe
is first sent.
The recipient of a protocol message transitions to the "next state"

• As described earlier in this document, if the coordinator receives a
from the parti

Page 13 of 21

A.1 Participant view of
BusinessAgreementWithParticipantCompletion

Ignore
Ended

Ignore
Ended

Send Compensated
Ended

Send Closed
Ended

Send Canceled
EndedEnded

Ended
Invalid State
Exiting

Invalid State
Exiting

Invalid State
Exiting

Resend Exit
ExitingExiting

Invalid State
FaultingEnded

Resend Fault
Faulting

Invalid State
Faulting

Ignore
Faulting

Faulting
(Compensating)

Invalid State
FaultingEnded

Invalid State
Faulting

Invalid State
Faulting

Resend Fault
Faulting

Faulting
(Active, Completed)

Invalid State
Compensating

Invalid State
Compensating

Ignore
Compensating

Invalid State
Compensating

Ignore
CompensatingCompensating

Invalid State
Closing

Invalid State
Closing

Invalid State
Closing

Ignore
Closing

Ignore
ClosingClosing

Invalid State
Completed

Invalid State
CompletedCompensatingClosing

Resend Completed
CompletedCompleted

Invalid State
Canceling

Invalid State
Canceling

Invalid State
Canceling

Invalid State
Canceling

Ignore
CancelingCanceling

Invalid State
Active

Invalid State
Active

Invalid State
Active

Invalid State
ActiveCancelingActive

ExitedFaultedCompensateCloseCancel

Protocol messages received by ParticipantParticipant view
of state

BusinessAgreementWithParticipantCompletion protocol

Ignore
Ended

Ignore
Ended

Send Compensated
Ended

Send Closed
Ended

Send Canceled
EndedEnded

Ended
Invalid State
Exiting

Invalid State
Exiting

Invalid State
Exiting

Resend Exit
ExitingExiting

Invalid State
FaultingEnded

Resend Fault
Faulting

Invalid State
Faulting

Ignore
Faulting

Faulting
(Compensating)

Invalid State
FaultingEnded

Invalid State
Faulting

Invalid State
Faulting

Resend Fault
Faulting

Faulting
(Active, Completed)

Invalid State
Compensating

Invalid State
Compensating

Ignore
Compensating

Invalid State
Compensating

Ignore
CompensatingCompensating

Invalid State
Closing

Invalid State
Closing

Invalid State
Closing

Ignore
Closing

Ignore
ClosingClosing

Invalid State
Completed

Invalid State
CompletedCompensatingClosing

Resend Completed
CompletedCompleted

Invalid State
Canceling

Invalid State
Canceling

Invalid State
Canceling

Invalid State
Canceling

Ignore
CancelingCanceling

Invalid State
Active

Invalid State
Active

Invalid State
Active

Invalid State
ActiveCancelingActive

ExitedFaultedCompensateCloseCancel

Protocol messages received by ParticipantParticipant view
of state

BusinessAgreementWithParticipantCompletion protocol

Page 14 of 21

EndedEndedEnded
Invalid State
Ended

Invalid State
Ended

Invalid State
EndedEnded

Invalid State
Exiting

Invalid State
Exiting

Invalid State
Exiting

Invalid State
Exiting

Invalid State
ExitingExitingExiting

Invalid State
Faulting

Invalid State
Faulting

Invalid State
FaultingFaulting

Invalid State
Faulting

Invalid State
FaultingFaulting

Ended
Invalid State
Compensating

Invalid State
CompensatingFaulting-Compensating

Invalid State
Compensating

Invalid State
CompensatingCompensating

Invalid State
ClosingEnded

Invalid State
Closing

Invalid State
Closing

Invalid State
Closing

Invalid State
ClosingClosing

Invalid State
Completed

Invalid State
Completed

Invalid State
Completed

Invalid State
CompletedCompleted

Invalid State
CompletedCompleted

Invalid State
Canceling

Invalid State
CancelingEnded

Invalid State
Canceling

Invalid State
Canceling

Invalid State
CancelingCanceling

Invalid State
Active

Invalid State
Active

Invalid State
ActiveFaulting-ActiveCompletedExitingActive

CompensatedClosedCanceledFaultCompletedExit

Protocol messages sent by ParticipantParticipant
view of state

BusinessAgreementWithParticipantCompletion

EndedEndedEnded
Invalid State
Ended

Invalid State
Ended

Invalid State
EndedEnded

Invalid State
Exiting

Invalid State
Exiting

Invalid State
Exiting

Invalid State
Exiting

Invalid State
ExitingExitingExiting

Invalid State
Faulting

Invalid State
Faulting

Invalid State
FaultingFaulting

Invalid State
Faulting

Invalid State
FaultingFaulting

Ended
Invalid State
Compensating

Invalid State
CompensatingFaulting-Compensating

Invalid State
Compensating

Invalid State
CompensatingCompensating

Invalid State
ClosingEnded

Invalid State
Closing

Invalid State
Closing

Invalid State
Closing

Invalid State
ClosingClosing

Invalid State
Completed

Invalid State
Completed

Invalid State
Completed

Invalid State
CompletedCompleted

Invalid State
CompletedCompleted

Invalid State
Canceling

Invalid State
CancelingEnded

Invalid State
Canceling

Invalid State
Canceling

Invalid State
CancelingCanceling

Invalid State
Active

Invalid State
Active

Invalid State
ActiveFaulting-ActiveCompletedExitingActive

CompensatedClosedCanceledFaultCompletedExit

Protocol messages sent by ParticipantParticipant
view of state

BusinessAgreementWithParticipantCompletion

Page 15 of 21

A.2 Coodinator view of
BusinessAgreementWithParticipantCompletion

Ignore
Ended

Ignore
Ended

Ignore
Ended

Resend Faulted
Ended

Ignore
Ended

Resend Exited
EndedEnded

Invalid State
Exiting

Invalid State
Exiting

Invalid State
Exiting

Invalid State
Exiting

Invalid State
Exiting

Ignore
ExitingExiting

Invalid State
Faulting

Invalid te
Faulting

Invalid State
Faulting

Ignore
Faulting

Invalid State
Faulting

Invalid State
Faulting

Faulting
(Active)

Invalid State
Faulting

Invalid State
Faulting

Invalid State
Faulting

Ignore
Faulting

Ignore
Faulting

Invalid State
Faulting

Faulting
(Compensating)

Ended
Invalid State
Compensating

Invalid State
CompensatingFaulting-Compensating

Resend Compensate
Compensating

Invalid State
CompensatingCompensating

Invalid State
ClosingEnded

Invalid State
Closing

Invalid State
Closing

Resend Close
Closing

Invalid State
ClosingClosing

Invalid State
Completed

Invalid State
Completed

Invalid State
Completed

Invalid State
Completed

Ignore
Completed

Invalid State
CompletedCompleted

Invalid State
Canceling

Invalid State
CancelingEndedFaulting-ActiveCompletedExitingCanceling

Invalid State
Active

Invalid State
Active

Invalid State
ActiveFaulting-ActiveCompletedExitingActive

CompensatedClosedCanceledFaultCompletedExit

Protocol messages received by CoordinatorCoordinator
view of state

BusinessAgreementWithParticipantCompletion

Sta

Ignore
Ended

Ignore
Ended

Ignore
Ended

Resend Faulted
Ended

Ignore
Ended

Resend Exited
EndedEnded

Invalid State
Exiting

Invalid State
Exiting

Invalid State
Exiting

Invalid State
Exiting

Invalid State
Exiting

Ignore
ExitingExiting

Invalid State
Faulting

Invalid te
Faulting

Invalid State
Faulting

Ignore
Faulting

Invalid State
Faulting

Invalid State
Faulting

Faulting
(Active)

Invalid State
Faulting

Invalid State
Faulting

Invalid State
Faulting

Ignore
Faulting

Ignore
Faulting

Invalid State
Faulting

Faulting
(Compensating)

Ended
Invalid State
Compensating

Invalid State
CompensatingFaulting-Compensating

Resend Compensate
Compensating

Invalid State
CompensatingCompensating

Invalid State
ClosingEnded

Invalid State
Closing

Invalid State
Closing

Resend Close
Closing

Invalid State
ClosingClosing

Invalid State
Completed

Invalid State
Completed

Invalid State
Completed

Invalid State
Completed

Ignore
Completed

Invalid State
CompletedCompleted

Invalid State
Canceling

Invalid State
CancelingEndedFaulting-ActiveCompletedExitingCanceling

Invalid State
Active

Invalid State
Active

Invalid State
ActiveFaulting-ActiveCompletedExitingActive

CompensatedClosedCanceledFaultCompletedExit

Protocol messages received by CoordinatorCoordinator
view of state

BusinessAgreementWithParticipantCompletion

Sta

Page 16 of 21

EndedEnded
Invalid State
Ended

Invalid State
Ended

Invalid State
EndedEnded

Ended
Invalid State
Exiting

Invalid State
Exiting

Invalid State
Exiting

Invalid State
ExitingExiting

Invalid State
FaultingEnded

Invalid State
Faulting

Invalid State
Faulting

Invalid State
FaultingFaulting

Invalid State
Compensating

Invalid State
CompensatingCompensating

Invalid State
Compensating

Invalid State
CompensatingCompensating

Invalid State
Closing

Invalid State
Closing

Invalid State
ClosingClosing

Invalid State
ClosingClosing

Invalid State
Completed

Invalid State
CompletedCompensatingClosing

Invalid State
CompletedCompleted

Invalid State
Canceling

Invalid State
Canceling

Invalid State
Canceling

Invalid State
CancelingCancelingCanceling

Invalid State
Active

Invalid State
Active

Invalid State
Active

Invalid State
ActiveCanceling-ActiveActive

ExitedFaultedCompensateCloseCancel

Protocol messages sent by CoordinatorCoordinator
view

of state

BusinessAgreementWithParticipantCompletion
protocol

EndedEnded
Invalid State
Ended

Invalid State
Ended

Invalid State
EndedEnded

Ended
Invalid State
Exiting

Invalid State
Exiting

Invalid State
Exiting

Invalid State
ExitingExiting

Invalid State
FaultingEnded

Invalid State
Faulting

Invalid State
Faulting

Invalid State
FaultingFaulting

Invalid State
Compensating

Invalid State
CompensatingCompensating

Invalid State
Compensating

Invalid State
CompensatingCompensating

Invalid State
Closing

Invalid State
Closing

Invalid State
ClosingClosing

Invalid State
ClosingClosing

Invalid State
Completed

Invalid State
CompletedCompensatingClosing

Invalid State
CompletedCompleted

Invalid State
Canceling

Invalid State
Canceling

Invalid State
Canceling

Invalid State
CancelingCancelingCanceling

Invalid State
Active

Invalid State
Active

Invalid State
Active

Invalid State
ActiveCanceling-ActiveActive

ExitedFaultedCompensateCloseCancel

Protocol messages sent by CoordinatorCoordinator
view

of state

BusinessAgreementWithParticipantCompletion
protocol

Page 17 of 21

A.3 Participant view of
BusinessAgreementWithCoordinatorCompletion

Ignore
Ended

Ignore
Ended

Send Compensated
Ended

Send Closed
Ended

Ignore
Ended

Send Canceled
EndedEnded

Ended
Invalid State
Exiting

Invalid State
Exiting

Invalid State
Exiting

Resend Exit
Exiting

Resend Exit
ExitingExiting

Invalid State
FaultingEnded

Resend Fault
Faulting

Invalid State
Faulting

Ignore
Faulting

Ignore
Faulting

Faulting
(Compensating)

Invalid State
FaultingEnded

Invalid State
Faulting

Invalid State
Faulting

Resend Fault
Faulting

Resend Fault
Faulting

Faulting
(Active, Completed)

Invalid State
Compensating

Invalid State
Compensating

Ignore
Compensating

Invalid State
Compensating

Ignore
Compensating

Ignore
CompensatingCompensating

Invalid State
Closing

Invalid State
Closing

Invalid State
Closing

Ignore
Closing

Ignore
Closing

Ignore
ClosingClosing

Invalid State
Completed

Invalid State
CompletedCompensatingClosing

Resend Completed
Completed

Resend Completed
CompletedCompleted

Invalid State
Completing

Invalid State
Completing

Invalid State
Completing

Invalid State
Completing

Ignore
CompletingCancelingCompleting

Invalid State
Canceling

Invalid State
Canceling

Invalid State
Canceling

Invalid State
Canceling

Ignore
Canceling

Ignore
CancelingCanceling

Invalid State
Active

Invalid State
Active

Invalid State
Active

Invalid State
ActiveCompletingCancelingActive

ExitedFaultedCompensateCloseCompleteCancel

Protocol messages received by ParticipantParticipant view
of state

BusinessAgreementWithCoordinatorCompletion protocol

Ignore
Ended

Ignore
Ended

Send Compensated
Ended

Send Closed
Ended

Ignore
Ended

Send Canceled
EndedEnded

Ended
Invalid State
Exiting

Invalid State
Exiting

Invalid State
Exiting

Resend Exit
Exiting

Resend Exit
ExitingExiting

Invalid State
FaultingEnded

Resend Fault
Faulting

Invalid State
Faulting

Ignore
Faulting

Ignore
Faulting

Faulting
(Compensating)

Invalid State
FaultingEnded

Invalid State
Faulting

Invalid State
Faulting

Resend Fault
Faulting

Resend Fault
Faulting

Faulting
(Active, Completed)

Invalid State
Compensating

Invalid State
Compensating

Ignore
Compensating

Invalid State
Compensating

Ignore
Compensating

Ignore
CompensatingCompensating

Invalid State
Closing

Invalid State
Closing

Invalid State
Closing

Ignore
Closing

Ignore
Closing

Ignore
ClosingClosing

Invalid State
Completed

Invalid State
CompletedCompensatingClosing

Resend Completed
Completed

Resend Completed
CompletedCompleted

Invalid State
Completing

Invalid State
Completing

Invalid State
Completing

Invalid State
Completing

Ignore
CompletingCancelingCompleting

Invalid State
Canceling

Invalid State
Canceling

Invalid State
Canceling

Invalid State
Canceling

Ignore
Canceling

Ignore
CancelingCanceling

Invalid State
Active

Invalid State
Active

Invalid State
Active

Invalid State
ActiveCompletingCancelingActive

ExitedFaultedCompensateCloseCompleteCancel

Protocol messages received by ParticipantParticipant view
of state

BusinessAgreementWithCoordinatorCompletion protocol

Page 18 of 21

EndedEndedEnded
Invalid State
Ended

Invalid State
Ended

Invalid State
EndedEnded

Invalid State
Exiting

Invalid State
Exiting

Invalid State
Exiting

Invalid State
Exiting

Invalid State
ExitingExitingExiting

Invalid State
Faulting

Invalid State
Faulting

Invalid State
FaultingFaulting

Invalid State
Faulting

Invalid State
FaultingFaulting

Ended
Invalid State
Compensating

Invalid State
CompensatingFaulting-Compensating

Invalid State
Compensating

Invalid State
CompensatingCompensating

Invalid State
ClosingEnded

Invalid State
Closing

Invalid State
Closing

Invalid State
Closing

Invalid State
ClosingClosing

Invalid State
Completed

Invalid State
Completed

Invalid State
Completed

Invalid State
CompletedCompleted

Invalid State
CompletedCompleted

Invalid State
Completing

Invalid State
Completing

Invalid State
CompletingFaulting-ActiveCompletedExitingCompleting

Invalid State
Canceling

Invalid State
CancelingEnded

Invalid State
Canceling

Invalid State
Canceling

Invalid State
CancelingCanceling

Invalid State
Active

Invalid State
Active

Invalid State
ActiveFaulting-Active

Invalid State
ActiveExitingActive

CompensatedClosedCanceledFaultCompletedExit

Protocol messages sent by ParticipantParticipant
view of state

BusinessAgreementWithCoordinatorCompletion

EndedEndedEnded
Invalid State
Ended

Invalid State
Ended

Invalid State
EndedEnded

Invalid State
Exiting

Invalid State
Exiting

Invalid State
Exiting

Invalid State
Exiting

Invalid State
ExitingExitingExiting

Invalid State
Faulting

Invalid State
Faulting

Invalid State
FaultingFaulting

Invalid State
Faulting

Invalid State
FaultingFaulting

Ended
Invalid State
Compensating

Invalid State
CompensatingFaulting-Compensating

Invalid State
Compensating

Invalid State
CompensatingCompensating

Invalid State
ClosingEnded

Invalid State
Closing

Invalid State
Closing

Invalid State
Closing

Invalid State
ClosingClosing

Invalid State
Completed

Invalid State
Completed

Invalid State
Completed

Invalid State
CompletedCompleted

Invalid State
CompletedCompleted

Invalid State
Completing

Invalid State
Completing

Invalid State
CompletingFaulting-ActiveCompletedExitingCompleting

Invalid State
Canceling

Invalid State
CancelingEnded

Invalid State
Canceling

Invalid State
Canceling

Invalid State
CancelingCanceling

Invalid State
Active

Invalid State
Active

Invalid State
ActiveFaulting-Active

Invalid State
ActiveExitingActive

CompensatedClosedCanceledFaultCompletedExit

Protocol messages sent by ParticipantParticipant
view of state

BusinessAgreementWithCoordinatorCompletion

Page 19 of 21

A.4 Coordinator view of
BusinessAgreementWithCoordinatorCompletion

Ignore
Ended

Ignore
Ended

Ignore
Ended

Resend Faulted
Ended

Ignore
Ended

Resend Exited
EndedEnded

Invalid State
Exiting

Invalid State
Exiting

Invalid State
Exiting

Invalid State
Exiting

Invalid State
Exiting

Ignore
ExitingExiting

Invalid State
Faulting

Invalid State
Faulting

Invalid State
Faulting

Ignore
Faulting

Invalid State
Faulting

Invalid State
Faulting

Faulting
(Active, Completing)

Invalid State
Faulting

Invalid State
Faultin

Invalid State
Faulting

Ignore
Faulting

Ignore
Faulting

Invalid State
Faulting

Faulting
(Compensating)

Ended
Invalid State
Compensating

Invalid State
CompensatingFaulting-Compensating

Resend Compensate
Compensating

Invalid State
CompensatingCompensating

Invalid State
ClosingEnded

Invalid State
Closing

Invalid State
Closing

Resend Close
Closing

Invalid State
ClosingClosing

Invalid State
Completed

Invalid State
Completed

Invalid State
Completed

Invalid State
Completed

Ignore
Completed

Invalid State
CompletedCompleted

Invalid State
Completing

Invalid State
Completing

Invalid State
CompletingFaulting-ActiveCompletedExitingCompleting

Invalid State
Canceling

Invalid State
CancelingEndedFaulting-ActiveCompletedExiting

Canceling-
Completing

Invalid State
Canceling

Invalid State
CancelingEndedFaulting-Active

Invalid State
CancelingExiting

Canceling-
Active

Invalid State
Active

Invalid State
Active

Invalid State
ActiveFaulting-Active

Invalid State
ActiveExitingActive

CompensatedClosedCanceledFaultCompletedExit

Protocol messages received by CoordinatorCoordinator view
of state

BusinessAgreementWithCoordinatorCompletion

g

Ignore
Ended

Ignore
Ended

Ignore
Ended

Resend Faulted
Ended

Ignore
Ended

Resend Exited
EndedEnded

Invalid State
Exiting

Invalid State
Exiting

Invalid State
Exiting

Invalid State
Exiting

Invalid State
Exiting

Ignore
ExitingExiting

Invalid State
Faulting

Invalid State
Faulting

Invalid State
Faulting

Ignore
Faulting

Invalid State
Faulting

Invalid State
Faulting

Faulting
(Active, Completing)

Invalid State
Faulting

Invalid State
Faultin

Invalid State
Faulting

Ignore
Faulting

Ignore
Faulting

Invalid State
Faulting

Faulting
(Compensating)

Ended
Invalid State
Compensating

Invalid State
CompensatingFaulting-Compensating

Resend Compensate
Compensating

Invalid State
CompensatingCompensating

Invalid State
ClosingEnded

Invalid State
Closing

Invalid State
Closing

Resend Close
Closing

Invalid State
ClosingClosing

Invalid State
Completed

Invalid State
Completed

Invalid State
Completed

Invalid State
Completed

Ignore
Completed

Invalid State
CompletedCompleted

Invalid State
Completing

Invalid State
Completing

Invalid State
CompletingFaulting-ActiveCompletedExitingCompleting

Invalid State
Canceling

Invalid State
CancelingEndedFaulting-ActiveCompletedExiting

Canceling-
Completing

Invalid State
Canceling

Invalid State
CancelingEndedFaulting-Active

Invalid State
CancelingExiting

Canceling-
Active

Invalid State
Active

Invalid State
Active

Invalid State
ActiveFaulting-Active

Invalid State
ActiveExitingActive

CompensatedClosedCanceledFaultCompletedExit

Protocol messages received by CoordinatorCoordinator view
of state

BusinessAgreementWithCoordinatorCompletion

g

Page 20 of 21

EndedEnded
Invalid State
Ended

Invalid State
Ended

Invalid State
Ended

Invalid State
EndedEnded

Ended
Invalid State
Exiting

Invalid State
Exiting

Invalid State
Exiting

Invalid State
Exiting

Invalid State
ExitingExiting

Invalid State
FaultingEnded

Invalid State
Faulting

Invalid State
Faulting

Invalid State
Faulting

Invalid State
FaultingFaulting

Invalid State
Compensating

Invalid State
CompensatingCompensating

Invalid State
Compensating

Invalid State
Compensating

Invalid State
CompensatingCompensating

Invalid State
Closing

Invalid State
Closing

Invalid State
ClosingClosing

Invalid State
Closing

Invalid State
ClosingClosing

Invalid State
Completed

Invalid State
CompletedCompensatingClosing

Invalid State
Completed

Invalid State
CompletedCompleted

Invalid State
Completing

Invalid State
Completing

Invalid State
Completing

Invalid State
CompletingCompletingCanceling-CompletingCompleting

Invalid State
Canceling

Invalid State
Canceling

Invalid State
Canceling

Invalid State
Canceling

Invalid State
CancelingCancelingCanceling

Invalid State
Active

Invalid State
Active

Invalid State
Active

Invalid State
ActiveCompletingCanceling-ActiveActive

ExitedFaultedCompensateCloseCompleteCancel

Protocol messages Sent by CoordinatorCoordinator
view of state

BusinessAgreementWithCoordinatorCompletion protocol

EndedEnded
Invalid State
Ended

Invalid State
Ended

Invalid State
Ended

Invalid State
EndedEnded

Ended
Invalid State
Exiting

Invalid State
Exiting

Invalid State
Exiting

Invalid State
Exiting

Invalid State
ExitingExiting

Invalid State
FaultingEnded

Invalid State
Faulting

Invalid State
Faulting

Invalid State
Faulting

Invalid State
FaultingFaulting

Invalid State
Compensating

Invalid State
CompensatingCompensating

Invalid State
Compensating

Invalid State
Compensating

Invalid State
CompensatingCompensating

Invalid State
Closing

Invalid State
Closing

Invalid State
ClosingClosing

Invalid State
Closing

Invalid State
ClosingClosing

Invalid State
Completed

Invalid State
CompletedCompensatingClosing

Invalid State
Completed

Invalid State
CompletedCompleted

Invalid State
Completing

Invalid State
Completing

Invalid State
Completing

Invalid State
CompletingCompletingCanceling-CompletingCompleting

Invalid State
Canceling

Invalid State
Canceling

Invalid State
Canceling

Invalid State
Canceling

Invalid State
CancelingCancelingCanceling

Invalid State
Active

Invalid State
Active

Invalid State
Active

Invalid State
ActiveCompletingCanceling-ActiveActive

ExitedFaultedCompensateCloseCompleteCancel

Protocol messages Sent by CoordinatorCoordinator
view of state

BusinessAgreementWithCoordinatorCompletion protocol

Page 21 of 21

	Web Services Business Activity Framework (WS-BusinessActivity)
	
	
	
	
	Authors

	Copyright Notice
	Abstract
	Composable Architecture
	Status
	Acknowledgments
	Table of Contents
	1 Introduction
	1.1 Model
	1.2 Notational Conventions
	1.3 Namespace
	1.4 XSD and WSDL Files

	2 Using WS-Coordination
	2.1 CoordinationContext
	2.2 CreateCoordinationContext Operation

	3 Coordination Protocols
	3.1 BusinessAgreementWithParticipantCompletion Protocol
	3.2 BusinessAgreementWithCoordinatorCompletion Protocol

	4 Policy
	4.1. Spec Version
	4.2 Protocols

	5 Security Considerations
	6 Interoperability Considerations
	7 Glossary
	8 References
	Appendix A: State Tables for the Agreement Protocols
	A.1 Participant view of BusinessAgreementWithParticipantCompletion
	A.3 Participant view of BusinessAgreementWithCoordinatorCompletion
	A.4 Coordinator view of BusinessAgreementWithCoordinatorCompletion

