
Web Services Security Kerberos Binding
December 2003

Authors

Giovanni Della-Libera, Microsoft
Brendan Dixon, Microsoft
Praerit Garg, Microsoft
Maryann Hondo, IBM
Chris Kaler, Microsoft
Hiroshi Maruyama, IBM
Anthony Nadalin, IBM
Nataraj Nagaratnam, IBM

Copyright Notice
(c) 2003 IBM Corporation, Microsoft Corporation. All rights reserved.

IBM and Microsoft (collectively, the "Authors") hereby grant you permission to copy
and display the Web Services Security Kerberos Binding Specification, in any medium
without fee or royalty, provided that you include the following on ALL copies of the
Web Services Security Kerberos Binding Specification, or portions thereof, that you
make:

1. A link or URL to the Specification at this location

2. The copyright notice as shown in the Web Services Security Kerberos Binding
Specification.

EXCEPT FOR THE COPYRIGHT LICENSE GRANTED ABOVE, THE AUTHORS DO NOT
GRANT, EITHER EXPRESSLY OR IMPLIEDLY, A LICENSE TO ANY INTELLECTUAL
PROPERTY, INCLUDING PATENTS, THEY OWN OR CONTROL.

THE Web Services Security Kerberos Binding SPECIFICATION IS PROVIDED "AS IS,"
AND THE AUTHORS MAKE NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE, NON-INFRINGEMENT, OR TITLE; THAT THE
CONTENTS OF THE Web Services Security Kerberos Binding SPECIFICATION ARE
SUITABLE FOR ANY PURPOSE; NOR THAT THE IMPLEMENTATION OF SUCH
CONTENTS WILL NOT INFRINGE ANY THIRD PARTY PATENTS, COPYRIGHTS,
TRADEMARKS OR OTHER RIGHTS.

THE AUTHORS WILL NOT BE LIABLE FOR ANY DIRECT, INDIRECT, SPECIAL,
INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF OR RELATING TO ANY
USE OR DISTRIBUTION OF THE Web Services Security Kerberos Binding
SPECIFICATION.

The Web Services Security Kerberos Binding Specification may change before final
release and you are cautioned against relying on the content of this specification.

The name and trademarks of the Authors may NOT be used in any manner, including
advertising or publicity pertaining to the Specification or its contents without specific,
written prior permission. Title to copyright in the Web Services Security Kerberos
Binding Specification will at all times remain with the Authors.

No other rights are granted by implication, estoppel or otherwise.

Abstract
This document describes how to use Web Services security specifications with
Kerberos.

Status
This Web Services Security Kerberos Binding Specification is an initial public draft
release and is provided for review and evaluation only. IBM and Microsoft hope to
solicit your contributions and suggestions in the near future. IBM and Microsoft make
no warrantees or representations regarding the specifications in any manner
whatsoever.

Table of Contents
1. Introduction

1.1. Notational Conventions
1.2. Namespaces
1.3. Schema File

2. Web Service Security Usage
2.1. Security Tokens
2.2. Policies
2.3. Signing and Encrypting

3. GSS-API for Kerberos Interoperability
3.1. Acquiring a Credentials Handle
3.2. Establishing a Security Context
3.3. Signing with XML Signature
3.4. Replay Prevention
3.5. Encryption with XML Encryption

4. General Kerberos Interoperability
4.1. Kerberos Security Token
4.2. Using XML Signature
4.3. Using XML Encryption
4.4. PKI Interoperability

4.4.1. PKI Kerberos
4.4.2. Kerberos PKI

5. Derived Keys
6. Security Considerations
7. Acknowledgements
8. References

1. Introduction
Kerberos is an established authentication and security infrastructure in use in many
environments today. Consequently, as applications integrate with and are developed
for Web services, there is a need to leverage existing security infrastructure. This
specification describes how to integrate Kerberos security environments with the
Web service security architecture.

Integration with Web services security requires the following aspects:

• Requesting and issuing security tokens

• Attaching security token to messages

• Establishing a secure context

• Signing and encrypting the message using the security context

This specification describes two models of Web service usage and interoperability:
GSS-API and Raw Kerberos.

1.1. Notational Conventions
The keywords "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
document are to be interpreted as described in RFC 2119.

When describing abstract data models, this specification uses the notational
convention used by the XML Infoset [7]. Specifically, abstract property names always
appear in square brackets (e.g., [some property]).

When describing concrete XML schemas, this specification uses the notational
convention of WS-Security [13]. Specifically, each member of an element’s [children]
or [attributes] property is described using an XPath-like notation (e.g.,
/x:MyHeader/x:SomeProperty/@value1). The use of {any} indicates the presence of
an element wildcard (<xs:any/>). The use of @{any} indicates the presence of an
attribute wildcard (<xs:anyAttribute/>).

1.2. Namespaces
The following namespaces are used in this document:

Prefix Namespace

S http://www.w3.org/2002/06/soap-envelope

S11 http://schemas.xmlsoap.org/soap/

ds http://www.w3.org/2000/09/xmldsig#

xenc http://www.w3.org/2001/04/xmlenc#

wsse http://schemas.xmlsoap.org/ws/2003/07/secext

wsu http://schemas.xmlsoap.org/ws/2002/07/utility

wsk http://schemas.xmlsoap.org/ws/2003/12/kerberos

This specification uses the SOAP 1.2 specification for its examples; however, the
mechanisms defined here are also applicable to SOAP 1.1.

1.3. Schema File
The schema for this specification can be located at:

 http://schemas.xmlsoap.org/ws/2003/12/kerberos

2. Web Service Security Usage
This specification builds on the WS-Security [WS-Security], WS-Trust [WS-Trust],
and WS-SecureConversation [WS-SecureConversation] specifications to integrate
Kerberos functionality. The following sub-sections describe basic usage patterns that
are common to both Kerberos scenarios defined in this specification.

2.1. Security Tokens
The security tokens used by both models are binary and not based on XML.
Consequently, the <wsse:BinarySecurityToken> element from WS-Security is used
to pass security tokens inside SOAP messages. The wsse:ValueType and
wsse:EncodingType attributes describe the security token’s type and encoding.
Applications integrating Kerberos with WS-Security MUST include their tokens as
instances of <wsse:BinarySecurityToken>. They SHOULD encode these in base64
(i.e., wsse:EncodingType="wsse:Base64Binary").

Each of the models describes the valid security token formats and how these tokens
are obtained.

2.2. Policies
Every security infrastructure has configuration and runtime options. For example,
some allow mutual authentication and others allow negotiating the cryptographic
algorithms and key properties. Interoperation requires all parties selecting
compatible options, if not identical. Applications SHOULD note the options they
expect in their policy which SHOULD be expressed using WS-Policy and WS-
SecurityPolicy.

Each model definition describes its specific algorithms for establishing mutual
policies.

2.3. Signing and Encrypting
The Web services security model uses the mechanisms described in WS-Security to
sign and encrypt messages. Both mechanisms use URIs to indicate the type of
signature or encryption.

XML Signature [XML Signature] enables multiple signatures, over potentially different
parts of the message, and includes a number of pre-defined signature algorithms
(e.g. http://www.w3.org/2000/09/xmldsig#rsa-sha1). XML Signatures apply
indirectly to the signed content: That is, the signature is formed over the digest of
the describing element (the <ds:SignedInfo> sub-element of the <ds:Signature>
element) rather than over the content directly. The <ds:SignedInfo> element
contains, among other details, the content’s digest and an expression of the
signature algorithm (using the <ds:SignatureMethod> element).

XML Encryption [XML Encryption], and its use by WS-Security, carries the encrypted
content within an <xenc:EncryptedData> element, wholly replacing the encrypted
element. Among the children of the <xenc:EncryptedData> element is
<xenc:EncryptionMethod>, which expresses what encryption algorithm the
application used.

Each application and security infrastructure must define the acceptable algorithms,
security context, and keys. The exact algorithms for signing and encrypting vary

between the different Kerberos models and are described in detail in those sections
of this specification.

Within this context, the mechanisms described in WS-Security represent the
authenticator that is used to secure messages. That is, typical Kerberos
authenticators are not used verbatim. Instead, those aspects are included in the
message and are referenced as part of a signature. For this reason it is STRONGLY
RECOMMENDED that both message timestamps and nonces be included in signatures
and that message freshness checks be applied. Refer to the security considerations
section of the WS-Security specification for additional information. As well, it is
RECOMMENDED by this specification that signatures be used instead of encryptions
that include digests.

3. GSS-API for Kerberos Interoperability
GSS-API presents a common approach and feature set over a number of different
and popular security protocols. It is frequently used when two Web services, both
existing within Kerberos environments leveraging GSS-API, want to securely
interoperate across the Internet.

The GSS-API model revolves around a security context – a set of state shared
between a client (created by GSS_Init_sec_context) and server (accepted by
GSS_Accept_sec_context). The context carries attributes such as replay detection
elements, sequencing elements, and shared session keys. GSS-API includes this
context on top of the underlying protocol used. For example, when using X.509
Certificates, GSS-API adds sequencing facilities and a session-level symmetric key.
GSS-API abstracts existing protocols and adds additional features.

It should be noted that there are two approaches for GSS-API integration: a Web
services security mechanism or layering Web services security on top of existing
mechanisms. This specification is agnostic of approach as it defines the wire protocol
and the primary difference between the two approaches is the API calls and
sequencing.

3.1. Acquiring a Credentials Handle
GSS-API designates the abstracted security protocols as mechanisms. When an
application first acquires its credentials handle, which scopes all of its operations
within GSS-API, it specifies either a specific mechanism type (i.e. mech_type) or
NULL to request the default system mechanism.

Since GSS-API shields an application from the vagaries of the different underlying
protocols, applications are free to select their mechanism type (or use the default).
WS-Security adds no new requirements since it can carry GSS-API security tokens as
binary tokens. However, the sender and receiver must be in agreement as to the
type and contents of the security token.

3.2. Establishing a Security Context
GSS-API requires the exchange of at least one, and perhaps multiple, messages to
establish the shared context. When requiring an application-level exchange,
GSS_Init_sec_context or GSS_Accept_sec_context returns with either
GSS_S_CONTINUE_NEEDED or GSS_S_COMPLETE. The context does not exist until
GSS_S_COMPLETE is returned.

Applications perform this message exchange using the mechanisms described in WS-
Trust for handling challenge/responses and WS-SecureConversation for requesting a
security context token. Essentially, a "binary negotiation" occurs using the SPNEGO
blobs resulting in a Security Context Token (SCT) which is associated with the
SPNEGO results. This means that the SCT can be used to indicate the context (and
keys) to the recipient.

Specifically, the object returned from GSS-API MUST be attached using a
<wsse:BinaryNegotiation> element inside of the <wsse:RequestSecurityToken>
and <wsse:RequestSecurityTokenResponse> elements containing the GSS-API
object. The ValueType attribute indicates the type of negotiation. It is
RECOMMENDED that the ValueType attribute use wsk:SPNEGO. In this scenario, the
<wsse:BinaryNegotiation> element is specified along with the security context
token request element <wsse:TokenType> equal to wsse:SecurityContextToken
inside of the <wsse:RequestSecurityToken> element. It is STRONGLY
RECOMMENDED that the <wsse:BinaryNegotiation> element be signed (or in the
case that signatures cannot be initially applied that it be signed as soon as possible).

While the exact format of the binary object is not relevant to this process, it is
specific to the type specific on the <wsse:BinaryNegotiation> element.
Negotiations of type wsk:SPNEGO MUST conform to RFC 2478.

The result is that the security context token issued is bound to the GSS-API context
negotiated.

This "binding" is implicit, but in some scenarios, the issuer MAY include information
in the issued security context token which it uses on subsequent messages to
correlate the contexts. This is done by including a <wsk:Correlation> element in
the <wsse:SecurityContextToken>. The contents of this element MUST be
preserved verbatim and MUST be passed in all uses of the token. The syntax
overview is as follows:

<wsse:SecurityContextToken>

 ...

 <wsk:Correlation Target="...">

 ...

 </wsk:Correlation>

 ...

</wsse:SecurityContextToken>

/wsse:SecurityContextToken/wsk:Correlation
This element is used to pass correlation information which MUST be returned
verbatim. Note that multiple correlation elements MAY be present.

/wsse:SecurityContextToken/wsk:Correlation/@Target
This optional attribute allows a specific SOAP actor/role to be identified with the
correlation element.

/wsse:SecurityContextToken/wsk:Correlation/{any}
The contents of this element are up to the creator and are not interpreted by
anyone except the sender.

/wsse:SecurityContextToken/wsk:Correlation/@{any}
This is an extensibility mechanism to allow additional attributes, based on
schemas, to be added to the element.

Applications MUST NOT sign or encrypt content using GSS-API until the mechanism
is ready. Normally, that is not until shared context establishment. However, some
mechanisms may support signing and encryption before fully establishing the
context. These indicate readiness by returning true for the prot_ready_state boolean
from GSS_Init_sec_context or GSS_Accept_sec_context.

It is RECOMMENDED that mutual authentication through GSS-API (i.e.
mutual_req_flag is true) be requested although applications MAY choose not to do
so.

The figure below illustrates the model for GSS-API interoperation with the Web
service security specifications:

1. A client service (App1) obtains a TGT to allow it to later obtain tickets for
services. This can be done using the traditional Keberos mechanisms or using
the mechanisms described in WS-Trust.

2. A client service (App1) obtains an ST for another service (App2). This can be
done using the traditional Kerberos mechanisms or using the mechanisms
described in WS-Trust.

3. The client uses the mechanisms described in WS-Trust to initialize the GSS-
API context:

The client service issues a <RequestSecurityToken> message to the target service.
As well, a <BinaryNegotiation> is included to encapsulate the GSS API initialization
context.

The service MAY respond with a <RequestSecurityTokenResponse> message.

The client MAY respond with a <RequestSecurityTokenResponse> message.

Steps (b) and (c) continue until both sides are happy (and/or one fails). On success,
the <SecurityContextToken> is returned. Note that steps (b) and (c) MAY be
omitted.

The following sample message illustrates creating a security context based on a
SPNEGO exchange between two parties. In this example, one round trip is required
for SPNEGO.

<?xml version="1.0" encoding="utf-8"?>

<S:Envelope xmlns:S="http://www.w3.org/2001/12/soap-envelope">

 <S:Header>

 ...

 <wsse:Security

 xmlns:wsse="http://schemas.xmlsoap.org/ws/2003/07/secext">

 <ds:Signature xmlns:ds="http://www.w3.org/2000/09/xmldsig#">

 <!-- Signature over the request ->

 </ds:Signature>

 </wsse:Security>

 </S:Header>

 <S:Body wsu:Id="body">

 <wsse:RequestSecurityToken

 xmlns:wsse="http://schemas.xmlsoap.org/ws/2003/07/secext"

 xmlns:wsk="http://schemas.xmlsoap.org/ws/2003/12/kerberos">

 <wsse:TokenType>wsse:SecurityContextToken</wsse:TokenType>

 <wsse:BinaryNegotiation ValueType="wsk:SPNEGO"

 Encoding="wsse:Base64Binary">

 jhkaJKHKJHD...

 </wsse:BinaryNegotiation>

 </wsse:RequestSecurityToken>

 </S:Body>

</S:Envelope>

The following is a sample response for the scenario described above:

<?xml version="1.0" encoding="utf-8"?>

<S:Envelope xmlns:S="http://www.w3.org/2001/12/soap-envelope">

 <S:Header>

 ...

 <wsse:Security

 xmlns:wsse="http://schemas.xmlsoap.org/ws/2003/07/secext"

 xmlns:wsk="http://schemas.xmlsoap.org/ws/2003/12/kerberos">

 <wsse:SecurityContextToken wsu:Id="sct">

 <wsu:Identifier>

 http://fabrikam123.com/ctx/124</wsu:Identifier>

 <wsk:Correlation>

 <wsu:Identifier>uuid:...</wsu:Identifier>

 </wsk:Correlation>

 </wsse:SecurityContextToken>

 <ds:Signature xmlns:ds="http://www.w3.org/2000/09/xmldsig#">

 <!-- Signature over the response ->

 </ds:Signature>

 </wsse:Security>

 </S:Header>

 <S:Body wsu:Id="body">

 <wsse:RequestSecurityTokenResponse

 "xmlns:wsse=http://schemas.xmlsoap.org/ws/2003/07/secext"

 "xmlns:wsu="http://schemas.xmlsoap.org/ws/2002/07/utility"

 xmlns:wsk="http://schemas.xmlsoap.org/ws/2003/12/kerberos">

 <wsse:TokenType>wsse:SecurityContextToken</wsse:TokenType>

 <wsse:BinaryNegotiation ValueType="wsk:SPNEGO"

 Encoding="wsse:Base64Binary">

 HorueHNUEE...

 </wsse:BinaryNegotiation>

 <wsse:RequestedSecurityToken>

 <wsse:SecurityContextToken>

 <wsee:Reference URI="#sct"/>

 </wsse:SecurityContextToken>

 </wsse:RequestedSecurityToken>

 </wsse:RequestSecurityTokenResponse>

 </S:Body>

</S:Envelope>

The figure below illustrates an alternate model which MAY also be used. In this case
steps (1) and (2) are the same as above except that the communication is not with
the target service, but instead with a broker (such as a KDC).

For this scenario, the <RequestSecurityToken> message MUST include an
<wsp:AppliesTo> scoping element indicating the target service (App2). This allows
the broker to know the intended target. This is critical because the
<SecurityContextToken> returned MUST include the session key encrypted for the
target (App2).

The client can then communicate with the target (App2) using the security context
token and the mechanisms in WS-Security and this document to secure the
message.

3.3. Signing with XML Signature
GSS-API supplies two methods for creating and verifying signatures: GSS_GetMIC
and GSS_VerifyMIC. These operate within the context the client and target service
pair. For example, they utilize any session keys established and include, when
requested, sequencing components that prevent replay attacks.

Applications MAY use the GSS-API signature methods within the framework XML
Signature describes. However, a new signature algorithm is required for GSS-API:

http://schemas.xmlsoap.org/ws/2003/12/IETF-RFC2743#GSS_MIC

When establishing the GSS-API shared context, the application MUST include an XML
Signature <ds:KeyInfo> containing a <wsse:SecurityTokenReference> identifying
the security context token that was established (as described in WS-
SecureConversation).

The application MUST use the GSS-API methods to generate and verify the digital
signatures when the above algorithm is specified.

Specifically, an application uses GSS-API to create an XML Signature as follows:

1. Compute the digest over the reference data as specified in XML Signature.

2. Specify the digest algorithm used to hash the referenced data as the
<ds:DigestMethod>.

3. Build the <ds:SignedInfo> block, expressing the GSS-API signature
algorithm as the <ds:SignatureMethod>.

4. Canonicalize the <ds:SignedInfo> block as defined in XML Signature.

5. Apply GSS_GetMIC output to the canonical form of the <ds:SignedInfo>
block, generating an octet sequence.

6. Optionally (but RECOMMENDED) include a <ds:KeyInfo> containing a
<wsse:SecurityTokenReference> identifying the security context associated
with the GSS-API context.

Note that there MAY be a <wsse:SecurityTokenReference> element (Step 6) with
a reference to the security context for the associated GSS-API context key. If a key
isn't specified explicitly, and a context is associated with the message, the key from
the context SHOULD be used.

The following sample message illustrates the use of this algorithm in conjunction
with WS-Security.

<?xml version="1.0" encoding="utf-8"?>

<S:Envelope xmlns:S="http://www.w3.org/2001/12/soap-envelope">

 <S:Header>

 ...

 <wsse:Security

 xmlns:wsse="http://schemas.xmlsoap.org/ws/2003/07/secext">

 <wsse:SecurityContextToken wsu:Id="sct">

 <wsu:Identifier>uuid:...</wsu:Identifier>

 </wsse:SecurityContextToken>

 <ds:Signature xmlns:ds="http://www.w3.org/2000/09/xmldsig#">

 <ds:SignedInfo>

 <ds:CanonicalizationMethod

 Algorithm="http://www.w3.org/2001/10/xml-exc-

c14n#"/>

 <ds:SignatureMethod

Algorithm="http://schemas.xmlsoap.org/ws/2003/12/IETF-

RFC2743#GSS_MIC"/>

 <ds:Reference URI="#body">

 <ds:Transforms>

 <ds:Transform>

 Algorithm="http://www.w3.org/2001/10/xml-exc-

c14n#"/>

 </ds:Transforms>

 <ds:DigestMethod

 Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/>

 <ds:DigestValue>EULddytSol...</ds:DigestValue>

 </ds:Reference>

 </ds:SignedInfo>

<ds:SignatureValue>BL8jdfToEb11/vXcMZNNjPOV...</ds:SignatureValue>

 <ds:KeyInfo>

 <wsse:SecurityTokenReference>

 <wsse:Reference URI="#sct"/>

 </wsse:SecurityTokenReference>

 </ds:KeyInfo>

 </ds:Signature>

 </wsse:Security>

 </S:Header>

 <S:Body wsu:Id="body">

 <tru:StockSymbol xmlns:tru="http://fabrikam123.com/payloads">

 QQQ

 </tru:StockSymbol>

 </S:Body>

</S:Envelope>

The process of verifying an XML Signature made with GSS-API is analogous. The
verifier checks the hashes of the referenced content as specified in XML Signature:
The <ds:SignedInfo> element is first made canonical. It then passes the resulting
byte stream and the decoded token (extracted from the <ds:SignatureValue>
element) to GSS_VerifyMIC. The signature is cryptographically valid if and only if the
call to GSS_VerifyMIC returns true.

3.4. Replay Prevention
GSS-API provides elements for replay detection and sequencing. GSS-API embeds
and seals these elements directly into the GSS-API security token. A GSS-API
Security token is a caller-opaque type that GSS-API uses to maintain synchronization
between the context data structures at each end of a GSS-API security context. An
appropriately initialized GSS-API security token, appropriately initialized, protects
against different classes of attack.

The protection accrued from the GSS-API security token extends to the application
specific protocol, in this case, the SOAP messages, through signatures and
encryption. Using GSS-API to encrypt a message (through GSS_Wrap) binds it to the
security token; that is, because GSS-API embeds digests, the intended recipient can
decrypt and validate the message (through GSS_Unwrap). Similarly, only the
intended recipient can verify a GSS-API generated signature (created through
GSS_GetMIC and validated through GSS_VerifyMIC). This protection includes, within
appropriately initialized GSS-API contexts, replay detection and sequencing from the
security token and the shared GSS-API context. Applications SHOULD NOT create
additional signatures to prevent tampering and replay unless they are part of higher-
level protocols. Additional signatures are useful for other purposes such as enabling
long-term auditing, non-repudiation, and some forms of SOAP intermediary
processing.

The protections accrued by a GSS-API security token and shared context result from
values supplied to the GSS_Init_sec_context function. To ensure interoperation and
to prevent redundancy, applications SHOULD request both replay detection (i.e.
replay_det_req_flag is true) and sequencing (i.e. sequence_req_flag is true) when
creating the GSS-API context.

3.5. Encryption with XML Encryption
GSS-API has two encryption-related methods: GSS_Wrap and GSS_Unwrap. As with
all GSS-API methods, they operate within the context the client and target service
share, utilizing established sessions keys and replay detection elements.

Applications MAY use the GSS-API encryption methods within the framework XML
Encryption describes. However a new encryption algorithm is required for GSS-API:

http://schemas.xmlsoap.org/2003/03/IETF-RFC2743#GSS_Wrap

The application MUST use the GSS-API methods to encrypt and decrypt the content
when the above algorithm is specified.

Specifically, an application uses GSS-API to encrypt message content as follows:

Encrypt the content, using GSS_Wrap, and replace it in the message with an
<xenc:EncryptedData> element as XML Encryption describes.

If desired, include a <xenc:ReferenceList> element under the Security header
referencing the encrypted data.

Note that there SHOULD be a <wsse:SecurityTokenReference> element with a
reference to the security context for the key, but applications MAY choose not to
include it. If a key isn't specified explicitly, and a context is associated with the
message, the key from the context SHOULD be used.

The following sample message illustrates the use of this algorithm in conjunction
with WS-Security.

<?xml version="1.0" encoding="utf-8"?>

<S:Envelope xmlns:S=" http://www.w3.org/2001/12/soap-envelope">

 <S:Header>

 ...

 <wsse:Security

 xmlns:wsse="http://schemas.xmlsoap.org/ws/2003/07/secext"

 xmlns:xenc="http://www.w3.org/2001/04/xmlend#">

 <wsse:SecurityContextToken wsu:Id="sct">

 <wsu:Identifier>uuid:...</wsu:Identifier>

 </wsse:SecurityContextToken>

 <xenc:ReferenceList>

 <xenc:DataReference URI="#bodyID"/>

 </xenc:ReferenceList>

 </wsse:Security>

 </S:Header>

 <S:Body>

 <xenc:EncryptedData

 Id="bodyID"

 Type="http://www.w3.org/2001/04/xmlenc#Element"

 xmlns:xenc="http://www.w3.org/2001/04/xmlenc#">

 <xenc:EncryptionMethod

 Algorithm="http://schemas.xmlsoap.org/2003/12/IETF-

RFC2743#GSS_Wrap"/>

 <xenc:CipherData>

 <xenc:CipherValue>

 d2FpbmdvbGRfE0lm4byV0...

 </xenc:CipherValue>

 </xenc:CipherData>

 <ds:KeyInfo>

 <wsse:SecurityTokenReference>

 <wsse:Reference URI="#sct"/>

 </wsse:SecurityTokenReference>

 </ds:KeyInfo>

 </xenc:EncryptedData>

 </S:Body>

</S:Envelope>

4. General Kerberos Interoperability
Alternatively instead of using GSS-API, interoperability can be achieved at the
Kerberos level. That is, using raw Kerberos security tokens and cryptographic

functions. The model is straightforward: tickets are obtained and the keys are
extracted for use in signing and encrypting messages.

Kerberos is an IETF standard third-party mediated protocol as described in
[RFC1510]. Clients interact with one or more Kerberos Key Distribution Centers
(KDC) through Authentication and Ticket-Granting Services. Kerberos defines a
request/response packet pair for each exchange. A key associated with each
Kerberos packet is used to sign and encrypt different portions. Some of the keys,
such as those contained in tickets, are ephemeral and have defined lifetimes.

Conceptually, a Kerberos KDC implements what WS-Trust calls a Security Token
Service: It generates security tokens (e.g., Kerberos TGT) in exchange for other
tokens (e.g., a user-name and password).

The figure below illustrates the model for general Kerberos interoperability using the
Web service security specifications.

1. A client service (App1) obtains a TGT to allow it to later obtain tickets for
services. This can be done using the traditional Kerberos mechanisms or
using the mechanisms described in WS-Trust.

2. A Kerberos ST is obtained from the KDC or from a security token service
using WS-Trust.

3. The result of step (1) is a Kerberos ST for App2 and a proof-of-possession
token which contains the session key encrypted for App1. Using the shared
secret, messages between App1 and App2 can be signed and encrypted as
described in WS-Security.

4.1. Kerberos Security Token
The Kerberos v5 specification (RFC1510) stipulates an ASN.1 encoding for all
Kerberos packets. While the Kerberos packets are self-describing (that is, the ASN.1
format contains the packet type), compliant applications SHOULD use the most
specific token type (e.g., wsse:ValueType="Kerberosv5TGT").

The WS-Security specification defines value types for Kerberos TGTs and STs. These
types represent the raw ticket rather than the more common ticket + authenticator
found in the TGS-REQ and AS-REQ packets.

4.2. Using XML Signature
The session key described in the ST or TGT is used to sign the message as described
in WS-Security (unless some other form of proof is provided). Because applications
have direct access to the session key, the XML Signature mechanisms described in

WS-Security can be used directly. This signature becomes the authenticator found in
traditional Kerberos applications.

Implementations determine which signature algorithm to use by comparing and
policies (see WS-Policy [WSPolicy] and WS-SecurityPolicy [WSSecPolicy]). The first
preferred algorithm SHOULD be used.

Kerberos traditionally uses algorithms not described in XML Signature. For
compatibility reasons, we define new algorithm URIs for use with XML Signature.
However, we RECOMMEND that implementations use, at a minimum, the
RECOMMENDED algorithms found in XML Signature. The following table specifies
algorithms that MAY be used in addition to those specified in XML Signature.

URI Description

http://schemas.xmlsoap.org/ws/2003/12/RFC150#DES-MD5 RSA MD5
Cryptographic
Checksum

http://schemas.xmlsoap.org/ws/2003/12/RFC150#DES-MD4 RSA MD4
Cryptographic
Checksum

http://schemas.xmlsoap.org/ws/2003/12/RFC150#DES-CHK DES CBC
Checksum

Note that additional algorithms MAY be specified by defining a well-known URI for
the algorithm.

The application SHOULD use the same URI for both the <ds:DigestMethod> and
<ds:SignatureMethod> when using an algorithm defined in RFC1510.

Applications MUST include an XML Signature <ds:KeyInfo> containing a
<wsse:SecurityTokenReference> identifying the attached Kerberos token as
described in WS-Security. As previously stated, the signature represents the
message authenticator.

The following sample message illustrates signing using a Kerberos token.

<?xml version="1.0" encoding="utf-8"?>

<S:Envelope xmlns:S="http://www.w3.org/2001/12/soap-envelope">

 <S:Header>

 ...

 <wsse:Security

 xmlns:wsse="http://schemas.xmlsoap.org/ws/2003/07/secext">

 <wsse:BinarySecurityToken id="Kerberosv5ST"

 wsse:ValueType="wsse:Kerberosv5ST"

 wsse:EncodingType="wsse:Base64Binary">

 MIIEZzCCA9CgAwIBAgIQEmtJZc0rqrKh5i...

 </wsse:BinarySecurityToken>

 <ds:Signature xmlns:ds="http://www.w3.org/2000/09/xmldsig#">

 <ds:SignedInfo>

 <ds:CanonicalizationMethod

 Algorithm="http://www.w3.org/2001/10/xml-exc-

c14n#"/>

 <ds:SignatureMethod

 Algorithm="...#DES-MD5"/>

 <ds:Reference>

 <ds:Transforms>

 <ds:Transform>

 Algorithm="http://...#MyTranform"/>

 <ds:Transform>

 Algorithm="http://www.w3.org/2001/10/xml-exc-

c14n#"/>

 </ds:Transforms>

 <ds:DigestMethod

 Algorithm="...#DES-MD5"/>

 <ds:DigestValue>EULddytSol...</ds:DigestValue>

 </ds:Reference>

 </ds:SignedInfo>

 <ds:SignatureValue>

 BL8jdfToEb11vXcMZNNjPOV...

 </ds:SignatureValue>

 <ds:KeyInfo>

 <wsse:SecurityTokenReference>

 <wsse:Reference URI="#Kerberosv5ST"/>

 </wsse:SecurityTokenReference>

 </ds:KeyInfo>

 </ds:Signature>

 </wsse:Security>

 </S:Header>

 <S:Body>

 <tru:StockSymbol xmlns:tru="http://fabrikam123.com/payloads">

 QQQ

 </tru:StockSymbol>

 </S:Body>

</S:Envelope>

4.3. Using XML Encryption
The Session key described in the ST or TGT is used to encrypt the message as
described in WS-Security (unless another confidentiality mechanism is used).
Because applications have direct access to the session key, the XML Encryption
mechanisms described in WS-Security can be used directly. All of the
recommendations in WS-Security SHOULD be followed.

Implementations determine which encryption algorithm to use by comparing and
intersecting policies. The first preferred algorithm SHOULD be used.

Kerberos traditionally uses algorithms not described in XML Encryption. For
compatibility reasons, we define a new algorithm URI for use with XML Encryption.
However, we RECOMMEND that implementations use the RECOMMENDED algorithms
found in XML Encryption. The following table specifies algorithms that MAY be used
in addition to those specified in XML Encryption.

URI Description

http://schemas.xmlsoap.org/ws/2003/12/RFC150#DES-CBC DES CBC

http://schemas.xmlsoap.org/ws/2003/12/RFC150#RC4 RSA RC4

Note that additional algorithms MAY be specified by defining a well-known URI for
the algorithm.

Kerberos v5 packet encryption, as defined in RFC1510, generally uses DES with
Cipher Block Chaining (CBC). RFC1510 specifies multiple forms since Kerberos also
includes a checksum in the encrypted content. XML Encryption, on the other hand,
does not automatically include a signature or checksum. Implementations SHOULD
use the integrity mechanisms defined in WS-Security, but MAY include a signature or
checksum in the XML data being encrypted if a specialized algorithm is used (to
indicate the presence of the data) or if both parties have agree on the data format.

The following example illustrates encryption using a Kerberos token.

<?xml version="1.0" encoding="utf-8"?>

<S:Envelope xmlns:S="http://www.w3.org/2001/12/soap-envelope">

 <S:Header>

 ...

 <wsse:Security

 xmlns:wsse="http://schemas.xmlsoap.org/ws/2003/07/secext"

 xmlns:xenc="http://www.w3.org/2001/04/xmlend#">

 <wsse:BinarySecurityToken id="Kerberosv5ST"

 wsse:ValueType="Kerberosv5ST"

 wsse:EncodingType="wsse:Base64Binary">

 MIIEZzCCA9CgAwIBAgIQEmtJZc0rqrKh5i...

 </wsse:BinarySecurityToken>

 <xenc:ReferenceList>

 <xenc:DataReference URI="#bodyID"/>

 </xenc:ReferenceList>

 </wsse:Security>

 </S:Header>

 <S:Body>

 <xenc:EncryptedData

 Id="bodyID"

 Type="http://www.w3.org/2001/04/xmlenc#Element"

 xmlns:xenc="http://www.w3.org/2001/04/xmlenc#">

 <xenc:EncryptionMethod Algorithm="...#DES-CBC"/>

 <ds:KeyInfo xmlns:ds="http://www.w3.org/2000/09/xmldsig#">

 <wsse:SecurityTokenReference>

 <wsse:Reference URI="#Kerberosv5ST"/>

 </wsse:SecurityTokenReference>

 </ds:KeyInfo>

 <xenc:CipherData>

 <xenc:CipherValue>d2FpbmdvbGRfE0lm4byV0...</xenc:CipherValue>

 </xenc:CipherData>

 </xenc:EncryptedData>

 </S:Body>

</S:Envelope>

4.4. PKI Interoperability
The sections above describe secure communication between Kerberos-based Web
services. That is, allowing two services, one of which exists in a Kerberos-based
realm and one of which exists in a PKI-based realm, to securely communicate. This
involves token issuance at interoperability at the service to STS layer as well as core
message security at the service to service layer. This can be achieved if Web services
share common cryptographic algorithms at the message security layer even if
different security infrastructures are used. Specifically, this section discusses how
PKI-based clients can interoperate with Kerberos-based servers and vice versa.

4.4.1. PKI Kerberos

Consider, first, a PKI-based requestor communicating with a Kerberos-based server.
In this scenario, the server's policy would indicate the following:

• It only accepts security tokens of type wsse:Kerberosv5ST issued by its
associated security token service (part of or closely tied to a known KDC).

• The signing and encrypting algorithms it supports.

The requestor communicates with the specified security token service as follows:

• The requestor requests a wsse:Kerberosv5ST security token using the
mechanisms described in WS-Trust from the security token service.

• The requestor provides a signature on the request using (and attaching) its
PKI-based token and optionally provides its policy.

• The security token service compares the PKI-based token against its known
trusts and determines that it trusts the token.

• The security token service returns a session key for the client encrypted using
the client's public key and a Kerberos ST token containing the session key for
the service (note that the key is protected by a shared secret between the
token service and the service).

The client can now communicate with the service as follows:

• The Kerberos ST token is attached to the message.

• A signature is added using the session key (or a key derived from the session
key if a derived key token is also present).

• Optionally, the message is encrypted using the session key or a derived key.

The figure below illustrates this model:

1. The client (App1) requests a security token for either App2 or its token
service STS2.

2. The security token service STS1, having a trust relationship, knows that STS2
must broker and returns a token for STS2.

3. The client requests a token from STS2 for App2.

4. The token is returned as a Kerberos format for App2 and an encrypted key
using PKI for App1.

Alternatively, the first security token service STS1 could have obtained the security
tokens on behalf of STS1 from STS2 and returned them directly as illustrated below:

4.4.2. Kerberos PKI

Now consider a Kerberos-based requestor communicating with a PKI-based server.
In this scenario, the server's policy would indicate the following:

• It only accepts tokens issued by a specified set of security token services.

• The signing and encrypting algorithms it supports.

The requestor identifies a security token service that it trusts and communicates as
follows (in this case it is part of or closely tied to the client's KDC):

• It requests a security token using the mechanisms described in WS-Trust.

• It provides a signature on the request using the session key in its TGT token
(and attaching the TGT token).

• The token service validates the request and returns a session key encrypted
for the client using the session key from the TGT and a token containing the
session key encrypted using the server's public key for the server.

The client can now communicate with the server as follows:

• The new token is attached to the message.

• A signature is added using the session key (or a key derived from the session
key if a derived key token is also present).

• Optionally, the message is encrypted using the session key or a derived key.

There are two common alternative scenarios:

• The token service collaborates with a KDC that has an established trust with
the client's KDC.

• The client uses traditional Kerberos requests to obtain an ST for the server.
In this case the KDC recognizes the server and has a PKI-based trust
relationship. The KDC returns an opaque "ST" which is really the session key
encrypted with the server's public key.

The figure below illustrates this model:

1. The client (App1) requests a token for App2. Since it has a trust relationship
with STS2 (or the domain for App2), and if it has the token for App2 available
(or can obtain it), the STS can return the appropriate tokens.

2. The STS returns a Kerberos-format for the client and the session key
encrypted for App2 using PKI.

Alternatively, if the STS doesn't have the public key for App2, it can direct the client
to the security token service for App2 (STS2). It can do this by returning credentials
"introducing" the client to STS2. This is illustrated below:

5. Derived Keys
The sections above describe using the secret key within the specified Kerberos token
signing and encryption either in pure Kerberos exchanges or in exchanges between
Kerberos and PKI. However, it is also possible to use this secret to derive multiple
keys for signing and encryption. This is done using the <wsse:DerivedKey> element
defined in WS-SecureConversation. To do this, the
<wsse:SecurityTokenReference> within the signature or encryption refers to a
derived key, which, in turn, refers to the Kerberos token. Specifically, the
<SecurityTokenReference> element of the derived key token points to the ID
(using relative URIs) of the Kerberos token or the security context token.

The following example illustrates a derived key based on a Kerberos token:

 ...

 <wsse:Security

 xmlns:wsse="http://schemas.xmlsoap.org/ws/2003/07/secext"

 xmlns:xenc="http://www.w3.org/2001/04/xmlend#">

 <wsse:BinarySecurityToken id="Kerberosv5ST"

 wsse:ValueType="Kerberosv5ST"

 wsse:EncodingType="wsse:Base64Binary">

 MIIEZzCCA9CgAwIBAgIQEmtJZc0rqrKh5i...

 </wsse:BinarySecurityToken>

 <wsse:DerivedKey wsu:Id="dk">

 <wsse:SecurityTokenReference>

 <wsse:Reference URI="#Kerberosv5ST"/>

 </wsse:SecurityTokenReference>

 ...

 </wsse:DerivedKey>

 ...

 <ds:Signature xmlns:ds="...">

 ...

 <ds:KeyInfo>

 <wsse:SecurityTokenReference>

 <wsse:Reference URI="#dk"/>

 </wsse:SecurityTokenReference>

 </ds:KeyInfo>

 </ds:Signature>

 </wsse:Security>

 ...

The following example illustrates a derived key based on a security context token:

 ...

 <wsse:Security

 xmlns:wsse="http://schemas.xmlsoap.org/ws/2003/07/secext"

 xmlns:xenc="http://www.w3.org/2001/04/xmlend#">

 <wsse:SecurityContextToken id="sct">

 <wsu:Identifier>uuid:...</wsu:Identifier>

 </wsse:SecurityContextToken>

 <wsse:DerivedKey wsu:Id="dk">

 <wsse:SecurityTokenReference>

 <wsse:Reference URI="#sct"/>

 </wsse:SecurityTokenReference>

 ...

 </wsse:DerivedKey>

 ...

 <ds:Signature xmlns:ds="...">

 ...

 <ds:KeyInfo>

 <wsse:SecurityTokenReference>

 <wsse:Reference URI="#dk"/>

 </wsse:SecurityTokenReference>

 </ds:KeyInfo>

 </ds:Signature>

 </wsse:Security>

 ...

6. Security Considerations
All messages SHOULD include an authenticator be it in a GSS-API token or using
XML Signature.

All requests and responses for security tokens MUST be signed.

7. Acknowledgements
This specification has been developed as a result of joint work with many individuals
and teams, including:

Messaoud Benantar, IBM
Tony Cowan, IBM
Richard Ward, Microsoft

8. References
[KEYWORDS]

S. Bradner, "Key words for use in RFCs to Indicate Requirement Levels," RFC
2119, Harvard University, March 1997

[RFC1510]
J. Kohl, C. Neuman, "The Kerberos Network Authentication Service (V5)," RFC
1510, Digital Equipment Corporation, ISI, September 1993.

[RFC2478]
J. Kohl, C. Neuman, "The Simple and Protected GSS-API Negotiation Mechanism,"
RFC 2478, December 1998.

[RFC2743]
E. Baize and D. Pinkas, "Generic Security Service Application Program Interface
Version 2 Update 1," RFC 2743, January 2000.

[SHA-1]

FIPS PUB 180-1. Secure Hash Standard. U.S. Department of Commerce /
National Institute of Standards and Technology.
http://csrc.nist.gov/publications/fips/fips180-1/fip180-1.txt

[SOAP]
W3C Note, "Simple Object Access Protocol (SOAP) 1.1," 08 May 2000.

[SOAP12]
W3C Candidate Recommendation, "SOAP Version 1.2 Part 1: Messaging
Framework", 19 December 2002

[URI]
T. Berners-Lee, R. Fielding, L. Masinter, "Uniform Resource Identifiers (URI):
Generic Syntax," RFC 2396, MIT/LCS, U.C. Irvine, Xerox Corporation, August
1998.

[WSSec]
"Web Services Security (WS-Security)," IBM, Microsoft & VeriSign, 5 April 2002

[X509]
S. Santesson, et al,"Internet X.509 Public Key Infrastructure Qualified Certificates
Profile,"
http://www.itu.int/rec/recommendation.asp?type=items&lang=e&parent=T-REC-
X.509-200003-I

[XML-Encrypt]
W3C Working Draft, "XML Encryption Syntax and Processing," 10 December
2002.

[XML-ns]
W3C Recommendation, "Namespaces in XML," 14 January 1999.

[XML-Schema1]
W3C Recommendation, "XML Schema Part 1: Structures,"2 May 2001.

[XML-Schema2]
W3C Recommendation, "XML Schema Part 2: Datatypes," 2 May 2001.

[XML Signature]
W3C Recommendation, "XML-Signature Syntax and Processing," 12 February
2002.

[WSSecConv]
"Web Services Secure Conversation Language (WS-SecureConversation)," IBM,
Microsoft, RSA Security & VeriSign, 18 December 2002

[WSTrust]
"Web Services Trust Language (WS-Trust)," IBM, Microsoft, RSA Security,
VeriSign, 18 December 2002

[WSPolicy]
"Web Services Policy Framework (WS-Policy)," Microsoft, BEA Systems, IBM and
SAP, 28 May 2003

[WSSecPolicy]
"Web Services Security Policy Language (WS-SecurityPolicy)," IBM, Microsoft,
RSA Security Inc. & VeriSign, 18 December 2002

