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Abstract

This specification defines extensions to [WS-Transfer]. While its initial design
focuses on management resource access its use is not necessarily limited to those
situations.

Composable Architecture

The Web service specifications (WS-*) are designed to be composed with each other
to provide a rich set of tools for the Web services environment. This specification
relies on other Web service specifications to provide secure, reliable, and/or
transacted message delivery and to express Web service metadata.

Status

This specification is an initial draft. It is likely to change and there is no guarantee of
compatibility between this version and subsequent versions. As a result, it should
only be used for information, feedback and experimentation.
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1. Introduction

This specification is intended to form an essential core component of a unified
resource access protocol for the Web services space.

The operations described in this specification constitute an extension to the WS-
Transfer specification, which defines standard messages for controlling resources
using the familiar paradigms of "get", "put"”, "create", and "delete". The extensions
deal primarily with fragment-based access to resources to satisfy the common
requirements of WS-ResourceFramework and WS-Management.

This document constitutes WS-ResourceTransfer, hereafter referred to as WS-RT.

1.1 Requirements
This specification intends to meet the following requirements:

o Define a standardized technique for accessing resources using semantics
familiar to those in the system management domain: get, put, create and
delete.
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e Define WSDL 1.1 portTypes, for the Web service methods described in this
specification, compliant with WS-I Basic Profile 1.1 [WS-1 BP 1.1].

e Define minimum requirements for compliance without constraining richer
implementations.

o Compose with other Web service specifications for secure, reliable, transacted
message delivery.

e Provide extensibility for more sophisticated and/or currently unanticipated
scenarios.

e Support a variety of encoding formats including (but not limited to) both
SOAP 1.1 [SOAP 1.1] and SOAP 1.2 [SOAP 1.2] Envelopes.

1.2 Non-Requirements
This specification does not intend to meet the following requirements:
e Discovery of resources

1.3 Example
This section contains a complete example of a WS-RT "Get" operation. This example
is meant for illustration only and does not represent normative behavior or content.

Table 1 shows the XML representation of the example resource which will be
accessed by the protocol operation. The example resource is a physical disk which
has a number of logical volumes.

Table 1: Example resource

(01) <Disk xmIns="http://example.org/sample>

(02) <DiskCapacity>62500000000</DiskCapacity>

(03) <DiskFreeSpace>524182841</DiskFreeSpace>

(04) <SerialNumber>123-F2560</SerialNumber>

(05) <LastAuditDate>1998-05-25T13:30:15</LastAuditDate>
(06) <Volume>

(07) <Drive>C:</Drive>

(08) <Label>MyDrive-C</Label>

(09) <TotalCapacity>10000000000</TotalCapacity>
(10) <FreeSpace>6234794528</FreeSpace>

(1D </Volume>
(12) <Volume>

(13) <Drive>D:</Drive>

(14) <Label>MyDrive-D</Label>

(15) <TotalCapacity>30000000000</TotalCapacity>
(16) <FreeSpace>26462809800</FreeSpace>

an </Volume>
(18) <Volume>

(19) <Drive>E:</Drive>

(20) <Label>MyDrive-E</Label>

(21D <TotalCapacity>22500000000</TotalCapacity>
(22) <FreeSpace>16056784170</FreeSpace>

(23) </Volume>
(24) </Disk>

Page 4 of 46



161

162
163
164
165
166

167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204

205
206

The protocol message for retrieving parts of the above resource representation is
shown in Table 2. The response message of a WS-Transfer “Get” request message
would return the entire representation of the resource, so this example illustrates a
WS-RT “Get” request message augmented for extracting specific fragments of the
representation:

Table 2: Example "Get" operation of resource content

(01) <s:Envelope

(02) xmlns:s="http://www.w3.0rg/2003/05/soap-envelope"
(03) xmlns:wsa=""http://www.w3.0rg/2005/08/addressing"
(04) xmIns:wsrt=

(05) "http://schemas.xmlsoap.org/ws/2006/08/resourceTransfer' >
(06) <s:Header>

(07) <wsa:To>http://www.example.org/disk</wsa:To>

(08) <wsa:Action s:mustUnderstand="true'>

(09) http://schemas.xmlsoap.org/ws/2004/09/transfer/Get

(10) </wsa:Action>

(1D <wsrt:ResourceTransfer s:mustUnderstand="true'/>

(12) .-

(13) </s:Header>
(14) <s:Body>
(15) <wsrt:Get

(16) Dialect=""http://schemas.xmlsoap.org/ws/2006/08/
an resourceTransfer/Dialect/XPath-Level-1""
(18) xmlns:d="http://example.org/sample'>

(19) <wsrt:Expression>

(20) d:Volume[1]/d:Label

(2D </wsrt:Expression>

(22) <wsrt:Expression>

(23) d:DiskCapacity

(24) </wsrt:Expression>

(25) <wsrt:Expression>

(26) d:SerialNumber/text()

@7 </wsrt:Expression>

(28) </wsrt:Get>
(29) </s:Body>
(30) </s:Envelope>

In this example, the operation is a WS-Transfer "Get" as defined by the wsa:Action
in line (09). The extended, fragment-aware Get behavior is indicated by the
wsrt:ResourceTransfer header at line (11). The resource being accessed is
referenced by the WS-Addressing endpoint reference, implied by the wsa:To element
on line (07). WS-RT extensions for extracting fragments of the resource
representation are in the wsrt:Get block on lines (15) through (28). For each
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targeted fragment the value to be selected is specified in the wsrt:Expression
element.

The response to the "Get" message is illustrated in Table 3.

Table 3: Example "Get" response.

(01) <s:Envelope

(02) xmlns:s="http://www.w3.0rg/2003/05/soap-envelope"

(03) xmlns:wsa=""http://www.w3.0rg/2005/08/addressing"

(04) xmIns:wsrt=

(05) "http://schemas.xmlsoap.org/ws/2006/08/resourceTransfer' >
(06) <s:Header>

07 <wsa:To>

(08) http://www.w3.0rg/2005/08/addressing/anonymous

(09) </wsa:To>

(10) <wsa:Action s:mustUnderstand="true'>

(11) http://schemas.xmlsoap.org/ws/2004/09/transfer/GetResponse
(12) </wsa:Action>

(13) <wsrt:ResourceTransfer/>

(14) .-

(15) </s:Header>

(16) <s:Body>

(17) <wsrt:GetResponse xmlns:d="http://example.org/sample'>
(18) <wsrt:Result>

(19) <d:Label>MyDrive-C</d:Label>

(20) </wsrt:Result>

(21D <wsrt:Result>

(22) <d:DiskCapacity>62500000000</d:DiskCapacity>
(23) </wsrt:Result>

(24) <wsrt:Result>

(25) <wsrt:TextNode>123-F2560</wsrt:TextNode>
(26) </wsrt:Result>

(27) </wsrt:GetResponse>
(28) </s:Body>
(29) </s:Envelope>

Note that the value of each resource fragment requested via a wsrt:Expression
element is individually returned in a matching wsrt:Result element. This example
uses the XPath Level 1 Dialect for the wsrt:Expression elements, one of which shows
the use of the XPath text() NodeTest. The wsrt:Result for the third fragment contains
only the serialized text value of that element (line (25)), rather than the XML
element wrapper as in the other cases.

Page 6 of 46



247 2. Terminology and Notation

248 2.1 Terminology

249 Some of the terminology defined in this specification is repeated from the WS-
250 Transfer specification for convenience and is not meant to deviate from those
251 definitions in any way.

252 Resource

253 A Web service that is addressable by an endpoint reference as defined in WS-
254 Addressing and that can be represented by an XML document. This

255 representation can be accessed using the operations defined in the WS-Transfer
256 and WS-ResourceTransfer specifications.

257 Resource representation

258 The XML representation of the resource that is accessed using the operations
259 defined in the WS-Transfer and WS-ResourceTransfer specifications.

260 Resource factory

261 A Web service that is capable of creating new resources using the Create

262 operation defined in WS-Transfer and the WS-ResourceTransfer specifications.
263 Metadata resource

264 A resource whose XML representation describes some aspect of the metadata of
265 another resource, such as its WSDL or lifecycle metadata. Each resource may
266 have zero or more metadata resources associated with it.

267 Fragment

268 The term “fragment” is used in this specification to mean a part of the resource
269 representation.

270 EPR

271 The wsa:EndpointReference (EPR), as defined by WS-Addressing, is a reference
272 to the resource in its entirety. Operations, which are otherwise unconstrained
273 within this specification, are assumed to affect the resource as a whole.

274 2.2 XML Namespaces

275 The XML Namespace URI that MUST be used by implementations of this specification
276  is:

277 http://schemas.xmlsoap.org/ws/2006/08/resourceTransfer

278 Table 4 lists XML namespaces that are used in this specification. The choice of any
279 namespace prefix is arbitrary and not semantically significant.

280 Table 4: Prefixes and XML Namespaces used in this specification.

Prefix | XML Namespace Specification(s)

S (Either SOAP 1.1 or 1.2) (Either SOAP 1.1 or 1.2)
s11 http://schemas.xmlsoap.org/soap/envelope/ [SOAP 1.1]

s12 http://www.w3.0rg/2003/05/soap-envelope [SOAP 1.2]

wsa http://www.w3.0rg/2005/08/addressing [WS-Addressing]
wsmex | http://schemas.xmlsoap.org/ws/2004/09/mex [WS-MetadataExchange]
wsdl http://schemas.xmlsoap.org/wsdl/ [WSDL 1.1]
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wsrt http://schemas.xmlsoap.org/ws/2006/08/resourceTransfer | [WS-ResourceTransfer]
wxf http://schemas.xmlsoap.org/ws/2004/09/transfer [WS-Transfer]
XS http://www.w3.0rg/2001/XMLSchema [XML Schemal]

2.3 Notational Conventions

The keywords "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
document are to be interpreted as described in RFC 2119 [REC 2119].

This specification uses the following syntax to define outlines for messages:

The syntax appears as an XML instance, but values in italics indicate data
types instead of literal values.

Characters are appended to elements and attributes to indicate cardinality:
o "7 (Oor1l)
o "*" (0 or more)
o "+" (1 or more)

The character "|" is used to indicate a choice between alternatives.

The characters "(" and ")" are used to indicate that contained items are to be
treated as a group with respect to cardinality or choice.

The characters "[" and "]" are used to call out references and property names.

Ellipses (i.e., "...") indicate points of extensibility. Additional children and/or
attributes MAY be added at the indicated extension points but MUST NOT
contradict the semantics of the parent and/or owner, respectively. By default,
if a receiver does not recognize an extension, the receiver SHOULD ignore the
extension; exceptions to this processing rule, if any, are clearly indicated
below.

XML namespace prefixes (see Table 4) are used to indicate the namespace of
the element being defined.

In addition to Message Information Header properties [WS-Addressing], this
specification uses the following properties to define messages:

[Headers]

Unordered message headers.
[Action]

The value to be used for the wsa:Action URI.
[Body]

A message body.
These properties bind to a SOAP Envelope as follows:
<s:Envelope>

<s:Header>

[Headers]
<wsa:Action>[Action]</wsa:Action>
</s:Header>
<s:Body>[Body]</s:Body>
</s:Envelope>
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This specification defines Fault properties for each defined fault and defines SOAP
bindings for each Fault property.

2.4 Compliance

An endpoint is not compliant with this specification if it fails to satisfy one or more of
the MUST or REQUIRED level requirements defined herein.

Normative text within this specification takes precedence over the XML Schema and
WSDL descriptions, which in turn take precedence over outlines, which in turn take
precedence over examples.

3. Extensions to WS-Transfer

WS-Transfer defines operations to Get, Put, Create and Delete representations of
resources. WS-ResourceTransfer extends these operations to add the capability to
operate on fragments of the resource representations.

3.1 Fragments

Since an EPR refers to a resource as a whole, techniques which are used to reference
or access parts of the resource representation are referred to as “fragment access” in
that they access fragments of the XML representing the resource.

This specification defines an extensible mechanism for designating the expression
syntax by which the fragment is identified or computed, and defines several such
standard expression syntaxes or "dialects".

3.2 Expression Dialect

The dialects defined below are used to form an expression that can be evaluated with
respect to the XML document that represents the resource. The de-referenced value
of the expression is the part of the XML that is of interest. The expression may form
a logical "pointer" to the fragment of XML that is of interest or, depending on the
dialect, may form a query that can be applied to the XML document to produce an
evaluated result. It is important to understand that these expression dialects simply
identify the appropriate fragment of the resource representation and that the
[Action] itself defines what will happen to the referenced fragment.

The definition of each dialect must clearly specify how the result of evaluating an
expression against a resource representation is serialized to XML and should specify
any dialect-specific behavior for operations that access the resource representation.

3.2.1 QName Dialect

The QName expression dialect is a simple dialect for expressions that uses a QName
to reference the immediate children of the root element of the resource
representation. Consider the resource described in Table 1.

In this example, the QName dialect can define references to the elements
<DiskCapacity>, <DiskFreeSpace>, <SerialNumber>, <LastAuditDate> and all
<Volume> elements. The QName dialect cannot define direct references to the
elements <Drive>, <lLabel>, <TotalCapacity> and <FreeSpace> - since they are not
direct children of the Disk (root) element of the resource - or to specific <Volume=>
elements. Table 5, below, shows an example usage of this dialect. This dialect is
useful for simple resources with no XPath processing capability.
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The QName dialect MUST be indicated by using the URI:
http://schemas.xmlsoap.org/ws/2006/08/resourceTransfer/Dialect/QName
Note that the expression MUST evaluate to zero or more entire elements, each

including the element name, any attributes and its entire content. The QName dialect
does not support computed values.

3.2.2 XPath Level 1 Dialect

The XPath Level 1 expression dialect uses an XPath to reference specific fragments of
the resource representation. The XPath is logically applied to the XML representation
of the resource and the resulting node-set is the resource fragment which is the
subject of the message containing the expression. Table 2 shows an example usage
of this dialect. This dialect is useful for resources with limited XPath processing
capability which do not need to support returning values computed from their
resource representation.

The XPath Level 1 dialect is defined in Appendix | — of this specification. An
implementation that uses the XPath Level 1 dialect MUST support the expressions
whose syntax is described by the BNF in Appendix | —. It MAY support additional
expressions defined by XPath 1.0.

An XPath Level 1 expression is an expression whose context is:
e Context Node: the root element of the XML representation of the resource
e Context Position: 1
e Context Size: 1
e Variable Binding: None
e Node Tests: NameTest and the text NodeType
e Function Libraries: None

¢ Namespace Declarations: Any namespace declarations in-scope where the
XPath expression appears

Consider the resource described in Table 1. The XPath Level 1 dialect can define
references to any element, attribute or value in the resource representation.

The XPath Level 1 dialect MUST be indicated by using the URI:

http://schemas.xmlsoap.org/ws/2006/08/resourceTransfer/Dialect/XPath-
Level-1

Expressions in this dialect MUST NOT evaluate to more than a single node. The XPath
Level 1 dialect does not support computed values. Text and attribute nodes MUST
be serialized using the same serialization as for the XPath 1.0 dialect.

3.2.3 XPath 1.0 Dialect

The XPath 1.0 expression dialect uses an XPath to reference specific fragments of the
resource representation. The XPath is logically applied to the XML representation of
the resource and the result of the XPath is returned as the value for that expression.
The XPath 1.0 dialect supports a wider set of XPath function libraries than the XPath
Level 1 dialect. Table 7, below, shows an example usage of this dialect. This dialect
is useful for resources with full XPath processing capability or which need to support
returning values computed from their resource representation.

An XPath 1.0 expression is an expression whose context is:
e Context Node: the root element of the XML representation of the resource
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e Context Position: 1

e Context Size: 1

e Variable Binding: None

e Function Libraries: Core function library

o Namespace Declarations: Any namespace declarations in-scope where the

XPath expression appears

Consider the resource described in Table 1. The XPath 1.0 dialect can define
references to any element, attribute or value in the resource representation and can
also be used to compute values from the resource representation.
The XPath 1.0 dialect MUST be indicated by using the URI:
http://www.w3.0rg/TR/1999/REC-Xxpath-19991116

Implementations that support the full XPath 1.0 dialect MUST support the XPath
Level 1 dialect.

Note that the expression may evaluate to one of four possible types: a node-set, a
Boolean, a number or a string. The latter three types are the results of evaluating a
computed expression. They are serialized by performing the following conversion
and then wrapping the result in the wsrt:Result element:

e Boolean — converted to an xs:boolean

e string — convert to an xs:string

e number — convert to an xs:double

A node-set is zero or more elements, attributes or text values of elements. A node-
set is serialized into XML by concatenating each node and enclosing it in the
wsrt:Result wrapper XML element for which schema validation is suppressed.
Element nodes in a node-set are serialized directly into their XML representation.
For attributes and text nodes in the node-set, a wrapper element is used to enclose
these values to distinguish them from other such nodes in the serialized result.

Attribute nodes in XPath are represented in the following form:

name="value"

Serialization of an attribute node separates the name from the value using the
following element:

(01) <wsrt:AttributeNode name="attribute name'>

(02) attribute value

(03) </wsrt:AttributeNode>

The following describes additional constraints on the outline listed above:

wsrt:AttributeNode
This element is used to serialize an attribute node in a node-set and MUST
contain the value portion of the attribute node.

wsrt:AttributeNode/@name
This attribute MUST be the name portion of the attribute node.

Text nodes are serialized in the following form:
(01) <wsrt:TextNode>

(02) text value

(03) </wsrt:TextNode>
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The following describes additional constraints on the outline listed above:

wsrt:TextNode
This element is used to serialize a text node in a node-set and MUST contain the
text value.

Given the following XML as an example document.
(01)<a xmlns="‘example'>

(02) <b>1</b>

(03) <c x="y'">2</c>

(04) </a>

The result of the XPath “/a/b | /a/b/text() | /a/c/@x” would be serialized as the
following:

(01) <wsrt:Result>

(02) <b>1</b>

(03) <wsrt:TextNode>1</wsrt:TextNode>

(04) <wsrt:AttributeNode name="x">y</wsrt:AttributeNode>
(05) </wsrt:Result>

The nodes in the node-set MAY be serialized in any order.

The WS-RT global element definition wsrt:NodeSet can also be used as the wrapper
element when serializing these node-sets outside of a WS-RT result.

An XPath 1.0 expression may evaluate to multiple nodes; because of this the XPath
1.0 dialect MUST NOT be used with a “Put” or “Create” operation.

3.3 Get

The WS-Transfer Get operation is used to retrieve an existing resource
representation in its entirety. WS-ResourceTransfer extends the “Get” operation to
retrieve fragments of an existing representation. A resource that can return its full
representation MUST also support wxf:Get to return the entire resource
representation without using WS-ResourceTransfer extensions.

The [Body] of wsrt:Get contains an expression that identifies the fragment of interest.
The outline for wsrt:Get is:

(01) [Headers]

(02) <wsrt:ResourceTransfer s:mustUnderstand=""true"? />

(03) [Action]

(04) http://schemas.xmlsoap.org/ws/2004/09/transfer/Get

(05) [Body]
(06) <wsrt:Get Dialect="xs:anyURI”’?>

(07) <wsrt:Expression ...>xs:any</wsrt:Expression> *

(08) </wsrt:Get>

The following describes additional constraints on the outline listed above:
[Header]/wsrt:ResourceTransfer
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If present and understood, a resource MUST process the [Body] in its entirety
and comply with its content. If not present then a resource MUST treat this
request as described in WS-Transfer Get [WS-Transfer].

[Body]/wsrt:Get
An element which controls the retrieval of the resource fragment. This element
MUST be present if the wsrt:ResourceTransfer header is present.

[Body]/wsrt:Get/@Dialect
This URI indicates which dialect expression will be used to identify and retrieve
the fragment(s). This attribute MUST be present when the message contains a
wsrt:Expression element. A resource MUST generate an UnsupportedDialectFault
if it does not support the specified Dialect.

[Body]/wsrt:Get/wsrt:Expression

When present this optional element identifies a fragment in the resource to be
sent in the response. Absence of this element is equivalent to an Expression that
identifies the entire resource representation. The value of this element MUST
conform to the dialect specified in [Body]/wsrt:Get/@Dialect attribute. A
resource MUST generate an InvalidExpressionFault if the expression is invalid. If
the expression syntax is not valid with respect to the dialect then a resource
SHOULD specify a fault detail of “InvalidExpressionSyntax”. If the expression
value is not valid for the resource type then the resource SHOULD specify a fault
detail of “InvalidExpressionValue”.

If a resource cannot return a value for a requested fragment then it MUST
generate a GetFault.

If the request contains more Expression elements than the resource supports the
resource MUST return a fault which SHOULD be wsrt: MultipartLimitExceededFault.

If the resource accepts a wsrt:Get request and processes it successfully it MUST
reply with a response of the following form:

(01) [Headers]

(02) <wsrt:ResourceTransfer/>

(03) [Action]

(04) http://schemas.xmlsoap.-org/ws/2004/09/transfer/GetResponse
(05) [Body]

(06) <wsrt:GetResponse>

(07) <wsrt:Result...>xs:any</wsrt:Result> +

(08) </wsrt:GetResponse>

The following describes additional constraints on the outline listed above:

[Headers]/wsrt:ResourceTransfer
This header indicates that the response contains body content defined in WS-
ResourceTransfer.

[Body]/wsrt:GetResponse
An element which wraps the packaging of the fragments in the response. This
element MUST be present if the request Body contained a wsrt:Get element.

[Body]/wsrt:GetResponse/wsrt:Result
This element encompasses a single fragment response corresponding to a
wsrt:Expression in the original request and MUST contain the fragment of the
resource representation identified by the wsrt:Expression. If the request

contained no wsrt:Expression then this element MUST contain the entire resource

representation. If the request contained one or more wsrt:Expression elements
then for each wsrt:Expression element in the request there MUST be one

Page 13 of 46



551
552
553
554

555

556
557
558

559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589

590
591

592
593
594
595
596

wsrt:Result element in the response even if the wsrt:Result has empty content.
The wsrt:Result elements MUST appear in the same order in the response as the
corresponding wsrt:Expression elements in the request. A wsrt:Result MUST have
empty content in the case where a wsrt:Expression resolves to nothing.

An example Get message using the XPath Level 1 dialect is shown above in Table 2
and the expected GetResponse is shown in Table 3, for the resource whose XML
representation is shown in Table 1 above.

An example Get message that uses the QName dialect is shown in Table 5 below.

Table 5: Example Get message using the “QName” dialect
(01) <s:Envelope

(02) xmlns:s="http://www.w3.0rg/2003/05/soap-envelope"
(03) xmlns:wsa=""http://www.w3.0rg/2005/08/addressing"
(04) xmIns:wsrt=

(05) "http://schemas.xmlsoap.org/ws/2006/08/resourceTransfer' >
(06) <s:Header>

(07) <wsa:To>http://www.example.org/disk</wsa:To>

(08) <wsa:Action s:mustUnderstand="true'>

(09) http://schemas.xmlsoap.org/ws/2004/09/transfer/Get

(10) </wsa:Action>

(1D <wsrt:ResourceTransfer s:mustUnderstand="true'/>

(12) .-

(13) </s:Header>
(14) <s:Body>
(15) <wsrt:Get Dialect="http://schemas.xmlsoap.org/ws/2006/08/

(16) resourceTransfer/Dialect/QName**
an xmIns:d=""http://example.org/sample'>

(18) <wsrt:Expression>

(19) d:Volume

(20) </wsrt:Expression>

2D <wsrt:Expression>

(22) d:DiskCapacity

(23) </wsrt:Expression>

(24) </wsrt:Get>

(25) </s:Body>

(26) </s:Envelope>

The fragments of the resource representation are identified by the wsrt:Expression
contents on lines (19) and (22). Notice that the d:Volume QName in the example

resolves to three elements in the resource representation. The response to this "Get"
message is illustrated in Table 6.

Table 6: Example GetResponse using the “QName” dialect
(01) <s:Envelope

(02) xmlns:s="http://www.w3.0rg/2003/05/soap-envelope"
(03) xmlns:wsa=""http://www.w3.0rg/2005/08/addressing"
(04) xmlns:wsrt=
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597 (05) "http://schemas.xmlsoap.org/ws/2006/08/resourceTransfer' >
598 (06) <s:Header>

599 07) <wsa:To>

600 (08) http://www.w3.0rg/2005/08/addressing/anonymous

601 (09) </wsa:To>

602 (10) <wsa:Action s:mustUnderstand="true'>

603 (11) http://schemas.xmlsoap.org/ws/2004/09/transfer/GetResponse
604 (12) </wsa:Action>

605 (13) <wsrt:ResourceTransfer/>

606 (14) .-

607 (15) </s:Header>

608 (16) <s:Body>

609 (17) <wsrt:GetResponse xmlns:d=""http://example.org/sample’>
610 (18) <wsrt:Result>

611 (19) <d:Volume>

612 (20) <d:Drive>C:</d:Drive>

613 (21D <d:Label>MyDrive-C</d:Label>

614 (22) <d:TotalCapacity>10000000000</d:TotalCapacity>
615 (23) <d:FreeSpace>6234794528</d:FreeSpace>

616 (24) </d:Volume>

617 (25) <d:Volume>

618 (26) <d:Drive>D:</d:Drive>

619 @7 <d:Label>MyDrive-D</d:Label>

620 (28) <d:TotalCapacity>30000000000</d:TotalCapacity>
621 (29) <d:FreeSpace>26462809800</d:FreeSpace>

622 (30) </d:Volume>

623 (31D) <d:Volume>

624 (32) <d:Drive>E:</d:Drive>

625 (33) <d:Label>MyDrive-E</d:Label>

626 (34) <d:TotalCapacity>22500000000</d:TotalCapacity>
627 (35) <d:FreeSpace>16056784170</d:FreeSpace>

628 (36) </d:Volume>

629 (@37) </wsrt:Result>

630 (38) <wsrt:Result>

631 (39 <d:DiskCapacity>62500000000</d:DiskCapacity>

632 (40) </wsrt:Result>

633 (41) </wsrt:GetResponse>

634 (42) </s:Body>

635 (43) </s:Envelope>

636  The value of each of the wsrt:Expression fragments in the request message is

637 returned in a unique wsrt:Result wrapper in the response message. The order of the
638  wsrt:Result elements in the response matches the order of the corresponding

639  wsrt:Expression elements in the request. The result of getting the <d:Volume=>

640 fragment, for example, is shown on lines (18) - (37).

641
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642 One final example of the Get operation, using the full XPath 1.0 dialect, is shown
643 below in Table 7. This illustrates the use of a query expression to return the

644  computed result of the quantity of d:Volume elements that have a capacity greater
645  than 20000000000. For the sake of brevity, only the message body is shown.

646 Table 7: Example Get message using an XPath 1.0 query expression

647 (01) <s:Body>

648 (02) <wsrt:Get Dialect="http://www.w3.0rg/TR/1999/REC-xpath-19991116""
649 (03) xmlns:d="http://example.org/sample’>

650 (04) <wsrt:Expression>
651 (05) count( d:Volume[d:TotalCapacity > 20000000000] )
652 (06) </wsrt:Expression>

653 (07) </wsrt:Get>

654 (08) </s:Body>

655  The expression on line (05), when applied to the resource representation shown in
656 Table 1, evaluates to a result of “2”.

657 Table 8: Example GetResponse of an XPath 1.0 query expression

658 (01) <s:Body>

659 (02) <wsrt:GetResponse>

660 (03) <wsrt:Result>2</wsrt:Result>

661 (04) </wsrt:GetResponse>

662 (05) </s:Body>

663  The result of the query expression is a number which is converted to an xs:double
664  and returned as the value of the wsrt:Result element shown on line (03).

665

666 3.4 Put

667 The WS-Transfer “Put” operation is used to update an existing resource

668 representation by providing a replacement XML representation. WS-ResourceTransfer
669 extends the “Put” operation to update an existing resource representation by

670 providing fragments of the XML representation. A resource that can update its full
671 representation MUST also support wxf:Put to update the entire resource

672 representation without using WS-ResourceTransfer extensions.

673  The extended outline for the “Put” operation is:

674 (01) [Headers]

675 (02) <wsrt:ResourceTransfer s:mustUnderstand="true'/>
676 (03) [Action]

677 (04) http://schemas.xmlsoap.org/ws/2004/09/transfer/Put
678 (05) [Body]

679 (06) <wsrt:Put Dialect="xs:anyURI”’?>

680 (07) <wsrt:Fragment Mode="Modify|] Insert]Remove”>

681 (08) <wsrt:Expression>xs:any</wsrt:Expression> ?
682 (09) <wsrt:Value ...>xs:any</wsrt:Value> ?

683 (10) </wsrt:Fragment> +

684 (11) </wsrt:Put>

685  The following describes additional constraints on the outline listed above:
686 [Header]/wsrt:ResourceTransfer
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If present and understood, a resource MUST process the [Body] in its entirety
and comply with its content. If not present then a resource MUST treat this
request as described in WS-Transfer Put [WS-Transfer].

[Body]/wsrt:Put

An element that specifies the fragments of the resource representation to update.
This element MUST be present if the wsrt:ResourceTransfer header is present.

[Body]/wsrt:Put/@Dialect

This URI indicates which expression dialect will be used to identify the
fragment(s) of the resource representation to be updated. This attribute MUST be
present when the message contains a wsrt:Expression element.

[Body]/wsrt:Put/Fragment

This element encompasses a single update to be performed on the resource.
Upon successful completion of a Put operation, the resource representation MUST
appear as though the fragment updates occurred in the order specified in the Put
operation. If there are multiple Fragment elements then, for the first fragment,
the resource representation is the original resource representation (before
applying the Put changes). For subsequent fragments, the resource
representation is the intermediate representation resulting from applying the
previous fragments.

If the request contains more Fragment elements than the resource supports the
resource MUST return a fault which SHOULD be wsrt:MultipartLimitExceededFault.

[Body]/wsrt:Put/Fragment/@Mode

This attribute indicates the type of update to be performed on this fragment. A
resource MUST generate a ResourceValidityFault if the result of executing this
operation would cause the resource representation to become invalid. A resource
MAY support only a subset of these Modes. A resource that does not support a
specified Mode MUST generate a PutModeUnsupportedFault.

A value of “Remove” indicates that the fragment MUST be deleted if it is present.
The expression dialect indicated in this operation MAY place additional constraints
on the definition of this Mode. Note that, in order to delete the resource itself, a
WS-Transfer "Delete” message is used.

A value of “Modify” means that the fragment MUST be replaced by removing any
fragment that already exists and inserting the specified value in its place. If the
expression resolves to nothing then this fragment element does not result in any
change to the resource representation. The expression dialect indicated in this
operation MAY place additional constraints on the definition of this Mode. A
fragment with no wsrt:Expression MUST specify this Mode.

A value of “Insert” indicates that the fragment MUST be added to the resource
representation. If the expression targets a repeated element (maxOccurs > 1),
the fragment MUST be added at the end. If the expression targets a non-
repeated element (maxOccurrs = 1) that already exists, the resource MUST
generate a FragmentAlreadyExistsFault. If the expression targets an existing
item of a repeated element, the fragment MUST be added before the existing
item.

[Body]/wsrt:Put/Fragment/Expression

When present this optional element contains the expression that identifies a
fragment of the resource representation to be updated. Absence of this element
is equivalent to an Expression that identifies the entire resource representation.

The value of this element MUST conform to the dialect specified in the
[Body]/wsrt:Put/@Dialect attribute. A resource MUST generate an
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InvalidExpressionFault if the expression is invalid. If the expression syntax is not
valid with respect to the dialect then a resource SHOULD specify a fault detail of
“InvalidExpressionSyntax”. If the expression value is not valid for the resource
type then the resource SHOULD specify a fault detail of “InvalidExpressionValue”.

[Body]/wsrt:Put/Fragment/Value
This element contains the data to be written to the resource representation. If
the [Body]/wsrt:Put/Fragment/@Mode attribute is “Insert” or “Modify” then this
element MUST be present. If the [Body]/wsrt:Put/Fragment/@Mode attribute is
“Remove” then this element MUST NOT be present. A resource MUST generate an
InvalidPutSyntaxFault if it receives a message with a Value cardinality that is not
valid for the Mode attribute.

If a resource encounters a failure while processing the fragments in a Put request, it
MUST generate a PutFault. The resource SHOULD ensure that its representation is
unchanged from prior to the request, although atomic behavior is not required of
resource implementations. The resource SHOULD include a wsrt:SideAffects element
in the fault detail to indicate whether any changes occurred.

If the resource accepts a Put request and performs the requested update, it MUST
reply with a response of the following form:

(01) [Headers]

(02) <wsrt:ResourceTransfer/>

(03) [Action]

(04) http://schemas.xmlsoap.org/ws/2004/09/transfer/PutResponse

(05) [Body]

The following describes additional constraints on the outline listed above:

[Headers]/wsrt:ResourceTransfer
This header indicates that the response contains body content defined in WS-
ResourceTransfer.

[Body]
If the request Body contained a wsrt:Put element then the new representation

MUST be omitted in the response. Otherwise the response MUST be as described
in WS-Transfer. The absence of the resource representation in the response is in
recognition of the potentially large amount of data that may be returned, which
may have been the reason a fragment Put was used instead of sending the entire
resource representation.

An example Put message using the XPath Level 1 dialect is shown in Table 9. For
brevity only the message body is shown.

Table 9 — Example Put message using the XPath Level 1 dialect
(01) <s:Body>
(02) <wsrt:Put Dialect="http://schemas.xmlsoap.org/ws/2006/08/

(03) resourceTransfer/Dialect/XPath-Level-1"
(04) xmlns:d="http://example.org/sample’>

(05) <wsrt:Fragment Mode="Remove’>

(06) <wsrt:Expression>

07) d:Volume[1]

(08) </wsrt:Expression>
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(22)

</wsrt:Fragment>
<wsrt:Fragment Mode="lnsert”>
<wsrt:Expression>
d:Volume[2]
</wsrt:Expression>
<wsrt:Value>
<d:Volume>
<d:Drive>X:</d:Drive>
<d:Label>MyDrive-X</d:Label>

<d:TotalCapacity>5000000000</d:TotalCapacity>

</d:Volume>
</wsrt:Value>
</wsrt:Fragment>
</wsrt:Put>

(23) </s:Body>
Line (05) indicates that a fragment should be removed and is targeted at the 1°*
Volume element, identified by the wsrt:Expression contents on line (06). Line (10)
indicates that a fragment should be inserted into the representation that results from
applying the first fragment update. The insertion location is identified by the
wsrt:Expression contents on line (12), i.e immediately before the second Volume
element. Lines (14) - (19) show the content of the new Volume which is to be

inserted. The updated resource representation is illustrated in Table 10.

Table 10: Updated resource representation
(01) <Disk xmlns="http://example.org/sample>

(02)
(03)
04
(05)
(06)
7
(08)
(09
(10)
an
(12
(13)
a4
(15)
(16)
an
(18)
(19
(20)
1)
(22)
(23)

<DiskCapacity>62500000000</DiskCapacity>
<DiskFreeSpace>524182841</DiskFreeSpace>
<SerialNumber>123-F2560</SerialNumber>
<LastAuditDate>1998-05-25T13:30:15</LastAuditDate>
<Volume>
<Drive>D:</Drive>
<Label>MyDrive-D</Label>
<TotalCapacity>30000000000</TotalCapacity>
<FreeSpace>26462809800</FreeSpace>
</Volume>
<Volume>
<Drive>X:</Drive>
<Label>MyDrive-X</Label>
<TotalCapacity>5000000000</TotalCapacity>
<FreeSpace>5000000000</FreeSpace>
</Volume>
<Volume>
<Drive>E:</Drive>
<Label>MyDrive-E</Label>
<TotalCapacity>22500000000</TotalCapacity>
<FreeSpace>16056784170</FreeSpace>
</Volume>
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(24) </Disk>

Lines (12) - (17) show the result of the Put@Insert operation. Drive C was removed
and X was inserted at position 2 in between drive D and E since the expression
targeted the 2" Volume element after the removal of C.

An example Put message using the QName dialect is shown in Table 11. For brevity
only the message body is shown.

Table 11 — Example Put message using the QName dialect
(01) <s:Body>

(02)
(03)
04
(05)
(06)
7
(08)
(09
(10)
11
(12)
(13)
14
(15)
(16)
an
(18)
(19
(20)
1)
(22)
(23)
24
(25)
(26)
7
(28)
(29)
(30)
G
(32)
(33)
G4

<wsrt:Put Dialect="http://schemas.xmlsoap.org/ws/2006/08/

resourceTransfer/Dialect/QName"
xmIns:d=""http://example.org/sample'>
<wsrt:Fragment Mode="Modify’’>
<wsrt:Expression>
d:Volume
</wsrt:Expression>
<wsrt:Value>
<d:Volume>
<d:Drive>F:</d:Drive>
<d:Label>MyDrive-F</d:Label>
<d:TotalCapacity>5000000000</d:TotalCapacity>
</d:Volume>
<d:Volume>
<d:Drive>D:</d:Drive>
<d:Label>MyDrive-D</d:Label>
<d:TotalCapacity>30000000000</d:TotalCapacity>
</d:Volume>
</wsrt:Value>
</wsrt:Fragment>
<wsrt:Fragment Mode="lnsert’”>
<wsrt:Expression>
d:Volume
</wsrt:Expression>
<wsrt:Value>
<d:Volume>
<d:Drive>X:</d:Drive>
<d:Label>MyDrive-X</d:Label>
<d:TotalCapacity>5000000000</d:TotalCapacity>
</d:Volume>
</wsrt:Value>
</wsrt:Fragment>

</wsrt:Put>

(35) </s:Body>

Line (05) again indicates that the fragment needs to be updated (i.e logically
removed and then replaced). The target fragment of the resource is the set of
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d:Volume elements, identified by the wsrt:Expression contents on line (07). Lines
(09) - (20) show the new value for this set of elements to use to replace the old set.

Lines (22) - (33) indicates that a fragment should be inserted into the representation
that results from applying the first fragment update. Lines (26) - (32) show the
content of the new Volume which is added at the end.

The updated resource representation is illustrated in Table 12.

Table 12: Updated resource representation

(01) <Disk xmlns="http://example.org/sample>

(02) <DiskCapacity>62500000000</DiskCapacity>

(03) <DiskFreeSpace>524182841</DiskFreeSpace>

(04) <SerialNumber>123-F2560</SerialNumber>

(05) <LastAuditDate>1998-05-25T13:30:15</LastAuditDate>

(06) <Volume>

7 <Drive>F:</Drive>

(08) <Label>MyDrive-F</Label>

(09) <TotalCapacity>5000000000</TotalCapacity>
(10) <FreeSpace>5000000000</FreeSpace>

(12) </Volume>

(12) <Volume>

13) <Drive>D:</Drive>

(@) <Label>MyDrive-D</Label>

(15) <TotalCapacity>30000000000</TotalCapacity>
(16) <FreeSpace>30000000000</FreeSpace>

an </Volume>

(18) <Volume>

(19 <Drive>X:</Drive>

(20) <Label>MyDrive-X</Label>

(21) <TotalCapacity>5000000000</TotalCapacity>
(22) <FreeSpace>5000000000</FreeSpace>

(23) </Volume>

(24) </Disk>

Lines (06) - (17) show the result of the Put@Modify operation. Drives C, D and E are
replaced by drives D and F. Effectively, drives C and E are removed and drive F is
inserted. Lines (18) - (23) show the result of the Put@Insert operation. The Volume
element for drive X is added at the end of the array of Volumes.

3.5 Create

The WS-Transfer “Create” operation is used for creating a resource via an initial
representation. The resource factory that receives a Create request will allocate a
new resource that is initialized from the presented representation. The new resource
will be assigned a factory-service-determined endpoint reference that is returned in
the response message. In many cases, the information required to create a resource
may markedly differ from the initial representation (the value as realized by a
subsequent "Get" operation), and supplying the initial representation is not viable.

WS-ResourceTransfer extends the “Create” operation to create a resource from zero
or more specified fragments of the XML representation. WS-ResourceTransfer further

Page 21 of 46



922
923

924
925
926
927
928
929
930
931
932
933
934
935
936
937

938

939
940
941
942

943
944
945
946
947

948
949
950
951
952

953
954
955
956

957
958
959

960
961
962
963

964
965
966
967
968

extends the “Create” operation such that any resource metadata MAY be created as
part of the creation of the resource.

The extended outline for the “Create” operation is:

(01) [Headers]

(02) <wsrt:ResourceTransfer s:mustUnderstand="true'/>

(03) [Action]

(04) http://schemas.xmlsoap.org/ws/2004/09/transfer/Create

(05) [Body]
(06) <wsrt:Create Dialect="xs:anyURI”’?>

(07) <wsmex:Metadata>resource metadata</wsmex:Metadata> ?
(08) <wsrt:Fragment>

(09) <wsrt:Expression>xs:any</wsrt:Expression> ?

(10) <wsrt:Value ...>xs:any</wsrt:Value>

(11) </wsrt:Fragment> *

(12) </wsrt:Create>

The following describes additional constraints on the outline listed above:

[Header]/wsrt:ResourceTransfer
If present and understood, a resource MUST process the [Body] in its entirety
and comply with its content. If not present then a resource MUST treat this
request as described in WS-Transfer Create [WS-Transfer].

[Body]/wsrt:Create
An element that specifies the fragments of the resource representation to be
initialized during resource creation and optionally any resource metadata that is
to be created as part of the creation of the resource. This element MUST be
present if the wsrt:ResourceTransfer header is present.

[Body]/wsrt:Create/@Dialect
This URI indicates which expression dialect will be used to identify the
fragment(s) of the resource representation to be initialized during resource
creation. This attribute MUST be present when the message contains a
wsrt:Expression element.

[Body]/wsrt:Create/wsmex:Metadata
When present this optional element MUST contain at least one
wsmex:MetadataSection. This is resource metadata to be created and initialized
during the creation of the resource.

A resource factory MUST generate an InvalidMetadataFault if the Create request
message contains a wsmex:Dialect that is not supported or if the resource
metadata contains values that are not supported for the resource.

This element MAY contain a wsmex:MetadataSection with a wsmex:Dialect of
http://schemas.xmlsoap.org/ws/2006/08/resourceTransfer allowing the
requestor to specify desired metadata as defined in this specification (such as
lifecycle metadata).

[Body]/wsrt:Create/Fragment
This element encompasses a single resource fragment to be initialized during the
resource creation. If there are multiple Fragment elements then the resource
MUST appear to have been created as though each fragment were processed in
the sequence specified in the Create message.
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If the request contains more Fragment elements than the resource supports the
resource MUST return a fault which SHOULD be wsrt: MultipartLimitExceededFault.

[Body]/wsrt:Create/Fragment/Expression
When present this optional element contains an expression that identifies a
resource fragment to be initialized during resource creation. The expression
identifies the fragment in the resource representation as it appears after
successful processing of the current fragment. Absence of this element is
equivalent to an Expression that identifies the entire resource representation. The
value of this element MUST conform to the dialect specified in the
[Body]/wsrt:Create/@Dialect attribute. A resource factory MUST generate an
InvalidExpressionFault if the expression is invalid. If the expression syntax is not
valid with respect to the dialect then a resource factory SHOULD specify a fault
detail of “InvalidExpressionSyntax”. If the expression is not valid for the resource
type then the resource factory SHOULD specify a fault detail of
“InvalidExpressionValue”.

[Body]/wsrt:Create/Fragment/Value
This element contains the data to be written to the resource representation. If
the resource factory is unable to write the requested fragment then it MUST
generate a CreateFault.

If the resource factory accepts a Create request, it MUST reply with a response of
the following form:

(01) [Headers]

(02) <wsrt:ResourceTransfer/>

(03) [Action]

(04) http://schemas.xmlsoap.org/ws/2004/09/transfer/CreateResponse
(05) [Body]

(06) <wxf:ResourceCreated>

07 wsa:EndpointReferenceType

(08) </wxf:ResourceCreated>

The following describes additional constraints on the outline listed above:

[Headers]/wsrt:ResourceTransfer
This header indicates that the response contains body content defined in WS-
ResourceTransfer.

[Body]/wxf:ResourceCreated
This element contains the endpoint reference for the resource that was created.
All subsequent access to the resource MUST be done using this EPR.

If the request Body contained a wsrt:Create element then the new representation
MUST be omitted in the response. Otherwise the response MUST be as described in
WS-Transfer.

An example Create message using the QName dialect is shown in Table 13. For
brevity only the message body is shown.

Table 13 - Example Create message using the QName dialect
(01) <s:Body>
(02) <wsrt:Create Dialect="http://schemas.xmlsoap.org/ws/2006/08/

(03) resourceTransfer/Dialect/QName"’
(04) xmlns:d="http://example.org/sample’>
(05) <wsmex:Metadata>
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1017 (06) <wsmex :MetadataSection Dialect="http://schemas.xmlsoap.org/

1018 07 ws/2006/08/resourceTransfer'>
1019 (08) <wsrt:Metadata>

1020 (09) <wsrt:Lifetime>

1021 (10) <wsrt:TerminateAt>

1022 (11) <wsrt:TerminationTime>
1023 (12) 2006-04-11T12:00:00Z
1024 13) </wsrt:TerminationTime>
1025 (@) <wsrt:CurrentTime>
1026 (15) 2006-04-10T10:00:547
1027 (16) </wsrt:CurrentTime>
1028 an </wsrt:TerminateAt>
1029 (18) </wsrt:Lifetime>

1030 (19 </wsrt:Metadata>

1031 (20) </wsmex :MetadataSection>

1032 (21) </wsmex:Metadata>
1033 (22) <wsrt:Fragment>

1034 (23) <wsrt:Expression>

1035 24) d:Volume

1036 (25) </wsrt:Expression>

1037 (26) <wsrt:Value>

1038 27) <d:Volume>

1039 (28) <d:Drive>C:</d:Drive>

1040 (29) <d:Label>MyDrive-C</d:Label>

1041 (30) <d:TotalCapacity>10000000000</d:TotalCapacity>
1042 (31) </d:Volume>

1043 (32) <d:Volume>

1044 33) <d:Drive>D:</d:Drive>

1045 34 <d:Label>MyDrive-D</d:Label>

1046 (35) <d:TotalCapacity>30000000000</d:TotalCapacity>
1047 (36) </d:Volume>

1048 (37) </wsrt:Value>

1049 (38) </wsrt:Fragment>
1050 (39) </wsrt:Create>
1051 (40) </s:Body>

1052

1053 Line (10) indicates that the resource, once created, is scheduled for destruction at
1054  the specific time. Messages sent to the EPR returned in the CreateResponse, after
1055 this time, will fault. Line (24) indicates that resource is created with a specific value
1056 or set of values for the <d:Volume=> property. Lines (26) - (37) specify the set of
1057  values of the <d:Volume=> property. The response to this "Create” message is
1058 illustrated in Table 14.

1059 Table 14: Example CreateResponse

1060 (01) <s:Body>

1061 (02) <wxf:ResourceCreated>

1062 (03) <wsa:Address>http://www.example.org/diskport</wsa:Address>
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1063
1064
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1068

1069
1070

1071

1072
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1075
1076

1077
1078

1079
1080
1081
1082
1083
1084
1085
1086

1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102

(04) <wsa:ReferenceParameters>

(05) <xyz:ManagedResource>44355</xyz :ManagedResource>
(06) </wsa:ReferenceParameters>
07 </wxf:ResourceCreated>

(08) </s:Body>

Lines (02) - (07) show the EPR to the disk resource that is returned in the response
message.

4. Faults

WS-ResourceTransfer faults MUST include as the [Action] property the following fault
action URI:

http://schemas.xmlsoap.org/ws/2006/08/resourceTransfer/fault

The faults defined in this section are generated if the condition stated in the

preamble is met. Faults are targeted at a destination endpoint according to the fault
handling rules defined in [WS-Addressingd].

The definitions of faults in this section use the following properties:
[Code] The fault code.

[Subcode] The fault subcode.

[Reason] The English language reason element.

[Detail] The detail element. If absent, no detail element is defined for the fault.

For SOAP 1.2, the [Code] property MUST be either "Sender" or "Receiver". These
properties are serialized into text XML as follows:

SOAP Version | Sender Receiver

SOAP 1.2 sl2:Sender | s12:Receiver

The properties above bind to a SOAP 1.2 fault as follows:
<sl1l2:Envelope>
<sl2:Header>
<wsa:Action>
http://schemas.xmlsoap.org/ws/2006/08/resourceTransfer/fault
</wsa:Action>
<I-- Headers elided for clarity. -->
</sl12:Header>
<sl12:Body>
<sl2:Fault>
<sl12:Code>
<sl2:Value>[Code]</s12:Value>
<s12:Subcode>
<sl12:Value>[Subcode]</s12:Value>
</s12:Subcode>
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1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127

1128

1129

1130
1131
1132
1133

1134

1135

1136
1137
1138

1139

1140

1141
1142
1143

1144

</sl12:Code>
<sl2:Reason>
<sl1l2:Text xml:lang=""en">[Reason]</sl12:Text>
</sl12:Reason>
<sl2:Detail>
[Detail]
</sl2:Detail>
</sl2:Fault>
</sl12:Body>
</sl12:Envelope>

The properties bind to a SOAP 1.1 fault as follows:
<sll:Envelope>
<sl1l1l:Body>
<sll:Fault>
<faultcode>[Subcode]</faultcode>
<faultstring xml:lang="en">[Reason]</faultstring>
<detail>
[Detail]
</detail>
</sll:Fault>
</sll1:Body>
</slil:Envelope>

4.1 wsa:DestinationUnreachable

This fault is sent in response to a message that is targeted at a resource that cannot
be found and is deemed not to exist. This may be because the resource was never
created or because the resource has been destroyed — there is no distinction
between these cases.

The SOAP bindings for this fault are defined in [WS-Addressing].

4.2 wsa:EndpointUnavailable

The resource is unable to process the message at this time due to some transient
issue. The endpoint MAY optionally include a wsa:RetryAfter parameter in the detail.
The source should not retransmit the message until this duration has passed.

The SOAP bindings for this fault are defined in [WS-Addressing].

4.3 ConcurrencyFault

This fault is generated by a resource to indicate that it was unable to process a
message due to concurrent access. A requester might choose to handle this condition
by retrying the operation that caused it.
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1146
1147
1148
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1151
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1155
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1157
1158

1159

1160

1161
1162

[Action] http://schemas.xmlsoap.org/ws/2006/08/resourceTransfer/fault

[Code] s12:Sender

[Subcode] | wsrt:ConcurrencyFault

[Reason] Could not access the resource due to concurrency and/or locking
conditions

[Detail]

4.4 UnsupportedDialectFault

This fault is generated by a resource to indicate that the expression dialect used to
identify a resource fragment is not supported by the resource for the current
operation. The fault detail SHOULD contain the Dialect values that the resource does
support for the operation.

[Action] http://schemas.xmlsoap.org/ws/2006/08/resourceTransfer/fault
[Code] s12:Sender

[Subcode] | wsrt:UnsupportedDialectFault

[Reason] The requested dialect is not supported

[Detail] <wsrt:Dialect>xs:anyURI</wsrt:Dialect> *

4.5 InvalidExpressionFault

This fault is sent by a resource if a <wsrt:Expression> element has an syntax that is
invalid according to the definition of the expression dialect. If the expression syntax
is not valid with respect to the dialect then a resource SHOULD specify a fault detail
of “InvalidExpressionSyntax”, indicating which expression this detail applies to. If the
expression is not valid for the resource type then the resource SHOULD specify a
fault detail of “InvalidExpressionValue”, indicating which expression this detail

applies to.
[Action] http://schemas.xmlsoap.org/ws/2006/08/resourceTransfer/fault
[Code] s12:Sender
[Subcode] | wsrt:InvalidExpressionFault
[Reason] The specified Expression is not valid
[Detail] <wsrt: Inval idExpressionSyntax>
<wsrt:Expression>xs:any</wsrt:Expression> +
</wsrt: Inval idExpressionSyntax>
|
<wsrt: Inval idExpressionValue>
<wsrt:Expression>xs:any</wsrt:Expression> +
</wsrt: InvalidExpressionValue>
4.6 GetFault

This fault is generated by a resource if it is unable to process a valid Get message.

| [Action]

‘ http://schemas.xmlsoap.org/ws/2006/08/resourceTransfer/fault
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1164
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1169
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1174
1175

1176
1177
1178
1179

1180

[Code] s12:Receiver

[Subcode] | wsrt:GetFault

[Reason] Unable to process Get message

[Detail]

4.7 ResourceValidityFault

This fault is generated by a resource if the result of processing a Put message would
cause the resource representation to become invalid. The fault detail MAY include the
wsrt:Fragment element in the Put message that caused this fault to be generated.

[Action] http://schemas.xmlsoap.org/ws/2006/08/resourceTransfer/fault

[Code] sl12:Sender

[Subcode] | wsrt:ResourceValidityFault

[Reason] | The requested resource modification is not valid.

[Detail] <wsrt:Fragment>fragment</wsrt:Fragmant> ?

4.8 FragmentAlreadyExistsFault

This fault is generated by a resource if a “Put” message specifies the “Insert” mode
and identifies a non-repeated fragment element (maxOccurrs = 1) that already
exists. The fault detail MAY include the wsrt:Fragment that failed to be processed.

[Action] http://schemas.xmlsoap.org/ws/2006/08/resourceTransfer/fault

[Code] s12:Sender

[Subcode] | wsrt:FragmentAlreadyExistsFault

[Reason] The fragment already exists

[Detail] <wsrt:Fragment>fragment</wsrt:Fragment> ?

4.9 PutFault

This fault is generated by a resource if it is unable to process a valid Put message.
The fault detail MAY include the wsrt:Fragment that failed to be processed.

The fault detail SHOULD include a wsrt:SideAffects element in the fault detail to
indicate whether any changes occurred. A value of “true” indicates some changes
occurred; a value of “false” indicates no changes occurred. Absence of the element
indicates that changes may have occurred.

[Action] http://schemas.xmisoap.org/ws/2006/08/resourceTransfer/fault

[Code] s12:Receiver

[Subcode] | wsrt:PutFault

[Reason] Unable to process Put message

[Detail] <wsrt:Fragment>fragment</wsrt:Fragment> ?
<wsrt:SideEffects>xs:boolean</wsrt:SideEffects> ?
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4.10 PutModeUnsupportedFault

This fault is generated by a resource if a “Put” message specifies a mode that is not
supported by the resource.

[Action] http://schemas.xmisoap.org/ws/2006/08/resourceTransfer/fault
[Code] sl12:Sender

[Subcode] | wsrt:PutModeUnsupportedFault

[Reason] The Put mode is not supported

[Detail]

4.11 CreateFault

This fault is generated by a resource if it is unable to process a valid Create message.
The fault detail MAY include the wsrt:Fragment that failed to be processed.

[Action] http://schemas.xmlsoap.org/ws/2006/08/resourceTransfer/fault
[Code] s12:Receiver

[Subcode] | wsrt:CreateFault

[Reason] Unable to process Create message

[Detail] <wsrt:Fragment>fragment</wsrt:Fragment> ?

4.12 InvalidMetadataFault

This fault is generated by a resource factory if a “Create” message contains a
wsmex:Dialect that is not supported or if the resource metadata contains values
that are not supported for the resource.

[Action] http://schemas.xmlsoap.org/ws/2006/08/resourceTransfer/fault
[Code] sl12:Sender

[Subcode] | wsrt:InvalidMetadataFault

[Reason] Resource metadata values not supported by resource

[Detail]

4.13 MultipartLimitExceededFault

This fault is generated by a resource if a request message exceeds the limit of
wsrt:Expression or wsrt:Fragment elements supported for the dialect. The fault
detail MUST contain the maximum number of wsrt:Expression or wsrt:Fragment
elements supported for the dialect.

[Action] http://schemas.xmisoap.org/ws/2006/08/resourceTransfer/fault

[Code] s12:Sender

[Subcode] | wsrt:MultipartLimitExceededFault

[Reason] | Access to multiple fragments exceeded the supported number of
fragments in a single message

[Detail] §W§rt:MultipartLimit>xs:positivelnteger</wsrt:MultipartL
imit>
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4.14 InvalidPutSyntaxFault

This fault is generated by a resource if a Put request specifying a Mode “Remove”
contains a wsrt:Value element or if a Put request specifying a Mode “Insert” or
“Modify” does not contain a wsrt:Value element.

[Action] http://schemas.xmisoap.org/ws/2006/08/resourceTransfer/fault
[Code] sl12:Sender
[Subcode] | wsrt:InvalidRemoveSyntaxFault
[Reason] Invalid syntax used for Put request
[Detail]
5. Security

It is strongly recommended that the communication between services be secured
using the mechanisms described in [WS-Security].

In order to properly secure messages, the body (even if empty) and all relevant
headers need to be included in the signature. Specifically, the WS-Addressing header
blocks and WS-Security timestamp need to be signed along with the body in order to
"bind" them together and prevent certain types of attacks.

If a requestor is issuing multiple messages to a resource reference, then it is
recommended that a security context be established using the mechanisms
described in [WS-Trust] and [WS-SecureConversation]. It is further
recommended that if shared secrets are used, message-specific derived keys also be
used to protect the secret from crypto attacks.

The access control semantics of resource references are out-of-scope of this
specification and are specific to each resource reference. Similarly, any protection
mechanisms on resource references independent of transfer (e.g. embedded
sighatures and encryption) are also out-of-scope.
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1286 04)

1287 (05) <node_sequence> ::=

1288 (06) <element> <optional_collection_operator> <more>;
1289 7))

1290 (08) <optional_collection_operator> ::= "[" <array_location> "]";
1291 (09) <optional_collection_operator> ::i= <>;

1292 (10)

1293 (11) <more> ::= "/" <follower> | <>;

1294 (12)

1295 (13) <follower> ::=

1296 14 <attribute> | <text function> | <node_sequence>;
1297 (15)

1298 (16) <element> ::= <qualified_name>;

1299 (17) <attribute> = "@" <qualified name>;

1300 (18)

1301 (19) <qualified_name> ::= <name> <gname_follower>;

1302 (20) <gname_follower> ::= ":" <pame> | <>;

1303 (21) <text_function> ::= "text(Q" ;

1304  (22) <array_location> ::= NONZERO DECIMAL_UNSIGNED INTEGER;
1305 (23) <name> ::= XML_TOKEN;

1306 The terminal tokens which require further lexical specification are

1307 NONZERO_DECIMAL_UNSIGNED_INTEGER, whose values are in the subrange (1..
1308 4294967295), and XML_TOKEN whose values are equivalent to those for the XML
1309 Schema type xs:token. This grammar is small enough that it can be easily

1310 implemented in resource-constrained implementations.

1311  The following comments on the grammar will clarify certain constructs within the
1312 BNF.

1313 Most of the examples assume the following XML sample acting as a "resource"
1314  document:

1315 (01) <a>

1316 (02) <b>

1317 (03) <c d="30"> 20 </c>

1318 (04) </b>

1319 (05) <e>

1320 (06) <f/>

1321 7 <f/>

1322 (08) </e>

1323 (09) </a>

1324 The context and document root node need clarification. XPath Level 1 assumes that

1325 the root is the root node of the resource document, not the SOAP envelope or any
1326 other wrapper element which may contain the resource.

1327 Further, the default context is the root element and the context position is 1.

1328 In view of this, the / operator selects the containing root, and the only valid operand
1329  which may follow it is the outermost element of the resource:

1330 (01) 7a
1331 The following paths are equivalent:
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1365
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1367
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1369
1370
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1372
1373
1374

1375
1376

(01) sa/b

02) b

Note that because the context node is the root element, a relative path selects a
matching child element.

The <node_sequence> production provides the recursive behavior for the XPath:
(01) /as/b/c
(02) b/c

It also provides for selecting specific repeated elements through the
<optional_collection_operator> production:

(01) ra/e/f[2]

The collection operator only takes unsigned nonzero values, as defined above for
NONZERO_DECIMAL_UNSIGNED_INTEGER. Thus, [1] is the first of a repeating
series of elements.

The <qualified_name> production allows the XML naming tokens to be either
namespace-qualified or unqualified:

(01) /nsl:a/ns2:b/c

The namespace bindings are evaluated against any namespace declarations that are
in scope where the XPath appears within the SOAP message.

NOTE: If the element name is unqualified, i.e. appears without a namespace prefix,
then the element name MUST be matched against a matching element name in the
resource document, regardless of namespace bindings that are in effect, including
default bindings. This allows implementations to simply match element names in the
majority of cases. If namespace bindings are significant for all elements, then
qualified names must be used.

The <follower> production allows for special-casing of the final tokens of the XPath
allowing it to end in either an attribute or text.

The text() NodeTest may be applied as a final token to the selected element. This
NodeTest selects any text nodes that are children of the selected element. If the
element only contains text content, the return value will be a node-set containing a
single text node.

(01) b/c/text()

The above expression would return a node-set containing a single text node with the
value 20 as its result. This text node would then be serialized into the following XML
representation:

(01) <wsrt:TextNode>20</wsrt:TextNode>

If accessed, attributes must be the final token in the path and they may be
namespace-qualified or unqualified names, as required:

(01) sa/b/c/@d

The above expression would return a node-set containing a single attribute node with
the value d="30" as its result. This attribute node would then be serialized into the
following XML representation:

(01) <wsrt:AttributeNode name="d'>30</wsrt:AttributeNode>
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Selection of an element returns the element and its entire content. The path /a/b
executed against the sample XML returns a node-set containing a single element
node which serializes directly:

(01) <b> <c d="30"> 20 </c> </b>

In the event that there is more than one node which would match the XPath, the
implementation SHOULD select or return the first node only. This allows simple
implementations to avoid the overhead of checking the remainder of the resource
document for a possible match.

Conformant implementations MAY supply additional functions and capabilities, but
MUST adhere to the minimum behavior described above.

Appendix Il — Resource Metadata Content

A resource can have associated metadata that MAY be specified when the resource is
created. A resource may provide access to that metadata after it has been created
and some aspects of a resource’s metadata may be mutable.

The form of the resource metadata is shown in Table 15.
Table 15: Resource metadata
(01) <wsrt:Metadata>

(02) <wsrt:Lifetime>lifetime metadata</wsrt:Lifetime> ?
(03) <wsrt:SupportedDialect>

(04) dialect metadata

(05) </wsrt:SupportedDialect> *

(06) .-

(07) </wsrt:Metadata>

Metadata can be associated with a resource as described in WS-
MetadataExchange. The following wsmex:GetMetadata/wsmex:Dialect URI is
defined to indicate metadata as defined in this specification:

http://schemas.xmlsoap.org/ws/2006/08/resourceTransfer

This is used in the wsmex:GetMetadata message to return resource metadata. It is
RECOMMENDED that a resource whose metadata is mutable use the form of a
wsmex:MetadataSection that contains an EPR which is a reference to a “metadata
resource”.

The metadata defined by this specification includes lifecycle metadata as well as
capability information about supported dialects as described in the following sub-
sections.

I1.A Lifecycle metadata

Resources have a distinct lifecycle in that they may be created and they may be
destroyed. There is no distinction between a resource that has been destroyed and a
resource that has not been created.

Resources MAY allow their lifecycle metadata to be queried and changed and MAY
support operations to operate on their lifecycle metadata. The following are
properties of a resource’s lifecycle metadata:
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[termination time]
The time at which the resource will be destroyed. The environment controlling
the resource MUST NOT destroy the resource before this time but MAY choose to
delay its destruction after this time. However, client applications MUST NOT
assume that the resource will be available beyond this date/time.

[current time]
The current time, as measured by the resource. This can be used to estimate
local clock variations between time measured by a resource and time measured
by an application that uses the resource.

The form of resource lifecycle metadata is shown in Table 16.

Table 16: Resource lifecycle metadata
(01) <wsrt:Lifetime>

(02) ( <wsrt:TerminateAt>

(03) <wsrt:TerminationTime>xs:dateTime</wsrt:TerminationTime>
(04) <wsrt:CurrentTime>xs:dateTime</wsrt:CurrentTime>

(05) </wsrt:TerminateAt> |

(06) <wsrt:TerminateAfter>xs:duration</wsrt:TerminateAfter> |
(07) <wsrt:TerminateAfterlidle>

(08) Xs:duration

(09) </wsrt:TerminateAfteridle> )

(10) </wsrt:Lifetime>

wsrt:Lifetime/wsrt:TerminateAt
This element contains elements that specify the [termination time] and [current
time] as absolute times, as measured by the resource.

wsrt:Lifetime/wsrt:TerminateAt/wsrt: TerminationTime
This element specifies the [termination time] as an absolute time, as measured
by the resource, after which the resource will be destroyed.

wsrt:Lifetime/wsrt:TerminateAt/wsrt:CurrentTime
This element specifies the [current time] as an absolute time, as measured by
the resource. This can be used to estimate local clock variations between time
measured by a resource and time measured by an application that uses the
resource.

wsrt:Lifetime/wsrt:TerminateAfter
This element specifies the [termination time] as a duration after the current time
that the resource will be destroyed.

wsrt:Lifetime/wsrt:TerminateAfterldle
This element specifies the [termination time] as an amount of time to wait after a
message to the resource before automatically destroying it. Any message sent to
the resource SHOULD reset this timer.

11.B Expression Dialect metadata

Resources can support different expression dialects, as described above in
Expression Dialect. A resource MAY declare which dialects it supports through its
resource metadata.

The form of resource expression dialect metadata is shown in Table 17.

Table 17: Resource expression metadata
(01) <wsrt:SupportedDialect DialectName=""xs:anyURI">
(02) <wsrt:SupportedOperation OperationName="Xxs:anyURI">
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(03) <wsrt:SupportedPutMode>

(04) ModeType

(05) </wsrt:SupportedPutMode> *
(06) <wsrt:MultipartLimit>

07 xs:positivelnteger

(08) </wsrt:MultipartLimit> ?
(09) </wsrt:SupportedOperation> *
(10) </wsrt:SupportedDialect>

wsrt:SupportedDialect
This element encapsulates all the metadata about the support of a specific
expression dialect. The resource MUST support each of the dialects in this list and
MAY support others.

wsrt:SupportedDialect/@DialectName
The URI that uniquely identifies the dialect.

wsrt:SupportedDialect/wsrt:SupportedOperation
This element encapsulates all the metadata regarding the behaviour of the
subject expression dialect for a specific WS-Transfer operation. If this element is
absent, then all WS-Transfer operations and all Put Modes are supported for the
subject dialect.

wsrt:SupportedDialect/wsrt: SupportedOperation/@OperationName
The Action URI that indicates the Get, Put or Create operation.

wsrt:SupportedDialect/wsrt: SupportedOperation/wsrt:SupportedPutMode
This element contains a PutMode that is supported for the operation for the
subject dialect. If this element is absent, then all Put Modes are supported for the
operation for the subject dialect. This element is present only when the
@OperationName indicates the "Put™ operation.

wsrt:SupportedDialect/wsrt: SupportedOperation/wsrt:MultipartLimit
Indicates the maximum number of <wsrt:Expression> elements supported for a
Get operation or the maximum number of <wsrt:Fragment> elements supported
for a Put or Create operation for the subject dialect. If this element is absent then
there is no limit for the operation for the subject dialect. A resource that specifies
this metadata MUST generate a MultipartLimitExceededFault if it receives a
message that exceeds the limit of wsrt:Expression or wsrt:Fragment elements
supported for the operation for the subject dialect.

Appendix Il — XML Schema

A normative copy of the XML Schema [XML Schema Part 1, Part 2] description for
this specification can be retrieved from the following address:
http://schemas.xmlsoap.org/ws/2006/08/resourceTransfer/wsrt.xsd

A non-normative copy of the XML Schema description is listed below for convenience.
<?xml version="1.0" ?>

<l--

Copyright Notice

(c) 2006 Hewlett-Packard Development Company (HP), Intel Corporation,
International Business Machines Corporation (I1BM), and Microsoft
Corporation. All rights reserved.
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Permission to copy and display the "Web Services Resource Transfer"
Specification, in any medium without fee or royalty is hereby granted,
provided that you include the following on ALL copies of the "Web
Services Resource Transfer' Specification, or portions thereof, that
you make:
1. A link or URL to the "Web Services Resource Transfer'
Specification at this location:
http://schemas.xmlsoap.org/ws/2006/08/resourceTransfer.
2. The copyright notice as shown in the "Web Services Resource
Transfer' Specification.

Hewlett-Packard Development Company (HP), Intel Corporation,
International Business Machines Corporation (IBM), and Microsoft
Corporation (collectively, the "Authors'™) each agree to grant you a
royalty-free license, under reasonable, non-discriminatory terms and
conditions to their respective patents that they deem necessary to
implement the "Web Services Resource Transfer'™ Specification.

THE "WEB SERVICES RESOURCE TRANSFER'™ SPECIFICATION 1S PROVIDED "AS 1S,"
AND THE AUTHORS MAKE NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE, NON-INFRINGEMENT, OR TITLE; THAT THE
CONTENTS OF THE "WEB SERVICES RESOURCE TRANSFER" SPECIFICATION ARE
SUITABLE FOR ANY PURPOSE; NOR THAT THE IMPLEMENTATION OF SUCH CONTENTS
WILL NOT INFRINGE ANY THIRD PARTY PATENTS, COPYRIGHTS, TRADEMARKS OR
OTHER RIGHTS.

THE AUTHORS WILL NOT BE LIABLE FOR ANY DIRECT, INDIRECT, SPECIAL,
INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF OR RELATING TO ANY
USE OR DISTRIBUTION OF THE "WEB SERVICES RESOURCE TRANSFER
SPECIFICATION.

The name and trademarks of the Authors may NOT be used In any manner,
including advertising or publicity pertaining to the "Web Services
Resource Transfer' Specification or its contents without specific,
written prior permission. Title to copyright in the "Web Services
Resource Transfer' Specification will at all times remain with the
Authors.

No other rights are granted by implication, estoppel or otherwise.
-——>

<xs:schema

targetNamespace="http://schemas.xmlsoap.org/ws/2006/08/resourceTr
ansfer™
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1562 xmIns:wsrt="http://schemas.xmlsoap.org/ws/2006/08/resourceTransfer"

1563 xmIns:xs="http://www.w3.0rg/2001/XMLSchema™

1564 xmlns:wsa=""http://www.w3.0rg/2005/08/addressing"

1565 xmIns:wsmex=""http://schemas.xmlsoap.org/ws/2004/09/mex""
1566 elementFormDefault=""qualified" blockDefault="#all">

1567

1568 <Xs:import

1569 namespace=""http://www.w3.0rg/2005/08/addressing""
1570 schemalLocation=

1571 "http://www.w3.0rg/2006/03/addressing/ws-addr.xsd" />
1572 <Xs:import

1573 namespace=""http://schemas.xmlsoap.org/ws/2004/09/mex"
1574 schemalLocation=

1575 "http://schemas.xmlsoap.org/ws/2004/09/mex/MetadataExchange.xsd" />
1576

1577

1578 <I-- ResourceMetadata section -->

1579

1580 <I-- A wsmex:MetadaSection with a wsmex:Dialect of

1581 http://schemas.xmlsoap.org/ws/2006/08/resourceTransfer
1582 contains the following Metadata element

1583 ——>

1584 <xs:element name="Metadata''>

1585 <xs:complexType>

1586 <XS:sequence>

1587 <xs:element ref="wsrt:Lifetime"™ minOccurs="0" />
1588 <xs:element ref="wsrt:SupportedDialect™

1589 minOccurs="0" maxOccurs="unbounded" />

1590 <xs:any minOccurs="0" maxOccurs="unbounded"

1591 namespace="##other'" processContents="lax" />
1592 </xs:sequence>

1593 </xs:complexType>

1594 </xs:element>

1595

1596 <xs:element name="Lifetime'>

1597 <xs:complexType>

1598 <Xs:sequence>

1599 <xs:choice>

1600 <xs:element ref="wsrt:TerminateAt"/>

1601 <xs:element name=""TerminateAfter" type="'Xxs:duration" />
1602 <xs:element name="TerminateAfterlidle"

1603 type=""xs:duration” />

1604 </xs:choice>

1605 </Xs:sequence>

1606 </xs:complexType>
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</xs:element>

<xs:element name=""TerminateAt'>
<xs:complexType>
<Xs:sequence>
<xs:element name=""TerminationTime"™ type='xs:dateTime'/>
<xs:element name="CurrentTime" type="'xs:dateTime" />
</xs:sequence>
</xs:complexType>

</xs:element>

<xs:element name="'SupportedDialect'>
<xs:complexType>
<XS:sequence>
<xs:element ref="wsrt:SupportedOperation"
minOccurs=""0" maxOccurs="unbounded" />
</xs:sequence>
<xs:attribute name="DialectName" type="xs:anyURI*"
use="required® />
</xs:complexType>
</xs:element>

<xs:element name="'SupportedOperation'>
<xs:complexType>
<xs:sequence>
<xs:element name="'SupportedPutMode' type="‘wsrt:ModeType"
minOccurs="0" maxOccurs="unbounded" />
<xs:element name="MultipartLimit"
type=""xs:positivelnteger”™ minOccurs="0"/>
</xs:sequence>
<xs:attribute name="OperationName® type="xs:anyURI"
use="required® />
</xs:complexType>
</xs:element>

<I-- Shared Types section -->
<xs:complexType name="MixedAnyType" Ffinal="restriction”
mixed=""true"">
<xs:complexContent mixed=""true">
<xs:restriction base="xs:anyType'>
<XS:sequence>
<xs:any processContents=""lax"
minOccurs=""0" maxOccurs="unbounded" />
</Xs:sequence>
</xs:restriction>
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1652 </xs:complexContent>

1653 </xs:complexType>

1654

1655 <xs:complexType name="ResultType®" final="restriction">
1656 <xs:complexContent>

1657 <xs:extension base="wsrt:MixedAnyType~/>

1658 </xs:complexContent>

1659 </xs:complexType>

1660

1661 <xs:complexType name="ExpressionType" final="restriction">
1662 <xs:complexContent>

1663 <xs:extension base="wsrt:MixedAnyType"/>

1664 </xs:complexContent>

1665 </xs:complexType>

1666 <xs:element name="Expression® type="wsrt:ExpressionType"/>
1667

1668 <xs:complexType name="FragmentType">

1669 <XS:sequence>

1670 <xs:element ref="wsrt:Expression”

1671 minOccurs="0" maxOccurs="1" />

1672 <xs:element name="Value® type="wsrt:MixedAnyType*"
1673 minOccurs="0" maxOccurs="1" />

1674 </xs:sequence>

1675 </xs:complexType>

1676 <xs:element name="Fragment® type="wsrt:FragmentType®"/>
1677

1678 <xs:element name='"ResourceTransfer’>

1679 <xs:complexType>

1680 <xs:anyAttribute namespace="##other"™ processContents="1ax""/>
1681 </xs:complexType>

1682 </xs:element>

1683

1684 <I-- Create section -->

1685

1686 <xs:element name="Create">

1687 <xs:complexType>

1688 <Xs:sequence>

1689 <xs:element ref="wsmex:Metadata®™ minOccurs="0"/>
1690 <xs:element ref="wsrt:Fragment*®

1691 minOccurs="0" maxOccurs="unbounded® />
1692 </Xxs:sequence>

1693 <xs:attribute name="Dialect”™ type="xs:anyURI" />
1694 </xs:complexType>

1695 </xs:element>

1696
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1697 <xs:element name="'CreateResponse''>

1698 <xs:complexType>

1699 <XS:sequence>

1700 <xs:element ref="wsrt:ResourceCreated"” />
1701 </Xs:sequence>

1702 </xs:complexType>

1703 </xs:element>

1704

1705 <xs:element name="ResourceCreated"

1706 type="wsa:EndpointReferenceType" />
1707

1708 <I-- Put section -->

1709

1710 <xs:element name="Put">

1711 <xs:complexType>

1712 <XS:sequence>

1713 <xs:element name="Fragment® type="wsrt:PutFragmentType*"
1714 maxOccurs="unbounded® />
1715 </Xs:sequence>

1716 <xs:attribute name="Dialect”™ type="xs:anyURI" />
1717 </xs:complexType>

1718 </xs:element>

1719

1720 <xs:complexType name="PutFragmentType">

1721 <xs:complexContent>

1722 <xs:extension base="wsrt:FragmentType'>

1723 <xs:attribute name="Mode" type="wsrt:ModeType"
1724 use="required" />

1725 </xs:extension>

1726 </xs:complexContent>

1727 </xs:complexType>

1728

1729 <xs:simpleType name="ModeType' final="restriction'>
1730 <xs:restriction base=""xs:NMTOKEN">

1731 <xs:enumeration value="Modify" />

1732 <xs:enumeration value="lInsert"” />

1733 <xs:enumeration value=""Remove" />

1734 </xs:restriction>

1735 </xs:simpleType>

1736

1737 <xs:element name=""PutResponse''>

1738 <xs:complexType/>

1739 </xs:element>

1740

1741 <I-- Get section -->
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<xs:element name="Get">
<xs:complexType>
<XS:sequence>
<xs:element ref="wsrt:Expression®
minOccurs="0" maxOccurs="unbounded® />
</Xxs:sequence>
<xs:attribute name="Dialect™ type="xs:anyURI"/>
</xs:complexType>
</xs:element>

<xs:element name="GetResponse">
<xs:complexType>
<XS:sequence>
<xs:element name="Result” type="wsrt:ResultType"
maxOccurs="unbounded®/>
</Xxs:sequence>
</xs:complexType>
</xs:element>

<!-- Fault section -->

<xs:simpleType name=""FaultCodeTypes">
<xs:restriction base=""xs:QName''>

<Xs:enumeration
<Xs:enumeration
<Xs:enumeration
<Xs:enumeration
<Xs:enumeration
<Xs:enumeration
<Xs:enumeration
<Xs:enumeration
<Xs:enumeration
<Xs:enumeration
<Xs:enumeration
<Xs:enumeration

value="'wsrt:ConcurrencyFault"” />
value="wsrt:UnsupportedDialectFault” />
value="'wsrt: Inval idExpressionFault" />
value="wsrt:GetFault" />
value="'wsrt:ResourceValidityFault” />
value="'wsrt:FragmentAlreadyExistsFault" />
value="wsrt:PutFault" />
value="'wsrt:PutModeUnsupportedFault' />
value="wsrt:CreateFault” />

value="wsrt: InvalidMetadataFault" />
value="wsrt:MultipartLimitExceededFault" />
value="wsrt: Inval idPutSyntaxFault” />

</xs:restriction>
</xs:simpleType>

<xs:element name="Dialect® type="xs:anyURI"/>
<xs:element name="InvalidExpressionSyntax">
<xs:complexType>

<xs:sequence>
<xs:element ref="wsrt:Expression®
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maxOccurs="unbounded® />
</Xs:sequence>
</xs:complexType>
</xs:element>

<xs:element name="IlnvalidExpressionValue®>
<xs:complexType>
<xs:sequence>
<xs:element ref="wsrt:Expression”
maxOccurs="unbounded® />
</Xs:sequence>
</xs:complexType>
</xs:element>

<xs:element name="MultipartLimit® type="xs:positivelnteger"/>

<xs:element name="SideEffects” type="xs:boolean"/>
<I-- XPath section -->

<xs:element name="AttributeNode">

<xs:complexType>
<xs:simpleContent>

<xs:extension base="xs:string">
<xs:attribute name="name" type="xs:QName"/>

</xs:extension>
</xs:simpleContent>

</xs:complexType>

</xs:element>

<xs:element name="TextNode" type="xs:string"/>

<xs:element name="NodeSet" type="wsrt:ResultType"/>

</xs:schema>

Appendix IV —WSDL

A normative copy of the WSDL [WSDL 1.1] description for this specification can be

retrieved from the following address:

http://schemas.xmlsoap.org/ws/2006/08/resourceTransfer/wsrt.wsdl
A non-normative copy of the WSDL description is listed below for convenience.

<?xml version="1.0" encoding=""utf-8"7>
<I--

Copyright Notice
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(c) 2006 Hewlett-Packard Development Company (HP), Intel Corporation,
International Business Machines Corporation (IBM), and Microsoft
Corporation. All rights reserved.

Permission to copy and display the "Web Services Resource Transfer"
Specification, in any medium without fee or royalty is hereby granted,
provided that you include the following on ALL copies of the "Web
Services Resource Transfer'"™ Specification, or portions thereof, that
you make:
1. A link or URL to the "Web Services Resource Transfer"
Specification at this location:
http://schemas.xmlsoap.org/ws/2006/08/resourceTransfer.
2. The copyright notice as shown in the "Web Services Resource
Transfer' Specification.

Hewlett-Packard Development Company (HP), Intel Corporation,
International Business Machines Corporation (IBM), and Microsoft
Corporation (collectively, the "Authors'™) each agree to grant you a
royalty-free license, under reasonable, non-discriminatory terms and
conditions to their respective patents that they deem necessary to
implement the "Web Services Resource Transfer'"™ Specification.

THE "WEB SERVICES RESOURCE TRANSFER'™ SPECIFICATION 1S PROVIDED "AS 1S,"
AND THE AUTHORS MAKE NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE, NON-INFRINGEMENT, OR TITLE; THAT THE
CONTENTS OF THE *"WEB SERVICES RESOURCE TRANSFER"™ SPECIFICATION ARE
SUITABLE FOR ANY PURPOSE; NOR THAT THE IMPLEMENTATION OF SUCH CONTENTS
WILL NOT INFRINGE ANY THIRD PARTY PATENTS, COPYRIGHTS, TRADEMARKS OR
OTHER RIGHTS.

THE AUTHORS WILL NOT BE LIABLE FOR ANY DIRECT, INDIRECT, SPECIAL,
INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF OR RELATING TO ANY
USE OR DISTRIBUTION OF THE "WEB SERVICES RESOURCE TRANSFER™
SPECIFICATION.

The name and trademarks of the Authors may NOT be used in any manner,
including advertising or publicity pertaining to the "Web Services
Resource Transfer'™ Specification or its contents without specific,
written prior permission. Title to copyright in the "Web Services
Resource Transfer' Specification will at all times remain with the
Authors.

No other rights are granted by implication, estoppel or otherwise.
-——>
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<wsdl :definitions targetNamespace=
"http://schemas.xmlsoap.org/ws/2006/08/resourceTransfer"”
xmIns:wsrt="http://schemas.xmlsoap.org/ws/2006/08/resourceTransfer"
xmlns:wsa=""http://www.w3.0rg/2005/08/addressing"
xmIns:wsdl=""http://schemas.xmlsoap.org/wsdl/*
xmIns:wxf="http://schemas.xmlsoap.org/ws/2004/09/transfer"
xmlns:xs=""http://www.w3.0rg/2001/XMLSchema''>

<wsdl : types>
<xs:schema>
<xs:include schemalLocation=
"http://schemas.xmlsoap.-org/ws/2006/08/resourceTransfer/wsrt._xsd"” />
</xs:schema>
</wsdl :types>

<wsdl :message name="'CreateRequestMessage''>
<wsdl :part name="Body" element="wsrt:Create" />
</wsdl :message>

<wsdl :message name=''CreateResponseMessage"'>
<wsdl :part name="Body" element="wsrt:CreateResponse" />
</wsdl :message>

<wsdl :message name="'‘GetRequestMessage''>
<wsdl:part name="Body" element="wsrt:Get" />
</wsdl :message>

<wsdl :message name="‘GetResponseMessage’>
<wsdl :part name="Body" element="wsrt:GetResponse" />
</wsdl :message>

<wsdl :message name="‘PutRequestMessage'>
<wsdl :part name="Body" element="wsrt:Put" />
</wsdl :message>

<wsdl :message name=""PutResponseMessage"'>
<wsdl :part name="Body" element="wsrt:PutResponse" />
</wsdl :message>

<wsdl :portType name="'Resourcelnterface">
<wsdl :documentation>
This port type contains the Get and Put
operations defined in WS-ResourceTransfer.
</wsdl :documentation>
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<wsdl :operation name=""Get">
<wsdl:input message="'wsrt:GetRequestMessage"
wsa:Action=
"http://schemas.xmlsoap.org/ws/2004/09/transfer/Get"” />
<wsdl :output message="‘wsrt:GetResponseMessage"
wsa:Action=
"http://schemas.xmlsoap.org/ws/2004/09/transfer/GetResponse" />
</wsdl :operation>
<wsdl :operation name="Put">
<wsdl:input message="'wsrt:PutRequestMessage"
wsa:Action=
"http://schemas.xmlsoap.org/ws/2004/09/transfer/Put" />
<wsdl :output message="‘wsrt:PutResponseMessage"
wsa:Action=
"http://schemas.xmlsoap.org/ws/2004/09/transfer/PutResponse™ />
</wsdl :operation>
</wsdl :portType>

<wsdl :portType name="‘ResourceFactorylnterface'>
<wsdl : documentation>
This port type contains the Create operation
defined in WS-ResourceTransfer.
</wsdl :documentation>
<wsdl :operation name='Create'>
<wsdl:input message="'wsrt:CreateRequestMessage"
wsa:Action=
"http://schemas.xmlsoap.org/ws/2004/09/transfer/Create" />
<wsdl :output message="‘wsrt:CreateResponseMessage"
wsa:Action=
"http://schemas.xmlsoap.org/ws/2004/09/transfer/CreateResponse’ />
</wsdl :operation>
</wsdl :portType>

</wsdl :definitions>
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