- i b [N ENERT : RS S e b S et (| a v et { o KN L Bl ok L\ S
e) Sy LA SRS C s S N B PR NN UG T e
; , g) “ O { I}‘; ! : d \:' y v "‘.;‘.\, - LANE L\,‘,:':‘__"';" A P § | Ll 1 < ‘.'. N\'» '_ y T aan 2 =g \ . ".

WS-Federation 1.1
Overview

OASIS WSFED TC inaugural meeting
June 6-7, 2007

s QRN e e e

Agenda

Introduction

WS-Trust extensions for federations
STS service model extensibility
Federation metadata

Federated sign-out and Web requestors
Summary

Introduction

 Vision and Goals
« Basic Terminology and Components
« Sample Federation Scenarios

Vision: Extend WS-Trust

 Flexible identity federation architecture

— Clean separation between trust mechanisms, security
token formats, and token protocol

— Infrastructure supports browser & SOAP requestors

» Simplified configuration
— Federation metadata to fill gaps in policy
— Federation partners can automate configuration

« Reusable token service model

— Common claims interface for attributes, pseudonyms
& authorization data

Promise: Finish the Roadmap

* Federation vision declared 5 years ago

« Web Services security stack roadmap

— Set of composable specifications to enable broad range
of secure Web Services solutions

— All specifications to be ratified by industry through open
standards process

» WS-Federation completes the promise to
finish the roadmap

Goals and Requirements

* Promote identity federation

— Enhance WS-Trust STS support for distributed authentication and
authorization across realm boundaries

— Make identity mapping optional (for privacy or personalization)
— Enable different levels of privacy for different types of personally
identifying information

« Reduce operational friction in federations
— Support mix & match of trust topologies and token types
— Enable automated configuration using Federation Metadata
— Allow single infrastructure to serve both SOAP and Web requesters

« Reuse the WS-Trust STS model

— Offer common interface for broad range of federation services

— Allow identity, authentication, and authorization data to be shared

as claims without requiring a specific token type r

Basic Terminology
Requestor — A programmatic agent for obtaining information or service
Subject — The entity on whose behalf a Requestor operates
Claims — Statements made about a subject

Security Token — A data structure for expressing collections of claims

Security Token Service (STS) - A Web service that provides issuance and
management of security tokens

Identity Provider (IP) — An entity, typically a trusted third party authority, that
provides claims about a set of Subjects

IP/ISTS — STS operated by an IP to issue claims using tokens

Relying Party (RP) — An entity that provides information or services to
Requestors based on claims they present

Target Service — A web service (or application) operated by an RP

RP/STS — STS operated by a RP to issue claims using tokens

Basic Components

Identity Provider Realm 1 = Relying Party Realm

|
|
a M 'P
IP/STS Trust Relation - BRSAS
|
|
|
I |
- [| Token T1 0 i
i I &5
WToken T1 i
< Security
I Token
Requestor . gpé €——T1T—m—>
S I @
|

* The following are sample federation scenarios
depicting trust topologies and claims flow

« They are not comprehensive or prioritized
« There are other valid scenarios

Requestor Target Service

H l. ’s_ \

Direct Trust & Token Pull

IP/STS RP/STS

11

Requestor Target Service

Indirect Trust
IP/STS

IP/STS

12
Requestor Target Service

IP/STS IPISTS

Requestor e

Delegation with Indirect Trust

IP/STS RP/STS 1 RP/STS 2

14
Requestor Target Service 1 Target Service 2

RP/STS 1

15
Requestor Target Service 1 Target Service 2

Agenda Part 2

WS-Trust Extensions for Federations

« Token and Protocol Extensions

— Reference tokens

— ldentifying Federations

— Validation & Proof Tokens
— Client-Based Pseudonyms
— Token Freshness

* Privacy

16

WS-Trust Extensions

Indicating Federations

« STSs that participate in multiple
federations need a way to distinguish the

federation for which a request applies

— Could use different endpoints

— Can provide a parameter to the RST using new
extension
« <fed:FederationID ...>xs:anyURI</fed:FederationID>

17

WS-Trust Extensions

Reference Tokens

Indicates where to obtain actual tokens
— <fed:ReferenceToken ...>

Can be used with WS-Security
Assertion for use with WS-SecurityPolicy
Allows multiple locations for the token

Allows verification information about the
token

18

WS-Trust Extensions

Proof Tokens from Validation

« Often trust between federated partners is
actually between the corresponding STSs

» Target Services don’'t know the key-

transfer-key

« Extension formalizes how Target Services

get the session key from their S

S

19

WS-Trust Extensions

Freshness Requirement

* RP may have policy indicating that an STS
should only accept credentials of a specific

age when issuing tokens for the RP
— <fed:Freshness AllowCache="xs:boolean" ...>

» Extension can specify this limit in the RST,
and If cached credentials can be used

21

WS-Trust Extensions

Authentication Types

 RP may have policy that an STS should
only accept credentials of specific
authentication types when issuing tokens
for the RP

« WS-Trust provides a mechanism, but no
defined values

« Extension defines several commonly used
values

22

Privacy

WS-Federation addresses three specific
areas of concern for privacy in federated

scenarios:
1) Confidential tokens
2) Parameter confirmation
3) Obtaining privacy statements

23

Privacy

Confidential Tokens

* WS-Trust does not define specific rules for
mandating claim confidentiality

« \WS-Federation defines a parameter to
RST that indicates which claims are

requested to be protected
— <priv:ProtectData ...>

* Any claim dialect can be used

24

Privacy
Parameter Confirmation

« WS-Trust does not request that RST parameters
be honored or that selected values be returned
In RSTR

* These extensions (when used) require the STS
to:

— Include in the RSTR the values used for specified parameters
— Fault if a parameter in the RST Is not used
— Return claims put in the issued token

25

Privacy
Obtaining Privacy Statements

* The specification does not define the

contents; only the mechanism
— How to use WS-Transfer

— How to use WS-MetadataExchange
— How to use HTTP

26

STS Service Model Extensions

» Extended Token Service Model
 Attribute Service

« Authorization Service

« Pseudonym Service

27

Extended Token Service Model

Identity Provider Realm

Relying Party Realm

m Service

Pseudonym
Token

Service

Claim
Store

Identitv

Identity
STS

() {WS-MEX } (A {WS-Trust}
{ WS-SecurityPolicy} | { WS-Federation}

Authorization Service

Claim Attribute Service

Store

P51

Claim

I Store
™ Federation e
o

A

Attribute
Authorization

Token
Service

(7) { WS-Trust }
(2) { WS-MEX } “OnBehalfOf”

{ WS-SecurityPolicy}

(5) { WS-Trust}
{ WS-Federation }

Identity

Selector | PRGAMERNEE

JataExchange } { WS-SecurityPolicy } Agent

(6) {Ws-
(8) { WS-

Client

curity } { Application Request } Application /

Web Service

curity } { Application Response }

28

Attribute Service
STS as Attribute Service

« AnIP/STS or RP/STS can function as an

Attribute Service

— Attributes are claims
— Tokens carry claims
— STS can provide normalized I/F to any repository

 Attributes obtained based on policy or
explicit request

— Inline claim transformation
— Explicit claim transformation

AS

Attribute Service
Inline Claim Transformation

» WS-Security Policy
— Target Service policy:
» RP/STS as issuer with Application claim types
— RP/STS policy:
» IP/STS as issuer with Federation claim types

» Requestor automatically delivers correct

claims
— IP/ISTS issues token with Federated claim types
— RPISTS issues token with Application claim types

30

Inline Claim Transformation

IP/STS RP/STS

31
Requestor Target Service

Attribute Service
Explicit Claim Transformation

* Attribute service interfaces
— RST Issue to Target Service policy:
— RST Issue to Target Service OnBehalfOf user

« Simplifies application programming
— Target Service gets claims without
« Writing LDAP, SQL or special repository code

» Mapping from repository schema and namespace
« Maintaining credentials for repositories

« Being authorized for direct access to repositories

32

Explicit Claim Transformation

Attribute Service IP/ISTS RP/STS Attribute Service

33
Requestor Target Service

Pseudonym Service

« Pseudonyms are different “personas’ of an
identity
* Pseudonym Service

— Performs mapping between personas
— Logically just a special type of Attribute Service
— Can be invoked by client, IP, or RP

» Supports different usages of personas
— Global, Pair wise, Random, ...

34

Pseudonym Service

Pseudonym Management Operations

Operations
— Create pseudonyms for target
— Get pseudonyms matching filter
— Update pseudonyms for target
— Delete pseudonyms for target

e Filters

— Specify subset of pseudonyms for operations
— Pass filters in WS-ResourceTransfer
— Pass filters in EPR reference properties

35

Pseudonym Service

RST Extensions for Pseudonym Retrieval

* Pseudonym service often part of STS

* Request pseudonyms

— fed:RequestPseudonym/@Lookup
— fed:RequestPseudonym/@SingleUse

36

) . ”"lil By -: ‘_"': ' ~§ | . o 1

RP-managed Pseudonym (ldentity Mapping)

IP/STS Pseudonyms NYRIE
Create/Get
©)
® @
M
@

37
Requestor Target Service

“‘ ” “"‘ “ﬁ. i“d —‘\".> ' 1\ N

Pre-registered Pseudonym for RP

IP/STS Pseudonyms NYRIE
Create
©,
® @
M
©,

38
Requestor Target Service

\ahb ik e . il \ 'y ‘ .' "‘ \ " =5 WY .
 Pseudonvm Ser

’ -,
-

Random, Single-use Pseudonyms

IP/STS Pseudonyms NYRIE

RsT gg& &

fed:Request
Pseudonym/ @
@SingleUse

39

Requestor Target Service

Pseudonym Service

RST Extensions for Client-Based Pseudonyms

» Clients can specify Pll to use as basis for
pseudonyms

 Clients can specify Pl to include in token
~ID
— Display Name
— Emall

40

Authorization Service

» An Authorization Service may be
Implemented as a dedicated STS

— Configured with detailed knowledge of the access
policy requirements of Target Services

» WS-Federation defines the following to
facilitate federated authorization
— A common processing model & requirements
— An authorization context
— A common claim dialect
— Associated policy assertions

41

Authorization Service

Processing Model

 Logical Requirements Table:

— EPR for the target service

— Reference properties from the target service EPR
— Parameters of the RST

— External access control policies

« Logical Claim Table:
— Proven claims bound to RST
— Supplemental context information
— External authorization policies

42

Authorization Service

STS Processing Requirements

Must accept AppliesTo
Must specify AppliesTo in RSTR

Should encode AppliesTo in issued tokens
— AppliesTo in token may be broader than requested

Must acce
Must acce
Must acce

pt reference properties
nt common claim dialect
ot additional context

May ignore context items it doesn’t recognize

43

Authorization Context

* A set of <Contextltem> elements, each

has:

— URI name of the item

— Optional URI scope of the item
» E.g. Requestor, Target, Action, ...

— Optional string value

ad

Authorization

Common Claim Dialect

A syntax for constructing/parsing claims
— Does not specify claim semantics or namespace

* A set of <ClaimType> elements, each has:

— URI indicating type of claim
— Mandatory/optional flag
— Optional string value

45

) {4 - & B B | s e L 4 A
N 1L 1\V e Bladisl o !
3 PRGN, BN e e D N, X } F-SaEs

Policy Assertions

» RequiresGenericClaimDialect
 AdditionalContextProcessed

46

Agenda Part 4

Federation Metadata

» Metadata documents

« Metadata statements

* Obtaining metadata documents
Service-specific Metadata

« Dynamic request retry

47

Federation Metadata
Metadata Documents

<fed:FederationMetadata xmlns:fed="..." ...>
<fed:.Federation [FederationI|D="..."] ...>
<mex:MetadataReference>

</mex:MetadataReference>
</fed:Federation>
<fed:.Federation [FederationlD="..."] ...>
[Federation Metadata Statements]
</fed:Federation>
[Signhature]
</fed:FederationMetadata>

b5 IR o) y - N, & [- = oo~ o i (‘(.ri) .
B AV} 11, p B e
L ‘ | & l A\ € E O R ‘. U
T 2P % - T < =T

Simple Metadata Document

49

50

Federation Metadata

Metadata Statements
TokenSigningKeylinfo

— The key/token used to sign issued tokens

TokenKeyTransferKeyinfo

— The key/token to use when transferring keys/secrets

IssuersNamesOffered
— List of logical names with which a STS is associated

TokenlssuerName
— Logical name of the associated STS

TokenlssuerEndpoint
— Endpoint of the associated STS

PseudonymServiceEndpoint
— Endpoint of the associated pseudonym service

s

Federation Metadata
Metadata Statements

AttributeServiceEndpoint

— Endpoint of the associated attribute service

SingleSignOutSubscriptionEndpoint

— Endpoint to which sign-out notification subscription requests are sent

SingleSignOutNotificationEndpoint

— Endpoint to which manual Sign-out messages should be sent

TokenTypesOffered

— List of token types a STS can issue

UriNamedClaimTypesOffered

— List of claims types a STS can issue, display name and description

AutomaticPseudonyms
— STS automatically applies pseudonyms

52

Federation Metadata

Obtaining Metadata Documents

e Several ways to obtain metadata documents

— HTTP/S GET from well-known URLSs
— DNS SRV records

— WS-Transfer/WS-ResourceTransfer
— WSDL embedding

— WS-MetadataExchange

« Secure request methods are preferred

53

Metadata Embedded in Target Service EPR

Target Service
Endpoint Reference

“A”

Requestor Target Service

54

Metadata Service Publishes Target Service Metadata

Metadata Service i p
Endpoint Reference ,

L1/
¥

7

Requestor \Metadata Service
(11 B”

Target Service 53

Service-specific Metadata

Dynamic Request Retry

Not all policy/metadata can be expressed
statically

WS-Federation introduces a SOAP Fault to
Indicate policy/metadata specific to a request

This Fault formalizes returning WS-
MetadataExchange structures

IssuesSpecificMetadataFault assertion allows
Indication of support in policy

56

MetadataExchange structures in SOAP Fault
IP/ISTS

Requestor Target Service
57

Agenda Part 5

Federated Sign-Out

 Sign-Out concepts

* Federated sign-out

Web Requestors

» General model

« HTTP binding

« Message flows

« Request & result references
 Home realm discovery
 Interoperability baseline

58

Sign-out
Concepts

Sign-in establishes an identity used to obtain
credentials for a set of target sites

Sign-out terminates the use of the identity and
the associated target site credentials (and
optionally cached state)

The sign-out process is optional since
credentials have limited life-times

Sign-out Is different from canceling since it
applies to all tokens obtained for the target sites

59

Federated Sign-out

Mechanisms

Initial Sign-out message

Sent by Requestor
Sentto IP STS or RP

Federated Sign-out messages

RP forwards to IP. STS if necessary

a) IP STS sends explicit msgs to all RPs where the
credentials apply

b) IP STS publishes sign-out notification

60

Web Requestors

WS-Federation defines a serialization for

use with Web Browsers

— Functionally equivalent to SOAP bindings
— Optimizations for Web browser usage

Supports push and pull models
Supports GET and POST
Basic home realm discovery
Defines a base functionality set

61

Web Requestors

Drilldown

* Mappings defined for parameters to RST
parameters

« A “ctx” parameter is defined to save
context between parties

« Parameters allow pointers (URLS) to RST
and RSTR values allowing them to be
pulled not pushed

62

SOAP Requestor Msg Flow
WS-SecurityPolicy drives request routing

SOAP Requestor IP/STS Target Service RP/STS

Fetch IP policy

—
Request token

—
Return token

—
Request token

—

Return token

—
Send secured request

Return secured response

63

Web Requestor Msg Flow

Browser Requestor IP/STS Target Server RP/STS

GET appURL

302 fs-rURL?wa=...&wreply=AppURL&wctx=appURL
‘lll’

Detect user’s home realm

302 fs-aURL?wa=...&wtrealm=fs-rURI&wctx=AppURL/appURL

‘lIIIIIIIIIIIIIIIIIIIIIII>

Authenticate User

200 <FORM ACTION=fs-rURL METHOD=POST <INPUT...NAME=wresult VALUE=[fs-a token]>...>
—

200 <FORM ACTION=AppURL METHOD=POST <INPUT...NAME=wresult VALUE=fs-r token]>...>

302 appURL [HttpResponseHeader=SetCookie]

64

Home Realm Discovery

* Different choices
— Fixed
— Based on Requestor IP
— Passed In
— Prompt
— Discovery service
» Redirection through service
 Allows for service-specific discovery proccess

* Result returned in separate parameter
— Shared cookie (not covered)

65

Summary

« Goals & Requirements recap

66

Goals and Requirements Recap

Promote identity federation

— Enhance WS-Trust STS support for distributed
authentication and authorization across realm
boundaries

— Make identity mapping optional (for privacy or
personalization)
— Enable different levels of privacy for different types of

personally identifying information

« WS-Federation coverage

— Section 2. Federation Model
— Section 8. Additional WS-Trust Extensions
— Section 12. Privacy

67

Goals and Requirements Recap

* Reduce operational friction In federations

— Support mix & match of trust topologies and token types

— Enable automated configuration using Federation
Metadata

— Allow single infrastructure to serve both SOAP and Web
requesters
« WS-Federation coverage
— Section 2. Federation Model
— Section 3. Federation Metadata
— Section 10. Indicating Specific Policy/Metadata
— Section 4. Sign-Out
— Section 13. Web (Passive) Requestors

68

Goals and Requirements Recap
 Reuse the WS-Trust STS model

— Offer common interface for broad range of federation
services

— Allow identity, authentication, and authorization data to
be shared as claims without requiring a specific token

type
« WS-Federation coverage
— Section 2. Federation Model
— Section 5. Attribute Service
— Section 6. Pseudonym Service
— Section 7. Security Tokens and Pseudonyms

— Section 9. Authorization i

