
WS-Federation 1.1
Overview

OASIS WSFED TC inaugural meeting

June 6-7, 2007

2

1. Introduction

2. WS-Trust extensions for federations

3. STS service model extensibility

4. Federation metadata

5. Federated sign-out and Web requestors

6. Summary

Agenda

3

Introduction

• Vision and Goals

• Basic Terminology and Components

• Sample Federation Scenarios

Agenda Part 1

4

Vision: Extend WS-Trust

• Flexible identity federation architecture
– Clean separation between trust mechanisms, security

token formats, and token protocol

– Infrastructure supports browser & SOAP requestors

• Simplified configuration
– Federation metadata to fill gaps in policy

– Federation partners can automate configuration

• Reusable token service model
– Common claims interface for attributes, pseudonyms

& authorization data

5

Promise: Finish the Roadmap

• Federation vision declared 5 years ago

• Web Services security stack roadmap
– Set of composable specifications to enable broad range

of secure Web Services solutions

– All specifications to be ratified by industry through open

standards process

• WS-Federation completes the promise to

finish the roadmap

6

Goals and Requirements
• Promote identity federation

– Enhance WS-Trust STS support for distributed authentication and

authorization across realm boundaries

– Make identity mapping optional (for privacy or personalization)

– Enable different levels of privacy for different types of personally

identifying information

• Reduce operational friction in federations
– Support mix & match of trust topologies and token types

– Enable automated configuration using Federation Metadata

– Allow single infrastructure to serve both SOAP and Web requesters

• Reuse the WS-Trust STS model
– Offer common interface for broad range of federation services

– Allow identity, authentication, and authorization data to be shared

as claims without requiring a specific token type

7

Basic Terminology
• Requestor – A programmatic agent for obtaining information or service

• Subject – The entity on whose behalf a Requestor operates

• Claims – Statements made about a subject

• Security Token – A data structure for expressing collections of claims

• Security Token Service (STS) - A Web service that provides issuance and
management of security tokens

• Identity Provider (IP) – An entity, typically a trusted third party authority, that
provides claims about a set of Subjects

• IP/STS – STS operated by an IP to issue claims using tokens

• Relying Party (RP) – An entity that provides information or services to
Requestors based on claims they present

• Target Service – A web service (or application) operated by an RP

• RP/STS – STS operated by a RP to issue claims using tokens

8

Basic Components

IP/STS

Identity Provider Realm Relying Party Realm

Requestor
Target

Service

RP/STSTrust Relation

Claims

Security

Token

Token T1



Claims

Security

Token

Token T1



Claims

Security

Token

Token T2



9

Federation Scenarios

• The following are sample federation scenarios
depicting trust topologies and claims flow

• They are not comprehensive or prioritized

• There are other valid scenarios

10

Federation Scenarios







Direct Trust & Token Push

IP/STS

Target Service

RP/STS

Requestor

11

Federation Scenarios





Direct Trust & Token Pull





IP/STS

Target Service

RP/STS

Requestor

12

Federation Scenarios







Indirect Trust

IP/STS

Target Service

RP/STS

Requestor

IP/STS

13

Federation Scenarios



Multiple Tokens with Direct Trust




IP/STS Target Service

Requestor

IP/STS

14

Federation Scenarios







Delegation with Indirect Trust





IP/STS

Target Service 1

RP/STS 1

Requestor

RP/STS 2

Target Service 2



15

Federation Scenarios







Delegation with Direct Trust







IP/STS

Target Service 1

RP/STS 1

Requestor

RP/STS 2

Target Service 2

16

WS-Trust Extensions for Federations

• Token and Protocol Extensions
– Reference tokens

– Identifying Federations

– Validation & Proof Tokens

– Client-Based Pseudonyms

– Token Freshness

• Privacy

Agenda Part 2

17

WS-Trust Extensions

• STSs that participate in multiple

federations need a way to distinguish the

federation for which a request applies
– Could use different endpoints

– Can provide a parameter to the RST using new

extension

• <fed:FederationID ...>xs:anyURI</fed:FederationID>

Indicating Federations

18

WS-Trust Extensions

• Indicates where to obtain actual tokens
– <fed:ReferenceToken ...>

• Can be used with WS-Security

• Assertion for use with WS-SecurityPolicy

• Allows multiple locations for the token

• Allows verification information about the

token

Reference Tokens

19

WS-Trust Extensions

• Often trust between federated partners is

actually between the corresponding STSs

• Target Services don’t know the key-

transfer-key

• Extension formalizes how Target Services

get the session key from their STS

Proof Tokens from Validation

21

WS-Trust Extensions

• RP may have policy indicating that an STS

should only accept credentials of a specific

age when issuing tokens for the RP
– <fed:Freshness AllowCache="xs:boolean" ...>

• Extension can specify this limit in the RST,

and if cached credentials can be used

Freshness Requirement

22

WS-Trust Extensions

• RP may have policy that an STS should
only accept credentials of specific
authentication types when issuing tokens
for the RP

• WS-Trust provides a mechanism, but no
defined values

• Extension defines several commonly used
values

Authentication Types

23

Privacy

• WS-Federation addresses three specific

areas of concern for privacy in federated

scenarios:
1) Confidential tokens

2) Parameter confirmation

3) Obtaining privacy statements

24

Privacy

• WS-Trust does not define specific rules for

mandating claim confidentiality

• WS-Federation defines a parameter to

RST that indicates which claims are

requested to be protected
– <priv:ProtectData ...>

• Any claim dialect can be used

Confidential Tokens

25

Privacy

• WS-Trust does not request that RST parameters

be honored or that selected values be returned

in RSTR

• These extensions (when used) require the STS

to:
– Include in the RSTR the values used for specified parameters

– Fault if a parameter in the RST is not used

– Return claims put in the issued token

Parameter Confirmation

26

Privacy

• The specification does not define the

contents; only the mechanism
– How to use WS-Transfer

– How to use WS-MetadataExchange

– How to use HTTP

Obtaining Privacy Statements

27

STS Service Model Extensions

• Extended Token Service Model

• Attribute Service

• Authorization Service

• Pseudonym Service

Agenda Part 3

28

Identity

STS

Application /

Web Service
Client

Identity Provider Realm

Extended Token Service Model

Federation

STS

Identity

STS

Identity

Selector

(2) { WS-MEX }

{ WS-SecurityPolicy}

Relying Party Realm

(4) { WS-Trust }

{ WS-Federation}

Claim

Store

(1) { WS-MetadataExchange } { WS-SecurityPolicy }

(6) { WS-Security } { Application Request }

(5) { WS-Trust }

{ WS-Federation }

(3) { WS-MEX }

{ WS-SecurityPolicy}

Pseudonym

Token

Service

Pseudonym Service

(7) { WS-Trust }

“OnBehalfOf”

Agent

Claim

Store
Attribute

Token

Service

Authorization Service

Attribute Service

Authorization

Token

Service

Claim

Store

(8) { WS-Security } { Application Response }

29

Attribute Service

• An IP/STS or RP/STS can function as an

Attribute Service
– Attributes are claims

– Tokens carry claims

– STS can provide normalized I/F to any repository

• Attributes obtained based on policy or

explicit request
– Inline claim transformation

– Explicit claim transformation

STS as Attribute Service

30

Attribute Service

• WS-Security Policy
– Target Service policy:

• RP/STS as issuer with Application claim types

– RP/STS policy:

• IP/STS as issuer with Federation claim types

• Requestor automatically delivers correct

claims
– IP/STS issues token with Federated claim types

– RP/STS issues token with Application claim types

Inline Claim Transformation

31

Attribute Service







Inline Claim Transformation

IP/STS

Target Service

RP/STS

Requestor

32

Attribute Service

• Attribute service interfaces
– RST Issue to Target Service policy:

– RST Issue to Target Service OnBehalfOf user

• Simplifies application programming
– Target Service gets claims without

• Writing LDAP, SQL or special repository code

• Mapping from repository schema and namespace

• Maintaining credentials for repositories

• Being authorized for direct access to repositories

Explicit Claim Transformation

33

Attribute Service







Explicit Claim Transformation

IP/STS

Target Service

RP/STS

Requestor

Attribute Service Attribute Service



34

Pseudonym Service

• Pseudonyms are different “personas” of an

identity

• Pseudonym Service
– Performs mapping between personas

– Logically just a special type of Attribute Service

– Can be invoked by client, IP, or RP

• Supports different usages of personas
– Global, Pair wise, Random, …

35

Pseudonym Service

Operations
– Create pseudonyms for target

– Get pseudonyms matching filter

– Update pseudonyms for target

– Delete pseudonyms for target

• Filters
– Specify subset of pseudonyms for operations

– Pass filters in WS-ResourceTransfer

– Pass filters in EPR reference properties

Pseudonym Management Operations

36

Pseudonym Service

• Pseudonym service often part of STS

• Request pseudonyms
– fed:RequestPseudonym/@Lookup

– fed:RequestPseudonym/@SingleUse

RST Extensions for Pseudonym Retrieval

37

Pseudonym Service

RP-managed Pseudonym (Identity Mapping)





IP/STS

Target Service

Pseudonyms

Requestor

RP/STS





Create/Get

38

Pseudonym Service

Pre-registered Pseudonym for RP





IP/STS

Target Service

Pseudonyms

Requestor

RP/STS




Create

39

Pseudonym Service

Random, Single-use Pseudonyms



IP/STS

Target Service

Pseudonyms

Requestor

RP/STS



RST
fed:Request
Pseudonym/
@SingleUse

40

Pseudonym Service

• Clients can specify PII to use as basis for

pseudonyms

• Clients can specify PII to include in token
– ID

– Display Name

– Email

– …

RST Extensions for Client-Based Pseudonyms

41

Authorization Service

• An Authorization Service may be
implemented as a dedicated STS
– Configured with detailed knowledge of the access

policy requirements of Target Services

• WS-Federation defines the following to
facilitate federated authorization
– A common processing model & requirements

– An authorization context

– A common claim dialect

– Associated policy assertions

42

Authorization Service

• Logical Requirements Table:
– EPR for the target service

– Reference properties from the target service EPR

– Parameters of the RST

– External access control policies

• Logical Claim Table:
– Proven claims bound to RST

– Supplemental context information

– External authorization policies

Processing Model

43

Authorization Service

• Must accept AppliesTo

• Must specify AppliesTo in RSTR

• Should encode AppliesTo in issued tokens
– AppliesTo in token may be broader than requested

• Must accept reference properties

• Must accept common claim dialect

• Must accept additional context

• May ignore context items it doesn’t recognize

STS Processing Requirements

44

Authorization

• A set of <ContextItem> elements, each

has:
– URI name of the item

– Optional URI scope of the item

• E.g. Requestor, Target, Action, …

– Optional string value

Authorization Context

45

Authorization

• A syntax for constructing/parsing claims
– Does not specify claim semantics or namespace

• A set of <ClaimType> elements, each has:
– URI indicating type of claim

– Mandatory/optional flag

– Optional string value

Common Claim Dialect

46

Authorization

• RequiresGenericClaimDialect

• AdditionalContextProcessed

Policy Assertions

47

Federation Metadata

• Metadata documents

• Metadata statements

• Obtaining metadata documents

Service-specific Metadata

• Dynamic request retry

Agenda Part 4

Federation Metadata

<fed:FederationMetadata xmlns:fed="..." ...>

<fed:Federation [FederationID="..."] ...>

<mex:MetadataReference>

</mex:MetadataReference>

</fed:Federation>

<fed:Federation [FederationID="..."] ...>

[Federation Metadata Statements]

</fed:Federation>

[Signature]

</fed:FederationMetadata>

Metadata Documents

49

Metadata
Simple Metadata Document

50

Metadata
Compound Metadata Document

51

Federation Metadata

• TokenSigningKeyInfo

– The key/token used to sign issued tokens

• TokenKeyTransferKeyInfo

– The key/token to use when transferring keys/secrets

• IssuersNamesOffered

– List of logical names with which a STS is associated

• TokenIssuerName

– Logical name of the associated STS

• TokenIssuerEndpoint

– Endpoint of the associated STS

• PseudonymServiceEndpoint

– Endpoint of the associated pseudonym service

Metadata Statements

52

Federation Metadata

• AttributeServiceEndpoint
– Endpoint of the associated attribute service

• SingleSignOutSubscriptionEndpoint
– Endpoint to which sign-out notification subscription requests are sent

• SingleSignOutNotificationEndpoint
– Endpoint to which manual Sign-out messages should be sent

• TokenTypesOffered
– List of token types a STS can issue

• UriNamedClaimTypesOffered
– List of claims types a STS can issue, display name and description

• AutomaticPseudonyms
– STS automatically applies pseudonyms

Metadata Statements

53

Federation Metadata

• Several ways to obtain metadata documents
– HTTP/S GET from well-known URLs

– DNS SRV records

– WS-Transfer/WS-ResourceTransfer

– WSDL embedding

– WS-MetadataExchange

• Secure request methods are preferred

Obtaining Metadata Documents

54

Federation Metadata
Metadata Embedded in Target Service EPR

“A”
“A”

Target ServiceRequestor

Target Service
Endpoint Reference

“A”

55

Federation Metadata
Metadata Service Publishes Target Service Metadata

“A”

“B”

Target Service

Requestor

“B”

Metadata Service

Metadata Service
Endpoint Reference

56

Service-specific Metadata

• Not all policy/metadata can be expressed

statically

• WS-Federation introduces a SOAP Fault to

indicate policy/metadata specific to a request

• This Fault formalizes returning WS-

MetadataExchange structures

• IssuesSpecificMetadataFault assertion allows

indication of support in policy

Dynamic Request Retry

57

Service-specific Metadata

MetadataExchange structures in SOAP Fault





 



IP/STS

Target ServiceRequestor

58

Federated Sign-Out
• Sign-Out concepts

• Federated sign-out

Web Requestors
• General model

• HTTP binding

• Message flows

• Request & result references

• Home realm discovery

• Interoperability baseline

Agenda Part 5

59

Sign-out

• Sign-in establishes an identity used to obtain

credentials for a set of target sites

• Sign-out terminates the use of the identity and

the associated target site credentials (and

optionally cached state)

• The sign-out process is optional since

credentials have limited life-times

• Sign-out is different from canceling since it

applies to all tokens obtained for the target sites

Concepts

60

Federated Sign-out

• Initial Sign-out message
– Sent by Requestor

– Sent to IP STS or RP

• Federated Sign-out messages
– RP forwards to IP STS if necessary

a) IP STS sends explicit msgs to all RPs where the

credentials apply

b) IP STS publishes sign-out notification

Mechanisms

61

Web Requestors

• WS-Federation defines a serialization for

use with Web Browsers
– Functionally equivalent to SOAP bindings

– Optimizations for Web browser usage

• Supports push and pull models

• Supports GET and POST

• Basic home realm discovery

• Defines a base functionality set

62

Web Requestors

• Mappings defined for parameters to RST

parameters

• A “ctx” parameter is defined to save

context between parties

• Parameters allow pointers (URLs) to RST

and RSTR values allowing them to be

pulled not pushed

Drilldown

63

SOAP Requestor Msg Flow
WS-SecurityPolicy drives request routing

SOAP Requestor IP/STS Target Service RP/STS

Fetch IP policy

Request token

Return token

Request token

Return token

Send secured request

Return secured response

Fetch SP policy

Fetch service policy

64

Web Requestor Msg Flow
Browser Requestor IP/STS Target Server RP/STS

Detect user’s home realm

Authenticate User

302 appURL [HttpResponseHeader=SetCookie]

GET appURL

302 fs-rURL?wa=…&wreply=AppURL&wctx=appURL

302 fs-aURL?wa=...&wtrealm=fs-rURI&wctx=AppURL/appURL

200 <FORM ACTION=AppURL METHOD=POST <INPUT…NAME=wresult VALUE=[fs-r token]>…>

200 <FORM ACTION=fs-rURL METHOD=POST <INPUT…NAME=wresult VALUE=[fs-a token]>…>

65

Web Requestors

• Different choices
– Fixed
– Based on Requestor IP
– Passed in
– Prompt
– Discovery service

• Redirection through service

• Allows for service-specific discovery proccess

• Result returned in separate parameter

– Shared cookie (not covered)

Home Realm Discovery

66

Summary

• Goals & Requirements recap

Agenda Part 6

67

Goals and Requirements Recap

• Promote identity federation
– Enhance WS-Trust STS support for distributed

authentication and authorization across realm

boundaries

– Make identity mapping optional (for privacy or

personalization)

– Enable different levels of privacy for different types of

personally identifying information

• WS-Federation coverage
– Section 2. Federation Model

– Section 8. Additional WS-Trust Extensions

– Section 12. Privacy

68

Goals and Requirements Recap

• Reduce operational friction in federations
– Support mix & match of trust topologies and token types

– Enable automated configuration using Federation
Metadata

– Allow single infrastructure to serve both SOAP and Web
requesters

• WS-Federation coverage
– Section 2. Federation Model

– Section 3. Federation Metadata

– Section 10. Indicating Specific Policy/Metadata

– Section 4. Sign-Out

– Section 13. Web (Passive) Requestors

69

Goals and Requirements Recap

• Reuse the WS-Trust STS model
– Offer common interface for broad range of federation

services

– Allow identity, authentication, and authorization data to

be shared as claims without requiring a specific token

type

• WS-Federation coverage
– Section 2. Federation Model

– Section 5. Attribute Service

– Section 6. Pseudonym Service

– Section 7. Security Tokens and Pseudonyms

– Section 9. Authorization

