

1

Web Services Federation Language (WS-
Federation)
DRAFT

Version 1.0
July 8 2003

Authors

Siddharth Baja, VeriSign
Giovanni Della-Libera, Microsoft
Brendan Dixon, Microsoft
Mike Dusche, Microsoft
Maryann Hondo, IBM
Matt Hur, Microsoft
Chris Kaler (Editor), Microsoft
Hal Lockhart, BEA
Hiroshi Maruyama, IBM
Anthony Nadalin (Editor), IBM
Nataraj Nagaratnam, IBM
Andrew Nash, RSA Security
Hemma Prafullchandra, VeriSign
John Shewchuk, Microsoft

Copyright Notice
BEA, IBM, Microsoft, RSA Security and VeriSign (collectively, the "Authors") hereby
grant you permission to copy and display the WS-Federation Specification, in any
medium without fee or royalty, provided that you include the following on ALL copies
of the WS-Federation Specification, or portions thereof, that you make:

1. A link or URL to the Specification at this location

2. The copyright notice as shown in the WS-Federation Specification.

EXCEPT FOR THE COPYRIGHT LICENSE GRANTED ABOVE, THE AUTHORS DO NOT
GRANT, EITHER EXPRESSLY OR IMPLIEDLY, A LICENSE TO ANY INTELLECTUAL
PROPERTY, INCLUDING PATENTS, THEY OWN OR CONTROL.

THE WS-Federation SPECIFICATION IS PROVIDED "AS IS," AND THE AUTHORS MAKE
NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, BUT
NOT LIMITED TO, WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, NON-INFRINGEMENT, OR TITLE; THAT THE CONTENTS OF THE WS-
Federation SPECIFICATION ARE SUITABLE FOR ANY PURPOSE; NOR THAT THE
IMPLEMENTATION OF SUCH CONTENTS WILL NOT INFRINGE ANY THIRD PARTY
PATENTS, COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS.

THE AUTHORS WILL NOT BE LIABLE FOR ANY DIRECT, INDIRECT, SPECIAL,
INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF OR RELATING TO ANY
USE OR DISTRIBUTION OF THE WS-Federation SPECIFICATION.

The WS-Federation Specification may change before final release and you are
cautioned against relying on the content of this specification.

2

The name and trademarks of the Authors may NOT be used in any manner, including
advertising or publicity pertaining to the Specification or its contents without specific,
written prior permission. Title to copyright in the WS-Federation Specification will at
all times remain with the Authors.

No other rights are granted by implication, estoppel or otherwise.

Abstract
This specification defines mechanisms that are used to enable identity, account,
attribute, authentication, and authorization federation across different trust realms.

Modular Architecture
By using the XML, SOAP and WSDL extensibility models, the WS* specifications are
designed to be composed with each other to provide a rich Web services
environment. WS-Federation by itself does not provide a complete security solution
for Web services. WS-Federation is a building block that is used in conjunction with
other Web service and application-specific protocols to accommodate a wide variety
of security models.

Status
This WS-Federation Specification is an initial public draft release and is provided for
review and evaluation only. BEA, IBM, Microsoft, RSA Security and VeriSign hope to
solicit your contributions and suggestions in the near future. BEA, IBM, Microsoft,
RSA Security and VeriSign make no warrantees or representations regarding the
specifications in any manner whatsoever.

Table of Contents
1. Introduction

1.1. Goals and Requirements
1.1.1 Requirements
1.1.2. Non-Goals

1.2. Notational Conventions
1.3. Namespaces
1.4. Schema and WSDL Files
1.5. Terminology

2. Model
2.1. Trust and Security Token Issuance
2.2. Identity Providers
2.3. Attributes and Pseudonyms
2.4. Summary

3. Federation Metadata
3.1. WS-Policy and WS-MetadataExchange
3.2. Related Services

4. Sign-Out
4.1. Sign-Out Message
4.3. Federating Sign-Out Messages

3

5. Attribute Service
5.1. UDDI as an Attribute Store

6. Pseudonym Service
6.1. Getting Pseudonyms
6.2. Setting Pseudonyms
6.3. Deleting Pseudonyms

7. Security Tokens and Pseudonyms
7.1. RST and RSTR Extensions
7.2. Usernames and Passwords
7.3. Public Keys
7.4. Symmetric Keys

8. Error Handling
9. Security Considerations
10. Notes
11. Acknowledgements
12. References

1. Introduction
This specification defines mechanisms to allow different security realms to federate
using different or like mechanisms by allowing and brokering trust of identities,
attributes, authentication between participating Web services.

The mechanisms defined in this specification can be used by passive and active
requestors. The Web service requestors are assumed to understand the new
security mechanisms and be capable of interacting with Web service providers.

This specification defines the model and framework for federation; subsequent
documents define profiles which detail how different requestors apply this model.

1.1. Goals and Requirements
The primary goal of this specification is to enable federation of identity, attribute,
authentication, and authorization information.

1.1.1 Requirements

The following list identifies the key driving requirements for this specification:

• Enable appropriate sharing of identity, authentication, and authorization data
using different or like mechanisms

• Brokering of trust and security token exchange

• Local identities are not required at target services

• Optional hiding of identity information and other attributes

1.1.2. Non-Goals

The following topics are outside the scope of this document:

• Definition of message security or trust establishment/verification protocols

• Specification of new security token formats

4

• Specification of new attribute store interfaces

• Definition of security token assertion formats

1.2. Notational Conventions
The keywords "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
document are to be interpreted as described in RFC 2119.

When describing abstract data models, this specification uses the notational
convention used by the XML Infoset. Specifically, abstract property names always
appear in square brackets (e.g., [some property]).

When describing concrete XML schemas, this specification uses the notational
convention of WS-Security. Specifically, each member of an element’s [children] or
[attributes] property is described using an XPath-like notation (e.g.,
/x:MyHeader/x:SomeProperty/@value1). The use of {any} indicates the presence of
an element wildcard (<xs:any/>). The use of @{any} indicates the presence of an
attribute wildcard (<xs:anyAttribute/>).

1.3. Namespaces
The following namespaces are used in this document:

Prefix Namespace

S http://www.w3.org/2002/06/soap-envelope

wsse http://schemas.xmlsoap.org/ws/2003/07/secext

wsu http://schemas.xmlsoap.org/ws/2002/07/utility

wp http://schemas.xmlsoap.org/ws/2002/12/policy

1.4. Schema and WSDL Files
The schema for this specification can be located at:

 http://schemas.xmlsoap.org/ws/2003/07/secext

The WSDL for this specification can be located at:

 http://schemas.xmlsoap.org/ws/2003/07/ws-federation.wsdl

1.5. Terminology
The following definitions establish the terminology and usage in this specification.

Passive Requestors – A passive requestor is an HTTP browser capable of broadly
supported HTTP (e.g. HTTP/1.1).

Active Requestors – An active requestor is an application (possibly a Web browser)
that is capable of issuing Web services messages such as those described in WS-
Security and WS-Trust.

Profile – A profile is a document that describes how this model is applied to a
specific class of requestor (e.g., passive, or active).

5

Claim – A claim is a declaration made by an entity (e.g. name, identity, key, group,
privilege, capability, attribute, etc).

Security Token – A security token represents a collection of claims.

Signed Security Token – A signed security token is a security token that is
asserted and cryptographically signed by a specific authority (e.g. an X.509
certificate or a Kerberos ticket)

Proof-of-Possession – Proof-of-possession is authentication data that is provided
with a message to prove that the message was sent and or created by a claimed
identity.

Proof-of-Possession Token – A proof-of-possession token is a security token that
contains data that a sending party can use to demonstrate proof-of-possession.
Typically, although not exclusively, the proof-of-possession information is encrypted
with a key known only to the sender and recipient.

Digest – A digest is a cryptographic checksum of an octet stream.

Signature - A signature is a value computed with a cryptographic algorithm and
bound to data in such a way that intended recipients of the data can use the
signature to verify that the data has not been altered since it was signed by the
signer.

Security Token Service (STS) - A security token service is a Web service that
issues security tokens (see WS-Security). That is, it makes assertions based on
evidence that it trusts, to whoever trusts it. To communicate trust, a service
requires proof, such as a security token or set of security tokens, and issues a
security token with its own trust statement (note that for some security token
formats this can just be a re-issuance or co-signature). This forms the basis of trust
brokering.

Attribute Service - An attribute service is a Web service that maintains information
(attributes) about principals within a trust realm or federation. The term principal, in
this context, can be applied to any system entity, not just a person.

Pseudonym Service - A pseudonym service is a Web service that maintains
alternate identity information about principals within a trust realm or federation. The
term principal, in this context, can be applied to any system entity, not just a
person.

Trust - Trust is the characteristic that one entity is willing to rely upon a second
entity to execute a set of actions and/or to make set of assertions about a set of
subjects and/or scopes.

Trust Domain/Realm - A Trust Domain/Realm is an administered security space in
which the source and target of a request can determine and agree whether particular
sets of credentials from a source satisfy the relevant security policies of the target.
The target may defer the trust decision to a third party (if this has been established
as part of the agreement) thus including the trusted third party in the Trust Realm.

Validation Service - A validation service is a Web service that uses the WS-Trust
mechanisms to validate provided tokens and assess their level of trust (e.g. claims
trusted).

Direct Trust – Direct trust is when a relying party accepts as true all (or some
subset of) the claims in the token sent by the requestor.

6

Direct Brokered Trust – Direct Brokered Trust is when one party trusts a second
party who, in turn, trusts or vouches for, the claims of a third party.

Indirect Brokered Trust – Indirect Brokered Trust is a variation on direct brokered
trust where the second party can not immediately validate the claims of the third
party to the first party and negotiates with the third party, or additional parties, to
validate the claims and assess the trust of the third party.

Signature validation – Signature validation is the process of verifying that the
message received is the same as the one sent.

Sender Authentication – Sender authentication is corroborated authentication
evidence possibly across Web service actors/roles indicating the sender of a Web
service message (and its associated data). Note that it is possible that a message
may have multiple senders if authenticated intermediaries exist. Also note that it is
application-dependent (and out of scope) as to how it is determined who first created
the messages as the message originator might be independent of, or hidden behind
an authenticated sender.

Realm or Domain – A realm or domain represents a single unit of security
administration or trust.

Federation – A federation is a collection of realms that have established trust. The
level of trust may vary, but typically includes authentication and may include
authorization.

Identity Provider (IP) – Identity Provider is an entity that acts as an
authentication service to end requestors and data origin authentication service to
service providers (this is typically an extension of a security token service).

Single Sign On (SSO) – Single Sign On is an optimization of the authentication
sequence to remove the burden of repeating actions placed on the requestor. To
facilitate SSO, an element called an Identity Provider can act as a proxy on a
requestor's behalf to provide evidence of authentication events to 3rd parties
requesting information about the requestor. These Identity Providers (IP) are trusted
3rd parties and need to be trusted both by the requestor (to maintain the requestor's
identity information as the loss of this information can result in the compromise of
the requestors identity) and the Web services which may grant access to valuable
resources and information based upon the integrity of the identity information
provided by the IP.

Identity Mapping – Identity Mapping is a method of creating relationships between
identity properties. Some Identity Providers may make use of identity mapping.

Sign-Out – A sign-out is the process by which a principal indicates that they will no
longer be using their token and services in the realm can destroy their token caches
for the principal.

Association – Association is the process by which principals become associated or
affiliated with a trust realm or federation.

IP/STS – The acronym IP/STS is used to indicate a service that is either an identity
provider (IP) or security token service (STS).

2. Model
This chapter describes the overall model for authentication which builds on the
foundations specified in WS-Security, WS-Policy, and WS-Trust.

7

As described in WS-Trust, WS-PolicyAssertions can indicate that a Web Service
requires a set of claims, codified in security tokens and related message elements, in
order to process an incoming request. Upon evaluating the policy, if the requester
does not have the necessary security token(s) to prove the required claims, it may
use the mechanisms described in WS-Trust to use security tokens (or secrets) it has
already to acquire additional security tokens.

This process of exchanging security tokens is typically bootstrapped by signing-on to
obtain initial security tokens using either the mechanisms already defined in WS-
Trust or the mechanisms defined in this specification. WS-PolicyExchange
mechanisms are used to enable to the requestor to discover applicable policy, WSDL
and schema about the endpoint.

These initial security tokens may be accepted by various Web services or exchanged
at security token services (STS) / Identity Providers (IP) for additional security
tokens subject to established trust relationships and trust policies as described in
WS-Trust.

This specification also describes Attribute/Pseudonym services that can be utilized to
provide mechanisms for restricted sharing of principal information and principal
identity mapping (when different identities are used at different resources). WS-
PolicyExchange mechanisms are used to enable to the requestor to discover the
location of various Attribute/Pseudonym services.

Finally, it should be noted that just as a resource MAY act as its own IP/STS, a
requestor MAY also act as its own IP/STS.

2.1. Trust and Security Token Issuance
The models defined in WS-Security, WS-Trust, and WS-Policy provides the basis for
federation. This specification extends this foundation by describing how these
models are combined to enable richer trust realm mechanisms across and within
federations.

 Figure 1 Basic STS

Figure 1 above illustrates one way the WS-Trust model may be applied to simple
federation scenarios. Here security tokens (1) from the requestors trust realm are

8

used to acquire security tokens from the resources trust realm (2) in order to access
the resource/service (3). That is, a token from one STS is exchanged for another at
a second STS or possibly stamped or cross-certified by a second STS).

Figure 2 below illustrates another approach where the resource/service uses a
validation service. In this scenario, the resource provider (3) uses its security token
service to understand and validate the security token(s) received from the requester
(1,2). Note that the validity information is returned as a security token (since it
includes authentication and/or authorization data).

Figure 2 Alternate STS

In both of the above examples, a trust relationship has been established between the
token services. Alternatively, as illustrated in Figure 3, there may not be a direct
trust relationship, but an indirect trust relationship that relies on a third-party to
establish and confirm trust.

9

Figure 3 Indirect Trust

In practice, a requestor is likely to interact with multiple resources/services which
are part of multiple trust realms as illustrated in the figure below:

10

Figure 4 Multiple Trust Domains

Similarly, in response to a request a resource/service may need to access other
resources/service on behalf of the requestor as illustrated in figure 5:

Figure 5 Delegation

In such cases (as illustrated in Figure 5) the (second) requestor provides security
tokens to allow/indicate proof of delegation. It should be noted that there are a
number of variations on this scenario. For example, the security token service for
the final resource may only have a trust relationship with the token service from the
original requestor (illustrated below), as opposed to the figure above where the trust
doesn’t exist with the original requestor’s STS.

11

Figure 6 Delegation

Specifically, the resource or resource's security token service initiates a request for a
security token that delegates the required claims. For more details on how to format
such requests, refer to WS-Trust. These options are specified as part of the
<wsse:RequestSecurityToken> request discussed in WS-Trust.

It should be noted that delegation tokens as well as the identity token of the
delegation target need to be presented to the final service to ensure proper
authorization.

In all cases, the original requestor’s policy indicates the degree of delegation it is
willing to support. Security token services SHOULD NOT allow any delegation or
disclosure not specifically authorized by the original requestor, its policy, or by the
service's policy.

2.2. Identity Providers
A security token service (STS) is a generic service that issues/exchanges security
tokens using a common model and set of messages. As such, any Web service can,
itself, be an STS simply by supporting the WS-Trust specification. Consequently,
there are different types of security token services which provide different types of
functions. For example, an STS might simply verify credentials for entrance to a
realm or evaluate the trust of supplied security tokens.

Another function of a security token service is to provide identities – an Identity
Provider (IP). This is a special type of security token service that, at a minimum,
performs peer entity authentication and can make identity claims in issued security
tokens.

12

In many cases IP and STS services are interchangeable and many references within
this document identify both.

The following example illustrates a possible combination of an IP and STS. In
example 7, a requestor (1) obtains an identity security token from its IP and then
presents/proves this to the STS for the desired resource. If successful (2), and if
trust exists and authorization is approved, the STS returns an access token to the
requestor. The requestor (3) then uses the access token on requests to the resource
or Web service. Note that it is assumed that there is a trust relationship between
the STS and the IP.

Figure 7 IP/STS

2.3. Attributes and Pseudonyms
Protecting privacy in a federated environment often requires additional controls and
mechanisms. One such example is detailed access control on any information that
may be considered personal or subject to privacy governances. Another example is
obfuscation of identity information from identity providers (and security token
services) to prevent unwanted correlation and to automatically map identities.

When requestors interact with resources in different trust realms (or different parts
of a federation), there is often a need to know something about the requestor in
order to personalize the experience. A service, known as an attribute service may be
available within a realm or federation and such a service can be used to obtain
authorized information about a principal. This allows the sharing of data between
authorized entities.

To facilitate single sign-on where multiple identities need to be automatically mapped
and the privacy of the identity need to maintained, there may also be a pseudonym
service. A pseudonym service allows a principal to have different aliases at different
resources/services or in different realms, and to optionally have the pseudonym
change per-service or per-login. In some scenarios the identities are trusted when
presented and in some cases identity mapping needs to occur from the identity to a
pseudonym on behalf of the principal. The figure below illustrates two realms and
their associated attribute/pseudonym services and some of the possible interactions.
Note that it is assumed that there is a trust relationship between the realms.

13

Figure 8 Attributes & Psedonyms

Figure 8 illustrates the general model for Atttribute & Pseudonym Services (note that
there a different variations which are discussed later in this specification). In an
initial (bootstrap) case, a requestor has knowledge of the policies of a resource,
including its IP/STS. The requestor obtains its identity token from its IP/STS (1a) and
communicates with the resource's IP/STS (2).

The resource IP/STS has registered a pseudonym with the requestor's pseudonym
service (3). The requestor accesses the resource using the pseudonym token (4).
The resource can obtain information (5) from the requestor's attribute service if
authorized based on its identity token (1c). It should be noted that trust
relationships will need to exist in order for the resource or its IP/STS to access the
requestor's attribute or pseudonym service. In subsequent interactions, the
requestor's IP/STS may automatically obtain pseudonym credentials for the resource
(1b) if they are available. In such cases, steps 2 and 3 are omitted. Another
possible scenario is that the requestor registers the tokens from step 2 with its
pseudonym service directly (not illustrated).

Pseudonym services could be integrated with identity providers and security token
services. Similarly, a pseudonym service could be integrated with an attribute
service as a specialized form of attribute.

Pseudonyms are an optional mechanism that can be used by authorized cooperating
services to federate identities and securely and safely access profile attribute
information. This is done by allowing services to issue pseudonyms for authenticated
identities and letting authorized services query for profile attributes which they are
allowed to access, including pseudonyms specific to the requesting service.

14

While pseudonyms are helpful for principals who want to keep from having their
activities tracked between the various sites they visit, they may add a level of
complexity as the principal must typically manage the authorization and privacy of
each pseudonym. For principals who find this difficult to coordinate, or don't have
requirements that would necessitate pseudonyms, identity services MAY offer a
constant identifier for that principal.

For example, a requestor authenticates with Business456.com with their primary
identity "Fred.Jones". However, when the requestor interacts with
Fabrikam123.com, he uses the pseudonym "Freddo".

Some identity services issue a constant identity marker such as a name or ID at a
particular realm. However, there is often a desire to prevent identity tracking and
collusion. This specification provides two possible countermeasures. The first is to
have identity services issue random IDs each time a requestor signs in. This means
that the resulting identity token the requester receives contains a unique identifier,
typically random, that hides their identity. In this case it is
"ABC123@Business456.com". The requestor then visits Fabrikam123.com. The Web
service at Fabrikam123.com can request information about the requestor
"ABC123@Business456.com" from the pseudonym/attribute service for
Business456.com. If the requester has authorized it, the information will be provided
by the identity service.

Alternatively, the requestor may indicate that they are "Freddo" to the Web service
at Fabrikam123.com through some sort of mapping. Fabrikam123.com can now
inform the pseudonym service for Business456.com that
"ABC123@Business456.com" is known as "Freddo@Fabrikam123.com" (if authorized
and allowed by the principal's privacy policy). This is illustrated below:

Figure 9 Pseudonym

Note that the attribute, pseudonym, and identity provider services could be
combined or separated in many different configurations. Figure 9 illustrates a
configuration where the IP is separate from the pseudonym service. In such a case
there is shared information or specialized trust to allow the pseudonym service to
perform the mapping or to make calls to the IP to facilitate the mapping. Different
environments will have different configurations based on their needs, security
policies, technologies used, and existing infrastructure.

15

The next time the requestor signs in to Business456.com Identity Provider, they
might be given a new identifier like "XYZ321@Business456.com". This is possible
because the pseudonym service interacts with the IP and is authorized and allowed
under the principal's privacy policy to perform this action. Since Business456.com
Identity Provider received the mapping, The Web service at Fabrikam123.com can
now request a local pseudonym for XYZ321@Business456.com and be told
"Freddo@Fabrikam123.com" (note that later in this section a mechanism for directly
returning the pseudonym by the IP is discussed). The attribute service is able to do
this because it has the ability to back-map "XYZ321@Business456.com" into a
known identity at Business456.com which has associated with it pseudonyms for
different realms. Figure 10 below illustrates this scenario:

Figure 10 Pseudonym - local id

Again, this is possible because the pseudonym service interacts with the IP and is
authorized and allowed under the principal's privacy policy to perform this action.

Now the service can map the given access name to a local name which can be used
to obtain data stored within the local realm on behalf of the requestor as illustrated
below:

Figure 11 Pseudonym - local realm

Alternatively, the Identity Provider (or STS) can operate hand-in-hand with the
pseudonym service. That is, the requestor asks its Identity Provider (or STS) for a
token to a specified trust realm or resource/service. The STS looks for pseudonyms
and issues a token which can be used at the specified resource/service as illustrated
in figure 12 below:

16

Figure 11 Pseudonym – token acceptance

2.4. Summary
In summary, this specification extends the WS-Trust model to allow attributes and
pseudonyms to be integrated into the token issuance mechanism to provide
federated identity mapping mechanisms. Figure 13 below illustrates the key aspects
of this new model:

Figure 13 Pseudonym Issuance

As shown above Principals request security tokens from Identity Providers and
security token services. As well, Principals MAY send sign-out requests (either
explicitly or implicitly) indicating that cached or state information can be flushed
immediately. Principals request tokens for resources/service using the mechanisms

17

described in WS-Trust and the issued tokens may either represent the principals'
primary identity or some pseudonym appropriate for the scope. The Identity
Provider (or STS) sends messages to interested (and authorized) recipients.
Principals are associated with the attribute/pseudonym services and attributes and
pseudonyms are added and used.

In the sections that follow, additional details are provided on different aspects of this
model.

3. Federation Metadata
Participation in a federation requires knowledge of metadata such as policies and
potentially even WSDLs and schemas for the services within the federation.
Additionally, in many cases mechanisms are needed to identify the Identity Provider,
security token services, and attribute/pseudonym services for the target of a given
policy (e.g. a Web service).

A variety of mechanisms MAY be used to acquire this metadata including:

1. The metadata is included in messages

2. Parties ask each other for the metadata

3. Previously exchanged metadata is remembered

4. Parties have preconfigured metadata, e.g. they "just know" possibly including
in a "hard-coded" security token or policy.

3.1. WS-Policy and WS-MetadataExchange
To obtain and supply the information described above, this specification builds on the
foundations outlined in WS-Policy and WS-MetadataExchange[1] to describe and
acquire metadata. Readers should familiarize themselves with these specifications.

The mechanisms for the first three approaches above are defined in the WS-
MetadataExchange specification.

3.2. Related Services
When a Web service describes its' policy, it MAY want to indicate where requestors
can obtain security tokens in order to satisfy the services claims requirements.

To do this, this specification extends the mechanisms defined in WS-PolicyAssertions
to define a <wsse:RelatedService> assertion.

The following table defines new service types for use with the
<wsse:RelatedService> assertion:

QName Description

wsse:ServiceIP This is used to identify a related Identity Provider (IP).

wsse:ServiceSTS This is used to identify a related security token service
(STS).

wsse:ServiceAS This is used to identify a related attribute service.

18

wsse:ServicePS This is used to identify a related pseudonym service.

The following represents an overview of the syntax of the <wsse:RelatedService>
element:

<wsse:RelatedService wsse:ServiceType="...">

 Endpoint-reference

</wsse:RelatedService>

The following describes elements and attributes used in a <wsse:RelatedService>
element.

/RelatedService
This assertion specificies a related service for the policy subject. The content
(type) of this element is the same as an endpoint reference as defined in WS-
Addressing.

/RelatedService/@wsse:ServiceType
This required QName attribute indicates the type of service. The table above lists
the pre-define service types, but XML namespaces can be used to define other
service types.

The following example illustrates a policy using the <wsp:RelatedService>
assertion:

<wsp:Policy>

 <wsse:RelatedService wsse:ServiceType="wsse:ServiceIP">

 Endpoint-reference

 </wsse:RelatedService>

 <wsse:RelatedService wsse:ServiceType="wsse:ServiceAS">

 Endpoint-reference

 </wsse:RelatedService>

 <wsse:RelatedService wsse:ServiceType="wsse:ServicePS">

 Endpoint-reference

 </wsse:RelatedService>

 ...

</wsp:Policy>

4. Sign-Out
The purpose of a federated sign-out is to clean up any cached state and security
tokens that may exist within the federation. That is, sign-out notification serves as a
hint that it is OK to flush cached data (such as security tokens) or state information
for a specific principal. Depending on the type of application that is being used to
sign-out, the process varies. For example, the implication of sign-out on currently
active transactions is undefined and is resource-specific.

19

The exact mechanisms used for sign-out varies depending on the profile being used.
In some cases, formal sign-out is implicit or not required. This section defines
messages that MAY be used by profiles for explicit sign-out.

In general, sign-out messages are unreliable and correct operation must be ensured
in their absence (i.e., the messages serve as hints only). Consequently, these
messages must also be treated as idempotent since multiple deliveries could occur.

When sign-out is supported, it is typically provided as part of the IP/STS as it is
usually the central processing point.

4.1. Sign-Out Message
The sign-out mechanism allows requestors to send a message to its IP/STS
indicating that the requester is initiating a termination of the SSO. That is, cached
information or state information can safely be flushed. This specification provides
sign-out functions and it MAY be used, but the expected usage is that only token
issuance and message security will be used.

For SOAP, the action of this message is as follows:

http://schemas.xmlsoap.org/2003/07/Federation#SignOut

The following represents an overview of the syntax of the <SignOut> element:

<wsse:SignOut wsu:Id="...">

 <wsse:Realm>...</wsse:Realm>

 <wsse:SignOutBasis>...<wsse:SignOutBasis>

</wsse:SignOut>

The <wsse:SignOut> message SHOULD be signed the requestor to prevent
tampering and the signature SHOULD contain a timestamp to help prevent replay
attacks.

The following describes elements and attributes used in a <wsse:SignOut> element.

/SignOut
This element represents a sign-out message.

/SignOut/Realm
This optional element specifies the "realm" to which the sign-out applies and is
specified as an Endpoint Reference. If no realm is specified, then it is assumed
that the recipient understands or assigns a fixed realm.

/SignOut/SignOutBasis
The contents indicate the principal that is signing out. Note that any security
token or security token reference MAY be used here and multiple tokens MAY be
specified. That said, it is expected that the <UsernameToken> will be the most
common. Note that a security token or security token reference MUST be
specified.

/SignOut/@wsu:Id
This optional attribute specifies a string label for this element.

/SignOut/@{any}

20

This is an extensibility mechanism to allow additional attributes, based on
schemas, to be added to the element.

/SignOut/{any}
 This is an extensibility mechanism to allow additional elements to be used.

The <wsse:SignOut> message SHOULD be signed to prevent tampering and to
prevent unauthorized sign-out messages (i.e., Alice sending a sign-out message for
Bob without Bob's knowledge or permission). The signature SHOULD contain a
timestamp to prevent replay attacks. it should be noted, however, that a principal
MAY delegate the right to issue such messages on their behalf. The following
represents an example of the <SignOut> message:

<S:Envelope>

 <S:Header>

 ...

 <wsu:Timestamp wsu:Id="ts">

 ...

 </wsu:Timestamp>

 <wsse:Security>

 <!-- Signature referecing IDs "ts" & "so" -->

 ...

 </wsse:Security>

 </S:Header>

 <S:Body>

 <wsse:SignOut wsu:Id="so">

 <wsse:SignOutBasis>

 <wsse:UsernameToken>

 <wsse:Username>NNK</wsse:Username>

 </wsse:UsernameToken>

 </wsse:SignOutBasis>

 </wsse:SignOut>

 </S:Body>

</S:Envelope>

4.2. Federating Sign-Out Messages
In many environments there is a need to take the messages indicating sign-out and
distribute them across the federation, subject to authorization and privacy rules.
Consequently, these messages result from when an explicit message is sent to the
IP/STS (by either the principal or a delegate such as an IP/STS), or implicitly from an
IP/STS as a result of some other action (such as a token request). In the case of the

21

latter, an IP/STS indicates via its policy if such messages are automatically
generated by observing the following WS-Policy assertion:

<wsse:AutoSignOutMessages/>

In order to request federated sign-out messages, interested parties (subject to
principal and service authorization/privacy rules) use the <RequestSSOMessages>
and <CancelSSOMessages> messages as described below. These messages are sent
to the endpoint described in the policy for IP/STS as indicated in the following policy
assertion (or to the default IP/STS endpoint the assertion is not present);

<wsse:RequestSSOMessagesEndpoint>

 ...endpoint reference as described in WS-Addressing...

</wsse:RequestSSOMessagesEndpoint>

The result of a successful request is that all compliant SSO messages generated
implicitly or explicitly are sent to the requesting endpoints if allowed by the
authorization/privacy rules.

The following illustrates the syntax of the RequestSSOMessages element:

<wsse:RequestSSOMessages>

 <wsa:EndpointReference>...</wsa:EndpointReference>

 <wsse:Realm>...</wsse:Realm>

 ...security tokens...

</wsse:RequestSSOMessages>

The following describes elements and attributes illustrated above:

/RequestSSOMessages
This element is used to request federated SSO messages.

/RequestSSOMessages/wsa:EndpointReference
This required element indicates the endpoint to which messages are to be sent.

/RequestSSOMessages/Realm
This optional element specifies the "realm" to which the sign-out applies and is
specified as an Endpoint Reference. If no realm is specified, then it is assumed
that the recipient understands or assigns a fixed realm.

/RequestSSOMessages/… security tokens(s) …
The contents of these optional elements restrict messages to only the specified
identities. Note that any security token or security token reference MAY be used
here and multiple tokens MAY be specified. That said, it is expected that the
<UsernameToken> will be the most common.

/RequestSSOMessages/@{any}
This is an extensibility mechanism to allow additional attributes, based on
schemas, to be added to the element.

/RequestSSOMessages/{any}
 This is an extensibility mechanism to allow additional elements to be used.

The following illustrates the syntax of the CancelSSOMessages element:

22

<wsse:CancelSSOMessages>

 <wsa:EndpointReference>...</wsa:EndpointReference>

 <wsse:Realm>...</wsse:Realm>

 ...security tokens...

</wsse:CancelSSOMessages>

The following describes elements and attributes illustrated above:

/CancelSSOMessages
This element is used to remove requests for SSO messages.

/CancelSSOMessages/wsa:EndpointReference
This required element indicates the endpoint to which message were to be sent.

/CancelSSOMessages/Realm
This optional element specifies the "realm" to which the sign-out applies and is
specified as an Endpoint Reference. If no realm is specified, then it is assumed
that the recipient understands or assigns a fixed realm.

/CancelSSOMessages/… security tokens(s) …
The contents of these optional elements select which SSO messages to cancel
based on the specified identities. Note that any security token or security token
reference MAY be used here and multiple tokens MAY be specified. That said, it
is expected that the <UsernameToken> will be the most common.

/CancelSSOMessages/@{any}
This is an extensibility mechanism to allow additional attributes, based on
schemas, to be added to the element.

/CancelSSOMessages/{any}
 This is an extensibility mechanism to allow additional elements to be used.

The following example illustrates requesting SSO messages:

<wsse:RequestSSOMessages>

 <wsa:EndpointReference>

 <wsa:Reference>http://business456.com/SSO

 </wsa:Reference>

 </wsa:EndpointReference>

 <wsse:UsernameToken>

 <wsse:Username>Nicholas</wsse:Username>

 </wsse:UsernameToken>

</wsee:RequestSSOMessages>

5. Attribute Service
Web services need to be able to obtain authorized data related to authorized
requestors to provide richer experiences. This can be addressed by having an
attribute service that requesters and services may use to access restricted
information (subject to authorization and privacy rules) where access is only granted

23

to authorized services for any given attribute (or a separate service that has data
available for such purposes).

Attribute stores and services most likely exist in some form already in service
environments using service-specification protocols.

The figure below illustrates the conceptual namespace of an attribute service:

Figure 14 Attribute Service

An attribute service MAY leverage existing repositories and may provide some level
of organization or context. That is, this specification makes no proposals or
requirements on the organization of the data, just that a principal exist and be
addressable using the mechanisms described here.

Principals represent any kind of resource, not just people. Consequently, the
attribute mechanisms MAY be used to associate attributes with any resource, not just
with identities. Said another way, principal identities represent just one class of
resource that can be used by this specification.

A principal is one scope of attribute metadata to a particular subset of resources.
That is, an attribute MAY have an associated scope to which it is applicable (possibly
more than one resource/service), for example, nicknames used at specific sites. The
scoping mechanism defined in WS-PolicyAttachment may be used to provide this
capability.

It is expected that different attributes will be shared differently and require different
degrees of privacy and protection. Consequently, each attribute expression SHOULD

24

be capable of expressing its own access control and privacy policy. As well, the
access control and privacy policy SHOULD take into account the associated scope(s)
and principals that can speak for the scope(s).

Different services MAY support different types of attribute services which MAY be
identified via policy[2].

Each attribute store may support different subsets of the functionality as described
above. The store's policy indicates what functionality it supports.

5.1. UDDI as an Attribute Store
Services that are compliant with WS-Federation MAY also expose their attribute
stores as UDDI endpoints. For UDDI to be used as an attribute store, one must know
not only the endpoint address of the specific UDDI registry that acts as the store, but
also how WS-Federation maps to the UDDI data model.

As section 3.2 describes, a given web service may advertise related attribute stores
using the RelatedService policy assertion. To indicate that the attribute store can
be accessed using the UDDI protocol, the RelatedService MUST indicate the
version-specific UDDI portType name inside the endpoint reference. The following
illustrates a RelatedService policy assertion that references a UDDI v2 endpoint:

<wsse:RelatedService Type="wsse:ServiceAS"

 xmlns:uddi="urn:uddi-org:inquiry_v2">

 <wsa:Address>http://www.fabrikam123.com/users</wsa:Address>

 <wsa:PortType>uddi:Inquire</wsa:PortType>

</wsse:RelatedService>

In terms of mapping the data model of a WS-Federation attribute store to the UDDI
data model, each principal is expected to have a unique tModel that is queryable via
UDDI and may have associated attributes that are also queryable. To distinguish
tModels that represent WS-Federation principals from other entities in the registry,
this specification defines a classification tModel (Principal Attribute Taxonomy tModel)
that all principal tModels must carry in its categoryBag.

Principal Attribute taxonomy tModel:

UDDI v1 and v2 key:uuid:1a7d9432-22e9-3377-a609-fcde7930cab4

UDDI v3 key: uddi:schemas.xmlsoap.org:federatedprincipalattribute:2003_06

Each related set of attributes for a principal are saved in one tModel and are listed in
the categoryBag of that tModel using references to the Principal Attribute taxonomy
tModel. Each attribute, is then a keyedReference in the categoryBag of the tModel
with the tModelKey below and the attribute name maps to the keyName attribute
and the attribute value maps to the keyValue attribute

<uddi:keyedReference xmlns:uddi=”urn:uddi-org:api_v2”

 tModelKey=”uuid:1a7d9432-22e9-3377-a609-fcde7930cab4”

 keyName=”AttributeName”

 keyValue=”AttributeValue”/>

25

It is important to note that the access to the attributes on the tModel is determined
by the policy of the UDDI registry where they are published. By default, most UDDI
registries allow read access to all UDDI meta data to all users authorized to the
registry. To restrict access to the tModel it is then necessary for the implementation
of UDDI being used to have the capability to apply a user specified access control
policy using mechanisms from WS-Policy attachment.

A policy aware registry could restrict access to the tModel by applying the policy
attached to the tModel in the categoryBag of the tModel. WS-Policy Attachment
defines the attachment of a given policy at a URL as follows (where uuid:0b1b5a47-
bebf-3b7d-9802-f2dd80a91ade is the tModelKey for the WS-Policy Attachment
category system):

<uddi:keyedReference xmlns:uddi=”urn:uddi-org:api_v2”

 keyName="Policy expression for access to this tModel"

 keyValue="http://www.example.com/mytmodel/policy"

 tModelKey="uuid:0b1b5a47-bebf-3b7d-9802-f2dd80a91ade" />

Using the relatedService reference, these attributes contained in the tModels are
found using the UDDI businessService that is returned from the query to the
RelatedService above. This businessService SHOULD contain one or more bindings
to tModels which include the attributes for the principal. To obtain the attributes,
subsequent get_tModel requests should be issued to the tModelKeys representing
each the tModel for each attribute set for the principal.

6. Pseudonym Service
The pseudonym service is a special type of attribute service which maintains
alternate identity information (and optionally associated tokens) for principals in the
attribute service.

Pseudonym services may exist in some form already in service environments using
service-specification protocols. This specification defines an additional, generic,
interface to these services for interoperability with Web services.

The figure below illustrates the conceptual namespace of a pseudonym service:

26

Figure 15 Pseudonym Service

The service MAY provide some level of organization or context. That is, this
specification makes no proposals or requirements on the organization of the data,
just that a principal exist and be addressable using the mechanisms described here.

Within the namespace principals are associated and a set of zero or more
pseudonyms defined. Each pseudonym MAY be scoped, that is, each pseudonym
may have a scope to which it applies (possibly more than one resource/service).

A pseudonym MAY have zero or more associated security tokens. This is an
important aspect because it allows an IP to directly return the appropriate token for
specified scopes. For example, when Fred.Jones requested a token for
Fabrikam123.com, his IP could have returned the Freddo identity directly allowing
the requestor to pass this to Fabrikam123. This approach is more efficient and
allows for greater privacy options.

It is expected that different pseudonyms may have different access control and
privacy policies for each subject that needs. Consequently, each pseudonym
SHOULD be capable of expressing its own access control and privacy policy via WS-
Policy. As well, the access control and privacy policy SHOULD take into account the
associated scope(s) and principals that can speak for the scope(s).

Pseudonym services MUST support the following interfaces for getting, setting, and
deleting pseudonyms:

27

6.1. Getting Pseudonyms
Pseudonyms are requested from a pseudonym service using the
<wsse:GetPseudonym> request.

The syntax for the <wsse:GetPseudonym> element is as follows:

<wsse:GetPseudonym>

 <wsse:PseudonymBasis>...</wsse:PseudonymBasis>

 <wsse:RelativeTo>...</wsse:RelativeTo>

</wsse:GetPseudonym>

The following describes elements and attributes used in a <wsse:GetPseudonym>
element.

/GetPseudonym
This element indicates a request for a pseudonym based on given identity
information.

/GetPseudonym/PseudonymBasis
This element specifies a security token or security token reference identifying the
known identity information.

/GetPseudonym/RelativeTo
The required element indicates the scope for which the pseudonym is requested.
This element has the same type as <wsp:AppliesTo>.

Pseudonyms are returned in the <wsu:GetPseudonymResponse> element as follows:

<wsse:GetPseudonymResponse>

 <wsee:RelativeTo>...</wsee:RelativeTo>

 <wsse:Pseudonym>

 <wsu:Expires>...</wsu:Expires>

 <wsse:SecurityToken>...</wsse:SecurityToken>

 <wsse:ProofToken>...</wsse:ProofToken>

 ...

 </wsse:Pseudonym>

</wsse:GetPseudonymResponse>

The following describes elements and attributes used in a
<wsse:GetPseudonymResponse> element.

/GetPseudonymResponse
The element indicates a returned pseudonym. Either this or a Fault is returned.

/GetPseudonymResponse/RelativeTo
The required element indicates the scope to which the pseudonym applies. This
element has the same type as <wsp:AppliesTo>.

/GetPseudonymResponse/Pseudonym
This element represents a pseudonym for a principal.

/GetPseudonymResponse/Pseudonym/wse:Expires

28

This optional element indicates the expiration of the pseudonym.

/GetPseudonymResponse/Pseudonym/SecurityToken
This optional element indicates a security token for the scope. Note that multiple
tokens MAY be specified.

/GetPseudonymResponse/Pseudonym/ProofToken
This optional element indicates a proof token for the scope. Note that multiple
tokens MAY be specified.

/GetPseudonymResponse/Pseudonym/{any}
This is an extensibility mechanism to allow additional information to be specified
within the pseudonym.

For example, the following example obtains the "Nick" pseudonym of the principal
identified by http://www.fabrikam123.com/NNK.

<S:Envelope>

 ...

 <S:Body>

 <wsse:GetPseudonym>

 <wsse:PseudonymBasis>

 <wsse:BinarySecurityToken>...<wsse:BinarySecurityToken>

 <wsse:PseudonymBasis>

 <wsse:RelativeTo>

 <wsa:Address>

 http://www.fabrikam123.com/NNK</wsa:Address>

 </wsse:RelativeTo>

 </wsse:GetPseudonym>

 </S:Body>

</S:Envelope>

A sample response might be as follows:

<S:Envelope>

 ...

 <S:Body>

 <wsse:GetPseudonymResponse>

 <wsse:RelativeTo>

 <wsp:Address URI="http://www.busines456.com"/>

 </wsse:RelativeTo>

 <wsse:Pseudonym>

 <wsu:Expires>2003-12-10T09:00Z</wsu:Expires>

 <wsse:SecurityToken>...

 </wsse:SecurityToken>

29

 <wsse:ProofToken>...</wsse:ProofToken>

 </wsse:Pseudonym>

 </wsse:GetPseudonymResponse>

 </S:Body>

</S:Envelope>

6.2. Setting Pseudonyms
Pseudonyms are updated in a pseudonym service using the <wsse:SetPseudonym>
request.

The syntax for the <wsse:SetPseudonym> element is as follows:

<wsse:SetPseudonym>

 <wsse:PseudonymBasis>...</wsse:PseudonymBasis>

 <wsse:RelativeTo>...</wsse:RelativeTo>

 <wsse:Pseudonym>...</wsse:Pseudonym>

</wsse:SetPseudonym>

The following describes elements and attributes used in a <wsse:SetPseudonym>
element.

/SetPseudonym
This element indicates a pseudonym update request.

/SetPseudonym/PseudonymBasis
This element specifies a security token or security token reference indicating the
token used as the basis for the pseudonym mapping.

/SetPseudonym/RelativeTo
The required element indicates the scope to which the pseudonym applies. This
element has the same type as <wsp:AppliesTo>.

/SetPseudonym/Pseudonym
The required element specified the value of the pseudonym. If a pseudonym is
present for the scope, it is replaced.

The result is returned in a <wsu:SetPseudonymResponse> element as follows:

<wsse:SetPseudonymResponse/>

The following describes elements and attributes used in a
<wsse:SetPseudonymResponse> element.

/SetPseudonymResponse
The element indicates a successful response to a pseudonym update request.
Either this or a Fault is returned.

The following example sets the "Nick" pseudonym of the principal identified by
http://www.fabrikam123.com/NNK.

<S:Envelope>

30

 ...

 <S:Body>

 <wsse:SetPseudonym>

 <wsse:PseudonymBasis>

 <wsse:BinarySecurityToken>...<wsse:BinarySecurityToken>

 <wsse:PseudonymBasis>

 <wsse:RelativeTo>

 <wsa:Address>

 http://www.fabrikam123.com/NNK</wsa:Address>

 </wsse:RelativeTo>

 <wsse:Pseudonym>

 <wsse:SecurityToken>

 <wsse:UsernameToken>

 <Username> "Nick" </Userename>

 </wsse:UsernameToken>

 </wsse:SecurityToken>

 <wsse:ProofToken>...</wsse:ProofToken>

 </wsse:Pseudonym>

 </wsse:SetPseudonym>

 </S:Body>

</S:Envelope>

A sample response might be as follows:

<S:Envelope>

 ...

 <S:Body>

 <wsse:SetPseudonymResponse/>

 </S:Body>

</S:Envelope>

6.3. Deleting Pseudonyms
Pseudonyms are deleted in a pseudonym service using the <wsse:DeletePseudonym>
request.

The syntax for the <wsse:DeletePseudonym> element is as follows:

<wsse:DeletePseudonym>

 <wsse:PseudonymBasis>...</wsse:PseudonymBasis>

31

 <wsse:RelativeTo>...</wsse:RelativeTo>

 <wsse:Pseudonym>...</wsse:Pseudonym>

</wsse:DeletePseudonym>

The following describes elements and attributes used in a <wsse:DeletePseudonym>
element.

/DeletePseudonym
This element indicates a pseudonym update request.

/DeletePseudonym/PseudonymBasis
This element specifies a security token or security token reference indicating the
token used as the basis for the pseudonym mapping.

/DeletePseudonym/RelativeTo
This required element indicates the scope to which the pseudonym applies. This
element has the same type as <wsp:AppliesTo>.

/DeletePseudonym/Pseudonym
This optional element specifies the value of the pseudonym. If this isn't specified,
then all pseudonyms for the scope are removed – effectively a request to
defederate.

The result is returned in a <wsu:DeletePseudonymResponse> element as follows:

<wsse:DeletePseudonymResponse/>

The following describes elements and attributes used in a
<wsse:DeletePseudonymResponse> element.

/DeletePseudonymResponse
The element indicates a successful response to a pseudonym delete request.
Either this or a Fault is returned.

The following example deletes the "Nick" pseudonym of the principal identified by
http://www.fabrikam123.com/NNK.

<S:Envelope>

 ...

 <S:Body>

 <wsse:DeletePseudonym>

 <wsse:PseudonymBasis>

 <wsse:BinarySecurityToken>...<wsse:BinarySecurityToken>

 <wsse:PseudonymBasis>

 <wsse:RelativeTo>

 <wsa:Address>

 http://www.fabrikam123.com/NNK</wsa:Address>

 </wsse:RelativeTo>

 <wsse:Pseudonym>

32

 <wsse:SecurityToken>

 <wsse:UsernameToken>

 <Username> "Nick" </Userename>

 </wsse:UsernameToken>

 </wsse:SecurityToken>

 <wsse:ProofToken>...</wsse:ProofToken>

 </wsse:Pseudonym>

 </wsse:DeletePseudonym>

 </S:Body>

</S:Envelope>

A sample response might be as follows:

<S:Envelope>

 ...

 <S:Body>

 <wsse:DeletePseudonymResponse/>

 </S:Body>

</S:Envelope>

7. Security Tokens and Pseudonyms
As previously mentioned, the pseudonym service can also be used to store tokens
associated with the pseudonym. Cooperating Identity Providers and security token
services can then be used to automatically obtain the pseudonyms and tokens based
on security token requests for scopes associated with the pseudonyms.

In figure 16 below illustrates two examples of how security tokens are associated
with resources/services. In the figure on the left, the requestor first obtains the
security token(s) from the IP/STS for the resource/service and then saves them in
the pseudonym service. The pseudonyms can be obtained from the pseudonym
service prior to subsequent communication with the resource removing the need for
the resource's IP/STS to communicate with the requestor's pseudonym service. The
figure on the right illustrates the scenario where IP/STS for the resource/service
associates the security token(s) for the requestor as needed and looks them up (as
illustrated in previous sections).

33

 Figure 16 Attribute & Pseudonym Services

However when the requestor requests tokens for a resource/service, using a WS-
Trust <RequestSecurityToken> whose scope has an associated pseudonym/token, it
is returned as illustrated below in the <RequestSecurityTokenResponse> which can
then be used when communicating with the resource:

Figure 17 Attribute Service

The pseudonym service SHOULD be self-maintained with respect to valid security
tokens. That is, security tokens that have expired or are otherwise not valid for any
reason MAY be automatically be discarded by the service.

This approach is an alternative to having the pseudonym service directly return the
security token issuance. Both approaches need to be available in order to address
different scenarios and requirements.

The following sub-sections describe how token issuance works for different types of
keys.

34

7.1. RST and RSTR Extensions
With the addition of pseudonyms and the integration of an IP/STS with a pseudonym
service, there are additional options that MAY be included in the security token
requests using the <wsse:RequestSecurityToken> request. The following syntax
illustrates the RST extension to support these new options:

<RequestPseudonym SingleUse="..." Lookup="..."/>

/RequestPseudonym
This optional element MAY be specified in a <wsse:RequestSecurityToken>
request to indicate how pseudonyms are to be processed for the requested token.

/RequestPseudonym/@SingleUse
This optional attribute indicates if a single-use pseudonym is returned (true), or if
the service uses a constant identifier (false – the default).

/RequestPseudonym/@Lookup
This optional attribute indicates if an associated pseudonym for the specified
scope is used (true – the default) or if the primary identity is used even if an
appropriate pseudonym is associated (false).

/Pseudonym/{any}
This is an extensibility mechanism to allow additional information to be specified.

/Pseudonym/@{any}
This is an extensibility mechanism to allow additional attributes to be specified.

If the <RequestPseudonym> isn't present, pseudonym usage and single use is at the
discretion of the IP/STS.

7.2. Usernames and Passwords
If a IP/STS returns a security token based on a username, then the token can be
stored in the pseudonym service.

If a corresponding password is issued (or if the requestor specified one), then it too
MAY be stored with the pseudonym and security token so that it can be returned as
the proof-of-possession token in the RSTR response.

If a pseudonym is present, but no security token is specified, then the IP/STS MAY
return a <UsernameToken> in the RSTR response to indicate the pseudonym.

7.3. Public Keys
Generally, when a IP/STS issues a new security token with public key credentials,
the public key in the new security token is the same as the key in the provided input
security token thereby allowing the same proof (private key) to be used with the new
token since the public key is the same. In such cases, the new token can be saved
directly.

If, however, the IP/STS issues a new public key (and corresponding private key),
then the private key MAY be stored with the pseudonym as a proof token so that it
can be returned as the proof-of-possession token in the RSTR response.

7.4. Symmetric Keys
If an IP/STS returns a token based on a symmetric key (and the corresponding proof
information), then the proof information MAY be stored with the pseudonym and

35

token so that it can be used to construct a proof-of-possession token in the RSTR
response.

8. Error Handling
This specification defines the following error codes that MAY be used. Other errors
MAY also be used.

Error that occurred faultcode

No pseudonym found for the specified
scope

wsse:NoPseudonymInScope

9. Security Considerations
It is strongly RECOMMENDED that the communication between services be secured
using the mechanisms described in WS-Security. In order to properly secure
messages, the body and all relevant headers need to be included in the signature.

All federation-related messages such as sign-out, principal, attribute, and
pseudonym management SHOULD be signed to ensure integrity. If a message is
received where the body is not signed, it is RECOMMENDED that the message not be
processed.

All sign-out requests MUST be signed by the principal being purported to be signing
in or out, or by a principal that is authorized to be on behalf of the indicated
principal.

It is also RECOMMENDED that all messages be signed by the appropriate security
token service. If a message is received that does not have a signature from a
principal authorized to speak for the security token service, it is RECOMMENDED that
the message not be processed.

The attribute service maintains information that may be very sensitive. Significant
care should be taken to ensure that a principal's privacy is taken into account first
and foremost.

The pseudonym service MAY contain passwords or other information used in proof-
of-possession mechanisms. Extreme care needs to be taken with this data to ensure
that it cannot be compromised. It is strongly RECOMMENDED that such information
be encrypted over communications channels and in any physical storage.

If a security token does not contain an embedded signature (or similar integrity
mechanism), it SHOULD be included in any message integrity mechanisms.

If privacy is a concern, the security tokens MAY be encrypted for the authorized
recipient(s) using mechanisms in WS-Security.

The following list summarizes common classes of attacks that apply to this protocol
and identifies the mechanism to prevent/mitigate the attacks:

• Message alteration – Alteration is prevented by including signatures of the
message information using WS-Security.

• Message disclosure – Confidentiality is preserved by encrypting sensitive data
using WS-Security.

• Key integrity – Key integrity is maintained by using the strongest algorithms
possible (by comparing secured policies – see WS-Policy and WS-SecurityPolicy).

36

• Authentication – Authentication is established using the mechanisms described
in WS-Security and WS-Trust. Each message is authenticated using the
mechanisms described in WS-Security.

• Accountability – Accountability is a function of the type of and string of the key
and algorithms being used. In many cases, a strong symmetric key provides
sufficient accountability. However, in some environments, strong PKI signatures
are required.

• Availability – All reliable messaging services are subject to a variety of
availability attacks. Replay detection is a common attack and it is RCOMMENDED
that this be addressed by the mechanisms described in WS-Security. Other
attacks, such as network-level denial of service attacks are harder to avoid and
are outside the scope of this specification. That said, care should be taken to
ensure that minimal state is saved prior to any authenticating sequences.

• Replay attacks: It is possible that requests for security tokens could be
replayed. Consequently, it is RECOMMENDED that all communication between
security token services and resources take place over secure connections. All
cookies indicating state SHOULD be set as secure.

• Forged security tokens: Security token services MUST guard their signature
keys to prevent forging of tokens and requestor identities.

• Privacy: Security token services SHOULD NOT send requestors’ personal
identifying information or information without getting consent from the requestor.
For example a Web site SHOULD NOT receive requestors’ personal information
without an appropriate consent process.

• Compromised services: If a security token service is compromised, all
requestor accounts serviced SHOULD be assumed to be compromised as well
(since an attacker can issue security tokens for any account they want). However
they MUST NOT be able to issue tokens directly for identities outside the
compromised realm. This is of special concern in scenarios like the 3rd-party
brokered trust where a 3rd party IP/STS is brokering trust between two realms.
In such a case compromising the broker results in the ability to indirectly issue
tokens for another realm by indicating trust.

As with all communications careful analysis should be performed on the messages
and interactions to ensure they meet the desired security requirements.

10. Notes
[1] WS-MetadataExchange is a set of Web service mechanisms to exchange policies,
WSDL, schema and other metadata between two or more parties. This specification
is part of the Web services roadmap for both WS-ReliableMessaging and WS-
Federation. WS-MetadataExchange will be published this summer.

[2] A supplemental profile document or revision to this document, to be published
this summer, will address interoperability concerns between attribute services.

11. Acknowledgements
This specification has been developed as a result of joint work with many individuals
and teams, including:

Josh Gray, Microsoft
Tim Hahn, IBM

37

Andrew Hatley, IBM
Heather Hinton, IBM
Bronislav Kavsan, RSA Security
Brad Lovering, Microsoft
Anthony Moran, IBM
Birgit Pfitzmann, IBM
Robert Philpott, RSA Security
Yordan Rouskov, Microsoft
Jeff Spelman, Microsoft
Shane Weeden, IBM

12. References
[KEYWORDS]

S. Bradner, "Key Words for Use in RFCs to Indicate Requirement Levels," RFC
2119, Harvard University, March 1997.

[HTTP]
R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, T. Berners-Lee,
RFC 2616, "Hypertext Transfer Protocol -- HTTP/1.1". June 1999.

[SOAP]
W3C Note, "SOAP: Simple Object Access Protocol 1.1," 08 May 2000.
Draft, SOAP 1.2, http://www.w3.org/TR/soap12-part0/
Draft, SOAP 1.2, http://www.w3.org/TR/soap12-part1/
Draft, SOAP 1.2, http://www.w3.org/TR/soap12-part2/

[URI]
T. Berners-Lee, R. Fielding, L. Masinter, "Uniform Resource Identifiers (URI):
Generic Syntax," RFC 2396, MIT/LCS, U.C. Irvine, Xerox Corporation, August
1998.

[WS-Security]
"Web Services Security Language", IBM, Microsoft, VeriSign, April 2002.
"WS-Security Addendum", IBM, Microsoft, VeriSign, August 2002.
"WS-Security XML Tokens", IBM, Microsoft, VeriSign, August 2002

[WS-Policy]
"Web Services Policy Framework", BEA, IBM, Microsoft, SAP, December 2002

[WS-PolicyAttachment]
"Web Services Policy Attachment Language", BEA, IBM, and Microsoft, SAP,
December 2002

[WS-PolicyAssertions]
"Web Services Policy Assertions Language", BEA, IBM, Microsoft, SAP, December
2002

[WS-Trust]
"Web Services Trust Language", IBM, Microsoft, RSA, VeriSign, December 2002

[WS-SecureConversation]
"Web Services Secure Conversation Language", IBM, Microsoft, RSA, VeriSign,
December 2002

[WS-SecurityPolicy]
"Web Services Security Policy Language", IBM, Microsoft, RSA, Verisign
December 2002

38

[WS-FederationActive]
"Web Services Federation Language: Active Requestor Profile", BEA, IBM,
Microsoft, RSA Security, VeriSign, July 2003

[WS-FederationPassive]
"Web Services Federation Language: Passive Requestor Profile", BEA, IBM,
Microsoft, RSA Security, VeriSign, July 2003

[WS-ReliableMessaging]
"Web Services Reliable Messaging Protocol", BEA, IBM, Microsoft, Tibco, February
2003

[XML-ns]
W3C Recommendation, "Namespaces in XML," 14 January 1999.

Appendix I - WSDL
The following illustrates the WSDL for the Web service methods described in this
specification:

<wsdl:definitions

 targetNamespace="http://schemas.xmlsoap.org/ws/2003/07/secext"

 xmlns:wsse="http://schemas.xmlsoap.org/ws/2003/07/secext"

 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"

 xmlns:xs="http://www.w3.org/2001/XMLSchema"

>

<!-- this is the WS-I BP-compliant way to import a schema -->

 <wsdl:types>

 <xs:schema>

 <xs:import

 namespace="http://schemas.xmlsoap.org/ws/2003/07/secext"

 schemaLocation="secext.xsd"/>

 </xs:schema>

 </wsdl:types>

<!-- These are the base messages -->

 <wsdl:message name="SignOutMsg">

 <wsdl:part name="signout" element="wsse:SignOut" />

 </wsdl:message>

 <wsdl:message name="RequestSSOMessagesMsg">

 <wsdl:part name="requestsso"

 element="wsse:RequestSSOMessages" />

 </wsdl:message>

39

 <wsdl:message name="CancelSSOMessagesMsg">

 <wsdl:part name="cancelsso"

 element="wsse:CancelSSOMessages" />

 </wsdl:message>

 <wsdl:message name="GetPseudonymMsg">

 <wsdl:part name="getpseudorequest"

 element="wsse:GetPseudonym" />

 </wsdl:message>

 <wsdl:message name="GetPseudonymResponseMsg">

 <wsdl:part name="getpseudoresponse"

 element="wsse:GetPseudonymResponse" />

 </wsdl:message>

 <wsdl:message name="SetPseudonymMsg">

 <wsdl:part name="setpseudorequest"

 element="wsse:SetPseudonym" />

 </wsdl:message>

 <wsdl:message name="SetPseudonymResponseMsg">

 <wsdl:part name="Setpseudoresponse"

 element="wsse:SetPseudonymResponse" />

 </wsdl:message>

 <wsdl:message name="DeletePseudonymMsg">

 <wsdl:part name="delpseudorequest"

 element="wsse:DeletePseudonym" />

 </wsdl:message>

 <wsdl:message name="DeletePseudonymResponseMsg">

 <wsdl:part name="delpseudoresponse"

 element="wsse:DeletePseudonymResponse" />

 </wsdl:message>

<!-- These portTypes model the Signout messages -->

 <wsdl:portType name="SignOutService">

 <wsdl:operation name="SignOut">

 <wsdl:input message="wsse:SignOutMsg"/>

 </wsdl:operation>

 </wsdl:portType>

40

 <wsdl:portType name="RequestSSOService">

 <wsdl:operation name="RequestSSO">

 <wsdl:input

 message="wsse:RequestSSOMessagesMsg"/>

 </wsdl:operation>

 </wsdl:portType>

 <wsdl:portType name="CancelSSOService">

 <wsdl:operation name="CancelSSO">

 <wsdl:input

 message="wsse:CancelSSOMessagesMsg"/>

 </wsdl:operation>

 </wsdl:portType>

<!-- These portTypes model the Pseudonym messages -->

 <wsdl:portType name="PseudonymRequester">

 <wsdl:operation name="GetPseudonymResponse">

 <wsdl:input

 message="wsse:GetPseudonymResponseMsg"/>

 </wsdl:operation>

 <wsdl:operation name="SetPseudonymResponse">

 <wsdl:input

 message="wsse:SetPseudonymResponseMsg"/>

 </wsdl:operation>

 <wsdl:operation name="DeletePseudonymResponse">

 <wsdl:input

 message="wsse:DeletePseudonymResponseMsg"/>

 </wsdl:operation>

 </wsdl:portType>

 <wsdl:portType name="PseudonymRequestService">

 <wsdl:operation name="GetPseudonymRequest">

 <wsdl:input message="wsse:GetPseudonymMsg"/>

 </wsdl:operation>

41

 <wsdl:operation name="SetPseudonymRequest">

 <wsdl:input message="wsse:SetPseudonymMsg"/>

 </wsdl:operation>

 <wsdl:operation name="DeletePseudonymRequest">

 <wsdl:input

 message="wsse:DeletePseudonymMsg"/>

 </wsdl:operation>

 </wsdl:portType>

 <wsdl:portType name="PseudonymService">

 <wsdl:operation name="GetPsuedonym">

 <wsdl:input message="wsse:GetPseudonymMsg"/>

 <wsdl:output

 message="wsse:GetPseudonymResponseMsg"/>

 </wsdl:operation>

 <wsdl:operation name="SetPsuedonym">

 <wsdl:input message="wsse:SetPseudonymMsg"/>

 <wsdl:output

 message="wsse:SetPseudonymResponseMsg"/>

 </wsdl:operation>

 <wsdl:operation name="DeletePsuedonym">

 <wsdl:input

 message="wsse:DeletePseudonymMsg"/>

 <wsdl:output

 message="wsse:DeletePseudonymResponseMsg"/>

 </wsdl:operation>

 </wsdl:portType>

</wsdl:definitions>

