

1

WS-Federation: Passive Requestor Profile
Version 1.0
July 8, 2003

Authors

Siddharth Baja, VeriSign
Brendan Dixon, Microsoft
Mike Dusche, Microsoft
Maryann Hondo, IBM
Matt Hur, Microsoft
Chris Kaler (Editor), Microsoft
Hal Lockhart, BEA
Hiroshi Maruyama, IBM
Anthony Nadalin (Editor), IBM
Nataraj Nagaratnam, IBM
Andrew Nash, RSA Security
Hemma Prafullchandra, VeriSign
Yordan Rouskov, Microsoft
John Shewchuk, Microsoft
Jeff Spelman, Microsoft

Copyright Notice
(c) 2001-2003 IBM Corporation, Microsoft Corporation, BEA Systems, Inc., RSA
Security, Inc., Verisign, Inc. All rights reserved.

BEA, IBM, Microsoft, RSA Security and VeriSign (collectively, the "Authors") hereby
grant you permission to copy and display the WS-Federation: Passive Requestor
Specification, in any medium without fee or royalty, provided that you include the
following on ALL copies of the WS-Federation: Passive Requestor Specification, or
portions thereof, that you make:

1. A link or URL to the Specification at this location

2. The copyright notice as shown in the WS-Federation: Passive Requestor
Specification.

EXCEPT FOR THE COPYRIGHT LICENSE GRANTED ABOVE, THE AUTHORS DO NOT
GRANT, EITHER EXPRESSLY OR IMPLIEDLY, A LICENSE TO ANY INTELLECTUAL
PROPERTY, INCLUDING PATENTS, THEY OWN OR CONTROL.

THE WS-Federation: Passive Requestor SPECIFICATION IS PROVIDED "AS IS," AND
THE AUTHORS MAKE NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE, NON-INFRINGEMENT, OR TITLE; THAT THE
CONTENTS OF THE WS-Federation: Passive Requestor SPECIFICATION ARE
SUITABLE FOR ANY PURPOSE; NOR THAT THE IMPLEMENTATION OF SUCH
CONTENTS WILL NOT INFRINGE ANY THIRD PARTY PATENTS, COPYRIGHTS,
TRADEMARKS OR OTHER RIGHTS.

THE AUTHORS WILL NOT BE LIABLE FOR ANY DIRECT, INDIRECT, SPECIAL,
INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF OR RELATING TO ANY
USE OR DISTRIBUTION OF THE WS-Federation: Passive Requestor SPECIFICATION.

2

The WS-Federation: Passive Requestor Specification may change before final release
and you are cautioned against relying on the content of this specification.

The name and trademarks of the Authors may NOT be used in any manner, including
advertising or publicity pertaining to the Specification or its contents without specific,
written prior permission. Title to copyright in the WS-Federation: Passive Requestor
Specification will at all times remain with the Authors.

No other rights are granted by implication, estoppel or otherwise.

Abstract
This profile specification describes how the cross trust realm identity, authentication
and authorization federation mechanisms defined in WS-Federation can be utilized
used by passive requestors such as Web browsers to provide Identity Services.
Passive requesters of this profile are limited to the HTTP protocol.

Modular Architecture
By using the XML, SOAP and WSDL extensibility models, the WS* specifications are
designed to be composed with each other to provide a rich Web services
environment. WS-Federation: Passive Requestor by itself does not provide a
complete security solution for Web services. WS-Federation: Passive Requestor is a
building block that is used in conjunction with other Web service and application-
specific protocols to accommodate a wide variety of security models.

Status
This WS-Federation Passive Requestor Profile Specification is an initial public draft
release and is provided for review and evaluation only. BEA, IBM, Microsoft, RSA
Security and VeriSign hope to solicit your contributions and suggestions in the near
future. BEA, IBM, Microsoft, RSA Security and VeriSign make no warrantees or
representations regarding the specifications in any manner whatsoever

Table of Contents
1. Introduction

1.1. Goals and Requirements
1.1.1 Requirements
1.1.2. Non-Goals

1.2. Notational Conventions
1.3. Namespaces
1.5. Terminology

2. Model
2.1. Sign-In
2.2. Sign-Out
2.3. Attributes
2.4. Pseudonyms
2.5. Artifacts/Cookies

3. HTTP Protocol Syntax
3.1. Parameters

3

3.2. Requesting Security Tokens
3.3. Returning Security Tokens
3.4. Sign-Out Request Syntax
3.5. Attribute Request Syntax
3.6. Pseudonym Request Syntax

4. Detailed Example of Passive Requester Syntax
5. Additional Examples

5.1. No Resource STS
5.2. 3rd-Party STS
5.3. Sign-Out
5.4. Delegated Resource Access

6. Security Tokens
6.1. X.509v3
6.2. Kerberos
6.3. XrML
6.4. SAML

7. Error Handling
8. Security Considerations
9. Acknowledgements
10. References
Appendix I. Sample HTTP Flows for Detailed Example

1. Introduction
The WS-Federation specification defines an integrated model for federating identity,
authentication and authorization across different trust realms and protocols. This
specification defines how the WS-Federation model is applied to passive requestors
such as Web browsers that support the HTTP protocol.

For the passive mechanisms to work seamlessly and provide a single or reduced
sign-on, there needs to be a service that will verify that the claimed requestor is
really the requestor. Initial verification MUST occur in a secure fashion, for example,
using SSL/TLS or HTTP/S.

Subsequent verifications of passive requestors MAY use custom mechanisms or
cookies to optimize the flow. However, use of cookies may suffer from the certain
security risks. It is strongly RECOMMENDED that if cookies are used, that the
discard attribute as defined in RFC 2965 be used.

Aside from the discard issue, artifacts and cookies still suffer from replay attacks.
Passive requesters SHOULD consider using stronger methods of authentication such
as digest authentication (RFC 2617) and the HTTP Security Extensions. Such
mechanisms MAY be used to authenticate to the Web server, if it supports such
mechanisms.

4

1.1. Goals and Requirements
The primary goal of this specification is to define a profile for passive requesters to
federate identity, authentication, and authorization information.

1.1.1 Requirements

The following list identifies the key driving requirements for this specification:

• Enable sharing of identity, authentication, and authorization data from and
through passive requestors

• Enable the brokering of trust and security token exchange in a passive requestor
environment

• Allow optional hiding of identity information and other attributes in a passive
requestor environment

1.1.2. Non-Goals

The following topics are outside the scope of this document:

• Definition of message security or trust establishment/verification protocols

• Specification of new security token formats

• Modifying existing browsers to provide support for additional protocols and
functionality

1.2. Notational Conventions
The keywords "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
document are to be interpreted as described in RFC 2119.

When describing abstract data models, this specification uses the notational
convention used by the XML Infoset. Specifically, abstract property names always
appear in square brackets (e.g., [some property]).

When describing concrete XML schemas, this specification uses the notational
convention of WS-Security. Specifically, each member of an element’s [children] or
[attributes] property is described using an XPath-like notation (e.g.,
/x:MyHeader/x:SomeProperty/@value1). The use of {any} indicates the presence of
an element wildcard (<xs:any/>). The use of @{any} indicates the presence of an
attribute wildcard (<xs:anyAttribute/>).

1.3. Namespaces
The following namespaces are used in this document:

Prefix Namespace

S http://www.w3.org/2002/06/soap-envelope

wsse http://schemas.xmlsoap.org/ws/2003/07/secext

wsu http://schemas.xmlsoap.org/ws/2002/07/utility

5

wp http://schemas.xmlsoap.org/ws/2002/12/policy

1.4. Terminology
The following definitions outline the terminology and usage in this specification.

Passive Requestor – A passive requestor is an HTTP browser or application capable
of broadly supported HTTP (e.g. HTTP/1.1).

Claim – – A claim is a declaration made by an entity (e.g. name, identity, key,
group, privilege, capability, etc).

Security Token – A security token represents a collection of claims.

Signed Security Token – A signed security token is a security token that is
asserted and cryptographically signed by a specific authority (e.g. an X.509
certificate or a Kerberos ticket)

Proof-of-Possession – – Proof-of-possession is authentication data that is provided
with a message to prove that the message was sent and or created by a claimed
identity.

Proof-of-Possession Token – A proof-of-possession token is a security token that
contains data that a sending party can use to demonstrate proof-of-possession.
Typically although not exclusively, proof-of-possession information is encrypted with
a key known only to the sender and recipient parties.

Digest – A digest is a cryptographic checksum of an octet stream.

Signature - A signature is a value computed with a cryptographic algorithm and
bound to data in such a way that intended recipients of the data can use the
signature to verify that the data has not been altered since it was signed by the
signer.

Security Token Service (STS) - A security token service is a Web service that
issues security tokens (see WS-Security). That is, it makes assertions based on
evidence that it trusts, to whoever trusts it. To communicate trust, a service
requires proof, such as a security token or set of security tokens, and issues a
security token with its own trust statement (note that for some security token
formats this can just be a re-issuance or co-signature). This forms the basis of trust
brokering.

Trust - Trust is the characteristic that one entity is willing to rely upon a second
entity to execute a set of actions and/or to make set of assertions about a set of
subjects and/or scopes.

Trust Domain/Realm - A Trust Domain/Realm is a security space in which the
target of a request can determine whether particular sets of credentials from a
source satisfy the relevant security policies of the target. The target may defer trust
to a third party thus including the trusted third party in the Trust Realm.

Direct Trust – Direct trust is when a relying party accepts as true all (or some
subset of) the claims in the token sent by the requestor.

Direct Brokered Trust – Direct Brokered Trust is when one party trusts a second
party who, in turn, trusts or vouches for, a third party.

Indirect Brokered Trust – Indirect Brokered Trust is a variation on direct brokered
trust where the second party negotiates with the third party, or additional parties, to
assess the trust of the third party.

6

Signature validation – Signature validation is the process of verifying that the
message received is the same as the one sent.

Sender Authentication – Sender authentication is corroborated authentication
among Web service actors/roles indicating the sender of a Web service message
(and its associated data). Note that it is possible that a message may nave multiple
senders if authenticated intermediaries exist. Also not that it is application-
dependent (and out of scope) as to how it is determined who first created the
messages as the message originator might be independent of, or hidden behind an
authenticated sender.

Realm or Domain – A realm or domain represents a single unit of security
administration or trust.

Federation – A federation is a collection of realms that have established trust. The
level of trust may vary, but typically includes authentication and may include
authorization.

Identity Provider (IP) – Identity Provider is an entity that acts as a peer entity
authentication service to end users and data origin authentication service to service
providers (e.g. security token service)

Single Sign On – Single Sign On is an optimization of the authentication sequence
to remove the burden of repeating actions placed on the end user. To facilitate SSO,
an element called an Identity Provider can act as a proxy on a user's behalf to
provide evidence of authentication events to 3rd parties requesting information
about the requestor. These Identity Providers are trusted 3rd parties and need to be
trusted both by the requestor (to maintain the requestor's identity information as the
loss of this information can result in the compromise of the requestors identity) and
the Web services which may grant access to valuable resources and information
based upon the integrity of the identity information provided by the IP.

Identity Mapping – Identity Mapping is a method of creating relationships between
identity properties. Some Identity Providers may make use of id mapping.

Sign-Out – A sign-out is the process by which a principal indicates that they will no
longer be using their token and services in the realm can destroy their token caches
for the principal.

2. Model
The WS-Federation specification defines a model and set of messages for brokering
trust and federation of identity and authentication information across different trust
realms and protocols. This additional profile shows how this Federations model is
applied to passive requestors such as Web browsers.

The federation model described in WS-Federation builds on the foundation
established by WS-Security and WS-Trust. Consequently, this specification profiles
the mechanisms for requesting, exchanging, and issuing security tokens within the
context of a passive requestor.

The Federation model as profiled in this specification allows for support of different
but philosophically compatible message exchanges. For example, the resource might
act as its own security token service (STS) and not use a separate service (or even
URI) thereby eliminating some steps. It is expected that subsequent profiles can be
defined to extend the passive profile to include additional exchange patterns.

7

2.1. Sign-On
The primary issue for passive browsers is that there is no inherent way to directly
alter the browser. Consequently, the processing must be performed within the
confines of the base HTTP 1.1 functionality (GET, POST, redirects, and cookies) and
conform as closely as possible to the WS-Trust protocols for token acquisition.

At a high-level, requestors are associated with an identity provider (IP) or security
token service (STS) where they authenticate themselves. At the time/point of initial
authentication an artifact/cookie MAY be created for the requestor at their identity
provider so that every request for a resource doesn't require requestor intervention.
At other times, authentication at each request is the desired behavior.

In this profile, there is a common pattern used when communicating with an IP/STS.
In the first step, the requestor accesses the resource; the requestor is then
redirected to an IP/STS if no token is cached (in this case the requestor's IP/STS).
The IP/STS generates a security token for use by the federated party (the resource).
In some cases the IP/STS has the requisite information cached, in other cases it
must prompt the user, and in federated scenarios it may require communication with
other IP/STS (which is described later).

As indicated all communication occurs with the standard HTTP GET and POST
methods using redirects (steps 2 and 6) to automate the communication. In step 2
the resource may act as its own IP/STS so communication with an additional service
isn't required. In step 3, a shared or third party IP/STS can also be avoided
(depending on the configuration and established trust policies).

It should be noted that in step 4, the authentication protocol employed MAY be
implementation-dependent.

8

2.2. Sign-Out
For passive browsers, sign-out can be initiated by selecting the sign-out URL at a
resource. In doing so, the browser will ultimately be redirected to the requestor's
IP/STS indicating sign-out. Note that the browser MAY be first redirected to the
resource's IP/STS and then to the requestor's IP/STS. Note that if multiple IP/STS
services are used, and unaware of each other, multiple sign-outs may be required.

The requestor's IP/STS SHOULD keep track of the realms to which it has issued
tokens where cleanup may be required – specifically the IP/STS for the realms (or
resources if different). When the sign-out is received at the requestor's IP/STS, it is
responsible for issuing HTTP GET requests against the tracked realms indicating a
sign-out cleanup is in effect or it can use the sign-out mechanism described in WS-
Federation if it is supported by the endpoints. The exact mechanism by which this
occurs is up to the IP/STS. The only requirement is that a sign-out cleanup GET be
performed against any realms that may have cached tokens. Optionally, the
requestor's IP/STS can request that the sign-out cleanup GET redirect back to the
requestor's IP/STS.

When a sign-out clean-up GET is received at a realm, the realm SHOULD clean-up
any cached information and delete any associated artifacts/cookies. If requested, on
completion the requestor is redirected back to requestor's IP/STS.

9

The figure above illustrates this process including calling out the redirection in steps
2 and 4 (optional) and the general correlation of messages.

It should be noted that as a result of the single sign-out request (steps 5 and 6), an
IP/STS MAY send sign-out messages as described in WS-Federation.

2.3. Attributes
At a high-level, attribute processing uses the same mechanisms defined for security
token service requests and responses. That is, redirection is used to issue requests
to attribute services and subsequent redirection returns the results of the attribute
operations. All communication occurs with the standard HTTP 1.1 GET and POST
methods using redirects to automate the communication as shown in the example
below.

10

The figure above illustrates this process including calling out the redirection in steps
2 and 4 and the general correlation of messages.

As well, it should be noted that as a result of step 3 the IP/STS MAY prompt the user
for approval before proceeding to step 4.

2.4. Pseudonyms
At a high-level, pseudonym processing uses the same mechanisms defined for
attribute and security token service requests. That is, redirection is used to issue
requests to pseudonym services and subsequent redirection returns the results of
the pseudonym operations. All communication occurs with the standard HTTP GET
and POST methods using redirects to automate the communication as in the example
below.

11

The figure above illustrates this process including calling out the redirection in steps
2 and 4 and the general correlation of messages.

2.5. Artifacts/Cookies
In order to prevent requestor interaction on every request for security token,
artifacts/cookies can be used by SSO implementations as they are used today to
cache state and/or authentication information or issued tokens. However
implementations MAY omit this caching if the desired behavior is to authenticate on
every request. As noted in the Security Consideration section later in this document,
there are security issues when using cookies.

There are no restrictions placed on artifacts/cookie formats – they are up to each
service to determine. However, it is RECOMMENDED artifacts/cookies be encrypted
or computationally hard to compromise.

3. HTTP Protocol Syntax
This section describes the syntax of the protocols used by passive requestors. This
protocol typically uses the redirection facilities of HTTP 1.1. This happens using a
standard HTTP 302 error code for redirects (as illustrated below) and HTTP POST to
push the forms:

HTTP/1.1 302 Found

Location: url?parameters

The exact parameters and form fields are described in detail in the sub-sections that
follow the detailed example.

12

In the descriptions below, some mechanisms are optional meaning they MAY be
supported. Within an mechanism, certain parameters MUST be specified while
others, noted using square brackets, are optional and MAY or MAY NOT be present.

3.1. Parameters
All HTTP 1.1 methods (both GET and POST) used in the redirection protocol allow
query string parameters as illustrated below:

GET url?parameters

POST url?parameters

The GET and POST requests have required parameters and may have optional
parameters depending on the operation being performed. For GET requests, these
parameters are specified in the query string; for POST requests, these parameters
are specified in the POST body (using the standard encoding rules for POST). The
query string parameters of a POST request SHOULD be for extensibility only. The
following describes the parameters used for messages in this profile:

wa=string

[wreply=URL]

[wres=URL]

[wctx=string]

[wp=URI]

[wct=timestring]

wa
This required parameter specifies the action to be performed. By including the
action, URIs can be overloaded to perform multiple functions. For sign-in, this
string MUST be "wsignin1.0".

wreply
This optional parameter is the URL to which responses are directed.

wres
This optional parameter is the URL for the resource accessed.

wctx
This optional parameter is an opaque context value that MUST be returned with
the issued token if it is passed in the request.

wp
This optional parameter is the URL for the policy which can be obtained using an
HTTP GET and identifies the policy to be used related to the action specified in
"wa", but MAY have a broader scope than just the "wa". Refer to WS-Policy and
WS-Trust for details on policy and trust. This attribute is only used to reference
policy documents.

wct
This optional parameter indicates the current time at the recipient for ensuring
freshness. This parameter is the string encoding of time using the XML Schema
datetime time using UTC notation.

13

Note that any values specified in parameters are subject to encoding as specified in
the HTTP 1.1 specification.

When an HTTP POST is used, any of the query strings can be specified in the form
contents using the same name. Note that in this profile form values take precedence
over URL parameters.

Parameterization is extensible so that cooperating parties can exchange additional
information in parameters based on agreements or policy.

3.2. Requesting Security Tokens
The HTTP requests to an identity provider or security token services use a common
syntax based on HTTP forms. Requests typically arrive using the HTTP GET method
as illustrated below but MAY be issued using a POST method:

GET resourceSTS?parameters HTTP/1.1

POST resourceSTS?parameters HTTP/1.1

The parameters described in the previous section (wa, wreply, wres, wctx, wp, wct)
apply to the token request. The additional parameters described below also apply.
Note that any values specified in forms are subject to encoding as described in the
HTTP 1.1 specification.

The following describes the additional optional parameters used for a token request:

[wtrealm=string]

[wreq=xml]

wtrealm
This optional parameter is the URI of the requesting realm. This should be
specified if it isn't obvious from the request (e.g. the wreply parameter).). The
wtrealm SHOULD be a security realm of the resource in which nobody (except the
resource or authorized delegates) can control URLs.

wreq
This optional parameter specifies a token request using either a
<wsse:RequestSecurityToken> element or a full request message as described
in WS-Trust. If this parameter is not specified, it is assumed that the responding
service knows the correct type of token to return.

In the event that the XML request cannot be passed in the form (due to size or other
considerations), the following parameter MAY be specified and the form made
available by reference:

wreqptr=url

wreqptr
This optional parameter specifies a URL for where to find the request (wreq
parameter).

It is strongly RECOMMENDED that the resourceSTS secure information be signed
using XML Signature or use HTTP/S or some other transport-level security
mechanism.

14

3.3. Returning Security Tokens
Security tokens are returned by passing an HTTP form. To return the tokens, this
profile embeds a <wsse:RequestSecurityTokenResponse> element as specified in
WS-Trust.

POST resourceURI?parameters HTTP/1.1

GET resourceURI?parameters HTTP/1.1

In many cases the IP/STS to whom the request is being made, will prompt the
requestor for information or for confirmation of the receipt of the token. As a result,
the IP/STS can return an HTTP form to the requestor who then submits the form
using an HTTP POST method. This allows the IP/STS to return security token
request responses in the body rather than embedded in the limited URL query string.
However, in some circumstances interaction with the requestor may not be required
(e.g. cached information). In these circumstances the IP/STS have several options:

1. Use a form anyway to confirm the action

2. Return a form with script to automate and instructions for the requestor in
the event that scripting has been disabled

3. Use HTTP GET and return a pointer to the token request response (unless it is
small enough to fit inside the query string)

This specification RECOMMENDS using the POST method as the GET method requires
additional state to be maintained and complicates the cleanup process whereas the
POST method carries the state inside the method.

Note that when using the POST method, any values specified in parameters are
subject to encoding as described in the HTTP 1.1 specification. The standard
parameters apply to returning tokens as do the following additional form
parameters:

wresult=xml

[wctx=string]

wresult
This required parameter specifies the result of the token issuance. This can take
the form of the <wsse:RequestSecurityTokenResponse> element, a SOAP
security token request response (that is, a <S:Envelope>) as detailed in WS-
Trust, or a SOAP <S:Fault> element.

wctx
This optional parameter specifies the context information (if any) passed in with
the request. It should be noted that this parameter specifies the context
information (if any) passed in with the original request.

In the event that the token/result cannot be passed in the form, the following
parameter MAY be specified:

wresultptr=url

wresultptr

15

This parameter specifies a URL to which an HTTP GET can be issued. The result
is a document of type text/xml that contains the issuance result. This can either
be the <wsse:RequestSecurityTokenResopnse> element, a SOAP response, or a
SOAP <S:Fault> element.

3.4. Sign-Out Request Syntax
This section describes how sign-out requests are formed and redirected by passive
requestors. For modularity, it should be noted that support for sign-out is optional.

The following describes the parameters used for the sign-out request:

wa=string

wreply=URL

wa
This required parameter specifies the action to be performed. By including the
action, URIs can be overloaded to perform multiple functions. For sign-out, this
string MUST be "wsignout1.0".

wreply
This optional parameter specifies the URL to return to once clean-up (sign-out) is
complete.

The following describes the parameters used for the sign-out cleanup request:

wa=string

wreply=URL

wa
This required parameter specifies the action to be performed. By including the
action, URIs can be overloaded to perform multiple functions. For sign-out
cleanup, this string MUST be "wsignoutcleanup1.0".

wreply
This optional parameter specifies the URL to return to once clean-up (sign-out) is
complete. If this parameter is specified, the requestor is redirected to the URL
after cleanup completes. If this parameter is not specified, then after cleanup
the GET completes by returning any realm-specific data such as a string
indicating cleanup is complete for the realm.

3.5. Attribute Request Syntax
This section describes how attribute requests are formed and redirected by passive
requestors. For modularity, it should be noted that support for attributes is optional.
Additionally it should be noted that security considerations may apply. While the
structure described here can be used with any attribute service supporting passive
clients, the actual attribute request and response XML syntax is undefined and
specific to the attribute store.

The following describes the valid parameters used within attributes requests:

wa=string

[wreply=URL]

wattr=xml-attribute-request

wresult=xml-result

wa

16

This required parameter specifies the action to be performed. By including the
action, URIs can be overloaded to perform multiple functions. For attribute
requests, this string MUST be "wattr1.0".

wreply
This optional parameter specifies the URL to return to when the attribute result is
complete.

wattr
This required parameter specifies the attribute request. The syntax is specific to
the attribute store being used and is not mandated by this specification. This
attribute is only present on the request.

wresult
This required parameter specifies the result as defined by the attribute store and
is not mandated by this specification. This attribute is only present on the
responses.

3.6. Pseudonym Request Syntax
This section describes how pseudonym requests are formed and redirected by
passive requestors. For modularity, it should be noted that support for pseudonyms
is also optional. As well, it should be noted that security considerations may apply.

The following describes the valid parameters used within pseudonym requests:

wa=string

[wreply=URL]

wpseudo=xml-pseudonym-request

wresult=xml-result

wa
This required parameter specifies the action to be performed. By including the
action, URIs can be overloaded to perform multiple functions. For pseudonym
requests, this string MUST be "wpseudo1.0".

wreply
This optional parameter specifies the URL to return to when the pseudonym
result is complete.

wpseudo
This required parameter specifies the pseudonym request and either contains a
SOAP envelope or an attribute request, such as <wsse:GetPseudonym>. This
attribute is only present on the request.

wresult
This required parameter specifies the result as either a SOAP envelope or a
pseudonym response, such as a <wsse:GetPseudonymResponse>. This attribute
is only present on the responses.

4. Detailed Example of Passive Requester Syntax
This section provides a detailed example of the profile defined in this specification.
The exact flow for Web sign-in scenarios can vary significantly; however, the
following diagram and description depict a common or basic sequence of events.

17

In this scenario, the user at a requestor browser is attempting to access a resource
which requires security authentication to be validated by the resource's security
token service.

Simple Scenario:

This scenario depicts an initial federated flow. Note that subsequent flows from the
requestor to the resource realm may be optimized. The steps below describe the
above interaction diagram. Appendix I provides a set of sample HTTP messages for
these steps.

18

Step 1: The requestor browser accesses a resource, typically using the HTTP GET
method.

Step 2: At the resource, the requestor's request is redirected to the IP/STS
associated with the target resource. The redirected URL MAY contain additional
information reflecting agreements which the resource and its IP/STS have
established; however, this (redirection target) URL MUST be used throughout the
protocol as the URL for the resource's IP/STS. Typically, this occurs using a standard
HTTP 302 error code. (Alternatively, the request for the token MAY be done using a
HTTP POST method described in step 6).

It is RECOMMENDED that the resource STS provide confidentiality (e.g. using
encryption or HTTP/S) of the information.

Step 3: Upon receipt of the redirection, the IP/STS must determine the requestor
realm. This requestor realm could be cached in an artifact/cookie from an earlier
exchange, it could be known to or fixed by the resource, or the requestor MAY be
prompted to enter or select their realm (step 3.1).

Step 3.1: This is an optional step. If the resource IP/STS cannot determine the
requestor’s realm, then the IP/STS may prompt the requestor for realm information.

Step 4: The resource IP/STS redirects to the requestor’s IP/STS in order to validate
the requestor. Typically, this is done using a HTTP 302 redirect.

As in step 2, additional information may be passed to reflect the agreement between
the two IP/STS’s, and this request for the token MAY be done using a POST method
(see syntax for details).

The requestor IP/STS SHOULD provide information confidentiality or use HTTP/S or
some other transport-level security mechanism.

Step 5: The requestor's IP/STS now authenticates the requestor to establish a sign
in.

Step 5.1: Validation of the requestor may involve displaying some UI in this optional
step.

Step 6: Once requestor information has been successfully validated, a security token
response (RSTR) is formatted and sent to the resource IP/STS.

Processing continues at the resource IP/STS via a redirect.

While an IP/STS MAY choose to return a pointer to token information using
wresultptr, it is RECOMMENDED that, whenever possible to return the security token
(RSTR) using a POST method to reduce the number of overall messages. This MAY
be done using requestor-side scripting. The exact syntax is described in Appendix I.

Step 7: Resource's IP/STS receives and validates the requestor's security token
(RSTR).

Step 8: The resource's IP/STS performs a federated authentication/authorization
check (validation against policy). After a successful check, the resource's IP/STS can
issue a security token for the resource. The resource IP/STS redirects to the
resource.

It should be noted that the optional wctx parameter specifies the opaque context
information (if any) passed in with the original request and is echoed back here.
This mechanism is an optional way for the IP/STS to have state returned to it.

At this point the resource's IP/STS MAY choose to set an artifact/cookie to indicate
the sign-in state of the requestor (which likely includes the requestor’s realm).

19

Step 9: The resource receives the security token (RSTR) from the resource IP/STS.
On successful validation the resource processes the request (per policy).

The security token SHOULD be passed using an HTML POST using the syntax
previously described.

Step 10: The resource MAY establish a artifact/cookie indicating the sign-in state of
the requestor when it returns the result of the resource request.

Optimized Scenario:

This scenario assumes that an initial federated flow has occurred. Note that many
legs of the initial flow may be eliminated due to the presence of artifacts/cookies.
For readability, the similar steps are number consistently with the previous non-
optimized example.

Step 1: The requestor browser accesses a resource, typically using the HTTP GET
method.

Step 2: At the resource, the requestor's request is redirected to the IP/STS
associated with the target resource. The redirected URL MAY contain additional
information reflecting agreements which the resource and its IP/STS have
established; however, this (redirection target) URL MUST be used throughout the
protocol as the URL for the resource's IP/STS. Typically, this occurs using a standard
HTTP 302 error code. (Alternatively, the request for the token MAY be done using a
HTTP POST method described in step 6).

It is RECOMMENDED that the resource STS provide confidentiality (e.g. using
encryption or HTTP/S) of the information.

20

Step 3: Upon receipt of the redirection, the IP/STS must determine the requestor
realm. This requestor realm could be cached in an artifact/cookie from an earlier
exchange, it could be known to or fixed by the resource, or the requestor MAY be
prompted to enter or select their realm (step 3.1).

Step 8: The resource's IP/STS performs a federated authentication/authorization
check (validation against policy). After a successful check, the resource's IP/STS can
issue a security token for the resource. The resource IP/STS redirects to the
resource.

It should be noted that the optional wctx parameter specifies the opaque context
information (if any) passed in with the original request and is echoed back here.
This mechanism is an optional way for the IP/STS to have state returned to it.

At this point the resource's IP/STS MAY choose to set an artifact/cookie to indicate
the sign-in state of the requestor (which likely includes the requestor’s realm).

Step 9: The resource receives the security token (RSTR) from the resource IP/STS.
On successful validation the resource processes the request (per policy).

The security token SHOULD be passed using an HTML POST using the syntax
previously described.

Step 10: The resource MAY establish a artifact/cookie indicating the sign-in state of
the requestor when it returns the result of the resource request.

5. Additional Examples
This section presents interaction diagrams for additional passive requestor scenarios.

5.1. No Resource STS
The figure below illustrates the sign-in scenario above, but without a resource STS.
That is, the requestor acts as its own STS:

21

5.2. 3rd-Party STS
The figure below illustrates the sign-in scenario above, but trust is brokered through
a 3rd-party STS:

22

23

5.3. Sign-Out
The figure below illustrates the sign-out flow for a requestor that has signed in at
two sites and requests that the sign-out cleanup requests redirect back to the
requestor:

5.4. Delegated Resource Access
The figure below illustrates the case where a resource accesses data from another
resource on behalf of the first resource and the information is returned through the
requestor:

24

25

6. Security Tokens
When accepting security tokens, recipients SHOULD:

• Verify the token is formatted correctly

• Verify STS signature

• Verify the token validity interval

• Verify properties requested by policy such as required authentication type,
maximum time since authentication instant (e.g. a password must have been
submitted within 1 hour), identity properties etc.

This chapter describes token format-specific requirements but it does not mandate
usage of a particular token type.

6.1. X.509v3
This specification places the following requirements on X.509 tokens:

• Tokens MUST contain the name of the issuing authority and a signature of the
issuing authority over the whole token unless a secure channel is used to
communicate the token. That is, a signature element over the assertions. Note
that it is RECOMMENDED that a signature be used even if a secure channel is
used.

• Tokens MUST contain the subject identifier uniquely identifying the subject for
whom the token was granted. X.509 does not specify rules for Principalfield.
X.509 tokens conformant with this specification SHOULD assure the principals
issued are unique across realms and also the realm SHOULD be derivable from
the principal name.

• Tokens MAY contain the time of initial authentication, validity interval and the
type of authentication that was performed.

• Tokens MAY contain Certificate Revocation Information, such as a CRL
distribution point

• X.509 certificates MUST be carried within a wsse:BinarySecurityToken element
whose ValueType is wsse:X509v3.

6.2. Kerberos
This specification places the following requirements on Kerberos tokens:

• Kerberos ticket-granting tickets MUST be carried within a
wsse:BinarySecurityToken element whose ValueType is wsse:Kerberosv5TGT.

• Kerberos service tickets MUST be carried within a wsse:BinarySecurityToken
element whose ValueType is wsse:Kerberosv5ST.

• The symmetric key used SHOULD be derived from the desired realm.

6.3. XrML
This specification places the following requirements on XrML tokens:

• Processors MUST support the xrml:issuer element with and without contained
signatures. Processors SHOULD NOT include a contained signature unless the
xrml:license conveys the key (directly or indirectly).

• Tokens that contain signatures in one or more xrml:issuer elements MUST
declare all XML namespaces on the xrml:license element.

26

• Processors MUST include an xrml:issuer element identifying the issuer under
xrml:details.

• Processors MUST include within the xrml:issuer element an
xrml:validityInterval when the xrml:license token conveys the key (directly
or indirectly). The xrml:validityInterval MUST contain both xrml:notBefore
and xrml:notAfter elements.

• Tokens SHOULD contain a recipient identifier indicating the scope of usage (such
as the resource or realm) - this is represented by grant resource, with the tacit
assumption that the realm is used.

6.4. SAML
This specification places the following requirements for SAML tokens:

• Tokens MUST contain a signature of the issuing authority over the whole token
unless a secure channel is used to communicate the token. That is, a signature
element over the SAML assertion. Note that it is RECOMMENDED that a signature
be used even if a secure channel is used.

• Tokens MUST contain the subject identifier uniquely identifying the subject for
whom the token was granted. SAML does not specify rules for NameIdentifier
element. The SAML assertions conformant with this specification SHOULD assure
the identifiers issued are unique across realms and also the realm SHOULD be
derivable from the subject identifier.

• Tokens SHOULD contain a recipient identifier indicating the scope of usage (such
as the resource or realm) - this is represented by the AudienceRestriction or
Recipient elements in the SAML assertion.

• Tokens MUST contain the time of initial authentication, validity interval and the
type of authentication that was performed. The validity interval in the SAML
assertion is satisfied by the NotBefore and NotOnOrAfter attributes of the
Conditions element. The initial authentication type and time are covered by the
attributes of AuthenticationStatement element.

• Tokens MAY contain additional identity information. If they do, the schema
describing the additional information MUST be understood by the recipient or the
token MUST be rejected.

7. Error Handling
Errors are handled using the error mechanisms of HTTP as well as using the
embedded Fault mechanisms. That is, HTTP-related errors are indicated using
established HTTP errors. SOAP-related errors are handled using SOAP Fault
elements are previously described.

8. Security Considerations
If a security token is not self-securing, it SHOULD be included in some form of
message integrity mechanism.

If privacy is a concern, the security tokens MAY be encrypted for the authorized
recipient(s).

The browser-based protocols described here suffer from the same vulnerabilities that
exist for all browser-based interactions:

27

• Spoofing: Web based sign-in requests require that security tokens are submitted
in a HTTP POST form. Generally, it is difficult for the requestors to identify rogue
pages. For example a malicious Web site can redirect the requestor to a fake
Web sign in page – a fake ATM attack. To mitigate the threat, it is strongly
RECOMMENDED that sign in pages are served over secure connections. Also, it is
strongly recommended that security token services employ other means for spoof
protection such as presenting requestor specific token during authentication and
drawing attention to the URL being accessed.

• Replay attacks: It is possible that requests for security tokens could be
replayed. Consequently, it is RECOMMENDED that all communication between
security token services and resources take place over secure connections. All
cookies indicating sign-in state SHOULD be set as secure.

• Cookie requirements: Since cookies COULD be used to keep sign in state, it is
computationally infeasible to randomly guess a cookie value. It is
RECOMMENDED that cookies represent binary blobs encrypted with sufficiently
strong keys – e.g., AES or 3DES.

• Cross-site scripting: To prevent some cross-site scripting attacks, security
token services MUST NOT return content to the requestor that was specified by a
third party.

• Forged security tokens: Security token services MUST guard their signature
keys to prevent forging of tokens and requestor identities.

• Privacy: Security token services SHOULD NOT send requestors’ personal
identifying information without getting consent from the requestor. For example a
Web site SHOULD NOT receive requestors’ personal information without an
appropriate consent process.

• Compromised services: If a security token service is compromised, all
requestor accounts serviced SHOULD be assumed to be compromised as well
(since an attacker can issue security tokens for any account within the
compromised realm or into any realm that trusts the compromised realm).

• Man-in-the-Middle attacks: The wtreply must be in wtrealm (i.e., the same
URL, or, e.g., wtreply is a host within the domain of wtrealm). It is strongly
RECOMMENDED that the Identity Provider verifies this, and that wtreply is an
valid HTTP/S address.

• The wtrealm SHOULD be a security realm of the resource in which nobody
can control URLs.

• For Kerberos tokens the key distribution SHOULD distribute correct realms
for the keys, so that Identity Providers know what the correct realms are
for keys that they use.

• For SAML tokens the resource SHOULD verify that exactly this realm is in
one of the two (fix one!) fields of the ticket.

• For other token types similar considerations SHOULD be made before
using them.

It is strongly RECOMMENDED that the resourceSTS secure information or use HTTP/S
or some other transport-level security mechanism for all communications.

28

9. Acknowledgements
This specification has been developed as a result of joint work with many individuals
and teams, including:

Giovanni Della-Libera, Microsoft
Josh Gray, Microsoft
Tim Hahn, IBM
Heather Hinton, IBM
Ryan Johnson, Microsoft
Bronislav Kavsan, RSA Security
Anthony Moran, IBM
Birgit Pfitzmann, IBM
Robert Philpott, RSA Security
Shane Weeden, IBM

10. References
[KEYWORDS]

S. Bradner, "Key Words for Use in RFCs to Indicate Requirement Levels," RFC
2119, Harvard University, March 1997.

[HTTP]
R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, T. Berners-Lee,
RFC 2616, "Hypertext Transfer Protocol -- HTTP/1.1". June 1999.

[SOAP]
W3C Note, "SOAP: Simple Object Access Protocol 1.1," 08 May 2000.
Draft, SOAP 1.2, http://www.w3.org/TR/soap12-part0/
Draft, SOAP 1.2, http://www.w3.org/TR/soap12-part1/
Draft, SOAP 1.2, http://www.w3.org/TR/soap12-part2/

[URI]
T. Berners-Lee, R. Fielding, L. Masinter, "Uniform Resource Identifiers (URI):
Generic Syntax," RFC 2396, MIT/LCS, U.C. Irvine, Xerox Corporation, August
1998.

[WS-Federation]
"Web Services Federation Language", BEA, IBM, Microsoft, RSA Security,
VeriSign, July 2003

[WS-Security]
"Web Services Security Language", IBM, Microsoft, VeriSign, April 2002.
"WS-Security Addendum", IBM, Microsoft, VeriSign, August 2002.
"WS-Security XML Tokens", IBM, Microsoft, VeriSign, August 2002

[WS-Policy]
"Web Services Policy Framework", BEA, IBM, Microsoft, SAP, December 2002

[WS-PolicyAttachment]
"Web Services Policy Attachment Language", BEA, IBM, and Microsoft, SAP,
December 2002

[WS-PolicyAssertions]
"Web Services Policy Assertions Language", BEA, IBM, Microsoft, SAP, December
2002

[WS-Trust]

29

"Web Services Trust Language", IBM, Microsoft, RSA, VeriSign, December 2002

[WS-SecureConversation]
"Web Services Secure Conversation Language", IBM, Microsoft, RSA, VeriSign,
December 2002

[WS-SecurityAssertions]
"Web Services Security Assertions Language", IBM, Microsoft, RSA, Verisign
December 2002

[XML-ns]
W3C Recommendation, "Namespaces in XML," 14 January 1999.

Appendix I. Sample HTTP Flows for Detailed Example
This appendix provides sample HTTP messages for the detailed example previously
described.

In this example, the following URLs are used:

Item URL

Resource Realm Resource.com

Resource https://res.resource.com/sales

Resource's IP/STS https://sts.resource.com/sts

Account Account.com

Resource https://sts.account.com/sts

Step 1 – GET resource

GET https://res.resource.com/sales HTTP/1.1

Step 2 – Redirect to resource’s IP/STS

HTTP/1.1 302 Found ↵

Location:

https://sts.resource.com/sts?wa=wsignin1.0&wreply=https://res.resource.

com/sales&wct=2003-03-03T19:06:21Z

In addition, the resource could check for a previously written artifact/cookie and, if
present, skip to Step 10.

Step 3 – GET resource challenge

GET https://sts.resource.com/sts?wa=wsignin1.0&wreply=

https://res.resource.com/sales&wct=2003-03-03T19:06:21Z HTTP/1.1

Step 3.1 – UI to determine realm (OPTIONAL)

30

 [Implementation Specific Traffic]

Step 4 – Redirect to requestor’s IP/STS

HTTP/1.1 302 Found ↵

Location: https://sts.account.com/sts?wa=wsignin1.0&wreply=

https://sts.resource.com/sts&wctx=

https://res.resource.com/sales&wct=2003-03-

03T19:06:22Z&wtrealm=resource.com

In addition, the Resource IP/STS may check for a previously written artifact/cookie
and, if present, skip to Step 8.

Step 5 – Requestor IP/STS challenge

GET

https://sts.account.com/sts?wa=wsignin1.0&wreply=https://sts.resource.c

om/sts&wctx=https://res.resource.com/sales&wct=2003-03-

03T19:06:22Z&wtrealm=resource.com HTTP/1.1

Step 5.1 – UI to collect authentication data (OPTIONAL)

 [Implementation Specific Traffic]

Step 6 – Return requestor token

HTTP/1.1 200 OK

...

<html xmlns="https://www.w3.org/1999/xhtml">

<head>

<title>Working...</title>

</head>

<body>

<form method="post" action="https://sts.resource.com/sts">

<p>

<input type="hidden" name="wa" value="wsignin1.0" />

<input type="hidden" name="wctx" value="https://res.resource.com/sales"

/>

31

<input type="hidden" name="wresult"

value="<RequestSecurityTokenResponse>...</RequestSecurityToken

Response>" />

<button type="submit">POST</button> <!-- included for requestors that

do not support javascript -->

</p>

</form>

<script type="text/javascript">

setTimeout('document.forms[0].submit()', 0);

</script>

</body>

</html>

Step 7 – POST requestor token

POST https://sts.resource.com/sts HTTP/1.1 ↵

… ↵

↵

wa=wsignin1.0 ↵

wctx=https://res.resource.com/sales

wresult=<RequestSecurityTokenResponse>…</RequestSecurityTokenResponse>

Step 8 – Return resource token

HTTP/1.1 200 OK

…

<html xmlns="https://www.w3.org/1999/xhtml">

<head>

<title>Working...</title>

</head>

<body>

<form method="post" action="https://res.resource.com/sales">

<p>

<input type="hidden" name="wa" value="wsignin1.0" />

32

<input type="hidden" name="wresult"

value="<RequestSecurityTokenResponse>...</RequestSecurityToken

Response>" />

<button type="submit">POST</button> <!-- included for requestors that

do not support javascript -->

</p>

</form>

<script type="text/javascript">

setTimeout('document.forms[0].submit()', 0);

</script>

</body>

</html>

Step 9 – POST Resource token

POST https://res.resource.com/sales HTTP/1.1 ↵

... ↵

↵

wa=wsignin1.0 ↵

wresult=<RequestSecurityTokenResponse>...</RequestSecurityTokenResponse

>

Step 10 – Return result

[Implementation Specific Traffic]

