

 Page 1 of 31

Web Services Eventing (WS-Eventing)
January 2004

Authors

Luis Felipe Cabrera, Microsoft
Craig Critchley, Microsoft
Gopal Kakivaya, Microsoft
Brad Lovering, Microsoft
Matt Mihic, BEA Systems
David Orchard, BEA Systems
Shivajee Samdarshi, TIBCO Software
Jeffrey Schlimmer (Editor), Microsoft
John Shewchuk, Microsoft
David Wortendyke, Microsoft

Copyright Notice
(c) 2004 BEA Systems Inc., Microsoft Corporation, TIBCO Software Inc. All rights
reserved.

BEA Systems, Microsoft, and TIBCO Software (collectively, the "Authors") hereby grant
you permission to copy and display this specification (the "Specification"), in any
medium without fee or royalty, provided that you include the following on ALL copies of
the Specification, or portions thereof, that you make:

1. A link or URL to the Specification at this location.

2. The copyright notice as shown in the Specification.

EXCEPT FOR THE COPYRIGHT LICENSE GRANTED ABOVE, THE AUTHORS DO NOT
GRANT, EITHER EXPRESSLY OR IMPLIEDLY, A LICENSE TO ANY INTELLECTUAL
PROPERTY, INCLUDING PATENTS, THEY OWN OR CONTROL.

THE SPECIFICATION IS PROVIDED "AS IS," AND THE AUTHORS MAKE NO
REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, BUT NOT
LIMITED TO, WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, NON-INFRINGEMENT, OR TITLE; THAT THE CONTENTS OF THE
SPECIFICATION ARE SUITABLE FOR ANY PURPOSE; NOR THAT THE IMPLEMENTATION
OF SUCH CONTENTS WILL NOT INFRINGE ANY THIRD PARTY PATENTS, COPYRIGHTS,
TRADEMARKS OR OTHER RIGHTS.

THE AUTHORS WILL NOT BE LIABLE FOR ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL
OR CONSEQUENTIAL DAMAGES ARISING OUT OF OR RELATING TO ANY USE OR
DISTRIBUTION OF THE SPECIFICATION.

The Specification may change before final release and you are cautioned against relying
on the content of this Specification.

The name and trademarks of the Authors may NOT be used in any manner, including
advertising or publicity pertaining to the Specification or its contents without specific,
written prior permission. Title to copyright in the Specification will at all times remain
with the Authors.

No other rights are granted by implication, estoppel or otherwise.

 Page 2 of 31

Abstract
This specification describes a protocol that allows Web services to subscribe to or accept
subscriptions for event notification messages.

Composable Architecture
By using the XML, SOAP [SOAP 1.1, SOAP 1.2], and WSDL [WSDL 1.1] extensibility
models, the Web service specifications (WS-*) are designed to be composed with each
other to provide a rich set of tools to provide security in the Web services environment.
This specification specifically relies on other Web service specifications to provide secure,
reliable, and/or transacted message delivery and to express Web service and client
policy.

Table of Contents
1. Introduction

1.1 Requirements
1.2 Example

2. Notations and Terminology
2.1 Notational Conventions
2.2 XML Namespaces
2.3 Terminology
2.4 Compliance

3. Subscription Messages
3.1 Subscribe
3.2 Renew
3.3 Unsubscribe
3.4 Subscription End
3.5 Other Faults

4. Notifications
5. Security Considerations
6. Implementation Considerations
7. Acknowledgements
8. References
Appendix I – XML Schema
Appendix II – WSDL

1. Introduction
Web services often want to receive messages when events occur in other services and
applications. A mechanism for registering interest is needed because the set of Web
services interested in receiving such messages is often unknown in advance or will
change over time. This specification defines a protocol for one Web service (called an
"event sink") to register interest (called a "subscription") with another Web service
(called an "event source") in receiving messages about events (called "notifications"). To
improve robustness, the subscription is leased by an event source to an event sink, and
the subscription expires over time. An event source may allow an event sink to renew
the subscription.

 Page 3 of 31

1.1 Requirements
This specification intends to meet the following requirements:

• Define means to create and delete event subscriptions.

• Define expiration for subscriptions and allow them to be renewed.

• Define how an event sink can determine which subscriptions it is receiving
notifications for.

• Define how one event sink can subscribe on behalf of another.

• Leverage other Web service specifications for secure, reliable, transacted message
delivery.

• Provide extensibility for more sophisticated and/or currently unanticipated
subscription scenarios.

• Support both SOAP 1.1 [SOAP 1.1] and SOAP 1.2 [SOAP 1.2] Envelopes.

1.2 Example
Table 1 lists a hypothetical request to create a subscription for storm warnings.

Table 1: Hypothetical request to create a subscription.

(01) <s12:Envelope

(02) xmlns:s12='http://www.w3.org/2003/05/soap-envelope'

(03) xmlns:wsa='http://schemas.xmlsoap.org/ws/2003/03/addressing'

(04) xmlns:wse='http://schemas.xmlsoap.org/ws/2004/01/eventing'

(05) xmlns:ew='http://www.example.com/warnings' >

(06) <s12:Header>

(07) <wsa:Action>

(08) http://schemas.xmlsoap.org/ws/2004/01/eventing/Subscribe

(09) </wsa:Action>

(10) <wsa:MessageID>

(11) uuid:d7c5726b-de29-4313-b4d4-b3425b200839

(12) </wsa:MessageID>

(13) <wsa:ReplyTo>

(14) <wsa:Address>http://www.example.com/MyEventSink</wsa:Address>

(15) </wsa:ReplyTo>

(16) <wsa:To>http://www.example.org/oceanwatch/EventSource</wsa:To>

(17) </s12:Header>

(18) <s12:Body>

(19) <wse:Subscribe>

(20) <wse:NotifyTo>

(21) <wsa:Address>

(22) http://www.example.com/MyEventSink/OnStormWarning

 Page 4 of 31

(23) </wsa:Address>

(24) <wsa:ReferenceProperties>

(25) <ew:MySubscription>2597</ew:MySubscription>

(26) </wsa:ReferenceProperties>

(27) </wse:NotifyTo>

(28) </wse:Subscribe>

(29) </s12:Body>

(30) </s12:Envelope>

(31)

Lines (07-09) in Table 1 indicate the message is a request to create a subscription, and
Line (16) indicates that it is sent to a hypothetical event source of ocean events.

While Lines (13-15) indicate where a reply should be sent, Lines (20-27) indicate where
notifications should be sent; there is no requirement that these match. Note that Lines
(24-26) illustrate a typical pattern where the event sink lists a reference property (Line
25) that identifies the subscription and will be included in each notification.

Table 2 lists a hypothetical response to the request in Table 1.

Table 2: Hypothetical response to a subscribe request.

(01) <s12:Envelope

(02) xmlns:s12='http://www.w3.org/2003/05/soap-envelope'

(03) xmlns:wsa='http://schemas.xmlsoap.org/ws/2003/03/addressing'

(04) xmlns:wse='http://schemas.xmlsoap.org/ws/2004/01/eventing'

(05) xmlns:ow='http://www.example.org/oceanwatch' >

(06) <s12:Header>

(07) <wsa:Action>

(08) http://schemas.xmlsoap.org/ws/2004/01/eventing/SubscribeResponse

(09) </wsa:Action>

(10) <wsa:RelatesTo>

(11) uuid:d7c5726b-de29-4313-b4d4-b3425b200839

(12) </wsa:RelatesTo>

(13) <wsa:To>http://www.example.com/MyEventSink</wsa:To>

(14) </s12:Header>

(15) <s12:Body>

(16) <wse:SubscribeResponse>

(17) <wse:Id>uuid:5005cfe6-c2c6-4296-9c3a-80b9ad111813</wse:Id>

(18) <wse:Expires>P0Y0M0DT30H0M0S</wse:Expires>

(19) </wse:SubscribeResponse>

(20) </s12:Body>

 Page 5 of 31

(21) </s12:Envelope>

(22)

Lines (07-09) in Table 2 indicate this message is a response to a request to create a
subscription, and Lines (10-12) indicate that it is a response to the request in Table 1.
Line (17) lists the unique identifier for this subscription, and Line (18) indicates the
subscription will expire in 30 hours unless renewed.

2. Notations and Terminology
This section specifies the notations, namespaces, and terminology used in this
specification.

2.1 Notational Conventions
The keywords "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD",
"SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be
interpreted as described in RFC 2119 [RFC 2119].

This specification uses the following syntax to define normative outlines for messages:

• The syntax appears as an XML instance, but values in italics indicate data types
instead of values.

• Characters are appended to elements and attributes to indicate cardinality:

• "?" (0 or 1)

• "*" (0 or more)

• "+" (1 or more)

• The character "|" is used to indicate a choice between alternatives.

• The characters " [" and "]" are used to indicate that contained items are to be
treated as a group with respect to cardinality or choice.

• An ellipsis (i.e. "...") indicates a point of extensibility that allows other child or
attribute content. Additional children and/or attributes MAY be added at the indicated
extension points but MUST NOT contradict the semantics of the parent and/or owner,
respectively. If a receiver does not recognize an extension, the receiver SHOULD
NOT process the message and MAY fault.

• XML namespace prefixes (see Table 3) are used to indicate the namespace of the
element being defined.

2.2 XML Namespaces
The XML namespace URI that MUST be used by implementations of this specification is:

http://schemas.xmlsoap.org/ws/2004/01/eventing

Table 3 lists XML namespaces that are used in this specification. The choice of any
namespace prefix is arbitrary and not semantically significant.

Table 3: Prefixes and XML namespaces used in this specification.

Prefix XML Namespace Specification(s)

s (Either SOAP 1.1 or 1.2) (Either SOAP 1.1 or 1.2)

s11 http://schemas.xmlsoap.org/soap/envelope/ SOAP 1.1 [SOAP 1.1]

s12 http://www.w3.org/2003/05/soap-envelope SOAP 1.2 [SOAP 1.2]

 Page 6 of 31

wsa http://schemas.xmlsoap.org/ws/2003/03/addressing WS-Addressing [WS-
Addressing]

wse http://schemas.xmlsoap.org/ws/2004/01/eventing This specification

wsp http://schemas.xmlsoap.org/ws/2002/12/policy WS-PolicyAssertions
[WS-PolicyAssertions]

xs http://www.w3.org/2001/XMLSchema XML Schema [Part 1, 2]

2.3 Terminology
Notification

A one-way message sent to indicate that an event has occurred.

Event Source
A Web service that sends notifications and accepts requests to create, renew, and
delete subscriptions.

Event Sink
A Web service that receives notifications and/or sends requests to create, renew,
and/or delete subscriptions.

Subscribing Event Sink
An event sink that sends request to create, renew, and/or delete subscriptions,
perhaps on behalf of another event sink.

2.4 Compliance
An implementation is not compliant with this specification if it fails to satisfy one or more
of the MUST or REQUIRED level requirements defined herein. A SOAP Node MUST NOT
use the XML namespace identifier for this specification (listed in Section 2.2) within
SOAP Envelopes unless it is compliant with this specification.

3. Subscription Messages
To create, renew, and delete subscriptions, subscribing event sinks send request
messages to event sources.

When an event source accepts a request to create a subscription, it does so for a given
amount of time. If the event source accepts a renewal request, it updates that amount
of time. During that time, notifications are sent by the event source to the requested
destination. An event source may support filtering to limit notifications that are sent to
the event sink; if it does and a subscribe request contains a filter, the event source
sends only notifications that match the requested filter. The event source sends
notifications until one of the following happens: the event source accepts an unsubscribe
request for the subscription, the subscription expires without being renewed, or the
event source cancels the subscription prematurely. Finally, the event source makes a
best effort to indicate why the subscription ended.

In the absence of reliable messaging at the application layer (e.g. [WS-
ReliableMessaging]), messages defined herein are delivered using the quality of service
of the underlying transport(s) and on a best-effort basis at the application layer.

3.1 Subscribe
To create a subscription, a subscribing event sink sends a request message of the
following form to an event source:

 Page 7 of 31

<s:Envelope ...>

 <s:Header ...>

 <wsa:Action>

 http://schemas.xmlsoap.org/ws/2004/01/eventing/Subscribe

 </wsa:Action>

 <wsa:MessageID>xs:anyURI</wsa:MessageID>

 <wsa:FaultTo>endpoint-reference</wsa:FaultTo> ?

 <wsa:ReplyTo>endpoint-reference</wsa:ReplyTo>

 <wsa:To>xs:anyURI</wsa:To>

 ...

 </s:Header>

 <s:Body ...>

 <wse:Subscribe ...>

 <wse:NotifyTo>endpoint-reference</wse:NotifyTo>

 <wse:EndTo>endpoint-reference</wse:EndTo> ?

 <wse:Expires>[xs:dateTime | xs:duration]</wse:Expires> ?

 <wse:Filter Dialect="xs:anyURI"? > xs:string </wse:Filter> ?

 ...

 </wse:Subscribe>

 </s:Body>

</s:Envelope>

The following describes additional, normative constraints on the outline listed above:

/s:Envelope/s:Header/wsa:Action
If a SOAP Action URI is used in the binding for SOAP, the value indicated herein
MUST be used for that URI.

/s:Envelope/s:Body/*/wse:NotifyTo
Where to send notification messages. MUST be of type wsa:EndpointReferenceType.

/s:Envelope/s:Body/*/wse:EndTo
Where to send a message containing Subscription End SOAP header block when
subscription ends. (See 3.4 Subscription End.) MUST be of type
wsa:EndpointReferenceType. Implied value is NotifyTo.

/s:Envelope/s:Body/*/wse:Expires
Requested expiration time for the subscription. (No implied value.) The event source
defines the actual expiration and is not constrained to use a time less or greater than
the requested expiration. The expiration time may be a specific time or a duration
from the subscription's creation time.

/s:Envelope/s:Body/*/wse:Filter
A Boolean expression in some dialect. (See
/s:Envelope/s:Body/*/wse:Filter/@Dialect.) If the expression is false for a
notification, the notification MUST NOT be sent to the event sink. Implied value is an

 Page 8 of 31

expression that always returns true. If the event source does not support filtering,
the request MUST fail, and the event source MAY generate a SOAP fault as follows:

SOAP 1.1:

• faultcode = s11:Client

• faultstring = e.g., "filtering not supported"

SOAP 1.2:

• s12:Code/s12:Value = s12:Sender

• s12:Code/s12:Subcode/s12:Value = wse:FilteringNotSupported

• s12:Reason/s12:Text = e.g., "filtering not supported"

If the event source supports filtering but cannot honor the requested filtering, the
request MUST fail, and the event source MAY generate a SOAP fault as follows:

SOAP 1.1:

• faultcode = s11:Client

• faultstring = e.g., "cannot filter notifications as requested"

• [optional] detail/wse:SupportedDialect = repeating; one per filter dialect
supported by the receiver

SOAP 1.2:

• s12:Code/s12:Value = s12:Sender

• s12:Code/s12:Subcode/s12:Value = wse:FilteringRequestedUnavailable

• s12:Reason/s12:Text = e.g., "cannot filter notifications as requested"

• [optional] s12:Detail/wse:SupportedDialect = repeating; one per filter dialect
supported by the receiver

/s:Envelope/s:Body/*/wse:Filter/@Dialect
Implied value is 'http://www.w3.org/TR/1999/REC-xpath-19991116'.

/s:Envelope/s:Body/*/wse:Filter/@Dialect=' http://www.w3.org/TR/1999/REC-xpath-
19991116'

Value of /s:Envelope/s:Body/*/wse:Filter is an XPath [XPath 1.0] predicate
expression (PredicateExpr); the context of the expression is:

• Context Node: the SOAP Envelope containing the notification.

• Context Position: 1.

• Context Size: 1.

• Variable Bindings: None.

• Function Libraries: Core Function Library [XPath 1.0].

• Namespace Declarations: The [in-scope namespaces] property [XML Infoset] of
/s:Envelope/s:Body/*/wse:Filter.

Other components of the outline above are not further constrained by this specification.

If the event source accepts a request to create a subscription, it MUST reply with a
response of the following form:

<s:Envelope ...>

 <s:Header ...>

 <wsa:Action>

 http://schemas.xmlsoap.org/ws/2004/01/eventing/SubscribeResponse

 Page 9 of 31

 </wsa:Action>

 <wsa:RelatesTo>xs:anyURI</wsa:RelatesTo>

 <wsa:To>xs:anyURI</wsa:To>

 ...

 </s:Header>

 <s:Body ...>

 <wse:SubscribeResponse ...>

 <wse:Id>xs:anyURI</wse:Id>

 <wse:Expires>[xs:dateTime | xs:duration]</wse:Expires>

 ...

 </wse:SubscribeResponse>

 </s:Body>

</s:Envelope>

The following describes additional, normative constraints on the outline listed above:

/s:Envelope/S:Header/wsa:RelatesTo
MUST be the value of the wsa:MessageID of the corresponding request.

/s:Envelope/s:Body/*/wse:Id
The identifier for this subscription. MUST be unique across all subscriptions created
by this event source.

/s:Envelope/s:Body/*/wse:Expires
The expiration time assigned by the event source. The expiration time MAY be either
an absolute time or a duration but SHOULD be of the same type as the requested
expiration (if any).

Other components of the outline above are not further constrained by this specification.

If the event source chooses not to accept a subscription, the request MUST fail, and the
event source MAY choose to generate a SOAP fault as follows:

SOAP 1.1:

• faultcode = s11:Server

• faultstring = e.g., "event source has too many subscribers"

SOAP 1.2:

• s12:Code/s12:Value = s12:Receiver

• s12:Code/s12:Subcode/s12:Value = wse:EventSourceUnableToProcess

• s12:Reason/s12:Text = e.g., "event source has too many subscribers"

Table 4 lists another hypothetical request to create a subscription.

Table 4: Second hypothetical request to create a subscription.

(01) <s12:Envelope

(02) xmlns:s12='http://www.w3.org/2003/05/soap-envelope'

(03) xmlns:wsa='http://schemas.xmlsoap.org/ws/2003/03/addressing'

(04) xmlns:wse='http://schemas.xmlsoap.org/ws/2004/01/eventing'

 Page 10 of 31

(05) xmlns:ew='http://www.example.com/warnings' >

(06) <s12:Header>

(07) <wsa:Action>

(08) http://schemas.xmlsoap.org/ws/2004/01/eventing/Subscribe

(09) </wsa:Action>

(10) <wsa:MessageID>

(11) uuid:e1886c5c-5e86-48d1-8c77-fc1c28d47180

(12) </wsa:MessageID>

(13) <wsa:ReplyTo>

(14) <wsa:Address>http://www.example.com/MyEvEntsink</wsa:Address>

(15) <wsa:ReferenceProperties>

(16) <ew:MySubscription>2597</ew:MySubscription>

(17) </wsa:ReferenceProperties>

(18) </wsa:ReplyTo>

(19) <wsa:To>http://www.example.org/oceanwatch/EventSource</wsa:To>

(20) </s12:Header>

(21) <s12:Body>

(22) <wse:Subscribe>

(23) <wse:NotifyTo>

(24) <wsa:Address>

(25) http://www.other.example.com/OnStormWarning

(26) </wsa:Address>

(27) <wsa:ReferenceProperties>

(28) <ew:MySubscription>2597</ew:MySubscription>

(29) </wsa:ReferenceProperties>

(30) </wse:NotifyTo>

(31) <wse:EndTo>

(32) <wsa:Address>http://www.example.com/MyEventSink</wsa:Address>

(33) <wsa:ReferenceProperties>

(34) <ew:MySubscription>2597</ew:MySubscription>

(35) </wsa:ReferenceProperties>

(36) </wse:EndTo>

(37) <wse:Expires>2003-06-26T21:07:00.000-08:00</wse:Expires>

(38) <wse:Filter xmlns:ow='http://www.example.org/oceanwatch' >

(39) /s12:Envelope/s12:Body/ow:WindReport/ow:Speed > 60

(40) </wse:Filter>

 Page 11 of 31

(41) </wse:Subscribe>

(42) </s12:Body>

(43) </s12:Envelope>

(44)

Like the request in Table 1, Lines (07-09) of Table 4 indicate the message is a request to
create a subscription. Line (19) indicates that it is sent to a hypothetical event source of
ocean events.

Lines (13-18) indicate where to send the response to this request, Lines (23-30) indicate
where to send notifications, and Lines (31-36) indicate where to send a message when
the subscription is terminated; there is no requirement that any of these refer to the
same endpoint; in this example, Lines (31-36) indicate to send the termination message
to the same endpoint as the response to this request.

Line (37) indicates the event sink would prefer to have the subscription expire on 26
June 2003 at 9:07 PM Pacific time.

Lines (38-40) indicate the event sink only wants weather reports where the wind speed
is over 60 miles per hour.

Table 5 lists a hypothetical response to the request in Table 4.

Table 5: Hypothetical response to second subscribe request.

(01) <s12:Envelope

(02) xmlns:s12='http://www.w3.org/2003/05/soap-envelope'

(03) xmlns:wsa='http://schemas.xmlsoap.org/ws/2003/03/addressing'

(04) xmlns:wse='http://schemas.xmlsoap.org/ws/2004/01/eventing'

(05) xmlns:ew='http://www.example.com/warnings'

(06) xmlns:ow='http://www.example.org/oceanwatch' >

(07) <s12:Header>

(08) <wsa:Action>

(09) http://schemas.xmlsoap.org/ws/2004/01/eventing/SubscribeResponse

(10) </wsa:Action>

(11) <wsa:RelatesTo>

(12) uuid:e1886c5c-5e86-48d1-8c77-fc1c28d47180

(13) </wsa:RelatesTo>

(14) <wsa:To>http://www.example.com/MyEventSink</wsa:To>

(15) <ew:MySubscription>2597</ew:MySubscription>

(16) </s12:Header>

(17) <s12:Body>

(18) <wse:SubscribeResponse>

(19) <wse:Id>uuid:22e8a584-0d18-4228-b2a8-3716fa2097fa</wse:Id>

(20) <wse:Expires>2003-07-01T00:00:00.000-00:00</wse:Expires>

(21) </wse:SubscribeResponse>

 Page 12 of 31

(22) </s12:Body>

(23) </s12:Envelope>

(24)

Like the response in Table 2, Lines (08-10) of Table 5 indicate this message is a
response to a request to create a subscription, and Lines (11-13) indicate that it is a
response to the request in Table 4. Lines (14-15) indicate the response is sent to the
event sink indicated in Lines (13-18) of Table 4. Line (19) lists the unique identifier for
this subscription. Finally, Line (28) indicates the subscription will expire on 1 July 2003
unless renewed; there is no requirement that this time be necessarily longer or shorter
than the requested expiration (Line (37) of Table 4).

3.2 Renew
To update an expiration for a subscription, a subscribing event sink MAY wait for the
subscription to expire or delete the subscription (see 3.3 Unsubscribe) and then request
a new one (see 3.1 Subscribe). However, to preserve subscription continuity, event
sources SHOULD support requests to renew subscriptions.

To renew a subscription, a subscribing event sink sends a request of the following form
to the event source that created the subscription:

<s:Envelope ...>

 <s:Header ...>

 <wsa:Action>

 http://schemas.xmlsoap.org/ws/2004/01/eventing/Renew

 </wsa:Action>

 <wsa:MessageID>xs:anyURI</wsa:MessageID>

 <wsa:FaultTo>endpoint-reference</wsa:FaultTo> ?

 <wsa:ReplyTo>endpoint-reference</wsa:ReplyTo>

 <wsa:To>xs:anyURI</wsa:To>

 ...

 </s:Header>

 <s:Body ...>

 <wse:Renew ...>

 <wse:Id>xs:anyURI</wse:Id>

 <wse:Expires>[xs:dateTime | xs:duration]</wse:Expires> ?

 ...

 </wse:Renew>

 </s:Body>

</s:Envelope>

Components of the outline listed above are additionally constrained as for a request to
create a subscription (see Section 3.1 Subscribe) with the following addition(s):

/s:Envelope/s:Body/*/wse:Id

 Page 13 of 31

Identifier of the subscription. If the value is the empty string, the request MUST fail,
and the event source MAY generate a SOAP fault as follows:

SOAP 1.1:

• faultcode = s11:Client

• faultstring = e.g., "bad identifier"

SOAP 1.2:

• s12:Code/s12:Value = s12:Sender

• s12:Code/s12:Subcode/s12:Value = wse:InvalidIdentifier

• s12:Reason/s12:Text = e.g., "bad identifier"

If there is no subscription with this identifier, the request MUST fail, and the event
source MAY generate a SOAP fault as follows:

SOAP 1.1:

• faultcode = s11:Client

• faultstring = e.g., "unknown subscription"

SOAP 1.2:

• s12:Code/s12:Value = s12:Sender

• s12:Code/s12:Subcode/s12:Value = wse:UnknownSubscription

• s12:Reason/s12:Text = e.g., "unknown subscription"

Other components of the outline above are not further constrained by this specification.

If the event source accepts a request to renew a subscription, it MUST reply with a
response of the following form:

<s:Envelope ...>

 <s:Header ...>

 <wsa:Action>

 http://schemas.xmlsoap.org/ws/2004/01/eventing/RenewResponse

 </wsa:Action>

 <wsa:RelatesTo>xs:anyURI</wsa:RelatesTo>

 <wsa:To>xs:anyURI</wsa:To>

 ...

 </s:Header>

 <s:Body ...>

 <wse:RenewResponse ...>

 <wse:Expires>[xs:dateTime | xs:duration]</wse:Expires>

 ...

 </wse:RenewResponse>

 </s:Body>

</s:Envelope>

Components of the outline listed above are constrained as for a response to a subscribe
request (see Section 3.1 Subscribe) with the following addition(s):

 Page 14 of 31

If the event source chooses not to renew this subscription, the request MUST fail, and
the event source MAY generate a SOAP fault as follows:

SOAP 1.1:

• faultcode = s11:Server

• faultstring = e.g., "event source can’t process renew"

SOAP 1.2:

• s12:Code/s12:Value = s12:Receiver

• s12:Code/s12:Subcode/s12:Value = wse:EventSourceUnableToProcess

• s12:Reason/s12:Text = e.g., "event source can't process renew"

If the event source does not support renewing subscriptions, the request MUST fail, and
the event source MAY generate a SOAP fault as follows:

SOAP 1.1:

• faultcode = s11:Client

• faultstring = e.g., "action not supported"

• detail/wsa:Action = Action URI for the request

SOAP 1.2:

• s12:Code/s12:Value = s12:Sender

• s12:Code/s12:Subcode/s12:Value = wse:ActionNotSupported

• s12:Reason/s12:Text = e.g., "action not supported"

• s12:Detail/wsa:Action = Action URI of the request

Other components of the outline above are not further constrained by this specification.

The corresponding WSDL [WSDL 1.1] for use with other bindings is below. (Refer to
Appendix II - WSDL for the complete WSDL.)

<wsdl:message name='RenewMsg' >

 <wsdl:part name='body' element='wse:Renew' />

</wsdl:message>

<wsdl:message name='RenewResponseMsg' >

 <wsdl:part name='body' element='wse:RenewResponse' />

</wsdl:message>

<wsdl:portType name='Eventing' >

...

 <!-- Support for Renew is optional -->

 <wsdl:operation name='RenewOp' >

 <wsdl:input message='wse:RenewMsg' />

 <wsdl:output message='wse:RenewResponseMsg' />

 </wsdl:operation>

...

</wsdl:portType>

 Page 15 of 31

Table 6 lists a hypothetical request to renew the subscription created in Table 5.

Table 6: Hypothetical request to renew second subscription.

(01) <s12:Envelope

(02) xmlns:s12='http://www.w3.org/2003/05/soap-envelope'

(03) xmlns:wsa='http://schemas.xmlsoap.org/ws/2003/03/addressing'

(04) xmlns:wse='http://schemas.xmlsoap.org/ws/2004/01/eventing'

(05) xmlns:ow='http://www.example.org/oceanwatch' >

(06) <s12:Header>

(07) <wsa:Action>

(08) http://schemas.xmlsoap.org/ws/2004/01/eventing/Renew

(09) </wsa:Action>

(10) <wsa:MessageID>

(11) uuid:bd88b3df-5db4-4392-9621-aee9160721f6

(12) </wsa:MessageID>

(13) <wsa:ReplyTo>

(14) <wsa:Address>http://www.example.com/MyEventSink</wsa:Address>

(15) </wsa:ReplyTo>

(16) <wsa:To>http://www.example.org/oceanwatch/EventSource</wsa:To>

(17) </s12:Header>

(18) <s12:Body>

(19) <wse:Renew>

(20) <wse:Id>uuid:22e8a584-0d18-4228-b2a8-3716fa2097fa</wse:Id>

(21) <wse:Expires>2004-06-26T21:07:00.000-08:00</wse:Expires>

(22) </wse:Renew>

(23) </s12:Body>

(24) </s12:Envelope>

(25)

Lines (07-09) indicate this is a request to renew a subscription. Line (20) indicates the
subscription to be renewed is the one created in Table 5. Line (21) in Table 6 indicates
the request is to extend the subscription until 26 June 2004 at 9:07 PM Pacific.

Table 7 lists a hypothetical response to the request in Table 6.

Table 7: Hypothetical response to renew request.

(01) <s12:Envelope

(02) xmlns:s12='http://www.w3.org/2003/05/soap-envelope'

(03) xmlns:wsa='http://schemas.xmlsoap.org/ws/2003/03/addressing'

(04) xmlns:wse='http://schemas.xmlsoap.org/ws/2004/01/eventing'

(05) xmlns:ow='http://www.example.org/oceanwatch' >

 Page 16 of 31

(06) <s12:Header>

(07) <wsa:Action>

(08) http://schemas.xmlsoap.org/ws/2004/01/eventing/RenewResponse

(09) </wsa:Action>

(10) <wsa:RelatesTo>

(11) uuid:bd88b3df-5db4-4392-9621-aee9160721f6

(12) </wsa:RelatesTo>

(13) <wsa:To>http://www.example.com/MyEventSink</wsa:To>

(14) </s12:Header>

(15) <s12:Body>

(16) <wse:RenewResponse>

(17) <wse:Expires>2004-06-26T12:00:00.000-00:00</wse:Expires>

(18) </wse:RenewResponse>

(19) </s12:Body>

(20) </s12:Envelope>

(21)

Line (17) in Table 7 indicates the subscription has been extended only until 26 June
2004 at noon.

3.3 Unsubscribe
Though subscriptions expire eventually, to minimize resources, the subscribing event
sink SHOULD explicitly delete a subscription when it no longer wants notifications
associated with the subscription. To explicitly delete a subscription, a subscribing event
sink sends a request of the following form to the event source that created the
subscription:

<s:Envelope ...>

 <s:Header ...>

 <wsa:Action>

 http://schemas.xmlsoap.org/ws/2004/01/eventing/Unsubscribe

 </wsa:Action>

 <wsa:MessageID>xs:anyURI</wsa:MessageID>

 <wsa:FaultTo>endpoint-reference</wsa:FaultTo> ?

 <wsa:ReplyTo>endpoint-reference</wsa:ReplyTo>

 <wsa:To>xs:anyURI</wsa:To>

 ...

 </s:Header>

 <s:Body>

 <wse:Unsubscribe ...>

 Page 17 of 31

 <wse:Id>xs:anyURI</wse:Id>

 ...

 </wse:Unsubscribe>

 </s:Body>

</s:Envelope>

Components of the outline above are additionally constrained only as for a request to
renew a subscription (see Section 3.2 Renew). For example, the faults listed there are
also defined for a request to delete a subscription.

If the event source accepts a request to delete a subscription, it MUST reply with a
response of the following form:

<s:Envelope ...>

 <s:Header ...>

 <wsa:Action>

 http://schemas.xmlsoap.org/ws/2004/01/eventing/UnsubscribeResponse

 </wsa:Action>

 <wsa:RelatesTo>xs:anyURI</wsa:RelatesTo>

 <wsa:To>xs:anyURI</wsa:To>

 ...

 </s:Header>

 <s:Body />

</s:Envelope>

Components of the outline listed above are not further constrained by this specification.

The corresponding WSDL [WSDL 1.1] for use with other bindings is below. (Refer to
Appendix II - WSDL for the complete WSDL.)

<wsdl:message name='UnsubscribeMsg' >

 <wsdl:part name='body' element='wse:Unsubscribe' />

</wsdl:message>

<wsdl:message name='UnsubscribeResponseMsg' />

<wsdl:portType name='Eventing' >

...

 <wsdl:operation name='UnsubscribeOp' >

 <wsdl:input message='wse:UnsubscribeMsg' />

 <wsdl:output message='wse:UnsubscribeResponseMsg' />

 </wsdl:operation>

</wsdl:portType>

Table 8 lists a hypothetical request to delete the subscription created in Table 5.

 Page 18 of 31

Table 8: Hypothetical unsubscribe request to delete second subscription.

(01) <s12:Envelope

(02) xmlns:s12='http://www.w3.org/2003/05/soap-envelope'

(03) xmlns:wsa='http://schemas.xmlsoap.org/ws/2003/03/addressing'

(04) xmlns:wse='http://schemas.xmlsoap.org/ws/2004/01/eventing'

(05) xmlns:ow='http://www.example.org/oceanwatch' >

(06) <s12:Header>

(07) <wsa:Action>

(08) http://schemas.xmlsoap.org/ws/2004/01/eventing/Unsubscribe

(09) </wsa:Action>

(10) <wsa:MessageID>

(11) uuid:2653f89f-25bc-4c2a-a7c4-620504f6b216

(12) </wsa:MessageID>

(13) <wsa:ReplyTo>

(14) <wsa:Address>http://www.example.com/MyEventSink</wsa:Address>

(15) </wsa:ReplyTo>

(16) <wsa:To>http://www.example.org/oceanwatch/EventSource</wsa:To>

(17) </s12:Header>

(18) <s12:Body>

(19) <wse:Unsubscribe>

(20) <wse:Id>uuid:22e8a584-0d18-4228-b2a8-3716fa2097fa</wse:Id>

(21) </wse:Unsubscribe>

(22) </s12:Body>

(23) </s12:Envelope>

(24)

Lines (07-09) in Table 8 indicate the message is a request to delete a subscription. Line
(20) indicates that is a request to delete the subscription created in Table 5.

Table 9 lists a hypothetical response to the request in Table 8.

Table 9: Hypothetical response to unsubscribe request.

(01) <s12:Envelope

(02) xmlns:s12='http://www.w3.org/2003/05/soap-envelope'

(03) xmlns:wsa='http://schemas.xmlsoap.org/ws/2003/03/addressing' >

(04) <s12:Header>

(05) <wsa:Action>

(06)

http://schemas.xmlsoap.org/ws/2004/01/eventing/UnsubscribeResponse

(07) </wsa:Action>

 Page 19 of 31

(08) <wsa:RelatesTo>

(09) uuid:2653f89f-25bc-4c2a-a7c4-620504f6b216

(10) </wsa:RelatesTo>

(11) <wsa:To>http://www.example.com/MyEventSink</wsa:To>

(12) </s12:Header>

(13) <s12:Body />

(14) </s12:Envelope>

(15)

3.4 Subscription End
When a subscription ends, the event source SHOULD send a Subscription End SOAP
header block in a message to the endpoint reference indicated when the subscription
was created. (See 3.1 Subscribe.) The header block MAY be sent along with another
message ("piggybacked") or MAY be sent with an otherwise empty message. The
message MUST be of the following form:

<s:Envelope ...>

 <s:Header ...>

 <wsa:Action>

 http://schemas.xmlsoap.org/ws/2004/01/eventing/SubscriptionEnd

 </wsa:Action> ?

 <wse:SubscriptionEnd s11:mustUnderstand="xs:boolean" ?

 s12:mustUnderstand="xs:boolean" ?

 ...>

 <wse:Id>xs:anyURI</wse:Id>

 <wse:Code>

 [wse:Unsubscribed | wse:Expired | wse:NotifyToFailure |

 wse:SourceCanceling]

 </wse:Code>

 <wse:Reason xml:lang="language identifier" >xs:string</wse:Reason> ?

 ...

 </wsa:SubscriptionEnd>

 ...

 </s:Header>

 <s:Body ...>

 ...

 </s:Body>

</s:Envelope>

The following describes additional, normative constraints on the outline listed above:

 Page 20 of 31

/s:Envelope/s:Header/wsa:Action
If count(/s:Envelope/s:Body/*) = 0, then MUST have the indicated value. If a SOAP
Action URI is used in the binding for SOAP, then the indicated value MUST be used
for that URI.

/s:Envelope/s:Header/wse:SubscriptionEnd/wse:Code = "wse:Unsubscribed"
This value MUST be used if the event source accepted an unsubscribe request.

/s:Envelope/s:Header/wse:SubscriptionEnd/wse:Code = "wse:Expired"
This value MUST be used if the subscription expired without being renewed.

/s:Envelope/s:Header/wse:SubscriptionEnd/wse:Code = "wse:NotifyToFailure"
This value MUST be used if the event source terminated the subscription because of
problems delivering notifications to the NotifyTo in the subscribe request.

/s:Envelope/s:Header/wse:SubscriptionEnd/wse:Code = "wse:SourceCanceling"
This value MUST be used if the event source terminated the subscription for some
other reason before it expired.

Other components of the outline above are not further constrained by this specification.

Table 10 lists a hypothetical message containing a Subscription End header block
corresponding to an early termination of the subscription created in Table 5.

Table 10: Hypothetical subscription end header block.

(01) <s12:Envelope

(02) xmlns:s12='http://www.w3.org/2003/05/soap-envelope'

(03) xmlns:wsa='http://schemas.xmlsoap.org/ws/2003/03/addressing'

(04) xmlns:wse='http://schemas.xmlsoap.org/ws/2004/01/eventing'

(05) xmlns:ew='http://www.example.com/warnings' >

(06) <s12:Header>

(07) <wsa:Action>

(08) http://schemas.xmlsoap.org/ws/2004/01/eventing/SubscriptionEnd

(09) </wsa:Action>

(10) <wsa:To>http://www.example.com/MyEventSink</wsa:To>

(11) <ew:MySubscription>2597</ew:MySubscription>

(12) <wse:SubscriptionEnd>

(13) <wse:Id>uuid:22e8a584-0d18-4228-b2a8-3716fa2097fa</wse:Id>

(14) <wse:Code>wse:SourceCanceling</wse:Code>

(15) <wse:Reason xml:lang='en-US' >

(16) Event source going off line.

(17) </wse:Reason>

(18) </wse:SubscriptionEnd>

(19) </s12:Header>

(20) <s12:Body />

(21) </s12:Envelope>

 Page 21 of 31

(22)

Line (08) is the action URI for Subscription End since the header block is not
piggybacked on another message and the Body has no children (Line 20). Lines (10-11)
indicate the message is sent to the EndTo of the subscribe request (Lines (31-36) in
Table 4.) Lines (12-18) contain the Subscription End SOAP header block; Line (14)
indicates the subscription was cancelled early, and Lines (15-17) indicate the event
source was going off line.

3.5 Other Faults
If a request message does not comply with the corresponding outline listed above, the
request MUST fail, and the event source MAY generate a SOAP fault as follows:

SOAP 1.1:

• faultcode = s11:Client

• faultstring = e.g., “message is invalid”

SOAP 1.2:

• s12:Code/s12:Value = s12:Sender

• s12:Code/s12:Subcode/s12:Value = wse:InvalidRequest

• s12:Reason/s12:Text = e.g., “message is invalid”

4. Notifications
This specification does not constrain notifications because any message MAY be a
notification.

However, if a subscribing event sink wishes to have notifications specifically marked, it
MAY specify literal SOAP header blocks in
/s:Envelope/s:Body/wse:Subscribe/wse:NotifyTo/wsa:ReferenceProperties; per WS-
Addressing [WS-Addressing], the event source MUST include each such literal SOAP
header block in every notification sent to the
/s:Envelope/s:Body/wse:Subscribe/wse:NotifyTo.

Table 11 lists a hypothetical notification message sent as part of the subscription created
by the subscribe request in Table 4.

Table 11: Hypothetical notification message.

(01) <s12:Envelope

(02) xmlns:s12='http://www.w3.org/2003/05/soap-envelope'

(03) xmlns:wsa='http://schemas.xmlsoap.org/ws/2003/03/addressing'

(04) xmlns:ew='http://www.example.com/warnings'

(05) xmlns:ow='http://www.example.org/oceanwatch' >

(06) <s12:Header>

(07) <wsa:Action>

(08) http://www.example.org/oceanwatch/2003/WindReport

(09) </wsa:Action>

(10) <wsa:MessageID>

(11) uuid:568b4ff2-5bc1-4512-957c-0fa545fd8d7f

 Page 22 of 31

(12) </wsa:MessageID>

(13) <wsa:To>http://www.other.example.com/OnStormWarning</wsa:To>

(14) <ew:MySubscription>2597</ew:MySubscription>

(15) </s12:Header>

(16) <s12:Body>

(17) <ow:WindReport>

(18) <ow:Date>030701</ow:Date>

(19) <ow:Time>0041</ow:Time>

(20) <ow:Speed>65</ow:Speed>

(21) <ow:Location>BRADENTON BEACH</ow:Location>

(22) <ow:County>MANATEE</ow:County>

(23) <ow:State>FL</ow:State>

(24) <ow:Lat>2746</ow:Lat>

(25) <ow:Long>8270</ow:Long>

(26) <ow:Comments xml:lang='en-US' >

(27) WINDS 55 WITH GUSTS TO 65. ROOF TORN OFF BOAT HOUSE. REPORTED

(28) BY STORM SPOTTER. (TBW)

(29) </ow:Comments>

(30) </ow:WindReport>

(31) </s12:Body>

(32) </s12:Envelope>

(33)

Lines (13-14) indicate the message is sent to the endpoint indicated by the subscribe
request (Lines (23-30) in Table 4). Lines (01, 16, 17, 20) match the filter in the
subscribe request (Lines (38-40) in Table 4).

5. Security Considerations
It is strongly RECOMMENDED that the communication between services be secured
using the mechanisms described in WS-Security [WS-Security, Addendum]. In order to
properly secure messages, the body and all relevant headers need to be included in the
signature. Specifically, any headers identified in the <wse:NotifyTo> element and
standard messaging headers, such as those from WS-Addressing [WS-Addressing], need
to be signed with the body in order to "bind" the two together. For messages with empty
bodies, the <s12:Body> element should be signed so content cannot be added in transit.

Different security mechanisms may be desired depending on the frequency of messages.
For example, for infrequent messages, public key technologies may be adequate for
integrity and confidentiality. However, for high-frequency events, it may be more
performant to establish a security context for the events using the mechanisms
described in WS-Trust [WS-Trust] and WS-SecureConversation [WS-
SecureConversation].

 Page 23 of 31

It should be noted that if a shared secret is used it is RECOMMENDED that derived keys
be used to strengthen the secret as described in WS-SecureConversation.

The following list summarizes common classes of attacks that apply to this protocol and
identifies the mechanism to prevent/mitigate the attacks:

• Message alteration – Alteration is prevented by including signatures of the
message information using WS-Security.

• Message disclosure – Confidentiality is preserved by encrypting sensitive data
using WS-Security.

• Key integrity – Key integrity is maintained by using the strongest algorithms
possible (by comparing secured policies – see WS-Policy [WS-Policy] and WS-
SecurityPolicy [WS-SecurityPolicy]).

• Authentication – Authentication is established using the mechanisms described in
WS-Security and WS-Trust. Each message is authenticated using the mechanisms
described in WS-Security.

• Accountability – Accountability is a function of the type of and string of the key and
algorithms being used. In many cases, a strong symmetric key provides sufficient
accountability. However, in some environments, strong PKI signatures are required.

• Availability – All reliable messaging services are subject to a variety of availability
attacks. Replay detection is a common attack and it is RECOMMENDED that this be
addressed by the mechanisms described in WS-Security. Other attacks, such as
network-level denial of service attacks are harder to avoid and are outside the scope
of this specification. That said, care should be taken to ensure that minimal state is
saved prior to any authenticating sequences.

• Replay – Messages may be replayed for a variety of reasons. To detect and
eliminate this attack, mechanisms should be used to identify replayed messages
such as the timestamp/nonce outlined in WS-Security. Alternatively, and optionally,
other technologies, such as sequencing, can also be used to prevent replay of
application messages.

6. Implementation Considerations
Implementations SHOULD generate expirations in subscribe and renew request and
response messages that are significantly larger than expected network latency.

Event sinks should be prepared to receive notifications after sending a subscribe request
but before receiving a subscribe response message. Event sinks should also be prepared
to receive notifications after receiving an unsubscribe response message.

7. Acknowledgements
This specification has been developed as a result of joint work with many individuals and
teams, including: Don Box (Microsoft), Josh Cohen (Microsoft), Geary Eppley (Microsoft),
Omri Gazitt (Microsoft), Peter Jarvis (Microsoft), Chris Kaler (Microsoft), Amy Lewis
(TIBCO Software), Toby Nixon (Microsoft), Denny Page (TIBCO Software), Anders
Vinberg (Microsoft), Alex Weinert (Microsoft).

8. References
[RFC 2119]

S. Bradner, "Key words for use in RFCs to Indicate Requirement Levels," RFC 2119,
Harvard University, March 1997.

 Page 24 of 31

[SOAP 1.1]
D. Box, et al, "Simple Object Access Protocol (SOAP) 1.1," May 2000.

[SOAP 1.2]
M. Gudgin, et al, "SOAP Version 1.2 Part 1: Messaging Framework," June 2003.

[WS-Addressing]
A. Bosworth, et al, "Web Services Addressing (WS-Addressing)," March 2003.

[WS-Policy]
D. Box, et al, "Web Services Policy Framework (WS-Policy)," May 2003.

[WS-PolicyAssertions]
D. Box, et al, "Web Services Policy Assertions Language (WS-PolicyAssertions)," May
2003.

[WS-ReliableMessaging]
R. Bilorusets, et al, "Web Services Reliable Messaging Protocol (WS-
ReliableMessaging)," March 2003.

[WS-SecureConversation]
G. Della-Libera, et al, "Web Services Secure Conversation Language (WS-
SecureConversation)," December 2002.

[WS-Security]
B. Atkinson, et al, "Web Services Security (WS-Security)," April 2002.

[WS-Security Addendum]
G. Della-Libera, et al, "Web Services Security Addendum," August 2002.

[WS-SecurityPolicy]
G. Della-Libera, et al, "Web Services Security Policy Language (WS-SecurityPolicy),"
December 2002.

[WS-Trust]
G. Della-Libera, et al, "Web Services Trust Language (WS-Trust)," December 2002.

[WSDL 1.1]
E. Christensen, et al, "Web Services Description Language (WSDL) 1.1," March 2001.

[XML Infoset]
J. Cowan, et al, "XML Information Set," October 2001.

[XML Schema, Part 1]
H. Thompson, et al, "XML Schema Part 1: Structures," May 2001.

[XML Schema, Part 2]
P. Biron, et al, "XML Schema Part 2: Datatypes," May 2001.

[XPath 1.0]
J. Clark, et al, "XML Path Language (XPath) Version 1.0," November 1999.

Appendix I – XML Schema
A normative copy of the XML Schema [XML Schema Part 1, Part 2] and WSDL [WSDL
1.1] descriptions for this specification may be retrieved by resolving the XML namespace
URI for this specification (listed in Section 2.2 XML Namespaces). A non-normative copy
of the XML Schema description is listed below for convenience.

Normative text within this specification takes precedence over the normative outlines
that take precedence over the XML Schema and WSDL descriptions.

<xs:schema

 Page 25 of 31

 targetNamespace='http://schemas.xmlsoap.org/ws/2004/01/eventing'

 xmlns:tns='http://schemas.xmlsoap.org/ws/2004/01/eventing'

 xmlns:s11='http://schemas.xmlsoap.org/soap/envelope/'

 xmlns:s12='http://www.w3.org/2003/05/soap-envelope'

 xmlns:wsa='http://schemas.xmlsoap.org/ws/2003/03/addressing'

 xmlns:wsp='http://schemas.xmlsoap.org/ws/2002/12/policy'

 xmlns:xs='http://www.w3.org/2001/XMLSchema'

 elementFormDefault='qualified'

 blockDefault='#all' >

 <xs:import

 namespace='http://schemas.xmlsoap.org/soap/envelope/'

 schemaLocation='http://schemas.xmlsoap.org/soap/envelope/' />

 <xs:import

 namespace='http://www.w3.org/2003/05/soap-envelope'

 schemaLocation='http://www.w3.org/2003/05/soap-envelope' />

 <xs:import

 namespace='http://schemas.xmlsoap.org/ws/2003/03/addressing'

 schemaLocation='http://schemas.xmlsoap.org/ws/2003/03/addressing' />

 <xs:import

 namespace='http://schemas.xmlsoap.org/ws/2002/12/policy'

 schemaLocation='http://schemas.xmlsoap.org/ws/2002/12/policy' />

<!--

 <xs:import namespace='http://www.w3.org/XML/1998/namespace' />

-->

 <xs:element name='Subscribe' >

 <xs:complexType>

 <xs:sequence>

 <xs:element ref='tns:NotifyTo' />

 <xs:element ref='tns:EndTo' minOccurs='0' />

 <xs:element ref='tns:Expires' minOccurs='0' />

 Page 26 of 31

 <xs:element ref='tns:Filter' minOccurs='0' />

 <xs:any namespace='##other'

 processContents='lax'

 minOccurs='0'

 maxOccurs='unbounded' />

 </xs:sequence>

 <xs:anyAttribute namespace='##other' processContents='lax' />

 </xs:complexType>

 </xs:element>

 <xs:element name='SubscribeTo' type='wsa:EndpointReferenceType' />

 <xs:element name='NotifyTo' type='wsa:EndpointReferenceType' />

 <xs:element name='EndTo' type='wsa:EndpointReferenceType' />

 <xs:element name='Expires' >

 <xs:simpleType>

 <xs:union

 memberTypes='xs:dateTime tns:NonNegativeDurationType' />

 </xs:simpleType>

 </xs:element>

 <xs:simpleType name='NonNegativeDurationType' >

 <xs:restriction base='xs:duration' >

 <xs:minInclusive value='P0Y0M0DT0H0M0S' />

 </xs:restriction>

 </xs:simpleType>

 <xs:element name='Filter' type='wsp:MessagePredicateAssertion' />

 <xs:element name='SupportedDialect' type='xs:anyURI' />

 <xs:element name='SubscribeResponse' >

 <xs:complexType>

 <xs:sequence>

 Page 27 of 31

 <xs:element ref='tns:Id' />

 <xs:element ref='tns:Expires' />

 <xs:any namespace='##other'

 processContents='lax'

 minOccurs='0'

 maxOccurs='unbounded' />

 </xs:sequence>

 <xs:anyAttribute namespace='##other' processContents='lax' />

 </xs:complexType>

 </xs:element>

 <xs:element name='Id' type='xs:anyURI' />

 <xs:element name='Renew' >

 <xs:complexType>

 <xs:sequence>

 <xs:element ref='tns:Id' />

 <xs:element ref='tns:Expires' minOccurs='0' />

 <xs:any namespace='##other'

 processContents='lax'

 minOccurs='0'

 maxOccurs='unbounded' />

 </xs:sequence>

 <xs:anyAttribute namespace='##other' processContents='lax' />

 </xs:complexType>

 </xs:element>

 <xs:element name='RenewResponse' >

 <xs:complexType>

 <xs:sequence>

 <xs:element ref='tns:Expires' />

 <xs:any namespace='##other'

 processContents='lax'

 minOccurs='0'

 maxOccurs='unbounded' />

 </xs:sequence>

 Page 28 of 31

 <xs:anyAttribute namespace='##other' processContents='lax' />

 </xs:complexType>

 </xs:element>

 <xs:element name='Unsubscribe' >

 <xs:complexType>

 <xs:sequence>

 <xs:element ref='tns:Id' />

 <xs:any namespace='##other'

 processContents='lax'

 minOccurs='0'

 maxOccurs='unbounded' />

 </xs:sequence>

 <xs:anyAttribute namespace='##other' processContents='lax' />

 </xs:complexType>

 </xs:element>

 <!-- count(/s:Envelope/s:Body/*) = 0 for Unsubscribe response -->

 <xs:element name='SubscriptionEnd' >

 <xs:complexType>

 <xs:sequence>

 <xs:element ref='tns:Id' />

 <xs:element ref='tns:Code' />

 <xs:element ref='tns:Reason' minOccurs='0' />

 <xs:any namespace='##other'

 processContents='lax'

 minOccurs='0'

 maxOccurs='unbounded' />

 </xs:sequence>

 <xs:attribute ref='s11:actor' />

 <xs:attribute ref='s11:mustUnderstand' />

 <xs:attribute ref='s12:relay' />

 <xs:attribute ref='s12:role' />

 <xs:attribute ref='s12:mustUnderstand' />

 <xs:anyAttribute namespace='##other' processContents='lax' />

 Page 29 of 31

 </xs:complexType>

 </xs:element>

 <xs:element name='Code' >

 <xs:simpleType>

 <xs:restriction base='xs:QName' >

 <xs:enumeration value='tns:Unsubscribed' />

 <xs:enumeration value='tns:Expired' />

 <xs:enumeration value='tns:NotifyToFailure' />

 <xs:enumeration value='tns:SourceCanceling' />

 </xs:restriction>

 </xs:simpleType>

 </xs:element>

 <xs:element name='Reason' >

 <xs:complexType>

 <xs:simpleContent>

 <xs:extension base='xs:string' >

<!-- should be defined here but omitted because my validator complains

 <xs:attribute ref='xml:lang' use='required' />

-->

 </xs:extension>

 </xs:simpleContent>

 </xs:complexType>

 </xs:element>

 <!-- No constraint on s:Envelope/s:Body/ for SubscriptionEnd -->

</xs:schema>

Appendix II – WSDL
A non-normative copy of the WSDL [WSDL 1.1] description for this specification is listed
below for convenience.

<wsdl:definitions

 targetNamespace='http://schemas.xmlsoap.org/ws/2004/01/eventing'

 xmlns:wse='http://schemas.xmlsoap.org/ws/2004/01/eventing'

 xmlns:wsdl='http://schemas.xmlsoap.org/wsdl/'

 Page 30 of 31

 xmlns:xs='http://www.w3.org/2001/XMLSchema' >

 <wsdl:types>

 <xs:schema>

 <xs:import

 namespace='http://schemas.xmlsoap.org/ws/2004/01/eventing'

 schemaLocation='eventing.xsd' />

 </xs:schema>

 </wsdl:types>

 <wsdl:message name='SubscribeMsg' >

 <wsdl:part name='body' element='wse:Subscribe' />

 </wsdl:message>

 <wsdl:message name='SubscribeResponseMsg' >

 <wsdl:part name='body' element='wse:SubscribeResponse' />

 </wsdl:message>

 <wsdl:message name='RenewMsg' >

 <wsdl:part name='body' element='wse:Renew' />

 </wsdl:message>

 <wsdl:message name='RenewResponseMsg' >

 <wsdl:part name='body' element='wse:RenewResponse' />

 </wsdl:message>

 <wsdl:message name='UnsubscribeMsg' >

 <wsdl:part name='body' element='wse:Unsubscribe' />

 </wsdl:message>

 <wsdl:message name='UnsubscribeResponseMsg' />

 <wsdl:portType name='Eventing' >

 <wsdl:operation name='SubscribeOp' >

 <wsdl:input message='wse:SubscribeMsg' />

 <wsdl:output message='wse:SubscribeResponseMsg' />

 </wsdl:operation>

 <!-- Support for Renew is optional -->

 <wsdl:operation name='RenewOp' >

 Page 31 of 31

 <wsdl:input message='wse:RenewMsg' />

 <wsdl:output message='wse:RenewResponseMsg' />

 </wsdl:operation>

 <wsdl:operation name='UnsubscribeOp' >

 <wsdl:input message='wse:UnsubscribeMsg' />

 <wsdl:output message='wse:UnsubscribeResponseMsg' />

 </wsdl:operation>

 </wsdl:portType>

</wsdl:definitions>

