
WS-Context specification

1

Web Services Context Specification
(WS-Context)

Committee draft version 0.8

Version created 3 November 2004

Editors
Mark Little (mark.little@arjuna.com)
Eric Newcomer (eric.newcomer@iona.com)
Greg Pavlik (greg.pavlik@oracle.com)

Copyright © 2004 The Organization for the Advancement of Structured Information

Standards [Appendix A]

mailto:mark.little@arjuna.com
mailto:eric.newcomer@iona.com
mailto:greg.pavlik@oracle.com

2

Abstract

Web services exchange XML documents with structured payloads. The processing semantics
of an execution endpoint may be influenced by additional information that is defined at layers
below the application protocol. When multiple Web services are used in combination, the
ability to structure execution related data called context becomes important. This information
is typically communicated via SOAP Headers. WS-Context provides a definition, a structuring
mechanism, and a software service definition for organizing and sharing context across
multiple execution endpoints.

The ability to compose arbitrary units of work is a requirement in a variety of aspects of
distributed applications such as workflow and business-to-business interactions. By
composing work, we mean that it is possible for participants in an activity to be able to
determine unambiguously whether or not they are participating in the same activity.

An activity is the execution of multiple Web services composed using some mechanism
external to this specification, such as an orchestration or choreography. A common
mechanism is needed to capture and manage contextual execution environment data shared,
typically persistently, across execution instances.

In order to correlate the work of participants within the same activity, it is necessary to
propagate context to each participant. The context contains information (such as a unique
identifier) that allows a series of operations to share a common outcome.

WS-Context specification

3

Table of contents

1.1 Namespace ..4
1.1.1 Prefix Namespace...4

1.2 Referencing Specifications...4
2 Architecture ..5

2.1 Invocation of Service Operations ...5
2.2 Relationship to WSDL ..6
2.3 Referencing and addressing conventions..6

3 Context...9
3.1 Activities ...10
3.2 Context information and SOAP ..11

4 Context Manager ...13
5 Context Service..15

5.1 Status ...15
5.2 Context Service messages ..16

begin ..17
complete...18
getStatus ..18
setTimeout ...18
getTimeout ...19
5.2.1 State transitions ..19

6 Security Considerations ..20
7 Conformance considerations ...21
8 References...22
9 Appendix A...23

4

Note on terminology

The keywords "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD",
"SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be
interpreted as described in RFC2119 [2].

Namespace URIs of the general form "some-URI" represents some application-dependent or
context-dependent URI as defined in RFC 2396 [3].

1.1 Namespace
The XML namespace URI that MUST be used by implementations of this specification is:

http://docs.oasis-open.org/wscaf/2004/09/wsctx

1.1.1 Prefix Namespace

Prefix Namespace

wsctx http://docs.oasis-open.org/wscaf/2004/09/wsctx

ref http://docs.oasisopen.org/wsrm/2004/06/reference-1.1

wsdl http://schemas.xmlsoap.org/wsdl/

xsd http://www.w3.org/2001/XMLSchema

wsu http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-
wssecurity-utility-1.0.xsd

tns targetNamespace

1.2 Referencing Specifications
One or more other specifications, such as (but not limited to) WS-CF may reference the WS-
Context specification. The usage of optional items in WS-Context is typically determined by
the requirements of such as referencing specification.

Referencing specifications are generally used to construct concrete protocols based on WS-
Context. Any application that uses WS-Context must also decide what optional features are
required. For the purpose of this document, the term referencing specification covers both
formal specifications and more general applications that use WS-Context.

5

2 Architecture
An activity represents the execution of a series of related interactions with a set of Web
Services; these operations are related via context. An activity is a conceptual grouping of
services cooperating to perform some work; a context is the concrete manner in which this
grouping occurs. The notion of an activity is used to scope application specific work. The
definition of precisely what an activity is and what services it will require in order to perform
that work, will depend upon the execution environment and application in which it is used.

Context contains information about the execution environment of an activity that supplements
information in application payloads. Management of the basic context type is facilitated by
services defined in this specification. The specification also provides service interfaces for
managing session-oriented protocols and representing the corresponding activities with
contexts. The overall architecture of the context is hierarchical and decomposable, e.g., it is
possible to use the context structure without reference to any activity model.

The first element of the WS-Context specification is the context structure. The context
structure defines a normal model for organizing context information. It supports nesting
structures (parent-child relationships) for related contexts, and mechanisms to pass context
information by reference or by value. A single context type is not sufficient for all applications;
it must be extensible in a manner specific to a referencing specification and Web services
must be able to augment the context, as they require.

WS-Context defines a Context Service for the management of activity contexts. The Context
Service defines the scope of an activity and how information about it (the context) can be
referenced and propagated in a distributed environment. The Context Service uses context to
express basic information about the activity. The context is identified using a URI. The context
contains information necessary for multiple Web services to be associated with the same
activity. This information MAY be augmented when the context is created (by implementations
of referencing specifications), or dynamically by application services as they send and receive
contexts. Activities are represented by the Context Service, which maintains a repository of
shared contexts. Whenever messages are exchanged within the scope of an activity, the
Context Service can supply the associated context that MAY then be propagated with those
messages.

Contexts MAY be passed by value (all of the information required to use the context is
present in the data structure) or MAY be passed by reference (only a subset of the
information is present in the data structure and the rest must be obtained by the receiving
service). In order to support pass-by-reference, WS-Context defines an optional Context
Manager Service that can be interrogated by a recipient of a reference context to obtain the
contents of the context. This Context Manager Service MAY be the same as the Context
Service, but there is no requirement for this within WS-Context.

2.1 Invocation of Service Operations
How application services are invoked is outside the scope of this specification: they MAY use
synchronous or asynchronous message passing.

Irrespective of how remote invocations occur, context information related to the sender’s
activity needs to be referenced or propagated. This specification determines the format of the
context, how it is referenced, and how a context may be created.

In order to support both synchronous and asynchronous interactions, the components are
described in terms of the behavior and the interactions that occur between them. All
interactions are described in terms of correlated messages, which a referencing specification
MAY abstract at a higher level into request/response pairs.

6

Faults and errors that may occur when a service is invoked are communicated back to other
Web services in the activity via SOAP messages that are part of the standard protocol. The
fault mechanism of the underlying SOAP-based transport isn’t used. For example, if an
operation fails because no activity is present when one is required, then it will be valid for the
InvalidContextFault message to be received by the response service. To accommodate other
errors or faults, all response service signatures have a generalFault operation.

Note: in the rest of this specification we will use the term “invokes operation X on service Y”
when referring to invoking services. This term does not imply a specific implementation for
performing such service invocations and is used merely as shorthand for “sends message X
to service Y.” As long as implementations ensure that the on-the-wire message formats are
compliant with those defined in this specification, how the end-points are implemented and
how they expose the various operations (e.g., via WSDL [1]) is not mandated by this
specification. However, a normative WSDL binding is provided by default in this specification.

Note, this specification does not assume that a reliable message delivery
mechanism has to be used for message interactions. As such, it MAY be
implementation dependant as to what action is taken if a message is not
delivered or no response is received.

2.2 Relationship to WSDL
Where WSDL is used in this specification it uses one-way messages with callbacks. This is
the normative style. Other binding styles are possible (perhaps defined by referencing
specifications), although they may have different acknowledgment styles and delivery
mechanisms. It is beyond the scope of WS-Context to define these styles.

For clarity WSDL is shown in an abbreviated form in the main body of the document: only
portTypes are illustrated; a default binding to SOAP 1.1-over-HTTP is also assumed as per
[1].

2.3 Referencing and addressing conventions
There are multiple mechanisms for addressing messages and referencing Web services
currently proposed by the Web services community. This specification defers the rules for
addressing SOAP messages to existing specifications; the addressing information is assumed
to be placed in SOAP headers and respect the normative rules required by existing
specifications.

However, the Context message set requires an interoperable mechanism for referencing Web
Services. For example, context structures may reference the service that is used to manage
the content of the context. To support this requirement, WS-CAF has adopted an open
content model for service references as defined by the Web Services Reliable Messaging
Technical Committee [5]. The schema is defined in [6][7] and is shown in Figure 1.

<xsd:schema targetNamespace="http://docs.oasis-
open.org/wsrm/2004/06/reference-1.1.xsd"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
elementFormDefault="qualified" attributeFormDefault="unqualified"
version="1.1">
 <xsd:complexType name="ServiceRefType">
 <xsd:sequence>
 <xsd:any namespace="##other" processContents="lax" />
 </xsd:sequence>
 <xsd:attribute name="reference-scheme" type="xsd:anyURI"
use="optional" />
 </xsd:complexType

Figure 1, service-ref Element

The ServiceRefType is extended by elements of the context structure as shown in Figure 2.

7

<xsd:element name=”context-manager” type=”ref:ServiceRefType”/>

Figure 2, ServiceRefType example.

Within the ServiceRefType, the reference-scheme is the namespace URI for the referenced
addressing specification. For example, the value for WSRef defined in the WS-
MessageDelivery specification [4] would be http://www.w3.org/2004/04/ws-messagedelivery.
The value for WSRef defined in the WS-Addressing specification [8] would be
http://schemas.xmlsoap.org/ws/2004/08/addressing. The reference scheme is optional and
need only be used if the namespace URI of the QName of the Web service reference cannot
be used to unambiguously identify the addressing specification in which it is defined.

The contents of the xsd:any element contain a service reference as defined by the
referenced addressing specification. For example, a WSRef to a Context Manager Service
would appear as shown in Figure 3.

<wsdl:service name="MyContextManager"
wsmd:portType="ctx:ContextManager">
<wsdl:port name="myCtxPort" binding="ex:ctxServiceBinding">
<soapbind:address location="http://example.com/wsdl-example1/impl"/>
</wsdl:port>
</wsdl:service>

Figure 3, WSRef to a Context Manager service.

Figure 4 illustrates how an element derived from the ServiceRefType can be used as a
container for a WSRef.

<ctx:context-manager reference-scheme="http://www.w3.org/2004/04/ws-
messagedelivery">
 <wsdl:service name="MyContextService"
wsmd:portType="ctx:ContextManager">
 <wsdl:port name="myCtxPort" binding="ex:ctxServiceBinding">
 <soapbind:address location="http://example.com/wsdl-
example1/impl"/>
 </wsdl:port>
 </wsdl:service>
</ctx:service-ref>

Figure 4, example of a service-ref element

Messages sent to referenced services MUST use the addressing scheme defined by the
specification indicated by the value of the reference-scheme element if present. Otherwise,
the namespace URI associated with the Web service reference element MUST be used to
determine the required addressing scheme. A service that requires a service reference
element MUST use the mustUnderstand attribute for the SOAP header element within which
it is enclosed and MUST return a mustUnderstand SOAP fault if the reference element isn’t
present and understood.

Note, it is assumed that the addressing mechanism used by a given
implementation supports a reply-to or sender field on each received message
so that any required responses can be sent to a suitable response endpoint.
This specification requires such support and does not define how responses
are handled.

To preserve interoperability in deployments that contain multiple addressing schemes, there
are no restrictions on a system, beyond those of the composite services themselves.
However, it is RECOMMENDED where possible that composite applications confine
themselves to the use of single addressing and reference model.

Because the prescriptive interaction pattern used by WS-Context is based on one-way
messages with callbacks, it is possible that an endpoint may receive an unsolicited or
unexpected message. The recipient is free to do whatever it wants with such messages.

http://schemas.xmlsoap.org/ws/2004/08/addressing
http://example.com/wsdl-example1/impl
http://example.com/wsdl-example1/impl

8

9

3 Context
Context is used to include protocol specific data for transmission, typically (though not
exclusively) in SOAP headers. The basic context structure is shown in Figure 5.

<xsd:complexType name="ContextType">
 <xsd:sequence>
 <xsd:any namespace="##other" processContents="lax" minOccurs="0"
maxOccurs="unbounded"/>
 <xsd:element name="context-identifier" type="
tns:contextIdentifierType xsd:"/>
 <xsd:element name="context-service" type="ref:ServiceRefType"
minOccurs="0"/>
 <xsd:element name="type" type="xsd:anyURI"/>
 <xsd:element name=”context-manager” type=”ref:ServiceRefType”
minOccurs=”0”/>
 <xsd:element name="parent-context" type=”tns:ContextType”
minOccurs="0">
 </xsd:sequence>
 <xsd:attribute name="timeout" type="xsd:int" use="optional"/>
 <xsd:attribute ref=”wsu:Id” use=”optional”/>
</xsd:complexType>

Figure 5, Context Service Context.

The context structure reflects some linear portion of a potentially tree-like relationship
between contexts of the same type from the leaf to the root.

The context consists of the following items:

• A mandatory contextIdentifierType called context-identifier. This identifier can be thought
of as a “correlation” identifier or a value that is used to indicate that a Web service is part
of the same activity. The contextIdentifierType is a URI with an optional wsu:Id attribuite.
It MUST be unique.

• An OPTIONAL ServiceRefType element, context-service, which identifies the issuing
authority responsible for generating the context.

• A mandatory URI (type) that indicates the type of the protocol supported by the context,
i.e., it indicates how the information within a context MAY be interpreted. This element
MUST NOT be dereferenced and is only for unique identification. It MUST be unique
amongst the referencing specifications.

• An OPTIONAL context-manager ServiceRefType to get data associated with a context-
identifier that resolves to a reference to a Context Manager Web service. The presence of
this reference indicates that the context has been passed by reference and it MAY be
used to obtain the full value of the context later.

• An OPTIONAL parent-contexts element containing some portion of the current context’s
parent hierarchy.

• An OPTIONAL timeout attribute, which indicates for how long the context information is
valid; after this period has elapsed, the context is considered to be invalid. A context is
determined to be valid by its issuing authority. For example, the WS-Context specification
defines an issuing authority called the Context Service. The timeout allows the issuing
authority implementation to invalidate contexts automatically rather than have them
remain valid forever. It is implementation dependant as to the interpretation of a context
with no specified timeout value.

• An OPTIONAL wsu:Id attribute, which may be used to support signing or encrypting the
context structure.

10

• The context MAY contain information from an arbitrary number of augmenter services.
The context structure is extended via the extensibility xsd:any element present in the
schema for the ContextType.

Context propagation is possible using different protocols than those used by the application,
as shown in Figure 6. The WS-Context specification does not assume a specific means by
which contexts are associated with application messages, leaving this up to the referencing
specification.

Application

Service

Message
+

Context

Compose Decompose
Message Message

Context Context
Service

Server

Inteceptor Inteceptor

Figure 6, Services and context flow.

If a context is present on a received message and it contains a context-manager element then
that element MAY be used by the recipient to dereference the context. By dereference we
simply mean use the context-manager Web service to obtain the context. Any other
information present in the received context at this point CANNOT be assumed to represent
the current or entire contents of the context. If the context-manager is dereferenced, it MUST
return the entire current contents of the context, i.e. the values corresponding to the context’s
ContextType elements held by the context service at the point of receiving the dereference
message.

At a minimum, a context that is propagated by reference need only contain the context-
identifier, type and context-manager elements. A context that is always propagated by value
SHOULD NOT contain a context-manager element. A service that receives less than the
minimum context MUST return a mustUnderstand exception when the mustUnderstand
attribute is present.

Note, if a referencing specification allows a context passed by reference to be
updated at the context-manager, then a service that maintains a copy of a
context which is passed by reference CANNOT assume that the cached copy
is current.

The choice of whether to transmit a full or abbreviated context is left to the sender of the
context. It is however expected that when dealing with large context elements that by-
reference form will be used for efficiency. A sender who wishes to switch between full and
abbreviated has the responsibility for ensuring that the dereferencing capability is available.

3.1 Activities
As mentioned earlier, an activity is defined as a collection of Web service operation
invocations performed within a valid context. An activity is created, runs, and then completes.
An outcome is the result of a completed activity. The expected semantics of a web service
within an activity are defined by specifications derived from WS-Context. These semantics are
indicated in a context by a protocol identifier representing the protocol type of the activity. The
activity itself is uniquely identified by a context-identifier element.

In a system, there may be a set of contexts C associated with an activity. There will typically
be multiple contexts because context data structures may be copied by value from service to
service and may be augmented to include data that is valid to the local execution
environment. The contexts in C are not equivalent: each may reflect one service's view of the

11

activity at a point in time. The initial context created for a specific activity is the base from
which all other contexts may be derived.

A context is associated with one and only one activity; "compound" activity contexts do not
exist, although nesting of activities MAY be supported. The set of operations represented by
A may be used to define more than one activity; for example, the operations in A may include
a context for a security protocol and a context for a transaction protocol, each representing a
separate activity.

A Web service that performs an operation within an invalid context creates an invalid activity.
It is up to the specifications using WS-Context to determine the implications of invalid
activities (which may be insignificant or severe) and provide structuring mechanisms that
avoid invalid activities if necessary.

Activities MAY be nested. If an activity is nested, then the global context MAY contain a
hierarchy representing the activity structure. Each element in the context hierarchy MAY also
possess a different context-identifier.

3.2 Context information and SOAP
Where messages (either application messages, or WS-Context protocol messages
themselves) require contextualization, the context is transported in a SOAP header block.
Referencing specifications determine if WS-Context actors must understand contexts that
arrive in SOAP header blocks. In the example shown in Figure 7, the context propagated with
application messages must be understood by their recipients. Hence in this case each SOAP
header block carrying a context has the “mustUnderstand” attribute set to “true” (“1”) and the
recipient must understand the header block encoding according to its identifying type URI.

12

<?xml version="1.0" encoding="UTF-8"?>
<soap:Envelope xmlns:soap="http://www.w3.org/2002/06/soap-envelope">
 <soap:Header>
 <context xmlns="http://docs.oasis-open.org/wscaf/2004/09/wsctx"
 timeout="100"
xmlns:wsdl=”http://schemas.xmlsoap.org/wsdl/”
xmlns:soapbind=http://schemas.xmlsoap.org/wsdl/soap/
soap:mustUnderstand="1">
 <context-identifier>
 http://docs.oasis-open.org/wscaf/2004/09/wsctx/abcdef:012345
 </context-identifier>
 <context-service>
 http://docs.oasis-open.org/wscaf/2004/09//wsctx/service
 </context-service>
 <type>
 http://docs.oasis-open.org/wscaf/2004/09/wsctx/context/type1
 </type>
 <parent-context>

 <timeout="200"/>
 <context-identifier>
 http://docs.oasis-
open.org/wscaf/2004/09//wsctx/5e4f2218b
 </context-identifier>
 <context-service>
 http://docs.oasis-open.org/wscaf/2004/09//wsctx/service
 </context-service>
 <type>
http://docs.oasis-open.org/wscaf/2004/09//wsctx/context/type1

 </type>
 </parent-context>
</context>
 </soap:Header>
 <soap:Body>
 <!-- Application Payload -->
 </soap:Body>
</soap:Envelope>

Figure 7, CTX Context Transported in a SOAP Header Block.

http://schemas.xmlsoap.org/wsdl/soap/
http://docs.oasis-open.org/wscaf/2004/09/wsctx/abcdef:012345
http:// docs.oasis-open.org/wscaf/2004/09//wsctx/service
http://docs.oasis-open.org/wscaf/2004/09/wsctx/context/type1
http://docs.oasis-open.org/wscaf/2004/09//wsctx/5e4f2218b
http://docs.oasis-open.org/wscaf/2004/09//wsctx/5e4f2218b
http://docs.oasis-open.org/wscaf/2004/09//wsctx/service
http://docs.oasis-open.org/wscaf/2004/09//wsctx/context/type1

13

4 Context Manager
If the context is passed by reference, then a receiver may require the information it contains.
WS-Context defines an OPTIONAL Web service interface, the Context Manager, which
allows applications to retrieve and set data associated with a context. The Context Manager is
only implemented to support contexts that are passed by reference. It is this Context Manager
that is referenced by the presence of a context-manager element in a propagated context.
Figure 8 shows the message interactions for the context using the dereferencing call-back
style mentioned earlier: solid lines represent the initial request invocations and dashed lines
represent the response invocations.

Note, the Context Manager need not be the same endpoint as the Context
Service.

Figure 8, Context interactions.

The ContextManager has the following operations, all of which contain the callback address
for the ContextResponseHandler:

• getContents: this message is used to request the entire contents of a specific context. It
responds with either the contents message or an appropriate fault message. The entire
contents of the context MUST be returned, i.e. the values corresponding to the context’s
ContextType elements.

• setContents: the contents of the context are replaced with the context information
provided. It responds with either the contentsSet message or an appropriate fault
message. Note that concurrency control of a context passed by a reference is an
implementation issue.

Note, if the context is passed by reference and updates to it are allowed by
the referencing specification, then some form of concurrency control protocol
MAY be required to ensure that multiple updates do not conflict. It is
implementation dependant as to what (or if) concurrency control is provided
by the ContextManager.

The ContextResponseHandler has the following operations, all of which MUST be
contextualized with at least a minimal context header, i.e., the context identifier:

14

• contents: this message is a response to getContents and returns the entire contents of a
specific context.

• contentsSet: this message is sent as a response to setContents to indicate that contents
of the context have been updated.

• unknownContextFault: this message is sent to indicate that the specified context cannot
be located.

• generalFault: this message is sent to indicate that some other error has occurred during
the enlistment.

The WSDL interfaces that elucidate these roles are shown in Figure 9.

<wsdl:portType name="ContextManagerPortType">
 <wsdl:operation name="getContents">
 <wsdl:input message="tns:GetContentsMessage"/>
 </wsdl:operation>
 <wsdl:operation name="setContents">
 <wsdl:input message="tns:SetContentsMessage"/>
 </wsdl:operation>
</wsdl:portType>
<wsdl:portType name="ContextResponseHandlerPortType">
 <wsdl:operation name="contents">
 <wsdl:input message="tns:ContentsMessage"/>
 </wsdl:operation>
 <wsdl:operation name="contentsSet">
 <wsdl:input message="tns:ContentsSetMessage"/>
 </wsdl:operation>
 <wsdl:operation name="unknownContextFault">
 <wsdl:input message="tns:UnknownContextFaultMessage"/>
 </wsdl:operation>
 <wsdl:operation name="generalFault">
 <wsdl:input message="tns:GeneralFaultMessage"/>
 </wsdl:operation>
</wsdl:portType>

Figure 9, WSDL Interfaces for ContextManager and ContextResponseHandler Roles.

15

5 Context Service
The WS-Context specification defines a Context Service that supports the abstract notion of
an activity and allows referencing specifications and services to scope work within these
activities by sharing context. The basic infrastructure supports the lifecycle of contexts and
ensures that each is uniquely identified. This section specifies how activities and contexts are
modeled, managed, and represented by the Context Service.

5.1 Status
During the existence of the activity its status will either be running, completing, or completed.
An activity SHOULD report its current status when asked; there is no notion of automatically
informing services when a specific state is entered:

 <xsd:complexType name="StatusType">
 <xsd:simpleContent>
 <xsd:extension base="xsd:string">
 <xsd:attribute name="namespace"
type="xsd:anyURI"/>
 </xsd:extension>
 </xsd:simpleContent>
 </xsd:complexType>

The namespace attribute is used by referencing specifications to qualify the value of the
status string.

The WS-Context specification provides some basic status values. Referencing specifications
may extend the basic status types provided by the WS-Context specification. The meaning of
each of the string values is given below:

• activity.status.ACTIVE: The activity is in the active state. An implementation returns this
status after an Activity has been started and prior to its beginning completion.

• activity.status.COMPLETING: The activity is in the process of completing. An
implementation returns this status if it has started to complete, but has not yet finished the
process. This value indicates that the activity may be performing activity specific work
required to determine its final completion status, such as notifying participants of a failure.
An activity MUST enter this state prior to completion.

• activity.status.COMPLETED: The activity has completed.

• activity.status.NO_ACTIVITY: There is no such activity.

• activity.status.UNKNOWN: The Context Service cannot determine the current status of
the activity. This is a transient condition, and a subsequent invocation should ultimately
return a different status. An implementation may attempt to retry the appropriate
invocation transparently if such a value is returned initially.

The diagram below indicates the transitions that an Activity can undergo.

Active Completing Completed

Figure 10, Activity UML state diagram.

16

5.2 Context Service messages
In order to be able to scope work within activities it is necessary for a component of the
Context Service to provide an interface for activity demarcation. Since the Context Service
maintains information on multiple activities, an activity context MAY be present on some
operation invocations to determine the appropriate activity on which to operate. This context
SHOULD be passed by reference, since it is only required for identification purposes.

Interactions with the Context Service occur between users (services) and the Context Service
via the UserCTXService and CTXService interfaces respectively. The WSDL for these
services is shown below and we shall describe the interactions in the following section.

<wsdl:portType name="CTXServicePortType">
 <wsdl:operation name="begin">
 <wsdl:input message="tns:BeginMessage"/>
 </wsdl:operation>
 <wsdl:operation name="complete">
 <wsdl:input message="tns:CompleteMessage"/>
 </wsdl:operation>
 <wsdl:operation name="getStatus">
 <wsdl:input message="tns:GetStatusMessage"/>
 </wsdl:operation>
 <wsdl:operation name="setTimeout">
 <wsdl:input message="tns:SetTimeoutMessage"/>
 </wsdl:operation>
 <wsdl:operation name="getTimeout">
 <wsdl:input message="tns:GetTimeoutMessage"/>
 </wsdl:operation>
</wsdl:portType>
<wsdl:portType name="UserCTXServicePortType">
 <wsdl:operation name="begun">
 <wsdl:input message="tns:BegunMessage"/>
 </wsdl:operation>
 <wsdl:operation name="completed">
 <wsdl:input message="tns:CompletedMessage"/>
 </wsdl:operation>
 <wsdl:operation name="status">
 <wsdl:input message="tns:StatusMessage"/>
 </wsdl:operation>
 <wsdl:operation name="requestedContext">
 <wsdl:input message="tns:RequestedContextMessage"/>
 </wsdl:operation>
 <wsdl:operation name="timeoutSet">
 <wsdl:input message="tns:TimeoutSetMessage"/>
 </wsdl:operation>
 <wsdl:operation name="timeout">
 <wsdl:input message="tns:TimeoutMessage"/>
 </wsdl:operation>
 <wsdl:operation name="invalidStateFault">
 <wsdl:input message="tns:InvalidStateFaultMessage"/>
 </wsdl:operation>
 <wsdl:operation name="invalidContextFault">
 <wsdl:input message="tns:InvalidActivityFaultMessage"/>
 </wsdl:operation>
 <wsdl:operation name="timeoutOutOfRange">
 <wsdl:input message="tns:TimeoutOutOfRangeFaultMessage"/>
 </wsdl:operation>
 <wsdl:operation name="childActivityPendingFault">
 <wsdl:input message="tns:ChildActivityPendingFaultMessage"/>
 </wsdl:operation>
 <wsdl:operation name="noPermissionFault">
 <wsdl:input message="tns:NoPermissionFaultMessage"/>
 </wsdl:operation>
 </wsdl:portType>

Figure 11, CTXService WSDL.

17

In order to drive the Context Service, the following two roles (and associated services) are
defined for the interactions:

• CTXService: this has operations begin, complete, getStatus, setTimeout and getTimeout;

• UserCTXService: this is the user/service callback endpoint address for the various
CTXService operations. As such, it has operations begun, completed, status, timeoutSet,
timeout, invalidStateFault, invalidActivityFault, timeoutOutOfRangeFault,
childActivityPendingFault, noActivityFault, noPermissionFault, validContextExpectedFault.

The CTXService has the following operations, all of which are associated with the current
context (if any). It is assumed that responses to these messages will be sent back using
information present in whatever addressing scheme is used.

begin
The begin operation creates a new context (based on the type parameter). If a context is
present on the begin message then the new context is automatically nested with that context
in a parent-child relationship, i.e., the propagated context is the immediate parent in the
parent-contexts element, which MUST be set in the returned context.

Note, it is not necessary for the entire parent-context hierarchy to be
represented in the context structure. Some implementations and referencing
specifications MAY wish to restrict this structure to only some linear subset of
the hierarchy.

begin is therefore the first operation in an activity to use WS-Context. A unique context
identifier is created for the context such that any context information that is subsequently
obtained will reference this identifier. If a context is present on the begin request then the
newly created context will be nested within it. Otherwise, the context exists at the top level. If
the activity is completing, or has completed, the invalidContextFault operation will be invoked
on the received UserCTXService endpoint.

If nesting of activities is not supported by the implementation then invalidActivityFault will be
returned to the UserCTXService endpoint.

The timeout parameter is used to control the lifetime of a context. If the Activity has not
completed by the time the timeout seconds elapse then it is subject to being completed
automatically by the Context Service. The timeout can have the following possible values:

• any positive value: the Activity MUST complete within this number of seconds.

• -1: the Activity will never be completed automatically by the Context Service
implementation, i.e., it will never be considered to have timed out.

• 0: the last value specified using the set_timeout method is used. If no prior call to the
setTimeout operation has occurred for this thread, or the value returned is 0, then it is
implementation dependant as to the timeout value associated with this Activity.

Any other value results in the Context Service calling the timeoutOutOfRangeFault operation
on the UserCTXService endpoint.

Upon success, the begun response will be sent and the new activity will be considered to be
in the activity.status.ACTIVE state and the Context Service will invoke the begun operation of
the UserCTXService.

If an invalid context is propagated on the begin request then the validContextExpectedFault
operation is invoked on the UserCTXService.

The generalFault operation is invoked on the UserCTXService if an unexpected error or fault
occurs.

The invalidProtocolTypeFault operation is invoked on the UserCTXService is the service
cannot create a context of the required type.

18

complete
A valid activity context is associated with this invocation. A Context Service implementation
MAY impose restrictions on which Web services can terminate an activity, and in which case
the noPermissionFault operation MAY be invoked on the UserCTXService. It is beyond the
scope of this specification to determine how restrictions are imposed.

A protocol-specific completion command MAY accompany this invocation and MAY be used
by the ContextService when terminating the activity. For example, one completion status for a
transaction protocol might represent an abort signal. Some protocols may not make
distinctions between success or failure in the termination of an activity and would not require
any completion status.

Once complete, the Context Service sends the completed message to the UserCTXService. If
the Activity has begun completion, or has completed, then the invalidContextFault
UserCTXService operation is called.

If an invalid context is propagated on the request then the validContextExpectedFault
operation is invoked on the UserCTXService.

The generalFault operation is invoked on the UserCTXService if an unexpected error or fault
occurs.

getStatus
This operation is used to obtain the current status of the activity referenced in the propagated
context. The Context Service invokes the status operation on the associated UserCTXService
to return the current status of the Activity. If there is no valid context associated with the
context-identifier, the InvalidContextFault operation is invoked on the UserCTXService.

If an invalid context is propagated on the request then the validContextExpectedFault
operation is invoked on the UserCTXService.

The generalFault operation is invoked on the UserCTXService if an unexpected error or fault
occurs.

setTimeout
No context is associated with this invocation. This operation modifies a state variable
associated with the Context Service that affects the time-out period associated with the
activities created by subsequent invocations of the begin operation when no timeout is
specified (i.e., the begin timeout value is 0): this is a default timeout value associated with the
service. If the parameter has a non-zero value n, then activities created by subsequent
invocations of begin will be subject to being completed if they do not complete before n
seconds after their creation. The timeout can have the following possible values:

• any positive value: the Activity MUST complete within this number of seconds.

• -1: the Activity will never be completed automatically by the Context Service
implementation, i.e., it will never be considered to have timed out.

• 0: it is implementation dependant as to the meaning of passing 0 as the value.

A valid timeout value results in the Context Service calling the UserCTXService’s timeoutSet
operation. Any other value results in the timeoutOutOfRangeFault operation being invoked on
the associated UserCTXService.

The generalFault operation is invoked on the UserCTXService if an unexpected error or fault
occurs.

19

getTimeout
No context is associated with this invocation. Upon successful execution, this operation
causes the Context Service to return the default timeout value (via the timeout message)
associated with the service, i.e., the timeout that is associated with activities created by calls
to begin when no timeout value is passed via begin. This need not be the value associated
with the current Activity, however.

The generalFault operation is invoked on the UserCTXService if an unexpected error or fault
occurs.

5.2.1 State transitions
Figure 12 shows the state transitions for an activity and how they relate to the various
message exchanges between the client/user of the Context Service and the Context Service.
As mentioned above, in order to participate in these message interactions the client/user
supplies a UserCTXService endpoint.

Figure 12, Activity state transitions and messages.

20

6 Security Considerations
WS-Context is designed to be composable with WS-Security. WS-Context provides a context
structure that is typically bound to a SOAP header as well as endpoints for management of
context lifecycle and contents.

It is RECOMMENDED that messages containing context headers use WS-Security[9]
facilities for digital signatures to guarantee message integrity and to verify originators of both
messages and contexts. The message as a whole, the individual context headers, or both
may be signed. In addition, when contexts are passed by value sensitive context data should
be encrypted with XML encryption facilities as described in WS-Security for confidentiality.

The ContextType schema includes an optional attribute, wsu:Id, which is used for ease of
processing of WS-Security features. It is RECOMMENDED that implementations use the
wsu:Id attribute to support encryption and signing of the context element. In addition, the
context-identifier element definition includes an optional wsu:Id attribute to allow context
services to sign identifiers, while allowing other services (e.g., the context manager) to freely
update and change the content of the context itself.

It is RECOMMENDED that authorization checks be applied to context service and context
manager operations. It is out of the scope of this specification to indicate how user identity
and authorization are managed. Implementations may use appropriate mechanisms for the
Web services environment. For example, user identity may be asserted via mechanisms
described in Web Services Security Username Token Profile 1.0.

In addition to any authorization checks it may perform on the sender of a message, it is
RECOMMENDED that applications services perform checks that contexts were created by
authorized issuing authorities. A separate authorization problem arises for specific
participation in specific activities. For example, a user may be permitted to access a service
but not to participate in arbitrary transactions associated with the service. It is
RECOMMENDED that application services maintain authorization checks for participation in
specific activities based on domain specific requirements.

In order to defend against spoofing of context-identifiers by an attacker it is RECOMMENDED
that service managers create context-identifiers incorporating random parts.

21

7 Conformance considerations
The WS-Context specification defines a session model for Web Services (the activity
concept), a context to represent that model in executing systems and endpoints to manage
context lifecycle and contents.

The minimum usage of WS-Context is restricted to the pass by value model of the context
structure itself. Conformant implementations MUST follow the rules specified in Section 3;
lexical representations of the context must be valid according to the schema definition for
ctx:ContextType.

Systems and protocols that leverage the pass-by-reference representation of context MUST
support the Context Manager. Conformant implementations of the Context Manager MUST
follow the rules stated in Section 4.

Context lifecycle demarcation and control is managed by the Context Service. Conformant
implementations of the Context Service MUST follow the rules stated in Section 5.

All messages based on the normative WSDL provided in this specification MUST be
augmented by a Web services addressing specification to support callback-style message
exchange.

Specifications that build on WS-Context MUST satisfy all requirements for referencing
specifications that are identified for contexts, context-services and context managers.

22

8 References
[1] WSDL 1.1 Specification, see http://www.w3.org/TR/wsdl

[2] "Key words for use in RFCs to Indicate Requirement Levels," RFC 2119, S. Bradner,
Harvard University, March 1997.

[3] "Uniform Resource Identifiers (URI): Generic Syntax," RFC 2396, T. Berners-Lee, R.
Fielding, L. Masinter, MIT/LCS, U.C. Irvine, Xerox Corporation, August 1998.

[4] WS-Message Delivery Version 1.0, http://www.w3.org/Submission/2004/SUBM-ws-
messagedelivery-20040426/

[5] WS-Reliability latest specification, http://www.oasis-
open.org/committees/download.php/8909/WS-Reliability-2004-08-23.pdf. See Section 4.2.3.2
(and its subsection), 4.3.1 (and its subsections). Please note that WS-R defines BareURI as
the default.

[6] Addressing wrapper schema, http://www.oasis-
open.org/apps/org/workgroup/wsrm/download.php/8365/reference-1.1.xsd

[7] WS-R schema that uses the serviceRefType, http://www.oasis-
open.org/apps/org/workgroup/wsrm/download.php/8477/ws-reliability-1.1.xsd

[8] Web Services Addressing, see http://www.w3.org/Submission/ws-addressing/

[9] Web Services Security: SOAP Message Security V1.0, http://docs.oasis-
open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0.pdf

http://www.w3.org/TR/wsdl
http://www.oasis-open.org/committees/download.php/8909/WS-Reliability-2004-08-23.pdf
http://www.oasis-open.org/committees/download.php/8909/WS-Reliability-2004-08-23.pdf
http://www.oasis-open.org/apps/org/workgroup/wsrm/download.php/8365/reference-1.1.xsd
http://www.oasis-open.org/apps/org/workgroup/wsrm/download.php/8365/reference-1.1.xsd
http://www.oasis-open.org/apps/org/workgroup/wsrm/download.php/8477/ws-reliability-1.1.xsd
http://www.oasis-open.org/apps/org/workgroup/wsrm/download.php/8477/ws-reliability-1.1.xsd
http://www.w3.org/Submission/ws-addressing/

23

9 Appendix A
OASIS takes no position regarding the validity or scope of any intellectual property or other
rights that might be claimed to pertain to the implementation or use of the technology
described in this document or the extent to which any license under such rights might or might
not be available; neither does it represent that it has made any effort to identify any such
rights. Information on OASIS's procedures with respect to rights in OASIS specifications can
be found at the OASIS website. Copies of claims of rights made available for publication and
any assurances of licenses to be made available, or the result of an attempt made to obtain a
general license or permission for the use of such proprietary rights by implementors or users
of this specification, can be obtained from the OASIS Executive Director.

OASIS invites any interested party to bring to its attention any copyrights, patents or patent
applications, or other proprietary rights which may cover technology that may be required to
implement this specification. Please address the information to the OASIS Executive Director.

Copyright © OASIS Open 2004. All Rights Reserved.

This document and translations of it may be copied and furnished to others, and derivative
works that comment on or otherwise explain it or assist in its implementation may be
prepared, copied, published and distributed, in whole or in part, without restriction of any kind,
provided that the above copyright notice and this paragraph are included on all such copies
and derivative works. However, this document itself does not be modified in any way, such as
by removing the copyright notice or references to OASIS, except as needed for the purpose
of developing OASIS specifications, in which case the procedures for copyrights defined in
the OASIS Intellectual Property Rights document must be followed, or as required to translate
it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked by OASIS or its
successors or assigns.

This document and the information contained herein is provided on an “AS IS” basis and
OASIS DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT
LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL
NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY
OR FITNESS FOR A PARTICULAR PURPOSE.

	Namespace
	Prefix Namespace

	Referencing Specifications
	Architecture
	Invocation of Service Operations
	Relationship to WSDL
	Referencing and addressing conventions

	Context
	Activities
	Context information and SOAP

	Context Manager
	Context Service
	Status
	Context Service messages
	begin
	complete
	getStatus
	setTimeout
	getTimeout
	State transitions

	Security Considerations
	Conformance considerations
	References
	Appendix A

