

 1

Web Services Addressing (WS-
Addressing)
13 March 2003

Authors

Adam Bosworth, BEA
Don Box, Microsoft (Editor)
Erik Christensen, Microsoft
Francisco Curbera, IBM (Editor)
Donald Ferguson, IBM
Jeffrey Frey, IBM
Chris Kaler, Microsoft
David Langworthy, Microsoft
Frank Leymann, IBM
Steve Lucco, Microsoft
Steve Millet, Microsoft
Nirmal Mukhi, IBM
Mark Nottingham, BEA
David Orchard, BEA
John Shewchuk, Microsoft
Tony Storey, IBM
Sanjiva Weerawarana, IBM

Copyright Notice
Copyright 2002-2003 by BEA Systems Inc., International Business Machines
Corporation, Microsoft Corporation. All rights reserved.

Permission to copy and display the WS-Addressing Specification, in any medium
without fee or royalty is hereby granted, provided that you include the following on
ALL copies of the WS-Addressing Specification, or portions thereof, that you make:

1. A link or URL to the WS-Addressing Specification at this location

2. The copyright notice as shown in the WS-Addressing Specification.

BEA Systems, IBM and Microsoft (collectively, the “Authors”) each agree to grant you
a royalty-free license, under commercially reasonable terms and conditions, to their
respective patents that they deem necessary to implement the WS-Addressing
Specification.

THE WS-Addressing SPECIFICATION IS PROVIDED "AS IS," AND THE AUTHORS
MAKE NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED, INCLUDING,
BUT NOT LIMITED TO, WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE, NON-INFRINGEMENT, OR TITLE; THAT THE CONTENTS OF
THE WS-Addressing SPECIFICATION ARE SUITABLE FOR ANY PURPOSE; NOR THAT

 2

THE IMPLEMENTATION OF SUCH CONTENTS WILL NOT INFRINGE ANY THIRD PARTY
PATENTS, COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS.

THE AUTHORS WILL NOT BE LIABLE FOR ANY DIRECT, INDIRECT, SPECIAL,
INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF OR RELATING TO ANY
USE OR DISTRIBUTION OF THE WS-Addressing SPECIFICATION.

The name and trademarks of the Authors may NOT be used in any manner, including
advertising or publicity pertaining to the WS-Addressing Specification or its contents
without specific, written prior permission. Title to copyright in the WS-Addressing
Specification will at all times remain with the Authors.

No other rights are granted by implication, estoppel or otherwise.

Abstract
WS-Addressing provides transport-neutral mechanisms to address Web services and
messages. Specifically, this specification defines XML elements to identify Web
service endpoints and to secure end-to-end endpoint identification in messages. This
specification enables messaging systems to support message transmission through
networks that include processing nodes such as endpoint managers, firewalls, and
gateways in a transport-neutral manner.

Status
WS-Addressing and related specifications are provided as-is and for review and
evaluation only. BEA, IBM, and Microsoft hope to solicit your contributions and
suggestions in the near future. BEA, IBM, and Microsoft Corporation make no
warrantees or representations regarding the specifications in any manner
whatsoever.

Table of Contents
1. Introduction

1.1. Notational Conventions
1.2. Namespaces

2. Endpoint References
2.1. Information Model for Endpoint References
2.2. Endpoint Reference XML Infoset Representation
2.3. Binding Endpoint References

3. Message Information Headers
3.1. Message Information Headers XML Infoset Representation

4. Security Considerations
5. Acknowledgements
6. References

 3

1. Introduction
Web Services Addressing (WS-Addressing) defines two constructs that convey
information that is typically provided by transport protocols and messaging systems
in an interoperable manner. These constructs normalize this underlying information
into a uniform format that can be processed independently of transport or
application. The two constructs are endpoint references and message information
headers.

A Web service endpoint is a (referencible) entity, processor, or resource where Web
service messages can be targeted. Endpoint references convey the information
needed to identify/reference a Web service endpoint, and may be used in several
different ways: endpoint references are suitable for conveying the information
needed to access a Web service endpoint, but are also used to provide addresses for
individual messages sent to and from Web services. To deal with this last usage case
this specification defines a family of message information headers that allows
uniform addressing of messages independent of underlying transport. These
message information headers conveys end-to-end message characteristics including
addressing for source and destination endpoints as well as message identity.

Both of these constructs are designed to be extensible and re-usable so that other
specifications can build on and leverage endpoint references and message
information headers.

The following example illustrates the use of these mechanisms in a SOAP 1.2
message being sent from http://business456.com/client1 to
http://fabrikam123.com/Purchasing:

(001) <S:Envelope xmlns:S="http://www.w3.org/2002/12/soap-envelope"

 xmlns:wsa="http://schemas.xmlsoap.org/ws/2003/03/addressing">

(002) <S:Header>

(003) <wsa:ReplyTo>

(004) <wsa:Address>http://business456.com/client1</wsa:Address>

(005) </wsa:ReplyTo>

(006) <wsa:To>http://fabrikam123.com/Purchasing</wsa:To>

(007) <wsa:Action>http://fabrikam123.com/SubmitPO</wsa:Action>

(008) </S:Header>

(009) <S:Body>

(010) ...

(011) </S:Body>

(012) </S:Envelope>

Lines (002) to (008) represent the header of the SOAP message where the
mechanisms defined in the specification are used. The body is represented by lines
(009) to (011).

Lines (003) to (007) contain the message information header blocks. Specifically,
lines (003) to (005) specify the endpoint to which replies to this message should be
sent as an Endpoint Reference. Line (006) specifies the address URI of the ultimate

 4

receiver of this message. Line (007) specifies an Action URI identifying expected
semantics.

1.1. Notational Conventions
The keywords "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
document are to be interpreted as described in RFC 2119 2.

When describing abstract data models, this specification uses the notational
convention used by the XML Infoset [7]. Specifically, abstract property names always
appear in square brackets (e.g., [some property]).

When describing concrete XML schemas, this specification uses the notational
convention of WS-Security [15]. Specifically, each member of an element’s [children]
or [attributes] property is described using an XPath-like notation (e.g.,
/x:MyHeader/x:SomeProperty/@value1). The use of {any} indicates the presence of
an element wildcard (<xs:any/>). The use of @{any} indicates the presence of an
attribute wildcard (<xs:anyAttribute/>).

1.2. Namespaces
This specification uses a number of namespace prefixes throughout; they are listed
in Table 1. Note that the choice of any namespace prefix is arbitrary and not
semantically significant (see 6).

Prefix Namespace

S http://www.w3.org/2002/12/soap-envelope

wsa http://schemas.xmlsoap.org/ws/2003/03/addressing

wsp http://schemas.xmlsoap.org/ws/2002/12/policy

xs http://www.w3.org/2001/XMLSchema

Table 1 Prefixes and Namespaces used in this specification

WS-Addressing is defined in terms of the XML Information Set 7. WS-Addressing is
conformant to the SOAP 1.2 [11][12] processing model; SOAP 1.2 is not a
requirement for using the constructs defined in this specification. WS-Addressing is
also designed to be able work with WSDL 1.1 [13] described services. The examples
in this specification use an XML 1.0 5 representation but this is not a requirement.

All information items defined by WS-Addressing are identified by the XML namespace
URI 6 "http://schemas.xmlsoap.org/ws/2003/03/addressing". A normative XML
Schema 8 9 document can be obtained by dereferencing the XML namespace URI.

2. Endpoint References
This section defines the model and syntax of an endpoint reference.

This specification introduces a new description element type, the endpoint reference,
with the intent of supporting a set of dynamic usage patterns not currently

 5

appropriately covered by WSDL 1.1 [13]. In particular, this specification intends to
facilitate the following usage scenarios:

• Dynamic generation and customization of service endpoint descriptions.

• Identification and description of specific service instances that are created as the
result of stateful interactions.

• Flexible and dynamic exchange of endpoint information in tightly coupled
environments where communicating parties share a set of common assumptions
about specific policies or protocols that are used during the interaction.

To support these scenarios, we define a lightweight and extensible mechanism to
dynamically identify and describe service endpoints and instances. Because of the
current limits of the WSDL 1.1 extensibility model, the WSDL 1.1 service and port
elements cannot be used to cover the use cases listed above. Endpoint references
logically extend the WSDL description model (e.g., portTypes, bindings, etc.), but do
not replace it. Endpoint references will be used instead of WSDL <service/>
elements in the following cases:

• Specific instances of a stateful service need to be identified or its instance specific
configuration details need to be transmitted.

• A lightweight, self-contained description of a service endpoint needs to be
communicated. In particular, this may be necessary when the details of the
endpoint configuration are already shared by the communicating parties, but
specific policy information needs to be added or updated, typically as a result of a
dynamic configuration process.

Endpoint references compliment and do not replace the WSDL/1.1 <wsdl:service>
element. We expect solutions built on WSDL/1.1 to continue to utilize a service
element. Moving forward we anticipate that endpoint references and WSDL will
evolve coherently. The endpoint references may link to service elements in
WSDL/1.1, and support additional scenarios in which the WSDL information is not
known by a party processing a message. These scenarios may include dynamic
messaging or limited capability message processors.

2.1. Information Model for Endpoint References
An endpoint reference consists of the following abstract properties:

[address] : URI (mandatory)
An address URI that identifies the endpoint. This may be a network address or a
logical address.

[reference properties] : xs:any (0..unbounded).
A reference may contain a number of individual properties that are required to
identify the entity or resource being conveyed. Reference identification properties
are element information items that are named by QName and are required to
properly dispatch messages to endpoints at the endpoint side of the interaction.
The interpretation of these properties (as the use of the endpoint reference in
general) is dependent upon the protocol binding and data encoding used to
interact with the endpoint. Section 2.3 below defines the default binding for the
SOAP protocol.

[selected port type] : QName (optional)
The QName of the primary portType of the endpoint being conveyed.

[service-port] : (QName, NCName (0..1)) (optional)

 6

This is the QName identifying the WSDL service element that contains the
definition of the endpoint being conveyed. The service name provides a link to a
full description of the service endpoint. An optional non-qualified name identifies
the specific port in the service that corresponds to the endpoint.

[policy] : wsp:policy (0..unbounded)
A variable number of XML policy elements as described in WS-Policy [18]
describing the behavior, requirements and capabilities of the endpoint. Policies
may be included in an endpoint to facilitate easier processing by the consuming
application, or because the policy was dynamically generated.

2.2. Endpoint Reference XML Infoset Representation
This section defines an XML Infoset-based representation for an endpoint reference
as both an XML type (wsa:EndpointReferenceType) and as an XML element
(<wsa:EndpointReference>).

The wsa:EndpointReferenceType type is used wherever a Web service endpoint is
referenced. The following describes the contents of this type:

<wsa:EndpointReference>

 <wsa:Address>xs:anyURI</wsa:Address>

 <wsa:ReferenceProperties> ... </wsa:ReferenceProperties> ?

 <wsa:PortType>xs:QName</wsa:PortType> ?

 <wsa:ServiceName PortName="xs:NCName"?>xs:QName</wsa:ServiceName> ?

 <wsp:Policy/> *

</wsa:EndpointReference>

The following describes the attributes and elements listed in the schema overview
above:

/wsa:EndpointReference
This represents some element of type wsa:EndpointReferenceType. This
example uses the predefined <wsa:EndpointReference> element, but any
element of type wsa:EndpointReferenceType may be used.

/wsa:EndpointReference/wsa:Address
This required element (of type xs:anyURI) specifies the [address] property of the
endpoint reference. This address may be a logical address or identifier for the
service endpoint.

/wsa:EndpointReference/wsa:ReferenceProperties/
This optional element contains the elements that convey the [reference
properties] of the reference.

/wsa:EndpointReference/wsa:ReferenceProperties/{any}
Each child element of ReferenceProperties represents an individual [reference
property].

/wsa:EndpointReference/wsa:PortType
This optional element (of type xs:Qname) specifies the value of the [selected port
type] property of the endpoint reference.

/wsa:EndpointReference/wsa:ServiceName

 7

This optional element (of type xs:QName) specifies the <wsdl:service> definition
that contains a WSDL description of the endpoint being referenced.

/wsa:EndpointReference/wsa:ServiceName/@PortName
This optional attribute (of type xs:NCName) specifies the name of the
<wsdl:port> definition that coresponds to the endpoint being referenced.

/wsa:EndpointReference/wsp:Policy
This optional element specifies a policy that is relevant to the interaction with the
endpoint.

/wsa:EndpointReference/{any}
This is an extensibility mechanism to allow additional elements to be specified.

/wsa:EndpointReference/@{any}
This is an extensibility mechanism to allow additional attributes to be specified.

The following illustrates an endpoint reference. This element references the port of
type "fabrikam:InventoryPortType" at the URI "http://www.fabrikam123.com/acct".

<wsa:EndpointReference xmlns:wsa="..." xmlns:fabrikam="...">

 <wsa:Address>http://www.fabrikam123.com/acct</wsa:Address>

 <wsa:PortType>fabrikam:InventoryPortType</wsa:PortType>

</wsa:EndpointReference>

2.3. Binding Endpoint References
When a message needs to be addressed to the endpoint, the information contained
in the endpoint reference is mapped to the message according to a transformation
that is dependent on the protocol and data representation used to send the message.
Protocol specific mappings (or bindings) will define how the information in the
endpoint reference is copied to message and protocol fields. This specification
defines the SOAP binding for endpoint references. This mapping MAY be explicitly
replaced by other bindings (defined as WSDL bindings or as policies); however, in
the absence of an applicable policy stating that a different mapping must be used,
the SOAP binding defined here is assumed to apply. To ensure interoperability with a
broad range of devices, all conformant implementations MUST support the SOAP
binding.

The SOAP binding for endpoint references is defined by the following two rules:

• The [address] property in the endpoint reference is copied in the [destination]
header field of the SOAP message.

• Each [reference property] element becomes a header block in the SOAP
message. The element information item of each [reference property]
(including all of its [children] and [in-scope namespaces]) is to be added as a
header block in the new message.

 8

The next example shows how the default SOAP binding for endpoint references is
used to construct a message addressed to the endpoint:

<wsa:EndpointReference xmlns:wsa="..." xmlns:fabrikam="...">

 <wsa:Address>http://www.fabrikam123.com/acct</wsa:Address>

 <wsa:ReferenceProperties>

 <fabrikam:CustomerKey>123456789</fabrikam:CustomerKey>

 </wsa:ReferenceProperties>

</wsa:EndpointReference>

According to the mapping rules stated before, the address value is copied in the “To”
header and the “CustomerKey” element should be copied literally as a header in a
SOAP message addressed to this endpoint. The SOAP message would look as
follows:

<S:Envelope xmlns:S="http://www.w3.org/2002/12/soap-envelope"

 xmlns:fabrikam="... ">

 <S:Header>

 ...

 <wsa:To>http://www.fabrikam123.com/acct</wsa:To>

 <fabrikam:CustomerKey>123456789</fabrikam:CustomerKey>

 ...

 </S:Header>

 <S:Body>

 ...

 </S:Body>

</S:Envelope>

3. Message Information Headers
This section defines the model and syntax of a message information header.

The message information headers collectively augment a message with the following
abstract properties:

[destination] : URI (mandatory)
The address of the intended receiver of this message.

[recipient] : endpoint reference (optional)
Endpoint reference of the intended receiver of this message.

[source endpoint] : endpoint reference (optional)
Reference of the endpoint where the message originated from.

[reply endpoint] : endpoint reference (optional)
An endpoint reference that identifies the intended receiver for replies to this
message. When formulating a reply message, the sender SHOULD use the

 9

contents of the [reply endpoint] of the message being replied to to formulate the
reply message. If the [reply endpoint] is absent, the sender MAY use the
contents of the [source endpoint] to formulate the reply message. This property
may be absent if the message has no meaningful reply (e.g., is a one-way
application message), or when the reply endpoint has already been
communicated to the target by other means. If the [reply endpoint] contains
embedded policy, that policy must be the complete policy for that endpoint.

[fault endpoint] : endpoint reference (optional)
An endpoint reference that identifies the intended receiver for faults related to
this message. When formulating a fault message, the sender SHOULD use the
contents of the [fault endpoint] of the message being replied to to formulate the
fault message. If the [fault endpoint] is absent, the sender MAY use the contents
of the [reply endpoint] to formulate the fault message. If both the [fault
endpoint] and [reply endpoint] is absent, the sender MAY use the contents of the
[source endpoint] to formulate the fault message. This property may be absent if
the sender cannot receive fault messages (e.g., is a one-way application
message). If the [fault endpoint] contains embedded policy, that policy must be
the complete policy for that endpoint.

[action] : URI (mandatory)
An identifier that uniquely (and opaquely) identifies the semantics implied by this
message.

It is RECOMMENDED that value of the [action] property is a URI corresponding to
an abstract WSDL construct (e.g., message, operation, port type available at the
destination endpoint). In this case, the “relates to” property determines if the
action is a request or response (the “direction” of the message). It is expected
that at least one interoperable URI encoding scheme for computing an action
element from WSDL will be defined. An action may be associated with the WSDL
definition of an operation using a Policy element; the algorithm used for
computing the action element URI from the WSDL definition of the endpoint may
also be identified using an attached Policy element. Finally, it is possible to
explicitly associate an arbitrary URI with an operation, superceding all declared
encoding algorithms. This provides support to bottom-up development models.

[message id] : URI (optional)
A URI that uniquely identifies this message in time and space. No two messages
may share a [message id] property. The value of this property is an opaque URI
whose interpretation beyond equivalence is not defined in this specification.

[relationship] : (QName, URI) (0..unbounded)
A pair of values that indicate how this message relates to another message. The
type of the relationship is identified by a QName. The related message is
identified by a URI that corresponds to the related message’s [message id]
property. The message identifier URI may refer to specific message, or be the
following well-known URI that means “unspecified message:”

http://schemas.xmlsoap.org/ws/2003/03/addressing/id/unspecified

This specification has one predefined relationship type:

QName Description

 10

wsa:Response Indicates that this a response to the message identified by
the URI.

The dispatching of incoming messages is based on three message properties. The
mandatory “destination” and “action” fields identify the target processing location
and the verb or intent of the message. For request-response operations, the “relates
to” field allows distinguishing between the request and response messages.

Due to the range of network technologies currently in wide-spread use (e.g., NAT,
DHCP, firewalls), many deployments cannot assign a meaningful global URI to a
given endpoint. To allow these “anonymous” endpoints to initiate message exchange
patterns and receive responses, WS-Addressing defines the following well-known URI
for use by endpoints that cannot have stable, resolvable URI.

http://schemas.xmlsoap.org/ws/2003/03/addressing/role/anonymous

Requests whose [reply endpoint] and/or [fault endpoint] use this address MUST
provide some out-of-band mechanism for delivering responses or faults. This
mechanism may be a simple request/reply transport protocol (e.g., HTTP GET or
POST). This mechanism MUST NOT be used in the endpoint identifying the
destination endpoint.

3.1. Message Information Headers XML Infoset
Representation
The message information header blocks provide end-to-end characteristics of a
message which can be easily secured as a unit. The information in these headers is
immutable and not intended to be modified along the message path.

The following describes the contents of the message information header blocks:

 <wsa:MessageID> xs:anyURI </wsa:MessageID>

 <wsa:RelatesTo RelationshipType="..."?>xs:anyURI</wsa:RelatesTo>

 <wsa:To>xs:anyURI</wsa:To>

 <wsa:Action>xs:anyURI</wsa:Action>

 <wsa:From>endpoint-reference</wsa:From>

 <wsa:ReplyTo>endpoint-reference</wsa:ReplyTo>

 <wsa:FaultTo>endpoint-reference</wsa:FaultTo>

 <wsa:Recipient>endpoint-reference</wsa:Recipient>

The following describes the attributes and elements listed in the schema overview
above:

/wsa:MessageID
This optional element (of type xs:anyURI) conveys the [message id] property.

/wsa:RelatesTo
This optional (repeating) element information item contributes one abstract
[relationship] property value, in the form of a (URI, QName) pair. The [children]

 11

property of this element (which is of type xs:anyURI) conveys the [message id]
of the related message

/wsa:RelatesTo/@RelationshipType
This optional attribute (of type xs:QName) conveys the relationship type as a
QName. When absent, the implied value of this attribute is wsa:Response.

/wsa:ReplyTo
This optional element (of type wsa:EndpointReferenceType) provides the value
for the [reply endpoint] property.

/wsa:From
This optional element (of type wsa:EndpointReferenceType) provides the value
for the [source endpoint] property.

/wsa:FaultTo
This optional element (of type wsa:EndpointReferenceType) provides the value
for the [fault endpoint] property.

/wsa:To
This required element (of type xs:anyURI) provides the value for the
[destination] property.

/wsa:Action
This required element of type xs:anyURI conveys the [action] property. The
[children] of this element convey the value of this property.

/wsa:Recipient
This optional element (of type wsa:EndpointReferenceType) conveys the entire
endpoint reference of the recipient. Senders MAY elect to add this header as a
processing hint to downstream nodes.

Messages generated in response to message containing message information header
blocks SHOULD contain message information header blocks in the reply message.

The following example illustrates using message information header blocks in a SOAP
1.2 message:

<S:Envelope xmlns:S="http://www.w3.org/2002/12/soap-envelope"

 xmlns:wsa="http://schemas.xmlsoap.org/ws/2003/03/addressing"

 xmlns:f123="http://www.fabrikam123.com/svc53"

>

 <S:Header>

 <wsa:MessageID>uuid:aaaabbbb-cccc-dddd-eeee-ffffffffffff

 </wsa:MessageID>

 <wsa:RelatesTo>uuid:11112222-3333-4444-5555-666666666666

 </wsa:RelatesTo>

 <wsa:ReplyTo>

 <wsa:Address>http://business456.com/client1</wsa:Address>

 </wsa:ReplyTo>

 <wsa:FaultTo>

 <wsa:Address>http://business456.com/deadletters</wsa:Address>

 12

 </wsa:FaultTo>

 <wsa:To S:mustUnderstand="1">mailto:joe@fabrikam123.com</wsa:To>

 <wsa:Action>http://fabrikam123.com/mail#Delete</wsa:Action>

 </S:Header>

 <S:Body>

 <f123:Delete>

 <maxCount>42</maxCount>

 </f123:Delete>

 </S:Body>

</S:Envelope>

This message would have the following property values:

[destination] The URI mailto:joe@fabrikam123.com.

[reply endpoint] The endpoint with [address] http://business456.com/client1.

[fault endpoint] The endpoint with [address]
http://business456.com/deadletters.

[action] http://fabrikam123.com/mail#Delete

[message id] uuid:aaaabbbb-cccc-dddd-eeee-ffffffffffff

[relationship] (wsa:Response,uuid:11112222-3333-4444-5555-666666666666)

4. Security Considerations
It is strongly RECOMMENDED that the communication between services be secured
using the mechanisms described in WS-Security [15]. In order to properly secure
messages, the body and all relevant headers need to be included in the signature.
Specifically, the message information headers described in this specification (e.g.
<wsa:To>) need to be signed with the body in order to "bind" the two together. It
should be noted that for messages traveling through intermediaries, it is possible
that some or all of the message information headers MAY have multiple signatures
when the message arrives at the ultimate receiver. It is strongly RECOMMENDED
that the initial sender include a signature to prevent any spoofing by
intermediaries.

Whenever an address is specified (e.g. <wsa:From>, <wsa:ReplyTo>,
<wsa:FaultTo>, …), the processor SHOULD validate that a signature is provided with
claims allowing it to speak for the specified target in order to prevent certain classes
of attacks.

The message information headers blocks MAY have their contents encrypted in
order to obtain end-to-end privacy, but care should be taken to ensure that
intermediary processors have access to required information (e.g. <wsa:To>).

In some cases, intermediaries MAY add additional message information headers. If
duplicate headers are present, they SHOULD be targeted at different SOAP
actors/roles. If multiple headers are specified for the same actor/role, and have
conflicting information, processors SHOULD favor the information from the initial
sender (or its delegate) unless the processor has additional information allowing it to
make a correct determination and avoid obvious security attacks.

 13

Some processors MAY cache message identifiers (<wsa:MessageID>) in order to
detect replays of messages.

The following list summarizes common classes of attacks that apply to the
mechanisms in this specification and identifies the mechanism to prevent/mitigate
the attacks:

• Message alteration – Alteration is prevented by including signatures of the
message information using WS-Security.

• Message disclosure – Confidentiality is preserved by encrypting sensitive data
using WS-Security.

• Address spoofing – Address spoofing is prevented by ensuring that all address
are signed by a party authorized to speak for (or on behalf of) the address.

• Key integrity – Key integrity is maintained by using the strongest algorithms
possible (by comparing secured policies – see WS-Policy [18] and WS-
SecurityPolicy [16]).

• Authentication – Authentication is established using the mechanisms described in
WS-Security and WS-Trust [17]. Each message is authenticated using the
mechanisms described in WS-Security.

• Accountability – Accountability is a function of the type of and string of the key
and algorithms being used. In many cases, a strong symmetric key provides
sufficient accountability. However, in some environments, strong PKI signatures
are required.

• Availability – All reliable messaging services are subject to a variety of availability
attacks. Replay detection is a common attack and it is RECOMMENDED that this
be addressed by the mechanisms described in WS-Security and/or caching of
message identifiers. Other attacks, such as network-level denial of service
attacks are harder to avoid and are outside the scope of this specification.

5. Acknowledgements
 Michael Coulson, Microsoft; Giovanni Della-Libera, Microsoft; Christopher Ferris,
IBM; Tom Freund, IBM; Steve Graham, IBM; Maryann Hondo, IBM; Efim Hudis,
Microsoft; John Ibbotson, IBM; Gopal Kakivaya, Microsoft; Al Lee, Microsoft; Anthony
Nadalin, IBM; Martin Nally, IBM; Henrik Frystyk Nielsen, Microsoft; Jeffrey
Schlimmer, Microsoft; Keith Stobie, Microsoft

6. References
1. B. Carpenter, Y. Rekhter, "Renumbering Needs Work", RFC 1900, IAB, February

1996

2. S. Bradner, "Key words for use in RFCs to Indicate Requirement Levels", RFC
2119, Harvard University, March 1997

3. T. Berners-Lee, R. Fielding, L. Masinter, "Uniform Resource Identifiers (URI):
Generic Syntax", RFC 2396, MIT/LCS, U.C. Irvine, Xerox Corporation, August
1998

4. R. Hinden, B. Carpenter, L. Masinter, "Format for Literal Ipv6 Addresses in
URL's", RFC 2732, Nokia, IBM, AT&T, December 1999

 14

5. W3C Recommendation "Extensible Markup Language (XML) 1.0 (Second
Edition)", Tim Bray, Jean Paoli, C. M. Sperberg-McQueen, Eve Maler, 6 October
2000 (see "http://www.w3.org/TR/2000/REC-xml-20001006)

6. W3C Recommendation "Namespaces in XML", Tim Bray, Dave Hollander, Andrew
Layman, 14 January 1999 (see "http://www.w3.org/TR/1999/REC-xml-names-
19990114/")

7. W3C Recommendation "XML Information Set", John Cowan, Richard Tobin, 24
October 2001 (see "http://www.w3.org/TR/2001/REC-xml-infoset-20011024/")

8. W3C Recommendation "XML Schema Part 1: Structures", Henry S. Thompson,
David Beech, Murray Maloney, Noah Mendelsohn, 2 May 2001 (see
"http://www.w3.org/TR/2001/REC-xmlschema-1-20010502/")

9. W3C Recommendation "XML Schema Part 2: Datatypes", Paul V. Biron, Ashok
Malhotra, 2 May 2001 (see "http://www.w3.org/TR/2001/REC-xmlschema-2-
20010502/")

10. W3C Recommendation "XML Base", Jonathan Marsh, 27 June 2001 (see
"http://www.w3.org/TR/2001/REC-xmlbase-20010627/")

11. W3C Working Draft "SOAP Version 1.2 Part 1: Messaging Framework", Martin
Gudgin, Marc Hadley, Jean-Jacques Moreau, Henrik Frystyk Nielsen (see
"http://www.w3.org/TR/2002/WD-soap12-part1-20020626/"). This is work in
progress.

12. M. Baker, M. Nottingham, "The 'application/soap+xml' media type", Internet-
Draft draft-baker-soap-media-reg-01, June 2002. This is work in progress.

13. “Web Services Description Language 1.1”, Ariba, IBM, Microsoft, February 2001
(available at “http://www.w3.org/TR/wsdl”)

14. “Business Process Execution Language for Web Services”, BEA, IBM, Microsoft,
August 2002 (available at “http://msdn.microsoft.com/library/en-
us/dnbiz2k2/html/bpel1-0.asp”)

15. "Web Services Security Language", IBM, Microsoft, VeriSign, April 2002.

16. “Web Services Security Policy Language”, IBM, Microsoft, RSA Security, VeriSign,
December 2002.

17. “Web Services Trust Language”, IBM, Microsoft, RSA Security, VeriSign,
December 2002.

18. “Web Services Policy Framework”, BEA, IBM, Microsoft, SAP, December 2002.

