WAP WM |_ Draft Version 3-Feb-1998

Wireless Application Protocol
Wireless Markup Language Specification

Disclaimer:

This document is a draft of the Wireless Markup Language (WML)
specification, and is subject to change without notice.

Draft Version 3-Feb-1998 Page 2 (70)

Contents
S O 1 = SRR 5
2. DO CUMENT ST ATUS ... it e e e e et e s a et e e e s tesa b e seeeesee s bbb baeesesesasababeeassssssbaabeeassssansnrrens 6
2.1 (000 =02 = { T 1 N[0 1 1 [=R ERRN 6
2.2 [l YNy NPTt 6
2.3 (000 1LY 1= 1 ST RPN 6
G T = = O 7
31 NORMATIVE REFERENCESciiittttieeiiiiitttettessieisseeesssesisbssstesssassstssesessssssssssesssassssssssesssassssssssssssssssssesssmsssrssees sene 7
3.2 INFORMATIVE REFERENCES. ... 0uttieiiiiitteeeeeeieiitsteessseiasresessssasisssesssssiassssssssseisssssssesssamsssesssseisssssssesssesssssesssssinns o 7
4. DEFINITIONSAND ABBREVIATIONSttt ettt ettt e s e s st a e e e s s s e bt e e e s e e s saabasseees eeeassesssres 8
41 LD T TN 8
4.2 AABBREVIATIONS ..cetiitiiiiieiitii et et et ettt et etet et etetetetetetetetetetetetet et etetet ettt etet ettt et et etet et et et et et et et et et et et et e tetetet et eseteaeeeeeaeaerenens 9
4.3 [0 A = N4 = = T 10
LTV A Y W N T B I = I TSR 11
51 URL SCHEMES ..1iiiiiiiiitittiee e e eitbiee e e s s setateee s s st estbsaeeessessssbaseeessaasbssaeeseesassbsseeesseaassbasesessassssbensssssansres sasbaseeessessnnres 11
52 FRAGMENT ANCHORS. .. .utttiiiiiiiiiittireeeseeeiiibarreesssesaabaraeeeesssaaasatsseteessasasstssseesssesasbasseesesesaasbabseesesssassntsensesesenian 11
53 (= I WAV =R 0 o IS TSP 11
(ST VA Y I O o N = Y Y O I s N [12
6.1 REFERENCE PROCESSING IMODEL ..vvvvieiiiiiiititieeeeseiiiissreeeeesssesisssssstesssesisssssssssseiassssssessssissssssssssesssssssssssssesssenns 12
6.2 (O TN Y o = 2 = N T =T OO 12
AT\ Y 2 VI 7 GO 13
7.1 NI 5 13
7.2 I Y 0 N S 13
7.3 AATTRIBUTES ..oiiiiitiiiiiiiiei ettt et ettt et ettt et eset et eteteteteteeetet et et eeetet et et et ettt et et et et et et et et et e s et et et e e e s e e ea et ee et eeeaeaeseeetereaeeeeereeeneaens 13
7.4 (000 LY 1= ST 13
7.5 NV ARIABLES.uutiteietteeeeiteteseesteesseaeesssbeeessssesssasasessaabesesassesssabasessssbeesseassesssbenesssnbesesasesssssbnsessabeeesensasssssaneas 14
7.6 CASE SENSITIVITY ttttttiieiiiirureieeeeeiiiittseeeeesesasisssseessssiaasssssessesssasssssssssesssamassssssesssamssssssesesssemssssssssesssemsssrssssesssennns 14
7.7 (O YN AN = T) 14
7.8 PROCESSING INSTRUGCTIONS......ciitttttieeeieiiittreeesssesaaisssseesesssasisstssstesssasssstssssessseiassssssessssisssssssssessssmssssssssesssensns 14
79 EIRRORS ...ttt sttt e e ettt e e e e et e b b e e e e e e e se bbb e e e eaeesesasa b s e eseeesassas b b e eeeeeeesaas b e e eeesesesanababaeeseessaasnnbbaeeeessannns 14
8. CORE WML DATA TYPES ...ttt ettt e et e e ettt s s s bt e e s aab e e s e bt e s s sbaeesssabesesanseeessabaeessabeeesannresessaneas 15
8.1 CHARACTER DATA oottt ettt ettt e e e s e et e e e e e e s e b ab b e eeeessaasba b e e eeesssaa s bbb beesesssessbabbeesesssessbabbneeeassasnes 15
8.2 I L1 15
8.3 VA 15
8.4 FFLOW AND IINLINE . ..ttttttttttieeiteeeeteeteeeeeeeeeeeereeeeeteseseeereretererererereteretererereretereseteteretetereretetetetetetetetetetereterererererereren 15
85 L1 RO R 15
8.6 L= 1070 I8 =Y N 16
8.7 L LU =] = OO PSRN 16
9. EVENTSAND NAVIGATION. .ttt ee ettt e s e te e s s s e e e s ebae s s sasbesesasbeeasabeesssasseessassesesabeeesansresssaseneas 17
9.1 NAVIGATION AND EVENT HANDLINGcoiiitttiiiie e e ieiititreee e e e sesiabreee e e s sessasbsseeesesesansbasseesesssensbssssesesssasssntsnesesssennns 17
9.2 [(ST 2 A USSR 17
9.3 LN S TN 17
9.4 CARD/DECK TASK SHADOWINGvviiiteeiiteiestteissesessesessessssssesssssssessssssssssssssesssssssssesssssssssssssssssesssssesssssssssessssness 19
95 THE DO ELEMENT .eutttttiiiieieettttiee e e e s ebbtseesesssessbbsseesesssassbasseesesssassbabaeeeesssessssbasesaessessasbasesesssesnsbanasesssesassbaneneasas 19
9.6 ANCHORED LINKS = THE A ELEMENTS....citttiiitiiiiiiiiieieeeieiet et ettt et e s e e eeee et st st et sa e s et et esesese s st eae s e e et et e e et ee et e s eseteaeaeseaeaens 21
WAP Confidential 0 Copyright Wireless Application Protocol Forum, 1998

All rights reserved

Draft Version 3-Feb-1998 Page 3 (70)

9.7 INTRINSIC EVENT S .. tttiiiiie ettt e et ettt e e e e s e s e bbb e e e e et e b ab e e e e eeesassbabseeeeessasssabaeeseaesesasbanaeesesesasbabeeeseessanssrens 21
9.7.1 ThE ONEVENT ELEIMENL.....coiitiiictieiiie ettt ste s st s st sbe s sab e s sbessabe s sabessabessabessasessabessseessabessneness 22
9.7.2 Card/DECK INEIINSIC EVENTS.......ceveie ittt ee s ettt e e st e e e s s abe e e s esbbessssaesssssbeessasbesesssreessarenesaas 23

1O, THE STATE MODEL ..ttt ettt e e ta e e s s bt e s et e e e s eaaa e e s sbeee s e sbasssassseessbesassasbesesassensssarenesans 24

J1O.1 THE BROWSER CONTEXT tiiiiiiiiiitutiiiieeiieiistesetesssesissssssesssesssssssssesssssssssssssesssesssssssssssssssssssssssssssssssssseesssssssssssns 24

10.2 THENEWGCONTEXT ATTRIBUTE .iiiiiiiitttiiieiiiiitttiesssesstsessssssessssssesssssssbssssssssessssssssessssssssssessssssssssssesssssssssseses 24

O T Y 7Y =17 =T I =SSR 24
10.3. 1 Variable SUDSHTULION.......cooiceeieeiieie et eeee e et e e e et e e s e e s s st e e s seaseeessabaeassstesssessssessaseessasbesssasaesssasenasans 24
10.3.2 Parsing the Variable SUDStITULION SYNEAX.......cc.ccieieiiiiiicirieeiese e e e st nes 26
10.3.3 The Dollar-Sign CharaClerciieiiieeeieeieseste s e e e e sae s sre st e e e e e e e e seesbesaeen e seentesneereeneeneenes 26
O S = 1] 10 V7= T = o] = S 26

11. THE STRUCTURE OF WML DECKS ...ttt ettt e e e e e s st e s s ebae s s sssaea s ssbsesssanbessssnneesssbeneeans 27

111 DOCUMENT PROLOGUE....cciiiiiiiitttiteteeeieiiitreeeesssesisbsseeesssesssstssssessseiassbasesesssesasbasssessssiasssssssssssssassssssnesessseassssres 27

O I T VA I I Y = N R 27
1121 AWML EXAITPIE ...ttt sttt sttt b bbb bt b e et b e b et b s et e b et b e ne e st et nnene e 27

11.3 COMMON DECLARATIONS.....ciiiittttitteeeieiiistrettesssessibssetesssesssbsssteassessisbasstesssesssbssstesssssssssssssessssssssssseessssssssssens 28
11.3. 1 ThE COMMON EIEIMENL.....eeiieicteie et eetee ettt e e et e e s ee e e e e be e e s sateesssbaeeassstesesessesssbenessasbesesasseassasenessns 28
T 1 0 1Y AN OO s Y = <0 1< | TR 28
T T I 0 TN IV | Y =17 SRR 29
I R 1 TS O (o I 10 | 30

114 THE CARD ELEMENTS. .uuttiiiiiiiiiiittieeieeeieiistreetesssesisbsaesesssesasstssssesssesasstasssesssesassssssessssissssssssssssssasssssseesesssensssnnes 31
I 3t R O o [N (o111 (R 31
O U T Y 2 A B N [o U (R 31
11.4.3 TheFORMCARD EIEMENEcoiiiiiieiiitee ettt sttt stee st e s aee s s be s ssbesssbesesbessbessbesssbessasessabessasesssbessnseesnns 32

11.4.3.1 A FORMCARD EXAMPIE ...ttt sttt s st e s b et e e e e ene st e be e esenseseenesseebeseenseneans 33
O R 1 LY O o (@ L@ <1 0= | R 33
T I LY D] 1S o I N <1 1< | 34
N T 1 0 TN o N I R A A = 1= 110 0| SRR 34
11,47 ThE NODISPLAY EIEMENT......coi ittt ettt e s e st e s st e e e s sba e e s ebteesseseseessabeeesasbesesasansssarenesaas 35

S T O i = o I I =Y 1= N ST 36

R T S < 1< o I £ =R 36
115.1.1 RS = I O I 1= o | T 36
115.1.2 R X O HEO N = 1= 1101 o SO 37
115.1.3 ThE OPTGROUP ELEMENLeeiiieie ettt ettt e e st e e sttt s s e te e s s ateessabeesssseaessabesesbesssasssesesssseessassnssssnssassens 37
11514 SEECE ISt BXAIMPIES..... ettt e b e Rt e e st e R et e et r st ne b e e n e e e nenas 38

ST 1 L= O I = 4= | 38
115.2.1 INPUT El€MENt EXBMPIES.......ciitieeieeeieete sttt sttt e e eaessesaesee s e e esesaesee e esessenseseeneesesseseenseneans 40

11.5.3 ThE FIELDSET ElBMENT.....cceiictii ettt tee e tee st e st e s s aesssbessebesssbes s besssbessbesssbesssesssbesesessbessnsensnns 40
115.3.1 FIELDSET EIeMENt EXAMPIESuoiieieeieieeee ettt sttt sttt aeseeste e e e s ae e eneeneeneseesaeneenean 41

G I =5 OO PRRTRRRPRS 42
0 VY oL (= o= Vo= S 42
G 1 410 7= K TSSOSO TSR U TSR PTSTR PSR 42
T T I 1 0 TSN === 1R 42

11631 LiNE Break EXAIMPIESc.o vttt s et et e bt ne b e n et e e nen e nn e 43
O T S =« 0o 03 R 44

N A 1 Y X TSRO 44

12, USER AGENT SEM ANT I CS . ..ottt ettt ettt e ettt e e s ettt e s s et e e e s eaeeessebeeessasbesesesaaeessbssesasbesssasssessserenesaas 46

12,1 DECK ACCESS CONTROL..eciiiiiiitutteeteeeisiissssetesssesiissssssesssesissssstesssesissssstesssessssssssesssesmmsssseessssimmsssseesssssmssssse 46

12.2 LOW-IMEMORY BEHAVIOURuuutiiiiiiiiiiiitiiiiee e esittiie e s e s e seabbassseassessaabaasseassesssabassseassesassbabaeesssssasbasseesssssansbanens 46
1221 LIMIEO HISIOTY .ottt ettt b e e bt b et ee et b e ns et st e e et st e ne e 46
D W 1 4 1 (<o O o T S 46
12.2.3 Limited BroWSEr CONMEXE SIZE......ccouiiieeiiceiecteeeeee ettt ettt e e stee e st e e s be e s sbe s s s besssbesssbessbessabesssbessbessbessnsensnns 46

12.3 ERROR HANDLINGttttiiiieiiiiitieee e e e s esiabree e e s s s e ssaabaeeeesesesssabaseeeessesaaabasesesasesasabasesesssesasbaseeesesssanabssseeseessansnrens 46

12.4 REFERENCE PROCESSING BEHAVIOUR - INTER-CARD NAVIGATIONtuttitiiieiiiririeeeeeeiiirsreeesesesessssseesesssassssnens 47

12.5 SCRIPT INVOCATION L.uuuutiieieeiiiiiutteeeeseseiistssetesssasissssssesssesssssssssessssissssssssesssesssssssssessssissssssssssssssasssssessesssensssens 47

WAP Confidential O Copyright Wireless Application Protocol Forum, 1998

All rights reserved

Draft Version 3-Feb-1998 Page 4 (70)

13. WML REFERENCE INFORMATION ..ottt ittt ettt s e sve e s teesaeeste e ssaeesateesaseeseesnteesnseessns sesnseesnnes 49
13.1 DOCUMENT IDENTIFIERS.....ceeeiittteisiueeeeiiteeeeaasesesasseeessseeesassesesasnsesssasssseaasesssanssssessssseesansesssanssesesnsssessssssnesannes 49
G 70 0 RS €11/ I =0 o o Ko (= o1 (1= USSR 49
1312 VWML MBI TYPE. .ttt sttt sttt st b st b e st b e st b e et b e et b e et h e e bt e b e s e et bt e s b e ne b et e st et e e neee 49
13.2 DOCUMENT TYPE DEFINITION (DTD)...citiieuiitinieiintirieiestenieiesiesee sttt ss s s nn e 50
14. A COMPACT BINARY REPRESENTATION OF WML ..ottt sttt st e sae 55
T |V 1Oy o =2 = N == = L R 55
14.2 CHARACTER ENCODING......coiiiitiiiieitie e cittee e e ettt e e ettt e e ettt e e eeateeeeeaaeeeesetaeeeaaabasaeeaseeeessseeaeasbaeesanssesesnsseeasansenanannes 55
14.3 BNF FOR DOCUMENT STRUCTUREceiiiittteeeiteeeesseesesiteeessastesesasssesesnsssssassesssanssssesasssessassesesssssesssnsssessassenesannes 56
144 LANGUAGE VERSION NUMBERcciiuttteittteeeiteeessueeesstseeesasteeesassesssnssessssssesssasssssesassssssssesssasssesssnssesssnsenssannes 56
T =N R 17 =SSN 56
14.6 TOKEN STRUCTUREucetiitieeeesteeesseteeesiteeesaatesesassesssseeessassesesasssssssassssssasesesanssssesasssessasesssanssesesnsssesssssenesannes 57
T14.6.1 Parser SAtE MACKINE.......ceectieireeitieteciesee st e st e steeete st e eaeesbeeebe e beeabessbesbsesbeesbeesbeeabesnsesaseensesssesreesseesteentens 57
14.6.2 TAG COUE SPACEeeuieeneeterieeete sttt sttt sttt et b e et b e et b e se e st e b e se e st e b e s e eh e e b e e e e bt e b et e b e ebene et e ne e st et e nneneee 58
14.6.3 Attribute Code Space (ATTRSTART and ATTRVALUE) ..ottt 58
N A €1 To o 7= I K0] (= aTOO RO OPRRROOY
14.6.4.1 L 100 RO RRRSS
14.6.4.2 V= = o] [
146.4.3 Opaque Déta..............
146.4.4 Character Entity
14.6.45 UNKNOWN Tag OF ALHTDULE NBIME........cuiieiiieiieie et sr et neen e n e nnenea 60
14.6.4.6 MiSCElaNEOUS CONEIOl COUES........cueeueireitiieiieeeie st s ettt st st e st et e e e ae s te st e see s e e eseesesbe s shesbesbessenseseesesrensenseneas 60
TA.6.4.6. 1 EIND TOKEN......ciiiieiitiitieiteieecte et e etesteeeteebeetesbessseabesssesbesaeebesbeenbesbessseabeeatesbeeaseabes sbeeasesbesaeenseassentesbeenneabesatas 60
14.6.4.6.2 COdE Page SWITCh TOKEN.......ccuiiiiieieicieite sttt r et ae e st e st et et ese s sbesbesaenseseenestesbeseensens 60
14.6.4.7 RESEIVEA TOKENS.......ecuiiiieieciete sttt sttt ettt e et be e b e st et e e esaebeebesbesbense sebeebessessenseseeassteabeseenseneereas 61
14.7 ENCODING SEMANTICS ttiiiiiteteeeitteeeiitteeeeaiteeesetsseeesataeeaaateseeaasseaesasseeaaastesasaassssesasseeaaastesesanssesesasseeasssenasanses 61
1471 ENCOAING the CE ETEMENToouiiiiiieeie ettt bbbttt e e 61
1472 Encoding the CHOICE EIEIMENT..........coiiieiierieesie ettt sttt st 61
14.7.3 ENCOAiNG the DISPLAY CArd......cccoiiieiiierieieie sttt sttt sttt st s se et s b e et b ettt st e s 61
1474 ENncoding the ENTRY EIEIMENTccviiiiiie st seese sttt e ae st te sttt e s e a et e testentesneeneeneeneenes 62
14.75 Encoding the NODISPLAY Cardccccciieiiiieieeieieeieesiesteseseestesesseessessesseseestessessesssessessessessessessssssssenes 62
1476 ENcoding the SCRIPT EIEIMENTccviieieiise ettt se et st sreene e enaesaestesneeneeneeneenes 62
14.7.7 Encoding the VERSION AtTIDULEccccieiiie ettt e e sae e s ere e e e s 62
14.8 NUMERIC CONSTANTS et ittteeiiteeeesnteeesateresaateresasseeesaseeeasastesesaassesesasesesaassesssanssseesassseesassesssasssesesnsssessssseressnes 63
TA.8.1 GlODAI TOKENS.....ciiiitieitiiiti it ettt et e et e et e e ebeebesttesteesbeesbeesbeesesasesaeeebeesbeasbesabessbesabesbeesbbeenseensessseareesbeesbeentens 63
TA.8.2 TAY TOKENS. ...tttk ettt et b e et b e s et b e s e he b e se e Rt e b s e e he e b e e e bt e b e et e e e et e b e s b e neebene e st st e e eneee 64
14.8.3 ALIDULE STAIT TOKENSc.vvieceeectiee ettt ee ettt ee e e st e e et e e sabeesaee e sabeesaseesbseeeseeesbseenseesnbesenseeebesensnennts 65
14.8.4 ALITDULE VAIUE TOKENS......icceeiitie ettt et ette et e et e e et e e ebe e e eaeeesbseesbeeesbeeesseeebeseasesebeseaseesbesensessbesenseennts 67
14.9 WML ENCODING EXAMPLES.......ccoittieeiitiie e ettt eette e e ettt e e e ettt e e e eaeeeesetaeeeeaabeeeeeaseeeessseeeaasbaeesanssesesasseeasantenanannes 68
L1491 A SIMPIEDECKc.eitiiieeete ittt b et e et b et b e e st b e e bt bRt bRt b e et b e et b e e 68
1492 AN EXPANAEA DECK......ccui ittt sttt sttt b e e bt bt be b b et s b e et b e et e 69
WAP Confidential O Copyright Wireless Application Protocol Forum, 1998

All rights reserved

Draft Version 3-Feb-1998 Page 5 (70)

1. Scope

Wireless Application Protocol (WAP) isaresult of continuous work to define an industry wide standard for developing
applications over wireless communication networks. The scope for the WAP working group is to define a set of
standards to be used by service applications. The wireless market is growing very quickly and reaching new customers
and services. To enable operators and manufacturers to meet the challenges in advanced services, differentiation and
fast/flexible service creation, WAP defines a set of protocolsin transport, session and application layers. For additional
information on the WAP architecture, refer to "Wireless Application Protocol Architecture Specification” [WAP].

This specification defines the Wireless Markup Language (WML). WML isa markup language based on [XML], and
isintended for use in specifying content and user interface for narrowband devices, including cellular phones and

pagers.
WML is designed with the constraints of small narrowband devicesin mind. These constraints include:
e Small display and limited user input facilities

* Narrowband network connection

e Limited memory and computational resources

WML includes four major functional areas:

* Text presentation and layout - WML includes text and image support, including a variety of formatting and layout
commands. For example, boldfaced text may be specified.

» Deck/card organisational metaphor - all information in WML is organised into a collection of cards and decks.
Cards specify one or more units of user interaction (e.g. a choice menu, a screen of text or atext entry field).
Logically, a user navigates through a series of WML cards, reviews the contents of each, enters requested
information, makes choices, and moves on to another card.

Cards are grouped together into decks. A WML deck issimilar to an HTML page, in that it isidentified by a URL
[RFC1738], and is the unit of content transmission.

e Inter-card navigation and linking - WML includes support for explicitly managing the navigation between cards
and decks. WML also includes provisions for event handling in the device, which may be used for navigational
purposes, or to execute scripts. WML also supports anchored links, similar to those found in [HTMLA4].

e String parameterization and state management - all WML decks can be parameterised, using a state model.
Variables can be used in the place of strings, and are substituted at run-time. This parameterization allows for
more efficient use of network resources.

WAP Confidential 0 Copyright Wireless Application Protocol Forum, 1998
All rights reserved

Draft Version 3-Feb-1998 Page 6 (70)

2. Document Status

This document is apreliminary draft. It is published to solicit comments from WAP members and other interested
parties. The document is subject to change without any notice. It may be updated, replaced, or dropped at any time.
Publishing the document does not imply endorsement nor doesit imply that it will be part of a published WAP standard
or recommendation. Contents of this draft reflect "work in progress.” Any references to the document’s content should
only cite them as "work in progress."

This document is available online in the following formats:

* PDFformat at URL, http://www.wapforum.org/TBD/.

2.1 Copyright Notice

© Copyright Wireless Application Forum Ltd, 1998 all rights reserved.

Licenses covering this document are published at http://www.wapforum.org/TBD/.

2.2 Errata

Known problems associated with this document are published at http://www.wapforum.org/TBD/.

2.3 Comments

Comments regarding this document can be submitted to the WAG working group in the manner published at
http://www.wapforum.org/TBD/.

WAP Confidential 0 Copyright Wireless Application Protocol Forum, 1998
All rights reserved

Draft Version 3-Feb-1998 Page 7 (70)

3. References

3.1 Normative References

[1SO10646] "Information Technology - Universal Multiple-Octet Coded Character Set (UCS) - Part 1:
Architecture and Basic Multilingual Plane", |SO/IEC 10646-1:1993.

[RFC822] "Standard for the Format of ARPA Internet Text Messages', STD 11, RFC 822, D. Crocker,
August 1982. URL: ftp://ds.internic.net/rfc/rfc822.txt

[RFC1738] "Uniform Resource Locators (URL)", T. Berners-Lee, et al., December 1994. URL.:
ftp://ds.internic.net/rfc/rfcl1738.txt

[RFC1808] "Relative Uniform Resource Locators"’, R. Fielding, June 1995. URL.:
ftp://ds.internic.net/rfc/rfc1808.txt

[RFC2045] "Multipurpose Internet Mail Extensions (MIME) Part One: Format of Internet Message Bodies',
N. Freed, et a., November 1996. URL: ftp://ds.internic.net/rfc/rfc2045.txt

[RFC2048] "Multipurpose Internet Mail Extensions (MIME) Part Four: Registration Procedures’, N. Freed, et
al., November 1996. URL: ftp://ds.internic.net/rfc/rfc2048.txt

[RFC2068] "Hypertext Transfer Protocol - HTTP/1.1", R. Fielding, et a., January 1997. URL.:
ftp://ds.internic.net/rfc/rfc2068.txt

[RFC2119] "Key words for usein RFCsto Indicate Requirement Levels', S. Bradner, March 1997. URL:

ftp://ds.internic.net/rfc/rfc2119.txt

[UNICODE] "The Unicode Standard: Version 2.0", The Unicode Consortium, Addison-Wesley Developers
Press, 1996. URL.: http://www.unicode.org/

[WAE] "Wireless Application Environment Specification”, WAP Forum, January 30, 1998. URL.:
http://www.wapforum.org/

[WAP] "Wireless Application Protocol Architecture Specification, version 0.9", Wireless Application
Protocol Architecture Working Group, 1997. URL: http://www.wapforum.org/

[WSPF] "Wireless Session Protocol”, WAP Forum, January 30, 1998. URL: http://www.wapforum.org/

[XML] "Extensible Markup Language (XML), W3C Proposed Recommendation 8-December-1997, PR-

xml-971208", T. Bray, et a, December 8, 1997. URL: http://www.w3.org/TR/PR-xml

3.2 Informative References

[HDMLZ2] "Handheld Device Markup Language Specification”, P. King, et al., April 11, 1997. URL.:
http://www.uplanet.com/pub/hdml_w3c/hdml 20-1.html

[HTMLA4] "HTML 4.0 Specification, W3C Recommendation 18-December-1997, REC-HTML40-971218",
D. Ragugett, et al., September 17, 1997. URL: http://www.w3.org/TR/REC-html|40

[1S08879] "Information Processing - Text and Office Systems - Standard Generalised Markup Language

(SGML)", SO 8879:1986.

WAP Confidential 0 Copyright Wireless Application Protocol Forum, 1998
All rights reserved

Draft Version 3-Feb-1998 Page 8 (70)

4. Definitions and Abbreviations

4.1 Definitions

The following are terms and conventions used throughout this specification.

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT",
"RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in [RFC2119].

Author - an author isaperson or program that writes or generates WML, WML Script or other content.

Bytecode - content encoding where the content is typically a set of low-level opcodes (i.e., instructions) and operands
for atargeted hardware (or virtual) machine.

Card - asingle WML unit of navigation and user interface. May contain information to present on the screen,
instructions for gathering user input, etc.

Client - adevice (or application) that initiates a request for connection with a server.

Client Server Communication - communication between a client and a server. Typically the server performs atask
(such as generating content) on behalf of the server. Results of the task are usually sent back to the client (e.g.,
generated content.)

Content - synonym for resources.

Content Encoding - when used as a verb, content encoding indicates the act of converting content from one format to
another. Typically the resulting format requires less physical space than the original, is easier to process or store,
and/or is encrypted. When used as a noun, content encoding specifies a particular format or encoding standard or
process.

Content For mat - actual representation of content.

Content Generator - devices (or applications) that generate or format content. Typically content generators are on
origin servers.

Deck - acollection of WML cards. A WML deck isaso an XML document. May contain WML Script.

Device - anetwork entity that is capable of sending and receiving packets of information and has a unique device
address. A device can act as both aclient or a server within a given context or across multiple contexts. For example, a
device can service anumber of clients (as a server) while being a client to another server.

Deprecated - an element, attribute or other construct that is outdated by other constructs and should not be used by
applications. Deprecated constructs remain in the specification for a variety of purposes, including ease of application
migration, backward compatibility, etc. Deprecated elements may become obsolete in a future specification.

JavaScript - ade facto standard language that can be used to add dynamic behaviour to HTML documents. Also
known as ECM A Script.

Obsolete - this term indicates a construct or element that is no longer supported, and for which there is no guarantee of
support by a given user agent.

Origin Server - the server on which a given resource resides or isto be created. Often referred to as aweb server or an
HTTP server.

Peer -to-peer - direct communication between two terminals typically thought of as clients without involving an
intermediate server. Also known as client-to-client communication.

Resour ce - A network data object or service that can be identified by a URL. Resources may be available in multiple
representations (e.g. multiple languages, data formats, size, and resolutions) or vary in other ways.

Server - adevice (or application) that passively waits for connection requests from one or more clients. A server may
accept or reject a connection request from aclient.

WAP Confidential 0 Copyright Wireless Application Protocol Forum, 1998
All rights reserved

Draft Version 3-Feb-1998 Page 9 (70)

SGML - the Standardised Generalised Markup Language (defined in [ISO8879]) is a general-purpose language for
domain-specific markup languages.

Terminal - adevice. Also called amobile terminal or mobile station.
Transcode - the act of converting from one character set to another, e.g., conversion from UCS-2 to UTF-8.
User - auser is a person who interacts with a user agent to view, hear, or otherwise use aresource.

User Agent - auser agent is any software or device that interprets WML. This may include textual browsers, voice
browsers, search engines, etc.

WML Script - ascripting language used to program the mobile device. WML Script is an extended subset of the
JavaScriptd scripting language.

XML - the Extensible Markup Language is a World Wide Web Consortium (W3C) proposed standard for Internet
markup languages, of which WML is one such language. XML isarestricted subset of SGML.

4.2 Abbreviations

For the purposes of this specification, the following abbreviations apply.

API Application Programming Interface
BNF Backus-Naur Form
Cal Common Gateway Interface
ECMA European Computer Manufacturer Association
ETSI European Telecommunication Standardisation Institute
GSM Global System for Mobile Communication
HDML Handheld Markup Language [HDML 2]
HTML HyperText Markup Language [HTML4]
HTTP HyperText Transfer Protocol [RFC2068]
IANA Internet Assigned Number Authority
IMC Internet Mail Consortium
LSB Least Significant Bits
M SB Most Significant Bits
MSC Mobile Switch Centre
PDA Personal Digital Assistant
RFC Request For Comments
SAP Service Access Point
SGML Standardised Generalised Markup Language [1SO8879]
SSL Secure Socket Layer
TLS Transport Layer Security
URI Uniform Resource Identifier
URL Uniform Resource Locator [RFC1738]
URN Uniform Resource Name
w3C World Wide Web Consortium
WAE Wireless Application Environment
WAP Wireless Application Protocol [WAP]
WBMP Wireless BitMaP
WSP Wireless Session Praotocol [WSP]
WTA Wireless Telephony Applications
WTAI Wireless Telephony Applications Interface
WTP Wireless Transport Protocol
www World Wide Web
XML Extensible Markup Language [XML]
WAP Confidential O Copyright Wireless Application Protocol Forum, 1998

All rights reserved

Draft Version 3-Feb-1998 Page 10 (70)

4.3 Device Types

WML is designed to meet the constraints of a wide range of small, narrowband devices. These devices are primarily
characterised by four constraints:

Display size - limited screen size and resolution. A small mobile device such as a phone may only have a few lines
of textual display, each line containing 8-12 characters.

Limited input characteristics - alimited, or special-purpose input device. A phone typically has a numeric keypad
and a few additional function-specific keys. A more sophisticated device may have software-programmable
buttons, but may not have a mouse or other pointing device.

Limited computational resources - limited CPU and memory, often limited by power constraints.

Narrowband network connectivity - limited bandwidth and high latency. Devices with 300 baud network
connections and 5-10 second round-trip latency are not uncommon.

This document uses the following terms to define broad classes of device functionality:

Phone - a phone-class deviceis limited in all major areas. Thetypical display size ranges from two to ten lines.
Input is usually accomplished with a combination of a numeric keypad and a few additional function keys.
Computational resources and network throughput is typically limited, especially when compared with more
general-purpose computer equipment.

PDA - aPersonal Digital Assistant is adevice with abroader range of capabilities. When used in this document, it
specifically refersto devices with additional display and input characteristics. A PDA display often supports
resolution in the range of 160x100 pixels. A PDA may support a pointing device, handwriting recognition, and a
variety of other advanced features.

These terms are meant to define very broad descriptive guidelines and to clarify certain examples in the document.

WAP Confidential 0 Copyright Wireless Application Protocol Forum, 1998

All rights reserved

Draft Version 3-Feb-1998 Page 11 (70)

5. WML and URLs

The World Wide Web is a network of information and devices. Three areas of specification ensure widespread
interoperability:

* A unified naming model. Naming isimplemented with Uniform Resource Locators (URLS), which provide
standard way to name any network resource. See [RFC1738].

» Standard protocolsto transport information (e.g. HTTP).
e Standard content types (e.g. HTML, WML).

WML assumes the same reference architecture asHTML and the World Wide Web. Content is named using URLS,
and is fetched over standard protocols that have HTTP semantics, such as[WSP]. URLs are defined in [RFC1738].
The character set used to specify URLsis also defined in [RFC1738].

In WML, URLs are used in the following situations:
« When specifying navigation, e.g., hyperlinking.

e When specifying external resources, e.g., an image or a script.

5.1 URL Schemes

WML browsers must implement the URL schemes specified in [WAE].

5.2 Fragment Anchors

WML has also adopted the HTML de facto standard of naming locations within aresource. A WML fragment anchor
is specified by the document URL, followed by a hash mark (#), followed by a fragment identifier. WML uses
fragment anchors to identify individual WML cards within a WML deck and to identify function names defined in a
SCRIPT element (see sections 11.3.4 and 12.5 for more information). If no fragment is specified, a URL names an
entire deck. In some contexts, the deck URL also implicitly identifies the first card in a deck.

5.3 Relative URLS

WML has also adopted the use of relative URLS, as specified in [RFC1808]. [RFC1808] specifies the method used to
resolve relative URLs in the context of aWML deck. The base URL of aWML deck isthe URL that identifies the
deck.

WAP Confidential 0 Copyright Wireless Application Protocol Forum, 1998
All rights reserved

Draft Version 3-Feb-1998 Page 12 (70)

6. WML Character Set

WML isan XML language, and inherits the XML document character set. In SGML nomenclature, a document
character set isthe set of all logical characters that a document type may contain (e.g. the letter 'T"), and a fixed integer
identifying that letter. An SGML or XML document is simply a sequence of these integer tokens, which taken together
form a document.

The document character set for XML and WML isthe Universal Character set of 1SO/IEC-10646 ([1 SO10646]).
Currently, this character set isidentical to Unicode 2.0 ((UNICODE]). WML will adopt future changes and
enhancements to the [XML] and [ISO10646] specifications. Within this document, the terms 1SO10646 and Unicode
are used interchangeably, and indicate the same document character set.

There is no requirement that WML decks be encoded using the full Unicode encoding (e.g. UCS-4). Any character
encoding ("charset") that contains an inclusive subset of the characters in Unicode may be used (e.g. US-ASCII, ISO-
8859-1, UTF-8, etc.). Documents not encoded using UTF-8 or UTF-16 must declare their encoding as specified in the
XML specification.

6.1 Reference Processing Model
The WML reference-processing model is as follows. User agents must implement this model, or amodel that is
indistinguishable from it.

* Theuser agent must correctly map a document’s external character encoding to Unicode before processing the
document in any way.

e Any processing of entitiesis done in the document character set.

A given implementation may choose any internal representation (or representations) that is convenient.

6.2 Character Entities

WML supports both named and numeric character entities. An important consegquence of the reference processing
model isthat all numeric character entities are referenced with respect to the document character set (Unicode), and not
to the current document encoding (charset).

This meansthat Į awaysrefersto the samelogica character, independent of the current character encoding.
WML supports the following character entity formats:

* Named character entities, such as&anp; and &l t;

+ Decima numeric character entities, such as

* Hexadecimal numeric character entities, such as

Six named character entities are particularly important in the processing of WML.:

<IENTITY quot """> <l-- quotation mark -->
<IENTITY anp " & #38; "> <! -- anpersand -->
<IENTITY It " & #60; "> <l -- |ess than -->
<IENTITY gt " > " > <l-- greater than -->

<IENTITY nbsp " "> <l'-- non-breaki ng space -->
<IENTITY shy "­ " > <!-- soft hyphen (discretionary hyphen) -->

WAP Confidential 0 Copyright Wireless Application Protocol Forum, 1998
All rights reserved

Draft Version 3-Feb-1998 Page 13 (70)

7. WML Syntax

WML borrows most of its syntactic constructs from XML. Refer to [XML] for in-depth information on syntactical
issues.

7.1 Entities

WML text can contain numeric or named character entities. These entities specify specific characters in the document
character set. They are used to specify characters which must be escaped in WML, or which may be difficult to enter
in atext editor. For example, the ampersand (&) is represented by the named entity &anp; . All entities begin with an
ampersand, and end with a semicolon.

WML isan XML language, and thisimplies that the ampersand and less-than characters must be escaped when they are
used in textual data, i.e., these characters may appear in their literal form only when used as markup delimiters, within a
comment, etc. See[XML] for more details.

7.2 Elements

Elements specify all markup and structural information about aWML deck. Elements may contain a start tag, content,
and an end tag. Elements have one of two structures:

<tag> content </tag>
or

<t ag/ >
Elements containing content are identified by a start tag (<t ag>) and an end tag (</ t ag>). An empty-element tag
(<t ag/ >) identifies elements with no content.

7.3 Attributes

WML attributes specify additional information about an element. More specifically, attributes specify information
about an element that is not part of the element’s content. Attributes are always specified in the start tag of an element.
For example,

<tag attr="abcd"/>
Attribute names are an XML NAME and are case sensitive.
XML requiresthat all attribute values be quoted using either double quotation marks (") or single quotation marks ().

Single quote marks can be included within the attribute value when the value is delimited by double quote marks, and
vice versa. Character entities may be included in an attribute value.

7.4 Comments

WML comments follow the XML commenting style, and have the following syntax:
<l-- a coment -->

Comments are intended for use by the WML author and should not be displayed by the user agent. WML comments
cannot be nested.

WAP Confidential 0 Copyright Wireless Application Protocol Forum, 1998
All rights reserved

Draft Version 3-Feb-1998 Page 14 (70)

7.5 Variables

WML cards and decks can be parameterised using variables. To substitute a variable into a card or deck, the following
syntaxes are used:

$identifier
$(identifier)
$(identifier:conversion)

Parentheses are required if white space does not indicate the end of avariable. Variable syntax has the highest priority
in WML, i.e., anywhere the variable syntax is legal, an unescaped '$' character indicates a variable substitution.
Variable references are legal in any PCDATA and in any attribute value identified by the vdat a entity type (see section
8.3).

A sequence of two dollar signs, e.g., $$ represents a single dollar sign character.

See section 10.3 for more information on variable syntax and semantics.

7.6 Case Sensitivity

XML is acase-sensitive language; WML inherits this characteristic. No case folding is performed when parsing a
WML deck. Thisimpliesthat all WML tags and attributes are case sensitive. In addition, any enumerated attribute
values are case sensitive.

7.7 CDATA Section

WML uses XML CDATA sections to encapsulate non-WML content, e.g. scripts or other literal text. CDATA sections
begin with the string "<! [CDATA[" and end with the string "]] >". For example:

<I[CDATA[this is a test]]>
Any content contained in a CDATA section istreated as literal text for the purposes of parsing WML.

7.8 Processing Instructions

WML makes no use of XML processing instructions beyond those explicitly defined in the XML specification.

7.9 Errors

Illegal syntax must be treated as an error. Unknown elements or attributes should be ignored. Any WML deck which
isnot well-formed and valid, as defined by the [XML] specification must be treated as an error.

WAP Confidential 0 Copyright Wireless Application Protocol Forum, 1998
All rights reserved

Draft Version 3-Feb-1998 Page 15 (70)

8. Core WML Data Types

8.1 Character Data

All character datain WML is defined in terms of XML datatypes. In summary:
» CDATA - text which may contain numeric or named character entities. CDATA is used only in attribute values.

e PCDATA - text which may contain numeric or named character entities. Thistext may contain tags (PCDATA is
"Parsed CDATA"). PCDATA isused only in elements.

* NMI'CKEN - a name token, containing any mixture of name characters, as defined by the XML specification.
See [XML] for more details.

8.2 Length

<IENTITY %Il ength "CDATA"> <l-- nn for pixels or nn%for percentage

length -->
Thel engt h type may either be specified as an integer representing the number of pixels of the canvas (screen, paper)
or as a percentage of the available horizontal or vertical space. Thus, the value "50" means fifty pixels. For widths, the
value "50%" means half of the available horizontal space (between margins, within a canvas, etc.). For heights, the
value "50%" means half of the available vertical space (in the current window, the current canvas, etc.).

The integer value consists of one or more decimal digits ([0-9]) followed by an optional percent character (%). The
| engt h typeisonly used in attribute values.

8.3 Vdata

<IENTITY % vdat a " CDATA" > <l-- attribute value possibly containing
vari abl e references -->

Thevdat a type represents a string that may contain variable references (see section 10.3). Thistypeisonly used in
attribute values.

8.4 Flow and Inline

<IENTITY %l ayout "BR'>

<IENTITY %inline "Yext; | %ayout;">

<IENTITY % fl ow "% nline, | IMG]| A'>

Thef | owtype represents "card-level" information. Thei nl i ne type represents "text-level" information. In general,
f | owis used anywhere general content can beincluded. Thei nl i ne type indicates areas that only handle pure text
or variable references.

8.5 URL

<IENTITY % URL "OQwdata; "> <!-- URL or URN designating a hypertext
node. May contain variable references -->

The URL type refersto either arelative or absolute Uniform Resource Locator [RFC1738]. See section 5 for more
information.

WAP Confidential 0 Copyright Wireless Application Protocol Forum, 1998
All rights reserved

Draft Version 3-Feb-1998 Page 16 (70)

8.6 Boolean

<IENTI TY % bool ean " (TRUE| FALSE) " >
Thebool ean typerefersto alogical value of true or false.

8.7 Number

<IENTITY % nunber "“NMIOKEN'> <!-- a nunber, with format [0-9][0-9]* -->
Thenunber type represents an integer value.

WAP Confidential 0 Copyright Wireless Application Protocol Forum, 1998
All rights reserved

Draft Version 3-Feb-1998 Page 17 (70)

9. Events and Navigation

9.1 Navigation and Event Handling

WML includes a navigation and event-handling model, allowing the author to specify the processing of specific user
agent events. Events may be bound to tasks by the author; when an event occurs, the bound task is executed.

An event binding is scoped to the element in which it is declared, e.g., an event binding declared in acard islocal to
that card. Any event binding declared in an element is active only within that element. Event bindings specified in
sub-elements take precedence over any conflicting event bindings declared in a parent element. Conflicting event
bindings within an element are an error.

9.2 History

WML includes a ssimple navigation history model, allowing the author to manage backward navigation in a convenient
and efficient manner. The user agent history is modelled as a stack of URLS, representing the navigational path the
user traversed to arrive at the current card. There are three operations that may be performed on the history stack:

* Reset - the history stack may be reset to a state where it only contains the current card. See the NEWCONTEXT
attribute (section 10.2) for more information.

e Push-anew URL isimplicitly pushed onto the history stack as a side effect of navigation to a new card.
e Pop - the current card’s URL (top of the stack) is popped as an implicit side effect of backward navigation.

The user agent must implement a navigation history. As each card is accessed via an explicitly specified URL, e.g., a
GOtask, the card URL is added to the history stack. The user agent must provide a means for the user to navigate back
to the previous card in the history. Authors can depend on the existence of a user interface construct allowing the user
to navigate backwards in the history. As a consequence, the author may rely on the user agent to provide default
backward navigation support. The user agent must return the user to the previous card in the history if a PREV task is
executed (see section 9.3). The execution of the PREV task pops the current card URL from the history stack. No
additional variable state side effects or semantics are associated with the PREV task.

9.3 Tasks

<IENTITY %t asktypes " (GJ PREV| NOOP) " >
<IENTITY %taskattrs "

URL %URL; #1 MPLI ED
VARS Y%vdat a; #1 MPLI ED
SENDREFERER %ool ean; " FALSE’
METHOD (POST]| CET) " CGET
ACCEPT- CHARSET CDATA #|1 MPLI ED
POSTDATA Y%vdat a; #1 MPLI ED"
>

<IENTITY %task "
TASK % askt ypes; ce)
% askattrs;"
>

Tasks specify processing that should be performed in response to an event. Tasks are typically used to specify a
transition to another URL, which may name a WML card, or some other content.

WAP Confidential 0 Copyright Wireless Application Protocol Forum, 1998
All rights reserved

Draft Version 3-Feb-1998 Page 18 (70)

Attributes
TASK=t askt ypes
The following table describes the tasks and lists the attributes required for each. Attributesin bold are required

for that task.
Table 1. Task names
Task Description Attributes (required if bold)
GO Navigate to the specified URL. If this URL namesa WML URL, VARS,
card or deck, itisdisplayed. Implicitly executesa'push" on SENDREFERER, METHOD,
the history stack. ACCEPT-CHARSET,
POSTDATA

NOOP Do nothing.

PREV Navigate to the previous URL in the history stack. Implicitly VARS
executes a"pop" on the history stack.

URL=URL
The URL attribute specifies the destination URL of this task, e.g., the URL of the card to display or the script
to invoke.

VARS=vdat a

The VARS attribute specifies the variables to set in the current browser context as a side effect of executing
thistask. The variables must be specified in URL query-string format. For example:

VARS="var 1=val uel&anp; var 2=val ue2"

The values must be escaped according to URL escaping conventions. The user agent must unescape the VARS
attribute before setting the value of the variables. See section 10.3.4 for more information on setting variables.

SENDREFERER=b00! ean
This attribute specifies whether the user agent should specify the URL of the current deck (i.e. the referring
deck) when requesting the next URL from a server. This allows a server to perform a form of access control
on URLS, based on which decks are linking to them. The URL must be the smallest relative URL possibleif it
can berelative at all. For example, if SENDREFERER=TRUE, an HT TP based user agent shall indicate the
URL of the current deck inthe HTTP "Referer” request header [RFC2068].

METHOD=(POST| GET)
This attribute specifies the HT TP submission method. Currently, the values of GET and POST are accepted,
and cause the user agent to perform an HTTP GET or POST respectively. If METHOD is not specified, the user
agent must use the GET method, unless the POSTDATA attribute is present, in which case the user agent must
use the POST method.

ACCEPT- CHARSET=cdat a
This attribute specifies the list of character encodings for data that the origin server must accept when
processing input. The value of this attribute is a comma- or space-separated list of character encoding scheme
names (char set) as specified in [RFC2045] and [RFC2068]. The IANA Character Set registry defines the

public registry for charset values. Thislist isan exclusive-OR ligt, i.e., the server must accept any one of the
acceptable character encodings.

The default value for this attribute is the reserved string UNKNOAN. User agents should interpret this value as
the character encoding that was used to transmit the WML deck containing this attribute.

POSTDATA=vdat a
This attribute specifies data to be posted to the server. The datais sent to the server asanappl i cati on/ x-

www for m ur | encoded entity. The datais formatted as stream of octets, encoding using the URL
escaping mechanism specified in [RFC1738].

WAP Confidential 0 Copyright Wireless Application Protocol Forum, 1998
All rights reserved

Draft Version 3-Feb-1998 Page 19 (70)

Specifically, the following occurs:

1. The user agent should transcode the input data to the correct character set, as specified explicitly by
ACCEPT- CHARSET, or implicitly by the document encoding.

2. Thedataisescaped using URL escaping. Any characters outside the legal URL character set will be
converted into the sequence %6XX, where XX is the octet represented as a hexadecimal number.

3. Theresulting string is transmitted to the server inanappl i cat i on/ x- ww« f or m ur | encoded
entity.

Note that the resulting character set is not indicated in the POST. The client must explicitly or implicitly
specify the required character set in any situation where it is ambiguous.

This attribute isignored if the METHOD attribute has a value of GET.

9.4 Card/Deck Task Shadowing

A variety of elements can be used to associate a task with an event. Certain elements specify event-handling behaviour
for an entire card, e.g. DOand ONEVENT, and may appear at the card and deck-level:

e Card-level: the event-handling element may appear inside a card element, e.g. FORMCARD, and specify event-
processing behaviour for that particular card.

e Deck-level: the event-handling element may appear inside a COMVON element, and specify event-processing
behaviour for all cardsinthe deck. A deck-level event-handling element is equivalent to specifying the event-
handling element in each card.

A card-level event-handling element overrides (or "shadows") a deck-level event-handling element if they both specify
the same event. A card-level ONEVENT element will shadow a deck-level ONEVENT element if they both have the
same TYPE. A card-level DO element will shadow a deck-level DO element if they have the same NAME.

9.5 The DO Element

<! ELEMENT DO EMPTY>
<I ATTLI ST DO

TYPE CDATA #REQUI RED
LABEL %vdat a; #| VPLI ED
NANVE NMTOKEN #| VPLI ED
OPTI ONAL %bool ean; " FALSE'

% ask;

>

The DOelement provides a general mechanism for the user to act upon the current card, i.e. a card-level user interface
element. The representation of the DOelement is user agent dependent, and the author must only assume that the
element is mapped to a unique user interface widget that the user can activate. For example, the widget mapping may
be to a graphically rendered button, a soft or function key, a voice-activated command sequence, or any other interface
that has a simple "activate”" operation with no inter-operation persistent state.

The TYPE attribute is provided as a hint to the user agent about the author’s intended use of the element, and should be
used by the user agent to provide a suitable mapping onto a physical user interface construct. WML authors must not
rely on the semantics or behaviour of a particular TYPE, or on the mapping of that TYPE to a particular physical
construct.

The DOelement may appear at both the card and deck-level:

e Card-level: the DO element may appear inside a card element, e.g. FORMCARD, and may be located anywhere in
the text flow. If the user agent intends to render the DO element inline (i.e. in the text flow), it should use the
element’s anchor point as the rendering point. WML authors must not rely on the inline rendering of the DO
element, and must not rely on the correct positioning of an inline rendering of the element.

WAP Confidential 0 Copyright Wireless Application Protocol Forum, 1998
All rights reserved

Draft Version 3-Feb-1998 Page 20 (70)

e Deck-level: the DOelement may appear inside a COVMON element, indicating a deck-level DOelement. A deck-
level DOelement appliesto al cardsin the deck (i.e. is equivalent to having specified the DOwithin each card).
For the purposes of inline rendering, the user agent must assume that deck-level DO elements are inserted at the
end of the card's text flow.

A card-level DO element overrides (or "shadows') a deck-level DO element if they have the same NAME (see section 9.4
for more details). With the exception of shadowed elements, all DO elements specified in a card or deck must be made
accessible to the user in some form, i.e., it must be possible for the user to activate these user interface items when
viewing the card containing the element. When the user activates the DO element, the associated task is executed.

Attributes
TYPE=cdat a

The DOelement type. This attribute provides a hint to the user agent about the author’s intended use of the
element, and how it should be mapped to a physical user interface construct. All types are reserved, except for
those explicitly marked as not reserved.

User agents must accept any TYPE, but may treat any unrecognised type as the equivalent of UNKNON.

In the following table, the* character represents any string, i.e. Test * indicates any string starting with the

word Test .
Table 2. Pre-defined DO types
Type Description
ACCEPT Positive acknowledgement (acceptance)
PREV Backward history navigation
HELP Request for help. May be context-sensitive.
RESET Clearing or resetting state.
OPTIONS Context-sensitive request for options or additional operations.
DELETE Delete item or choice.
UNKNOWN A generic DOelement. Equivalent to an empty string (e.g. TYPE="").
X-*, x-* Experimental types. This set is not reserved.
vnd.*, VND.* and any | Vendor-specific or user-agent-specific types. Thisset is not reserved. Vendors
combination of should allocate names with the format VND. CO- TYPE, where COis a company
[W][Nn][Dd].* name abbreviation and TYPE is the DOelement type. See [RFC2045] for more
information.

LABEL=vdat a

If the user agent is able to dynamically label the user interface widget, this attribute specifies a textual string
suitable for such labelling. The user agent must make a best-effort attempt to label the Ul widget, and should
adapt the label to the constraints of the widget (e.g. truncate the string). 1f an element can not be dynamically
labeled, this attribute may be ignored.

To work well on awide variety of user agents, it is suggested that authors limit labels to text strings of six
characters or shorter in length

NANVE=nnt oken

This attribute specifies the name of the DO event binding. If two DO elements are specified with the same
name, they refer to the same binding. If DO elements are specified both at the card-level (in aFORMCARD
element) and at the deck-level (in a COVMMON element) and both elements have the same NAME, the deck-level
DOelement isignored. Itisan error to specify two or more DO elements with the same NAMVE in asingle card

WAP Confidential 0 Copyright Wireless Application Protocol Forum, 1998
All rights reserved

Draft Version 3-Feb-1998 Page 21 (70)

or in the COMVON element. A NAME with an empty value is equivalent to unspecified NAVE attribute. An
unspecified NAVE defaults to the value of the TYPE attribute.

OPTI ONAL=bool ean
If this attribute has a value of TRUE, the user agent may ignore this element.

Attributes Specified Elsewhere

The following attributes are defined in section 9.3:
% ask

9.6 Anchored Links - the A Elements

<IELEMENT A (% nline;)*>

<I ATTLI ST A
TITLE %dat a; #1 MPLI ED
% ask;
>

The anchored link element specifies the head of alink. Thetail of alink is specified as part of other elements (e.g. a
card name attribute). Anchored links may not be nested.

Anchors may be present in any text flow, excluding the text in OPTI ON elements (i.e. anywhere formatted text is legal,
except for OPTI ON elements). Anchored links have an associated task that specifies the behaviour when the anchor is
selected.

Attributes
Tl TLE=vdat a

This attribute specifies a brief text string identifying the link. The user agent may display it in avariety of
ways, including dynamic labelling of a button or key, atool tip, a voice prompt, etc. The user agent may
truncate or ignore this attribute depending on the characteristics of the navigational user interface. To work
well on a broad range of user agents, the author should limit all labels to 6 charactersin length.

Attributes Defined Elsewhere

The following task attributes are defined in section 9.3:
% ask

9.7 Intrinsic Events

A variety of WML elements are capable of generating events when the user interacts with them. These events are
called "intrinsic events', and indicate state transitions inside the user agent. Individual elements specify the events they
can generate. WML defines the following intrinsic events:

Table 3. WML Intrinsic Events

Event Element(s Description

ONENTERFORWARD Cards. FORMCARD, The ONENTERFORWARD event occurs when the user causes
CHQO CE, ENTRY, the user agent to enter a card using a GOtask or any method
Dl SPLAY, with identical semantics. Thisincludes card entry caused by a

NODI SPLAY, COMMON | script function or user-agent-specific mechanisms, such asa
means to directly enter and navigate to a URL.

The ONENTERFORWARD intrinsic event may be specified at
both the card and deck-level. Event handlers specified in the
COVMON element apply to all cards in the deck, and may be
overridden as specified in section 9.4.

WAP Confidential 0 Copyright Wireless Application Protocol Forum, 1998
All rights reserved

Draft Version 3-Feb-1998 Page 22 (70)

Event Element(s Description

ONENTERBACKWARD | Cards: FORMCARD, The ONENTERBACKWARD event occurs when the user causes
CHQO CE, ENTRY, the user agent to navigate into a card using a PREV task or
Dl SPLAY, any method with identical semantics. In other words, the

NODI SPLAY, COVMON | ONENTERBACKWARD event occurs when the user causes the
user agent to navigate into a card by using a URL retrieved
from the history stack. Thisincludes navigation caused by a
script function or user-agent-specific mechanisms.

The ONENTERBACKWARD intrinsic event may be specified at
both the card and deck-level. Event handlers specified in the
COVMON element apply to all cardsin the deck, and may be
overridden as specified in section 9.4.

ONCLI CK OPTI ON The ONCLI CK event occurs when the user selects or deselects
thisitem.

The author may specify that certain tasks are to be executed when an intrinsic event occurs. This specification may
take one of two forms. Thefirst form specifiesa URL to be navigated to when the event occurs. This event binding is
specified in awell-defined element-specific attribute, and is the equivalent of aGO task. For example:

<FORMCARD ONENTERFORWARD="/url"> hello </ FORMCARD>
This attribute value may only specificaURL.

The second form is an expanded version of the previous, allowing the author more control over user agent behaviour.
An ONEVENT element is declared within a parent element, specifying the full event binding for a particular intrinsic
event. For example, the following isidentical to the previous example:
<FORMCARD>
<ONEVENT TYPE=" ONENTERFORWARD' TASK="GO' URL="/url"/>
Hel l o
</ FORMCARD>

The user agent must treat the attribute syntax as an abbreviated form of the ONEVENT element where the attribute name
is mapped to the ONEVENT type.

Anintrinsic event binding is scoped to the element in which it is declared, e.g., an event binding declared in acard is
local to that card. Any event binding declared in an element is active only within that element. Event bindings
specified in sub-elements take precedence over any conflicting event bindings declared in a parent element. Conflicting
event bindings within an element are an error.

9.7.1 The ONEVENT Element

<! ELEMENT ONEVENT EMPTY>
<! ATTLI ST ONEVENT
TYPE CDATA #REQUI RED
% ask;
>
The ONEVENT element binds atask to a particular intrinsic event for the immediately enclosing element, i.e.,
specifying an ONEVENT element inside a" XY Z" element binds an intrinsic event handler to the "XYZ" element.

The user agent must ignore any ONEVENT element specifying a TYPE that does not correspond to alegal intrinsic
event for the immediately enclosing element.

Attributes
TYPE=cdat a
The TYPE attribute indicates the name of the intrinsic event.

WAP Confidential 0 Copyright Wireless Application Protocol Forum, 1998
All rights reserved

Draft Version 3-Feb-1998 Page 23 (70)

Attributes Defined Elsewhere

The following task attributes are defined in section 9.3:
% ask

9.7.2 Card/Deck Intrinsic Events

The ONENTERFORWARD and ONENTERBACKWARD intrinsic events may be specified at both the card- and deck-level,
and have the shadowing semantics defined in section 9.4. Intrinsic events may be overridden regardless of the syntax
used to specify them. A deck-level event-handler specified with the ONEVENT element may be overridden by the
ONEVENTFORWARD attribute, and vice versa.

WAP Confidential 0 Copyright Wireless Application Protocol Forum, 1998
All rights reserved

Draft Version 3-Feb-1998 Page 24 (70)

10. The State Model

WML includes support for managing user agent state, including:
» Variables - parameters used to change the characteristics and content of aWML card or deck
» History - navigational history, which may be used to facilitate efficient backwards navigation

* Implementation-dependent state - other state relating to the particulars of the user agent implementation and
behaviour

10.1 The Browser Context

WML state is stored in a single scope, known as a browser context. The browser context is used to manage all
parameters and user agent state, including variables, the navigation history, and other implementati on-dependent
information related to the current state of the user agent.

10.2 The NEWCONTEXT Attribute

The browser context may be initialised to a well-defined state by the NEWCONTEXT attribute of the card elements (see
section 11.4). This attribute indicates that the browser context should be re-initialised, and must perform the following
operations;

e Unset (remove) al variables defined in the current browser context
e Clear the navigational history state
* Reset implementation-specific state to a well-known value

NEWCONTEXT is not performed on PREV tasks. See section 12.4 for more information on the processing of state
during navigation.

10.3 Variables

All WML content can be parameterised, allowing the author a great deal of flexibility in creating cards and decks with
improved caching behaviour and better perceived interactivity. WML variables can be used in the place of strings and
are substituted at run-time with their current value.

A variableis said to be set if it has avalue not equal to the empty string. A valueisnot set if it hasavalue equal to the
empty string, or is otherwise unknown or undefined in the current browser context.

10.3.1 Variable Substitution

The values of variables can be substituted into both the text (#PCDATA) of a card and into %vdat a and %4JRL attribute
valuesin WML elements. Only textual information can be substituted; no substitution of elements or attributesis
possible. The substitution of variable values happens at run-time in the user agent. Substitution does not affect the
current value of the variable, and is defined as a simple string substitution. If an undefined variableis referenced, it
resultsin the substitution of the empty string.

WML variable names consist of an US-ASCI| letter or underscore followed by zero or more letters, digits or
underscores. Any other characters areillegal. Variable names are case sensitive.

The following is a BNF-like description of the variable substitution syntax. The description uses the conventions
established in [RFC822], except that the | " character is used to designate alternatives. Briefly, "(" and") " are used
to group elements, optional elements areenclosed in"[" and "] ", and elements may be preceded with <N>* to specify
N or more repetitions of the following element (N defaults to zero when unspecified).

WAP Confidential 0 Copyright Wireless Application Protocol Forum, 1998
All rights reserved

Draft Version 3-Feb-1998 Page 25 (70)

var = ("$" varnane)
("$(" varnane [conv] ")")
conv =":" (escape | noesc | unesc)
escape = ("E" | "e") [("S" | "s") ("C | "c")
("A" | "a") ("P" | "p")
("E" | "e")]
noesc =("N" | "n") [("O] "0") ("E"| "e")
("s | "s") ("C | "c")]
unesc =(C"U] "um)Y [("N] "n") ("E" | "e")
("s | "s") ("C | "c")]
varnane = ("_" | alpha) *["_" | alpha | digit]
al pha = | owal pha | hi al pha
lalpha ="a" | "b" | "c" | "d" | "e" | "f" | "g" | "h" | "i" |
S I L T L A I A R B
S L B A B R A B
hal pha ="A" | "B" | "C" | "D'" | "E" | "F" | "G | "H | "I" |
LUK L] MO UNT] O | P g | R
"SotTT] UtV OTWE X] Y | 2
digit ="o" | "1" | "2" | "3" | "4" | "5" | "6" | "7 |
ll8ll | ll9ll

Parentheses are required anywhere the end of a variable can not be inferred from the surrounding context, e.g. anillegal
character such as white space.

For example:

This is a $var
This is another $(var).
This is an escaped $(var:e).
Long form of escaped $(var:escape).
Long form of unescape $(var:unesc).
Short form of no-escape $(var:N).
O her legal variable fornms: $ X $X32 $Test 9A

The value of variables can be converted into a different form as they are substituted. A conversion can be specified in
the variable reference following the colon. The following table summarised the current conversions and their legal
abbreviations:

Table 4. Variable escaping methods

Conversion Effect

noesc No change to the value of the variable.
escape URL escape the value of the variable.
unesc URL unescape the value of the variable.

The use of a conversion during variable substitution does not affect the actual value of the variable.

URL escaping isdetailed in [RFC1738]. All lexically sensitive characters defined in WML must be escaped. These
includeall r eser ved and unsaf e URL characters, and characters reserved by WML -Script syntax (left parenthesis,
right parenthesis and comma [ASCII 40, 41 & 44]).

If no conversion is specified, the variable is substituted using the conversion format appropriate for the context. The
ONENTERBACKWARD, ONENTERFORWARD, URL, SRC, and VARS attributes default to escape conversion, elsewhere
no conversion is done. Specifying the noesc conversion disables context sensitive escaping of avariable.

WAP Confidential 0 Copyright Wireless Application Protocol Forum, 1998
All rights reserved

Draft Version 3-Feb-1998 Page 26 (70)

10.3.2 Parsing the Variable Substitution Syntax

The variable substitution syntax (e.g. $X) is parsed after all XML parsing iscomplete. In XML terminology, variable
substitution is parsed after the XML processor has parsed the document, and provided the resulting parsed form to the
XML application. In the context of this specification, the WML parser and user agent is the XML application.

Thisimpliesthat all variable syntax is parsed after the XML constructs, such as tags and entities, have been parsed. In
the context of variable parsing, all XML syntax has a higher precedence than the variable syntax, e.g., entity
substitution occurs before the variable substitution syntax is parsed. The following examples are identical referencesto
the variable named X:

$X

E$ X
$X
$ X

10.3.3 The Dollar-sign Character

A side effect of the parsing rulesis that the literal dollar sign must be encoded with a pair of dollar sign entities. A
single dollar-sign entity, even specified as $, resultsin a variable substitution.

In order to include a’$’ character ina WML deck, it must be explicitly escaped. This can be accomplished with the
following syntax:
$$
Two dollar signsin arow are replaced with asingle '$’ character. For example:
This is a $$ character.
Thiswould be displayed as:
This is a $ character.
Toinclude the'$ character in URL escaped strings (e.g. in a VARS attribute), specify it with the URL escaped form:
R4

10.3.4 Setting Variables

There are anumber of waysto set the value of avariable. Input elements set the variable identified by the KEY attribute
to any information entered by the user, e.g., an | NPUT element assigns the entered text to the variable, and the
SELECT eement assigns the value present in the chosen OPTI ON element’s VAL UE attribute. Variables can also be set
as aside effect of card-to-card navigation, by using the VARS attribute.

When avariable is set, and it is already defined in the browser context, the current value is updated.

The VARS attribute allows the author to set variable state as a side effect of navigation, and may be specified in a
variety of event handling elements (e.g. A, ONEVENT and DO). The value of the VARS attribute is an ampersand-
delimited list of variable names and values. For example:

VARS=" nanme=John&anp; | ocat i on=hone&anp; st at e=$(s: E) "

The variablesidentified in thelist (e.g. | ocat i on) are set as aside effect of navigation. See the discussion of event
handling (section 9 and section 12.4) for more information on the processing of the VARS attribute.

Pending user input (e.g. inan | NPUT element) is written to variables when atask is executed (e.g. GOor PREV). Input
is committed to the activity immediately before the task is executed, allowing the use of the variablesin the execution
of the task.

WAP Confidential 0 Copyright Wireless Application Protocol Forum, 1998
All rights reserved

Draft Version 3-Feb-1998 Page 27 (70)

11. The Structure of WML Decks

WML data are structured as a collection of cards. A single collection of cardsisreferred to asa WML deck. Each card
contains structured content and navigation specifications. Logically, a user navigates through a series of cards, reviews
the contents of each, enters reguested information, makes choices, and navigates to another card or returnsto a
previously visited card.

11.1 Document Prologue

A valid WML deck isavalid XML document, and therefore must contain an XML declaration and a document type
declaration (see [XML] for more detail about the definition of a valid document). A typical document prologue
contains:

<?xm version="1.0"7>
<! DOCTYPE WML PUBLIC "-//WAPFORUM / DTD WML 1.0//EN'>

It isan error to omit the prologue.

11.2 The WML Element

<IENTITY % cards "FORMCARD | DI SPLAY | CHOI CE | ENTRY | NODI SPLAY">
<l ELEMENT WML ((COWON, (%ards;)*) | (%ards;)+)>
<! ATTLI ST WWL

VERSI ON NMICKEN #FI XED 1.0

>

The WML element defines a deck, and encloses all information and cards in the deck.

Attributes

VERSI ON=" 1. 0’

The WML language version number. Authors should declare the version number in any content. This
attribute defaults to the current WML version ("1.0").

11.2.1 A WML Example

The following is adeck containing two cards, each represented by a FORMCARD element (see section 11.4 for
information on cards). After loading the deck, a user agent displays the first card. If the user activates the DO element,
the user agent displays the second card.

<WML>
<FORMCARD>
<DO TYPE=" ACCEPT" TASK="G0' URL="#card2"/>
Hel l o worl d!
This is the first card...
</ FORMCARD>

<FORMCARD NANME="car d2">
This is the second card.
Goodbye.
</ FORMCARD>
</ WML>

WAP Confidential 0 Copyright Wireless Application Protocol Forum, 1998
All rights reserved

Draft Version 3-Feb-1998 Page 28 (70)

11.3 Common Declarations

11.3.1 The COMMON Element

<IENTITY % navel nts "DO | ONEVENT">

<! ELEMENT COVMON (ACCESS | META | SCRIPT | %avelnts;)*>
<! ATTLI ST COVMON

%ar dev;

>

The COVMON element contains information relating to the deck asawhole. A COMMON element may contain meta-
data, scripts, access control specifications, and deck-level navigation and event elements.

Event bindings specified in the COMMON element (e.g. DO or ONEVENT) apply to all cardsin the deck. Specifying an
event binding in the COMMON element is equivalent to specifying it in every card element. A card element may
override the behaviour specified in the COMMON element. In particular:

« DOé€ements specified in the COVMON element may be overridden in individual cardsif both elements have the
same NAVE attribute value. See section 9.4 for more information.

« Intrinsic event bindings specified in the COMMON element may be overridden by the specification of an event
binding in a card element. See section 9.7 for more information.

See section 11.4 for the definition of the card-level intrinsic events (thecar dev entity).

Attributes Defined Elsewhere

The following task attributes are defined in section 11.4.1:
Y%car dev

11.3.2 The ACCESS Element

<! ELEMENT ACCESS EMPTY>
<I ATTLI ST ACCESS

DOVAI N CDATA #| MPLI ED
PATH CDATA #| MPLI ED
PUBLI C %bool ean; " FALSE

>

The ACCESS element specifies access control information for the entire deck. 1t isan error for a deck to contain more
than one ACCESS element.

Attributes

DOMVAI N=cdat a
PATH=cdat a

A deck’s DOVAI N and PATH attributes specify which other decks may accessit. Asthe user agent navigates
from one deck to another, it performs access control checks to determine whether the destination deck allows
access from the current deck.

If adeck has a DOVAI N and/or PATH attribute, the referring deck’s URL must match the values of the
attributes. Matching is done as follows: the access domain is suffix-matched against the domain name portion
of the referring URL, and the access path is prefix matched against the path portion of the referring URL.

DOVAI N suffix matching is done using the entire element of each sub-domain, and must match each element
exactly (e.g. ww. wapf or um or g shal match wapf or um or g, but shall not match f or um or g). PATH
prefix matching is done using entire path elements, and must match each element exactly (e.g. / X/ Y matches
/ X, but does not match / X2).

WAP Confidential 0 Copyright Wireless Application Protocol Forum, 1998
All rights reserved

Draft Version 3-Feb-1998 Page 29 (70)

The DOVAI N attribute defaults to the current deck’s domain. The PATH attribute defaults to the value "/".

To simplify the development of applications that may not know the absolute path to the current deck, the
PATH attribute accepts relative URLS. The user agent converts the relative path to an absol ute path and then
performs prefix matching against the PATH attribute.

Given the following access control attributes:

DOVAI N=" wapf or um or g"
PATH="/ cbb"

The following referring URL s would be allowed to go to the deck:

htt p: // wapf orum or g/ cbb/ st ocks. cgi
htt ps://ww. wapf orum or g/ cbb/ bonds. cgi
htt p: // ww. wapf or um or g/ cbb/ denos/ al pha/ packages. cgi ?x=123&y=456

The following referring URLs would not be allowed to go to the deck:

http://ww. test. net/cbb
http://ww. wapforum org/internal /foo.wr

DOVAI N and PATH follow URL capitalisation rules.

PUBLI C=bool ean

This attribute indicates whether deck access control has been disabled for this deck. If disabled, i.e.

PUBLI C=" TRUE" is specified, cardsin any deck can access this deck. If enabled, then the DOVAI N and
PATH attributes used to determine which cards or decks can access the deck. By default, access control is
enabled.

11.3.3 The META Element

<! ELEMENT META EMPTY>
<I ATTLI ST META

HTTP- EQUI V CDATA #| MPLI ED
NANME CDATA #| MPLI ED
USER- AGENT CDATA #| MPLI ED
CONTENT CDATA #REQUI RED
SCHEME CDATA #| MPLI ED
>

The META element contains generic meta-information relating to the WML deck. Meta-information is specified with
property names and values. This specification does not define any properties, nor doesiit define how user agents must
interpret meta-data. User agents are not required to support the meta-data mechanism.

Attributes
NAVE=cdat a

This attribute specifies the property name. The user agent must ignore any meta-data named with this

attribute. Network servers should not emit WML content contai ning meta-data named with this attribute.
HTTP- EQUI V=cdat a

This attribute may be used in place of NAME, and indicates that the property should be interpreted asan HTTP

header (see [RFC2068]). Meta-data named with this attribute should be converted to aWSP or HTTP
response header if the content is tokenized before it arrives at the user agent (see appendix A).

USER- AGENT=cdat a

This attribute may be used in place of NAME. This meta-data must be delivered to the user agent, and may not
be removed by any network intermediary.

CONTENT=cdat a
This attribute specifies the property value.

WAP Confidential 0 Copyright Wireless Application Protocol Forum, 1998
All rights reserved

Draft Version 3-Feb-1998 Page 30 (70)

SCHEME=cdat a

This attribute specifies aform or structure that may be used to interpret the property value. Scheme values
vary depending on the type of meta-data.

11.3.4 The SCRIPT Element

<! ELEMENT SCRI PT (#PCDATA) >
<I ATTLI ST SCRI PT
TYPE CDATA #REQUI RED

>

The SCRI PT element allows scripts to be defined in a deck. Scripts are evaluated by a script interpreter, which must
be known to the user agent. A user agent may ignore any script types that it does not recognise. The semantics of a
script are entirely determined by the script interpreter. It isan error to specify more than one script element of a given
type, where type isindicated by the value of the TYPE attribute.

A script may be invoked by any event binding, for example, the DO, ONEVENT and A elements. For more information,
see section 12.5.

All script data within the SCRI PT element must be escaped so that the less-than character ("<") never appears within
the script. This allowsthe WML element parser to locate the SCRI PT end tag successfully. The XML CDATA
section syntax may be used for this purpose, e.g.,
<SCRI PT TYPE="text/wnr script"> <![CDATA
function foo() { doit("<testing>"); }
11> </ SCRI PT>

Attributes
TYPE=cdat a

This attribute defines the scripting language present in this element. The attribute’s value must be a media
type, as defined by [RFC2048].

WAP Confidential 0 Copyright Wireless Application Protocol Forum, 1998
All rights reserved

Draft Version 3-Feb-1998 Page 31 (70)

11.4 The Card Elements

A WML deck contains a collection of cards. There are avariety of card types, each specifying a different mode of user
interaction.

11.4.1 Card Attributes
<IENTITY % car dev

" ONENTERFORWARD 9%JRL; #1 MPLI ED
ONENTERBACKWARD %JRL ; #1 MPLI ED"
>

<IENTITY % cardattrs

" NAVE NMIOKEN #1 MPLI ED
TI TLE %vdat a; #| MPLI ED
NEWCONTEXT %bool ean; " FALSE'
%car dev; "
>

The following attributes are available in al types of WML cards.

Attributes

NAME=nnt oken
This attribute gives a name to the card. A card’s name may be used as a fragment anchor, alowing it to be
linked to. See section 5.2.

TI TLE=vdat a
The TI TLE attribute specifies advisory information about the card. Thetitle may be rendered in a variety of
ways by the user agent (e.g. suggested bookmark name, pop-up tooltip, etc.).

NEWCONTEXT=bool ean
This attribute indicates that the current browser context should be re-initialised upon entry to thiscard. See
section 10.2 for more information.

ONENTERFORWARD= URL
The ONENTERFORWARD event occurs when the user causes the user agent to navigate into acard using a GO
task.

ONENTERBACKWARD= URL
The ONENTERBACKWARD event occurs when the user causes the user agent to navigate into a card using a
PREV task.

11.4.2 The TABINDEX Attribute

Attributes
TABI NDEX=number

This attribute specifies the tabbing position of the current element. The tabbing position indicates the relative
order in which elements are traversed when tabbing within asingle WML card. A numerically greater

TABI NDEX value indicates an element that is later in the tab sequence than an element with a numerically
lesser TABI NDEX value.

Each input element (i.e., | NPUT and SELECT) in acard is assigned a position in the card’s tab sequence. In
addition, the user agent may assign atab position to other elements. The TABI NDEX attribute indicates the
tab position of a given element. Elements that are not designated with an author-specified tab position may be
assigned one by the user agent. User agent specified tab positions must be later in the tab sequence than any
author-specified tab positions.

WAP Confidential 0 Copyright Wireless Application Protocol Forum, 1998
All rights reserved

Draft Version 3-Feb-1998 Page 32 (70)

Tabbing is anavigational accelerator, and is optional for all user agents. Authors must not assume that a user
agent implements tabbing.

11.4.3 The FORMCARD Element

<IENTITY %fields "9%low, | INPUT | SELECT | FIELDSET">
<I ELEMENT FORMCARD (% i el ds; | %avelnts;)*>
<! ATTLI ST FORMCARD

%ardattrs;

STYLE (LI ST| SET) "LI ST

>

The FORMCARD element is a container of text and input elements that is sufficiently flexible to allow presentation and
layout in awide variety of devices, with awide variety of display and input characteristics. The FORMCARD element
indicates the general layout and required input fields, but does not overly constrain the user agent implementation in the
areas of layout or user input. For example, a FORMCARD can be presented as a single page on a large-screen device,
and as a series of smaller pages on a small-screen device.

A FORMCARD can contain markup, input fields, and elements indicating the structure of the card. The order of
elementsin the card is significant, and should be respected by the user agent.

User input is committed to variables when any task is executed (see section 10.3.4).

Attributes
STYLE=(LI ST| SET)

This attribute specifies a hint to the user agent about the organisation of the FORMCARD content. This hint
may be used to organise the content presentation or to otherwise influence layout of the card.

e LI ST -the card is naturally organised as alinear sequence of field elements, e.g. a set of questions or
fields which are naturally handled by the user in the order in which they are specified in the group. This
styleis best for short formsin which no fields are optional (e.g. sending an email message requiresa To:
address, a subject and a message, and they are logically specified in this order).

It is expected that in small-screen devices, LI ST groups may be presented as a sequence of screens, with
ascreen flip in between each field or fieldset. Other user agents may elect to present all fields
simultaneously.

e SET - the card isacollection of field elements without a natural order. Thisisuseful for collections of
fields containing optional or unordered components or simple record data where the user is updating
individual input fields.

It is expected that in small-screen devices, SET groups may be presented by using a hierarchical or tree
organisation. In these types of presentation, the Tl TLE attribute of each field and fieldset may be used to
define the name presented to the user in the top-level summary card.

The user agent may interpret the style attribute in a manner appropriate to its device capabilities (e.g. screen
size or input device). In addition, the user agent should adopt user interface conventions for handling the
editing of input elements in a manner that best suits the device'sinput model.

For example, a phone-class device displaying a FORMCARD with STYLE=SET may use a soft key or button
to select individual fields for editing or viewing. A PDA-class device might create soft buttons on demand, or
simply present all fields on the screen for direct manipulation.

On devices with limited display capabilities, it is often necessary to insert card flips or other user-interface
transitions between fields. When thisis done, the user agent needs to decide on the proper boundary between
fields. User agents may use the following heuristic for determining the choice of a card flip location:

e FI ELDSET defines alogical boundary between fields.

e Fieds(eg. | NPUT) may be individually displayed. When thisisdone, the line of markup (f | ow)
immediately preceding the field should be treated as a field prompt, and displayed with the input element.

WAP Confidential 0 Copyright Wireless Application Protocol Forum, 1998
All rights reserved

Draft Version 3-Feb-1998 Page 33 (70)

Attributes Defined Elsewhere

The following task attributes are defined in section 11.4.1:
Y%cardattrs

11431 A FORMCARD Example

The following is an example of a simple FORMCARD element embedded within a WML deck. The card containstext,
which is displayed by the user agent. In addition, the example demonstrates the use of a simple DO element, defined at
the deck level.
<\\WL>
<COVVON>
<DO TYPE="ACCEPT" TASK="PREV"/ >
</ COMVON>
<FORMCARD>
Hell o Worl d!
</ FORMCARD>
</ WML>

11.4.4 The CHOICE Element

<IELEMENT CHO CE (% nline; | %avelms; | CE)*>
<I ATTLI ST CHO CE
%ardattrs;

KEY NMTOKEN #| MPLI ED
DEFAULT %dat a; #| MPLI ED
I KEY NMTOKEN #| MPLI ED
| DEFAULT %vdat a; #| MPLI ED
>

<! ELEMENT CE (% ext;)*>
<! ATTLI ST CE

VALUE %dat a; #1 MPLI ED
TASK % asktypes; #l MPLI ED
% askattrs;

>

The CHO CE element is Deprecated. Authors should use the FORMCARD and SELECT elements.

The CHO CE element describes a single choice card, which contains choices specified using the CE element. Choice
cards let users pick from alist of choices, and are identical in behaviour to asingle-choice select list. Theinitial
display content is shown to the user, followed by the choices. Each choiceitem in a choice card can have one line of
formatted text (which may be wrapped or truncated by the user agent if too long). The CHO CE card isequivalent to a
FORMcard containing only t ext markup and navigation elements, followed by asingle select list. See section
11.4.3.1 for more information on the SELECT element and select list behaviour.

For example, the following CHO CE and FORMCARD elements are identical in their behaviour and semantics:

<CHO CE KEY="Y"> <FORMCARD>
Pi ck a choi ce: Pi ck a choi ce:
<CE VALUE="1">1</CE> <SELECT KEY="Y">
<CE VALUE="2">2</ CE> <OPTI ON VALUE="1">1</ OPTI ON>
</ CHO CE> <OPTI ON VALUE="2">2</ OPTI ON>
</ SELECT>
</ FORMCARD>

Attributes Defined Elsewhere

The following task attributes are defined in section 9.3:
TASK

WAP Confidential 0 Copyright Wireless Application Protocol Forum, 1998
All rights reserved

Draft Version 3-Feb-1998 Page 34 (70)

The following task attributes are defined in section 11.4.1:
%ardattrs

The following task attributes are defined in section 11.5.1.1:

KEY
DEFAULT

| KEY

| DEFAULT

The following task attributes are defined in section 11.5.1.2;
VALUE

11.4.5 The DISPLAY Element

<! ELEMENT DI SPLAY (% nline; | %avelnts;)* >
<! ATTLI ST DI SPLAY

%ardattrs;

>

The DI SPLAY element is Deprecated. Authors should use the FORMCARD element.

DI SPLAY cards contain information to be presented to the user. Thisinformation includesi nl i ne markup, i.e.
structured text, images and links. A DI SPLAY card is equivalent to a FORMCARD containing only i nl i ne markup
and navigation elements (i.e. no input elements).

For example, the following DI SPLAY and FORMCARD elements are identical in their behaviour and semantics:

<Dl SPLAY> <FORMCARD>
Hel l o Worl d! Hel | o Worl d!
</ DI SPLAY> </ FORMCARD>

Attributes Defined Elsewhere

The following task attributes are defined in section 11.4.1:
%ardattrs

11.4.6 The ENTRY Element

<! ELEMENT ENTRY (% nline; | Y%avelnts;)*>
<! ATTLI ST ENTRY
Ycardattrs;

KEY NMTOKEN #REQUI RED
DEFAULT %vdat a; #1 MPLI ED
FORMAT CDATA #1 MPLI ED
NOECHO %bool ean; " FALSE
EMPTYOK %bool ean; " FALSE

>

The ENTRY element is Deprecated. Authors should use the FORMCARD and INPUT elements.

The ENTRY element specifies arequest for user input. The text prompt (f | ow) is presented to the user, followed by an
input field. The user input is constrained by the optional FORVAT attribute. The ENTRY element is equivalent to a
FORMCARD element containing only i nl i ne markup and navigation elements followed by asingle | NPUT element.
See section 11.5.2 for more information on the | NPUT element.

For example, the following ENTRY and FORMCARD elements are identical in their behaviour and semantics:

<ENTRY KEY="X"> </ ENTRY>
Ent er nane:

WAP Confidential 0 Copyright Wireless Application Protocol Forum, 1998
All rights reserved

Draft Version 3-Feb-1998 Page 35 (70)

<FORMCARD> <| NPUT TYPE="TEXT" KEY="X"/>
Ent er nane: </ FORMCARD>
Attributes

NOECHO=boo! ean

The NOECHO attribute indicates whether text entry should echo the input as entered, or whether the echoed
input should be obscured in some manner. 1f NOECHO s specified, the semantics are identical to specifying
TYPE=PASSWORD in an | NPUT element. If NOECHOIs not specified, the semantics are identical to
TYPE=TEXT inan | NPUT element.

EMPTYOK=boo! ean

The EMPTYCK attribute indicates that this text entry accepts empty input even though a non-empty format
string has been specified. Typically, the EMPTYOK attribute is indicated for formatted entry fields that are
optional. By default, entry elements require the user to input data.

Attributes Defined Elsewhere

The following task attributes are defined in section 11.4.1:
Y%cardattrs

The following task attributes are defined in section 11.5.1.1:

KEY
DEFAULT

I KEY

| DEFAULT

11.4.7 The NODISPLAY Element

<! ELEMENT NODI SPLAY (ONEVENT) * >
<! ATTLI ST NODI SPLAY
%ardattrs;
>
The NODI SPLAY element is Deprecated. Authors should use the FORMCARD elements, with the ONENTERFORWARD
and ONENTERBACKWARD intrinsic events.

NODI SPLAY cards do not specify information for presentation to the user. Rather, they immediately execute the task
bound to the ONENTERFORWARD and ONENTERBACKWARD intrinsic event.

For example, the following NODI SPLAY and FORMCARD elements are identical in their behaviour and semantics:

<NODI SPLAY> <FORMCARD>
<ONEVENT TYPE=" ONEVENTFORWARD" <ONEVENT TYPE=" ONEVENTFORWARD"
TASK="G0' URL="/foo0"/> TASK="G0" URL="/fo0"/>
<ONEVENT TYPE=" ONEVENTBACKWARD" <ONEVENT TYPE=" ONEVENTBACKWARD"
TASK="PREV"/ > TASK="PREV"/ >
</ NCDI SPLAY> </ FORMCARD>

Attributes Defined Elsewhere

The following task attributes are defined in section 11.4.1:
Y%cardattrs

WAP Confidential 0 Copyright Wireless Application Protocol Forum, 1998
All rights reserved

Draft Version 3-Feb-1998 Page 36 (70)

11.5 Control Elements

11.5.1 Select Lists

Select lists are an input element that specifies alist of options for the user to choose from. Single and multiple choice
lists are supported.

11.5.1.1 The SELECT Element

<! ELEMENT SELECT (OPTGROUP| CPTI ON) +>
<! ATTLI ST SELECT

TI TLE %vdat a; #| MPLI ED
KEY NMIOKEN #1 MPLI ED
DEFAULT %vdat a; #1 MPLI ED
| KEY NMIOKEN #1 MPLI ED
| DEFAULT %vdat a; #| MPLI ED
MULTI PLE %bool ean; " FALSE'
TABI NDEX omumnber ; #| MPLI ED
>

The SELECT element lets users pick from alist of options. Each option is specified by an OPTI ON element. Each
OPTI ON element may have one line of formatted text (which may be wrapped or truncated by the user agent if too
long). OPTI ON elements may be organised into hierarchical groups using the OPTGROUP element.

Attributes

MULTI PLE=bool ean
This attribute indicates that the select list should accept multiple selections. When not set, the select list
should only accept a single selected option.

KEY=nnt oken

DEFAULT=vdat a
This KEY attribute indicates the name of the variable to set with the result of the selection. The variableis set

to the string value of the chosen OPTI ON element, which is specified with the VALUE attribute. The KEY
variable’'s value is used to pre-select optionsin the select list.

The DEFAULT attribute indicates the default value of the variable named in the KEY attribute. When the
element is displayed, and the variable named in the KEY attribute is not set, the KEY variable is assigned the
value specified in the DEFAULT attribute. If the KEY variable already contains a value, the DEFAULT
attribute isignored. Any application of the default value is done before the list is pre-selected with the value of
the KEY variable.

If this element allows the selection of multiple options, the result of the user’s choiceisalist of al selected
values, separated by the semicolon character. The KEY variable is set with thisresult. In addition, the
DEFAULT attribute is interpreted as a semicolon separated list of pre-selected options.

| KEY=nnt oken

| DEFAULT=vdat a
Thel KEY attribute indicates the name of the variable to be set with the index result of the selection. The
index result is the position of the currently selected OPTI ONin the select list. Anindex of zero indicates that
no OPTI ONis selected. Index numbering begins at one, and increases monotonically.

The | DEFAULT attribute indicates the default-selected OPTI ON element. When the element is displayed, if
the variable named in the | KEY attribute is not set, it is assigned the default-selected entry. If the variable
already contains avalue, the | DEFAULT attribute isignored. If the | KEY attribute is not specified, the

| DEFAULT valueis applied every time the element is displayed.

WAP Confidential 0 Copyright Wireless Application Protocol Forum, 1998
All rights reserved

Draft Version 3-Feb-1998 Page 37 (70)

If this element allows the selection of multiple options, the index result of the user’s choiceisalist of the
indices of all the selected options, separated by the semicolon character (e.g. "1;2"). Thel KEY variableis set
with thisresult. In addition, thel DEFAULT attribute is interpreted as a semicolon separated list of pre-
selected options (e.g. "1;4").

Tl TLE=vdat a
This attribute specifies atitle for this element, which may be used in the presentation of this object.

Attributes Defined Elsewhere

The following attribute is defined in section 11.4.2:
TABI NDEX

On entry into a card containing a SELECT element, the user agent must select the initial optionsin the following way:

e Ifthel KEY attribute exists, the indices in the variable named by | KEY are used to select the option. If the
specified variable is not set, the index is assumed to be 1. If any index is larger than the number of optionsin the
select list, the last entry is selected.

« |f thel KEY attribute does not exist, and the KEY attribute exists, the value of the variable specified by KEY is used
to select options. If the variable specified by KEY is not set, or no OPTI ON has a VAL UE attribute matching the
value, the first option is selected.

Once an OPTI ONis selected, the variable named by KEY is updated to the value of the option.

Both KEY and | KEY, or DEFAULT and | DEFAULT may be specified. | DEFAULT takes precedence over DEFAULT,
and | KEY takes precedence over KEY.

11.5.1.2 The OPTION Element

<! ELEMENT OPTION (% ext; | ONEVENT)*>
<! ATTLI ST OPTI ON

VALUE Y%vdat a; #| MPLI ED
TI TLE Y%vdat a; #| MPLI ED
ONCLI CK %JRL; #| MPLI ED
>

This element specifies a single choice option in a SELECT element. Text within an OPTI ON element is rendered in
non-breaking mode (see section 11.6.3 for more information on line break modes).

Attributes
VALUE=vdat a

The VALUE attribute specifies the value to be used when setting the KEY variable. When the user selectsthis
option, the resulting value specified in the VALUE attribute is used to set the SELECT element’s KEY variable.

The VALUE attribute may contain variable references, which are evaluated before the KEY variableis set.
TI TLE=vdat a
This attribute specifies atitle for this element, which may be used in the presentation of this object.
ONCLI CK=URL
The ONCLI CK event occurs when the user selects or deselects this option. A multiple-selection option list
generates an ONCLI CK event whenever the user selects or deselects this option. A single-selection option list

generates an ONCL| CK event when the user selects this option, i.e. no event is generated for the de-selection
of any previously selected option.

11.5.1.3 The OPTGROUP Element

<! ELEMENT OPTGROUP (OPTGROUP| OPTI ON) + >
<! ATTLI ST OPTGROUP

WAP Confidential 0 Copyright Wireless Application Protocol Forum, 1998
All rights reserved

Draft Version 3-Feb-1998 Page 38 (70)

TI TLE %dat a; #| MPLI ED
>

The OPTGROUP element allows the author to group related OPTI ON elements into a hierarchy. The user agent may
use this hierarchy to facilitate layout and presentation on a wide variety of devices.

Attributes
TI TLE=vdat a
This attribute specifies atitle for this element, which may be used in the presentation of this object.

11.5.1.4 Select list examples

In this example, asimple single-choice select list is specified. If the user were to choose the "Dog" option, the variable
"X" would be set to avalue of "D".

<SELECT KEY="X">
<OPTI ON VALUE=" D" >Dog</ OPTI O\>
<OPTI ON VALUE="C">Cat </ OPTI O\>
</ SELECT>

In this example, asingle choice select list is specified. |f the user were to choose the "Cat" option, the variable "I"
would be set to avalue of "2". In addition, the "Dog" option would be pre-selected if the "1" variable had not been
previously set.
<SELECT | KEY="I1" | DEFAULT="1">
<OPTI ON VALUE="D"'>Dog</ OPTI ON>
<OPTI ON VALUE="C">Cat </ OPTI O\>
</ SELECT>

In this example, amultiple choice list is specified. If the user were to choose the " Cat" and "Horse" options, the
variable " X" would be set to "C;H", and the variable "I" would be set to “1;3". In addition, the "Dog" and "Cat" options
would be pre-selected if the variable "1" had not been previoudly set.

<SELECT KEY="X" | KEY="I" | DEFAULT="1,; 2" MJLTI PLE=" TRUE" >
<OPTI ON VALUE=" D" >Dog</ OPTI O\>
<OPTI ON VALUE="C' >Cat </ OPTI ON>
<OPTI ON VALUE="H'>Hor se</ OPTI ON>

</ SELECT>

11.5.2 The INPUT Element

<I ELEMENT | NPUT EMPTY>
<I ATTLI ST | NPUT

KEY NMTOKEN #REQUI RED
TYPE (TEXT| PASSWORD) * TEXT’
VALUE swdat a; #| MPLI ED
DEFAULT Y%dat a; #| MPLI ED
FORMAT CDATA #| MPLI ED
Sl ZE umunber ; #| MPLI ED
MAXLENGTH 9%umber ; #| MPLI ED
TABI NDEX Y%munber ; #| MPLI ED
TI TLE wdat a; #| MPLI ED
>

The |l NPUT element specifies atext entry object. The user input is constrained by the optional FORVAT attribute.

Attributes

KEY=nnt oken

DEFAULT=vdat a

VALUE=vdat a
The KEY attribute specifies the name of the variable to set with the result of the user'stext input. The KEY
variable's value is used to pre-load the text entry object.

WAP Confidential 0 Copyright Wireless Application Protocol Forum, 1998
All rights reserved

Draft Version 3-Feb-1998 Page 39 (70)

The DEFAULT attribute indicates the default value of the variable named in the KEY attribute. When the
element is displayed and the variable named in the KEY attribute is not set, the KEY variable is assigned the
value specified in the DEFAULT attribute. If the KEY variable already contains a value, the DEFAULT
attribute isignored. If the DEFAULT attribute specifies a value that does not conform to the input mask
specified by the FORMAT attribute, the user agent must ignore the DEFAULT attribute.

The DEFAULT and VAL UE attributes are identical in their behaviour and syntax.
TYPE=(TEXT| PASSVORD)

This attribute specifies the type of text-input area. The default typeis TEXT. The following values are
allowed:

e TEXT - atext entry box. Input should be displayed to the user in a readable form, and each character
should be echoed in a manner appropriate to the user agent.

e PASSWORD - atext entry box. Input of each character should be echoed in an obscured or illegible form.
For example, user agents may elect to display an asterisk in place of a character entered by the user.
Typically, the PASSWORD input mode is indicated for password entry or other private data. Note that
PASSWORD input is not secure, and should not be depended on for critical applications.

In both cases, the user'sinput is applied to the KEY variable.
FORMAT=cdat a
The FORNMAT attribute specifies an input mask for user input entries. The string consists of mask control

characters and static text that is displayed in the input area. The user agent may use the format mask to
facilitate accelerated data input.

The format control characters specify the data format expected to be entered by the user. The default format is
"*M". The format codes are;

A entry of any upper-case alphabetic or punctuation character (i.e. upper-case non-numeric
character)

QO

entry of any lower-case al phabetic or punctuation character (i.e. lower-case non-numeric
character)

entry of any numeric character
entry of any upper case character

entry of any lower-case character

< X X Z

entry of any character; the user agent may chose to assume that the character is upper-case for
the purposes of simple data entry, but must allow entry of any character

m entry of any character; the user agent may chose to assume that the character is lower-case for
the purposes of simple data entry, but must allow entry of any character

*f entry of any number of characters; f is one of the above format codes and specifies what kind of
characters can be entered. Note: This format may only be specified once, and it must appear at
the end of the format string

nf entry of n characterswherenisfrom 1to 9; f is one of the above format codes and specifies what
kind of characters can be entered. Note: This format may only be specified once, and it must
appear at the end of the format string

\c display the next character, c, in the entry field; allows quoting of the format codes so they can be
displayed in the entry area

User agents must implement the format codes to the best of their ability given the constraints of the input
language and character set. If the input language and character set have clear definitions numbers and
character case, they must be followed. Authors must not rely on the interpretation of a particular format code
in agiven language.

S| ZE=nunber

WAP Confidential 0 Copyright Wireless Application Protocol Forum, 1998
All rights reserved

Draft Version 3-Feb-1998 Page 40 (70)

This attribute specifies the width, in characters, of the text-input area. The user agent may ignore this
attribute.

MAXLENGTH=numnmber

This attribute specifies the maximum number of characters that can be entered by the user in the text-entry
area. The default value for this attribute is an unlimited number of characters.

Tl TLE=vdat a
This attribute specifies atitle for this element, which may be used in the presentation of this object.
Attributes Defined Elsewhere

The following attribute is defined in section 11.4.2;
TABI NDEX

11.5.2.1 INPUT Element Examples

In thisexample, an | NPUT element is specified. This element accepts any characters, and displays the input to the user
in a human-readable form. The maximum number of character entered is 32, and the resulting input is assigned to the
variable named X.

<I NPUT KEY="X" TYPE="TEXT" MAXLENGTH="32"/>

The following example requests input from the user, and assigns the resulting input to the variable NAME. The text
field has a default value of "Raobert”.
<I NPUT KEY="NAME" TYPE="TEXT" DEFAULT="Robert"/>
The following example is a card that prompts the user for afirst name, last name and age.
<FORMCARD>
First nanme: <INPUT TYPE="TEXT" KEY="first"/><BR/ >
Last name: <INPUT TYPE="TEXT" KEY="I|ast"/><BR/ >
Age: <I NPUT TYPE="TEXT" KEY="age" FORMAT="*N'/>
</ FORMCARD>

11.5.3 The FIELDSET Element

<! ELEMENT FI ELDSET (% ields;)* >
<! ATTLI ST FI ELDSET

TI TLE Y%vdat a; #1 MPLI ED

>
The FI ELDSET element allows the grouping of related fields and text. This grouping provides information to the user
agent, allowing the optimising of layout and navigation. FI ELDSET elements may nest, providing the user with a
means of specifying behaviour across awide variety of devices. See section 11.4.3 for information on how the
FI ELDSET element may influence layout and navigation.

Attributes
Tl TLE=vdat a
This attribute specifies atitle for this element, which may be used in the presentation of this object.

WAP Confidential 0 Copyright Wireless Application Protocol Forum, 1998
All rights reserved

Draft Version 3-Feb-1998 Page 41 (70)

11.5.3.1 FIELDSET Element Examples

The following example specifies a WML deck that requests basic identity and personal information from the user. Itis
separated into multiple field sets, indicating the preferred field grouping to the user agent.

<WWL>
<FORMCARD>
<DO TYPE=" ACCEPT" TASK=" QG0
URL="/ submni t ?f =$(f nane) &np; | =$(| nane) &anp; s=$(sex) &anp; a=$(age) "/ >
<FI ELDSET TI TLE=" Nane" >
First nane: <INPUT TYPE="TEXT" KEY="fname" MAXLENGTH="32"/><BR/ >
Last name: <INPUT TYPE="TEXT" KEY="I| name" MAXLENGTH="32"/><BR/ >
</ FI ELDSET>
<FI ELDSET TI TLE="Info0">
<SELECT KEY="sex">
<OPTI ON VALUE="F">Fenal e</ OPTI ON>
<OPTI ON VALUE="M' >Mal e</ OPTI O\>
</ SELECT>
<BR/ >
Age: <I NPUT TYPE="TEXT" KEY="age" FORMAT="*N'/>
</ FI ELDSET>
</ FORMCARD>
</ WWL>

WAP Confidential 0 Copyright Wireless Application Protocol Forum, 1998
All rights reserved

Draft Version 3-Feb-1998 Page 42 (70)

11.6 Text
This section defines the el ements and constructs related to text.
11.6.1 White Space

WML white space and line break handling is based on [XML], and assumes the default white space handling rules.
The WML user agent ignores all insignificant white space, as defined by the XML specification. In addition, all other
sequences of white space must be compressed into a single inter-word space.

User agents should treat inter-word spaces in alocale-dependent manner, as different written languages treat inter-word
spacing in different ways.

11.6.2 Emphasis

<! ELEMENT EM (%1 ow;)*>
<! ELEMENT STRONG (% | ow;) *>
<! ELEMENT B (% 1 ow;) *>
<! ELEMENT | (%1 ow;) *>
<I ELEMENT U (%1 ow)*>

<! ELEMENT BI G (%l ow)*>
<! ELEMENT SMALL (%1 ow;)*>

The emphasis elements specify text emphasis markup information.

EM

Render with emphasis.
STRONG:

Render with strong emphasis.
l:

Render with anitalic font.
B:

Render with a bold font.
U

Render with underline.
Bl G

Render with alarge font.
SVALL:

Render with a small font.

Authors should use the STRONG and EMelements where possible. B, | , and U elements should not be used except
where explicit control over text presentation is required.

11.6.3 Line Breaks

<IENTITY % TAlign " (LEFT| Rl GHT| CENTER)" >
<! ENTI TY % BRMbde " (V\RAP| NOWRAP) " >

<! ELEMENT BR EMPTY>
<I ATTLI ST BR

ALIGN 9%TAli gn; "LEFT’
MODE YBRVbde; #| MPLI ED
>

WML has two line-wrapping modes: breaking and non-breaking. In breaking mode, line breaks should be inserted into
atext flow as appropriate for presentation on an individual device, and any inter-word space isalegal line break point.
In non-breaking mode, aline of text must not be automatically wrapped.

WAP Confidential 0 Copyright Wireless Application Protocol Forum, 1998
All rights reserved

Draft Version 3-Feb-1998 Page 43 (70)

The non-breaking space entity (or) indicates a space that must not be treated as an inter-word
space by the user agent. Authors should use to prevent undesired line-breaks. The soft-hyphen character
entity (­ or ­) indicates alocation that may be used by the user agent for aline break. If aline break
occurs at a soft-hyphen, the user agent must insert a hyphen character (-) at the end of theline. In all other
operations, the soft-hyphen entity should beignored. A user agent may choose to entirely ignore soft-hyphens when
formatting text lines.

The BR element establishes the beginning of a new line, and specifies the line break and alignment parameters for the
new line. If the line break mode is not specified, it isidentical to the line break mode of the previous line in the current
card. If thetext alignment is not specified, it defaultsto LEFT.

Theinitia line break mode for acard is MODE=" WRAP" (breaking mode), and the initial text alignment is

ALl GN=" LEFT" (left alignment). If the first non-whitespace markup in a card is a BR element, the BR begins the first
lineinthe card. If the first non-whitespace markup in a card is not a BR element, anew lineisimplicitly started with
the default line break and alignment modes.

The treatment of alinetoo long to fit on the screen is specified by the current line-break mode. 1f MODE=" \RAP" is
specified, the line is word-wrapped onto multiple lines. If MODE=" LI NE" is specified, the lineis not wrapped. The
user agent must provide a mechanism to view entire non-wrapped lines (e.g. horizontal scrolling or some other user-
agent-specific mechanism).

Attributes

ALl GN=(LEFT| RI GHT| CENTER)
This attribute specifies the text alignment mode for the line. Text can be centre aligned, left aligned or right
aligned when it is displayed to the user. Left alignment is the default alignment mode. If not explicitly
specified, the text alignment is set to the default alignment. For example, asimple <BR/ > element startsa
new line, and setsthe alignment to LEFT.

MODE=(IRAP| NOVIRAP)
This attribute specifies the line-breaking mode for the subsequent text line. VWRAP specifies breaking text
mode and NOWRAP specifies non-breaking text mode. If not explicitly specified, the line-break modeis
identical to the line-break mode of the previous line in the text flow. For example, asimple <BR/ > element
starts a new line, but does not change the current line-break mode.

11.6.3.1 LineBreak Examples

The following example demonstrates how the BR element affects text alignment and line break mode.
<WWL VERSI ON="1.0">

<FORMCARD>
line 1, three-line card <l-- left alignnent, breaking node -->
<BR ALIGN="RI GHT"/ >l ine 2 <l-- right alignnent, breaking node -->
<BR MODE="NOWRAP"/>line 3 <l-- left alignnent, non-breaking node -->
</ FORMCARD>
<FORMCARD>
<BR ALI G\=" CENTER'/ >
line 1, one-line card <l-- centre alignnent, breaking node -->
</ FORMCARD>
<FORMCARD>

<BR MODE=" NONRAP" [/ >
<BR ALI G\=" CENTER'/ >

line 2, two-line card <l-- centre alignnent, non-breaking node -->
</ FORMCARD>
</ WWL>
WAP Confidential O Copyright Wireless Application Protocol Forum, 1998

All rights reserved

Draft Version 3-Feb-1998 Page 44 (70)

The following example demonstrates a more complex card and the interaction text alignment and line break modes.
<WWML VERSI ON="1.0">

<FORMCARD>
<F| ELDSET>
line 1, three-line fieldset <!-- |eft alignment, breaking node -->
<BR ALI GN="RI GHT"/ >li ne 2 <l-- right alignment, breaking node -->
<BR MCODE="NOWRAP"/ >l i ne 3 <l-- left alignnent, non-breaking node -->
</ FlI ELDSET>
<F| ELDSET>
Choose: <l-- left alignnment, non-breaking node -->

<SELECT KEY="X">
<OPTI ON VALUE=" 1" >0One</ OPTI ON>
<OPTI ON VALUE="2">Two</ OPTI O\>
</ SELECT>
</ FI ELDSET>
<FI ELDSET>
line 1, two-line fieldset <l-- left alignnent, non-breaking node -->
<I NPUT KEY="Y"/>
<BR MODE="WRAP"/ >l i ne 2 <l-- left alignnent, breaking node -->
</ FI ELDSET>
</ FORMCARD>
</ WWL>

11.6.4 Tab Columns

The following elements specify tab columns.
<IENTITY % tab "TAB" >
<IENTITY % TAlign " (LEFT| R GHT| CENTER) " >
<! ELEMENT TAB EMPTY>
<l ATTLI ST TAB
ALI GN 9%FAli gn; " LEFT
>

The TAB element is used to create aligned columns. Rather than tab to specific character positions, the TAB element
separates the text for each column. To ensure the narrowest display width, the user agent should determine the width of
each column from the maximum width of the text and imagesin that column. A non-zero width gutter must be used to
separate each non-empty column. Some lines have fewer TAB elements than others, in which case the right hand
columns of the line are assumed to be empty.

A column group is defined as the largest set of contiguous lines containing TAB elements that can be formed at any
given point in the text flow. Depending on the display characteristics, the user agent may create aligned columns for
each column group, or may use asingle set of aligned columns for all column groupsin a card.

Attributes
ALl GN=(LEFT| RI GHT| CENTER)

This attribute specifies the text layout within a column. Text can be center aligned, left aligned or right
aligned when it is displayed to the user. Left alignment is the default.

11.7 Images

<IENTITY % | Align "(TOP| M DDLE| BOTTOM " >
<! ELEMENT | MG EMPTY>
<! ATTLI ST | MG

ALT %vdat a; #| MPLI ED
SRC %4JRL; #| MPLI ED
LOCALSRC %vdat a; #l MPLI ED
VSPACE % engt h; "0’
WAP Confidential 0 Copyright Wireless Application Protocol Forum, 1998

All rights reserved

Draft Version 3-Feb-1998 Page 45 (70)

HSPACE % engt h; o

ALl GN % Align; ' BOTTOM
HEI GAT % engt h; #| MPLI ED
W DTH % engt h; #1 MPLI ED
>

The IMG element indicates that an image isto be included in the text flow. Image layout is done within the context of
normal text layout.

Attributes

ALT=vdat a
This attribute specifies an alternative textual representation for theimage. This representation is used when
the image can not be displayed using any other method (i.e. the user agent does not support images, or the
image contents can not be found).

SRC=URL

This attribute specifiesthe URL for theimage. If the browser supports images, it downloads the image from
the specified URL, and renders it when the text is being displayed.

LOCALSRC=vdat a
This attribute specifies an aternative internal representation for the image. This representation is used if it
exists; otherwise the image is downloaded from the URL specified in the SRC attribute, i.e., any LOCALSRC
parameter specified takes precedence over the image specified in the SRC parameter.

VSPACE=/ engt h

HSPACE=/ engt h
These attributes specify the amount of white space to be inserted to the left and right (HSPACE) and above and
below (VSPACE) an image or object. The default value for this attribute is not specified, but is generally a
small, non-zero length. If | engt h is specified as a percentage value, the resulting size is based on the
available horizontal or vertical space, not on the natural size of theimage. These attributes are hints to the
user agent, and may be ignored.

ALI GN=(TOP| M DDLE| BOTTQV)
This attribute specifies image alignment within the text flow, and with respect to the current insertion point.
AL| GN hasthree possible values:

« BOTTOM means that the bottom of the image should be vertically aligned with the current baseline. This
isthe default value.

M DDLE: means that the centre of the image should be vertically aligned with the centre of the current
text line.

* TOP: meansthat the top of the image should be vertically aligned with the top of the current text line.

HElI GHT=/ engt h
W DTH=/ engt h

These attributes give user agents an idea of the size of an image or object so that they may reserve space for it

and continue rendering the card while waiting for the image data. User agents may scale objects and images to
match these values if appropriate. If | engt h is specified as a percentage value, the resulting size is based on

the available horizontal or vertical space, not on the natural size of the image. These attributes are a hint to the
user agent, and may be ignored.

WAP Confidential 0 Copyright Wireless Application Protocol Forum, 1998
All rights reserved

Draft Version 3-Feb-1998 Page 46 (70)

12. User Agent Semantics

12.1 Deck Access Control

The introduction of variablesinto WML exposes potential security issues that do not exist in other markup languages
such asHTML. In particular, certain variable state may be considered private by the user. While the user may be
willing to send a credit card number to a secure service, an insecure or malicious service should not be able to retrieve
that number from the user agent by other means.

A conforming WML user agent must implement deck-level access control, including the ACCESS element, and the
PUBLI C, SENDREFERER, DOVAI N and PATH attributes.

12.2 Low-Memory Behaviour

WML istargeted at devices with limited hardware resources, including significant restrictions on memory size. Itis
important that the author have a clear expectation of device behaviour in error situations, including those caused by
lack of memory.

12.2.1 Limited History

The user agent may limit the size of the history stack (i.e. the depth of the historical navigation information). In the case
of history size exhaustion, the user agent should delete the least-recently-used history information.

It is recommended that all user agentsimplement a minimum history stack size of ten entries.
12.2.2 Limited Cache

Many user agents implement some form of caching. If auser agent implements deck or card caching, it must
implement the following semantics.

In selecting decks to free from the cache, the user agent should refrain from freeing decks that are referenced by the
history stack. If cache space remains exhausted after freeing unreferenced cache entries, the user agent should prune
the history stack as described in section 12.2.1, and free any unreferenced entries in the cache until thereis sufficient
space to continue processing. The user agent must never delete the current deck.

12.2.3 Limited Browser Context Size

In some situations, it is possible that the author has defined an excessive number of variablesin the browser context,
leading to memory exhaustion.

In this situation, the user agent should attempt to acquire additional memory by reclaiming cache and history memory
asdescribed in sections 12.2.1 and 12.2.2. If thisfails, and the user agent has exhausted all memory, the user should be
notified of the error.

12.3 Error Handling

Conforming user agents must enforce error conditions defined in this specification. User agents must not attempt to
infer author or origin server intent upon receipt of illegal WML.

WAP Confidential 0 Copyright Wireless Application Protocol Forum, 1998
All rights reserved

Draft Version 3-Feb-1998 Page 47 (70)

12.4 Reference Processing Behaviour - Inter-card Navigation

The following process describes the reference model for inter-card traversal in WML. This processistriggered by both
the GOand PREV task (see section 9.3). All user agents must implement this process, or one that is indistinguishable
fromit.

The process of executing a GO or PREV task constitutes the following steps:

1. If the originating task has specified a VARS attribute, the attribute value is converted into a simple string by
substituting all referenced variables. See section 10.3 for more information on variable substitution.

2. Thetarget URL isidentified and fetched by the user agent. If thetask isaGO, the URL attribute valueis
converted into a simple string by substituting all referenced variables. If thetask isaPREV, the URL attributeis
the top of the history stack.

3. Thedestination card is located using the fragment name specified in the URL.
a) If the destination deck does not contain a card, the destination card is set to none, i.e., no destination.
b) If no fragment name was specified as part of the URL, the first card in the deck is the destination card.

c) If afragment name was identified, and a card has a NAME attribute that isidentical to the fragment name, then
that card is the destination card.

d) If the fragment name can not be associated with a specific card, the destination card is set to none, i.e., no
destination.

4. If thereisadestination card, and the task is not a PREV, and the destination card contains a NEWCONTEXT
attribute, the current browser context is re-initialised as described in section 10.2.

5. The string resulting from the processing done in step #1 (the VARS attribute value) isinterpreted. The stringis
processed in aleft-to-right manner, with each variable set asit is encountered in the string.

6. |If thereisadestination card:

a) Any intrinsic event handlers present in the destination card are executed. See section 9.7 for more
information.

b) The destination card is displayed and processing stops.

If the destination card is none, the browser attempts to invoke a script (see section 12.5). If the script invocation
fails, the user agent must display the first card in the destination deck, or notify the user of an error if the deck does
not contain a card.

12.5 Script Invocation

WML contains provisions for integrating script interpretersinto the user agent. The SCRI PT element (see section
11.3.4) can be used to embed scriptsin a WML deck. The scripting engine determines all semantics of the embedded
script.

WML also includes a script invocation mechanism, which can be used in any WML task. When the user agent
attempts to resolve a URL fragment name and the URL names a WML deck, the fragment may indicate either a card or
ascript invocation. The definition, semantics and result of a script invocation are entirely determined by the scripting
engine.

When resolving a fragment name, card names take precedence over script names, i.e., if a script and a card share the
same name, the fragment always refersto the WML card. If there are multiple scripting engines in the user agent, and
they each have scripts with the same name, it is indeterminate which script is invoked.

The following reference process is one example of how a user agent could implement URL fragment name resol ution.
The user agent must implement a fragment resol ution process that performs in a manner indistinguishable from this
one, but does not need to literally follow this procedure.

WAP Confidential 0 Copyright Wireless Application Protocol Forum, 1998
All rights reserved

Draft Version 3-Feb-1998 Page 48 (70)

1. If the URL fragment name matches a card name, go to the card and stop processing. See section 12.4 for more
information.

2. If the fragment name does not match a card name, then for each scripting engine present in the user agent, the
following is performed:

a) Ask the scripting engine to invoke a script, function or other resource identified by the entire fragment name.
Note that the interpretation of the fragment name is entirely at the discretion of the scripting engine. WML

makes no assumptions at the format or syntax present in the fragment name, other than the fact that it must be
alegal URL fragment.

b) If the scripting engine returns "Not Found", continue processing.
c) If the scripting engine returns "OK", stop processing.

This simple model provides the WML author with a powerful and convenient script invocation model that may be used
inavariety of ways. For example, the following WML deck contains a WML Script script, which is executed upon
card entry.
<WWL>
<COVMON>
<SCRI PT TYPE="t ext/wnl script">
/1 the following function is a no-op
function enter() { return; }
</ SCRI PT>
</ COVIVON>
<FORMCARD ONENTER="#enter ()" >
Sanpl e card.
</ FORMCARD>
</ WML>

WAP Confidential 0 Copyright Wireless Application Protocol Forum, 1998

All rights reserved

Draft Version 3-Feb-1998 Page 49 (70)

13. WML Reference Information

WML isan application of [XML] version 1.0.

13.1 Document Identifiers

| Ed: these identifiers have not yet been registered with the IANA or SO 9070 Registrar

13.1.1 SGML Public Identifier
-/ / WAPFORUM / DTD WML 1. 0//EN

13.1.2 WML Media Type

Textual form:
t ext/ x-wml

Tokenized form:
application/ x-wnc

Ed: these types are not yet registered with the IANA, and are consequently experimental media types.

WAP Confidential 0 Copyright Wireless Application Protocol Forum, 1998
All rights reserved

Draft Version 3-Feb-1998 Page 50 (70)

13.2 Document Type Definition (DTD)

<I--
W rel ess Markup Language (WWL) Docunent Type Definition.
WW is an XM. | anguage. Typical usage:
<?xm version="1.0"7?>
<! DOCTYPE WML PUBLIC "-//WAPFORUM / DTD WML 1. 0//EN'>
<WWL>
-->
<IENTITY %l ength "CDATA"> <l-- nn for pixels or nn% for percentage
| ength -->
<IENTITY % vdat a " CDATA" > <l-- attribute value possibly containing
vari abl e references -->
<IENTITY % URL "Owdata; "> <!-- URL or URN designating a hypertext
node. May contain variable references -->

<IENTITY % bool ean "(TRUE| FALSE)" >
<IENTITY % nunber "NMIOKEN'> <!-- a nunber, with format [0-9][0-9]* -->

<IENTI TY % enph "EM| STRONG| B| | | U] BIG| SMALL">
<IENTITY %tab "TAB" >

<IENTITY % | ayout "BR'>

<IENTITY %t ext "#PCDATA | %enph; | % ab; ">

<IENTITY %inline "Yext; | %ayout;">

<l-- flow covers "card-level" elenents, such as text and inmges -->
<IENTITY % fl ow "%nline; | IMG]| A'>

<l-- card types -->

<IENTITY % cards "FORMCARD | DI SPLAY | CHO CE | ENTRY | NODI SPLAY">

<!-- tasks types -->
<IENTITY %t asktypes " (GJ PREV| NOOP) " >

<l-- task attributes -->

<IENTITY %taskattrs "
URL %JRL; #| VPLI ED
VARS %vdat a; #| MPLI ED
SENDREFERER %bool ean; " FALSE
METHOD (PCST| GET) ' GET
ACCEPT- CHARSET CDATA #| VPLI ED
POSTDATA Y%vdat a; #| VPLI ED"
>

<IENTITY % task "
TASK % askt ypes; ce)
% askattrs;"
>

<I-- Navigation and event elenents -->

<IENTITY % navel nts "DO | ONEVENT">

WAP Confidential 0 Copyright Wireless Application Protocol Forum, 1998
All rights reserved

Draft Version 3-Feb-1998 Page 51 (70)

<l ELEMENT WML ((COWMON, (%ards;)*) | (%ards;)+)>
<l ATTLI ST WML

VERSI ON NMTOKEN #FI XED 1.0
>

<| P —————— Car dS e ———————— >

<l-- card intrinsic events -->

<IENTITY % car dev

" ONENTERFORWARD 9%JRL; #1 MPLI ED

ONENTERBACKWARD %4JRL ; #1 MPLI ED"
>

<IENTITY % cardattrs

" NAMVE NMTOKEN #1 MPLI ED
TI TLE Qvdat a; #1 MPLI ED
NEWCONTEXT %bool ean; " FALSE
%car dev; "
>

<!-- FORMCARD field types -->

<IENTITY %fields "% low, | INPUT | SELECT | FIELDSET">
<! ELEMENT FORMCARD (% i elds; | Y%avelnts;)*>
<! ATTLI ST FORMCARD
%cardattrs;
STYLE (LI ST| SET) "LI ST
>
<! -- DEPRECATED - ->
<! ELEMENT DI SPLAY (% nline; | %avelnts;)* >
<! ATTLI ST DI SPLAY
%ardattrs;
>
<! -- DEPRECATED - ->
<IELEMENT CHO CE (% nline; | %avelms; | CE)*>
<I ATTLI ST CHO CE
%ardattrs;
KEY NMTOKEN #| MPLI ED
DEFAULT %vdat a; #| MPLI ED
| KEY NMTOKEN #1 MPLI ED
| DEFAULT %vdat a; #1 MPLI ED
>
<! -- DEPRECATED - ->
<!l ELEMENT ENTRY (% nline; | %avelnts;)*>
<I ATTLI ST ENTRY
%ardattrs;
KEY NMTOKEN #REQUI RED
DEFAULT %vdat a; #1 MPLI ED
FORVAT CDATA #1 MPLI ED
NOECHO %ool ean; " FALSE
EMPTYOK %ool ean; " FALSE
>
WAP Confidential O Copyright Wireless Application Protocol Forum, 1998

All rights reserved

Draft Version 3-Feb-1998

<I-- DEPRECATED -

->

<! ELEMENT NODI SPLAY (ONEVENT) * >
<I ATTLI ST NODI SPLAY

ocardattrs;

<l - - =======momm—m—mm=

<! ELEMENT DO EMPTY>

<! ATTLI ST DO
TYPE CDATA
LABEL %vdat a;
NANVE NMTOKEN
OPTI ONAL %bool ean;
% ask;

>

<!
<

ATTLI ST ONEVENT

ELEVENT ONEVENT EMPTY>

TYPE CDATA

<! - - DD

<
<

ATTLI ST COVWON
ocar dev;
>

<
<

ATTLI ST ACCESS

DOVAI N CDATA
PATH CDATA
PUBLI C %bool ean;

>

<
<

ATTLI ST META
HTTP- EQUI V
NANME

USER- AGENT
CONTENT
SCHEME

>

<! ELEMENT SCRI PT (#PCDATA) >

<I ATTLI ST SCRI PT
TYPE CDATA
>

WAP Confidential

=== Commmon decl arati ons

ELEMENT COVMON (ACCESS |

ELEMENT ACCESS EMPTY>

ELEMENT META EMPTY>

CDATA
CDATA
CDATA
CDATA
CDATA

Event

Handl i ng ===

#REQUI RED
#| MPLI ED
#| MPLI ED
" FALSE'

#REQUI RED

Page 52 (70)

META | SCRIPT | 9%avelnts;)*>

#| MPLI ED
#| MPLI ED
" FALSE'

#| MPLI ED
#| MPLI ED
#| MPLI ED
#REQUI RED
#| MPLI ED

#REQUI RED

O Copyright Wireless Application Protocol Forum, 1998
All rights reserved

Draft Version 3-Feb-1998

<l - - ================ FORMCARD Fi el ds ================

<! ELEMENT SELECT (OPTGROUP| OPTI ON) +>

<I ATTLI ST SELECT

TI TLE ovdat a; #| MPLI ED
KEY NMTOKEN #| MPLI ED
DEFAULT wvdat a; #| MPLI ED
| KEY NMTOKEN #| MPLI ED
| DEFAULT ovdat a; #| MPLI ED
MULTI PLE %ool ean; ' FALSE'
TABI NDEX umunber ; #| MPLI ED
>

<! ELEMENT OPTGROUP (OPTGROUP| OPTI ON) + >

<! ATTLI ST OPTGROUP
TI TLE %vdat a; #1 MPLI ED
>

<! ELEMENT OPTI ON (% ext; | ONEVENT) *>

<! ATTLI ST OPTI ON
VALUE %vdat a; #1 MPLI ED
TI TLE %vdat a; #1 MPLI ED
ONCLI CK %URL ; #1 MPLI ED
>

<! ELEMENT | NPUT EMPTY>

<! ATTLI ST | NPUT
KEY NMIOKEN #REQUI RED
TYPE (TEXT| PASSWORD) " TEXT
VALUE %vdat a; #1 MPLI ED
DEFAULT %vdat a; #1 MPLI ED
FORVAT CDATA #1 MPLI ED
Sl ZE o%munber ; #1 MPLI ED
MAXLENGTH 9%hunber ; #1 MPLI ED
TABI NDEX omumnber ; #1 MPLI ED
TI TLE %vdat a; #1 MPLI ED

>

<
<

ATTLI ST FI ELDSET

ELEMVENT FI ELDSET (% ields;)* >

TI TLE Y%vdat a; #| MPLI ED
>
<l - - ================ Choi ce el enents ================
<! -- DEPRECATED - ->
<! ELEMENT CE (% ext;)*>
<I ATTLI ST CE
VALUE Y%vdat a; #| MPLI ED
TASK % askt ypes; #l MPLI ED

% askattrs;
>

WAP Confidential

Page 53 (70)

O Copyright Wireless Application Protocol Forum, 1998

All rights reserved

Draft Version 3-Feb-1998 Page 54 (70)

<IENTITY % | Align "(TOP| M DDLE| BOTTOM " >

<I ELEMENT | MG EMPTY>
<I ATTLI ST | MG

ALT %vdat a; #| MPLI ED
SRC %JRL; #| MPLI ED
LOCALSRC %vdat a; #1 MPLI ED
VSPACE % engt h; o
HSPACE % engt h; o
ALl GN % Align; ' BOTTOM
HEI GAT % engt h; #| MPLI ED
W DTH % engt h; #1 MPLI ED
>
<| - DTS Anchor s T T T T, T, T, T, T, T, T T, T, - - >
<l ELEMENT A (% nline;)*>
<I ATTLI ST A
TI TLE Y%vdat a; #1 MPLI ED
% ask;
>
<l --================ Text |ayout and |line breaks = -->
<l-- Text alignnent attributes -->
<IENTITY % TAlign " (LEFT| R GHT| CENTER) " >
<! ELEMENT TAB EMPTY>
<! ATTLI ST TAB
ALI GN 9T Al gn; "LEFT’
>
<! ELEMENT EM (%1 ow;) *>
<! ELEMENT STRONG (% | ow;) *>
<! ELEMENT B (%1 ow;)*>
<! ELEMENT | (%1 ow;)*>
<! ELEMENT U (%1 ow;) *>
<! ELEMENT BI G (%1 ow;) *>
<! ELEMENT SMALL (%1 ow;)*>
<IENTI TY % BRMbde " (V\RAP| NOVRAP) " >
<! ELEMENT BR EMPTY>
<! ATTLI ST BR
ALIGN %Al gn; " LEFT
MODE YBRMbde; #1 MPLI ED
>
<IENTITY quot """> <l-- quotation mark -->
<IENTITY anp " & #38; "> <! -- anpersand -->
<IENTITY It " & #60; "> <!-- less than -->
<IENTITY gt " > " > <l-- greater than -->

<IENTITY nbsp " "> <l'-- non-breaking space -->
<IENTITY shy "­ " > <l-- soft hyphen (discretionary hyphen) -->

WAP Confidential 0 Copyright Wireless Application Protocol Forum, 1998
All rights reserved

Draft Version 3-Feb-1998 Page 55 (70)

14. A Compact Binary Representation of WML

WML may be encoded using a compact binary representation. The tokenized format was designed to allow for
compact transmission over narrowband channels, with no loss of functionality or semantic information. The format is
also designed to allow forward and backward compatibility by preserving the element structure of WML, and alowing
abrowser to skip unknown elements or attributes.

The following data types are used in the specification of the WML tokenized format.

Table 5. Data types used in tokenized format

Data Type Definition

bit 1 bit of data

byte 8 hits of opague data
int8 8 bit signed integer
u_int8 8 bit unsigned integer
int16 16 bit signed integer
u_ int16 16 bit unsigned integer
int24 24 bit signed integer
u_ int24 24 bit unsigned integer
int32 32 bit signed integer

u int32 32 hit unsigned integer
mb_u int32 | 32 hit unsigned integer, encoded in multi-byte integer format.

Network byte order is"big-endian”. In other words, the most significant byte is transmitted on the network first,
followed by the less significant bytes. Network bit ordering within abyteis"big-endian”. In other words, bit fields
described first are placed in the most significant bits of the byte.

14.1 Multi-byte Integers

This encoding uses a multi-byte representation for integer values. A multi-byte integer consists of a series of octets,
where the most significant bit is the continuation flag, and the remaining seven bits are ascalar value. The
continuation flag indicates that an octet is not the end of the multi-byte sequence. A single integer value is encoded
into a sequence of N octets. The first N- 1 octets have the continuation flag set to avalue of one (1). Thefinal octet in
the series has a continuation flag value of zero (0).

The remaining seven bitsin each octet are encoded in a big-endian order, e.g., most significant bit first. The octets are
arranged in a big-endian order, e.g. the most significant seven bits are transmitted first. In the situation where theinitial
octet has less than seven bits of value, all unused bits must be set to zero (0).

For example, the integer value 0x A0 would be encoded with the two-byte sequence 0x81 0x20. Theinteger value
0x60 would be encoded with the one-byte sequence 0x60.

14.2 Character Encoding

The encoding of all stringsin the WML tokenized format is specified by transport or container meta-information, and is
expected to use the same mechanisms as the textual WML format. Specificaly, it isassumed that a charset declaration
accompanies the WML content in any form, and indicates the encoding of all strings (see section 6). The WML
tokenized representation can support any string encoding, but requires that al strings include an encoding-specific
termination mechanism (i.e. aNULL terminator, length encoding, etc.) which can be reliably used to detect the end of a
string. Aswith the textual format of WML, it is also assumed that all tag and attribute names can be represented in the
target character encoding.

WAP Confidential 0 Copyright Wireless Application Protocol Forum, 1998
All rights reserved

Draft Version 3-Feb-1998 Page 56 (70)

14.3 BNF for Document Structure

A binary WML deck is composed of a sequence of elements. Each element may have zero or more attributes, and may
contain embedded content. This structure is very general, and does not have explicit knowledge of WML element
structure or semantics. This generality allows user agents and other consumers of the tokenized form to skip elements
and data that are not understood.

Thefollowing is a BNF-like description of the tokenized structure. The description uses the conventions established in
[RFC822], except that the "| " character is used to designate alternatives, and capitalised words indicate single-byte
tokens, which are defined later. Briefly, (" and") " are used to group elements, optional elements are enclosed in "["
and "] ", and elements may be preceded with <N>* to specify N or more repetitions of the following element (N
defaults to zero when unspecified).

deck = version strtbhl 1*content

strtbl = nb_u_int32 *byte

cont ent = elenment | string | opaque | variable | entity
el ement = stag [l1l*attribute ETAG] [*content ETAG]
st ag = TAG | (UNKNOMN i ndex)

attribute = attrStart *attrVal ue

attrStart = ATTRSTART | (UNKNOWN i ndex)

attrValue = ATTRVALUE | string | variable | entity
variable = (VAR ternstr) | (VART index)

opaque = (OPQI length *byte) | (OPQR nb u_int32)
string = inline | tableref

inline = STR | ternmstr

tableref = STR T index

entity = ENTITY nmb_u_int32

version = single u_int8 version nunber

ternstr = charset-dependent string with ternination

i ndex = nb _u_ int32 /'l integer index into string table.
| ength = mb_u_int32 [l integer |ength.

14.4 Language Version Number

version = single u_int8 version nunmber

A binary WML deck consists of a WML language version number followed by one or more elements. The version byte
contains the major version minus one in the upper 4 bits and the minor version in the lower 4 bits. For example, the
version number 2. 7 would be encoded as0x16. Thisdocument describesthe 1. 0 version of the WML language, and
isthus encoded as 0x00. Note that the version number refers to the WML language version (see section 11.2), and not
the version of the compiler, browser or any other software.

14.5 String Table

strtbl = nb_u_int32 *byte
A tokenized WML deck may include a string table immediately after the version number. Minimally, the string table
consistsof amb_u_i nt 32 encoding the string table length in bytes, not including the length field (e.g. a string table
containing a two-byte string is encoded with alength of two). If the length is non-zero, one or more strings follow.
The encoding of the strings follows the current charset specified by transport meta-information.

Various tokens encode references to the contents of the string table. These references are encoded as scalar byte offsets
from the first string in the string table. For example, the offset of the first string is zero (0).

WAP Confidential 0 Copyright Wireless Application Protocol Forum, 1998
All rights reserved

Draft Version 3-Feb-1998 Page 57 (70)

14.6 Token Structure

Tokens are organised into two separate code spaces, each of which is completely independent and overlapping:
e Tag - single-byte token indicating a specific tag name.
e Attribute - single-byte token indicating a attribute name or value.

Each code space is further organised into a series of code pages. Code pages allow for future expansion of the well-
known codes. A well-defined token (SW TCH_PAGE) causes a switch between 256 possible code pages. This
effectively allows for two independent 16-bit token sets.

Thereisasmall set of codesthat are identical in al code spaces and across all code pages. These codes are named
global codes, and are used for the following purposes:

« Encoding inline data (e.g., strings, entities, opaque data and variable references).
» Code page switch and other miscellaneous functions.

14.6.1 Parser State Machine

When decoding the tokenized form, a parser must move between two states, each of which has an associated code
space. The states are traversed according to the syntax described in section 14.3. Code spaces are associated with
parser states in the following manner:

Table 6. Parser states

Parser State Code Space
stag Tags
attribute Attribute name and value

Any occurrence of code page switch tokens (SW TCH_PAGE) while in a given state changes the current code page for
that state. Each parser state maintains a separate "current code page'”.

The following state machine is an alternative representation of the state transitions, and is provided as areference
model.

End of
Attribute Attributes Not End of

Not Present Attributes
. Tag State

Attribute
Vaue State

Attribute
Present

WAP Confidential 0 Copyright Wireless Application Protocol Forum, 1998
All rights reserved

Draft Version 3-Feb-1998 Page 58 (70)

14.6.2 Tag Code Space

Tag tokensare asingle u_int8, and are structured as follows:

Table 7. Tag format

Bit(s) Description

7 (most significant) | Indicates whether attributes follow the tag code. If this bit is zero, the tag contains
no attributes. If thisbit is one, the tag is followed immediately by one or more
attributes. The attribute list isterminated by an END token.

6 Indicates whether this tag begins an element containing content. If this bit is zero,
the tag contains no content and no end tag. If thishbit isone, the tag is followed by
any content it contains, and is terminated by an END token.

5-0 Indicates the tag identity.

For example:

e Tagvalue 0xC6: indicates tag two (6), with both attributes and content following the tag, e.g.,
<TAG ar g="1">f oo</ TAG>

e Tagvalue0x48: indicatestag eight (8). This element contains content, and this start tag is followed by that

content and terminated by an END tag. This element contains no attributes, e.g.,

t est </ B>

e Tagvalue0x10: indicates tag sixteen (16). This element contains no content, and has no attributes, e.g.,
<BR/ >

The globally unique code UNKNOWN (see section 14.6.4.5) represents unknown tag names. Itisillegal to usethe
UNKNOWN code to represent a well-known tag.

Tags containing both attributes and content always encode the attributes before content.
14.6.3 Attribute Code Space (ATTRSTART and ATTRVALUE)

Attribute tokensareasingleu_i nt 8. For example, the value 0x 20 indicates attribute token number 32. The
attribute code space is split into two ranges (in addition to the global range present in all code spaces):

* Attribute Start - tokens with avalue less than 128 indicate the start of an attribute. The attribute start token fully
identifies the attribute name, e.g., URL=, and may optionally specify the beginning of the attribute value, e.g.
PUBLI C=" TRUE" . Unknown attribute names are encoded with the globally unique code UNKNOWN (see section
14.6.4.5). Itisillegal to use the UNKNOWN code to represent a well-known attribute name or to represent any part
of an attribute value with the UNKOAN code.

» Attribute Value - tokens with avalue of 128 or greater represent a well-known string present in an attribute value.
These tokens may only be used to represent attribute values. Unknown attribute values are encoded with string,
entity or variable references (see section 14.6.4).

All tokenized attributes must begin with a single attribute start token, and may be followed by zero or more attribute
value, string, entity or variable tokens. This allows a compact encoding of strings containing well-known sub-strings,
as well as variables and entities.

For example, if the attribute start token TOKEN_URL represents the attribute name "URL" and the attribute val ue token
TOKEN_HTTP represents the prefix "ht t p: // ", the attribute URL="ht t p: / / f oo/ " might be encoded with the
following sequence:

TOKEN_URL TOKEN_HTTP STR_I "foo/"

WAP Confidential 0 Copyright Wireless Application Protocol Forum, 1998
All rights reserved

Draft Version 3-Feb-1998 Page 59 (70)

In another example, if the attribute start token TOKEN_PUBLI C_TRUE represents the attribute name "PUBLI C" and
the value prefix "TRUE", the attribute PUBLI C=" TRUE" might be encoded with the following sequence:

TOKEN_PUBLI C_TRUE
14.6.4 Global Tokens

Global tokens have the same meaning and structure in all token spaces and in &l code pages. There are six classes of
global tokens:

e Strings - inline and table string references

* Variables - variable references

e Opague - inline opaque data

* Entity - character entities

* Unknown - unknown tag or attribute name

e Control codes - miscellaneous global control tokens

14.6.4.1 Strings

string = inline | tableref
inline = STR_| termstr
tableref = STR T index

Strings encode inline character data or references into a string table. The string table is a concatenation of individual
strings. String termination is dependent on the character document encoding, and should not be presumed to include
NULL termination. Referencesto each string include an offset into the table, indicating the string being referenced.

Inline string references have the following format:

STR | ... Char data ...

String table references have the following format:

STR.T mb_u_int32

The string table offset is from the beginning of the table, and is a byte offset (i.e. not a character offset).

14.6.4.2 Variables

variable = (VAR ternstr) | (VAR_T index)

Variable references may occur in a variety of places in a WML deck (see section 10.3). There are several codes that
indicate variable substitution. Each code has different escaping semantics (e.g. direct substitution, escaped substitution,
and unescaped substitution). The variable name is encoded in the current document character encoding.

Inline variable substitutiolMAR _|) is encoded into the token stream in the following way:

VAR_I* ... char data ...

Variable string table referencédAR_T) have the following format:

VAR_T* mb_u_int32

Thenb_u_i nt 32 string table offset is from the beginning of the table, and is a byte offset (i.e. not a character offset).

WAP Confidential 0 Copyright Wireless Application Protocol Forum, 1998
All rights reserved

Draft Version 3-Feb-1998 Page 60 (70)

14.6.4.3 Opaque Data

opaque = (OPQI length *byte) | (OPQR nb u_int32)

An opague datum encodes non-WML data, and is used to represent a variety of content, e.g., acompiled script, an
inline image, etc.

Inline opague data are encoded as follows:

OPQ | mb_u int32 ... byte data ...

Opague data references are encoded as follows:

OPQ R | mb_u_int32

The opaque data reference tok€RQ_R) encodes a reference to a previously encoded inline opaque da@@mi ().
The reference is coded as the offset between the beginning@@hér, and the start of thePQ | (i.e. the number
of bytes between the two tokens).

14.6.4.4 Character Entity

entity = ENTITY mb_u_int 32
The character entity tokeML_ENTI TY) encodes a numeric character entity. This has identical semantics as a WML
numeric character entity (e). Thenb_u_i nt 32 refers to a character in the UCS-4 character encoding (see
section 6). All entities in the source WML deck must be represented using either a string tok8mRelg). or the
ENTI TY token.

The format of the character entity is:

ENTITY | mb_u_int32

14.6.4.5 Unknown Tag or Attribute Name

The unknown token encodes a tag or attribute name that does not have a well-known token code. The actual meaning
of the token (i.e. tag versus attribute name) is determined by the token parsing state. All unknown tokens indicate a
reference into the string table, which contains the actual name.

The format of the unknown tag is:

UNKNOWN | mb_u_int32

14.6.4.6 Miscellaneous Control Codes

14.6.4.6.1 END Token
The END token is used to terminate attribute lists and elements. END is a single-byte token.

14.6.4.6.2 Code Page Switch Token

The code-page switch tokeBW TCH_PAGE) indicates a switch in the current code page for the current token state.
The code-page switch is encoded as a two-byte sequence:

SWITCH u_int8

WAP Confidential 0 Copyright Wireless Application Protocol Forum, 1998
All rights reserved

Draft Version 3-Feb-1998 Page 61 (70)

14.6.4.7 Reserved Tokens

There are several reserved global tokens. These must not be emitted by any tokenizer, and should be treated as a
single-byte token by any user agent.

Ed. - Should there be additional reserved code pages? Maybe all reserved except for FF, which could be for
experimental or vendor-specific use?

14.7 Encoding Semantics

The process of tokenizing WML must convert all markup and XML syntax (i.e., entities, tags, attributes, etc.) into their
corresponding tokenized format. Itisillegal to encode markup constructs as strings. The user agent must treat all text
tokens (e.g., STR | and ENTI TY) asCDATA, i.e., text with no embedded markup.

Thisimpliesthat all XML syntax (e.g. tags, entities, etc.) must be fully parsed and converted to a tokenized form. Tags
and attributes must be converted to tokens (e.g., the WWL token). Text and entities must be converted to string (e.g.,
STR 1) or entity (ENTI TY) tokens. Entitiesin the textual markup (e.g., &anp;) may be converted to string form
when tokenized. Characters present in the textual form may be encoded using the ENTI TY token when they can not be
represented in the string character encoding. All variable references must be converted to variable reference tokens
(e.g. VAR_ESC |). Attribute names must be converted to an attribute start token, or must be represented by asingle
UNKNOWN token. Attribute values may not be represented by an UNKNOWN token.

A tokenized WML deck must conform to the WML document type definition (DTD), and must have identical
semanticsto the original textual representation of the deck. For example, thisimplies that the tokenized content must
contain asingle, top-level WML element, and all other elements must be included inside this element.

See section 14.9 for an exampl e of the WML tokenized format.

The process of tokenizing WML must also apply avariety of transformations, as specified in the following sections.
14.7.1 Encoding the CE Element

Each instance of the CE element must be converted to an OPTI ON element. This can be automated with the following
process:

1. CEistransformed to OPTION.

2. If the element includes atask specification, an ONEVENT intrinsic event handler isinserted into the OPTI ON
element, specifying the ONCLI CK event and the same task attributes indicated in the CE element.

14.7.2 Encoding the CHOICE Element

Each instance of the CHO CE element must be converted to a FORMCARD element and a SELECT element. Thiscan
be automated with the following process:

1. CHOICE istransformed to FORMCARD.

2. All PCDATA and elements other than CE are inserted into the FORM CARD element.

3. A select element isinserted at the end of the FORM CARD element, and each CE isinserted into it. Each CE is
converted to an OPTION as described in section 14.7.1.

14.7.3 Encoding the DISPLAY Card

Each instance of the DI SPLAY card must be converted to a FORMCARD element when tokenized. Thisis accomplished
by literally transforming DI SPLAY to FORMCARD.

WAP Confidential 0 Copyright Wireless Application Protocol Forum, 1998
All rights reserved

Draft Version 3-Feb-1998 Page 62 (70)

14.7.4 Encoding the ENTRY Element

The ENTRY element’s NOECHO attribute must be transformed to a TYPE attribute. Specifically:
e |f NOCECHOIis TRUE, it must be transformed to TYPE=" PASSWORD" .
* If NOECHOIisFALSE, it must be transformed to TYPE="TEXT" .

14.7.5 Encoding the NODISPLAY Card

Each instance of the NODI SPLAY card must be converted to a FORMCARD el ement when tokenized. Thisis
accomplished by literally transforming the NODI SPLAY to FORMCARD.

14.7.6 Encoding the SCRIPT Element

The SCRI PT element contains a mandatory TYPE attribute. This TYPE attribute must represent the actual IANA type
of the content embedded within the SCRI PT element. For example, if the WML tokenization process compiles a
given scripting language into a bytecode form, the TYPE attribute must be updated to reflect the changein type.

14.7.7 Encoding the VERSION Attribute

The WML element contains a VERSION attribute that is encoded differently than other attributes. The VERSION
attribute must be encoded at the beginning of the tokenized deck (see section 14.4). The WML VERSION attribute
must not be included in the tokenized WML element.

For example, the tokenized form of the following WML tag does not contain attributes:
<WWL VERSI ON="1.0">

WAP Confidential 0 Copyright Wireless Application Protocol Forum, 1998
All rights reserved

Draft Version 3-Feb-1998 Page 63 (70)

14.8 Numeric Constants

14.8.1 Global Tokens

The following token codes are present in all code pages. All numbers are in hexadecimal.
Table 8. Global tokens

Token Name Token Description

SWITCH_PAGE 0 Change the code page for the current token state. Followed by a
single u_int8 indicating the new code page number.

END 1 Indicates the end of an attribute list or the end of an element.

ENTITY 2 A character entity. Followed by anb_u_i nt 32 encoding the
character entity number.

STR | 3 Inline string. Followed by at er nstr.

UNKNOWN 4 An unknown tag or attribute name. Followed by an
nb_u_i nt 32 that encodes an offset into the string table.

VAR _ESC | 40 Variable substitution - escaped. Name of the variableisinline,
and followsthetokenasat er nstr .

VAR_UNESC | 41 Variable subgtitution - unescaped. Name of the variableisinline,
and followsthetokenasat er nst r .

VAR DIRECT | 42 Variable substitution - no transformation. Name of the variable
isinline, and followsthetoken asat er st r .

OPQ | 43 Aninline opague datum. Followed by alength field
(mb_u_i nt 32) and zero or more bytes of data.

UNKNOWN_C 44 Unknown tag, with content.

VAR ESC T 80 Variable substitution - escaped. Variable name encoded asa

reference into the string table.

VAR _UNESC T 81 Variable substitution - unescaped. Variable name encoded as a
reference into the string table.

VAR DIRECT_T 82 Variable subgtitution - no transformation. Variable name
encoded as areference into the string table.

STRT 83 String table reference. Followed by amb_u_i nt 32 encoding a
byte offset from the beginning of the string table.

UNKNOWN_A 84 Unknown tag, with attributes.

RESERVED_CO Cco Reserved for future use.

RESERVED_C1 Cc1 Reserved for future use.

RESERVED_C2 Cc2 Reserved for future use.

OPQ R C3 An opague datum reference. Followed by annb_u_i nt 32 that
encodes areverse offset to the beginning of an OPQ_|I.

UNKNOWN_AC C4 Unknown tag, with content and attributes.

WAP Confidential

O Copyright Wireless Application Protocol Forum, 1998
All rights reserved

Draft Version 3-Feb-1998 Page 64 (70)

14.8.2 Tag Tokens

The following token codes represent tags in code page zero (0). All numbers are in hexadecimal.

| Note: token assignments may change before final publication.

Table 9. Tag tokens

Tag Name Token Tag Name Token
A 28 IMG 34
ACCESS 29 INPUT 35
B 2A META 36
BIG 2B ONEVENT 37
BR 2C OPTGROUP 38
COMMON 2D OPTION 39
DO 2E SCRIPT 3A
EM 2F SELECT 3B
ENTRY 30 SMALL 3C
FIELDSET 31 TAB 3D
FORMCARD 32 U 3E
| 33 WML 3F
WAP Confidential 0 Copyright Wireless Application Protocol Forum, 1998

All rights reserved

Draft Version 3-Feb-1998 Page 65 (70)

14.8.3 Attribute Start Tokens

The following token codes represent the start of an attribute in code page zero (0). All numbers are in hexadecimal.

| Note: token assignments may change before final publication.

Table 10. Attribute start tokens

Attribute Name Attribute Token Attribute Name Attribute Token
Value Prefix Value Prefix
ACCEPT-CHARSET 5 NEWCONTEXT 23
ALIGN 6 NEWCONTEXT FALSE 24
ALIGN BOTTOM 7 NEWCONTEXT TRUE 25
ALIGN MIDDLE 8 ONCLICK 26
ALIGN TOP 9 ONENTERBACKWARD 27
ALT A ONENTERFORWARD 28
CONTENT B OPTIONAL 29
DEFAULT C OPTIONAL FALSE 2A
DOMAIN D OPTIONAL TRUE 2B
EMPTYOK E PATH 2C
FORMAT F POSTDATA 2D
HEIGHT 10 PUBLIC 2E
HSPACE 11 PUBLIC FALSE 2F
HTTP-EQUIV 12 PUBLIC TRUE 30
IDEFAULT 13 SCHEME 31
IKEY 14 SENDREFERER 32
KEY 15 SENDREFERER FALSE 33
LABEL 16 SENDREFERER TRUE 34
LOCALSRC 17 SIZE 35
MAXLENGTH 18 SRC 36
METHOD 19 STYLE 37
METHOD GET 1A STYLE LIST 38
METHOD POST 1B STYLE SET 39
MODE 1C TABINDEX 3A
MODE NOWRAP 1D TASK 3B
MODE WRAP 1E TASK GO 3C
MULTIPLE 1F TASK NOOP 3D
MULTIPLE FALSE 20 TASK PREV 3E
MULTIPLE TRUE 21 TITLE 3F
NAME 22 TYPE 45

WAP Confidential 0 Copyright Wireless Application Protocol Forum, 1998

All rights reserved

Draft Version 3-Feb-1998 Page 66 (70)

Attribute Name Attribute Token Attribute Name Attribute Token
Value Prefix Value Prefix

TYPE PASSWORD | 46 USER-AGENT 4B

TYPE TEXT 47 VALUE 4C

URL 48 VARS 4D

URL http:// 49 VSPACE 4E

URL https:// 4A WIDTH 4F
WAP Confidential 0 Copyright Wireless Application Protocol Forum, 1998

All rights reserved

Draft Version 3-Feb-1998 Page 67 (70)

14.8.4 Attribute Value Tokens

The following token codes represent attribute values in code page zero (0). All numbers are in hexadecimal.

Note: token assignments may change before final publication.

NOTE: need to be specific about case folding, e.g. 'vnd.’

Table 11. Attribute value tokens

Attribute Value Token Attribute Value Token
.com 5 NOWRAP 1A
.edu 6 ONCLICK 1B
.net 7 ONENTERBACKWARD 1C
.org 8 ONENTERFORWARD 1D
ACCEPT 9 OPTIONS 1E
BOTTOM A PASSWORD 1F
CENTER B POST 20
CLEAR C PREV 21
DELETE D RESET 22
FALSE E RIGHT 23
GET F SET 24
GO 10 TEXT 25
HELP 11 text/wml script 26
http:/ 12 TOP 27
http://www. 13 TRUE 28
https:// 14 UNKNOWN 29
https://www. 15 vnd. 2A
LEFT 16 WRAP 2B
LIST 17 WWW. 2C
MIDDLE 18 X- 2D
NOOP 19

WAP Confidential

O Copyright Wireless Application Protocol Forum, 1998

All rights reserved

Draft Version 3-Feb-1998 Page 68 (70)

14.9 WML Encoding Examples

14.9.1 A Simple Deck

The following is an example of a simple tokenized WML deck. It demonstrates basic element, string and entity
encoding. Source deck:
<WWWL>
<FORMCARD>
X &anp; Y<BR/ >
X = 1
</ FORMCARD>
</ WWL>
Tokenized form (numbersin hex) follows. Thisexample uses only inline strings, and assumes that the character
encoding uses a NULL terminated string format. 1t also assumes that the transport character encoding is US-ASCII.
This encoding isincapable of supporting some of the charactersin the deck (e.g. &bsp;), forcing the use of the
ENTI TY token.

00 00 7F 72 03 " 'X "' 00 02 26 03 ' ' 'Y 00 2C
03 ' 'X 00 02 81 20 03 '= 00 02 81 20 03 '71° '’
00 01 01

In an expanded and annotated form:

Table 12. Example tokenized deck

Token Stream Description

00 Version number

00 String table length
7F VWL, with content

72 FORMCARD, with content
03 Inline string follows
T, X, 0, 00 String

02 ENTI TY

26 Entity value (0x26)
03 Inline string follows
'Y, 00 String

2C BR

03 Inline string follows
T, X, 00 String

02 ENTI TY

81 20 Entity value (0x160)
03 Inline string follows
=", 00 String

02 ENTI TY

81 20 Entity value (0x160)
WAP Confidential 0 Copyright Wireless Application Protocol Forum, 1998

All rights reserved

Draft Version 3-Feb-1998

Page 69 (70)

Token Stream

Description

03 Inline string follows

"1, " ', 00 String

01 END (of FORMCARD element)
01 END (of WWL element)

14.9.2 An Expanded Deck

The following is another example of a tokenized WML deck. It demonstrates variable encoding, attribute encoding,
and the use of the string table. Source deck:

<WWL>

<FORMCARD NAME="abc"

X $(X)<BR/ >

STYLE="LI ST">

Y: $(Y) <BR MODE=" NONRAP"/ >
Enter nane: <INPUT TYPE="TEXT" KEY="N'/>

</ FORMCARD>
</ WML>

Tokenized form (numbers in hex) follows. This example only uses inline strings, and assumes that the character
encoding usesaNULL terminated string format. |t also assumes that the character encoding is UTF-8:

00 04 'X 00 'Y 00 7F F2 E9 03 ’'a 'b 'c¢c' 00 38
0L o3 ' 'X 7 82 00 2C 03 ' 'Yy ’:' 7
00 82 02 AC 1E 01 03 ' ' 'E 'nm 't’ ’e ’'r’ ' ' 'n

a 'm 'e ‘':' '

00 B5
In an expanded and annotated form:

47 E2 03 'N 00 01 01 01

Table 13. Example tokenized deck

Token Stream Description

00 Version number

04 String table length

"X, 00, "Y', 00 String table

7F VWL, with content

F2 FORMCARD, with content and attributes
23 NANVE=

03 Inline string follows

'a’, 'b’, "¢, 00 string

38 STYLE="LI ST"

01 END (of FORMCARD attribute list)

03 Inline string follows

o, X, e, 00 String

82 Direct variable reference (VAR _DI RECT_T)
00 Variable offset 0

2C BR

03 Inline string follows

WAP Confidential

O Copyright Wireless Application Protocol Forum, 1998
All rights reserved

Draft Version 3-Feb-1998

Page 70 (70)

Token Stream Description

Ly Y,, e, 7, 00 String

82 Direct variable reference (VAR _DI RECT_T)
02 Variable offset 2

AC BR, with attributes

1E MODE=" NOARAP"

01 END (of BR attribute list)

03 Inline string follows

o, B, ', Tt e r String

a', 'm, ‘e, i, 00

B5 | NPUT, with attributes

47 TYPE=" TEXT"

E2 KEY=

03 Inline string follows

"N, 00 String

01 END (of | NPUT attribute list)
01 END (of FORMCARD element)
01 END (of WWL element)

WAP Confidential

O Copyright Wireless Application Protocol Forum, 1998
All rights reserved

