

User Interface Markup Language (UIML)

Specification
Document Version 08 February 2002

** DRAFT **

Language Version 3.0

Send technical comments to uiml-editor@uiml.org.

Creating harmony between people and computers

UIML 3.0 Language Specification

Harmonia, Inc. Page 2 02/08/2002

User Interface Markup Language (UIML) Specification
Version: 3.0
Status: First draft
Release: 02/08/2002
Editors: Marc Abrams, abrams@uiml.org
 Jim Helms, jhelms@harmonia.com

Harmonia, Inc.
P.O. Box 11282
Blacksburg, VA 24062-1282
U.S.A.
+1.540.951.5900

Latest UIML specification:

! HTML: http://www.uiml.org/specs/

This version:

! HTML: http://www.uiml.org/docs/uiml30-15Aug01.html
! PDF: http://www.uiml.org/docs/uiml30-15Aug01.pdf

Previous versions:

! UIML version 2.0a (January 17, 2000)

! http://www.uiml.org/specs/docs/uiml20-17Jan00.pdf

! UIML version 2.0 (August 8, 1999)
! http://www.uiml.org/specs/docs/uiml20-990801.pdf
! http://www.uiml.org/specs/docs/uiml20-990801.html

! UIML version 1.0 (December 1997)
! http://www.uiml.org/specs/docs/uiml_v10_ref.PDF

UIML 3.0 Language Specification

Harmonia, Inc. Page 3 02/08/2002

© Copyright 2002 Harmonia, Inc.

Permission to use, copy, and distribute the contents of this document, but not to excerpt it,
modify it, or create derivative works, in any medium for any purpose and without fee or royalty
is hereby granted, provided that you include the following on ALL copies of the document, or
portions thereof, that you use:

1. A link to or statement of the URL http://www.uiml.org/docs/uiml30.
2. The pre-existing copyright notice of the original author. If no such notice exists, a notice

of the form: "© Copyright Harmonia, Inc., 1999-2002. All rights reserved."

THIS SPECIFICATION IS PROVIDED “AS IS”. COPYRIGHT HOLDERS MAKE NO
REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, BUT
NOT LIMITED TO, WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE.

UIML 3.0 Language Specification

Harmonia, Inc. Page 4 02/08/2002

Abstract

UIML provides a highly device-independent method to describe a user interface. UIML factors
any user interface description into six orthogonal pieces, answering six questions:

1. What are the parts comprising the UI?
2. What is the presentation (look/feel/sound) used for the parts?
3. What is the content (e.g., text, images, sounds) used in the UI?
4. What is the behavior of the UI (e.g., when someone clicks or says something)?
5. What is the mapping of the parts to UI controls in some toolkit (e.g., Java Swing classes

or HTML tags)?
6. What is the API of the business logic that the UI is connected to?

UIML is a meta-language, which is augmented by a vocabulary of user interface parts,
properties, and events defined outside this specification. In this way, UIML is independent of
user interface metaphors (e.g., “graphical user interface”, “dialogs”).

UIML version 3 is a refinement of the previous versions of UIML, which were developed
starting in 1997. Version 3 differs from UIML 2 in these ways:

• Support for dynamic user interfaces: A user interface is viewed as a virtual tree, whose
initial content is specified by the <structure> element, and which can change during the
lifetime of the user interface.

• Support for multimodal user interfaces: A user interface can contain multiple <interface>
elements that are simultaneously used and kept synchronized. For example, a user
interface might offer a voice UI and a screen-based UI (e.g., on a mobile phone), and the
user can at any time use either mode of interaction (voice or display/keypad).

• Refinement of many language constructs, based on implementation experience with
UIML 2. These items are described by proposals for changes to UIML 2, posted in the
past on www.uiml.org.

It is Harmonia’s intent that UIML 3.0 can be freely implemented by anyone. UIML 3.0 may be
implemented without any license cost due to Harmonia, Inc.

UIML 3.0 Language Specification

Harmonia, Inc. Page 5 02/08/2002

Contents
1 Introduction to UIML 3.0 ... 8

1.1 UIML, an Open Specification .. 11

1.2 Relationship of UIML to XML, XSL, XForms, and CSS.. 11

1.3 Purpose of This Document ... 11

1.4 Terminology... 11

1.5 Note about Harmonia, Inc. Rendering Engines ... 13

2 Structure of a UIML Document ... 14

2.1 Overview .. 14
2.1.1 Dynamic Interfaces Through a Virtual UI Tree .. 14
2.1.2 Interface Behavior ... 15
2.1.3 Philosophy Behind UIML’s Tags ... 15
2.1.4 First UIML Example: Hello World.. 16

2.2 UIML Document Structure .. 17
2.2.1 Second UIML Example... 18

2.3 UIML Namespace.. 23

2.4 UIML Mime Type ... 24

3 Table of UIML Elements... 26

4 The <uiml> and <head> Elements ... 28

4.1 The <uiml> Element.. 28

4.2 The <head> Element ... 28
4.2.1 The <meta> Element .. 29

5 Interface Description ... 30

5.1 Overview .. 30

5.2 Attributes Common to Multiple Elements.. 30
5.2.1 The id and class Attributes.. 30
5.2.2 The source and how Attributes.. 31
5.2.3 The export Attribute .. 31

5.3 The <interface> Element... 32

5.4 The <structure> Element .. 32
5.4.1.1 Dynamic Structure... 33

5.4.2 The <part> Element ... 34

5.5 The <style> Element .. 35
5.5.1 The <property> Element .. 35

5.5.1.1 Where Property Names Are Defined .. 36
5.5.1.2 Semantics of <property> Element... 36
5.5.1.3 Legal Values for <property> Elements ... 37

UIML 3.0 Language Specification

Harmonia, Inc. Page 6 02/08/2002

5.5.1.4 Using event-class with <property> Elements ... 39
5.5.1.5 Resolving Conflicting Property Values... 40

5.5.2 Using Properties to Achieve Platform Independence ... 42
5.5.2.1 Rules to Assign "rendering" Property ... 45

5.6 The <content> Element... 45
5.6.1 The <constant> Element .. 47
5.6.2 The <reference> Element... 48

5.7 The <behavior> Element ... 49
5.7.1 Examples of <behavior>, < rule>, <condition>, and <action> Elements 50
5.7.2 The <rule> Element ... 54
5.7.3 The <condition> Element... 54
5.7.4 The <equal> Element ... 54
5.7.5 The <event> Element ... 55

5.7.5.1 Exceptions as Events... 55
5.7.5.2 Extracting Data from Events ... 56
5.7.5.3 Special Events ... 56

5.7.6 The <op> Element... 56
5.7.6.1 Semantics of <op>... 57
5.7.6.2 Resolution of Conditional Statements... 58

5.7.7 The <action> Element .. 58
5.7.8 The <call> Element .. 58

5.7.8.1 Overview on <call>... 59
5.7.8.2 Method Parameters and Return Values Types .. 60
5.7.8.3 Invoking Methods Upon External Objects in RMI, CORBA, LDAP, and EJB61

5.7.9 The <repeat> Element... 62
5.7.10 The <iterator> Element... 63

5.7.10.1 Using <iterator> in <property> and <param> ... 63
5.7.11 The <restructure> Element ... 64

5.7.11.1 Syntax of <restructure> .. 65
5.7.11.2 Semantics of <restructure>... 65
5.7.11.3 Examples of <restructure> ... 66

5.7.12 The <when-true> Element... 68
5.7.13 The <when-false> Element ... 69
5.7.14 The <by-default> Element... 69
5.7.15 The <param> Element ... 69

6 Peer Components ... 71

6.1 The <peers> Element... 71

6.2 The <presentation> Element ... 72
6.2.1 Naming an Existing Vocabulary in <presentation>... 72

6.2.1.1 Labeling Base Vocabularies with Attribute base .. 73
6.2.1.2 Labeling Custom Vocabularies with Attribute source 75
6.2.1.3 Permitted Optimization for Rendering Engine.. 75
6.2.1.4 Multiple Presentation Elements .. 75
6.2.1.5 Suggested Use of Base Attribute in Authoring Tools 76

UIML 3.0 Language Specification

Harmonia, Inc. Page 7 02/08/2002

6.2.2 Creating a New Vocabulary Using <presentation> ... 76
6.2.2.1 Defining Legal Part Class Names Via <d-class>.. 76
6.2.2.2 Defining Legal Property Names for <part> Classes via <d-property> 78
6.2.2.3 Defining Legal Events and Listeners for Part Classes Via <d-class>............... 80
6.2.2.4 Defining Legal Event Property Names Via <d-class>...................................... 84

6.3 The <logic> Element ... 85

6.4 Subelements of <presentation> and <logic> .. 87
6.4.1 The <d-component> Element ... 87
6.4.2 The <d-class> Element... 87
6.4.3 The <d-property> Element... 88
6.4.4 The <d-method> Element... 89
6.4.5 The <d-param> Element .. 90
6.4.6 The <script> Element... 91

7 Reusable Interface Components... 92

7.1 The <template> Element ... 92

7.2 Rules for Templates .. 93
7.2.1 Combine Using Replace.. 95
7.2.2 Combine Using Union... 96
7.2.3 Combine Using Cascade ... 97

7.3 Multiple Inclusions.. 99

7.4 The export Attribute.. 99

8 Alternative Organizations of a UIML Document ... 101

8.1 Normal XML Mechanism... 101

8.2 UIML Template Mechanism.. 101

References .. 103

Appendix A. UIML 3.0 Document Type Definition.. 104

Appendix B. Behavior Rule Selection Algorithm ... 112

Appendix C. Changes from UIML 2.0a Specification (1/17/2001) 113

UIML 3.0 Language Specification

Harmonia, Inc. Page 8 02/08/2002

1 Introduction to UIML 3.0
UI Markup Language 3 (UIML3) is a declarative, XML-compliant meta-language for describing
user interfaces (UIs) that refines the UIML2 specification, released in 2000 [7]. The original
UIML specification was released in 1998[5]. The philosophy used in developing the UIML
specifications has been to design and gain experience implementing the language for a variety of
devices to insure that the concepts in the language are sound and that the language is suited to
real-world applications.

Among the motivations of UIML are the following:

• allow individuals to implement UIs for any device without learning languages and
application programming interfaces (APIs) specific to the device,

• reduce the time to develop UIs for a family of devices,

• provide a natural separation between UI code and application logic code,

• allow non-programmers to implement UIs,

• permit rapid prototyping of UIs,

• simplify internationalization and localization,

• allow efficient download of UIs over networks to client machines, and

• allow extension to support UI technologies that are invented in the future.

The design objective of the UIML is to provide a canonical representation of any
UI suitable for mapping to existing languages.

UIML is no more and no less than this. UIML provides a puzzle piece to be used in conjunction
with other technologies, including UI design methodologies, design languages, authoring tools,
transformation algorithms, and existing languages and standards (especially W3C
specifications). UIML is not a silver bullet that replaces human decisions needed to create UIs.

Why is a canonical representation useful? Today, UIs are built using a variety of languages:
XML variants (e.g., HTML, XHTML, VoiceXML,), JavaScript, Java, C++, etc. Each language
differs in its syntax and its abstractions. For example, the syntax in HTML 4.0 to represent a
button is “<button>”, and in Java Swing “JButton b = new JButton;”. The work on UIML asks
the fundamental question, “Do we inherently need different syntaxes, or can one common syntax
be used?” The benefit of using a single syntax is analogous to the benefit of XML: Software
tools can be created for a single syntax (UIML), yet process UIs destined for any existing
language. For example, a tool to author UIs can store the design in UIML, and then map UIML
to target languages in use today (e.g., HTML, Java) or invented in the future. Progress in the
field of UI design can move faster, because everyone can build tools that either map interface
designs into UIML or map UIML out to existing languages. Tools can then be snapped together
using UIML as a standard interchange language.

UIML 3.0 Language Specification

Harmonia, Inc. Page 9 02/08/2002

There is a second benefit of a canonical UI description. By using a single syntax to represent
any UI, an interface is in a very malleable form. For example, one technique gaining popularity
in the human computer interface community is transformation. With a canonical representation
for any UI, someone that designs a transform algorithm can simply implement the algorithm to
transform an input UIML document to a new output UIML document. Compare this approach to
implementing the same transform algorithm only to transform HTML documents, then
reimplementing the transform algorithm to only transform C++ interfaces, and so on.

In any language design, there is a fundamental tradeoff between creating something general
versus special-purpose. UIML is for general-purpose use by people that implement UIs and
people that build tools for authoring UIs. It is envisioned that UIML will be used with other
languages with a more focused purpose, such as UI design languages. Ultimately most people
may never write UIML directly – they may instead use a particular design language suited to a
certain design methodology, and then use tools to transform the design into a UIML
representation that is then mapped to various XML or programming languages.

Four key concepts underlie UIML:

1. UIML is a meta-language. To understand this, consider XML. XML does not define
tags, such as <p>. Instead, one must add to XML a specification of the legal tags and
their attributes, for example by creating a document type definition (DTD). Therefore the
XML specification does not need to be modified as new tag sets are created, and a set of
tools can be created to process XML independent of the tag sets that are used.

UIML, while it is an XML schema, defines a small set of powerful tags, such as <part> to
describe a part of a UI, or <property> to describe a property of a UI part. UIML tags are
independent of any UI metaphor (e.g., graphical UIs), target platform (e.g., PC, phone),
or target language to which UIML will be mapped (e.g., VoiceXML, HTML).

To use UIML, one must add a toolkit vocabulary (roughly analogous to adding a DTD to
an XML document). The vocabulary specifies a set of classes of parts, and properties of
the classes. Different groups of people can define different vocabularies, depending on
their needs. One group might define a vocabulary whose classes have a 1-to-1
correspondence to UI widgets in a particular target language (i.e., the classes might match
those in the Java Swing API). Another group might define a vocabulary whose classes
match abstractions used by a UI designer (e.g., Title, Abstract, BodyText for UIs to
documents). UIML can be standardized once and tools can be developed for UIML,
independently from the development of vocabularies.

2. UIML “factors out” or separates the elements of a UI. The design of UIML started
with a clean sheet of paper and the question: what are the fundamental elements needed
to describe any man-machine interaction. The separation in UIML identifies what parts
comprise the UI, the presentation style for each part as a list of <property> elements, the
content of each part (e.g., text, sounds, images) and binding of content to external
resources (e.g., XML resources, or method calls in external objects), the behavior of parts

UIML 3.0 Language Specification

Harmonia, Inc. Page 10 02/08/2002

when a user interacts with the interface as a set of rules with conditions and actions, the
connection of the UI to the outside world (e.g., to business logic), and the definition of
the vocabulary of part classes. For a comparison of the separation in UIML to existing
UI models, such as the Model View Controller, refer to Phanouriou [5].

3. UIML views the structure of a UI, logically, as a tree of UI parts that changes over the
lifetime of the interface. There is an initial tree of parts, which is the UI initially
presented to a user when the interface starts its lifetime. During the lifetime of the
interface, the tree of parts may dynamically change shape by adding or deleting parts.
For example, opening a new window containing buttons and labels in a graphical
interface may correspond to adding a sub-tree of parts to the UIML tree. UIML provides
elements to describe the initial tree structure (<structure>) and to dynamically modify the
structure (<restructure>).

4. UIML allows UI parts and part-trees to be packaged in templates. Templates may then
be reused in various interface designs. This provides a first class notion of reuse within
UIML, which is missing from other XML UI languages, such as HTML and WML.

Due to these concepts, UIML is particularly useful for creating multiplatform, multimodal,
multilingual, and dynamic UIs. Here are some examples:

• To create multiplatform UIs, one uses concept 1 to create a vocabulary of part classes
(e.g., defining class Button), and then uses concept 2 to separately define the vocabulary
by specifying a mapping of the classes to target languages (e.g., mapping UIML part
class Button to class java.awt.Button for Java and to tag <button> for HTML 4.0). One
can create a highly device-independent UI by creating a generic vocabulary that tries to
eliminate bias toward particular UI metaphors and devices. (By “device” we mean PCs,
various information appliances [e.g., handheld computers, desktop phones, cellular or
PCS phones], or any other machine with which a human can interact.) In addition,
because UIML describes the interface behavior as rules whose actions are applied to parts
(concept 2), the rules can be mapped to code in the target languages (e.g., to lines of Java
code or JavaScript code).

• To create multimodal UIs, one creates a multiplatform UI, and then annotates each part

with its mode (e.g., which target platforms use that part), and the behavior section from
concept 2 is used to keep the interface modes synchronized. For example, one might
define a UIML part class Prompt, the mapping of Prompt parts to VoiceXML and
HTML, and the behavior that synchronizes a VoiceXML and HTML UI to
simultaneously prompt the user for input.

• To create multilingual UIs, one uses concept 2 to separate the content in each language

from the rest of the UI.

• To create dynamic UIs – such as a Web page containing a table whose size and content
comes from a database call made each time the page is loaded – can be achieved by
binding the separated content to calls to methods in, say, Java beans (concept 2).

UIML 3.0 Language Specification

Harmonia, Inc. Page 11 02/08/2002

Alternately, a behavior rule (concept 2) can specify that the page be restructured to
dynamically add a table to the tree of interface parts (concept 3).

For further discussion of the motivation for and uses of UIML, please see Abrams et al [3] and
[4].

1.1 UIML, an Open Specification
It is Harmonia’s intent that UIML 3.0 can be freely implemented by anyone. UIML 3.0 may be
implemented without any license cost due to Harmonia, Inc.

1.2 Relationship of UIML to XML, XSL, XForms, and CSS
UIML is compliant with the W3C XML 1.0 specification [1]. Appendix A contains the UIML
3.0 DTD.

When UIML is rendered to HTML, CSS style sheets or XSL formatting objects [8] can be used
with the resultant HTML. In addition, XSLT [9] can be used to transform UIML to other XML-
compliant markup languages. In some cases, Xforms Models [13] can be used to represent
complex data objects being passed to or from the user interface.

1.3 Purpose of This Document
This document serves as the official language reference for UIML 3.0. It describes the syntax of
the elements and their attributes, the structure of UIML documents, and usage examples. It also
gives pointers to other reference documentation that may be helpful when developing
applications using UIML.

UIML is intended to be an open, standardized language, which may be freely implemented
without any licensing costs. The goal of this document is to elicit feedback from the wider
community. Comments are encouraged; please send them to uiml-editor@uiml.org or participate
in discussion on http://www.uiml.org/discussion. A submission to a standards organization will
occur after comments are received and this draft specification is finalized.

This document may be distributed freely, as long as all text and legal notices remain intact.

1.4 Terminology
Certain terminology used in the specification is made precise through the definitions below.

Application: When we speak of building a UI, the UI along with the underlying logic that
implements the functionality visible through the interface is called the application.

Canonical Representation: A UI metaphor-independent enumeration of the parts, behaviors,
content, and style of a user interface.

End-user: The person that uses the application's UI.

UIML 3.0 Language Specification

Harmonia, Inc. Page 12 02/08/2002

Application Logic: Code that is part of the application but not part of the UI. Examples include
business logic (e.g., in the form of Enterprise Java Beans, Common Object Request Broker
Architecture [CORBA] objects), databases, and any type of service that might run on a server
(e.g., an a Lightweight Directory Access Protocol [LDAP] server). In a three-tier system
architecture model, the application logic is the middle layer that mediates communication
between the database and presentation layers.

Device: A device is a physical object with which an end-user interacts using a UI, such as a PC,
a handheld or palm computer, a cell phone, an ordinary desktop voice telephone, or a pager.

UI Toolkit: A toolkit is the markup language or software library upon which an application’s UI
runs. Note that we use the word “toolkit” in a more general sense than its traditional use. We
use it to mean both markup languages that are capable of representing UIs (e.g., Wireless
Markup Language [WML], HTML, and VoiceXML) as well as APIs for imperative
programming languages (e.g., Java AWT, Java Swing, Microsoft Foundation Classes).

Platform: A platform is a combination of a device, operating system (OS), and a UI toolkit. An
example of a platform is a PC running Windows NT on which applications use the Java Swing
toolkit. Another example is a cellular phone running a manufacturer-specific OS and a WML
[11] renderer.

Rendering: Rendering is the process of converting a UIML document into a form that can be
displayed (e.g., through sight or sound) to an end-user, and with which an end-user can interact.
Rendering can be accomplished in two ways:

1. By compiling UIML into another language (e.g., WML, Java), which allows display and
interaction of the UI described in UIML. Compilation might be accomplished by XSL
[8], or by a program written in a traditional programming language.

2. By interpreting UIML, meaning that a program reads UIML and makes calls to an API
that displays the UI and allows interaction. Interpretation is the same process that a Web
browser uses when presented with an HTML document.

Rendering engine: Software that performs the actual process or rendering a UIML document.

UI Widget: UIML describes how to combine UI widgets. The UI toolkit with which the UI is
implemented provides primitive building blocks, which we call widgets. The term “widget” is
traditionally used in conjunction with a graphical UI. However we use it in a more general
sense, to mean presentation elements of any UI paradigm.

For example, a widget might be a component in the Microsoft Foundation Classes or Java Swing
toolkits, or a card or a text field in a WML document. In some toolkits, a widget name is a class
name (e.g., the java.awt.Button class in the Java AWT toolkit, or the CWindow class in
Microsoft Foundation Classes). If the toolkit is a markup language (e.g., WML, HTML,
VoiceXML) then a widget name may be a tag name (e.g., “CARD” or “TEXT” for WML). The
definition of names is outside the scope of this specification, as explained in Section 2.1.

UIML 3.0 Language Specification

Harmonia, Inc. Page 13 02/08/2002

Render Time: This is the period of time before the interface is displayed to the user. During this
time the rendering engine interprets the UIML and may make calls to the backend as specified in
the UIML.

Runtime: This is the period of time during which the UI is displayed (e.g., through sight or
sound) to an end-user, and the end-user can interact with the UI.

Method: This spec uses the term “method” to generically represent any code entity (that uses a
language other than UIML) that a rendering engine can invoke, and which may optionally return
a value. Examples include functions, procedures, and methods in an object-oriented language,
database queries, and directory accesses.

User Interface Lifetime: The period of time beginning when the interface is first displayed to the
user and concluding when the interface is closed, exited, or otherwise terminated.

Other terms: The following are terms and conventions used throughout this specification.

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY" and "OPTIONAL" in this
document are to be interpreted as described in RFC2119 [10].

Ellipses (...) indicate where attribute values or content have been omitted. Many of the
examples given below are UIML fragments and additional code maybe needed to render them.

URLs given inside the code segments in this document are for demonstration only and may not
actually exist.

1.5 Note about Harmonia, Inc. Rendering Engines
Rendering engines developed as part of LiquidUI™ versions 1.0d and 1.1a by Harmonia, Inc.
were written for and have evolved from the UIML 2.0 specification. As such, the examples
contained herein may or may not render correctly when using these versions.

UIML 3.0 Language Specification

Harmonia, Inc. Page 14 02/08/2002

2 Structure of a UIML Document
This section gives several examples of UIML documents. Further examples are available at [17].

2.1 Overview
In UIML version 3.0, a UI is a set of interface elements with which the end-user interacts. Each
interface element is called a part; just as an automobile or a computer is composed of a variety of
parts, so is a UI. The interface parts may be organized differently for different categories of end-
users and different families of devices. Each interface part has content (e.g., text, sounds,
images) used to communicate information to the end-user. Some interface parts can receive
input from the end-user. This is usually achieved through the use of interface artifacts like a
scrollable selection list, pressable button, etc. Since the artifacts vary from device to device, the
actual mapping (rendering) between an interface part and the associated artifact (widget) is done
using either a <presentation> element or a special <property> element in the <style> element.

Defining a user interface in UIML answers the following five questions.

• What parts comprise the UI?

• What presentation style for each part? (rendering, font size, color, …)

• What content for each part? (text, sounds, image, …)

• What behavior do parts have?

• How to connect to outside world?(business logic, data sources, UI toolkit)
UIML is modeled by the Meta-Interface Model [5] pictured below.

2.1.1 Dynamic Interfaces Through a Virtual UI Tree
The interface portion of a UIML document defines a virtual tree of parts with their associated
content, behavior, and style. This virtual tree is then rendered according to the specification of
the presentation component and communicates with application logic via the logic definitions.

UIML 3.0 Language Specification

Harmonia, Inc. Page 15 02/08/2002

The virtual tree can be modified dynamically by repeating, deleting, replacing, or merging sub-
trees and tree fragments in the main tree. This allows for a canonical description of a user
interface through the lifetime of it interaction with the user.

2.1.2 Interface Behavior

UIML describes in a <behavior> element the actions that occur when an end-user interacts with
a UI. The <behavior> element is built on rule-based languages. Each rule contains a condition
and a sequence of actions. Whenever a condition is true, the associated actions are executed.

Whenever an end-user interacts with a UI, events are triggered which cause some action to
execute. In this version of the UIML specification, each condition is evaluated only when an
event associated with the condition occurs. This simplifies the rendering of UIML by
compilation to other languages.

Each action can do one or more of the following: (1) change a property of some part in the UI
(2) invoke a function in a scripting language, (3) invoke a function or method from a backend
object or (4) throw an event. In cases (2) and (3), UIML gives a syntax for describing the calling
convention, but does not specify an implementation of how the call is performed (e.g., RPC,
RMI, CORBA).

Finally, a UIML document provides sufficient information to allow a developer to implement
application logic that modifies a UI programmatically.

2.1.3 Philosophy Behind UIML’s Tags

UIML can be viewed as a meta-language or an extensible language, analogous to XML. XML
does not contain tags specific to a particular purpose (e.g., HTML’s <H1> or). Instead,
XML is combined with a document type definition (DTD) to specify what tags are legal in a
particular markup language that is XML-compliant. The advantage is that an extensible
language can be standardized once, rather than requiring periodic standardization committee
meetings to add new tags as the language evolves.

Analogously, UIML does not contain tags specific to a particular UI toolkit (e.g., <WINDOW>
or <MENU>). UIML captures the elements that are common to any UI through a simple set of
generic tags. The UIML syntax also defines tag attributes that map these elements to a particular
toolkit. However, the vocabulary of particular toolkits (e.g., a window or a card) is not part of
UIML, because the vocabulary appears as the value of attributes in UIML. Thus UIML only
needs to be standardized once, and different constituencies of end-users can define vocabularies
that are suitable for various toolkits independently of UIML.

Thus a UIML author needs more than this document, which specifies the UIML language. You
also need one document for each UI toolkit (e.g., Java Swing, Microsoft Foundation Classes,
WML) to which you wish to map UIML. The toolkit-specific document enumerates a

UIML 3.0 Language Specification

Harmonia, Inc. Page 16 02/08/2002

vocabulary of toolkit components (to which each <part> element in a UIML document is
mapped) and their property names

2.1.4 First UIML Example: Hello World

Here is the famous “Hello World” example in UIML. It simply generates a UI that contains the
words "Hello World!".

<?xml version="1.0"?>
<!DOCTYPE uiml PUBLIC "-//Harmonia//DTD UIML 3.0 Draft//EN"

"http://uiml.org/dtds/UIML3_0a.dtd">

<uiml>
<interface>

<structure>
<part id="TopHello">

<part id="hello" class="helloC"/>
</part>

</structure>
<style>

<property part-name="TopHello" name="rendering">Container
</property>
<property part-name="TopHello" name="content">Hello
</property>
<property part-class="helloC" name="rendering">String
</property>
<property part-name="hello" name="content">Hello World!
</property>

</style>
</interface>
<peers> ... </peers>

</uiml>

To complete this example, we must provide something for the <peers> element.

A VoiceXML rendering engine [12] using the above UIML code and the following <peers>
element

<peers>
<presentation name="VoiceXML">

<component name="Container" maps-to="vxml:form"/>
<component name="String" maps-to="vxml:block">

<attribute name="content" maps-to="PCDATA"/>
</component>

</presentation>
</peers>

would output the following VoiceXML code:

<?xml version="1.0"?>
<vxml>

<form>
<block>Hello World!</block>

UIML 3.0 Language Specification

Harmonia, Inc. Page 17 02/08/2002

</form>
</vxml>

A WML [11] Rendering engine using the above UIML code and the following <peers>element

<peers>
<presentation name="WML">

<component name="Container" maps-to="wml:card">
<attribute name="content" maps-to="wml:card.title"/>

</component>
<component name="String" maps-to="wml:p">

<attribute name="content" maps-to="PCDATA"/>
</component>

</presentation>
</peers>

would output the following WML code:

<?xml version="1.0"?>
<!DOCTYPE wml PUBLIC "-//WAPFORUM//DTD WML 1.0//EN"

"http://www.wapforum.org/DTD/wml.xml">

<wml>
<card title="Hello">

<p>Hello World!</p>
</card>

</wml>

2.2 UIML Document Structure
A typical UIML 3.0 document is composed of these two parts:

1. A prolog identifying the XML language version, encoding, and the location of the UIML 3.0

document type definition (DTD):
<?xml version="1.0"?>
<!DOCTYPE uiml PUBLIC

"-//Harmonia//DTD UIML 3.0 Draft//EN"
http://uiml.org/dtds/UIML3_0a.dtd">

Note: This prolog should appear in the beginning of every UIML file (even files containing only
UIML templates [see Section 7.1]), but for ease of readability some of the examples given in this
document omit it.

2. The root element in the document, which is the uiml tag:

<uiml xmlns='http://uiml.org/dtds/UIML3_0a.dtd'> ... </uiml>

See Section 4.1 for more information on the root element uiml. The <uiml> element
contains four child elements:

a) An optional header element giving metadata about the document:

UIML 3.0 Language Specification

Harmonia, Inc. Page 18 02/08/2002

<head> ... </head>

The <head> element is discussed in Section 4.2.

b) An optional element that allows reuse of fragments of UIML:
<template> ... </template>

Section 7.1 discusses the <template> element, and its use in building libraries of reusable
UI components.

c) An optional UI description, which describes the parts comprising the UI, and their
structure, content, style, and behavior:

<interface> ... </interface>

Section 5.3 discusses the <interface> element.

d) An optional element that describes the mapping of classes and names used in the UIML
document to a UI toolkit and to the application logic:

<peers> ... </peers>

Discussion of the <peers> element is deferred until Section 6.1, because the <peers>
element normally just sources an external file.

White spaces, blank spaces, new lines, tabs, and XML comments may appear before or after
each of the above tags (provided that the XML formatting rules are not violated).

To summarize, here is a skeleton of a UIML document:

<?xml version="1.0"?>
<!DOCTYPE uiml PUBLIC

"-//Harmonia//DTD UIML 3.0 Draft//EN" "http://uiml.org/dtds/UIML3_0a.dtd">

<uiml xmlns='http://uiml.org/dtds/UIML3_0a.dtd'>
<head> ... </head>
<template> ... </template>
<interface> ... </interface>
<peers> ... </peers>

</uiml>

2.2.1 Second UIML Example
This section contains a simple example of a UIML document, which includes event handling.

The example below displays a single window representing a dictionary. The dictionary contains
a list box in which an end-user can select a term (i.e. Cat, Dog, Mouse). The dictionary also
contains a text area in which the definition of the currently selected term is displayed. For
example, if Cat is selected on the left, a definition of a cat replaces the string “Select term on the
left.” The style element in the UIML document that describes this interface uses the properties
found in the Java AWT and Swing components.

UIML 3.0 Language Specification

Harmonia, Inc. Page 19 02/08/2002

Boxes are overlaid on the UIML document to make reading easier by identifying major
elements.

UIML 3.0 Language Specification

Harmonia, Inc. Page 20 02/08/2002

<?xml version="1.0"?>
<!DOCTYPE uiml PUBLIC

"-//Harmonia//DTD UIML 3.0a Draft//EN"
http://uiml.org/dtds/UIML3_0a.dtd>

<!-- This is Dictionary.ui.
Displays one window on the screen containing a list of animals
and a textbox. Clicking an animal's name displays a definition in the
textbox. -->

<uiml>

<peers>
<presentation base="Java_1.3_Harmonia_1.0"/>

</peers>

<interface>

<structure>
<part class="JFrame" id="JFrame">

<part class="JLabel" id="TermLabel"/>
<part class="List" id="TermList" />
<part class="JLabel" id="DefnLabel"/>
<part class="TextArea" id="DefnArea"/>

</part>
</structure>

<style>
<property part-name="JFrame" name="layout"

>java.awt.GridBagLayout</property>
<property part-name="JFrame" name="background" >blue</property>
<property part-name="JFrame" name="location" >100,100</property>
<property part-name="JFrame" name="size" >500,300</property>
<property part-name="JFrame" name="title" >Simple Dictionary</property>

<property part-class="JLabel" name="foreground" >white</property>
<property part-class="JLabel" name="gridx" >RELATIVE</property>
<property part-class="JLabel" name="gridy" >RELATIVE</property>
<property part-class="JLabel" name="font"

>Helvetica-bolditalic-20</property>

<property part-name="TermLabel" name="text" >Pick a term:</property>

<property part-name="DefnLabel" name="text" >Definition:</property>
<property part-name="DefnLabel" name="gridx" >1</property>
<property part-name="DefnLabel" name="gridy" >0</property>
<property part-name="DefnLabel" name="insets" >0,10,0,0</property>

<property part-name="TermList" name="background" >yellow</property>
<property part-name="TermList" name="gridx" >0</property>
<property part-name="TermList" name="gridy" >RELATIVE</property>
<property part-name="TermList" name="fill" >BOTH</property>
<property part-name="TermList" name="font" >Helvetica-20</property>
<property part-name="TermList" name="content">

<constant model="list">
<constant id="Cat" value="Cat"/>
<constant id="Dog" value="Dog"/>
<constant id="Mouse" value="Mouse"/>

</constant>
</property>

UIML 3.0 Language Specification

Harmonia, Inc. Page 21 02/08/2002

<property part-name="DefnArea" name="background" >yellow</property>
<property part-name="DefnArea" name="gridx" >1</property>
<property part-name="DefnArea" name="gridy" >RELATIVE</property>
<property part-name="DefnArea" name="text" >Select term on the

left.</property>
<property part-name="DefnArea" name="columns" >20</property>
<property part-name="DefnArea" name="rows" >4</property>
<property part-name="DefnArea" name="editable" >false</property>
<property part-name="DefnArea" name="insets" >0,10,0,0</property>
<property part-name="DefnArea" name="font" >Helvetica-20</property>

</style>

<behavior>

<rule>
<condition>

<op name=”&&”>
<event part-name="TermList" class="ItemListener.itemStateChanged"/>
<op name=”==”>

<property event-class=”ItemListener.itemStateChanged” name=”item”/>
<constant value="0"/>

</op>
</op>

</condition>
<action>

<property part-name="DefnArea" name="text"
>Carnivourous, domesticated mammal that's fond of rats and mice</property>

</action>
</rule>

<rule>
<condition>

<op name=”&&”>
<event part-name="TermList" class="ItemListener.itemStateChanged"/>
<op name=”==”>

<property event-class=”ItemListener.itemStateChanged” name=”item”/>
<constant value="1"/>

</op>
</op>

</condition>
<action>

<property part-name="DefnArea" name="text"
>Domestic animal related to a wolf that's fond of chasing cats</property>

</action>
</rule>

<rule>
<condition>

<op name=”&&”>
<event part-name="TermList" class="ItemListener.itemStateChanged"/>
<op name=”==”>

<property event-class=”ItemListener.itemStateChanged” name=”item”/>
<constant value="2"/>

</op>
</op>

</condition>
<action>

<property part-name="DefnArea" name="text"
>Small rodent often seen running away from a cat</property>

</action>
</rule>

</behavior>

UIML 3.0 Language Specification

Harmonia, Inc. Page 22 02/08/2002

</interface>

</uiml>

The UIML document above starts with <?xml …>,<!DOCTYPE …>, and the <uiml> tag, which
start every UIML document.

Next comes the <peers> element, enclosed by the first box. The <presentation> element inside
peers contains base="Java_1.3_Harmonia_1.0", which means that this UIML document uses the
vocabulary defined in http://uiml.org/toolkits/Java_1.3_Harmonia_1.0.uiml. The vocabulary
defines, among other things, the legal class names for <part> elements, the legal property values
for each part class. Setting the base attribute to Java_1.3_Harmonia_1.0 implies that most of
the Java AWT and Swing class names (e.g., JButton, JLabel) can be used as part names in
UIML, and names similar to AWT and Swing property method names can be used as UIML
property names (e.g., foreground for a JLabel). Element <presentation
base="Java_1.3_Harmonia_1.0"> specifies that any renderer that implements vocabulary
Java_1.3_Harmonia_1.0 can render this UIML document. (In general, If a UIML document
contains <presentation base="x"> then that document can be rendered by any rendering
engine that implements vocabulary "uiml.org/toolkits/x.uiml".)

The <interface> element comes next. The first element inside interface is structure, which
appears in the second box. The <structure> element in this example describes a UI consisting of
five parts. The first is named JFrame, and contains the other four parts, named TermLabel,
TermList, DefnLabel, and DefnArea. The class names used to make the interface are JFrame,
JLabel, List, JLabel, and TextArea. http://uiml.org/toolkits/Java_1.3_Harmonia_1.0.uiml defines
these names as corresponding to the Java AWT and Swing classes javax.swing.JFrame,
javax.swing.JLabel, java.awt.List, javax.swing.JLabel, and java.awt.TextArea. So whenever
these names are used as the class for a <part> element, the default value of the rendering
property for the parts defaults to the corresponding AWT or Swing class. Thus the <part> with
id “DefnArea” will be rendered as a java.awt.TextArea.

The <style> element comes next. The <style> element in this example sets five properties on
the part named JFrame: the layout manager to GridBagLayout, the frame background to blue,
the upper left corner of the frame to appear 100 pixels down and 100 pixels to the right of the
upper left corner of the screen, the frame dimensions to 500 pixels wide and 300 pixels high, and
the frame title (the text that appears in the band at the top of the frame) to “Simple Dictionary”.

The next four properties apply to all parts whose class name is ”JLabel”. There are two such
parts: TermLabel and DefnLabel. The foreground color, two properties associated with
GridBagLayout (gridx and gridy), and the font are the same for all labels. The remaining
properties in the <style> element are properties of individual parts in the interface.

The next box contains the <behavior> element. This consists of a sequence of rules, each
containing a condition and an action. Each condition holds true when some event occurs. The
<event> element in each condition names a Java event through its class attribute. Whoever
defines the vocabulary for a UI toolkit defines the class names used for events. The vocabulary
defined in Java_1.3_Harmonia_1.0 uses the following convention for choosing UIML event

UIML 3.0 Language Specification

Harmonia, Inc. Page 23 02/08/2002

class names: method names in Java AWT and Swing listener classes are used as UIML event
names. For example, clicking items in an AWT List are handled by an instance of
java.awt.event.ItemListener. Hence Java_1.3_Harmonia_1.0 defines ItemListener’s methods,
such as itemStateChanged, as UIML event class names.

Returning to the UIML document above, the first condition holds true when someone clicks on
term number zero in the list or when someone clicks on Cat. Let’s examine the first condition in
detail:

<condition>
<op name=”&&”>

<event part-name="TermList" class="ItemListener.itemStateChanged"/>
<op name=”==”>

<property event-class=”ItemListener.itemStateChanged” name=”item”/>
<constant value="0"/>

</op>
</op>

</condition>

The <condition> has as its child an <op> (for operand) element. The name attribute of <op> is
“&&”, or logical AND, which means that the <op> holds true when both of its children are true.
The first child of <op name=”&&”> is <event>, so this child is true when the event
ItemListener.itemStateChange fires for the part named TermList. (Vocabulary
Java_1.3_Harmonia_1.0 uses as UIML event names L.m, where L is a Java listener [e.g.,
ItemListener], and m is a method in the listener [e.g., itemStateChange()]. See 6.2.2.3 for further
information.) Put another way, the <event> is true when a user clicks on a term Cat, Dog, or
Mouse. The second child of <op name=”&&”> is another <op> element, this time <op
name=”==”>. This inner <op> element is true when its children are equal. The first child is
<property>, which evaluates to the property called item of an ItemListener.itemStateChanged
event. (Vocabulary Java_1.3_Harmonia_1.0 uses the method names in each Java event as
property names for UIML events. The Java itemStateChanged method takes an ItemEvent as an
argument, which in turn has a method named getItem. (Method getItem returns the index
number of the item selected in the list, either 0, 1, or 2 in our Dictionary example.) Hence, the
UIML event has a property named item. Therefore the inner <op> is true when the item number
selected equals zero. In summary, the entire condition is true when the user clicks on an animal
name, and the item clicked on is item zero, or Cat.

The action associated with clicking Cat is to change the content of part DefnArea to display the
text string “Carnivourous, domesticated mammal…” – in other words, the definition of a cat
pops up in the text area on the right of the UI.

Similar condition-action rules are given for Dog and Mouse.

2.3 UIML Namespace
UIML is design to work with existing standards. This includes other markup languages that
specify platform-dependent formatting (i.e., HTML for text, JSGF for voice, etc.). XML
Namespaces remove the problem of recognition and collisions between elements and attributes
of two or more markup vocabularies in the same file. All <uiml> elements and attributes are

UIML 3.0 Language Specification

Harmonia, Inc. Page 24 02/08/2002

inside the “uiml” namespace, identified by the URI “http://uiml.org/dtds/UIML3_0a.dtd”. Note
that this URI has not been activated yet.

Example

Here is an example that combines UIML and HTML vocabularies:

<uiml:uiml xmlns:uiml='http://uiml.org/dtds/UIML3_0a.dtd'>
<uiml:interface>

<uiml:structure>
<uiml:part uiml:name="A"/>

</uiml:structure>

<uiml:style>
<uiml:property uiml:name="content" uiml:part-name="A">

<html:em xmlns:html='http://www.w3.org/TR/REC-html40'
>Emphasis</html:em>

</uiml:property>
</uiml:style>

</uiml:interface>
</uiml:uiml>

The above code can be simplified by making uiml the default namespace as follow:

<uiml xmlns='http://uiml.org/dtds/UIML3_0a.dtd'>
<interface>

<structure>
<part name="A"/>

</structure>

<style>
<property name="content" part-name="A">

<html:em xmlns:html='http://www.w3.org/TR/REC-html40'
>Emphasis</html:em>

</property>
</style>

</interface>
</uiml>

To learn more about XML name-spacing, refer to http://www.w3.org/2000/xmlns/ .

2.4 UIML Mime Type
The following mime type should be used for UIML documents:

text/uiml

Furthermore, the mime type could include the value of the base attribute in the <presentation>
element (see Section 6.2), which identifies that any recipient software that processes the UIML
document must implement the vocabulary identified in the base attribute. Here are some
examples:

text/uiml/Java_1.3_Harmonia_1.0

UIML 3.0 Language Specification

Harmonia, Inc. Page 25 02/08/2002

text/uiml/Html_4.01frameset_Harmonia_0.1

UIML 3.0 Language Specification

Harmonia, Inc. Page 26 02/08/2002

3 Table of UIML Elements
The table below is both an overview of all elements in UIML, and an index to where they are
discussed in the remainder of this document. The UIML 3.0 DTD is given in 0.

Element Purpose Page
<action> Perform an action if the condition of a rule is true 58
<behavior> Specify rules for runtime behavior 49
<by-default> Set of actions to be executed when <op> conditional is undefined 69
<call> Call a function or method external to UIML document 58
<condition> Specify a condition for a rule 54
<constant> Define a constant value 47
<content> Specify a set of constant values 45
<d-class> Maps class names that can be used for parts and events to a UI

toolkit
87

<d-component> Maps a name used in a <call> element to application logic external
to UIML document

87

<d-method> Maps a method to a callable method or function in the API of the
application logic

89

<d-param> Defines a single formal parameter to a <d-method> 90
<d-property> Maps a property name, for parts or events, to methods in a UI

toolkit that get and set the property’s value
88

<equal> Compares the property value of an event with another value 54
<event> Specify a UI or system event to be thrown or caught 55
<head> A container for metadata information 28
<interface> A container for all UIML elements that describe a user interface 32
<iterator> A tag controlling the number of times a virtual tree contained in a

<repeat> element is replicated.
63

<logic> Describes mappings of names and classes used in <call> elements
to application logic

85

<meta> Define a piece of metadata as a name/value pair 29
<op> Define a conditional expression or operation 56
<param> Actual parameter used in a <call> element 69
<part> Specifies a single abstract part of the user interface 34
<peers> Describes mapping from class, property, event, and names used in

<call> elements to identifiers in a UI toolkit and the application
logic

71

<presentation> Contains mappings of part and event classes, property names, and
event names to a UI toolkit

72

<property> Specify or retrieve a property for a <part> element or a class of
<part> elements

35

<reference> Reference to a constant or resource external to the UIML document 48
<repeat> Groups parts which are repeated one of more times in a user

interface
62

UIML 3.0 Language Specification

Harmonia, Inc. Page 27 02/08/2002

<restructure> Modify the current virtual tree of parts 64
<rule> A condition/action pair 54
<script> A container for executable script code 91
<structure> Defines the initial virtual tree organization (physical or temporal)

of the parts comprising a user interface
32

<style> Specify a set of style properties for the interface 35
<template> A container for reusing <uiml> elements 92
<uiml> Root element in a UIML document 28
<when-true> Set of actions to execute when <op> condition is true 68
<when-false> Set of actions to execute when <op> condition is false 69

UIML 3.0 Language Specification

Harmonia, Inc. Page 28 02/08/2002

4 The <uiml> and <head> Elements
Whenever a new element is introduced in the remainder of the document, we first give the
appropriate DTD fragment.

4.1 The <uiml> Element

DTD

<!ELEMENT uiml (head?, (template|interface|peers)*)>

Description

The <uiml> element is the root element in a UIML document. All other elements are contained
in the <uiml> element. The <uiml> element appears as follow:

<uiml>...</uiml>

Usually, one <uiml> element equates to one file, in much the same way that there is one HTML
element per file when developing HTML-based applications. However, other arrangements are
possible. For example, the <uiml> element might be retrieved from a database or the elements
contained within the <uiml> element might be stored in multiple files.

When multiple markup vocabularies are used within the same UIML file, then the uiml
namespace must be specified as follow:

<uiml xmlns='http://uiml.org/dtds/UIML3_0a.dtd'>...</uiml>

4.2 The <head> Element

DTD

<!ELEMENT head (meta)*>

Description

The <head> element contains metadata about the current UIML document. Elements in the
<head> element are not considered part of the interface, and have no effect on the rendering or
operation of the UI.

UIML authoring tools should use the <head> element to store information about the document
(e.g., author, date, version, etc…) and other proprietary information.

UIML 3.0 Language Specification

Harmonia, Inc. Page 29 02/08/2002

4.2.1 The <meta> Element

DTD

<!ELEMENT meta EMPTY>
<!ATTLIST meta

name NMTOKEN #REQUIRED
content CDATA #REQUIRED>

Description

The <meta> element has the same semantics as the <meta> element in HTML. It describes a
single piece of metadata about the current UIML document. This may includes author
information, date of creation, etc.

The name attribute specifies an identifier for the meta-information; the content attribute gives its
content.

Example

<head>

<meta name="Author" content="UIML Editor"/>
<meta name="Date" content="November 1, 2001"/>
<meta name="Description" content=

"This is an example of how to use the meta tag in UIML.
The content of the meta tag can include white space."/>

</head>

UIML 3.0 Language Specification

Harmonia, Inc. Page 30 02/08/2002

5 Interface Description
This section describes the elements that go inside the <interface> element, their attributes, and
their syntax. Examples are provided to help show common usage of each element.

5.1 Overview
The <interface> element contains four elements: structure, style, content, and behavior:

<interface>
<structure> </structure>
<style> </style>
<content> </content>
<behavior> </behavior>

</interface>

The <structure> element enumerates a set of interface parts and their organization for various
platforms.

The <style> element defines the values of various properties associated with interface parts
(analogous to style sheets for HTML).

The <content> element gives the words, sounds, and images associated with interface parts to
facilitate internationalization or customization of UIs to various user groups (e.g., by job role).

The <behavior> element defines what UI events should be acted on and what should be done.

5.2 Attributes Common to Multiple Elements
Before explaining each of the elements introduced in Section 1, we first describe some attributes
that are used in several of the elements.

5.2.1 The id and class Attributes
The <part>, <event>, and <call> elements in UIML may have an id and a class attribute.

The id attribute assigns a unique identifier to an element. No two elements can have the same id
within the same UIML document.

The class attribute assigns a class name to an element. Any number of elements may be assigned
the same class name.

The use of the attribute class is based on the CSS [2] concept of class: a “class” specifies an
object type, while the element’s “id” uniquely identifies an instance of that type. A style
associated with all instances of a class is associated with all elements that specify the same value
for their class attribute; a style associated with a specific instance of a class is only associated
with the element that specifies the value denoted in the style declaration for their id attribute.

UIML 3.0 Language Specification

Harmonia, Inc. Page 31 02/08/2002

5.2.2 The source and how Attributes

Certain <uiml> elements (behavior, d-component, d-class, d-method, constant, content,
interface, logic, part, peers, presentation, property, rule, script, structure, and style) may contain
a source attribute. Like HTML, the source attribute specifies a link from the UIML document to
a Web resource identified by a URI. However, the reason for using a link in UIML differs from
HTML.

A source attribute can refer to two things:

! A URI to a resource that does not contain UIML code. In this case, the resource file can be

textual (e.g. HTML) or binary (e.g., JPEG). This case is analogous to the IMG tag in HTML.

<constant id="Logo" source="http://uiml.org/images/UIMLLogo.jpg"/>

• A URI to a resource that does contain UIML code. The UIML code is inserted into the

element that contains the source, as explained in Section 7.2. Inserting code has several uses,
explained in section 7:

o Splitting a UI definition into several UIML documents
o Creating a library of reusable UI components
o Achieving the cascading behavior of CSS style sheets

The URI may either be an element in the same document as the source appears, or in a
different document:

! URI names the same document. The two elements must either have the same tag or

the URI must name a <template> element.

<style id="Simple"> ... </style>
<style id="Complex" source="#Simple" how="cascade"> ... </style>

! URI names another document. Again, the two elements must either have the same tag
or the URI must name a <template> element. Note that this URI is for demonstration
only and is not truly active.

<part id="Dialog"
source="http://uiml.org/templates/Dialog.uiml#SimpleDialog"
how="replace"

/>

A how attribute of cascade achieves behavior similar to cascading in CSS, while
replace allows a UIML document to be split into multiple files.

5.2.3 The export Attribute

The export attribute is used in the context of templates. See Section 7.4 for details.

UIML 3.0 Language Specification

Harmonia, Inc. Page 32 02/08/2002

5.3 The <interface> Element

DTD

<!ELEMENT interface (structure|style|content|behavior)*>
<!ATTLIST interface

id NMTOKEN #IMPLIED
source CDATA #IMPLIED
how (append|cascade|replace) "replace"
export (hidden|optional|required) "optional">

Description

All <uiml> elements that describe a user interface are contained in the <interface> element. The
<interface> element describes a UI and a user’s interaction with a UI, not the interaction of the
UI and the backend application logic. The <logic> element is used to describe the
UI/application logic interaction – see Section 6.3. A UIML interface may be as simple as a
single string, or as complex as hundreds of <interface> elements that employ various interface
technologies (e.g., voice, graphics, and 3D).

An interface is composed of four elements: structure (see Section 5.4), style (see Section 5.5),
content (see Section 5.6), and behavior (see Section 5.7).

5.4 The <structure> Element

DTD

<!ELEMENT structure (part*)>
<!ATTLIST structure

id NMTOKEN #IMPLIED
source CDATA #IMPLIED
how (append|cascade|replace) "replace"
export (hidden|optional|required) "optional">

Description

An application program can have a UI with one or more organizations associated with it. By
“organization,” we mean the set of UI widgets that are present in the interface, and the
relationship of those widgets to each other when the interface is initially rendered. The
relationship might be spatial (e.g., in a graphical UI) or temporal (e.g., in a voice interface).

The <structure> element defines the initial organization of the interface represented by the
UIML document. This organization can be envisioned as a virtual tree of parts with each part’s
associated content, behavior, etc. attached to it.

For example, there may be one interface organization for a desktop PC, and another organization
for a voice interface. The two interfaces may be radically different in terms of which UI widgets

UIML 3.0 Language Specification

Harmonia, Inc. Page 33 02/08/2002

are present. For example the voice interface may have fewer widgets, allowing an end-user to
select only a subset of the operations available in the PC interface. In addition, the two
interfaces may be organized differently. The voice interface might be a hierarchy of menus,
implementing the paradigm of a voice activated response system. Meanwhile the PC interface
might be in the form of a wizard and consist of a sequence of dialog boxes. Thus, a UIML
document needs to enumerate which interface parts are present in each version of the interface,
and how those parts are organized (e.g., hierarchically). This is the purpose of the <structure>
element. Just as a bridge over a river is a structure that consists of many parts (e.g., steel beam,
bolts), a UI consists of a structure (its organization) and many parts (e.g., widgets).

All interface descriptions must include at least one structure description.

There may be more than one <structure> element, each representing a different organization of
the interface. (Thus in the PC and voice interface example above, there are two <structure>
elements.) Each <structure> element is given a unique name.

If a UIML document contains more than one <structure> element, then a UIML rendering
engine must select by id exactly one <structure> element and ignore all other <structure>
elements. The id of the selected element is supplied by a mechanism outside the scope of this
specification. The <structure> element whose id matches the supplied id is then used, and all
other <structure> elements are ignored. If the supplied id does not match the id attribute of any
structure, or if no id is supplied, then the last <structure> element appearing in the UIML
document must be used.

Example

<structure id="ComplexUI">
<part class="c2" id="n3">

<part class="c1" id="n2"/>
</part>

</structure

<structure id="SimpleUI">
<part class="c1" id="n1"/>

</structure>

<structure id="default">
<part class="c1" id="n1"/>
<part class="c2" id="n2"/>

</structure>

5.4.1.1 Dynamic Structure
The question remains as to how this initial virtual tree can be modified over the lifetime of the
interface. Several “types” of dynamism exists in user interfaces. The three types that can be
represented in UIML are described below:

• Content is dynamically supplied when the UI is rendered. This is handled by the
<reference> element in section 5.6.2.

UIML 3.0 Language Specification

Harmonia, Inc. Page 34 02/08/2002

• The virtual tree of UI parts is modified during the lifetime of a UI. See the <restructure>
element in section 5.7.11.

• The UI contains a sub-tree of parts that is repeated 1 or more times, where the number of
times is determined at render time. This is the purpose of the <repeat> element.

5.4.2 The <part> Element

DTD

<!ELEMENT part (style?, content?, behavior?, part*,repeat*)>
<!ATTLIST part

id NMTOKEN #IMPLIED
class NMTOKEN #IMPLIED
source CDATA #IMPLIED
where (first|last|before|after) "last"
where-part NMTOKEN #IMPLIED
how (append|cascade|replace) "replace"
export (hidden|optional|required) "optional">

Description

Each <part> element represents either one instance of a class of UI widgets or nothing (null).
(It is sometimes useful to associate a part with nothing; for example a part might be needed for a
large screen UI, but is omitted from a small device screen. In the former case, the part
corresponds to a UI widget, and in the later case the part corresponds to nothing.)

Parts may be nested to represent a hierarchical relationship of parts. Let a and b denote two
<part> elements. If part b is nested inside part a, and both a and b correspond to UI widgets
(i.e., neither a nor b correspond to null), then b's UI widget must be "contained in" a's widget,
where "contained in" is defined in terms of the UI toolkit. If the UI toolkit does not define
nesting, then nesting part b in part a in a UIML document is equivalent to a UIML document in
which the parts are not nested.

For example, the Java Swing toolkit has a notion of containers and components. Containers
contain other containers or components, forming a hierarchy. Or, in a voice-based language, the
oral equivalent of menus can be nested, again forming a hierarchy.

Each part must be associated with a single class. However, if multiple <structure> elements
exist, then a part can be associated with a different class in each structure (see example in
Section 5.4). When the interface is rendered, only one structure is used (as discussed in
“Description” under Section 5.4); thus, a part is always associated with a unique class.

UIML allows the style, content, and behavior information associated with a particular part to be
specified within the part itself. Usually, this information is specified in the corresponding
<style>, <content>, and <behavior> elements.

UIML 3.0 Language Specification

Harmonia, Inc. Page 35 02/08/2002

5.5 The <style> Element

DTD

<!ELEMENT style (property*)>
<!ATTLIST style

id NMTOKEN #IMPLIED
source CDATA #IMPLIED
how (append|cascade|replace) "replace"
export (hidden|optional|required) "optional">

Description

The <style> element contains a list of properties and values that are used to render the interface.
Like the CSS and XSL specifications, UIML properties specify attributes of how the interface
will be rendered on various devices, such as fonts, colors, layout, and so on.

For example, the following fragment will make all parts with class=“c1” use the Comic font, and
the single part named “n1” have size 100 by 200:

<style id="Graphical">
<property part-class="c1" name="font" >Comic</property>
<property part-name="n1" name="size" >100,200</property>

</style>

The use of the style sheet helps achieve device independence. This is discussed in Section 5.5.2.

There must be at least one <style> element, and there may be more than one. There is often one
<style> element for each toolkit to which the UIML document will be mapped. For a given
toolkit, there may be multiple <style> elements serving a variety of purposes: to generate
different interface presentations for accessibility, to support a family of similar but not identical
devices (e.g., phones that differ in the number of characters that their displays support), to
support different target audiences (e.g., children versus adults), and so on.

Style sheets may also use the mechanism for cascading, described in Section 7.2.

5.5.1 The <property> Element

DTD

UIML 3.0 Language Specification

Harmonia, Inc. Page 36 02/08/2002

<!ELEMENT property (#PCDATA|constant|property|reference|call|iterator)*>
<!ATTLIST property

name NMTOKEN #IMPLIED
source CDATA #IMPLIED
how (append|cascade|replace) "replace"
export (hidden|optional|required) "optional"
part-name NMTOKEN #IMPLIED
part-class NMTOKEN #IMPLIED
event-name NMTOKEN #IMPLIED
event-class NMTOKEN #IMPLIED >

Description

A property associates a name and value pair with a part or event (see Section 5.7.5). For
example, a UI part named "button" might be associated with a property name "color" and value
"blue". The <property> element provides the syntax to make the association between the name
color and value blue with the part button.

5.5.1.1 Where Property Names Are Defined
Property names are not defined by the UIML specification. This is a powerful concept, because it
permits UIML to be extensible: one can define whatever property names are appropriate for a
particular device. For example, a "color" might be a useful property name for a device with a
screen, while "loudness" might be appropriate for a voice-based device.

Property names instead are defined by a <presentation> element (see Section 6.2). A set of
<presentation> elements for Java, HTML, WML, VoiceXML, and other toolkits are provided at
http://uiml.org/toolkits. <presentation> elements, and hence property names, are created
occasionally by experts on a target toolkit, like Java AWT, and are listed in a published location,
such as http://uiml.org/toolkits. Many authors of UIML documents then reuse such
<presentation> elements, referring to them in the base attribute or by a URI (e.g.,
http://uiml.org/toolkits/Java_1.3_Harmonia_1.0.uiml). A compiler or interpreter that renders
UIML documents should also access the URI to map property names in the UIML document to
the desired UI toolkit.

Thus to use UIML one needs both a copy of this specification and a document defining the
property names used in a particular peer element.

5.5.1.2 Semantics of <property> Element
The semantics of a <property> element are as follows:

• If the <property> element is a child element of a <param> (see Section 5.7.15), <op> (see

Section 5.7.6), or another <property> element, then the semantics for that child <property>
element are to get a single property's value.

• Otherwise the semantics are to set a value for a single property of an interface part, event, or

call.

UIML 3.0 Language Specification

Harmonia, Inc. Page 37 02/08/2002

5.5.1.3 Legal Values for <property> Elements
The value for each <property> element can be one of the following:

! A text string. In this case the property has no children, and its body is set to the character

sequence. If the string contains the ampersand character (&) or the left angle bracket (<),
then they must be escaped using either numeric character references or the strings “&”
and “<” respectively (see 0 for more rules about strings and XML documents). Note that
A UIML parser must preserve white space. A UIML rendering engine may ignore leading
and trailing spaces when rendering text on certain UI toolkits.

<property part-name="p1" name="font">Helvetica-bold</property>
<property part-name="p1" name="title">Char: &</property>
<property part-name="p1" name="content">

<![CDATA[Character &]]>
</property>

! A <reference> element. In this case the property is set to the value of the <reference>

element (see Section 5.6.2). In the following example1, the value of font in the part with id
p1 is set to the value Helvetica-bold.

<property part-name="p1" name="font">

<reference constant-name="font-name"/>
</property>
...
<content>

<constant id="font-name">Helvetica-bold</constant>
</content>

In the following example, the user interface contains a Java button. When the button is
pressed, the label of the button is set to the content of URL referenceContent.xml. It should
be noted that content from a <reference> element is retrieved during the rendering of the
UIML document, and not during the context from where the <reference> is defined. Thus,
if the contents of referenceContent.xml were changed after the interfaces was initially
rendered, but before the button was pressed the button would not reflect the changes. See
Section 5.6.2 for more information on <reference>.

<interface>
<structure>

...
<part id="ok" class="JButton">
<part id="label" class="JLabel">
...

</structure>

<behavior>
<rule>

1 From UIML2JAVAI/referenceURLinAction.uiml.

UIML 3.0 Language Specification

Harmonia, Inc. Page 38 02/08/2002

<condition>
<event part-name="ok" class="actionPerformed"/>

</condition>
<action>

<property part-name="label" name="text">
<reference url-name="referenceContent.xml"/>

</property>
</action>

</rule>
</behavior>

<peers>
<presentation base= "Java_1.3_Harmonia_1.0"

source= "http://uiml.org/toolkits/
Java_1.3_Harmonia_1.0.uiml#vocab"/>

</peers>

! Another <property> element. The value of one property can be set to the value of another

property. For example, suppose we want to set the font of part p1 to whatever font p2
currently has. The following UIML achieves this:

<property part-name="p1" name="font">

<property part-name="p2" name="font"/>
</property>

The nested <property> element gets the font of p2. The nested property does a get because
it is nested in another <property> element, as explained in Section 5.5.1.2. That returned
value then becomes the value of the font property in part p1.

It should be noted that defining a child <property> element of a nested <property> element is
undefined, and does not provide any additional meaning.

! A <call> element. As explained in Section 5.7.8, a call is an invocation of code, such as

calling a method in an object or a function in a script described in the <logic> element. In
this case the property is set to the return value of the invocation. The following example2 is
an HTML user interface in which the content of a paragraph is set to the return value of
method random in object DoMath. The call is performed at render time.

<uiml>

<interface>
<structure>

...
<Pre id="pr1" content="Number 1: "/>
<P id="ran1"/>
...

</structure>

<style>
<property part-name="ran1" name="content">

<call name="DoMath.random"/>

2 From UIML2HTML/LocalExternalCall-RenderTime.uiml.

UIML 3.0 Language Specification

Harmonia, Inc. Page 39 02/08/2002

</property>
...

</style>

<peers>
<presentation how="replace"

source="HTML_3.2_Harmonia_1.0.uiml#vocab"
base= "HTML_3.2_Harmonia_1.0"/>

<logic>
<d-component id="DoMath" maps-to="TestFunctionCalls">

...
<d-method id="random" maps-to="generateRandom"

return-type="int"/>
</d-component>

</logic>
</peers>

</uiml>

The <logic> element (contained in the <peers> element of a UIML document) defines the
code to which DoMath.random corresponds and how to invoke that code; see Section 6.3.

5.5.1.4 Using event-class with <property> Elements

Just as <part> elements may have properties, so too may <event> elements have properties.
There are some restrictions on using <property> with the event-class attribute. A <property>
with the event-class attribute can only be used if the following apply:

• The <property> is a property-get operation (unless the name is rendering). Therefore the
parent of <property> must be another <property>, <op>, or <param>

• The <property> has <action> as an ancestor.

• The ancestor <rule> of the <property> has in its <condition> child an <event> element.
The <property> naming an event-class always returns the value corresponding to the event
occurrence named in the <condition>.

The three restrictions above arise because events normally represent transient events in a
program, so it makes sense to query date associated with an event when the event occurs, but not
later in the lifetime of the user interface.
Example

In the following UIML fragment, whenever a mouse click occurs for part P, method
doSomething in object O is called with the x position of the mouse when clicked as an argument.

<rule>
<condition>

<event part-class=”P” class=”MouseListener.mouseClicked”/>
</condition>
<action>

<call name=”O.doSomething”>

UIML 3.0 Language Specification

Harmonia, Inc. Page 40 02/08/2002

<param><property event-class=”MouseListener.mouseClicked”
name=”X”/>

</param>
</call>

</action>
</rule>

5.5.1.5 Resolving Conflicting Property Values

A UIML document may contain more than one <property> element that sets the same property
name for the same property. This is illustrated by the following example3:

<uiml>
<interface id="myinterface">

<structure>
...

<part id="Button1" class="JButton">
<style>

<property name="text">Am I yellow?</property>
<property name="background">blue</property>

</style>
</part>

...
</structure>

<style>
<property part-name="Button1" name="background">orange</property>
<property part-name="Button1" name="background">yellow</property>

</style>
</interface>
<peers><presentation base="Java_1.3_Harmonia_1.0"/></peers>

</uiml>

In the example above, the background color of Button1 is set in three <property> elements, to
blue, orange, and yellow. A rendering engine to resolve such a conflict must follow the
following semantic rule:

Whenever a conflict arises between any two <property> elements in a UIML document,
the <property> element that appears last in the canonical representation of the document
must be used and the others must be ignored.

By the above rule, the button will have a background color of yellow in the preceding UIML
document. Note that in canonical form, <property> elements whose grandparent is interface are
appended to the end of the <style> element whose parent is the part or parts to which the
properties refer. (The relative order of the <property> elements is preserved when they are
moved.)

3 From UIML2JAVAI/PropOrder0.uiml.

UIML 3.0 Language Specification

Harmonia, Inc. Page 41 02/08/2002

In the following example4, the Button1, Button2, and Button3 have background colors red,
yellow, and green, respectively:

<uiml>
<interface id="myinterface">

<structure>
...

<part id="Button1" class="JButton">
<style>

<property name="text">Am I red?</property>
<property name="background">yellow</property>

</style>
</part>

<part id="Button2" class="JButton">
<style>

<property name="text">Am I yellow?</property>
</style>

</part>

<part id="Button3" class="JButton">
<style>

<property name="text">Am I green?</property>
</style>

</part>
...

</structure>

<style>
<property part-class="JButton" name="background">green</property>
<property part-name="Button1" name="background">red</property>
<property part-name="Button2" name="background">yellow</property>

</style>
</interface>
<peers><presentation base="Java_1.3_Harmonia_1.0"/></peers>

</uiml>

In canonical form, a <property> element with attribute part-class is copied to the <style>
element of each <part> element in the part-class. Thus the canonical form of the preceding
UIML becomes the following:

<uiml>
<interface id="myinterface">

<structure>
...

<part id="Button1" class="JButton">
<style>

<property name="text">Am I red?</property>
<property name="background">yellow</property>
<property name="background">green</property>
<property name="background">red </property>

</style>
</part>

4 From UIML2JAVAI/PropOrder3.uiml.

UIML 3.0 Language Specification

Harmonia, Inc. Page 42 02/08/2002

<part id="Button2" class="JButton">
<style>

<property name="text">Am I yellow?</property>
<property name="background">green</property>
<property name="background">yellow</property>

</style>
</part>

<part id="Button3" class="JButton">
<style>

<property name="text">Am I green?</property>
<property name="background">green</property>

</style>
</part>

...
</structure>

</interface>
<peers><presentation base="Java_1.3_Harmonia_1.0"/></peers>

</uiml>

Therefore the last <property> element for each <part> element is used, resulting in Button1,
Button2, and Button3 having background colors red, yellow, and green, respectively.

A rendering engine must evaluate all <property> elements for a given part in textual order and
adhere to the conflict resolution policy described above when dealing with multiple conflicting
<property> elements. Implementations of this policy are beyond the scope of this document,
provided that the end result guarantees that the effect is equivalent to evaluating all conflicting
<property> elements.

5.5.2 Using Properties to Achieve Platform Independence
One of the powerful aspects of UIML is the ability to design a UIML document that can be
mapped to multiple platforms. This is achieved by a special property called rendering.

To illustrate the use of rendering, let's look at an example. Suppose we were going to create a
UI specifically for Java AWT. First our UIML document would need to specify that it uses a
vocabulary for Java AWT. This is done by a presentation element (exemplified earlier in
Section 2.2.1):

<peers>
<presentation base="JavaAWT_1.3_Harmonia_1.0"/>

</peers>

The above UIML fragment names base attribute that maps to a URI that defines the vocabulary.
JavaAWT_1.3_Harmonia_1.0.uiml can be viewed as a black box by the UIML author. (It
actually contains a <presentation> element, discussed in Section 6.2.)
JavaAWT_1.3_Harmonia_1.0.uiml uses all Java AWT class names as UI widget names: Button,
List, and so on. The UIML author can then directly use these names as class names when
defining parts:

<structure>

UIML 3.0 Language Specification

Harmonia, Inc. Page 43 02/08/2002

<part class="Button" id="submitButton"/>
</structure>

On the other hand, suppose we want to design a UIML document that could be mapped either to
Java AWT or to Java Swing. And suppose the Web resource named in the <peers> element
introduced all the Swing class names as vocabulary to use in the UIML document. Now if we
want to map the submitButton either to an AWT Button or to a Swing JButton, then we could not
make submitButton's class Button. Instead, UIML permits the introduction of a psuedo-name
chosen by the UIML author. Suppose we choose as our class name AWTorSwingButton. Our
UIML fragment above then becomes this:

<structure>
<part class="AWTorSwingButton" id="submitButton"/>

</structure>

Now comes the key idea. The style element is used to map AWTorSwingButton to either Button
or JButton:

<style id="AWT-specific">
<property part-class="AWTorSwingButton" name="rendering"
>Button</property>

</style>

<style id="Swing-specific">
<property part-class="AWTorSwingButton" name="rendering"
>JButton</property>

</style>

If the rendering engine is invoked with style name AWT-specific, then the submitButton will map
to an AWT button; otherwise if Swing-specific is used, then the submitButton maps to JButton.

The above example is also very useful in a dynamic UI, where the binding of a part (e.g.,
submitButton to Button versus JButton) can change every time the UI is rendered. In the
example below, each time the UIML document is rendered, the renderer executes the <call>
element, and the return value of the call is either the string “Button” or “JButton”. Therefore
sometimes when the UI is rendered part submitButton will be an AWT Button and other times a
Swing JButton. This might be useful if the UI is sometimes displayed on various devices, all of
which implement AWT, and only some of which implement Swing.

<part class=”AWTorSwingButton” id=”submitButton”>
<style>

<property name=”rendering”><call name=”X.getRendering”/></property>
</style>

</part>

Another example of the use of rendering for a part-name or part-class is for UIs that contain the
results of searches. The search result might be a table, and one column of the table might contain
images on one search but text on another search. The choice of table column parts being images
versus text would be determined by a <call> element to get the part rendering, similar to the one
illustrated above.

UIML 3.0 Language Specification

Harmonia, Inc. Page 44 02/08/2002

Given this basic example, some variations are possible. First, the style element can specify the
rendering property not only for part-class, but also part-name. In this case, the rendering
specified only applies to the part with the specified part-name.

Second, the rendering property can also be specified for event-class. One of the powerful
aspects of UIML is the naming of events. In a conventional language (e.g., Javascript) events
have names reflective of the interface components to which they correspond (e.g., OnClick for a
button). However one UIML document may be mapped to several different platforms. An
interface part p might be a button on platform 1 or a menu item on platform 2. Therefore the
<event> element for part p specifies a class attribute that can be set to whatever the UIML
author wishes (e.g., ButtonOrMenuSelection). The <style> element in the UIML document then
map the name ButtonOrMenuSelection to a platform-specific name. In this case there would be
<style> elements with two different ids:

<style id="Platform1">...</style>
<style id="Platform2">...</style>

The <style> element then maps the generic name (e.g., ButtonOrMenuSelected) to a button
selection in platform 1 and a menu item selection in platform 2 using the rendering property:

<style id="Platform1">
<property event-class="ButtonOrMenuSelected"

name="rendering">ButtonSelected</property>
<style>

<style id="Platform2">
<property event-class="ButtonOrMenuSelected"

name="rendering">MenuSelected</property>
<style>

(The values ButtonSelected and MenuSelected are part of the vocabulary of the target platform,
defined in the <peers> element.)

As a second example, the dictionary example of Section 2.2.1 contains the following:

<style>
<property event-class=”LSelected”

name=”rendering”>itemStateChanged</property>
</style>
...
<behavior>

...
<event part-name="Terms" class="LSelected">

...
</behavior>

The behavior element describes what actions to take in response to various user interface events
(see Section 5.7). The <event> element refers to an event of class LSelected, named to represent
a list selection of one of the animals in the dictionary list. The <style> element specifies that all
events with class LSelected are mapped to invocations of the itemStateChanged event in the Java

UIML 3.0 Language Specification

Harmonia, Inc. Page 45 02/08/2002

AWT class ItemEvent. If we were to modify the code in Section 2.2.1 to map to another
platform, we could then map LSelected to something else in another toolkit by specifying a
different rendering property for event-class LSelected.

5.5.2.1 Rules to Assign "rendering" Property
A UIML renderer must obey the following rules in assigning each part and event element a
rendering property.

1. If a <property> element exists that contains attribute name=“rendering” and one of the
attributes part-class, event-class, part-name, or event-name use the <property> element value as
the rendering.

2. Otherwise, the value of the rendering property is, the value of the class attribute for the <part>
or <event> element that is found to be associated with this instance of <property> (this instance
refers to the property in question). For example:

<part class=”JButton” id=”B1”>
<style>

<property name=”rendering”../>

The above defines that rendering of B1 is JButton. (The <presentation> element then defines the
mapping of JButton to a UI widget in the toolkit, such as javax.swing.JButton.)

5.6 The <content> Element
DTD

<!ELEMENT content (constant*)>
<!ATTLIST content

id NMTOKEN #IMPLIED
source CDATA #IMPLIED
how (append|cascade|replace) "replace"
export (hidden|optional|required) "optional">

Description

A part in a UI can be associated with various content, such as words, characters, sounds, or
images. UIML permits separation of the content from the structure in a UI. Separation is useful
when different content should be displayed under different circumstances. For example, a UI
might display the content in English or French. Or a UI might use different words for an expert
versus a novice user, or different icons for a color-blind user. UIML can express this.

Normally one would set the content associated with a UI part through the <property> element:

<structure id="GUI">
<part class="button" id="affirmativeChoice"/>

</structure>

UIML 3.0 Language Specification

Harmonia, Inc. Page 46 02/08/2002

<style>
<property part-name="affirmativeChoice" name="label">Yes</property>

</style>

In the UIML fragment above, the button label is hard-wired to the string "Yes". Suppose we
wanted to internationalize the interface. In this case UIML allows the value of a property to be
what a programmer would think of as a variable reference using the <reference> element:

<style>
<property part-name="affirmativeChoice" name="label">

<reference constant-name="affirmativeLabel"/>
</property>

</style>

The <reference> element refers to a constant-name, which is defined in the <content> element
in a UIML document. The important concept is that there may be multiple <content> elements
in a UIML document, each with a different name. When the interface is rendered, one of the
<content> elements is specified, and the <content> elements inside are then used to satisfy the
<reference> elements.

This is illustrated in the following example. The UI contains two parts. The class name “button”
suggests that each part be rendered as a button in a graphical UI. (The <style> element [Section
5.5] actually determines how the class called “button” is rendered – it may be rendered as radio
buttons or a voice response.) The button labels are references to constant-name
"affirmativeLabel" and "negativeLabel". There are three alternative definitions of these
constant-names, corresponding to three languages: English, German, or slang English. Thus
three content elements are defined, one for each language. Within each <content> element one
or more <constant> elements are used to provide the actual literal string that appears in the UI
(e.g., “Yes” for English but “OK” for slang English).

When the interface is rendered, a mechanism outside the scope of this specification supplies a
content name (either English, German, or EnglishSlang). The <content> element whose name
matches the supplied name is then used, and all other <content> elements are ignored. This then
determines whether the value of the label property for the "affirmativeChoice" button is "Yes",
"Ja", or "OK." (If the supplied name does not match the id attribute of any <content> element,
then the interface cannot be rendered.)

Example

<structure id="GUI">

<part class="button" id="affirmativeChoice"/>
<part class="button" id="negativeChoice"/>

</structure>

<style>
<property part-name="affirmativeChoice" name="label">

<reference constant-name="affirmativeLabel"/>
</property>
<property part-name="negativeChoice" name="label">

UIML 3.0 Language Specification

Harmonia, Inc. Page 47 02/08/2002

<reference constant-name="negativeLabel"/>
</property>

</style>

<content id="English">
<constant id="affirmativeLabel" >Yes</property>
<constant id="negativeLabel" >No</property>

</content>

<content id="German">
<constant id="affirmativeLabel" >Ja</property>
<constant id="negativeLabel" >Nein</property>

</content>

<content id="EnglishSlang">
<constant id="affirmativeLabel" >OK</property>
<constant id="negativeLabel" >No</property>

</content>

The last <content> element could also be shortened, by using the source attribute, discussed in
Section 7.2, so that EnglishSlang inherited the negativeLabel from English as follows:

<content id=”EnglishSlang” source=”English” how="cascade">
<constant id=”affirmativeLabel” >OK</constant>

</content>

5.6.1 The <constant> Element

DTD

<!ELEMENT constant (constant)*>
<!ATTLIST constant

id NMTOKEN #IMPLIED
source CDATA #IMPLIED
how (append|cascade|replace) "replace"
export (hidden|optional|required) "optional"
model CDATA #IMPLIED
value CDATA #IMPLIED>

Description

<constant> elements contain the actual text strings, sounds, and images associated with UI parts
from the <part> element. Each <constant> element is identified by an id attribute and is
referenced by the <reference> element.

Example

The following example shows how to create <constant> elements that point to a string, a sound
clip, and an image. Similarly, you can create constants that point to video clips, binary files, and
other objects. Note the following URI’s are for demonstration purposes and may not be active.

UIML 3.0 Language Specification

Harmonia, Inc. Page 48 02/08/2002

<content>

<constant id="Name" value=”UIML”/>
<constant id="Sound" source="http://uiml.org/uiml.wav"/>
<constant id="Image" source="http://uiml.org/uiml.jpg"/>

</content>

The <constant> element can also be used to represent literal strings used inside the <condition>
element (see Section 5.7.3). For example:

<condition>
<equal>

<event part-name="inYear" class="filled" name="content"/>
<constant value=”2001”/>

</equal>
</condition>

5.6.2 The <reference> Element

DTD

<!ELEMENT reference EMPTY>
<!ATTLIST reference

constant-name NMTOKEN #IMPLIED
url-name NMTOKEN #IMPLIED>

Description

The <reference> element references the value of the <constant> element specified by the
constant-name attribute. Alternatively the <reference> element may specify a url-name attribute
that contains a URI to an external document containing <constant> elements.

Example uses of the <reference> element are given in Sections 5.5.1.3 and 5.6.

There are several uses for references:

! The same text string might be used in two or more places in a UIML document. In this case

a <constant> element can be defined containing the string and anywhere the string is
required (e.g., as values of a property) the <reference> element can be used. Thus, if we can
modify the text in the <constant> element, the change propagates to all the places in the
UIML document that is referenced.

! Often an interface part is initialized to contain several text strings, and when an event later

occurs for the part, an <equal> element tests to see which text string the end-user selected in
triggering the event. (For example, lists and choices in Java AWT contain multiple text
items.) In this case, a <constant> element can be defined in the content element, and then
the part's values can be initialized in the style element using a <property> element

UIML 3.0 Language Specification

Harmonia, Inc. Page 49 02/08/2002

containing a <reference> element as its value. In the <behavior> element, the <rule>
element handling events for the part can test whether the item selected corresponded to the
<constant> element by using a <reference> element. An example of this appears in Section
2.2.1.

The semantics of a <reference> element is to replace the element with the <constant> element
whose id attribute matches the constant-name attribute of the <reference> element. Or if the
url-name attribute is specified, to replace the <constant> element contained within the document
located by the URI given as the value of the url-name attribute. If no such element exists, then
the UIML document cannot be rendered.

Implementations of UIML should retrieve content from <reference> elements during the context
of rendering regardless of the context of from where the <reference> is being defined.

5.7 The <behavior> Element

DTD

<!ELEMENT behavior (rule*)>
<!ATTLIST behavior

id NMTOKEN #IMPLIED
source CDATA #IMPLIED
how (append|cascade|replace) "replace"
export (hidden|optional|required) "optional">

Description

The behavior element describes what happens when an end-user interacts with a user interface.
For example, the <behavior> element might describe what happens when an end-user presses a
button. The <behavior> element also describes when and how the user interface invokes
methods (recall from Section 1.4 that a method refers to functions, procedures, database queries,
and so on.)

The <behavior> element contains a sequence of rules. Each rule contains a condition and a list
of actions. Whenever a condition holds, the associated action is performed. If the condition for
more than one rule holds simultaneously, the algorithm in Appendix A is used to determine order
of execution.

• UIML allows two types of conditions:

o The first type of condition holds when an event fires (e.g., a button is pressed in
the UI).

o The second holds when an event fires and some logical expression of the data
associated with the event evaluates to be true (e.g., a list selection is made and the
selected item is "cat" – the first <condition> element in the dictionary example in
Section 2.2.1).

UIML 3.0 Language Specification

Harmonia, Inc. Page 50 02/08/2002

(UIML does not allow other conditions, to avoid implementations that are
computationally expensive [e.g., continuous polling to determine when a condition holds]
or impossible with simple UI toolkits [e.g., WML]).

• Actions can be internal to the UIML document -- specifying a change in a property's

value -- or external -- invoking a method in a script, program, and so on. The list of
actions within a rule is executed in the order they appear in a UIML document, as
described in Appendix A.

A unique aspect of UIML is that events are also described in a device-independent fashion, by
giving each event a name and identifying the class to which it belongs. As was the case for
<part> elements, the UIML author chooses the name and class identifiers for events, and those
names are mapped to an event in the underlying platform in the <style> and <peers> elements.
For example, the end-user might define an event with class=“selection,” and the <peers>
element for a Java AWT interface might map class “selection” to a java.awt.MouseEvent.

5.7.1 Examples of <behavior>, < rule>, <condition>, and <action>
Elements

UIML allows the following actions in a behavior to be specified:

• Assign a value to a part’s property. The value can be any of the following: a constant value,

a reference to a constant, the value of property, or the return value of a call.

<behavior>
<rule>

<condition>
<!--A-->
<event class="ButtonSelected" part-name="b1">

</condition>

<action>

<!--1-->
<property part-name="b1" name="color"/>blue</property>

<!--2-->
<property part-name="b2" name="color"/>

<reference constant-name="green"/>
</property>

<!--3-->
<property part-name="b2" name="color"/>

<property part-name="b1" name="color"/>
</property>

<!--4-->
<property part-name="b3" name="color"/><

call name="serverObject.getColor"/></property>

UIML 3.0 Language Specification

Harmonia, Inc. Page 51 02/08/2002

</action>

</rule>
</behavior>

The <behavior> element above consists of one rule. The rule is executed whenever an
event of class “ButtonSelected” for part “b1” fires. Let’s assume that “b1,” “b2,” and
“b3” are buttons (established in <part> elements not shown), and “ButtonSelected” is a
button click (established in a <peers> element not shown).

There is one <action> element associated with the rule. That action contains four
elements that set properties in the interface, labeled 1 to 4 by comments.

1. The first action (labeled “<!--1-->”) sets property “color” of the button to blue when

button b1 is clicked.
2. The second action sets the color of button b2 to a constant named “green” (and defined in

the <content> element [see Section 5.6], not shown here).
3. The third action sets the color of button b2 to whatever color b1 currently has. Note that

this action is executed after 1 and 2 above were executed, so button b2’s color is set to
blue (because button b1’s color was set to blue in action 1 above).

4. The fourth action sets the color of button b3 to the return value of a call to something
called “serverObject.getColor”. The <d-component> element in the <logic> element
(discussed in Section 6.4.1) defines what “serverObject.getColor” is mapped to -- for
example a method called “getColor” that takes no parameters in an object instance named
“serverObject.” Note that no parameters are passed by the <call> element, so method
getColor either must take no arguments or must have default values for all its formal
arguments. Note that the return value of the call is converted to a character string,
because the value of the <property part-name=“b3” name=“color”> element is a character
string. Finally note that white space (spaces, tabs, line breaks) is significant in an XML
document. Therefore the right angle bracket of the <property> tag must be immediately
followed by the left angle bracket of the <call> tag, and similarly the right angle bracket
of <call> must be immediately followed by the left angle bracket of the </property> tag.

• Call a method. The function or method call can take any number of arguments. Each

argument to the call can be any of the following: a constant value, a reference to a constant,
the value of property, or the return value of another call.

<behavior>

<rule>

<condition>
<!--B-->
<event class="ButtonSelected" part-name="b1">

</condition>

<action>

<!--5-->
<call name="m.storeData">

UIML 3.0 Language Specification

Harmonia, Inc. Page 52 02/08/2002

<param>5</param>
<param><reference constant-name="green"/></param>

</call>

<!--6-->
<call name="m.storeColor">

<param name="a3"><
property part-name="b1" name="color"/

></param>
</call>

<!--7-->
<call name="n.DisplayData">

<param><call name="serverObject.getColor"/></param>
<param><call name="q.getParam"><param>5</param></call></param>

</call>

</action>

</rule>
</behavior>

The <behavior> element above consists of one rule. The rule is executed whenever an
event of class “ButtonSelected” for part “b1” fires. Let’s assume that “b1” is a button
(established in a <part> element not shown), and “ButtonSelected” is a button click
(established in a <peers> element not shown).

There is one <action> element associated with the rule. That action contains three
elements that set properties in the interface, labeled 1 to 3 by comments.

1. The first action (labeled “<!--1-->”) calls a method named “m.storeData” when button b1

is clicked. The method takes two arguments; the first is 5 and the second is the value of a
constant named “green” (and defined in the <content> element [see Section 5.6], not
shown here).

2. The second action is to call method “m.storeColor” with one parameter, whose value is

the current color of button b1. The attribute name=”a3” in the <param> element is used
in the following situation: “m.storeColor” has more than one formal parameter, and one
formal parameter is named “a3”, and all other formal parameters have default values.

3. The third action calls method “n.DisplayData” with two parameters. The first is the

return value of a call to method “getColor” in object “serverObject.” The second is the
return value of a call to method “getParam(5)” in object “g.”

• Fire an event. An event can be fired from the <action> element. An <action> element may

contain at most one <event> element, and this <event> element must appear as the last child
of <action>.

<behavior>

<rule>

UIML 3.0 Language Specification

Harmonia, Inc. Page 53 02/08/2002

<condition>
<!--C-->
<event class="ButtonSelected" part-name="b1">

</condition>

<action>
<!--8-->
<!--executed when b1 is clicked -->
<event class="ButtonSelected" part-name="b2"/>

</action>

</rule>

<rule>

<condition>
<!--D-->
<event class="ButtonSelected" part-name="b2">

</condition>

<action>
<!--9-->
<!--executed when b1 or b2 is clicked -->
<call name="f1"><param>10</param><call/>

</action>

</rule>
</behavior>

Assume that both “b1” and “b2” are rendered as buttons and “ButtonSelected” is mapped
to the event that is fired when a button is pressed. Whenever the end-user clicks button
“b1” then the first rule will evaluate to true (event labeled “C”) and fire another event that
will simulate the end-user pressing “b2” (action labeled “8”). Then the rendering engine
will evaluate the condition for all the rules again (due to the algorithm in Appendix A),
and the second rule will evaluate to true (event labeled “D”) and call f1(10) (action
labeled “9”).

This feature must be used with care, to avoid creating an infinite loop (e.g., if the second
<action> element was "<event class="ButtonSelected" part-
name="b1"/>" to simulate a click on button b1, instead of the <call> element).

UIML 3.0 Language Specification

Harmonia, Inc. Page 54 02/08/2002

5.7.2 The <rule> Element

DTD

<!ELEMENT rule (condition,action)?>
<!ATTLIST rule

id NMTOKEN #IMPLIED
source CDATA #IMPLIED
how (append|cascade|replace) "replace"
export (hidden|optional|required) "optional">

Description

The <rule> element defines a binding between a <condition> element and an <action>
element. Whenever the <condition> element within the rule is satisfied, then any elements
inside the <action> element are executed sequentially (i.e., property assignment, external
function or method call, or event firing). See Section 5.7.1 for an example and further
explanation. Also, it is possible for multiple rules to be satisfied at any time; Appendix A
defines how a rendering engine must handle this situation. See Section 5.7.1 for examples.

5.7.3 The <condition> Element

DTD

<!ELEMENT condition (equal|event|op)>

Description

The <condition> element contains as a child either an <event> element or a Boolean expression.
The <action> element associated with this <condition> by the parent <rule> element is
executed whenever either the event named in the <event> element fires or the Boolean
expression in the <equal> or <op> element evaluates to true. See Section 5.7.1 for examples.

5.7.4 The <equal> Element

DTD

<!ELEMENT equal (event,(constant|property|reference|op))>

Description

The <equal> element is a Boolean expression with value true or false. Every <equal> element
must have exactly two children. Each child must be a <constant>, <property>, <reference>, or
<op> element. The semantics of <equal> are as follows. Whenever the two children named in
the <equal> element resolve to the same value then the <equal> element has value true.
Otherwise the <equal> element has value false. Section 2.2.1 illustrates the <equal> element.

UIML 3.0 Language Specification

Harmonia, Inc. Page 55 02/08/2002

5.7.5 The <event> Element

DTD

<!ELEMENT event EMPTY>
<!ATTLIST event

class NMTOKEN #IMPLIED
part-name NMTOKEN #IMPLIED
part-class NMTOKEN #IMPLIED>

Description

The <event> element is used in two contexts:

• As the child of a <condition> element. The parent condition is satisfied whenever the
event occurs. (For example, see event labeled “A” in Section 5.7.1.)

• As the child of an <action> element. The event is fired. (For example, see event labeled
“8” in 5.7.1.)

5.7.5.1 Exceptions as Events
<event> elements are used to represent spontaneous events that happen in the system. The most
common example of these type pf events are user generated inputs like mouse clicks and
keystrokes. However, user actions are not the only events that can be modeled by <event>
elements of UIML; exceptions generated programmatically also fit into this model. Exceptions
occur when something unexpected happens in the underlying system as the result of a <call>
element’s communication to that system (see section 5.7.8 for more details on the <call>
element). In the example below, the exception MyException is thrown by some method call to
the underlying backend. This code snippet would catch the exception and execute the action
defined in the <action> element.

<uiml>
…
<rule>

<condition>
<event class=”MyException”/>

</condition>
<action>

…
</action>

</rule>
…

</uiml>

Note that exceptions are treated differently from normal events in the following way; exceptions
cannot be associated with any particular part. Rendering engines should produce a warning if
the part-name attribute is associated with an <event> element that represents an exception.

UIML 3.0 Language Specification

Harmonia, Inc. Page 56 02/08/2002

<event> elements defining exceptions as shown above will result in the named exception being
caught, no matter where it is thrown from.

5.7.5.2 Extracting Data from Events
Events often contain useful data that may be needed by other aspects of the user interface. For
example, if the system detects a mouse click, it may be useful to extract the coordinates of the
mouse click for display elsewhere in the interface. To facilitate this type of interaction, UIML
recognizes <property> elements as children of <event> elements. These properties represent
data wrapped up in the event and can be used to extract the data from the event. Data of this type
can be accessed using the following <property> syntax:

<property event-class=”MyEvent” name=”MyEventData”/>

Since <event>’s cannot be named, this always refers to the last event of the specified class to
occur.

5.7.5.3 Special Events
UIML facilitates initializing a page (similar in effect to an onLoad event in HTML) through the
use of a special event-class named “init”. The init event class is used as a child of a <condition>
element and the <action> associated with the condition containing the init <event> will be
executed before the page is rendered. Thus users of UIML can use the init event for operations
like initializing data objects in the backend or ensuring that pre-conditions to rendering are met
before actual rendering.

5.7.6 The <op> Element

DTD

<!ELEMENT op (constant|property|reference|call|op|event)*>
<!ATTLIST op

name CDATA #REQUIRED>

Description

The <op> element allows multiple complex logic conditions to be expressed in UIML. In the
previous examples simple conditions were used to control whether or not elements under
<action> were executed. The simplicity of the previous examples allow for only one condition
to hold true, usually this was reserved to see if a particular <event> had occurred. Even with the
functionality introduced with the <equal> tag, an author could only evaluate two different
conditions; furthermore the <equal> tag provided a limited logical condition, testing only if two
values were equal. However with the <op> element, basic logical conditions (less than, greater
than, equal, not equal, and, or…) may be expressed along with the ability to structure complex
condition statements involving multiple values.

UIML 3.0 Language Specification

Harmonia, Inc. Page 57 02/08/2002

5.7.6.1 Semantics of <op>

The name attribute of <op> describes the conditional applied to the expression that you wish to
create. The value of the name attribute can either be symbols representing operators or the
written name of the operator itself. The following is a list of valid operators:

Name Operator Definition

equal == A == B Returns true if A equals B.
notequal != A!=B Returns true if A does NOT equal B.
and && A&&B Returns true if and only if both A and B

are true.
or || A||B Returns true if either A or B is true.
lessthan < A<B Returns true if A is less than B.
greaterthan > A>B Returns true if A is greater than B.

The children of <op> are the operands for the conditional. The following is a list of valid
children elements each of which have different semantics from each other.

1. The child is a <constant>, <property>, <reference>, or <call> element :
The string value of the element is used as the operand for the conditional. The following
example illustrates a conditional that compares if two values are equal to each other.

<condition>
<op name="equal">

<property name="value" part-name="city"/>
<constant value="'Los Angeles'"/>

</op>
</condition>

2. The child is an <event> element:

The operand for the conditional is the boolean value resulting from the evaluation of
determining whether that specified event was caught. The following conditional hold
true if the event “buttonClicked” was caught and the value of the <property> element
was equal to the constant string “Los Angeles”.

<condition>

<op name="and">
<event class="buttonClicked" part-name="city"/>
<op name="equal">

<property name="value" part-name="city"/>
<constant value="Los Angeles"/>

</op>
</op>

</condition>

UIML 3.0 Language Specification

Harmonia, Inc. Page 58 02/08/2002

3. The child is an <op> element:

The operand for the condition is the boolean value resulting from the evaluation of the
<op> statement. Nested <op> statements allow expressions to contain multiple operators
with multiple operands.

5.7.6.2 Resolution of Conditional Statements
The introduction of <op> element brings upon instances where certain actions may want to be
defined as a result from the evaluation of the <op> element. Three new elements <when-true>,
<when-false>, <by-default> have been introduced to define a set of actions when a conditional
is found to be true, false, or undefined. The elements are found as children of <action>.

5.7.7 The <action> Element

DTD

<!ELEMENT action (((property|call|restructure)*, event?)|(when-
true?,when-false?,by-default?))>

Description

The <action> element contains one or more elements that are executed in the order they appear
in the UIML document. Each element can be either a <property> element to set a property of a
part (e.g., 1 to 4 in Section 5.7.1), a <call> element to invoke a method (e.g., 5 to 7 in Section
5.7.1), a <restructure> element to restructure an interface (Section 5.7.11), an <event> element
to fire another event (e.g., 8 in Section 5.7.1), or a <when-true>, <when-false>, <by-default>
element to determine a set course of actions depending on the value of the conditional expressed
in the <condition> element (Sections 5.7.12, 5.7.13, 5.7.14). The <event> element, if present,
must be the last element inside the action. As result of this, you can only fire one event within
the <action> element.

5.7.8 The <call> Element

DTD

<!ELEMENT call (param*)>
<!ATTLIST call

name NMTOKEN #IMPLIED

Description

The <call> element is an abstraction of any type of invocation of code (that uses a language
other than UIML). The code is referred to in this specification as a method, which in Section 1.4
is defined to include functions, procedures, and methods in an object-oriented language, database
queries, and directory accesses.

UIML 3.0 Language Specification

Harmonia, Inc. Page 59 02/08/2002

5.7.8.1 Overview on <call>
UIML’s philosophy on specifying function invocations is to allow the UIML author to freely
choose a set of names for widgets, events, and functions referenced in the <interface> section.
Each of these names is then mapped in the <peers> section to implementing entities (e.g., Swing
user-interface components, methods in memory or remote object instances, entry points in
remote procedures, functions in user scripts, etc.).

For Swing components, the hard work of creating the <peer> mappings has already been done –
UIML authors need only import an existing body of predefined mappings, instead of writing an
appropriate <peers> section. For object methods, the UIML author must write one <d-
component> element for each object instance whose method or methods are to be invoked (note
that <d-component> is a child of <logic>, which in turn is a child of <peers>).

The <call> element has one mandatory attribute, name.

A rendering engine executes a <call> element as follows:

1. The engine must locate the method to be invoked.
2. If the method to be invoked takes arguments, the rendering engine then matches the

<param> elements in the call body to the method’s formal arguments.
3. The rendering engine converts the argument values from character strings to the type of

the formal parameters.
4. The rendering engine invokes the method.
5. If the method returns a value (attribute return-type in element d-method must have a non-

null value -- see Section 6.4.4), then the value is converted to a character string.

Examples of the <call> element are shown in Section 5.5.1.3 and Section 5.7.1.

If a <call> element has as its grandparent a <style> element and is not the descendent of a
<restructure> element, then the call must be evaluated at render time. Otherwise the call must
be evaluated at runtime. Therefore if an <action> element describing what to do when a button
is pressed in a UI contains a call, then the call is executed every time the button is pressed.

Invocation via Direct Specification

Suppose that the UIML document contained an <action> element to invoke method m1 in object
back1, with actual parameters 5 and 10, as in the expression “back1.m1(5,10)”. The <action>
element might look like the following:

<behavior>
<rule>

...
<action>

<call name=”back1.m1”>
<param>5</param>
<param>10</param>

</call>
</action>

UIML 3.0 Language Specification

Harmonia, Inc. Page 60 02/08/2002

</rule>
</behavior>

The d-component element defining back1 might look like the following:

<peer>
<logic>

<d-component id="back1" maps-to="org.uiml.example.myClass">
<d-method id="m1" maps-to="myFunction">

<d-param id="p1"/>
<d-param id="p2"/>

</d-method>
</d-component>

</logic>
</peer>

The value of the maps-to attribute of the <d-component> element follows the syntax imposed by
the language in which the rendering engine in use is implemented (Java, in this example). Here,
the <d-component> element maps the name “back1” to the class “org.uiml.example.myClass”,
which in turn contains a method named “myFunction” to which the name “m1” is mapped. In
order to make the invocation “myClass.myFunction(p1,p2)”, the UIML <call> element should
refer to the corresponding values of the id attributes of the <d-component> and <d-method>
elements, hence “back1.m1”. Given the <action> element above, the rendering engine then
converts the expression “back1.m1(5,10)” into an evaluation of “myClass.myFunction(5,10)”.

Note that the id attributes in the <d-param> elements are optional – they serve merely to
document myFunction’s parameter list.

5.7.8.2 Method Parameters and Return Values Types
Often, an object whose methods are to be invoked defines two or more methods which share the
same name, but have different numbers and/or types of formal parameters, in which case
parameter count and type information must be supplied so that the rendering engine can invoke
the proper method. Within a <d-method> element, the number of <d-param> elements denotes
the number of parameters taken by that particular method. Type information is introduced by
means of the type attribute, as in the following:

<peer>
<logic>

<d-component id="back1" maps-to="org.uiml.example.myClass">
<d-method id="m1" maps-to="myFunction">

<d-param id="p1" type=”int”/> <!--p1 is an int-->
<d-param id="p2" type=”int”/> <!--p2 is an int-->

</d-method>
</d-component>

</logic>
</peer>

If the type attribute is omitted, the parameter type is assumed to be “string” – the value is then
converted into the type required by the function to which the named method maps (i.e.,

UIML 3.0 Language Specification

Harmonia, Inc. Page 61 02/08/2002

“myFunction” in the example above). This type conversion is performed in accordance with the
rules of the language in which the rendering engine is implemented.

By default, the return value from a method is ignored – it is not made available to the element
enclosing the <call> from which the invocation is made. The return value can be made available
by specifying the return-type attribute of the <d-method> element, as in the following:

<peer>
<logic>

<d-component id="back1" maps-to="org.uiml.example.myClass">
<d-method id="m1" maps-to="myFunction" return-type=”int”>

<d-param id="p1" type=”int”/>
<d-param id="p2" type=”int”/>

</d-method>
</d-component>

</logic>
</peer>

5.7.8.3 Invoking Methods Upon External Objects in RMI, CORBA,
LDAP, and EJB

So far, the examples shown have all made use of objects that are implicitly instantiated within
and managed by the same rendering engine that manages the user interface. UIML itself does
not require or even specify this particular behavior; however, additional details are typically
needed when the object instance whose method is to be invoked resides outside the rendering
engine’s execution space. These details include the class of which the object is an instance and
the object instance’s location.

For example, consider the mechanics involved in making a Java RMI invocation upon an
external object instance. The location of the Java virtual machine that hosts the external object
instance (e.g., a hostname) must be specified; additionally, the name by which that instance is
registered with the associated RMI registry must also be given. Once the object instance is
found and a reference of type java.lang.Object to it is obtained, that reference must then
be downcast into the proper object class.

The maps-to attribute of the <d-component> element is used to specify the external object’s class
as in the case where the object resides inside the rendering engine’s execution space. The
needed location information is supplied by means of the location attribute, as in the following
example:

<peer>

<logic>
<d-component id="back1"

maps-to="org.uiml.example.myClass"
location=”rmi://myHost.myCompany.com/Adder”>

<d-method id="m1" maps-to="myFunction"

UIML 3.0 Language Specification

Harmonia, Inc. Page 62 02/08/2002

return-type=”int”>

<d-param id="p1" type=”int”/>
<d-param id="p2" type=”int”/>

</d-method>
</d-component>

</logic>
</peer>

As this example shows, the value of the location attribute is a standard URL, whose syntax
varies with the URL’s protocol, in this case, “rmi”. This particular URL states that the remote
object can be found on host “myHost.myCompany.com”, and that the object is registered
under the name “Adder”. Once a reference to this object is obtained by the rendering engine,
the reference is downcast to a reference to class “org.uiml.example.myClass”.

A rendering engine implementation may support any protocol for the location attribute, as long
as the protocol supports obtaining object references. The Java Renderer version 1.0b supports
the protocols and corresponding URL formats shown below.

PROTOCOL URL FORMAT
Rmi rmi://hostname[:port]/registeredname
Iiop iiop://hostname[:port]/registeredname
Ldap ldap://hostname[:port]/entrypath/entryname
Ejb ejb://hostname[:port]/jndi_name

5.7.9 The <repeat> Element

DTD

<!ELEMENT repeat (iterator,part*)>
<!ATTLIST repeat EMPTY>

Description

A <repeat> element must enclose one <iterator> element and a set of one or more <part>
elements. The <part> elements denoted as children of the <repeat> element are repeated with
their children a number of times designated by the <iterator> element. The <repeat> elements
parent <part> element will not be repeated.

A <repeat> element has the following legal children, ordering of the children does not matter:

• Each <repeat> element must have one and only one <iterator> child. The <iterator>
element denotes how many times the specified interface components will be repeated. If
more than one <iterator> child is defined than the implementation must produce a
warning and use the last <iterator> defined in textual order.

• Each <repeat> must have one or more <part> elements as children. These <part>
elements represent the components to be repeated. If the components are named (i.e.

UIML 3.0 Language Specification

Harmonia, Inc. Page 63 02/08/2002

have a defined ‘name’ attribute), then each repetition of the <part> will have ‘_#’
appended onto the part name where # is the integer representation of this iteration.

Nested repeats are allowed, meaning that a <repeat> can be a child of another <repeat>’s <part>
element descendents (not just first level children). This allows for the dynamic construction of
more complicated interfaces elements such as tables and static depth trees.

5.7.10 The <iterator> Element

DTD

<!ELEMENT iterator (#PCDATA|constant|property|call)>
<!ATTLIST iterator

id NMTOKEN #REQUIRED>

Description

The <iterator> element defines the number of times the interface components should be
repeated. <iterator> elements can have only one child, but that child can be of four forms:

• A text string

• A <call> element

• A <property> element

• A <constant> element

The form of the child is irrelevant so long as it resolves to an integer value N. This integer N is
then used as the maximum number of iterations that the repeat will perform, counting from 1 to
N. Note that the step value for an <iterator> element is currently always one.

5.7.10.1 Using <iterator> in <property> and <param>
The <iterator> element can be used in <property> and <param> elements to provide an integer
value representing the iteration number that is currently processing. In this way, the <iterator>
element behaves very similarly to the <property> element.

It is important to note that an <iterator> is defined within the scope of the <repeat> it is a child
of. Thus, no other <iterator> elements may have the same id if they are defined within a
descendent of the current <repeat>. This also implies that an <iterator> whose <repeat> is an
ancestor of another <iterator> can be accessed within the scope of the descendent <iterator>.

Example
<uiml>

…
<part class=”JDialog”>

<repeat>
<iterator id=”i”>10</iterator>

UIML 3.0 Language Specification

Harmonia, Inc. Page 64 02/08/2002

<part class = “JCheckBox”>
<style>

<property name=”text”><iterator id=”i”/></property>
</style>

</part>
</repeat>

</part>
…

</uiml>

The example above demonstrates the two uses of the <iterator> element and would result in the
appearance of a JDialog containing ten JCheckBoxes. The JCheckBoxes would be numbered 1
to 10.

5.7.11 The <restructure> Element

DTD

<!ELEMENT restructure (template)?>
<!ATTLIST restructure

at-part NMTOKEN #IMPLIED
how (union|cascade|replace|delete) “replace”
where (first|last|before|after) “last”
where-part NMTOKEN #IMPLIED
source CDATA #IMPLIED>

Description

 The <restructure> element provides a way for the UI to change as a result of some condition
being met. Most conditions include but are not limited to user’s interactions. For example, using
the Java AWT/Swing vocabulary for UIML, a UI containing a window with a button and a panel
is described like this:

<structure>
<part class="JFrame" name="F">

<part class="JButton" name="B"/>
<part class="JPanel" name="A"/>

</part>
</structure>

Suppose when the initial UI is displayed, we wanted only the button to appear. When the user
clicks the button, the panel appears. We would use the <restructure> element to define the
necessary changes within the UI to remove the button and display the panel.

The semantics of UIML are changed to include the concept of a virtual UI tree. During the
lifetime of a UI, the parts comprising the UI may change. (All parts that exist but are invisible to
an end user are still part of the tree.) The parts present in the UI have a hierarchical relationship,
therefore forming a tree. At any moment during the UI lifetime, one could enumerate the tree of
parts that currently exist, and this is the virtual UI tree. Each node in this tree corresponds to a
<part> element in the UI generated by UIML. We call the tree "virtual" because it may or may

UIML 3.0 Language Specification

Harmonia, Inc. Page 65 02/08/2002

not be physically represented as a data structure on a computer, depending on how a rendering
engine is implemented.

The initial value of the virtual UI tree is the content of the <structure> element in a UIML
document. During the UI lifetime, the virtual UI tree can be modified by deleting nodes or
adding nodes using the <restructure> tag. (The <restructure> tag is so-named because it modifies
the <structure> section's representation in the virtual UI tree.) The <restructure> tag can only
appear inside an <action> element in UIML.

5.7.11.1 Syntax of <restructure>

The syntax of <restructure> follows:

<restructure at-part="[part-name1]"
how="append|cascade|replace|delete"
where="first|last|before|after"
where-part="[part-name2]"
source="[template-location]">

The <restructure> element may not contain a body if one of the following holds:

• The source attribute is present
• how="delete" is present

Otherwise the <restructure> element must contain a body, and that body must contain exactly
one <template> element, which must contain exactly one <part> element that matches the part
specified in the at-part attribute.

5.7.11.2 Semantics of <restructure>

The semantics of <restructure> are to modify the virtual UI tree as follows:

how="delete":
Delete from the current virtual UI tree the sub-tree rooted at the part named in the “at-part”
attribute. Also delete any properties or rules of the part. There can be no body for <restructure>.
Attributes where, where-part, and source cannot be used.

how=”replace”:
Replaces the part specified by the “at-part” attribute with the parts defined as children of the
template T, where T is defined as the child of the restructure.

how="append”:
Appends parts defined as children of the template T, where T is defined as the child of the
restructure. The way parts are appended to the structure is defined through use of the “where”
and “where-part” attribute (see below).

UIML 3.0 Language Specification

Harmonia, Inc. Page 66 02/08/2002

how="cascade":
Cascades parts defined as children of the template T, where T is defined as the child of the
restructure. The way parts are cascaded to the structure is defined through use of the “where”
and “where-part” attribute (see below). The cascading behavior exhibits the same behavior as
found in Section 7.2.3

The where attribute can only be used when the source attribute is present and how="cascade" or
how="append" is present. The where-part attribute can be used only when where="before" or
where="after" is used.

The attributes have the following semantics. Let the part element specified by at-part be <part
name="P" ...>

If attribute where="first" is present: All children of part P in the <template> named in the
source attribute must be inserted as children of part P before the existing children.

If attribute where="last" is present: All children of the part P in <template> named in the
source attribute must be inserted as children of part P after the existing children.

If attribute where="before" and where-part="[part-name]" is present: All children of part P
in the <template> named in the source attribute must be inserted as children of part P before the
child of P with part name part-name, but after any children appearing before the child “part-
name”.

If attribute where="after" and where-part="[part-name]" is present: All children of part P in
the <template> named in the source attribute must be inserted as children of part P after the child
of P with part name part-name, but before any subsequent children of P.

5.7.11.3 Examples of <restructure>

Consider the button and panel introduced at the beginning of the proposal, where the panel
contains three components: a label, a text field, and a check box. The UIML looks like this:

<structure>
<part class="JFrame" id="F">

<part class="JButton" id="B"/>
<part class="JPanel" id="A">

<part class="JLabel" id="L1"/>
<part class="JTextField" id="TF"/>
<part class="JCheckbox" id="C"/>

</part>
</part>

</structure>

Append Examples
To add another label before L1, do this:

<restructure at-part="A" how="append" where="first">

UIML 3.0 Language Specification

Harmonia, Inc. Page 67 02/08/2002

<template id="T1">
<part>

<part class="JLabel" id="L2"/>
</part>

</template>
</restructure>

The panel now contains the parts in this order: A_T1_L2, L1, TF, C. Note: the naming
convention used for parts that are added from a template is discussed in Section 7.2.
To add a label and a text area between TF and C, do this:

<restructure at-part="A" how="append" where="after" where-part="TF">

<template id="T2">
<part>

<part class="JLabel" id="L3"/>
<part class="JTextArea" id="TA"/>

</part>
</template>

</restructure>

(Alternately, one could have used where="before" where-part="C".) The order of
parts in the panel is now A_T1_L2, L1, TF, A_T2_L3, A_T2_TA, C.
As the UI is modified, the virtual UI tree changes. At any point in time, when a
<restructure> is processed, the "where" attribute refers to the current virtual tree. So if we
executed the above restructures and then the following, the resulting order of components
in the panel would be A_T1_L2, L1, TF, A_T2_L3, A_T2_TA, A_T3_L4, C:

<restructure at-part="A" how="append" where="before" where-part="C">

<template id="T3">
<part>

<part class="JLabel" id="L4"/>
</part>

</template>
</restructure>

The template tag surrounding the part tag provides a resolution mechanism for any name
conflicts that might occur when using append. Consider the restructure tag below.

<restructure at-part="A" how="append">

<template id="T4">
<part>

<part class="Label" id="L1"/>
</part>

</template>
</restructure>

There is already a part named L1 as a child of A, but the part L1 being added gets
renamed to A.T4.L1, so now the panel A has the following children: A_T1_L2,
L1, TF, A_T2_L3, A_T2_TA, A_T3_L4, C, A_T4_L1.

Replace Example
To replace the entire panel with a new panel containing just a label and a text field, do
this:

UIML 3.0 Language Specification

Harmonia, Inc. Page 68 02/08/2002

<restructure at-part="A" how="replace">

<template id="T5>
<part>

<part class="JLabel" is="L1"/>
<part class="JTextField" is="TF"/>

</part>
</template>

</restructure>

The set of children of A in the virtual UI tree is replaced with the set of children
listed in the restructure tag. So now the panel has only the following children:
A_T5_L1, A_T5_TF.

Cascade Example
When cascade is used, parts in the template that have the same name as a child of the
<part> specified by at-part are not used, but any other parts in the template are added as
children of the <part>. For example:

<restructure at-part="A" how="cascade" where="last">

<template id="T6">
<part>

<part class="JLabel" id="L1"/>
<part class="JLabel" id="L5"/>

</part>
</template>

</restructure>

Since A already has a child named L1 (A_T5_L1), the L1 in template T6 is not
used, but part L5 from the template is added as a child of A. So A's children are
now A_T5_L1, A_T5_TF, A_T6_L5. Note that when checking for a part with the
same name, only the last part of a fully-qualified name is checked, so A_T5_L1
matches L1.

Delete Example
To delete the panel, simply do this:

<restructure at-part="A" how="delete"/>

5.7.12 The <when-true> Element

DTD

<!ELEMENT when-true ((property|call)*,restructure?,op?,equal?,event?)>

Description

 The <when-true> element defines a set of actions to be executed when the evaluation of a
conditional expression defined by the element <op> results to be the Boolean value true.

UIML 3.0 Language Specification

Harmonia, Inc. Page 69 02/08/2002

5.7.13 The <when-false> Element

DTD

<!ELEMENT when-false ((property|call)*,restructure?,op?,equal?,event?)>

Description

 The <when-false> element defines a set of actions to be executed when the evaluation of a
conditional expression defined by the element <op> results to be the Boolean value false.

5.7.14 The <by-default> Element

DTD

<!ELEMENT by-default ((property|call)*,restructure?,op?,equal?,event?)>

Description

 The <by-default> element defines a set of actions to be executed when the evaluation of a
conditional expression defined by the element <op> results to be undeterminable or undefined.

5.7.15 The <param> Element

DTD

<!ELEMENT param (#PCDATA|
property|
reference|
call|
op|
event|
constant|
iterator)>

<!ATTLIST param
name NMTOKEN #IMPLIED>

Description

Describes a single actual parameter of the method call specified by the parent <call> element.
Note that the values of all parameters in UIML are character strings. See Section 6.4.5 for
information on conversion of the arguments to the types required by the formal parameters of the
method being called.

If the number of <param> elements equals the number of formal parameters in the method being
called then the following hold:

UIML 3.0 Language Specification

Harmonia, Inc. Page 70 02/08/2002

• The name attribute is optional, and is ignored by the rendering engine if present.
• The order of <param> elements within the <call> element must match the order of the

formal parameters in the method being called.

Otherwise there must be fewer <param> elements than formal parameters in the method being
called, and the following holds:

• The name attribute is required on all param elements.
• The name attribute must be used by the rendering engine to match each <param>

element to a formal parameter in the method being called.

A <param> element must have exactly one child

UIML 3.0 Language Specification

Harmonia, Inc. Page 71 02/08/2002

6 Peer Components
This section describes the elements that go inside the <peers> element, their attributes, and their
syntax. Examples are provided to help show common usage of each element.

6.1 The <peers> Element

DTD

<!ELEMENT peers (presentation|logic)*>
<!ATTLIST peers

id NMTOKEN #IMPLIED
source CDATA #IMPLIED
how (append|cascade|replace) "replace"
export (hidden|optional|required) "optional">

Description

To facilitate extensibility, UIML includes a <peers> element that defines mappings from class,
property, event, and call names used in a UIML document to entities external to the UIML
document. The <peers> element has two child elements, for two types of mappings:

• The <presentation> element contains mappings of part and event classes, property
names, and event names to a UI toolkit. This mapping defines a vocabulary to be used
with a UIML document, such as a vocabulary of classes and names for VoiceXML.
Normally a UIML author does not write a <presentation> element, but instead uses
names in a UIML document that have been defined in the list of vocabularies at
http://uiml.org/toolkits. Section 6.2.1 discusses vocabularies.

• The <logic> element maps names and classes used in <call> elements to application
logic external to the UIML document. In large-scale software development, the <logic>
element is defined once to represent the API of the application logic (typically as a
<template> element), and then included in each UI for the project.

UIML 3.0 Language Specification

Harmonia, Inc. Page 72 02/08/2002

6.2 The <presentation> Element

DTD

<!ELEMENT presentation (d-class*)>
<!ATTLIST presentation

id NMTOKEN #IMPLIED
source CDATA #IMPLIED
how (append|cascade|replace) "replace"
export (hidden|optional|required) "optional"
base CDATA #REQUIRED>

Description

Every UIML document uses a vocabulary. The vocabulary defines the legal class names that can
be used for parts and events in a UIML document, as well as the legal property names. The
formal definition of a vocabulary is done through a <presentation> element containing <d-
class> elements (see Section 6.2.2). Each <d-class> element defines a legal class name.

At present, the list of standard vocabularies is posted on http://uiml.org/toolkits, in the form of a
set of <presentation> templates that may be included into UIML documents.

In the remainder of this section, we first discuss (Section 6.2.1) UIML’s use of a standard set of
vocabulary names, which is all that most UIML authors need to know about the <presentation>
element. Then (Section 6.2.2) we discuss how to define a new vocabulary using the children of
the <presentation> element.

6.2.1 Naming an Existing Vocabulary in <presentation>
Normally, a UIML author uses an existing vocabulary. Therefore UIML requires a way to label
each UIML document with the vocabulary used in that document. The labeling follows a
convention, and authors of new UIML vocabularies must follow this convention.

There are two categories of vocabularies:

• Vocabularies with widespread use, whose definition is posted on uiml.org, in
http://uiml.org/toolkits. Examples are vocabularies for Java 1.3 AWT and Swing, HTML
3.2, WML, and VoiceXML. We call these base vocabularies.

• Custom vocabularies that individuals, companies, or other organizations define. These
may or may not be not posted on uiml.org. The vocabularies may be posted on web sites
around the world of interest to specific communities, or posted in a company's internal
network, or not posted at all. We call these custom vocabularies.

Typically a custom vocabulary extends a base vocabulary (e.g., a company creates custom Java
UI classes that extend Swing classes). The unlikely exception is when someone creates a custom
vocabulary from scratch that does not rely on any base vocabulary, yet a rendering engine for
some base vocabulary can render that custom vocabulary. For example, someone might create a

UIML 3.0 Language Specification

Harmonia, Inc. Page 73 02/08/2002

new UI toolkit for Java from scratch that does not use AWT or Swing, but design the classes so
that a rendering engine for UIML using the Java 1.3 or Swing base vocabulary can still render
the custom classes.

A UIML document must be labeled by a base vocabulary name, and may be labeled by a custom
vocabulary name, in the manner described next.

6.2.1.1 Labeling Base Vocabularies with Attribute base
To easily determine the base language used within the UIML document, the <presentation>
element requires an attribute named base, which identifies the base target language of the UIML
document.

The syntax of values for the "base" attribute must follow this convention:

<vocab-name>_<vocab-version>_<author-of-vocab>_<author's-version-of-
vocab>

Several rules apply to base:

• The value of base is case insensitive.

• If the value of base is x, then the following URL must define x:
http://uiml.org/toolkits/x.uiml.

This URL must contain a <template> element, whose child is a <presentation> element,
whose children define the vocabulary x. (Requests to post a new file should be sent to
info@uiml.org.)

• Every rendering engine must implement one or more base vocabularies. If a rendering

engine implements vocabulary "uiml.org/toolkits/x.uiml", then the rendering engine must
be able to render any document that contains <presentation base="x"> (with or without
the source attribute).

• For example, a rendering engine could be created to display UIs using the Java 1.3 Swing
and AWT toolkits; in this case the rendering engine might recognize the vocabularies
Java_1.3_Harmonia_1.0.uiml, JavaAWT_1.3_Harmonia_1.0.uiml, and JavaSwing_1.3_-
Harmonia_1.0.uiml. Such a rendering engine must also render custom classes that a
UIML author creates that extend Swing classes, by writing their own <presentation>
element to extend the base vocabulary.

• Consider the following <presentation> element:
<presentation

source="MySwing_1.0_JoeProgrammer_0.1.uiml#vocab"
base="Java_1.3_Harmonia_1.0"/>

• The <presentation> element says that any rendering engine that implements vocabulary
uiml.org/toolkits/Java_1.3_Harmonia_1.0.uiml can render the UIML document

UIML 3.0 Language Specification

Harmonia, Inc. Page 74 02/08/2002

containing the <presentation> element, even though the rendering engine was written
without knowledge of what is in vocabulary MySwing_1.0_JoeProgrammer_0.1.uiml.

• (It is the responsibility of the UIML author to insure consistency between the values of
the source and base attributes. For example, the UIML author should not define class
names mapped to HTML tags in MySwing_1.0_JoeProgrammer_0.1.uiml and then set
base to a vocabulary for Java [e.g., Java_1.3_Harmonia_1.0].)

• The following table gives the vocabulary that a rendering engine actually uses to render a
UIML document. The table assumes that the <presentation> has the attribute ‘base=”x”’.

Does <presentation>
contain source
attribute (e.g.,
source="y")?

Does
<presentation>
have body?

Vocabulary is defined by this:
Example
(see
below)

Yes Doesn't matter
Combination of y and, if the body of
<presentation> is not empty, anything
in the body of <presentation>

#4

No uiml.org/toolkits/x.uiml #1,2,3
No

Yes uiml.org/toolkits/x.uiml augmented
by the body of <presentation> #5

Here are some examples of legal <presentation> elements and their meanings:

1. <presentation base="Java_1.3_Harmonia_1.0"/>

UIML document must be rendered by rendering engines implementing vocabulary
uiml.org/toolkits/Java_1.3_Harmonia_1.0.uiml.

2. <presentation base="HTML_3.2_Harmonia_1.0"/>

UIML document must be rendered by rendering engines implementing vocabulary
uiml.org/toolkits/HTML_3.2_Harmonia_1.0.uiml.

3. <presentation base="GenericJH_1.0_Harmonia_1.0"/>

UIML document must be rendered by rendering engines implementing vocabulary
uiml.org/toolkits/GenericJH_1.0_Harmonia_1.0.uiml.

4. <presentation base="Java_1.3_Harmonia_0.8"
source="http://xyz.com/MySwing_1.0_xyz_0.1.uiml#vocab"/>

UIML document must be rendered by rendering engine implementing vocabulary
uiml.org/toolkits/ Java_1.3_Harmonia_0.8.uiml, but the vocabulary used in this
UIML document is the combination of Java_1.3_Harmonia_0.8 and the presentation
defined in http://xyz.com/MySwing_1.0_xyz_0.1.uiml#vocab. Note that
http://xyz.com/MySwing_1.0_xyz_0.1.uiml#vocab must contain a <template>
element (see Section 7.1) whose id is vocab.

UIML 3.0 Language Specification

Harmonia, Inc. Page 75 02/08/2002

5. <presentation base="Java_1.3_Harmonia_0.8">

<d-class name="MySuperCoolButton" used-in-tag="part" .../>
...

</d-class>
</presentation>

UIML document must be rendered by a rendering engine implementing vocabulary
uiml.org/toolkits/Java_1.3_Harmonia_0.8.uiml, but the actual vocabulary used in this
UIML document is Java_1.3_Harmonia_0.8 augmented by the part class
MySuperCoolButton defined in the d-class element.

6.2.1.2 Labeling Custom Vocabularies with Attribute source

It is recommended that if a UIML author uses a custom vocabulary, that he/she creates a new
UIML file containing a <template> element whose id attribute is “vocab”, and whose body is a
<presentation> element containing <d-class> elements defining the custom vocabulary. (Unless
this recommended practice is followed, the custom vocabulary cannot be reused in multiple
UIML documents.) Furthermore, the name of the UIML file should use the following syntax:

<custom-vocab-name>_<custom-vocab-version>_<your-organization's-
name>_<your-version-of-vocab>.uiml

For example, if you developed a library of classes that extends Java 1.3 Swing, and you call the
library "MySwing", and the current version of MySwing is 1.0, and your name is
JoeProgrammer, and this is the first UIML file you wrote to define the vocabulary (version 0.1),
then you might name the custom vocabulary file MySwing_1.0_JoeProgrammer_0.1.uiml. Any
UIML documents that use this custom vocabulary should then contain the following element:

<presentation
source="MySwing_1.0_JoeProgrammer_0.1.uiml#vocab"
base="Java_1.3_Harmonia_1.0"/>

6.2.1.3 Permitted Optimization for Rendering Engine
An implementation of a rendering engine may omit reading the <presentation> element to
reduce the execution time of and mitigate the effect of network delays upon rendering time.
Instead, the engine might cache copies of the presentation files for the toolkits that it supports
(e.g., Java_1.3_Harmonia_1.0 in the example in Section 2.2.1). Alternatively, the
<presentation> element’s information might be hard-wired into the rendering engine, so that the
engine does not even have to spend time reading and processing the information.

6.2.1.4 Multiple Presentation Elements
A UIML document may contain multiple <presentation> elements. However, each element
must contain the id attribute. A rendering engine selects one of them based on information
outside the UIML document (e.g., as a command line option to the rendering engine).

UIML 3.0 Language Specification

Harmonia, Inc. Page 76 02/08/2002

6.2.1.5 Suggested Use of Base Attribute in Authoring Tools
When an authoring tool for UIML opens an existing UIML document, the tool can quickly
identify which vocabulary is used in the document from the base attribute, perhaps to display an
appropriate palette of user interface widgets for further editing of the document (e.g., a palette of
Java Swing objects if the file uses the Java 1.3 vocabulary).

6.2.2 Creating a New Vocabulary Using <presentation>
This section discusses two vocabulary files, for HTML and Java. Based on these examples, one
can define a new vocabulary file. The full vocabularies for HTML and Java used here are
available at the following URLs:

• http://uiml.org/toolkits/HTML_3.2_Harmonia_1.0.uiml

• http://uiml.org/toolkits/Java_1.3_Harmonia_1.0.uiml

6.2.2.1 Defining Legal Part Class Names Via <d-class>

HTML Case

To start with, suppose a UIML document contains the following:

<uiml>
<interface>

...
<part class=”Button”/>

...
</interface>
<peers>

<presentation base="HTML_3.2_Harmonia_1.0"/>
</peers>

</uiml>

The mapping of the Button part to HTML is defined by
uiml.org/toolkits/HTML_3.2_Harmonia_1.0.uiml, which maps any part of class Button to the
HTML 3.2 <INPUT> tag:

<uiml>
<template .../>

<presentation .../>
<d-class id="Button" used-in-tag=”part” maps-type="tag"

maps-to="html:INPUT">
...

</d-class>
</presentation>

</template>
</uiml>

UIML uses a set of elements that start with <d-...>. The “d-“ prefix means that this element
defines a class, property, or parameter name. Thus <d-class> defines a class name.

UIML 3.0 Language Specification

Harmonia, Inc. Page 77 02/08/2002

Java Case

In contrast, suppose a UIML document uses a Java JButton:

<uiml>
<interface>

...
<part class=”JButton”/>

...
</interface>
<peers>

<presentation base="Java_1.3_Harmonia_1.0"/>
</peers>

</uiml>

The mapping of the JButton part to Java is defined by
uiml.org/toolkits/Java_1.3_Harmonia_1.0.uiml, which maps any part of class JButton to the
Swing JButton class:

<uiml>
<template .../>

<presentation .../>
<d-class id="JButton" used-in-tag="part" maps-type="class"

maps-to="javax.swing.JButton">
...

</d-class>
</presentation>

</template>
</uiml>

Note these differences between the HTML and Java <d-class> elements:

• The maps-type is tag for a mapping to a markup language, like HTML, and class for a
mapping to an imperative object-oriented language like Java.

• The maps-to attribute lists a namespace and tag in that namespace (“html:INPUT” for
HTML) or a string whose syntax is, at present, not defined in this spec
(“javax.swing.JButton” for Java).

Next we will discuss what goes in the ... inside each <d-class> in the above <presentation>
elements. This part answers the following questions:

• What property names can be used with the part class (e.g. the color of a button)?

• What events and event listeners are used with the part class (e.g. the event of clicking a
button)?

• What properties exist for events (e.g. the X and Y positions for a mouse click event)?
These are discussed in turn below.

UIML 3.0 Language Specification

Harmonia, Inc. Page 78 02/08/2002

6.2.2.2 Defining Legal Property Names for <part> Classes via <d-
property>

HTML Case

The UIML document below extends our previous example to give our HTML button a text label
that says “Press me!”.

<uiml>
<interface>

...
<part class=”Button”>

<style><property name=”VALUE”>Press me!</property></style>
</part>

...
</interface>
<peers>

<presentation base="HTML_3.2_Harmonia_1.0"/>
</peers>

</uiml>

Now let’s look at what is required in the <presentation> element to map the UIML property
VALUE to the corresponding VALUE attribute of the HTML <INPUT> tag. This is defined in
the third <d-property> element below:

<uiml>
<template .../>

<presentation .../>
<d-class id="Button" maps-type="tag" maps-to="html:INPUT">

<d-property id="type" maps-type="attribute" maps-to="TYPE">
<d-param type="String">BUTTON</d-param>

</d-property>

<d-property id="name" maps-type="attribute" maps-to="NAME">
<d-param type="String"/>

</d-property>

<d-property id="value" maps-type="attribute" maps-to="VALUE">
<d-param type="String"/>

</d-property>

...

</d-class>
</presentation>

</template>
</uiml>

The three <d-property> elements above say that an HTML 3.2 button has three properties: its
type (which is always BUTTON, and therefore cannot be set in a UIML document, its name, and
its value (or the string text that appears in the button).

UIML 3.0 Language Specification

Harmonia, Inc. Page 79 02/08/2002

Java Case

Now consider the Java JButton. The UIML document below extends our previous example to
give our Java Swing button a text label that says “Press me!”.

<uiml>
<interface>

...
<part class=”JButton”>

<style><property name=”text”>Press me!</property></style>
</part>

...
</interface>
<peers>

<presentation base="Java_1.3_Harmonia_1.0"/>
</peers>

</uiml>

Now let’s look at what is required in the <presentation> element to map the UIML property text
to the proper Java set method for javax.swing.JButton. This is defined in the two <d-property>
elements below:

<uiml>
<template .../>

<presentation .../>
<d-class id="JButton" used-in-tag="part" maps-type="class"

maps-to="javax.swing.JButton">

<d-property id="text"
maps-type="setMethod"
maps-to="setText">

<d-param type="java.lang.String"/>
</d-property>

<d-property id="text"
return-type="java.lang.String"
maps-type="getMethod"
maps-to="getText"/>

...
</d-class>

</presentation>
</template>

</uiml>

The <d-property> elements in the box above say that a property named text can be used with
JButtons. In a <property> element that sets the property, the Java method
setText(java.lang.String) should be used. To get the property, use javax.swing.JButton.getText().

A JButton has many other properties – these are defined by additional <d-property> elements
(e.g., to set color, font, icon) where the ellipsis appears in the <presentation> element in
Java_1.3_Harmonia_1.0.uiml.

UIML 3.0 Language Specification

Harmonia, Inc. Page 80 02/08/2002

The box above could also contain <d-method> elements. This is useful for exposing methods in
the Java class that are not properties (and hence should not be accessed in UIML <property>
elements), but could be invoked via a <call> element. For example, java.awt.List contains a
method add(...) to add another item to a list. An <action> in a UIML document might contain a
<call> to the add method.

6.2.2.3 Defining Legal Events and Listeners for Part Classes Via
<d-class>

HTML Case

The UIML document below extends our previous example to provide a behavior for an event
called onClick for our HTML button.

<uiml>
<interface>

...
<part class=”Button”>

...
<behavior>

<rule>
<condition><event name=”onClick”/></condition>
<action>...</action>

</rule>
</behavior>

</part>
...

</interface>
<peers>

<presentation base="HTML_3.2_Harmonia_1.0"/>
</peers>

</uiml>

The <behavior> element in the box above causes the <action> element to be executed
whenever an onClick event occurs for the button. The meaning of onClick is defined by
additional lines in the <presentation> element:

<uiml>
<template .../>

<presentation .../>

<d-class id="onClick" used-in-tag="event"
maps-type="attribute"
maps-to="onClick"/>

<d-class id="Button" used-in-tag=”part”
maps-type="tag"
maps-to="html:INPUT">

...
<event class="onClick"/>

</d-class>

UIML 3.0 Language Specification

Harmonia, Inc. Page 81 02/08/2002

</presentation>
</template>

</uiml>

The above UIML says that one of the events in HTML is OnClick, and that a <part> whose class
is Button can receive an OnClick event.

To summarize, when writing rules, the class attribute of an event element in a condition can be
any of the names listed in an <event> element that is associated with the <part> in the
<presentation> section. In the UIML example above, a Button's events include OnClick, and
therefore the following line was used in the UIML document given earlier:

<condition><event name=”onClick”/></condition>

Java Case

Java provides a much richer UI toolkit than HTML, and so the information required in the
<presentation> element is more complex.

There are two styles of events used by platforms:

• Method 1: A <part> defines how events for it are handled.

• Method 2: A <part>does not define how events for it are handled.
Method 1 is used in Java 1.0 and in HTML. In Java 1.0, a java.awt.Component had a method
called action(Event, Object). This method was called when an event occurred for the
Component. In HTML, many tags (representing <part>s in UIML) can contain attributes
denoting events. An example in HTML is <input type="Button" onClick="myfunction"/>. In this
case the <part> defines the event handling (calling myfunction()). In UIML, this association
between the event onClick and myfunction is made by a <rule>.

Method 2 is used in Java 1.1 and later. UIML adopts the Java model of requiring a Listener
entity that defines how events are handled on behalf of a <part>. (If there exists a target language
for UIML that uses Method 2 and also uses a concept entirely different than listeners, then UIML
will need modification.) In this case, a Listener class defines how events are handled. In UIML,
the association between the event mouseClicked and the actions to perform in response is made
by a <rule>. The UIML user is not aware of the Listener or Event classes involved.

Thus UIML must contain a rich enough syntax to define the following:

• Class names representing events (such as "OnClick" for HTML, or "MouseEvent" for
Java)

• Class names representing event listeners for Method 2 (such as MouseListener)

• Methods in event listeners (such as MouseListener.mouseClicked())

• A means to associate components, listeners, and events.

• Event property names (such as "X" and "Y" coordinates for a MouseEvent)

UIML 3.0 Language Specification

Harmonia, Inc. Page 82 02/08/2002

Next we show what these look like for clicks on a JButton.

The UIML document below extends our previous example to provide a behavior for an event
called ActionListener.actionPerformed for our Java JButton.

<uiml>
<interface>

...
<part class=”JButton”>

<behavior>
<rule>

<condition>
<event class="ActionListener.actionPerformed">

</condition>
<action>

...
</action>

</rule>
</behavior>

</part>
...

</interface>
<peers>

<presentation base="Java_1.3_Harmonia_1.0"/>
</peers>

</uiml>

Here are the elements in <presentation> in Java_1.3_Harmonia_1.0.uiml to define the event
actionPerformed for a button click:

<uiml>
<template .../>

<presentation .../>

<!-- ================= Define Event Classes ======================= -->
<d-class id="ActionEvent" used-in-tag="event"

maps-type="class"
maps-to="java.awt.event.ActionEvent">

...
</d-class>
...

<!-- ================= Define Event Listener Classes ============== -->

<d-class id="ActionListener" used-in-tag="listener"
maps-type="class"
maps-to="java.awt.event.ActionListener">

<d-method id="actionPerformed" maps-to="actionPerformed">
<d-param id="event" type="ActionEvent"></d-param>

</d-method>

</d-class>

<!-- ================= Define Part Classes ======================== -->

UIML 3.0 Language Specification

Harmonia, Inc. Page 83 02/08/2002

<d-class id="JButton" used-in-tag="part" maps-type="class"
maps-to="javax.swing.JButton">

<listener class="java.awt.event.ActionListener"
attacher="addActionListener"/>

</d-class>

</presentation>
</template>

</uiml>

The section under the comment “Define Event Classes” defines a class named ActionEvent. The
children of <d-class id="ActionEvent"> are discussed in Section 6.2.2.4. This is analogous to
the <d-class id=”onClick”> element in the HTML <presentation> earlier.

The section under the comment “Define Event Listener Classes” uses the <d-class ... used-in-
tag="listener"> element to define a Java event listener. This section has no analog in the HTML
<presentation> earlier, because the HTML event model ("Method 1") does not use listeners.

The section under the comment “Define Part Classes” was shown in our earlier examples, and
defines the JButton class. Here we add <listener> elements to list which listeners are used with
a JButton. The <listener> element includes an "attacher" attribute that names the method that the
JButton uses to attach the listener to itself. For example, the UIML above says that JButton has a
method called "addActionListener" that is used to attach an ActionListener to a JButton.

To summarize, the above UIML says that one of the events in Java AWT/Swing is ActionEvent,
one of the listeners is ActionListener, ActionListener has a method named actionPerformed that
processes ActionEvents, and a listener named ActionListener handles events for any <part>
whose class is JButton.

Recall the following lines from the UIML document earlier:

<condition>
<event class="ActionListener.actionPerformed">

</condition>

When writing rules, the class attribute of an event element in a condition uses a dotted notation
consisting of the form <listener class name>.<method class name>. The <listener class name> is
a class name defined by a <d-class used-in-tag="listener"> element, such as ActionListener in the
UIML example above. The <method class name> is a method name defined in a <d-method>
element that is a child of the <d-class used-in-tag="listener"> element, such as actionPerformed
in the UIML above.

Whenever a JButton is clicked, the Java Virtual Machine calls the actionPerformed method. The
<rule> above is therefore executed when actionPerformed is called on a JButton.

UIML 3.0 Language Specification

Harmonia, Inc. Page 84 02/08/2002

6.2.2.4 Defining Legal Event Property Names Via <d-class>
Let’s consider our UIML document again. Suppose we want to display the x coordinate of the
mouse pointer when it is clicked inside a button. The label on the button will be changed to
display the x coordinate. The following UIML document accomplishes this:

<uiml>
<interface>

...
<part class=”Button”>

<style><property name=”VALUE”>Press me!</property></style>
<behavior>

<rule>
<condition>

<event name=”MouseListener.mouseClicked”/>
</condition>
<action>

<property name=”VALUE”>
<property event-class=”MouseListener.mouseClicked”

name=”X”/>
</property>

</action>
</rule>

</behavior>
</part>

...
</interface>
<peers>

<presentation base="Java_1.3_Harmonia_1.0"/>
</peers>

</uiml>

Here are the elements in <presentation> in Java_1.3_Harmonia_1.0.uiml to define the property
named X for a mouse click:

<uiml>
<template .../>

<presentation .../>

<d-class id="MouseEvent" used-in-tag="event"
maps-type="class"
maps-to="java.awt.event.MouseEvent">

<d-method id="source" maps-to="getSource"
return-type="java.lang.Object"/>

<d-method id="id" maps-to="getID"
return-type="int"/>

<d-method id="clickCount" maps-to="getClickCount"
return-type="int"/>

<d-method id="point" maps-to="getPoint"
return-type="int"/>

<d-method id="X" maps-to="getX"
return-type="int"/>

<d-method id="Y" maps-to="getY"
return-type="int"/>

<d-method id="isPopupTrigger" maps-to="getIsPopupTrigger"
return-type="boolean"/>

UIML 3.0 Language Specification

Harmonia, Inc. Page 85 02/08/2002

</d-class>
...

</presentation>
</template>

</uiml>

6.3 The <logic> Element

DTD

<!ELEMENT logic (d-component*)>
<!ATTLIST logic

id NMTOKEN #IMPLIED
source CDATA #IMPLIED
how (append|cascade|replace) "replace"
export (hidden|optional|required) "optional">

Description

The <logic> element describes how the UI interacts with the underlying application logic that
implements the functionality manifested through the interface. The underlying logic might be
implemented by middleware in a three tier application, or it might be implemented by scripts in
some scripting language, or it might be implemented by a set of objects whose methods are
invoked as the end-user interacts with the UI, or by some combination of these (e.g., to check
for validity of data entered by an end-user into a UI and then object methods are called), or in
other ways.

Thus, the <logic> element acts as the glue between a UI described in UIML and other code. It
describes the calling conventions for methods in application logic that the UI invokes. Examples
of such functions include objects in languages such as C++ or Java, CORBA objects, programs,
legacy systems, server-side scripts, databases, and scripts defined in various scripting languages.

Example of <logic> Element

Here is an example of the <logic> element:

<logic>
<d-component name="Counter"

maps-to="com.harmonia.example.Counter2">
<d-method name="count" return-type="int" maps-to="count"/>
<d-method name="reset" return-type="int" maps-to="setCount">

<d-param name="newVal" type="int"/>
</d-method>

</d-component>
</logic>

UIML 3.0 Language Specification

Harmonia, Inc. Page 86 02/08/2002

The fragment above says that there is an external object reached by name
com.harmonia.example.Counter2. This object is given the name Counter in the UIML document.
The component has two methods, named count and reset in the UIML document. These map,
respectively, to count and setCount in com.harmonia.example.Counter2. Each returns a value of
type int, where the meaning of int is whatever meaning ascribed by the language in which
com.harmonia.example.Counter2 is implemented. Finally, count takes no arguments when
called, and setCount takes one argument, an int.
Example

The following UIML fragment describes the calling conventions for a variety of functions in
external application logic and functions in scripts. Note that URLs given below are for example
purposes only.

<logic>

<d-component name="back1" maps-to="org.uiml.example.myClass">

<d-method name="m1" maps-to="myfunction">
<d-param name="p1"/>
<d-param name="p2"/>

</d-method>

<d-method name="m2" returns-value=”true” maps-to="m2"/>

<d-method name="master" returns-value=”true” maps-to="m3">
<d-param name="p3"/>

</d-method>

</d-component>

<d-component name="back2" maps-to="org.uiml.example.myClass1">
<d-method name="m3" maps-to="m9">

<d-param name="p4"/>
</d-method>

</d-component>

<d-component name="S1">

<d-method name="m1" returns-value=”true” maps-to="Cube">
<d-param name="i"/>

<script type="application/ecmascript"><![CDATA[

Cube(int i) {
return i*i*i;

}
]]></script>

</d-method>

</d-component>

UIML 3.0 Language Specification

Harmonia, Inc. Page 87 02/08/2002

<d-component name="S2" maps-to="http://somewhere/vb"/>
<d-method name="m101" maps-to="f2">

<d-param name="p5"/>
</d-method>

</d-component>

</logic>

6.4 Subelements of <presentation> and <logic>

6.4.1 The <d-component> Element

DTD

<!ELEMENT d-component (d-method)*>
<!ATTLIST d-component

id NMTOKEN #REQUIRED
source CDATA #IMPLIED
how (append|cascade|replace) "replace"
export (hidden|optional|required) "optional"
maps-to CDATA #IMPLIED
location CDATA #IMPLIED>

Description

The <d-component> (a child of <logic> only) acts as a container for application methods (e.g., a
class in an object oriented language). A d-component contains d-methods.

The maps-to attribute specifies the platform-specific type of the component or container that is
being bound. The location attribute gives additional information (e.g., a URI) that is used by the
rendering engine to locate the widget, event, or application class at runtime.

6.4.2 The <d-class> Element

DTD

<!ELEMENT d-class (d-method*, d-property*, event*, listener*)>
<!ATTLIST d-class

id NMTOKEN #REQUIRED
source CDATA #IMPLIED
how (append|cascade|replace) "replace"
export (hidden|optional|required) "optional"
maps-to CDATA #REQUIRED
maps-type CDATA #REQUIRED
used-in-tag (event|listener|part) #REQUIRED>

UIML 3.0 Language Specification

Harmonia, Inc. Page 88 02/08/2002

Description

The <d-class> (a child of <presentation> only) element binds a name used in the rendering
property of a part or an <event> element elsewhere in the interface to a component that is part of
the presentation toolkit.

The maps-to attribute specifies the platform-specific type of the component or container that is
being bound.

6.4.3 The <d-property> Element

DTD

<!ELEMENT d-property (d-method*,d-param*)>
<!ATTLIST d-property

id NMTOKEN #REQUIRED
maps-type (attribute|getMethod|setMethod|method) #REQUIRED
maps-to CDATA #REQUIRED
return-type CDATA #IMPLIED>

Description

The <d-property> element specifies the mapping between the name appearing in a <property>
element and the associated methods that assign or retrieve a value for the property.

Example

<peers>

<presentation>
<d-component name="button" maps-to="java.awt.Button">

<d-property name="Color">
<d-method returns-value=”true” maps-to="getColor"/>
</d-method>
<d-method maps-to="setColor">

<d-param name=”color”/>
</d-method>

</d-property>
...

</d-component>
</presentation>

</peers>

<interface>
...
<style>

<property name="Color" part-name="bElem">Blue</property>
</style>
...

</interface>

UIML 3.0 Language Specification

Harmonia, Inc. Page 89 02/08/2002

6.4.4 The <d-method> Element

DTD

<!ELEMENT d-method (d-param*, script?)>
<!ATTLIST d-method

id NMTOKEN #REQUIRED
source CDATA #IMPLIED
how (append|cascade|replace) "replace"
export (hidden|optional|required) "optional"
maps-to CDATA #REQUIRED
return-type CDATA #IMPLIED>

Description

The <d-method> element describes a method in the external application logic or presentation
toolkit in terms of its optional formal parameters and optional return value.

The maps-to attribute specifies the name that is being bound. The value of maps-to gives the
name of a method that can be executed. The method can represent a toolkit method (if it is
inside a <presentation> element), an application method (if it is inside a <logic> element), or
scripting code (with scripting nested inside the <d-method> element).

If the method described returns a value, the returns-value attribute should be specified and
assigned the value “true”. The return value will be converted to a string before being used.
Otherwise, the returns-value attribute defaults to “false”, and any value that might be
returned by the method is discarded.

The <d-method> element supports three different execution models:

1. The method represents a remote (outside the rendering engine) executable code. This code

executes outside the run-time context of the rendering engine and is treated as a black box.
The rendering engine packages all the parameters, sends them to the server executing the
code (which can be on the same machine or across the network), and waits for a reply. Here
is an example:

<d-component name="Math" maps-to="myClass.Math.CommonRoutines">

<d-method name="findMean" returns-value=”true” maps-to="calcMean">
<d-param name="a"/>
<d-param name="b"/>

</d-method>
</d-component>

2. The method represents a local script. This script is embedded inside the method and is
executed within the run-time context of the rendering engine (i.e., it executes locally with
respect to the rendering engine). If the maps-to attribute for the component is missing, this
means that all the code is local. Here is an example:

UIML 3.0 Language Specification

Harmonia, Inc. Page 90 02/08/2002

<d-component name="Math">

<d-method name="findMean" returns-value=”true” maps-to="calcMean">
<d-param name="a"/>
<d-param name="b"/>
<script type="text/javascript">

<![CDATA[
calcMean(int a, int b) {

return (a+b)/2;
}

]]>
</script>

</d-method>
</d-component>

3. The method represents a combination of the above. This is useful if you want to do some
error checking locally before calling a remote method or manipulate the result after it is
returned. The semantics of how to do this are under revision.

6.4.5 The <d-param> Element

DTD

<!ELEMENT d-param (#PCDATA)>
<!ATTLIST d-param

id NMTOKEN #IMPLIED
type CDATA #IMPLIED>

Description

Describes a single formal parameter of the function described by the parent <d-method>
element. Note that all parameters are character strings. The string value of a matching <d-
param> element will be converted to a platform-specific data type specified by the type attribute,
and that type is the type of the formal parameter of the function (e.g., java.lang.String). It is up
to some intermediary to convert parameters from UIML character strings to other data types. For
example, if we have

<d-param>37</d-param>

which is mapped to the parameter of function f(double) in this Java class

public class Demo {
static void f(double);

}

then string “37” is converted by some intermediary to type double in Java.

Furthermore, if there is ambiguity in which function of the target language a parameter maps to,
the rules of the target language are used to resolve the ambiguity. For example, suppose class
Demo contains two functions f as follows:

UIML 3.0 Language Specification

Harmonia, Inc. Page 91 02/08/2002

public class Demo {

static void f(double);
static void f(float);

}

In this case the rules of Java would determine whether string “37” would be converted to a
double or to a float. (Note: The semantics of Java are to use the method “f(float)”. See Java
Developer Connection(sm) (JDC) Tech Tips, March 14, 2000,
http://developer.java.sun.com/developer/TechTips/2000/tt0314.html for more information on this
aspect of Java’s semantics.)

See Section 5.7.15 on the significance of parameter order.

6.4.6 The <script> Element

DTD

<!ELEMENT script (#PCDATA)>
<!ATTLIST script

id NMTOKEN #IMPLIED
type NMTOKEN #IMPLIED
source CDATA #IMPLIED
how (append|cascade|replace) "replace"
export (hidden|optional|required) "optional">

Description
The <script> element contains a program written in the scripting language identified by the type
attribute. (This is similar to the <script> element in HTML 4.0)

UIML 3.0 Language Specification

Harmonia, Inc. Page 92 02/08/2002

7 Reusable Interface Components
UIML templates enable interface implementers to design parts of their UI (or even the entire UI
itself) as reusable components to be exploited by other UIs. For example, many UIs for
electronic commerce applications include a credit-card entry form. If such a form is described in
UIML as a template, then it can be reused multiple times either within the same UI or across
other UIs. This reduces the amount of UIML code needed to develop a UI and also ensures a
consistent presentation across enterprise-wide UIs. This is desirable since end-users tend to
make fewer mistakes and are more efficient when presented with familiar UIs.

7.1 The <template> Element

DTD

<!ELEMENT template (behavior|d-class|d-
component|constant|content|interface|logic|part|peers|presentation|proper
ty|restructure|rule|script|structure|style)>
<!ATTLIST template

id NMTOKEN #IMPLIED>

Description
The <template> element permits several handy shortcuts when writing UIML. It allows

• one fragment of UIML to be inserted in multiple places in a UIML document,
• one UIML document to include a UIML fragment from another document, and
• cascading style and other elements, in a manner analogous to the CSS specification [2].

Templates work as follows. Most elements (see 5.2.2 for a list) can contain the source attribute;
let such an element be E. The source attribute names a <template> element (either within the
same document or in another document). The <template> element named must be an element of
the same type as the element E (i.e., have the same tag name). The source attribute causes the
body of the element inside the template to be combined with the body of E. The rules to control
how this combining is done are explained later in Section 7.2.
Simple Example Using the source Attribute

<?xml version="1.0"?>
<!DOCTYPE uiml PUBLIC

"-//Harmonia//DTD UIML 3.0 Draft//EN" http://uiml.org/dtds/UIML3_0a.dtd">
<uiml>

<peers>
<presentation base="Java_1.3_Harmonia_1.0"

source="http://uiml.org/toolkits/Java_1.3_Harmonia_1.0.uiml#vocab"/>
</peers>
...

</uiml>

The <presentation> element contains a source attribute that names a URL. The effect of this is
to insert as the body of the <presentation> element a fragment that is named by the URL. The
URL “http://uiml.org/toolkits/JavaAWT_1.3_Harmonia_1.0.uiml” in turn contains the following:

UIML 3.0 Language Specification

Harmonia, Inc. Page 93 02/08/2002

<?xml version="1.0"?>
<!DOCTYPE uiml PUBLIC

"-//UIT//DTD UIML 3.0 Draft//EN" http://uiml.org/dtds/UIML3_0a.dtd">
<uiml>

<template id="vocab">
<presentation base="Java_1.3_Harmonia_1.0">

<d-class id="Frame" used-in-tag="part"
maps-type="class"
maps-to="java.awt.Frame">

...
</d-class>
...

</presentation>
<template>

</uiml>

Note that the “#vocab” portion of the URL refers to the <template> element with an id attribute
of “vocab”. In the case where only one template exists in the file, then this name can be omitted.
If the name is omitted and multiple templates exist, then the first one is used.

Also note that the <!DOCTYPE …> element is included in the template file, just as it is in the
sourcing UIML document. The <!DOCTYPE …> is required in the template, because tools that
process UIML files may process template files separately from a document which sources the
template, and such a tool may use a validating XML parser that requires the DTD. Including
<!DOCTYPE> in all UIML files has a second benefit: it permits discovery of mismatches
between the DTD version used in a template file and a sourcing file.

If the source attribute is not a URL but a relative path and file name or just a file name, then a
rendering engine must first look for the source file relative to the directory in which the sourcing
document was obtained. Thus, suppose that a UIML file X was located in the directory
C:\uimlFiles. Any source attribute specifying a relative file name as its value would be resolved
relative to C:\uimlFiles.

7.2 Rules for Templates
In the example of Section 7.1, the element containing the source attribute (E) has no body.
Therefore the body of the fragment is inserted as the child of E. However, it is also possible for
E to have a body. In this case, a set of rules must be specified on how to combine the bodies of
the two elements.

For example, consider this UIML file:

<interface>
<structure>

<part class="label" name="l1">
...

</structure>

<style source="file://phone.ui#model_508">
<property name="position" part-name="label">2</property>

UIML 3.0 Language Specification

Harmonia, Inc. Page 94 02/08/2002

</style>
<interface>

Next suppose that file “phone.ui” contains the following:

<template name="model_508">
<style>

<property name="font_style" part-name="label">bold</property>
<property name="position" part-name="label">1</property>

</style>
<template>

The <style> element in the main document already has a body and both <style> elements have a
property named position, which one should be used?

A <template> element is like a separate branch on the UIML tree (think of a DOM tree [13]). A
template branch can be joined with the main UIML tree anywhere there is a similar branch (i.e.,
the first and only child of template must have the same tag name as the element on the UIML
tree where the branches are joined). The interface implementer has three choices on how to
combine the <template> element with another element.

The methods are:

• replace,
• union, and
• cascade

When using the first choice, “replace,” all the children of the element on the main tree that
sources the template are deleted, and in their place all the children of the <template> element are
added (see Figure 1). With “union,” all the children of the element on the main tree that sources
the template are kept, and all the children of the <template> element are added to the list as well
(see Figure 2). In both cases, the children of the <template> element are given a fully qualified
id, to distinguish them from children of the sourcing element. This fully qualified id is
constructed by identifying the child’s location in the UIML tree. Thus the id is generated by
starting with the <uiml> element and tracing “downward” through the tree. The original id of
the element will be pre-pended with the id of every element above it in the UIML tree. (e.g., id =
“<interface id>__<structure id>__<grandparent id>__<parent id>__<original id>”). This
rule applies to any element irrespective of whether the id attribute is specified or not. This is
because the DOM assigns an id value for elements for which an id is not specified. To avoid
conflicts with the naming conventions other languages use, “__” has been chosen as delimiter for
id appending.

The last choice is “cascade.” This is similar to what happens in CSS [2]. The children from the
template are added to the element on the main tree. If there is a conflict (e.g., two elements with
the same id), then the element on the main tree is retained (see Figure 3). See section 7.2.3 for a
more detailed explanation of conflict resolution and deep cascading.

UIML 3.0 Language Specification

Harmonia, Inc. Page 95 02/08/2002

Note that the figures below use the old naming convention which separate pieces of the fully
qualified name with ‘.’ Instead of ‘_’.

part
“A”

part
“C1”

part
“C2”

part
“D1”

part
“B”

part
“C1”

part
“C3”

part
“D2”

part
“A”

part
“B.C1”

part
“B.D2”

part
“B.C3”

Figure 1: Part “A” sources part “B” using “replace”

part
“A”

part
“C1”

part
“C2”

part
“D1”

part
“B”

part
“C1”

part
“C3”

part
“D2”

part
“A”

part
“C1” part

“C2”
part
“D1”

part
“B.C1” part

“B.C3”
part

“B.D2”

Figure 2: Part “A” sources part “B” using “union”

part
“A”

part
“C1”

part
“C2”

part
“D1”

part
“B”

part
“C1”

part
“C3”

part
“D2”

part
“A”

part
“C1”

part
“C2”

part
“D1”

part
“C3”

Figure 3: Part “A” sources part “B” using “cascade”

Below are common usage examples of templates that demonstrate the different rules:

7.2.1 Combine Using Replace
Interface parts can be reused by placing them inside a template and then sourcing that template at
the appropriate places in the <interface> element. The element that sources the template can also
include a default implementation of the element inside the template. If the template is for some
reason inaccessible (e.g., network problems), then the rendering engine can ignore the template

UIML 3.0 Language Specification

Harmonia, Inc. Page 96 02/08/2002

and still render the part. Using “replace” as the value for the how attribute, the UIML parser will
delete the default implementation and add the implementation from the template.

Example

UIML enables the interface implementer to build a library of reusable interface components, and
then include them as needed in new UIML documents. In the following UIML fragment, a
dialog box defined in the <template> named DialogBox is inserted into the UIML document in
place of the following <part> element. Note that the dialog box can then be customized
elsewhere in the UIML document by setting various properties (including the content) of the
dialog box.

<template id="DialogBox">
<part id="TopLevel">

<part id="CompanyLogo" class="ImageContainer"/>
<part id="Message" class="Label"/>
<part id="Accept" class="Button"/>

</part>
</template>

...
<interface>

<structure>
...
<part id="FileNotFoundBox" class="DialogBox"

source="#DialogBox" how="replace">

<!-- Default implementation -->

</part>
...

</structure>
...

</interface>

This example demonstrates how a template can be used to represent a complex re-usable
interface object. Here the template represents what is commonly called an “OK Box”. This is a
simple dialog that contains a message and a button to hide or close the message box. The
construct is complex in that it is made up of multiple <part> elements yet represents a commonly
used interface object. This particular “OK Box” has been customized to hold the company logo
as well as the message and button. Since the part sources the template using how=”replace” the
body of the sourcing element (represented in the example by <!--Default Implementation -->)
will be removed and the body of the part in the template will become the body of the sourcing
part.

7.2.2 Combine Using Union
Runtime behavior varies significantly from device to device. However, on the same device
different platforms may share the same behavior. For example, both MS-Windows and X-
Windows have events like mouse movement and button clicks. It is therefore convenient, when

UIML 3.0 Language Specification

Harmonia, Inc. Page 97 02/08/2002

describing the behavior of similar platforms, to specify the common behavior (rules) in a
template and source the template in the behavior for each platform. Using “union” as the value
for the how attribute, the UIML parser will append the list of common behavior rules to the
<behavior> element in the main document.

Example

The following example shows how to reuse behavior rules:

<template id="GUI_Rules">
<behavior>

<rule> <!-- Mouse Movement --> </rule>
<rule> <!-- Button Click --> </rule>

</behavior>
</template>

<interface>
...
<behavior id="X-Windows" source="#GUI_Rules" how="union">

<rule> <!-- Middle Mouse Click --> </rule>
</behavior>

<behavior id="MS-Windows" source="#GUI_Rules" how="union">
<rule> <!-- Window Closing --> </rule>

</behavior>
</interface>

This example demonstrates that by using templates UI designers can specify a set of operations
common across platforms on a device or even possibly across devices. Here the template defines
a set of rules for common desktop UI interactions, namely mouse movements and button clicks.
The UI implementer then sources the template using how=”union” to add the rules defined in the
template to their custom <behavior> element. In this case, the represented UI running on a X-
Windows platform would have a <behavior> element consisting of three rules: a rule for mouse
movements, a rule for button clicks, and a rule for middle mouse button clicks. Similarly, the UI
running on a MS-Windows platform would have a <behavior> element with a rule for mouse
movements, a rule for button clicks, and a rule for window closing. Notice that the UIML author
only had to define the rules for the common interactions once.

7.2.3 Combine Using Cascade
When using several UIML files to define a user interface, a UIML file may source other UIML
files to include other parts not already within the interface defined in the current UIML file. The
sourced file may in turn source more files for more extensions to the set of interface components,
thereby increasing the richness of the presented interface. Through the use of the cascade value
of the attribute how, this ability to include any other parts from external sources can be achieved.

Style is what dictates how an interface looks and feels. Many companies want the interfaces of
their applications to share a common look and feel when presented on the same platform. For
example, they want all the “about” dialogs to show their company logo and copyright statement,
they want the name of their company to be in a special font and color everywhere it appears, and

UIML 3.0 Language Specification

Harmonia, Inc. Page 98 02/08/2002

they want the menus to have a special structure (e.g., File, Edit, View, etc…), etc. UIML allows
this and more. All the common style information can be specified in a template and then
included in each of the interface descriptions. Using “cascade” as the value for the how
attribute, will include the common style information but will also give the ability to customize
certain properties. Any local property with the same name will override the property in the
template.

Example

The following example demonstrates how to use common style properties and customize them:

<template id="Graphical">
<style>

<property name="TitleColor" part-class="ADialog">Blue</property>
<property name="TitleFont" part-class="ADialog">Arial</property>
<property name="rendering" part-class="ADialog">Dialog</property>
<property name="content" part-class="ADialog">About: UIT</property>

</behavior>
</template>

<interface>
...
<style id="MyStyle" source="#Graphical" how="cascade">

<property name="content" part-name="myAbout"
>About: Harmonia, Inc.</property>

</style>
</interface>

The example above contains a template that defines the style for all parts of the class “ADialog”.
The ‘rendering’ property given in the template indicates that “Adialog” will be rendered as a
‘Dialog’, which is mapped to some interface widget in the target vocabulary. The rest of the
properties defined in the template’s <style> set the TitleColor property to “blue”, set the
TitleFont property to “Arial”, and set the content of the ADialog to “About: UIT”. When the
template is sourced in the interface, each of these properties will be applied to the part element
“myAbout”. However, since the content property has also been set in the style section of the
interface and the template was sourced using how=”cascade”, the value assigned to content in
the template will be overwritten. Thus the result is that myAbout will be rendered as a “Dialog”,
the TitleColor property will be set to “blue”, the TitleFont property will be set to “Arial”, and the
content will read “About: Harmonia, Inc.”

Elements are said to be conflicting if one of two conditions is true:

• The source and target element has the same value for the id attribute.
• Neither the source nor the target element has an author-specified id and they both have

the same value for their class attribute.

Under the rules for cascade, if an element in the sourcing document conflicts with an element of
the target document the original element takes precedence over the target element. This allows
UIML authors to overwrite values being sourced from the template.

UIML 3.0 Language Specification

Harmonia, Inc. Page 99 02/08/2002

However, the depth at which this comparison between elements takes place is important. In the
UIML 2.0 specification, only the top-level elements in the sourced and sourcing file are
compared. Any children of those elements are not compared. In this specification, the
how="cascade" attribute is interpreted to propagate down the element-tree for which it was
specified for. If there is a conflict between the top-level elements, any children of the sourcing
element will also be compared. In turn, grandchildren of the sourcing element will also be
compared if there is a conflict between the child elements and so on. These comparisons would
continue till the conflicting elements are all resolved. The purpose of this is to compare elements
from a bottom-up perspective rather than a top- down perspective.

7.3 Multiple Inclusions
Elements inside a template can source elements inside other templates. This allows a
hierarchical inclusion of UIML templates. This is useful when describing the peer components
to a language with an object hierarchy. For example, the Java AWT classes are organized in a
hierarchy with each child class inheriting the parent class’s attributes (thus avoiding redefining
the attributes for each class). For example the “Window” inherits its layout attributes from
“Container,” which inherits its formatting attributes from “Component.”

Unfortunately this presents the possibility that a template may directly or indirectly source itself,
causing a sourcing cycle. It is an error if a template directly or indirectly sources itself. The
following example demonstrates how a template can indirectly source itself:

<template id="A">
<part name="a1" source="#B"/>

</template>

<template id="B">
<part name="b1" source="#C"/>

</template>

<template id="C">
<part name="c1" source="#A"/>

</template>

In the example above, template “A” sources template “B” which in turn sources template “C”.
Template “C” then sources template “A”, forming a sourcing cycle (A->B->C->A). Such a
cycle cannot be resolved without special assumptions and must produce an error.

7.4 The export Attribute

DTD

<!ENTITY % ExportOptions

"export (hidden|optional|required) 'optional'">

Description

By default all elements that appear inside a <template> element are visible (can be accessed)
from the elements at the location it is included and their children can be optionally modified.

UIML 3.0 Language Specification

Harmonia, Inc. Page 100 02/08/2002

UIML allows the encapsulation of the elements inside a template by controlling what is visible
and what is not with the export attribute. Setting the export attribute to “optional” replicates the
default behavior, meaning that the element can be accessed (remains visible) by elements outside
the <template> element. Any element inside the template with the export attribute set to
“hidden” cannot have its properties changed outside the template, and a rendering engine must
generate an error if an attempt is made to change a hidden property outside the template. Also,
any element with the export attribute set to “required” must be assigned a value before the
template can be rendered.

The semantics of <part … export=“hidden”> mean that no properties of the part listed in the
template may be modified outside the template. The semantics of <part … export=“required”>
mean that all properties given in the template of the part must be defined outside the template.

The semantics of <part><property name=“x” export=“hidden”/></part> mean that property x
cannot be modified outside the template, regardless of whether the <part> element has an export
attribute. The semantics of <part><property name=“x” export=“required”/></part> mean that
property x must be defined outside the template, regardless of whether the <part> element has
an export attribute.

Example

In the following template, a message box has three parts. It requires that the content of one part
be assigned a value but hides the other two parts. Now, assume that this template is rendered as
a dialog window, with a logo image, a label, and an “Ok” button. The UI that sources this
template must provide the content for the label (and thus display a custom message), but cannot
modify the logo or the “Ok” button.

<template id="MyDialog">
<part id="TopLevel">

<part id="MyLogo" class=”Logo” export="hidden"/>
<part id="MyMessage" class=”Label”>

<style>
<property name="content" export="required"/>

</style>
</part>
<part id="Ok" class=”OKButton” export="hidden"/>

</part>
</template>

UIML 3.0 Language Specification

Harmonia, Inc. Page 101 02/08/2002

8 Alternative Organizations of a UIML
Document

Until now, UIML documents shown have followed a rigid format: appearing in the <uiml>
element is first the optional <head> element, followed by the <peers> element, and then the
<interface> element. Alternative document organizations are possible:

! The <content>, <style>, and <behavior> elements can be embedded within the <part>

element. This makes it easier to write UIML, because all information about an interface
part is centralized where the part is defined.

! The UIML document can be split into multiple documents, with different documents
loaded only when an event triggers loading.

! A rendering engine can start rendering before an entire UIML document is received to
reduce latency for an end-user in large UIML documents.

The DTD presented in Appendix A permits these combinations. Refer to the DTD for precise
information on what organizations are legal.

Often it is desirable to put UIML fragments into separate files, and then include one file within
another. This can be accomplished in two ways in UIML:

8.1 Normal XML Mechanism
XML allows file inclusion as illustrated below:

<?xml version="1.0" encoding="ISO-8859-1"?>
<?xml version="1.0"?>
<!DOCTYPE uiml PUBLIC

"-//Harmonia//DTD UIML 3.0 Draft//EN"
"http://uiml.org/dtds/UIML3_0a.dtd">

<!ENTITY peers SYSTEM "http://uiml.org/peers.ui">
<!ENTITY parts SYSTEM "parts.ui">
<!ENTITY style SYSTEM "style.ui">
<!ENTITY content SYSTEM "content.ui">
<!ENTITY behavior SYSTEM "behavior.ui">

<uiml>
&peers;
<interface>&parts;&style;&content;&behavior;</interface>

</uiml>

8.2 UIML Template Mechanism
Using the <template> element a UIML document can be broken down into multiple pieces (as
explained in Section 7.1). The major difference between the normal XML mechanism and
UIML templates is that templates provide more control on what information is visible to the
main document (see Section 7.4). For example, a template may encapsulate the implementation
of a dialog box and export only the content property of the input widget. Also, a smart rendering

UIML 3.0 Language Specification

Harmonia, Inc. Page 102 02/08/2002

engine may delay the loading and parsing of templates until that part of the code is reached,
whereas in the XML mechanism all the inclusions must be done during parsing.

UIML 3.0 Language Specification

Harmonia, Inc. Page 103 02/08/2002

References
[1] T. Bray, et al, Extensible Markup Language (XML), W3C Proposed Recommendation

10-February-1998, REC-xml-19980210, February 10, 1998,
http://www.w3.org/TR/REC-xml.

[2] B. Bos, H. W. Lie, C. Lilley, I. Jacobs, Cascading Style Sheets, level 2, CSS2
Specification. W3C Recommendation 12-May-1998, http://www.w3.org/TR/REC-
CSS2/.

[3] Marc Abrams, Constantinos Phanouriou, Alan L. Batongbacal, Stephen M. Williams,
Jonathan E. Shuster, “UIML: An Appliance-Independent XML User Interface
Language,” 8th International World Wide Web Conference, Toronto, May 1999,
http://www8.org/w8-papers/5b-hypertext-media/uiml/uiml.html. Also appeared in
Computer Networks, Vol. 31, pp. 1695-1708.

[4] Marc Abrams, Constantinos Phanouriou , UIML: An XML Language for Building
Device-Independent User Interfaces, XML '99, Philadelphia, Dec. 1999.

[5] Constantinos Phanouriou, UIML: A Device-Independent User Interface Markup
Language, http://scholar.lib.vt.edu/theses/available/etd-08122000-
19510051/unrestricted/PhanouriouETD.pdf

[6] UIML1.0 specification, http://www.uiml.org/specs/uiml1/index.htm, 1997.
[7] UIML2.0 specification, http://www.uiml.org/specs/uiml2/DraftSpec.htm, 2000.
[8] J. Clark and S. Deach, eds, Extensible Style Language (XSL), W3C Proposed

Recommendation, 12 January 2000. http://www.w3.org/TR/xsl.
[9] J. Clark, XSL Transformations (XSLT), W3C Recommendation 16 November 1999,

http://www.w3.org/TR/xslt.
[10] S. Bradner, Key words for use in RFCs to Indicate Requirement Levels,

http://www.ietf.org/rfc/rfc2119.txt, March 1997.
[11] Wireless Markup Language (WML), Wireless Application Protocol, June 16, 1999,

http://www.wapforum.org/
[12] Voice Extensible Markup Language (VoiceXML), VoiceXML Forum, August 17,

1999, http://www.voicexmlforum.org/
[13] W3C, XForms – The Next Generation of Web Forms, 31 January 2002,

http://www.w3.org/MarkUp/Forms/
[14] W3C, Document Object Model (DOM), http://www.w3.org/
[15] XIML Forum, extensible Interface Markup Language (XIML), http://www.ximl.org/
[16] R. Cover, The XML Cover Pages Extensible User Interface Language (XUL),

http://www.oasis-open.org/cover/xul.html, August, 2000.
[17] Harmonia, Inc., UIML-Java rendering engine User Manual,

http://www.harmonia.com/products/java/manual.htm
[18] Harmonia, Inc., UIML Example Gallery,

http://www.harmonia.com/products/java/gallery/index.htm;
http://www.harmonia.com/products/html/examples.htm;
http://www.harmonia.com/products/wml/examples.htm; and
http://www.harmonia.com/products/voice/gallery.htm

UIML 3.0 Language Specification

Harmonia, Inc. Page 104 02/08/2002

Appendix A. UIML 3.0 Document Type
Definition

<?xml version="1.0" encoding="ISO-8859-1"?>

<!--
User Interface Markup Language (UIML)
=====================================

Developed by:

Harmonia, Inc.

Usage:

<?xml version="1.0"?>
<!DOCTYPE uiml PUBLIC "-//Harmonia//DTD UIML 3.0a Draft//EN"
"http://uiml.org/dtds/UIML3_0a.dtd">
NOTE: This URL has not yet been activated.

<uiml>
<head> ... </head>
<template> ... </template>
<peers> ... </peers>
<interface> ... </interface>

</uiml>

Description:

This DTD corresponds to the UIML 3.0a specification.

Change History:

-->

<!-- ==================== Content Models ======================= -->

<!--
'uiml' is the root element of a UIML document.

-->

<!ELEMENT uiml (head?,(template|interface|peers)*) >

<!--
The 'head' element is meant to contain metadata about the UIML
document. You can specify metadata using the meta tag,
this is similar to the head/meta from HTML.

-->

<!ELEMENT head (meta)*>
<!ELEMENT meta EMPTY>

UIML 3.0 Language Specification

Harmonia, Inc. Page 105 02/08/2002

<!ATTLIST meta
name NMTOKEN #REQUIRED
content CDATA #REQUIRED>

<!--
The 'peers' element contains information that defines
how a UIML interface component is mapped to the target platform's
rendering technology and to the backend logic.

-->

<!ELEMENT peers (presentation|logic)*>
<!ATTLIST peers

id NMTOKEN #IMPLIED
source CDATA #IMPLIED
how (union|cascade|replace) "replace"
export (hidden|optional|required) "optional">

<!--
The 'interface' element describes a user interface in terms of
presentation widgets, component structure and behavior

specifications.
-->

<!ELEMENT interface (structure|style|content|behavior)*>
<!ATTLIST interface

id NMTOKEN #IMPLIED
source CDATA #IMPLIED
how (union|cascade|replace) "replace"
export (hidden|optional|required) "optional">

<!--
The 'template' element enables reuse of UIML elements.
When an element appears inside a template element it can
sourced by another element with the same tag.

-->

<!ELEMENT template (behavior|constant|content|d-class|d-
component|interface

|logic|part|peers|presentation|property|restructure|rule
|script|structure|style)>

<!ATTLIST template
id NMTOKEN #IMPLIED>

<!-- Peer related elements -->

<!--
The 'presentation' element specifies the mapping between
abstract interface parts and platform dependent widgets.

-->

<!ELEMENT presentation (d-class*)>
<!ATTLIST presentation

id NMTOKEN #IMPLIED
source CDATA #IMPLIED
base CDATA #REQUIRED
how (union|cascade|replace) "replace"

UIML 3.0 Language Specification

Harmonia, Inc. Page 106 02/08/2002

export (hidden|optional|required) "optional">

<!--
The 'logic' element specifies the connection between the interface
and the backend application, including support for scripting.

-->

<!ELEMENT logic (d-component*)>
<!ATTLIST logic

id NMTOKEN #IMPLIED
source CDATA #IMPLIED
how (union|cascade|replace) "replace"
export (hidden|optional|required) "optional">

<!--
The 'd-component' element maps the name used in a <call> element to
application logic external to the UIML document (e.g., a class in

an
object oriented language or a function in a scripting langauge).

-->

<!ELEMENT d-component (d-method)*>
<!ATTLIST d-component

id NMTOKEN #REQUIRED
source CDATA #IMPLIED
how (union|cascade|replace) "replace"
export (hidden|optional|required) "optional"
maps-to CDATA #IMPLIED
location CDATA #IMPLIED>

<!--
Maps class names that can be used for parts and events, as
well as property and event data names, to UI toolkit.

-->

<!ELEMENT d-class (d-method*, d-property*, event*, listener*)>
<!ATTLIST d-class

id NMTOKEN #REQUIRED
source CDATA #IMPLIED
how (union|cascade|replace) "replace"
export (hidden|optional|required) "optional"
used-in-tag (event|listener|part) #REQUIRED
maps-type (attribute|tag|class) #REQUIRED
maps-to CDATA #REQUIRED>

<!--
Maps a property name to methods in UI toolkit that get and
set property’s value.

-->

<!ELEMENT d-property (d-method*, d-param*)>
<!ATTLIST d-property

id NMTOKEN
#REQUIRED

maps-type (attribute|getMethod|setMethod|method)
#REQUIRED

UIML 3.0 Language Specification

Harmonia, Inc. Page 107 02/08/2002

maps-to CDATA
#REQUIRED

return-type CDATA
#IMPLIED>

<!--
Maps a method to a callable method or function in the API of
the application logic.

-->

<!ELEMENT d-method (d-param*, script?)>
<!ATTLIST d-method

id NMTOKEN #REQUIRED
source CDATA #IMPLIED
how (union|cascade|replace) "replace"
export (hidden|optional|required) "optional"
maps-to CDATA #REQUIRED
return-type CDATA #IMPLIED>

<!--
Defines a single formal parameter to a <d-method>.

-->

<!ELEMENT d-param (#PCDATA)>
<!ATTLIST d-param

id NMTOKEN #IMPLIED
type CDATA #IMPLIED>

<!--
The 'script' element contains executable script code. The type
specifies the scripting language (see HTML4.0).

-->

<!ELEMENT script (#PCDATA)>
<!ATTLIST script

id NMTOKEN #IMPLIED
type NMTOKEN #IMPLIED
source CDATA #IMPLIED
how (union|cascade|replace) "replace"
export (hidden|optional|required) "optional">

<!-- Interface related elements -->

<!--
The 'structure' element describes the initial organization of the
parts that comprise the user interface.

-->

<!ELEMENT structure (part*)>
<!ATTLIST structure

id NMTOKEN #IMPLIED
source CDATA #IMPLIED
how (union|cascade|replace) "replace"
export (hidden|optional|required) "optional">

UIML 3.0 Language Specification

Harmonia, Inc. Page 108 02/08/2002

<!--
Specifies a single abstract part of the user interface.

-->

<!ELEMENT part (style?, content?, behavior?, part*, repeat*)>
<!ATTLIST part

id NMTOKEN #IMPLIED
class NMTOKEN #IMPLIED
source CDATA #IMPLIED
where (first|last|before|after) "last"
where-part NMTOKEN #IMPLIED
how (union|cascade|replace) "replace"
export (hidden|optional|required) "optional">

<!--
A 'repeat' element encapsulates a sub-tree of the overall interface
virtual tree to be repeated 0 or more times. Each repeat MUST
have one 'iterator' child.

-->

<!ELEMENT repeat (iterator,part*)>
<!ATTLIST repeat EMPTY>

<!--
An 'iterator' defines how many times a sub-tree should be repeated
in an interface and serves as an indicator of the current

iteration.
-->

<!ELEMENT iterator (#PCDATA|constant|property|call)>
<!ATTLIST iterator

id NMTOKEN #REQUIRED>

<!--
A 'style' element is composed of one or more 'property' elements,
each of which specifies how a particular aspect of an interface
component's presentation is to be presented.

-->

<!ELEMENT style (property*)>
<!ATTLIST style

id NMTOKEN #IMPLIED
source CDATA #IMPLIED
how (union|cascade|replace) "replace"
export (hidden|optional|required) "optional">

<!--
A 'property' element is typically used to set a specified
property for some interface component (or alternatively,
a class of interface components), using the element's
character data content as the value. If the 'operation'
attribute is given as "get", the element is equivalent to
a property-get operation, the value of which may be "returned"
as the content for an enclosing 'property' element.

-->

UIML 3.0 Language Specification

Harmonia, Inc. Page 109 02/08/2002

<!ELEMENT property (#PCDATA| constant| property| reference| call| op|
event| iterator)*>
<!ATTLIST property

name NMTOKEN #IMPLIED
source CDATA #IMPLIED
how (union|cascade|replace) "replace"
export (hidden|optional|required) "optional"
part-name NMTOKEN #IMPLIED
part-class NMTOKEN #IMPLIED
event-name NMTOKEN #IMPLIED
event-class NMTOKEN #IMPLIED
call-name NMTOKEN #IMPLIED
call-class NMTOKEN #IMPLIED>

<!--
A 'reference' may be thought of as a property-get operation,
where the "property" to be read is a 'constant' element defined
in the UIML document's 'content' section.

-->

<!ELEMENT reference EMPTY>
<!ATTLIST reference

constant-name NMTOKEN #IMPLIED
url-name NMTOKEN #IMPLIED>

<!--
The 'content' element is composed of one or more 'constant'
elements, each of which specifies some fixed value.

-->

<!ELEMENT content (constant*)>
<!ATTLIST content

id NMTOKEN #IMPLIED
source CDATA #IMPLIED
how (union|cascade|replace) "replace"
export (hidden|optional|required) "optional">

<!--
'constant' elements may be hierarchically structured.

-->

<!ELEMENT constant (constant*)>
<!ATTLIST constant

id NMTOKEN #IMPLIED
source CDATA #IMPLIED
how (union|cascade|replace) "replace"
export (hidden|optional|required) "optional"
model CDATA #IMPLIED
value CDATA #IMPLIED>

<!--
The 'behavior' element gives one or more "rule"s that
specifies what 'action' is to be taken whenever an associated
'condition' becomes TRUE.

-->

UIML 3.0 Language Specification

Harmonia, Inc. Page 110 02/08/2002

<!ELEMENT behavior (rule*)>
<!ATTLIST behavior

id NMTOKEN #IMPLIED
source CDATA #IMPLIED
how (union|cascade|replace) "replace"
export (hidden|optional|required) "optional">

<!ELEMENT rule (condition,action)?>
<!ATTLIST rule

id NMTOKEN #IMPLIED
source CDATA #IMPLIED
how (union|cascade|replace) "replace"
export (hidden|optional|required) "optional">

<!--
At the moment, "rule"s may be associated with two types of
conditions: (1) whenever some expression is equal to some other
expression; and (2) whenever some event is triggered and caught.

-->

<!ELEMENT condition (equal|event|op)>

<!ELEMENT equal (event,(constant|property|reference|op))>

<!ELEMENT op (constant|property|reference|call|op|event)*>
<!ATTLIST op

name CDATA #REQUIRED>

<!ELEMENT action (((property|call|restructure)*,event?)|(when-
true?,when-false?,by-default?))>

<!ELEMENT when-true ((property|call)*,restructure?,op?,equal?,event?)>

<!ELEMENT when-false ((property|call)*,restructure?,op?,equal?,event?)>

<!ELEMENT by-default ((property|call)*,restructure?,op?,equal?,event?)>

<!ELEMENT restructure (template)?>
<!ATTLIST restructure

at-part NMTOKEN #IMPLIED
how (union|cascade|replace|delete) "replace"
where (first|last|before|after) "last"
where-part NMTOKEN #IMPLIED
source CDATA #IMPLIED>

<!ELEMENT call (param*)>
<!ATTLIST call

name NMTOKEN #IMPLIED
class NMTOKEN #IMPLIED>

<!--
'event' denotes one of three things:
(1) When a child of <condition> or <op>, denotes that when the

named
event is fired, the condition should be evaluated.

(2) When a child of <action>, denotes that the named event should

UIML 3.0 Language Specification

Harmonia, Inc. Page 111 02/08/2002

be fired.
(3) Inside <d-class>, denotes that the named event can occur for

the part class named by the <d-class>.
-->

<!ELEMENT event EMPTY>
<!ATTLIST event

name NMTOKEN #IMPLIED
class NMTOKEN #IMPLIED
part-name NMTOKEN #IMPLIED
part-class NMTOKEN #IMPLIED>

<!--
'param' denotes a single actual parameter to a call-able routine.

-->

<!ELEMENT param (#PCDATA|property|reference|call|op|event|iterator)*>
<!ATTLIST param

name NMTOKEN #IMPLIED>

<!--
'listener' denotes that a name defined with d-class
used-in-tag="listener" should be attached as a listener to the
d-class, which contains this <listener> element.

-->

<!ELEMENT listener EMPTY>
<!ATTLIST listener

class NMTOKEN #IMPLIED
attacher CDATA #IMPLIED>

UIML 3.0 Language Specification

Harmonia, Inc. Page 112 02/08/2002

Appendix B. Behavior Rule Selection
Algorithm
The <behavior> element contains one or more <rule> elements. Sometimes the condition for
more than one rule may be satisfied at the same time. A UIML rendering engine must render
UIML in such a way that when a condition of a <rule> element is true, the associated <action>
element is executed. UIML does not define any order on evaluation of <condition> elements.

// Non-deterministically choose a <rule> element from UIML file)

foreach (rule inside behavior) do

// Evaluate the condition of the rule
if eval(rule.condition) == TRUE then

// A condition is found that evaluates to true
// Scan <action> elements sequentially
foreach (element inside action) do

// If the element is a property
if (element instanceof property) then

do property assignment

// If the element is a method
else if (element instanceof method) then

do method call

// If the element is an event
// This must be the last element in the action
else if (element instanceof method) then

do event firing
RETURN

end foreach

// End when a rule is found and its actions are executed
RETURN

endif
end foreach

UIML 3.0 Language Specification

Harmonia, Inc. Page 113 02/08/2002

Appendix C. Changes from UIML 2.0a
Specification (1/17/2001)
Following are changes from the Document Type Definition given in the 17 Jan 2000
specification (named UIML2_0a.dtd). Elements not listed have not changed.

<action element:
<action> can now have two possible sets of children: 1. Any number of <property>,

<call>, or<restructure> elements followed by one or zero <event> elements, or 2.
A <when-true> element followed by a <when-false> element followed by a <by-
default> element.

<attribute> element:

<attribute> is no longer a valid UIML element. It has been replaced by <d-property>

<behavior> element:
Attribute name has been replaced by attribute id.

<by-default> element:
New element in UIML 3.0.

<component> element:
<component> is no longer a valid UIML element. It has been replace by two

elements <d-class> and <d-component> for use in <presentation> and <logic>
respectively.

<condition> element:

<op> is now a valid child of <condition>

<constant> element:
Attribute name has been replaced by attribute id.
#PCDATA is no longer a valid child of <constant>. Instead the attribute value has

been added.
Attribute model added

<content> element:
Attribute name has been replaced by attribute id.

<d-class>

New element in UIML 3.0.

<d-component> element:
New element in UIML 3.0.

<d-method>

UIML 3.0 Language Specification

Harmonia, Inc. Page 114 02/08/2002

New element in UIML 3.0.

<d-param> element:
New element in UIML 3.0.

<d-property> element:

New element in UIML 3.0.

<equal> element:
<op> is now a valid child of <equal>

<interface> element:
Attribute name has been replaced by attribute id.

<listener> element:
New element in UIML 3.0.

<logic> element:
<component> is no longer a valid child of <logic>. It has been replaced by <d-

component>.
Attribute name has been replaced by attribute id.

<method> element:

<method> is not longer a valid UIML element. It has been replaced by <d-method>.

<op> element

New element in UIML 3.0.

<param> element:
This element has been split into two elements: <param>, which is used with the

<call> element; and <d-param>, which is used with the <d-method> element.
#PCDATA, <property>, <reference>, <op>, <event>, and <call> are now valid

children.

<part> element:
<repeat> is now a valid child of <part>.
Attribute name has been replaced by attribute id.
Attributes where and where-part have been added for use with <restructure>.

<peers> element:
Attribute name has been replaced with the attribute id.

<presentation> element:

<component> is no longer a valid child of <presentation>. It has been replaced by
<d-class>.

Attribute name has been replaced by attribute id.

UIML 3.0 Language Specification

Harmonia, Inc. Page 115 02/08/2002

Attribute base has been added.

<property> element:
Attribute name has been replaced by attribute id.
<op>, <event>, and <iterator> are now valid children of <property>.

<reference> element:
Attribute url-name has been added

<restructure>

New element in UIML 3.0.

<returns> element:
<return> is no longer a valid UIIML element. Instead, use the returns-value attribute

in element <d-method>.

This change was made because the <returns> element was redundant with the type
attribute in the <d-method> element. The type attribute has been replaced by attribute
returns-value, hence <returns> is replaced by returns-value.

<rule> element:
Attribute name has been replaced by attribute id.

<script> element:

Attribute name has been replaced by attribute id.

<structure> element:
Attribute name has been replaced by attribute id.

<style> element:
Attribute name has been replaced by attribute id.

<system> element:
<system> is no longer a valid UIML element.

<template> element:
<component> is no longer a valid child of <template>
<d-class>, <d-component>, and <restructure> are now valid children of <template>
Attribute name was replaced by attribute id.

<uiml> element:
The DTD has changed to allow any number of <template>,<interface>, and <peers>

children in any order.
<when-false> element

New element in UIML 3.0.

UIML 3.0 Language Specification

Harmonia, Inc. Page 116 02/08/2002

<when-true> element:
New element in UIML 3.0.

General changes in the DTD
append is no longer a valid value for the source attribute present on many UIML elements. It

has been replaced with union.

