User Interface Markup Language (UIML)
Specification
Document Version 08 February 2002

** DRAFT **

Language Version 3.0

Send technical comments to uiml-editor@uiml.org.

- |
Harmonia

Creating harmony between people and computers

UIML 3.0 Language Specification

User Interface Markup Language (UIML) Specification
Version: 3.0

Status: First draft
Release: 02/08/2002
Editors: Marc Abrams, abrams@uiml.org

Jim Helms, jhelms@harmonia.com

Harmonia, Inc.

P.O. Box 11282

Blacksburg, VA 24062-1282
U.SA.

+1.540.951.5900

Latest UIML specification:
= HTML: http://www.uiml.org/specs/

This version:

= HTML: http://www.uiml.org/docs/uiml 30-15Aug0l1.html

= PDF: http://www.uiml.org/docs/uiml 30-15Aug01.pdf

Previous versions:

= UIML version 2.0a (January 17, 2000)
= http://www.uiml.org/specs/docs/uiml 20-17Jan00.pdf

= UIML version 2.0 (August 8, 1999)
= http://www.uiml.org/specs/docs/uimi20-990801. pdf
= http://www.uiml.org/specs/docs/uiml 20-990801.html

= UIML version 1.0 (December 1997)
= http://www.uiml.org/specs/docs/uiml v10 ref.PDF

Harmonia, Inc. Page 2

02/08/2002

UIML 3.0 Language Specification

© Copyright 2002 Harmonia, Inc.

Permission to use, copy, and distribute the contents of this document, but not to excerpt it,
modify it, or create derivative works, in any medium for any purpose and without fee or royalty
is hereby granted, provided that you include the following on ALL copies of the document, or
portions thereof, that you use:

1. A link to or statement of the URL http://www.uiml.org/docs/uimi30.

2. The pre-existing copyright notice of the original author. If no such notice exists, a notice
of the form: "© Copyright Harmonia, Inc., 1999-2002. All rights reserved."

THIS SPECIFICATION ISPROVIDED “ASI1S’. COPYRIGHT HOLDERS MAKE NO
REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, BUT
NOT LIMITED TO, WARRANTIES OF MERCHANTABILITY, FITNESSFOR A
PARTICULAR PURPOSE.

Harmonia, Inc. Page 3 02/08/2002

UIML 3.0 Language Specification

Abstract

UIML provides a highly device-independent method to describe a user interface. UIML factors
any user interface description into six orthogonal pieces, answering six questions:

agbrwbdPE

6.

What are the parts comprising the UI?

What is the presentation (look/feel/sound) used for the parts?

What is the content (e.g., text, images, sounds) used in the UI?

What is the behavior of the Ul (e.g., when someone clicks or says something)?

What is the mapping of the partsto Ul controls in some toolkit (e.g., Java Swing classes
or HTML tags)?

What isthe API of the business logic that the Ul is connected to?

UIML is ameta-language, which is augmented by a vocabulary of user interface parts,
properties, and events defined outside this specification. In thisway, UIML isindependent of
user interface metaphors (e.g., “graphical user interface”, “dialogs’).

UIML version 3 isarefinement of the previous versions of UIML, which were developed
starting in 1997. Version 3 differsfrom UIML 2 in these ways.

Support for dynamic user interfaces. A user interface isviewed as avirtual tree, whose
initial content is specified by the <structure> element, and which can change during the
lifetime of the user interface.

Support for multimodal user interfaces. A user interface can contain multiple <interface>
elements that are simultaneously used and kept synchronized. For example, a user
interface might offer avoice Ul and a screen-based Ul (e.g., on a mobile phone), and the
user can at any time use either mode of interaction (voice or display/keypad).

Refinement of many language constructs, based on implementation experience with

UIML 2. Theseitems are described by proposals for changesto UIML 2, posted in the

past on www.uiml.org.

It isHarmonia sintent that UIML 3.0 can be freely implemented by anyone. UIML 3.0 may be
implemented without any license cost due to Harmonia, Inc.

Harmonia, Inc. Page 4 02/08/2002

UIML 3.0 Language Specification

Contents

1 INtroduction tO UITML 3.0 ...t sttt s 8
1.1 UIML, an Open SPECITiCAtiONccecveieiiesiere e eeese e see s et ae e e 11
1.2 Relationship of UIML to XML, XSL, XForms, and CSS..........cccccoceeivevieeiieecnenne, 11
1.3 Purpose of TRISDOCUMENTccceeciiiieieeie et ens 11
I = 0T Vo] oo | SRR 11
1.5 Noteabout Harmonia, Inc. Rendering ENQiNes.........ccccooeiivinininenienene e 13
2 Structureof @UIML DOCUMENTooeiiiiiieie ettt st 14
pZ R O Y= V= S 14
21.1 Dynamic Interfaces Through aVirtual Ul Tree......cccovvcveviecie v 14
21.2 INterface BENAVIONc.eoieeieeee ettt 15
2.1.3 Philosophy Behind UIML S TagSccviviiieiie et re e 15
214 First UIML Example: HEllo World...........coooiiiiiieieeeeee e 16
2.2 UIML DOCUMENT SEFUCTUN €.ttt ettt s sneesnne e 17
221 SeCONd UTML EXBMPIE......oiiiiiieeisie et e 18
2.3 UIML NAMESPACE......cciiiieiiiiiieiitiie sttt e sieeesteesstessssaessssaesssseessssaessseessbeessseessssessssses 23
2.4 UIML MIME TYPE ettt sttt b ettt ee e 24
Table Oof UIML EIEMENTS........coiiiieiieeee ettt e 26
The <uiml> and <head> El@MENtS ...t 28
41 The <UIMIS> EIBMENT ..o e e ee s 28
4.2 The<head> EIBMENTccooe ettt ne s 28
42.1 The <meta> ElemMent ... e 29
5 INErTACE DESCIIPLION ..c.viiiieieieeieeie ettt sb et e e b e b e b nbenneas 30
5.1 OVEIVIBIW .ottt ettt sttt sttt b et e s ae e s be e e e s st e s be et e saeenbeebenneans 30
5.2 Attributes Common to Multiple EIements.........cccoovriiinininiciee e 30
521 Theid and class AHDULES...........coiiii e 30
5.2.2 The source and hOW AtLHIDULES..........ccoeee e 31
5.2.3 The exXPort AttHDULE.........ocee et 31
5.3 The<interface™ El@MENt ... 32
54 The <StruCtUre> EIBMENTccooiiiiieceeeeee et s 32
54.1.1 DYNAMIC SITUCKUIE......c.eieiiiiiiieeie sttt na e 33
54.2 The <part> ElEMENTcooieeee e ne 34
55 The<Syle> EIEMENT ..o 35
551 The <property> El@MENt ..o 35
5511 Where Property NameS Are Definedccocoeereriieiienienenenenesese s 36
55.1.2 Semantics of <property> Element..........ccccccovreieeiiiiese e 36
55.1.3 Lega Vauesfor <property> EIements..........ccocevririenineninene e, 37

Harmonia, Inc. Page 5 02/08/2002

UIML 3.0 Language Specification

5.5.1.4 Using event-class with <property> Elementsccccceeivevieiiieiie v, 39
5.5.1.5 Resolving Conflicting Property ValUES...........ccocveveeeeveenene e 40
5.5.2 Using Properties to Achieve Platform Independence..........cccooeveeiiiiineeiieeenne 42
55.2.1 Rulesto Assign "rendering” Propertyccccccveeeiieereesesee e esee e seesee e 45
5.6 The<content> EIEMENT ..o 45
56.1 The <constant> El@MENTocoiiiee e 47
5.6.2 The <reference> Element..........oc i 48
5.7 The<behavior> EIeMeNt ... 49
57.1 Examples of <behavior>, < rule>, <condition>, and <action> Elements......... 50
5.7.2 The <TUIE> ElEMENL ..ot 54
5.7.3 The <condition> ElemMeNt.........ccco i 54
5.7.4 The <equal> EIBMENT ... 54
5.7.5 The <event> EIEMENT ..o 55
5751 EXCEPLONS 8BS EVENES.....cciiiiiiiiiiiiee ettt 55
5752 Extracting Datafrom EVENES.........cooviiii et 56
5.7.5.3 SPECIAI EVENLScoiiiiiiieriesierieeiee ettt bbb 56
5.7.6 The <OP> ElEMENT ..ot 56
5.7.6.1 SEMANLICS Of OP>.....eiiiiiiiriiiiisieeiieeeee ettt s 57
5.7.6.2 Resolution of Conditional Statements..........c.ccoveririerieneeree e 58
5.7.7 The <action> ElemMeNt.........ccoieii e 58
5.7.8 The <Call> ElemMeNnt ...t e 58
5781 OVEVIEW ON <CAll> ..ot 59
5.7.8.2 Method Parameters and Return ValueS TYPES.......cceccveeveecieeneesiieesiee e 60
5.7.8.3 Invoking Methods Upon External Objectsin RMI, CORBA, LDAP, and EJB 61
579 The <repeat™> EleMENT..........ccooiii i 62
5710 The<iterator> ElemMENt.........cccoeeiiiiiiiese et 63
5.7.10.1 Using <iterator> in <property> and <parantcccceeeeeereeieeseeseesnenns 63
5711 The <reStructure> ElmMENt.........ccccoieiierieieeie st e e 64
57111 SyntaX Of SITESLIUCIUIESoocuieiiieiiectee ettt 65
57112 SemantiCS Of <IESITUCIUIE>........ccouveieeeeeieeieeeeste et ee et sree e 65
57.11.3 EXamplesS Of <IeStIUCLUIE>ccceiieiiiieiiicciee ettt 66
5712 The <When-true> ElemMeNnt.........cccoveiiiieiierece et 68
5.7.13 The <when-false> ElemMent ... e 69
5.7.14 The <by-default> EIEMENL.........cccooiiiiiii e 69
5715 The<param™ EIeMENt ...ttt 69
6 PEEN COMPONENTS. ...ttt b et e e be e n e s e e nreenneennesneene s 71
6.1 The<pears> ElBMENt ...ttt 71
6.2 The<presentation> EIeMENnt ..o e 72
6.2.1 Naming an Existing Vocabulary in <presentation>.............ccccceveeeveeiesieesiecnene 72
6.2.1.1 Labeling Base Vocabularies with Attribute base...........ccccooeiiiiiinininice, 73
6.2.1.2 Labeling Custom Vocabularies with Attribute source............ccccooveeeeievivenenee. 75
6.2.1.3 Permitted Optimization for Rendering ENgine...........cccovvvnininieienenenenn 75
6.2.1.4 Multiple Presentation EIemMentS..........cccceeiieieiieceese e 75
6.2.1.5 Suggested Use of Base Attribute in Authoring TOOIS.........cccovveverieneeninceene. 76

Harmonia, Inc. Page 6 02/08/2002

UIML 3.0 Language Specification

6.2.2 Creating a New Vocabulary Using <presentation>cccccevvereneenenienneennnn 76
6.2.2.1 Defining Legal Part Class Names Via<d-class>........cccccocceveevvncieneeneccie s 76
6.2.2.2 Defining Lega Property Names for <part> Classes via <d-property>............ 78
6.2.2.3 Defining Legal Events and Listenersfor Part Classes Via<d-class>............... 80
6.2.24 Defining Legal Event Property Names Via<d-class>..........cccoccvvvnieeiininnienne 84

6.3 The<logiC> EIEMENTcceeiceece et e 85

6.4 Subelementsof <presentation> and <lIOQIC>..........ccceviiiieiiie i 87

6.4.1 The <d-component> EIeMENt ... 87

6.4.2 The <d-class> EIeMEeNt..........oo i 87

6.4.3 The <d-property> EIEMENt.........cccoiiiiiereeeeeeeee e 88

6.4.4 The <d-method> EIemMent..........ccooiieiieee s 89

6.4.5 The <d-param> EIEMENt ... 90

6.4.6 The <SCIPE> El@MENt ... e 91

7 ReusableInterface COMPONENTS........cooiiiiiiiriieeeee e e 92

7.1 The<template> EIBMENToooiiiiee et 92

7.2 RUIESTOr TEMPIALES ..ot e 93

721 CombinNe USING REPIACE........occuieiiiieiieiee et st 95

7.2.2 CombINE USING UNION......ccuiiiiiiiiiiesiesiesiee e 96

7.2.3 CombiNe USING CaSCAUEcccueiiieiiiciee ettt 97

7.3 MUIIPIE TNCIUSIONS. ...c.eiiieiieiee bbb 99

7.4 TheeXport AttriDULE.......cee e 99

8 Alternative Organizationsof @ UIML DOCUMENTcccooiriiiineneneneseeeeee e 101

8.1 Normal XML MEChANISMccuiiiiiiiiiieeee e 101

8.2 UIML Template MEChaANISMcoeiiiiiiieeesie st 101

REFEI BNCES ...ttt b et he et e et b e e bt et ae et e naes 103
Appendix A. UIML 3.0 Document Type Definition..........coceverereriennienenese e 104
Appendix B. Behavior Rule Selection AlQorithm ..o 112
Appendix C. Changesfrom UIML 2.0a Specification (1/17/2001)ccccccoovrenererennnnn 113

Harmonia, Inc. Page 7 02/08/2002

UIML 3.0 Language Specification

1 Introduction to UIML 3.0

Ul Markup Language 3 (UIML3) is a declarative, XML-compliant meta-language for describing
user interfaces (Uls) that refines the UIML2 specification, released in 2000 [7]. The originad
UIML specification was released in 1998[5]. The philosophy used in developing the UIML
specifications has been to design and gain experience implementing the language for avariety of
devicesto insure that the concepts in the language are sound and that the language is suited to
real-world applications.

Among the motivations of UIML are the following:
» alow individuasto implement Uls for any device without learning languages and
application programming interfaces (APIs) specific to the device,
* reduce the time to develop Ulsfor afamily of devices,
» provide anatural separation between Ul code and application logic code,
e alow non-programmers to implement Uls,
e permit rapid prototyping of Uls,
» simplify internationalization and localization,
» alow efficient download of Uls over networks to client machines, and

» alow extension to support Ul technologies that are invented in the future.

The design objective of the UIML isto provide a canonical representation of any
Ul suitable for mapping to existing languages.

UIML is no more and no less than this. UIML provides a puzzle piece to be used in conjunction
with other technologies, including Ul design methodol ogies, design languages, authoring tools,
transformation al gorithms, and existing languages and standards (especially W3C

specifications). UIML isnot asilver bullet that replaces human decisions needed to create Uls.

Why is a canonical representation useful? Today, Uls are built using a variety of languages.
XML variants (e.g., HTML, XHTML, VoiceXML,), JavaScript, Java, C++, etc. Each language
differsin its syntax and its abstractions. For example, the syntax in HTML 4.0 to represent a
button is “<button>", and in Java Swing “JButton b = new JButton;”. The work on UIML asks
the fundamental question, “Do we inherently need different syntaxes, or can one common syntax
be used?” The benefit of using a single syntax is analogous to the benefit of XML: Software
tools can be created for asingle syntax (UIML), yet process Uls destined for any existing
language. For example, atool to author Uls can store the design in UIML, and then map UIML
to target languages in use today (e.g., HTML, Java) or invented in the future. Progressin the
field of Ul design can move faster, because everyone can build tools that either map interface
designsinto UIML or map UIML out to existing languages. Tools can then be snapped together
using UIML as a standard interchange language.

Harmonia, Inc. Page 8 02/08/2002

UIML 3.0 Language Specification

There is a second benefit of a canonical Ul description. By using asingle syntax to represent
any Ul, an interfaceisin avery maleable form. For example, one technique gaining popularity
in the human computer interface community is transformation. With a canonical representation
for any Ul, someone that designs a transform agorithm can simply implement the algorithm to
transform an input UIML document to a new output UIML document. Compare this approach to
implementing the same transform algorithm only to transform HTML documents, then
reimplementing the transform algorithm to only transform C++ interfaces, and so on.

In any language design, there is afundamental tradeoff between creating something general
versus special-purpose. UIML isfor general-purpose use by people that implement Uls and
people that build tools for authoring Uls. It isenvisioned that UIML will be used with other
languages with a more focused purpose, such as Ul design languages. Ultimately most people
may never write UIML directly —they may instead use a particular design language suited to a
certain design methodology, and then use tools to transform the design into a UIML
representation that is then mapped to various XML or programming languages.

Four key concepts underlie UIML:

1. UIML isametalanguage. To understand this, consider XML. XML does not define
tags, such as<p>. Instead, one must add to XML a specification of the legal tags and
their attributes, for example by creating a document type definition (DTD). Therefore the
XML specification does not need to be modified as new tag sets are created, and a set of
tools can be created to process XML independent of the tag sets that are used.

UIML, whileit isan XML schema, defines asmall set of powerful tags, such as <part> to
describe a part of aUl, or <property> to describe a property of aUI part. UIML tagsare
independent of any Ul metaphor (e.g., graphical Uls), target platform (e.g., PC, phone),
or target language to which UIML will be mapped (e.g., VoiceXML, HTML).

To use UIML, one must add atoolkit vocabulary (roughly analogous to addingaDTD to
an XML document). The vocabulary specifies a set of classes of parts, and properties of
the classes. Different groups of people can define different vocabularies, depending on
their needs. One group might define a vocabulary whose classes have a 1-to-1
correspondence to Ul widgetsin a particular target language (i.e., the classes might match
those in the Java Swing API). Another group might define a vocabulary whose classes
match abstractions used by a Ul designer (e.g., Title, Abstract, BodyText for Ulsto
documents). UIML can be standardized once and tools can be developed for UIML,
independently from the development of vocabularies.

2. UIML “factors out” or separates the elements of aUIl. The design of UIML started
with a clean sheet of paper and the question: what are the fundamental el ements needed
to describe any man-machine interaction. The separation in UIML identifies what parts
comprise the Ul, the presentation style for each part asalist of <property> elements, the
content of each part (e.g., text, sounds, images) and binding of content to external
resources (e.g., XML resources, or method callsin external objects), the behavior of parts

Harmonia, Inc. Page 9 02/08/2002

UIML 3.0 Language Specification

when a user interacts with the interface as a set of rules with conditions and actions, the
connection of the Ul to the outside world (e.g., to business logic), and the definition of
the vocabulary of part classes. For a comparison of the separation in UIML to existing
Ul models, such asthe Model View Controller, refer to Phanouriou [5].

3. UIML views the structure of a Ul, logically, as atree of Ul parts that changes over the
lifetime of theinterface. Thereisaninitia tree of parts, which isthe Ul initialy
presented to a user when the interface startsitslifetime. During the lifetime of the
interface, the tree of parts may dynamically change shape by adding or deleting parts.

For example, opening a new window containing buttons and labels in a graphical
interface may correspond to adding a sub-tree of partsto the UIML tree. UIML provides
elements to describe the initia tree structure (<structure>) and to dynamically modify the
structure (<restructure>).

4. UIML alows Ul parts and part-trees to be packaged in templates. Templates may then
be reused in various interface designs. This provides afirst class notion of reuse within
UIML, which is missing from other XML Ul languages, suchasHTML and WML.

Due to these concepts, UIML is particularly useful for creating multiplatform, multimodal,
multilingual, and dynamic Uls. Here are some examples:

To create multiplatform Uls, one uses concept 1 to create avocabulary of part classes
(e.g., defining class Button), and then uses concept 2 to separately define the vocabulary
by specifying a mapping of the classes to target languages (e.g., mapping UIML part
class Button to class java.awt.Button for Java and to tag <button> for HTML 4.0). One
can create a highly device-independent Ul by creating a generic vocabulary that triesto
eliminate bias toward particular Ul metaphors and devices. (By “device” we mean PCs,
various information appliances [e.g., handheld computers, desktop phones, cellular or
PCS phones], or any other machine with which a human can interact.) In addition,
because UIML describes the interface behavior as rules whose actions are applied to parts
(concept 2), the rules can be mapped to code in the target languages (e.g., to lines of Java
code or JavaScript code).

To create multimodal Uls, one creates a multiplatform Ul, and then annotates each part
with its mode (e.g., which target platforms use that part), and the behavior section from
concept 2 is used to keep the interface modes synchronized. For example, one might
definea UIML part class Prompt, the mapping of Prompt partsto VoiceXML and
HTML, and the behavior that synchronizesaVoiceXML and HTML Ul to
simultaneously prompt the user for input.

To create multilingual Uls, one uses concept 2 to separate the content in each language
from the rest of the UI.

To create dynamic Uls — such as a Web page containing a table whose size and content
comes from a database call made each time the page is loaded — can be achieved by
binding the separated content to calls to methods in, say, Java beans (concept 2).

Harmonia, Inc. Page 10 02/08/2002

UIML 3.0 Language Specification

Alternately, a behavior rule (concept 2) can specify that the page be restructured to
dynamically add atable to the tree of interface parts (concept 3).

For further discussion of the motivation for and uses of UIML, please see Abrams et al [3] and

[4].

1.1 UIML, an Open Specification

It isHarmonia s intent that UIML 3.0 can be freely implemented by anyone. UIML 3.0 may be
implemented without any license cost due to Harmonia, Inc.

1.2 Relationship of UIML to XML, XSL, XForms, and CSS

UIML is compliant with the W3C XML 1.0 specification [1]. Appendix A containsthe UIML
3.0DTD.

When UIML isrendered to HTML, CSS style sheets or X SL formatting objects [8] can be used
with the resultant HTML. In addition, XSLT [9] can be used to transform UIML to other XML-
compliant markup languages. In some cases, Xforms Models [13] can be used to represent
complex data objects being passed to or from the user interface.

1.3 Purpose of This Document

This document serves as the official language reference for UIML 3.0. It describes the syntax of
the elements and their attributes, the structure of UIML documents, and usage examples. It aso
gives pointers to other reference documentation that may be helpful when developing
applications using UIML.

UIML isintended to be an open, standardized language, which may be freely implemented
without any licensing costs. The goal of this document isto elicit feedback from the wider
community. Comments are encouraged; please send them to uiml-editor@uiml.org or participate
in discussion on http://www.uiml.org/discussion. A submission to a standards organization will
occur after comments are received and this draft specification is finalized.

This document may be distributed freely, aslong as all text and legal notices remain intact.

1.4 Terminology
Certain terminology used in the specification is made precise through the definitions bel ow.

Application: When we speak of building a Ul, the Ul along with the underlying logic that
implements the functionality visible through the interface is called the application.

Canonical Representation: A Ul metaphor-independent enumeration of the parts, behaviors,
content, and style of a user interface.

End-user: The person that uses the application's Ul.

Harmonia, Inc. Page 11 02/08/2002

UIML 3.0 Language Specification

Application Logic: Codethat is part of the application but not part of the Ul. Examplesinclude
businesslogic (e.g., in the form of Enterprise Java Beans, Common Object Request Broker
Architecture [CORBA] objects), databases, and any type of service that might run on a server
(e.g., an aLightweight Directory Access Protocol [LDAP] server). In athree-tier system
architecture model, the application logic is the middle layer that mediates communication
between the database and presentation layers.

Device: A deviceisaphysical object with which an end-user interacts using a Ul, such as a PC,
a handheld or palm computer, a cell phone, an ordinary desktop voice telephone, or a pager.

Ul Toolkit: A toolkit is the markup language or software library upon which an application’s Ul
runs. Note that we use the word “toolkit” in amore general sense than its traditional use. We
use it to mean both markup languages that are capable of representing Uls (e.g., Wireless
Markup Language [WML], HTML, and VoiceXML) aswell as APIsfor imperative
programming languages (e.g., Java AWT, Java Swing, Microsoft Foundation Classes).

Platform: A platform isacombination of adevice, operating system (OS), and a Ul toolkit. An
example of aplatformis a PC running Windows NT on which applications use the Java Swing
toolkit. Another exampleisacellular phone running a manufacturer-specific OS and aWML
[11] renderer.

Rendering: Rendering isthe process of converting a UIML document into aform that can be
displayed (e.g., through sight or sound) to an end-user, and with which an end-user can interact.
Rendering can be accomplished in two ways:
1. By compiling UIML into another language (e.g., WML, Java), which alows display and
interaction of the Ul described in UIML. Compilation might be accomplished by XSL
[8], or by a program written in atraditional programming language.
2. By interpreting UIML, meaning that a program reads UIML and makes callsto an API
that displaysthe Ul and alows interaction. Interpretation isthe same process that a Web
browser uses when presented with an HTML document.

Rendering engine: Software that performs the actual process or rendering a UIML document.

Ul Widget: UIML describes how to combine Ul widgets. The Ul toolkit with which the Ul is
implemented provides primitive building blocks, which we call widgets. The term “widget” is
traditionally used in conjunction with agraphical Ul. However we useit in amore general
sense, to mean presentation elements of any Ul paradigm.

For example, awidget might be a component in the Microsoft Foundation Classes or Java Swing
toolkits, or acard or atext field in aWML document. In some toolkits, awidget nameisaclass
name (e.g., the java.awt.Button class in the Java AWT toolkit, or the CWindow classin
Microsoft Foundation Classes). If the toolkit isamarkup language (e.g., WML, HTML,
VoiceXML) then awidget name may be atag name (e.g., “CARD” or “TEXT” for WML). The
definition of namesis outside the scope of this specification, as explained in Section 2.1.

Harmonia, Inc. Page 12 02/08/2002

UIML 3.0 Language Specification

Render Time: Thisisthe period of time before the interface is displayed to the user. During this
time the rendering engine interprets the UIML and may make calls to the backend as specified in
the UIML.

Runtime: Thisisthe period of time during which the Ul is displayed (e.g., through sight or
sound) to an end-user, and the end-user can interact with the Ul.

Method: This spec uses the term “method” to generically represent any code entity (that uses a
language other than UIML) that a rendering engine can invoke, and which may optionally return
avalue. Examplesinclude functions, procedures, and methods in an object-oriented language,
database queries, and directory accesses.

User Interface Lifetime: The period of time beginning when the interface isfirst displayed to the
user and concluding when the interface is closed, exited, or otherwise terminated.

Other terms; The following are terms and conventions used throughout this specification.

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY" and "OPTIONAL" in this
document are to be interpreted as described in RFC2119 [10].

Ellipses (. . .) indicate where attribute values or content have been omitted. Many of the
examples given below are UIML fragments and additional code maybe needed to render them.

URLSs given inside the code segments in this document are for demonstration only and may not
actualy exist.

1.5 Note about Harmonia, Inc. Rendering Engines

Rendering engines devel oped as part of LiquidUI™ versions 1.0d and 1.1a by Harmonia, Inc.
were written for and have evolved from the UIML 2.0 specification. As such, the examples
contained herein may or may not render correctly when using these versions.

Harmonia, Inc. Page 13 02/08/2002

UIML 3.0 Language Specification

2 Structure of a UIML Document

This section gives several examples of UIML documents. Further examples are available at [17].

2.1 Overview

In UIML version 3.0, aUl isaset of interface elements with which the end-user interacts. Each
interface element is called a part; just as an automobile or a computer is composed of a variety of
parts, so isaUl. Theinterface parts may be organized differently for different categories of end-
users and different families of devices. Each interface part has content (e.g., text, sounds,
images) used to communicate information to the end-user. Some interface parts can receive
input from the end-user. Thisis usually achieved through the use of interface artifacts like a
scrollable selection list, pressable button, etc. Since the artifacts vary from device to device, the
actual mapping (rendering) between an interface part and the associated artifact (widget) is done
using either a <presentation> element or a special <property> element in the <style> element.

Defining a user interface in UIML answers the following five questions.

* What parts comprise the UI?

* What presentation style for each part? (rendering, font size, color, ...)

* What content for each part? (text, sounds, image, ...)

» What behavior do parts have?

* How to connect to outside world?(business logic, data sources, Ul toolkit)
UIML is modeled by the Meta-Interface Model [5] pictured below.

Device / Platform Applications /
LI Metaphors - Feers o Data Souroes
et i
;'__,.-- H"L h J
L A7 - i L
u | Prescntation M Interface b _ Logic
Vocabulanes g
atyhe
Content
2 Bahavior

2.1.1 Dynamic Interfaces Through a Virtual Ul Tree

Theinterface portion of a UIML document defines avirtua tree of parts with their associated
content, behavior, and style. Thisvirtual treeisthen rendered according to the specification of
the presentation component and communicates with application logic viathe logic definitions.

Harmonia, Inc. Page 14 02/08/2002

UIML 3.0 Language Specification

The virtual tree can be modified dynamically by repeating, deleting, replacing, or merging sub-
trees and tree fragmentsin the main tree. Thisalows for a canonical description of auser
interface through the lifetime of it interaction with the user.

2.1.2 Interface Behavior

UIML describesin a<behavior> element the actions that occur when an end-user interacts with
aUl. The <behavior> element is built on rule-based languages. Each rule contains a condition
and a sequence of actions. Whenever a condition istrue, the associated actions are executed.

Whenever an end-user interacts with a Ul, events are triggered which cause some action to
execute. Inthisversion of the UIML specification, each condition is evaluated only when an
event associated with the condition occurs. This simplifies the rendering of UIML by
compilation to other languages.

Each action can do one or more of the following: (1) change a property of some part in the Ul

(2) invoke afunction in a scripting language, (3) invoke a function or method from a backend
object or (4) throw an event. In cases (2) and (3), UIML gives a syntax for describing the calling
convention, but does not specify an implementation of how the cal is performed (e.g., RPC,
RMI, CORBA).

Finally, aUIML document provides sufficient information to allow a developer to implement
application logic that modifiesa Ul programmatically.

2.1.3 Philosophy Behind UIML’s Tags

UIML can be viewed as a meta-language or an extensible language, analogousto XML. XML
does not contain tags specific to a particular purpose (e.g., HTML’s<H1> or). Instead,
XML is combined with a document type definition (DTD) to specify what tags are legal in a
particular markup language that is XML-compliant. The advantage isthat an extensible
language can be standardized once, rather than requiring periodic standardization committee
meetings to add new tags as the language evolves.

Analogously, UIML does not contain tags specific to a particular Ul toolkit (e.g., <WINDOW>
or <MENU>). UIML captures the elements that are common to any Ul through a simple set of
generic tags. The UIML syntax also defines tag attributes that map these elements to a particular
toolkit. However, the vocabulary of particular toolkits (e.g., awindow or a card) is not part of
UIML, because the vocabulary appears as the value of attributesin UIML. Thus UIML only
needs to be standardized once, and different constituencies of end-users can define vocabularies
that are suitable for various toolkits independently of UIML.

Thus a UIML author needs more than this document, which specifies the UIML language. You

also need one document for each Ul toolkit (e.g., Java Swing, Microsoft Foundation Classes,
WML) to which you wish to map UIML. The toolkit-specific document enumerates a

Harmonia, Inc. Page 15 02/08/2002

UIML 3.0 Language Specification

vocabulary of toolkit components (to which each <part> element in aUIML document is
mapped) and their property names

2.1.4 First UIML Example: Hello World

Hereisthe famous “Hello World” examplein UIML. It simply generates a Ul that contains the
words "Hello World!".

<?xm version="1.0"?>
<! DOCCTYPE uim PUBLIC "-//Harmonia//DTD UM 3.0 Draft//EN'
"http://uim.org/dtds/ U M.3_0a. dtd">

<uim >
<interface>
<structure>
<part id="TopHell o">
<part id="hello" class="helloC'/>
</ part>
</structure>
<styl e>
<property part-nane="TopHel | 0" nane="rendering">Cont ai ner
</ property>
<property part-nane="TopHel | 0" nane="content">Hell o
</ property>
<property part-class="hell oC' nane="rendering">String
</ property>
<property part-nane="hell 0" nane="content">Hel l o Worl d!
</ property>
</styl e>
</interface>
<peers> ... </peers>
</ uim>

To complete this example, we must provide something for the <peers> element.

A VoiceXML rendering engine [12] using the above UIML code and the following <peers>
element

<peer s>
<present ati on nanme="Voi ceXM." >
<conponent nane="Contai ner" nmaps-to="vxm :forni/>
<conmponent nanme="String" nmaps-to="vxnl: bl ock">
<attribute name="content" maps-to="PCDATA"/>
</ conmponent >
</ presentation>
</ peer s>

would output the following VoiceXML code:

<?xm version="1.0"?>
<vxni >
<fornp
<bl ock>Hel | o Worl d! </ bl ock>

Harmonia, Inc. Page 16 02/08/2002

UIML 3.0 Language Specification

</ forne
</ vxnl >

A WML [11] Rendering engine using the above UIML code and the following <peers>element

<peer s>
<presentation name="WWL">
<conponent nane="Contai ner" naps-to="wm:card">
<attribute nanme="content" maps-to="wnl:card.title"/>
</ conponent >
<conponent name="String" maps-to="wm:p">
<attribute name="content" maps-to="PCDATA"/>
</ conponent >
</ presentati on>
</ peer s>

would output the following WML code:

<?xm version="1.0"?>
<! DOCTYPE wni PUBLIC "-//WAPFORUM / DTD WML 1. 0// EN'
"http://ww. wapforum org/ DTD/ wm . xm ">

<wm >
<card title="Hello">
<p>Hel o Worl d! </ p>
</ card>
</ wn >

2.2 UIML Document Structure
A typical UIML 3.0 document is composed of these two parts:

1. A prologidentifying the XML language version, encoding, and the location of the UIML 3.0
document type definition (DTD):

<?xm version="1.0"?>

<I DOCTYPE uim PUBLIC
"-//Harnonia//DID UM 3.0 Draft//EN

http://uim.org/dtds/ U M.3_0a. dtd">

Note: This prolog should appear in the beginning of every UIML file (even files containing only
UIML templates [see Section 7.1]), but for ease of readability some of the examples given in this
document omit it.

2. Theroot element in the document, which is the uiml tag:
<uim xmns='"http://uim.org/dtds/U M3 Oa.dtd"' > ... </uin>

See Section 4.1 for more information on the root element uiml. The <uiml> e ement
contains four child elements:

a) An optional header element giving metadata about the document:

Harmonia, Inc. Page 17 02/08/2002

UIML 3.0 Language Specification

<head> ... </ head>

The <head> element is discussed in Section 4.2.

b) An optional element that allows reuse of fragments of UIML.:
<tenplate> ... </tenplate>

Section 7.1 discusses the <template> element, and its use in building libraries of reusable
Ul components.

¢) Anoptional Ul description, which describes the parts comprising the Ul, and their
structure, content, style, and behavior:

<interface> ... </interface>

Section 5.3 discusses the <interface> element.

d) An optiona element that describes the mapping of classes and names used in the UIML
document to a Ul toolkit and to the application logic:

<peers> ... </peers>

Discussion of the <peers> element is deferred until Section 6.1, because the <peers>
element normally just sources an external file.

White spaces, blank spaces, new lines, tabs, and XML comments may appear before or after
each of the above tags (provided that the XML formatting rules are not violated).

To summarize, hereis askeleton of aUIML document:

<?xm version="1.0"?>
<! DOCTYPE ui m PUBLIC
“-//Harnonia//DID UM. 3.0 Draft//BEN' "http://uinh.org/dtds/UM3 Oa. dtd">

<uim xmns='"http://uim.org/dtds/ U M.3 Oa. dtd' >

<head> ... <l head>

<t enpl at e> ... </tenpl ate>

<interface> ... <linterface>

<peer s> ... <lpeers>
</uinm>

2.2.1 Second UIML Example
This section contains a simple example of a UIML document, which includes event handling.

The example below displays a single window representing adictionary. The dictionary contains
alist box in which an end-user can select aterm (i.e. Cat, Dog, Mouse). The dictionary also
contains atext areain which the definition of the currently selected term is displayed. For
example, if Cat is selected on the left, a definition of a cat replaces the string “ Select term on the
left.” The style element in the UIML document that describes this interface uses the properties
found in the Java AWT and Swing components.

Harmonia, Inc. Page 18 02/08/2002

UIML 3.0 Language Specification

E‘g Simple Dictionary

Pick a term: Definition:
M Select term on the left.

Boxes are overlaid on the UIML document to make reading easier by identifying maor
elements.

Harmonia, Inc. Page 19 02/08/2002

UIML 3.0 Language Specification

<?xm version="1.0"7?>

<! DOCTYPE uim PUBLIC
"-//Harnmonia//DID U M. 3. 0a
http://uim.org/dtds/ U M3

Draft//EN'

_Oa. dtd>

<l-- This is Dictionary.ui
Di spl ays one wi ndow on the screen containing a |ist of animals
and a textbox. dicking an animal's nane displays a definition in the
text box. -->
<ui m >
<peer s>

<presentation base="Java_l1.
</ peer s>

3_Harnonia_1.0"/>

<interface>

<structure>

id="JFrane">

i d="Ter nLabel "/ >
/>
i d="Def nLabel "/ >
i d="Def nArea"/ >

<part cl ass="JFrane"
<part class="JLabel"
<part class="List" id="TernList"
<part class="JLabel"
<part class="TextArea"
</part>

</structure>

<style>
<property part-name="JFrange" name="| ayout "
>j ava. awmt . & i dBagLayout </ pr operty>
<property part-nanme="JFrane" nane="background" >bl ue</property>
<property part-nane="JFranme" name="| ocati on" >100, 100</ property>
<property part-nane="JFrane" nane="si ze" >500, 300</ property>
<property part-nanme="JFrane" name="title" >Si mpl e Di ctionary</property>
<property part-class="JLabel" nanme="f or egr ound" >white</ property>
<property part-class="JLabel" name="gri dx" >RELATI VE</ pr operty>
<property part-class="JLabel" nane="gri dy" >RELATI VE</ pr operty>
<property part-class="JLabel" nane="font"
>Hel veti ca- bol di talic-20</property>
<property part-name="TermnmLabel" name="text" >Pick a term </ property>
<property part-nanme="DefnLabel " name="text" >Definition:</property>
<property part-nanme="Def nLabel " name="gri dx" >1</ property>
<property part-nanme="Def nLabel " name="gridy" >0</ property>
<property part-nanme="Def nLabel" nane="i nsets" >0, 10, 0, O</ property>
<property part-nanme="TernList" name="background" >yell ow</property>
<property part-name="TernList" name="gridx" >0</ property>
<property part-nane="TernList" nanme="gridy" >RELATI VE</ pr operty>
<property part-nanme="TernList" name="fill" >BOTH</ pr operty>
<property part-name="TernList" name="font" >Hel vet i ca- 20</ property>
<property part-nanme="TernList" name="content">
<constant nodel ="list">

<constant id="Cat" val ue="Cat"/ >

<constant i d="Dog" val ue="Dog"/ >

<constant id="Muse" val ue="Muse"/>

</ const ant >
</ property>

Harmonia, Inc.

Page 20

02/08/2002

UIML 3.0 Language Specification

<property part-nanme="DefnArea" nanme="background" >yell ow</ property>

<property part-name="DefnArea" nanme="gridx" >1</ property>
<property part-nanme="DefnArea" nanme="gridy" >RELATI VE</ property>
<property part-name="DefnArea" name="text" >Sel ect termon the
| eft. </ property>
<property part-nanme="DefnArea" name="colums" >20</ property>
<property part-nanme="DefnArea" nanme="rows" >4</ property>
<property part-name="DefnArea" nane="editable" >f al se</ property>
<property part-nanme="DefnArea" nane="insets" >0, 10, 0, O</ property>
<property part-name="DefnArea" name="font" >Hel vet i ca- 20</ property>
</styl e>

<behavi or >

<rul e>
<condi ti on>
<op nane="&&" >
<event part-name="Ternlist" class="Itenlistener.itenttateChanged"/>
<op nane="==">
<property event-class="ItenLi stener.itensttateChanged” nane="itenf/>
<constant val ue="0"/>
</ op>
</ op>
</ condition>
<action>
<property part-nanme="Def nArea" name="text"
>Car ni vour ous, donesticated nmamal that's fond of rats and mice</property>
</ action>
</rul e>

<rul e>
<condi ti on>
<op nane="&&" >
<event part-name="Ternlist" class="Itenlistener.itenttateChanged"/>
<op nane="==">
<property event-class="ItenLi stener.itenttateChanged” nane="itenf/>
<constant val ue="1"/>
</ op>
</ op>
</ condi tion>
<action>
<property part-nane="Def nArea" name="text"
>Domestic animal related to a wolf that's fond of chasing cats</property>
</ action>
</rul e>

<rul e>
<condi ti on>
<op nane="&&" >
<event part-name="Ternlist" class="Itenlistener.itenttateChanged"/>
<op nane="==">
<property event-class="ItenLi stener.itensttateChanged” nane="iten!/>
<constant val ue="2"/>
</ op>
</ op>
</ condi tion>
<action>
<property part-nane="Def nArea" name="text"
>Smal | rodent often seen running away from a cat</property>
</ action>
</rul e>

</ behavi or >

Harmonia, Inc. Page 21 02/08/2002

UIML 3.0 Language Specification

</interface>

</uim>

The UIML document above starts with <?xml ...>,<IDOCTY PE ...>, and the <uiml> tag, which
start every UIML document.

Next comes the <peers> element, enclosed by the first box. The <presentation> element inside
peers contains base="Java_1.3 Harmonia_1.0", which means that this UIML document uses the
vocabulary defined in http://uiml.org/toolkits/Java 1.3 Harmonia_1.0.uiml. The vocabulary
defines, among other things, the legal class names for <part> elements, the legal property values
for each part class. Setting the base attribute to Java 1.3 Harmonia 1.0 impliesthat most of
the Java AWT and Swing class names (e.g., JButton, JLabel) can be used as part namesin
UIML, and names similar to AWT and Swing property method names can be used as UIML
property names (e.g., foreground for a JLabel). Element <present ati on

base="Java_1. 3_Har moni a_1. 0" > specifies that any renderer that implements vocabulary
Java_ 1.3 Harmonia_ 1.0 can render this UIML document. (In general, If aUIML document
contains <pr esent ati on base="x"> then that document can be rendered by any rendering

engine that implements vocabulary "uiml.org/toolkits/x.uiml™.)

The <interface> element comes next. Thefirst element inside interfaceis structure, which
appears in the second box. The <structure> element in this example describes a Ul consisting of
five parts. Thefirst is named JFrame, and contains the other four parts, named TermLabel,
TermList, DefnLabel, and DefnArea. The class names used to make the interface are JFrame,
JLabel, List, JLabel, and TextArea. http://uiml.org/toolkits/Java 1.3 Harmonia 1.0.uiml defines
these names as corresponding to the Java AWT and Swing classes javax.swing.JFrame,
javax.swing.JLabel, java.awt.List, javax.swing.JLabel, and java.awt. TextArea. So whenever
these names are used as the class for a <part> el ement, the default value of the rendering
property for the parts defaults to the corresponding AWT or Swing class. Thus the <part> with
id “DefnArea” will be rendered as ajava.awt. TextArea.

The <style> element comes next. The <style> element in this example sets five properties on
the part named JFrame: the layout manager to GridBagL ayout, the frame background to blue,
the upper left corner of the frame to appear 100 pixels down and 100 pixels to the right of the
upper left corner of the screen, the frame dimensions to 500 pixels wide and 300 pixels high, and
the frame title (the text that appears in the band at the top of the frame) to “ Simple Dictionary”.

The next four properties apply to al parts whose class nameis” JLabel” . There are two such
parts. TermLabel and DefnLabel. The foreground color, two properties associated with
GridBagLayout (gridx and gridy), and the font are the same for all labels. The remaining
propertiesin the <style> element are properties of individual partsin the interface.

The next box contains the <behavior> element. This consists of a sequence of rules, each
containing a condition and an action. Each condition holds true when some event occurs. The
<event> element in each condition names a Java event through its class attribute. Whoever
defines the vocabulary for a Ul toolkit defines the class names used for events. The vocabulary
defined in Java_1.3 Harmonia_1.0 uses the following convention for choosing UIML event

Harmonia, Inc. Page 22 02/08/2002

UIML 3.0 Language Specification

class names. method namesin Java AWT and Swing listener classes are used as UIML event
names. For example, clicking itemsinan AWT List are handled by an instance of
java.awt.event.IltemListener. Hence Java 1.3 Harmonia_1.0 defines ItemListener’ s methods,
such asitemSateChanged, as UIML event class names.

Returning to the UIML document above, the first condition holds true when someone clicks on
term number zero in thelist or when someone clickson Cat. Let's examine thefirst conditionin
detail:

<condi ti on>
<op nane="&&" >
<event part-name="Ternlist" class="Itenlistener.itenttateChanged"/>
<op nane="==">
<property event-class="ItenLi stener.itensttateChanged” nane="itenf/>
<constant val ue="0"/>
</ op>
</ op>
</ condi tion>

The <condition> has asits child an <op> (for operand) element. The name attribute of <op>is
“&&"”, or logical AND, which means that the <op> holds true when both of its children are true.
Thefirst child of <op name="& & "> is <event>, so this child is true when the event
ItemListener.itemStateChange fires for the part named TermList. (Vocabulary

Java_1.3 Harmonia 1.0 uses as UIML event namesL.m, where L isa Javalistener [e.q.,
ItemListener], and misamethod in the listener [e.g., itemStateChange()]. See 6.2.2.3 for further
information.) Put another way, the <event> is true when a user clicks on aterm Cat, Dog, or
Mouse. The second child of <op name="& & "> is another <op> element, this time <op
name="==">., Thisinner <op> element istrue when its children are equal. Thefirst childis
<property>, which evaluates to the property called item of an ItemListener.itemStateChanged
event. (Vocabulary Java 1.3 Harmonia_ 1.0 uses the method names in each Java event as
property names for UIML events. The Java itemStateChanged method takes an ItemEvent as an
argument, which in turn has a method named getitem. (Method getltem returns the index
number of theitem selected in thelist, either O, 1, or 2 in our Dictionary example.) Hence, the
UIML event has a property named item. Therefore the inner <op> is true when the item number
selected equals zero. In summary, the entire condition is true when the user clicks on an animal
name, and the item clicked on is item zero, or Cat.

The action associated with clicking Cat is to change the content of part DefnArea to display the
text string “ Carnivourous, domesticated mammal ...” —in other words, the definition of a cat
pops up in the text area on the right of the UI.

Similar condition-action rules are given for Dog and Mouse.

2.3 UIML Namespace

UIML isdesign to work with existing standards. Thisincludes other markup languages that
specify platform-dependent formatting (i.e., HTML for text, JSGF for voice, etc.). XML
Namespaces remove the problem of recognition and collisions between elements and attributes
of two or more markup vocabulariesin the samefile. All <uiml> elements and attributes are

Harmonia, Inc. Page 23 02/08/2002

UIML 3.0 Language Specification

inside the “uiml” namespace, identified by the URI *http://uiml.org/dtds/UIML3_Oa.dtd”. Note
that this URI has not been activated yet.

Example

Hereis an example that combines UIML and HTML vocabularies:

<uim:uim xmns:uim=http://uim.org/dtds/ U M.3_0Oa. dtd" >
<uinm:interface>
<ui m :structure>
<uim:part uin:name="A"/>
</uim:structure>

<uim:style>

<uim :property uim:nanme="content" uinl:part-name="A">
<htm :em xm ns: htm =" http://ww. w3. or g/ TR/ REC- ht m 40'
>Enphasi s</ ht i : enp

</uim:property>

</fuim:style>

</uim:interface>
</fuim:uim>

The above code can be simplified by making uiml the default namespace as follow:

<uim xmns="http://uim.org/dtds/ U M.3_0Oa. dtd" >
<interface>
<structure>
<part name="A"/>
</structure>

<styl e>

<property nanme="content" part-nanme="A">
<htm :em xm ns: htm =" http://ww. w3. or g/ TR/ REC- ht m 40’
>Enphasi s</htm : enp

</ property>

</styl e>

</interface>
</fuim>

To learn more about XML name-spacing, refer to http://www.w3.0rg/2000/xming/ .

2.4 UIML Mime Type
The following mime type should be used for UIML documents:

text/uim

Furthermore, the mime type could include the value of the base attribute in the < presentation>
element (see Section 6.2), which identifies that any recipient software that processes the UIML
document must implement the vocabulary identified in the base attribute. Here are some
examples:

text/uim/Java_1.3 Harnmonia_ 1.0

Harmonia, Inc. Page 24 02/08/2002

UIML 3.0 Language Specification

text/uim/Hm _4.01franeset _Harnonia 0.1

Harmonia, Inc. Page 25 02/08/2002

UIML 3.0 Language Specification

3 Table of UIML Elements

The table below is both an overview of all elementsin UIML, and an index to where they are
discussed in the remainder of this document. The UIML 3.0 DTD isgivenin Q.

Element Purpose Page
<action> Perform an action if the condition of aruleistrue 58
<behavior> Specify rules for runtime behavior 49
<by-defaul t> Set of actionsto be executed when <op> conditional isundefined 69
<call> Call afunction or method external to UIML document 58
<condition> Specify a condition for arule 54
<constant> Define a constant value 47
<content> Specify a set of constant values 45
<d-class> Maps class names that can be used for parts and eventsto a Ul 87
toolkit

<d-component> Maps aname used in a<call> element to application logic external 87
to UIML document

<d-method> Maps a method to a callable method or function in the API of the 89
application logic

<d-param> Defines asingle formal parameter to a <d-method> 90

<d-property> Maps a property hame, for parts or events, to methodsin a Ul 88
toolkit that get and set the property’s value

<equal> Compares the property value of an event with another value 54

<event> Specify aUl or system event to be thrown or caught 55

<head> A container for metadata information 28

<interface> A container for all UIML elements that describe a user interface 32

<iterator> A tag controlling the number of timesavirtual treecontainedina 63
<repeat> element is replicated.

<logic> Describes mappings of names and classes used in <call> elements 85
to application logic

<meta> Define a piece of metadata as a name/value pair 29

<op> Define a conditional expression or operation 56

<param> Actual parameter used in a <call> element 69

<part> Specifies asingle abstract part of the user interface 34

<peers> Describes mapping from class, property, event, and namesused in 71
<call> elements to identifiersin a Ul toolkit and the application
logic

<presentation> Contains mappings of part and event classes, property names, and 72
event namesto a Ul toolkit

<property> Specify or retrieve a property for a <part> element or a class of 35
<part> elements

<reference> Reference to a constant or resource externa to the UIML document 48

<repeat> Groups parts which are repeated one of more timesin a user 62
interface

Harmonia, Inc. Page 26 02/08/2002

UIML 3.0 Language Specification

<restructure> Modify the current virtual tree of parts 64
<rule> A condition/action pair 54
<script> A container for executable script code 91
<structure> Definestheinitia virtual tree organization (physical or temporal) 32
of the parts comprising a user interface
<style> Specify a set of style properties for the interface 35
<template> A container for reusing <uiml> elements 92
<uiml> Root element in a UIML document 28
<when-true> Set of actions to execute when <op> condition istrue 68
<when-false> Set of actions to execute when <op> condition is false 69
Harmonia, Inc. Page 27 02/08/2002

UIML 3.0 Language Specification

4 The <uiml> and <head> Elements

Whenever anew element is introduced in the remainder of the document, we first give the
appropriate DTD fragment.

4.1 The <uiml>= Element
DTD

\<!ELENENT uim (head?, (tenplate|interface|peers)*)>

Description

The <uiml> eement isthe root element in aUIML document. All other e ements are contained
in the <uiml> element. The <uiml> element appears as follow:

<uim > ..</uim>

Usually, one <uiml> element equates to one file, in much the same way that thereis one HTML
element per file when developing HTML-based applications. However, other arrangements are
possible. For example, the <uiml> element might be retrieved from a database or the elements

contained within the <uiml> element might be stored in multiplefiles.

When multiple markup vocabularies are used within the same UIML file, then the uiml
namespace must be specified asfollow:

<uim xmns="http://uim.org/dtds/ U M3 Oa.dtd" >...</uim>

4.2 The <head> Element
DTD

| <! ELEMENT head (neta)*>

Description

The <head> element contains metadata about the current UIML document. Elementsin the
<head> element are not considered part of the interface, and have no effect on the rendering or
operation of the Ul.

UIML authoring tools should use the <head> element to store information about the document
(e.g., author, date, version, etc...) and other proprietary information.

Harmonia, Inc. Page 28 02/08/2002

UIML 3.0 Language Specification

4.2.1 The <meta> Element

DTD

<!l ELEMENT neta EMPTY>

<I ATTLI ST neta
nanme NMIOKEN #REQUI RED
content CDATA #REQUI RED>

Description

The <meta> element has the same semantics as the <meta> element in HTML. |t describesa
single piece of metadata about the current UIML document. This may includes author
information, date of creation, etc.

The name attribute specifies an identifier for the meta-information; the content attribute givesits
content.

Example

<head>
<nmeta name="Author" content="U M. Editor"/>
<nmeta name="Date" content="Novenber 1, 2001"/>
<nmeta nanme="Description" content=
"This is an exanple of howto use the neta tag in U M.
The content of the neta tag can include white space."/>
</ head>

Harmonia, Inc. Page 29 02/08/2002

UIML 3.0 Language Specification

5 Interface Description

This section describes the elements that go inside the <interface> element, their attributes, and
their syntax. Examples are provided to help show common usage of each element.

5.1 Overview
The <interface> element contains four elements: structure, style, content, and behavior:

<interface>
<structure> </structure>
<styl e> </styl e>
<cont ent > </ cont ent >
<behavi or> </ behavi or>
</interface>

The <structure> element enumerates a set of interface parts and their organization for various
platforms.

The <style> element defines the values of various properties associated with interface parts
(analogous to style sheetsfor HTML).

The <content> element gives the words, sounds, and images associated with interface partsto
facilitate internationalization or customization of Ulsto various user groups (e.g., by job role).

The <behavior> e ement defines what Ul events should be acted on and what should be done.

5.2 Attributes Common to Multiple Elements

Before explaining each of the elements introduced in Section 1, we first describe some attributes
that are used in severa of the elements.

5.2.1 The id and class Attributes
The <part>, <event>, and <call> elementsin UIML may have an id and a class attribute.

The id attribute assigns a unique identifier to an element. No two elements can have the sameid
within the same UIML document.

The class attribute assigns a class name to an element. Any number of elements may be assigned
the same class name.

The use of the attribute classis based on the CSS [2] concept of class: a*“class’ specifies an
object type, while the element’s “id” uniquely identifies an instance of that type. A style
associated with al instances of a class is associated with all elements that specify the same value
for their class attribute; a style associated with a specific instance of a classis only associated
with the element that specifies the value denoted in the style declaration for their id attribute.

Harmonia, Inc. Page 30 02/08/2002

UIML 3.0 Language Specification

5.2.2 The source and how Attributes

Certain <uiml> elements (behavior, d-component, d-class, d-method, constant, content,
interface, logic, part, peers, presentation, property, rule, script, structure, and style) may contain
asource attribute. Like HTML, the source attribute specifies alink from the UIML document to
aWeb resource identified by a URI. However, the reason for using alink in UIML differs from
HTML.

A source attribute can refer to two things:

= A URI to aresource that does not contain UIML code. In this case, the resource file can be
textua (e.g. HTML) or binary (e.g., JPEG). This caseis analogousto the IMG tagin HTML.

<constant id="Logo" source="http://uim.org/imges/ U MLogo.jpg"/>

* AURI to aresource that does contain UIML code. The UIML code isinserted into the
element that contains the source, as explained in Section 7.2. Inserting code has several uses,
explained in section 7:

o Splitting aUl definition into several UIML documents
0 Creating alibrary of reusable Ul components
0 Achieving the cascading behavior of CSS style sheets

The URI may either be an element in the same document as the source appears, or in a
different document:

= URI names the same document. The two elements must either have the sametag or
the URI must name a <template> element.

<style id="Sinple"> ... </style>
<styl e id="Conpl ex" source="#Si npl e how="cascade"> ... </style>

= URI names another document. Again, the two elements must either have the same tag
or the URI must nhame a <template> element. Note that this URI isfor demonstration
only and is not truly active.

<part id="Di al og"
source="http://uim.org/tenpl ates/ D al og. ui M #Si npl eDi al og"
how="r epl ace"

/>

A how attribute of cascade achieves behavior similar to cascading in CSS, while
replace allows a UIML document to be split into multiple files.

5.2.3 The export Attribute
The export attribute is used in the context of templates. See Section 7.4 for details.

Harmonia, Inc. Page 31 02/08/2002

UIML 3.0 Language Specification

5.3 The <interface> Element

DTD
<!l ELEMENT interface (structure|style|content]|behavior)*>
<I ATTLI ST interface
id NMTOKEN #1 MPLI ED
sour ce CDATA #| MPLI ED
how (append| cascade| r epl ace) "repl ace"
export (hidden|optional|required) "optional">
Description

All <uiml> elements that describe a user interface are contained in the <interface> element. The
<interface> element describes a Ul and a user’ s interaction with a Ul, not the interaction of the
Ul and the backend application logic. The <logic> element is used to describe the
Ul/application logic interaction — see Section 6.3. A UIML interface may be assimpleasa
single string, or as complex as hundreds of <interface> elements that employ various interface
technologies (e.g., voice, graphics, and 3D).

An interface is composed of four elements: structure (see Section 5.4), style (see Section 5.5),
content (see Section 5.6), and behavior (see Section 5.7).

5.4 The <structure> Element

DTD
<l ELEMENT structure (part*)>
<I ATTLI ST structure
id NMTOKEN #1 MPLI ED
sour ce CDATA #| MPLI ED
how (append| cascade| r epl ace) "repl ace"
export (hidden|optional|required) "optional">
Description

An application program can have a Ul with one or more organizations associated with it. By
“organization,” we mean the set of Ul widgets that are present in the interface, and the
relationship of those widgets to each other when the interfaceisinitially rendered. The
relationship might be spatial (e.g., in agraphical Ul) or tempora (e.g., in avoice interface).

The <structure> element defines the initial organization of the interface represented by the
UIML document. This organization can be envisioned as avirtua tree of parts with each part’s
associated content, behavior, etc. attached to it.

For example, there may be one interface organization for a desktop PC, and another organization
for avoiceinterface. The two interfaces may be radically different in terms of which Ul widgets

Harmonia, Inc. Page 32 02/08/2002

UIML 3.0 Language Specification

are present. For example the voice interface may have fewer widgets, alowing an end-user to
select only a subset of the operations available in the PC interface. In addition, the two
interfaces may be organized differently. The voice interface might be a hierarchy of menus,
implementing the paradigm of avoice activated response system. Meanwhile the PC interface
might be in the form of awizard and consist of a sequence of dialog boxes. Thus, aUIML
document needs to enumerate which interface parts are present in each version of the interface,
and how those parts are organized (e.g., hierarchically). Thisisthe purpose of the <structure>
element. Just as abridge over ariver isastructure that consists of many parts (e.g., steel beam,
bolts), aUI consists of a structure (its organization) and many parts (e.g., widgets).

All interface descriptions must include at least one structure description.

There may be more than one <structure> element, each representing a different organization of
theinterface. (Thusin the PC and voice interface example above, there are two <structure>
elements.) Each <structure> element is given a unique name.

If aUIML document contains more than one <structure> element, then a UIML rendering
engine must select by id exactly one <structure> element and ignore al other <structure>
elements. Theid of the selected element is supplied by a mechanism outside the scope of this
specification. The <structure> element whose id matches the supplied id is then used, and all
other <structure> elements areignored. If the supplied id does not match the id attribute of any
structure, or if no id is supplied, then the last <structure> element appearing in the UIML
document must be used.

Example

<structure id="Conpl exUl ">
<part class="c2" id="n3">
<part class="cl1" id="n2"/>
</ part >
</structure

<structure id="SinpleU ">
<part class="cl" id="nl"/>
</structure>

<structure id="default">
<part class="cl1" id="nl1"/>
<part class="c2" id="n2"/>
</structure>

54.1.1 Dynamic Structure

The question remains as to how thisinitial virtual tree can be modified over the lifetime of the
interface. Several “types’ of dynamism existsin user interfaces. The three types that can be
represented in UIML are described below:

* Content isdynamically supplied when the Ul isrendered. Thisis handled by the
<reference> element in section 5.6.2.

Harmonia, Inc. Page 33 02/08/2002

UIML 3.0 Language Specification

* Thevirtua tree of Ul partsis modified during the lifetime of aUI. Seethe <restructure>
element in section 5.7.11.

* The Ul contains a sub-tree of partsthat is repeated 1 or more times, where the number of
timesis determined at render time. Thisisthe purpose of the <repeat> element.

5.4.2 The <part> Element

DTD
<l ELEMENT part (style?, content?, behavior?, part*,repeat*)>
<! ATTLI ST part
id NMTOKEN #| MPLI ED
cl ass NMTOKEN #| MPLI ED
source CDATA #| MPLI ED
wher e (first|last|before|after) "last"
where-part NMIOKEN #1 MPLI ED
how (append| cascade| r epl ace) "repl ace"
export (hi dden| optional | requi red) "optional ">
Description

Each <part> element represents either one instance of a class of Ul widgets or nothing (null).

(It is sometimes useful to associate a part with nothing; for example a part might be needed for a
large screen U, but is omitted from asmall device screen. In the former case, the part
corresponds to a Ul widget, and in the later case the part corresponds to nothing.)

Parts may be nested to represent a hierarchical relationship of parts. Let a and b denote two
<part> elements. If part b isnested inside part a, and both a and b correspond to Ul widgets
(i.e., neither a nor b correspond to null), then b's Ul widget must be "contained in" a's widget,
where "contained in" is defined in terms of the Ul toolkit. If the Ul toolkit does not define
nesting, then nesting part b in part ain aUIML document is equivalent to a UIML document in
which the parts are not nested.

For example, the Java Swing toolkit has a notion of containers and components. Containers
contain other containers or components, forming a hierarchy. Or, in avoice-based |language, the
oral equivalent of menus can be nested, again forming a hierarchy.

Each part must be associated with a single class. However, if multiple <structure> elements
exist, then a part can be associated with a different class in each structure (see examplein
Section 5.4). When the interface is rendered, only one structure is used (as discussed in
“Description” under Section 5.4); thus, a part is always associated with a unique class.

UIML alowsthe style, content, and behavior information associated with a particular part to be

specified within the part itself. Usualy, thisinformation is specified in the corresponding
<style>, <content>, and <behavior> elements.

Harmonia, Inc. Page 34 02/08/2002

UIML 3.0 Language Specification

5.5 The <style> Element
DTD

<! ELEMENT styl e (property*)>
<! ATTLI ST style

id NMTOKEN #1 MPLI ED
sour ce CDATA #| MPLI ED
how (append| cascade| r epl ace) "repl ace"

export (hidden|optional|required) "optional">

Description

The <style> element contains alist of properties and values that are used to render the interface.
Like the CSS and XSL specifications, UIML properties specify attributes of how the interface
will be rendered on various devices, such asfonts, colors, layout, and so on.

For example, the following fragment will make all parts with class="c1” use the Comic font, and
the single part named “n1” have size 100 by 200:

<styl e id="G aphical ">

<property part-class="cl" nane="font" >Comi c</ property>
<property part-nane="nl" name="si ze" >100, 200</ property>
</style>

The use of the style sheet helps achieve device independence. Thisisdiscussed in Section 5.5.2.

There must be at least one <style> element, and there may be more than one. Thereis often one
<style> element for each toolkit to which the UIML document will be mapped. For agiven
toolkit, there may be multiple <style> elements serving avariety of purposes. to generate
different interface presentations for accessibility, to support afamily of similar but not identical
devices (e.g., phones that differ in the number of characters that their displays support), to
support different target audiences (e.g., children versus adults), and so on.

Style sheets may al so use the mechanism for cascading, described in Section 7.2.

5.5.1 The <property>= Element
DTD

Harmonia, Inc. Page 35 02/08/2002

UIML 3.0 Language Specification

<! ELEMENT property (#PCDATA| constant|property|reference|call]|iterator)*>
<I ATTLI ST property

name NMTOKEN #1 MPLI ED

source CDATA #1 MPLI ED

how (append| cascade| r epl ace) "repl ace"

export (hi dden| opti onal | required) "optional"

part - name NMTOKEN #| MPLI ED

part-class NMIOKEN #1 MPLI ED

event - name NMIOKEN #1 MPLI ED

event - cl ass NMIOKEN #1 MPLI ED >

Description

A property associates a name and value pair with apart or event (see Section 5.7.5). For
example, a Ul part named "button™ might be associated with a property name "color" and value
"blue". The <property> element provides the syntax to make the association between the name
color and value blue with the part button.

55.1.1 Where Property Names Are Defined

Property names are not defined by the UIML specification. Thisis a powerful concept, because it
permits UIML to be extensible: one can define whatever property names are appropriate for a
particular device. For example, a"color" might be a useful property name for a device with a
screen, while "loudness" might be appropriate for a voice-based device.

Property names instead are defined by a <presentation> element (see Section 6.2). A set of
<presentation> elements for Java, HTML, WML, VoiceXML, and other toolkits are provided at
http://uiml.org/toolkits. <presentation> elements, and hence property names, are created
occasionally by experts on atarget toolkit, like Java AWT, and are listed in a published location,
such as http://uiml.org/toolkits. Many authors of UIML documents then reuse such
<presentation> elements, referring to them in the base attribute or by aURI (e.g.,
http://uiml.org/toolkits/Java 1.3 Harmonia_1.0.uiml). A compiler or interpreter that renders
UIML documents should also access the URI to map property namesin the UIML document to
the desired Ul toolkit.

Thusto use UIML one needs both a copy of this specification and a document defining the
property names used in a particular peer element.

55.1.2 Semantics of <property> Element
The semantics of a<property> element are as follows:

» |If the <property> element isa child element of a <param> (see Section 5.7.15), <op> (see
Section 5.7.6), or another <property> element, then the semantics for that child <property>
element are to get asingle property's value.

» Otherwise the semantics are to set avalue for asingle property of an interface part, event, or
call.

Harmonia, Inc. Page 36 02/08/2002

UIML 3.0 Language Specification

55.1.3 Legal Values for <property> Elements
The value for each <property> element can be one of the following:

= Atext string. Inthis case the property has no children, and its body is set to the character
sequence. If the string contains the ampersand character (&) or the left angle bracket (<),
then they must be escaped using either numeric character references or the strings “ & amp;”
and “&It;” respectively (see 0 for more rules about strings and XML documents). Note that
A UIML parser must preserve white space. A UIML rendering engine may ignore leading
and trailing spaces when rendering text on certain Ul toolkits.

<property part-nane="pl" nane="font">Hel veti ca-bol d</ property>
<property part-name="pl" nane="title">Char: &anp; </ property>
<property part-name="pl" nanme="content">

<! [CDATA[Character &]]>
</ property>

= A<reference> element. In thiscase the property is set to the value of the <reference>
element (see Section 5.6.2). In the following example®, the value of font in the part with id
plis set to the value Helvetica-bold.

<property part-nane="pl" nane="font">
<reference constant-nane="font-name"/>
</ property>

<cont ent >
<constant id="font-nane">Hel veti ca-bol d</ const ant >
</ cont ent >

In the following example, the user interface contains a Java button. When the button is
pressed, the label of the button is set to the content of URL referenceContent.xml. It should
be noted that content from a <reference> element is retrieved during the rendering of the
UIML document, and not during the context from where the <reference> is defined. Thus,
if the contents of referenceContent.xml were changed after the interfaces was initially
rendered, but before the button was pressed the button would not reflect the changes. See
Section 5.6.2 for more information on <reference>.

<interface>
<structure>

<part id="ok" class="JButton">
<part id="label" class="JLabel ">

</ structure>

<behavi or >

<rul e>

L From UIML2JAVAI/referenceURLinAction.uiml.
Harmonia, Inc. Page 37 02/08/2002

UIML 3.0 Language Specification

<condi ti on>
<event part-nanme="ok" class="actionPerforned"/>

</condition>

<action>
<property part-nane="|abel" nane="text">

<reference url-nane="referenceContent.xm"/>

</ property>

</ action>

</rul e>

</ behavi or >

<peer s>
<presentation base= "Java_1.3 Harnonia_ 1.0"
source= "http://uim.org/tool kits/
Java_1.3_Harnoni a_1. 0. ui m #vocab"/ >
</ peer s>

= Another <property> element. The value of one property can be set to the value of another
property. For example, suppose we want to set the font of part pl to whatever font p2
currently has. The following UIML achievesthis:

<property part-nane="pl" nanme="font">
<property part-name="p2" nane="font"/>
</ property>

The nested <property> element gets the font of p2. The nested property does a get because
it isnested in another <property> element, as explained in Section 5.5.1.2. That returned
value then becomes the value of the font property in part pl.

It should be noted that defining a child <property> element of a nested <property> element is
undefined, and does not provide any additional meaning.

= A<call> element. Asexplainedin Section 5.7.8, acall isan invocation of code, such as
calling amethod in an object or afunction in a script described in the <logic> element. In
this case the property is set to the return value of the invocation. The following example? is
an HTML user interface in which the content of a paragraph is set to the return value of
method random in object DoMath. The call is performed at render time.

<uim>
<interface>
<structure>

<Pre id="pr1" content="Nunber 1. "/>
<P id="ranl"/>

</ structure>

<styl e>

<property part-nane="ranl" nane="content">
<cal | name="DoMat h. randont'/ >

2 From UIML2HTML/L ocal External Call-RenderTime.uiml.

Harmonia, Inc. Page 38 02/08/2002

UIML 3.0 Language Specification

</ property>

</style>
<peer s>
<presentation how="repl ace"
source="HTM._3. 2_Harnoni a_1. 0. ui m #vocab"
base= "HTM._3.2 Harnmonia_1.0"/>
<l ogi c>
<d- conponent i d="DoMath" naps-to="TestFunctionCalls">

<d- et hod i d="random’ naps-to="generateRandont
return-type="int"/>
</ d- conmponent >
</l ogi c>
</ peer s>
</uim>

The <logic> element (contained in the <peers> element of a UIML document) defines the
code to which DoMath.random corresponds and how to invoke that code; see Section 6.3.

55.1.4 Using event-class with <property> Elements

Just as <part> elements may have properties, so too may <event> elements have properties.
There are some restrictions on using <property> with the event-class attribute. A <property>
with the event-class attribute can only be used if the following apply:

» The<property> is aproperty-get operation (unless the nameisrendering). Therefore the
parent of <property> must be another <property>, <op>, or <param>

* The <property> has <action> as an ancestor.
» Theancestor <rule> of the <property> hasin its <condition> child an <event> element.

The <property> naming an event-class always returns the value corresponding to the event
occurrence named in the <condition>.

The three restrictions above arise because events normally represent transient eventsin a
program, so it makes sense to query date associated with an event when the event occurs, but not
later in the lifetime of the user interface.

Example

In the following UIML fragment, whenever amouse click occurs for part P, method
doSomething in object O is called with the x position of the mouse when clicked as an argument.

<rul e>
<condi ti on>
<event part-class="P’" class="MuseLi stener. nouseC icked”/>
</condition>
<action>
<cal | name=" 0O doSonet hi ng” >

Harmonia, Inc. Page 39 02/08/2002

UIML 3.0 Language Specification

<par anmp<property event-cl ass="MuselLi st ener. nouseC i cked”
name="X"/ >
</ par anp
</call>
</ action>
</rul e>

55.1.5 Resolving Conflicting Property Values

A UIML document may contain more than one <property> element that sets the same property
name for the same property. Thisisillustrated by the following example®:

<uinm >
<interface id="nyinterface">
<structure>

<part id="Buttonl" class="JButton">
<styl e>
<property name="text">Am | yel | ow?</ property>

<property nane="background">bl ue</ property>

</styl e>
</ part >

</ structure>

<styl e>

<property part-nane="Buttonl" name="background">orange</ property>
<property part-nanme="Buttonl" name="background">yel | ow</ property>

</styl e>
</interface>
<peer s><presentati on base="Java_1.3 Harnoni a_1. 0"/ ></peers>
</uim>

In the example above, the background color of Buttonl is set in three <property> elements, to
blue, orange, and yellow. A rendering engine to resolve such a conflict must follow the
following semantic rule:

Whenever a conflict arises between any two <property> elementsin a UIML document,
the <property> element that appears |ast in the canonical representation of the document
must be used and the others must be ignored.

By the above rule, the button will have a background color of yellow in the preceding UIML
document. Note that in canonical form, <property> elements whose grandparent is interface are
appended to the end of the <style> element whose parent is the part or parts to which the
propertiesrefer. (The relative order of the <property> elementsis preserved when they are
moved.)

% From UIML2JAVAI/PropOrder0.uiml.
Harmonia, Inc. Page 40 02/08/2002

UIML 3.0 Language Specification

In the following example®, the Button1, Button2, and Button3 have background colors red,
yellow, and green, respectively:

<ui m >
<interface id="nyinterface">
<structure>

<part id="Buttonl" class="JButton">
<styl e>
<property name="text">Am | red?</property>
<property name="background">yel | ow</ property>
</styl e>
</ part >

<part id="Button2" class="JButton">
<styl e>
<property name="text">Am | yel | ow?</ property>
</styl e>
</ part >

<part id="Button3" class="JButton">
<styl e>
<property name="text">Am | green?</property>
</styl e>
</ part >

</ structure>

<styl e>
<property part-class="JButton" nane="background">green</property>
<property part-name="Buttonl" name="background">red</property>
<property part-name="Button2" name="background">yel | ow</ property>
</style>
</interface>
<peer s><presentation base="Java_1.3 Harnoni a_1. 0"/ ></peers>
</uim>

In canonical form, a<property> element with attribute part-classis copied to the <style>
element of each <part> element in the part-class. Thus the canonical form of the preceding
UIML becomes the following:

<ui nm >
<interface id="nyinterface">
<structure>

<part id="Buttonl" class="JButton">
<styl e>
<property name="text">Am | red?</property>
<property name="background">yel | ow</ property>
<property name="background">green</ property>
<property nanme="background">red </property>
</style>
</ part>

* From UIML2JAV Al/PropOrder3.uiml.
Harmonia, Inc. Page 41 02/08/2002

UIML 3.0 Language Specification

<part id="Button2" class="JButton">
<styl e>
<property nane="text">Am | vyel | ow?</property>
<property nane="background">green</ property>
<property nane="background">yel | ow</ property>
</styl e>
</ part>

<part id="Button3" class="JButton">
<styl e>
<property name="text">Am | green?</property>
<property name="background">green</ property>
</style>
</ part>

</structure>
</interface>
<peer s><presentati on base="Java_1.3 Harnoni a_1.0"/></peers>
</uim>

Therefore the last <property> element for each <part> element is used, resulting in Buttonl,
Button2, and Button3 having background colors red, yellow, and green, respectively.

A rendering engine must evaluate all <property> elements for a given part in textual order and
adhere to the conflict resolution policy described above when dealing with multiple conflicting
<property> elements. Implementations of this policy are beyond the scope of this document,
provided that the end result guarantees that the effect is equivalent to evaluating all conflicting
<property> elements.

5.5.2 Using Properties to Achieve Platform Independence

One of the powerful aspects of UIML isthe ability to design a UIML document that can be
mapped to multiple platforms. Thisis achieved by a special property called rendering.

To illustrate the use of rendering, let'slook at an example. Suppose we were going to create a
Ul specifically for Java AWT. First our UIML document would need to specify that it uses a
vocabulary for Java AWT. Thisisdone by a presentation element (exemplified earlier in
Section 2.2.1):

<peer s>
<presentation base="JavaAW 1.3 Harnmonia_ 1.0"/>
</ peer s>

The above UIML fragment names base attribute that maps to a URI that defines the vocabulary.
JavaAWT 1.3 Harmonia_ 1.0.uiml can be viewed as a black box by the UIML author. (It
actually contains a <presentation> element, discussed in Section 6.2.)
JavaAWT 1.3 Harmonia 1.0.uiml uses al Java AWT class names as Ul widget names. Button,
List, and so on. The UIML author can then directly use these names as class names when
defining parts:

<structure>

Harmonia, Inc. Page 42 02/08/2002

UIML 3.0 Language Specification

<part class="Button" id="subnitButton"/>
</structure>

On the other hand, suppose we want to design a UIML document that could be mapped either to
Java AWT or to Java Swing. And suppose the Web resource named in the <peers> element
introduced all the Swing class names as vocabulary to use in the UIML document. Now if we
want to map the submitButton either to an AWT Button or to a Swing JButton, then we could not
make submitButton's class Button. Instead, UIML permits the introduction of a psuedo-name
chosen by the UIML author. Suppose we choose as our class name AWTor SvingButton. Our
UIML fragment above then becomes this:

<structure>
<part class="AWor Swi ngButton" i d="subnitButton"/>
</structure>

Now comesthe key idea. The style element is used to map AWTor SvingButton to either Button
or JButton:

<style id="AWr-specific">
<property part-class="AWor Swi ngBut t on" nanme="renderi ng"
>But t on</ pr operty>

</styl e>

<style id="Sw ng-specific">
<property part-class="AWor Swi ngBut t on" nanme="renderi ng"
>JBut t on</ property>

</style>

If the rendering engine is invoked with style name AWT-specific, then the submitButton will map
to an AWT button; otherwise if Swing-specific is used, then the submitButton maps to JButton.

The above example is aso very useful in adynamic Ul, where the binding of a part (e.g.,
submitButton to Button versus JButton) can change every time the Ul isrendered. Inthe
example below, each time the UIML document is rendered, the renderer executes the <call>
element, and the return value of the call is either the string “Button” or “JButton”. Therefore
sometimes when the Ul isrendered part submitButton will be an AWT Button and other times a
Swing JButton. This might be useful if the Ul is sometimes displayed on various devices, all of
which implement AWT, and only some of which implement Swing.

<part class="AWor Swi ngButton” id="submnitButton”>
<styl e>
<property name="rendering”><call nanme="X get Rendering”/></property>
</styl e>
</ part>

Another example of the use of rendering for a part-name or part-classis for Ulsthat contain the
results of searches. The search result might be a table, and one column of the table might contain
images on one search but text on another search. The choice of table column parts being images
versus text would be determined by a<call> element to get the part rendering, similar to the one
illustrated above.

Harmonia, Inc. Page 43 02/08/2002

UIML 3.0 Language Specification

Given this basic example, some variations are possible. First, the style element can specify the
rendering property not only for part-class, but also part-name. In this case, the rendering
specified only applies to the part with the specified part-name.

Second, the rendering property can also be specified for event-class. One of the powerful
aspects of UIML isthe naming of events. In aconventiona language (e.g., Javascript) events
have names reflective of the interface components to which they correspond (e.g., OnClick for a
button). However one UIML document may be mapped to several different platforms. An
interface part p might be a button on platform 1 or amenu item on platform 2. Therefore the
<event> element for part p specifies a class attribute that can be set to whatever the UIML
author wishes (e.g., ButtonOrMenuSelection). The <style> element in the UIML document then
map the name ButtonOr MenuSel ection to a platform-specific name. In this case there would be
<style> elements with two different ids:

<style id="Platforml">...</styl e>
<style id="Platform">...</styl e>

The <style> element then maps the generic name (e.g., ButtonOrMenuSel ected) to a button
selection in platform 1 and a menu item selection in platform 2 using the rendering property:

<style id="Platform">
<property event-cl ass="ButtonOr MenuSel ect ed”
nane="r enderi ng" >But t onSel ect ed</ pr operty>
<styl e>

<style id="Pl atfornk">
<property event-cl ass="ButtonO MenuSel ect ed”
nanme="r enderi ng">MenuSel ect ed</ pr operty>
<styl e>

(The values ButtonSel ected and MenuSelected are part of the vocabulary of the target platform,
defined in the <peers> element.)

As a second example, the dictionary example of Section 2.2.1 contains the following:

<styl e>
<property event-cl ass="LSel ect ed”
nanme="r enderi ng” >i t entt at eChanged</ property>
</styl e>

<behavi or >
<event part-nanme="Terns" class="LSel ected">
</ behavi or >

The behavior element describes what actions to take in response to various user interface events
(see Section 5.7). The <event> element refersto an event of class LSelected, named to represent
alist selection of one of the animalsin the dictionary list. The <style> element specifiesthat all
events with class LSelected are mapped to invocations of the itemStateChanged event in the Java

Harmonia, Inc. Page 44 02/08/2002

UIML 3.0 Language Specification

AWT class ItemEvent. If we were to modify the code in Section 2.2.1 to map to another
platform, we could then map LSelected to something else in another toolkit by specifying a
different rendering property for event-class L Selected.

55.2.1 Rules to Assign "rendering™ Property

A UIML renderer must obey the following rules in assigning each part and event element a
rendering property.

1. If a<property> element exists that contains attribute name="rendering” and one of the
attributes part-class, event-class, part-name, or event-name use the <property> element value as
the rendering.

2. Otherwise, the value of the rendering property is, the value of the class attribute for the <part>
or <event> element that is found to be associated with this instance of <property> (thisinstance
refersto the property in question). For example:

<part class="JButton” id="Bl1">
<styl e>
<property nane="rendering”../>

The above defines that rendering of B1 is JButton. (The <presentation> element then defines the
mapping of JButton to a Ul widget in the toolKkit, such as javax.swing.JButton.)

5.6 The <content> Element

DTD

<! ELEMENT content (constant*)>
<I ATTLI ST cont ent

id NMTOKEN #1 MPLI ED
sour ce CDATA #| MPLI ED
how (append| cascade| r epl ace) "repl ace"

export (hidden|optional|required) "optional">

Description

A part in aUl can be associated with various content, such as words, characters, sounds, or
images. UIML permits separation of the content from the structurein aUl. Separation is useful
when different content should be displayed under different circumstances. For example, a Ul
might display the content in English or French. Or a Ul might use different words for an expert
versus a novice user, or different icons for a color-blind user. UIML can expressthis.

Normally one would set the content associated with a Ul part through the <property> element:

<structure id="GUJ ">
<part class="button" id="affirnmativeChoice"/>
</structure>

Harmonia, Inc. Page 45 02/08/2002

UIML 3.0 Language Specification

<styl e>
<property part-nane="affirmati veChoi ce" nane="I| abel ">Yes</ property>
</style>

In the UIML fragment above, the button label is hard-wired to the string "Yes'. Suppose we
wanted to internationalize the interface. 1n this case UIML allows the value of a property to be
what a programmer would think of as a variable reference using the <reference> element:

<styl e>
<property part-nane="affirmati veChoi ce" name="I abel ">
<reference constant-nane="affirmati veLabel"/>
</ property>
</styl e>

The <reference> element refers to a constant-name, which is defined in the <content> element
inaUIML document. The important concept is that there may be multiple <content> elements
inaUIML document, each with a different name. When the interface is rendered, one of the
<content> elements is specified, and the <content> elements inside are then used to satisfy the
<reference> elements.

Thisisillustrated in the following example. The Ul contains two parts. The class name “ button”
suggests that each part be rendered as a button in agraphical Ul. (The <style> element [Section
5.5] actually determines how the class called “button” is rendered — it may be rendered as radio
buttons or avoice response.) The button labels are references to constant-name
"affirmativeLabel" and "negativeLabel". There are three alternative definitions of these
constant-names, corresponding to three languages: English, German, or slang English. Thus
three content elements are defined, one for each language. Within each <content> element one
or more <constant> elements are used to provide the actual literal string that appearsin the Ul
(e.g., “Yes’ for English but “OK” for slang English).

When the interface is rendered, a mechanism outside the scope of this specification supplies a
content name (either English, German, or EnglishSang). The <content> element whose name
matches the supplied name is then used, and all other <content> elements areignored. Thisthen
determines whether the value of the label property for the "affirmativeChoice" buttonis"Yes",
"Ja', or "OK." (If the supplied name does not match the id attribute of any <content> element,
then the interface cannot be rendered.)

Example

<structure id="GUJ ">
<part class="button" id="affirnati veChoice"/>
<part class="button" id="negativeChoice"/>
</structure>

<styl e>
<property part-nanme="affirnati veChoi ce" name="I|abel ">
<reference constant-nane="affirmati veLabel"/>
</ property>
<property part-nane="negati veChoi ce" nanme="| abel ">

Harmonia, Inc. Page 46 02/08/2002

UIML 3.0 Language Specification

<ref erence constant-nane="negati velLabel "/ >
</ property>
</style>

<content id="English">
<constant id="affirmati veLabel" >Yes</property>
<constant id="negativeLabel" >No</ property>
</ cont ent >

<content id="German">
<constant id="affirmati veLabel" >Ja</property>
<constant id="negativelLabel" >Nei n</ property>
</ cont ent >

<content id="EnglishSl ang">
<constant id="affirmati veLabel" >OK</property>
<constant id="negativelLabel" >No</ property>
</ content >

The last <content> element could also be shortened, by using the sour ce attribute, discussed in
Section 7.2, so that EnglishSang inherited the negativeLabel from English as follows:

<content id="EnglishSlang” source="English” how="cascade">
<constant id="affirmativelLabel” >OK</constant>
</ content >

5.6.1 The <constant> Element

DTD

<! ELEMENT constant (constant)*>

<I ATTLI ST const ant
id NMTOKEN #1 MPLI ED
sour ce CDATA #| MPLI ED
how (append| cascade]| r epl ace) "repl ace"
export (hidden|optional|required) "optional”
nodel CDATA #1 MPLI ED
val ue CDATA #1 MPLI ED>

Description

<constant> elements contain the actual text strings, sounds, and images associated with Ul parts
from the <part> element. Each <constant> element isidentified by an id attribute and is
referenced by the <reference> element.

Example

The following example shows how to create <constant> el ements that point to a string, a sound
clip, and an image. Similarly, you can create constants that point to video clips, binary files, and
other objects. Note the following URI’ s are for demonstration purposes and may not be active.

Harmonia, Inc. Page 47 02/08/2002

UIML 3.0 Language Specification

<cont ent >
<constant id="Nane" val ue="U M."/>
<constant id="Sound" source="http://uinm.org/uimnm.wav"/>
<constant id="Inmage" source="http://uim.org/uinm.jpg"/>
</ content >

The <constant> element can also be used to represent literal strings used inside the <condition>
element (see Section 5.7.3). For example:

<condi ti on>
<equal >
<event part-nane="inYear" class="filled" nane="content"/>
<constant val ue="2001"/>
</ equal >
</condition>

5.6.2 The <reference> Element

DTD
<! ELEMENT r ef erence EMPTY>
<! ATTLI ST reference
const ant - nanme NMIOKEN #| MPLI ED
url - nane NMITOKEN #| MPLI ED>
Description

The <reference> element references the value of the <constant> element specified by the
constant-name attribute. Alternatively the <reference> element may specify a url-name attribute
that contains a URI to an external document contai ning <constant> elements.

Example uses of the <reference> element are given in Sections 5.5.1.3 and 5.6.
There are several usesfor references:

= The sametext string might be used in two or more placesin aUIML document. In thiscase
a<constant> element can be defined containing the string and anywhere the string is
required (e.g., as values of a property) the <reference> element can be used. Thus, if we can
modify the text in the <constant> element, the change propagates to all the placesin the
UIML document that is referenced.

= Often aninterface part isinitialized to contain several text strings, and when an event later
occurs for the part, an <equal> element tests to see which text string the end-user selected in
triggering the event. (For example, lists and choicesin Java AWT contain multiple text
items.) Inthis case, a<constant> element can be defined in the content element, and then
the part's values can beinitialized in the style element using a <property> element

Harmonia, Inc. Page 48 02/08/2002

UIML 3.0 Language Specification

containing a<reference> element asitsvalue. Inthe <behavior> element, the <rule>
element handling events for the part can test whether the item selected corresponded to the
<constant> element by using a <reference> element. An example of this appearsin Section
2.2.1.

The semantics of a<reference> element isto replace the element with the <constant> element
whose id attribute matches the constant-name attribute of the <reference> element. Or if the
url-name attribute is specified, to replace the <constant> element contained within the document
located by the URI given as the value of the url-name attribute. If no such element exists, then
the UIML document cannot be rendered.

Implementations of UIML should retrieve content from <reference> elements during the context
of rendering regardless of the context of from where the <reference> is being defined.

5.7 The <behavior> Element
DTD

<! ELEMENT behavi or (rul e*)>
<! ATTLI ST behavi or

id NMTOKEN #1 MPLI ED
sour ce CDATA #1 MPLI ED
how (append| cascade| r epl ace) "repl ace"

export (hidden|optional|required) "optional">

Description

The behavior element describes what happens when an end-user interacts with a user interface.
For example, the <behavior> element might describe what happens when an end-user presses a
button. The <behavior> element also describes when and how the user interface invokes
methods (recall from Section 1.4 that a method refers to functions, procedures, database queries,
and so on.)

The <behavior> element contains a sequence of rules. Each rule contains a condition and a list
of actions. Whenever a condition holds, the associated action is performed. If the condition for
more than one rule holds simultaneously, the algorithm in Appendix A is used to determine order
of execution.

* UIML allowstwo types of conditions:

0 Thefirst type of condition holds when an event fires (e.g., abutton is pressed in
the UI).

0 The second holds when an event fires and some logical expression of the data
associated with the event evaluates to be true (e.g., alist selection is made and the
selected item is"cat" — the first <condition> element in the dictionary examplein
Section 2.2.1).

Harmonia, Inc. Page 49 02/08/2002

UIML 3.0 Language Specification

(UIML does not allow other conditions, to avoid implementations that are
computationally expensive [e.g., continuous polling to determine when a condition holds]
or impossible with simple Ul toolkits[e.g., WML]).

Actions can be internal to the UIML document -- specifying a change in a property's
value -- or external -- invoking a method in a script, program, and so on. Thelist of
actionswithin aruleis executed in the order they appear in aUIML document, as
described in Appendix A.

A unique aspect of UIML isthat events are also described in a device-independent fashion, by
giving each event a name and identifying the class to which it belongs. Aswas the case for
<part> elements, the UIML author chooses the name and class identifiers for events, and those
names are mapped to an event in the underlying platform in the <style> and <peers> elements.
For example, the end-user might define an event with class="selection,” and the <peers>
element for aJava AWT interface might map class “selection” to ajava.awt.MouseEvent.

5.7.1 Examples of <behavior>, < rule>, <condition>, and <action>

Elements

UIML alows the following actions in a behavior to be specified:

» Assignavalueto a part’sproperty. The value can be any of the following: a constant value,
areference to a constant, the value of property, or the return value of a call.

<behavi or >
<rul e>

<condi ti on>

<l--A->

<event class="ButtonSel ected" part-nanme="b1l">
</ condition>

<acti on>

<l--1-->
<property part-name="bl" name="col or"/>bl ue</ property>

<l--2-->

<property part-nane="b2" name="color"/>
<reference constant-nane="green"/>

</ property>

<l--3-->

<property part-nane="b2" name="color"/>
<property part-nane="bl" name="color"/>

</ property>

<l--4-->
<property part-nane="b3" name="col or"/><
cal | nane="server Qbj ect. get Col or"/></property>

Harmonia, Inc. Page 50 02/08/2002

UIML 3.0 Language Specification

</ action>

</rul e>
</ behavi or >

The <behavior> element above consists of onerule. Theruleisexecuted whenever an
event of class “ButtonSelected” for part “bl” fires. Let’sassumethat “bl,” “b2,” and
“b3” are buttons (established in <part> elements not shown), and “ ButtonSelected” isa
button click (established in a <peers> element not shown).

Thereis one <action> element associated with therule. That action contains four
elements that set propertiesin the interface, labeled 1 to 4 by comments.

1. Thefirst action (labeled “<!--1-->") sets property “color” of the button to blue when
button bl is clicked.

2. The second action sets the color of button b2 to a constant named “green” (and defined in
the <content> element [see Section 5.6], not shown here).

3. Thethird action sets the color of button b2 to whatever color bl currently has. Note that
this action is executed after 1 and 2 above were executed, so button b2's color is set to
blue (because button b1’ s color was set to blue in action 1 above).

4. Thefourth action sets the color of button b3 to the return value of a call to something
called “serverObject.getColor”. The <d-component> element in the <logic> element
(discussed in Section 6.4.1) defines what “ serverObject.getColor” is mapped to -- for
example amethod called “ getColor” that takes no parametersin an object instance named
“serverObject.” Note that no parameters are passed by the <call> element, so method
getColor either must take no arguments or must have default values for all its formal
arguments. Note that the return value of the call is converted to a character string,
because the value of the <property part-name="b3" name="color”> element is a character
string. Finaly note that white space (spaces, tabs, line breaks) is significant in an XML
document. Therefore the right angle bracket of the <property> tag must be immediately
followed by the left angle bracket of the <call> tag, and similarly the right angle bracket
of <call> must be immediately followed by the left angle bracket of the </property> tag.

e Call amethod. The function or method call can take any number of arguments. Each
argument to the call can be any of the following: a constant value, areference to a constant,
the value of property, or the return value of another call.

<behavi or >
<rul e>

<condi ti on>

<l--B-->

<event class="ButtonSel ected" part-nanme="bl">
</condition>

<action>

<l--5-->
<call nanme="m storeData">

Harmonia, Inc. Page 51 02/08/2002

UIML 3.0 Language Specification

<par anp5</ par ane
<par anp<r ef erence const ant - nanme="gr een"/ ></ par an»

</call>

<l--6-->
<cal | name="m storeCol or">
<par am name="a3" ><
property part-nanme="bl" nane="col or"/
></ par anp
</call>

<l--7-->
<cal | name="n. Di spl ayDat a" >

<par amp<cal | nane="server Qbj ect. get Col or"/ ></ par an

<par anp<cal | nane="q. get Par ant ><par an>5</ par ane</ cal | ></ par an>
</call>

</ action>

</rul e>
</ behavi or >

The <behavior> element above consists of onerule. Theruleis executed whenever an
event of class “ButtonSelected” for part “b1” fires. Let’sassumethat “bl” isabutton
(established in a<part> element not shown), and “ButtonSelected” is a button click
(established in a<peers> element not shown).

Thereis one <action> element associated with therule. That action contains three
elements that set propertiesin the interface, labeled 1 to 3 by comments.

1. Thefirst action (labeled “<!--1-->") calls a method named “m.storeData’” when button b1
isclicked. The method takes two arguments; the first is 5 and the second is the value of a
constant named “green” (and defined in the <content> element [see Section 5.6], not
shown here).

2. The second action isto call method “m.storeColor” with one parameter, whose valueis
the current color of button bl. The attribute name="a3" in the <param> element is used
in the following situation: “m.storeColor” has more than one formal parameter, and one
formal parameter isnamed “a3”, and all other formal parameters have default values.

3. Thethird action calls method “n.DisplayData’ with two parameters. Thefirst isthe
return value of a call to method “getColor” in object “serverObject.” The second isthe
return value of acall to method “getParam(5)” in object “g.”

* Fireanevent. Anevent can befired from the <action> element. An <action> element may
contain at most one <event> element, and this <event> element must appear as the last child
of <action>.

<behavi or >
<rul e>

Harmonia, Inc. Page 52 02/08/2002

UIML 3.0 Language Specification

<condi tion>

<I--CG->

<event class="ButtonSel ected" part-nanme="b1l">
</ condi ti on>

<action>

<l--8-->

<!--executed when bl is clicked -->

<event class="ButtonSel ected" part-nanme="b2"/>
</ action>

</rul e>

<rul e>

<condi ti on>

<I--D->

<event class="ButtonSel ected" part-nanme="b2">
</ condi ti on>

<acti on>
<l--9-->
<l --executed when bl or b2 is clicked -->
<cal | name="f 1"><par anmr10</ paranp<cal | / >
</ action>

</rul e>
</ behavi or >

Assume that both “b1” and “b2” are rendered as buttons and “ ButtonSelected” is mapped
to the event that is fired when a button is pressed. Whenever the end-user clicks button
“b1” then the first rule will evaluate to true (event labeled “ C”) and fire another event that
will simulate the end-user pressing “b2” (action labeled “8”). Then the rendering engine
will evaluate the condition for all the rules again (due to the algorithm in Appendix A),
and the second rule will evaluate to true (event labeled “D”) and call f1(10) (action
labeled “9”).

This feature must be used with care, to avoid creating an infinite loop (e.g., if the second

<action> element was "<event cl ass="ButtonSel ected" part-
name="b1l"/ >" to simulate aclick on button b1, instead of the <call> element).

Harmonia, Inc. Page 53 02/08/2002

UIML 3.0 Language Specification

5.7.2 The <rule> Element

DTD
<l ELEMENT rul e (condition,action)?>
<I ATTLI ST rul e
id NMTOKEN #| MPLI ED
sour ce CDATA #| MPLI ED
how (append| cascade| r epl ace) "repl ace"
export (hidden|optional|required) "optional">
Description

The <rule> element defines a binding between a <condition> element and an <action>
element. Whenever the <condition> element within the ruleis satisfied, then any elements
inside the <action> element are executed sequentialy (i.e., property assignment, externa
function or method call, or event firing). See Section 5.7.1 for an example and further
explanation. Also, it ispossible for multiple rulesto be satisfied at any time; Appendix A
defines how arendering engine must handle this situation. See Section 5.7.1 for examples.

5.7.3 The <condition> Element

DTD

| <! ELEMENT condi tion (equal | event | op) >

Description

The <condition> element contains as a child either an <event> element or a Boolean expression.
The <action> element associated with this <condition> by the parent <rule> element is
executed whenever either the event named in the <event> element fires or the Boolean
expression in the <equal> or <op> element evaluatesto true. See Section 5.7.1 for examples.

5.7.4 The <equal>= Element

DTD

<l ELEMENT equal (event, (constant|property|reference|op))>

Description

The <egual> element is a Boolean expression with value true or false. Every <equal> element
must have exactly two children. Each child must be a <constant>, <property>, <reference>, or
<op> element. The semantics of <equal> are as follows. Whenever the two children named in
the <equal> element resolve to the same value then the <equal> element has value true.
Otherwise the <equal> element has value false. Section 2.2.1 illustrates the <equal> element.

Harmonia, Inc. Page 54 02/08/2002

UIML 3.0 Language Specification

5.7.5 The <event> Element

DTD

<! ELEMENT event EMPTY>

<! ATTLI ST event
cl ass NMIOKEN #1 MPLI ED
part-nanme NMIOKEN #| MPLI ED
part-class NMIOKEN #| MPLI ED>

Description

The <event> element is used in two contexts;

» Asthechild of a<condition> element. The parent condition is satisfied whenever the
event occurs. (For example, see event labeled “A” in Section 5.7.1.)

» Asthechild of an <action> element. The event isfired. (For example, see event labeled
“8"in5.7.1)

5.7.5.1 Exceptions as Events

<event> elements are used to represent spontaneous events that happen in the system. The most
common example of these type pf events are user generated inputs like mouse clicks and
keystrokes. However, user actions are not the only events that can be modeled by <event>
elements of UIML; exceptions generated programmatically aso fit into this model. Exceptions
occur when something unexpected happens in the underlying system as the result of a <call>
element’ s communication to that system (see section 5.7.8 for more details on the <call>
element). In the example below, the exception MyException is thrown by some method call to
the underlying backend. This code snippet would catch the exception and execute the action
defined in the <action> element.

<ui nl >

<rul e>
<condi tion>
<event class="MWException”/>
</ condition>
<acti on>

</ action>
</rul e>

<uim >

Note that exceptions are treated differently from normal eventsin the following way; exceptions
cannot be associated with any particular part. Rendering engines should produce a warning if
the part-name attribute is associated with an <event> element that represents an exception.

Harmonia, Inc. Page 55 02/08/2002

UIML 3.0 Language Specification

<event> elements defining exceptions as shown above will result in the named exception being
caught, no matter whereit isthrown from.

57.5.2 Extracting Data from Events

Events often contain useful datathat may be needed by other aspects of the user interface. For
example, if the system detects a mouse click, it may be useful to extract the coordinates of the
mouse click for display elsewherein the interface. To facilitate this type of interaction, UIML
recognizes <property> elements as children of <event> elements. These properties represent
datawrapped up in the event and can be used to extract the data from the event. Data of thistype
can be accessed using the following <property> syntax:

<property event-class=" MyEvent” name="MyEventData’ />

Since <event>'s cannot be named, this always refersto the last event of the specified classto
occur.

5.7.5.3 Special Events

UIML facilitatesinitializing a page (similar in effect to an onLoad event in HTML) through the
use of a special event-class named “init”. Theinit event classis used as achild of a <condition>
element and the <action> associated with the condition containing the init <event> will be
executed before the page isrendered. Thus users of UIML can use the init event for operations
like initializing data objectsin the backend or ensuring that pre-conditions to rendering are met
before actual rendering.

5.7.6 The <op=> Element
DTD

<! ELEMENT op (constant|property|reference|call|op|event)*>
<! ATTLI ST op
name CDATA #REQUI RED>

Description

The <op> element allows multiple complex logic conditions to be expressed in UIML. Inthe
previous examples simple conditions were used to control whether or not e ements under
<action> were executed. The simplicity of the previous examples allow for only one condition
to hold true, usually this was reserved to seeif a particular <event> had occurred. Even with the
functionality introduced with the <equal> tag, an author could only evaluate two different
conditions; furthermore the <equal> tag provided alimited logical condition, testing only if two
values were equal. However with the <op> element, basic logical conditions (less than, greater
than, equal, not equal, and, or...) may be expressed along with the ability to structure complex
condition statements involving multiple values.

Harmonia, Inc. Page 56 02/08/2002

UIML 3.0 Language Specification

57.6.1 Semantics of <op=>

The name attribute of <op> describes the conditional applied to the expression that you wish to
create. The value of the name attribute can either be symbols representing operators or the
written name of the operator itself. Thefollowingisalist of valid operators:

Name Operator Definition

equal == A ==B Returnstrueif A equalsB.

notequal I= A!=B Returnstrueif A does NOT equa B.

and && A&&B Returnstrueif and only if both A and B
aretrue.

or | A||B Returnstrueif either A or B istrue.

lessthan < A<B Returnstrueif A islessthan B.

greaterthan | > A>B Returnstrueif A isgreater than B.

The children of <op> are the operands for the conditional. Thefollowingisalist of valid
children elements each of which have different semantics from each other.

1. Thechildisa<constant>, <property>, <reference>, or <call> element :
The string value of the element is used as the operand for the conditional. The following
exampleillustrates a conditional that comparesif two values are equal to each other.

<condi ti on>
<op name="equal ">
<property nane="val ue" part-nane="city"/>
<constant val ue="'Los Angeles'"/>
</ op>
</condition>

2. Thechild isan <event> element:

The operand for the conditional is the boolean value resulting from the eval uation of
determining whether that specified event was caught. The following conditional hold
trueif the event “buttonClicked” was caught and the value of the <property> element
was equal to the constant string “Los Angeles’.

<condi ti on>
<op nane="and">
<event class="buttonC icked" part-name="city"/>
<op name="equal ">
<property nane="val ue" part-nanme="city"/>
<constant val ue="Los Angel es"/>
</ op>
</ op>
</condition>

Harmonia, Inc. Page 57 02/08/2002

UIML 3.0 Language Specification

3. Thechildisan <op> element:

The operand for the condition is the boolean value resulting from the evaluation of the
<op> statement. Nested <op> statements allow expressions to contain multiple operators
with multiple operands.

5.7.6.2 Resolution of Conditional Statements

The introduction of <op> element brings upon instances where certain actions may want to be
defined as aresult from the evaluation of the <op> element. Three new e ements <when-true>,
<when-false>, <by-default> have been introduced to define a set of actions when a conditional
isfound to be true, false, or undefined. The elements are found as children of <action>.

5.7.7 The <action> Element

DTD

<I ELEMENT action (((property|call|restructure)*, event?)]| (when-
true?, when-fal se?, by-default?))>

Description

The <action> element contains one or more elements that are executed in the order they appear
inthe UIML document. Each element can be either a<property> element to set a property of a
part (e.g., 1to4in Section 5.7.1), a<call> element to invoke a method (e.g., 5to 7 in Section
5.7.1), a<restructure> element to restructure an interface (Section 5.7.11), an <event> element
to fire another event (e.g., 8in Section 5.7.1), or a <when-true>, <when-false>, <by-default>
element to determine a set course of actions depending on the value of the conditional expressed
in the <condition> element (Sections 5.7.12, 5.7.13, 5.7.14). The <event> element, if present,
must be the last element inside the action. Asresult of this, you can only fire one event within
the <action> element.

5.7.8 The <call= Element

DTD

<! ELEMENT cal | (parant)>
<! ATTLI ST cal |
name NMIOKEN #| MPLI ED

Description

The <call> element is an abstraction of any type of invocation of code (that uses alanguage
other than UIML). The code is referred to in this specification as a method, which in Section 1.4
is defined to include functions, procedures, and methods in an object-oriented language, database
gueries, and directory accesses.

Harmonia, Inc. Page 58 02/08/2002

UIML 3.0 Language Specification

57.8.1 Overview on <call=

UIML’ s philosophy on specifying function invocations is to allow the UIML author to freely
choose a set of names for widgets, events, and functions referenced in the <interface> section.
Each of these names is then mapped in the <peers> section to implementing entities (e.g., Swing
user-interface components, methods in memory or remote object instances, entry pointsin
remote procedures, functionsin user scripts, etc.).

For Swing components, the hard work of creating the <peer> mappings has aready been done —
UIML authors need only import an existing body of predefined mappings, instead of writing an
appropriate <peers> section. For object methods, the UIML author must write one <d-
component> element for each object instance whose method or methods are to be invoked (note
that <d-component> is a child of <logic>, whichin turnisachild of <peers>).

The <call> element has one mandatory attribute, name.
A rendering engine executes a<call> element as follows:

1. The engine must locate the method to be invoked.

2. If the method to be invoked takes arguments, the rendering engine then matches the
<param> elementsin the call body to the method’' s formal arguments.

3. Therendering engine converts the argument values from character strings to the type of
the formal parameters.

4. The rendering engine invokes the method.

5. If the method returns a value (attribute return-type in element d-method must have a non-
null value -- see Section 6.4.4), then the value is converted to a character string.

Examples of the <call> element are shown in Section 5.5.1.3 and Section 5.7.1.

If a<call> element has asits grandparent a <style> element and is not the descendent of a
<restructure> element, then the call must be evaluated at render time. Otherwise the call must
be evaluated at runtime. Thereforeif an <action> element describing what to do when a button
ispressed in a Ul contains acall, then the call is executed every time the button is pressed.

Invocation via Direct Specification

Suppose that the UIML document contained an <action> element to invoke method m1 in object
back1, with actual parameters 5 and 10, as in the expression “back1.m1(5,10)". The <action>
element might look like the following:

<behavi or >
<rul e>
<action>
<cal | nanme="backl. m" >
<par anm5</ par anp
<par ant>10</ par anp

</call>
</ action>

Harmonia, Inc. Page 59 02/08/2002

UIML 3.0 Language Specification

</rul e>
</ behavi or >

The d-component element defining backl might look like the following:

<peer >
<l ogi c>
<d- component i d="backl" maps-to="org.uimn .exanple.nyd ass">
<d- net hod i d="nl" nmaps-to="nyFunction">
<d-paramid="pl"/>
<d- param i d="p2"/>
</ d- met hod>
</ d- conmponent >
</l ogi c>
</ peer >

The value of the maps-to attribute of the <d-component> element follows the syntax imposed by
the language in which the rendering engine in use is implemented (Java, in this example). Here,
the <d-component> element maps the name “back1” to the class “org.uiml.example.myClass’,
which in turn contains a method named “myFunction” to which the name “m1” is mapped. In
order to make the invocation “myClass.myFunction(pl,p2)”, the UIML <call> element should
refer to the corresponding values of the id attributes of the <d-component> and <d-method>
elements, hence “back1l.m1”. Given the <action> element above, the rendering engine then
converts the expression “back1.m1(5,10)” into an evaluation of “myClass.myFunction(5,10)".

Note that the id attributes in the <d-param> elements are optional — they serve merely to
document myFunction’s parameter list.

5.7.8.2 Method Parameters and Return Values Types

Often, an object whose methods are to be invoked defines two or more methods which share the
same name, but have different numbers and/or types of formal parameters, in which case
parameter count and type information must be supplied so that the rendering engine can invoke
the proper method. Within a <d-method> element, the number of <d-param> elements denotes
the number of parameters taken by that particular method. Type information isintroduced by
means of the type attribute, as in the following:

<peer >
<l ogi c>
<d- conponent id="backl" naps-to="org.uim.exanple.nmd ass">
<d- net hod id="ml" maps-to="myFunction">
<d- paramid="pl" type="int"/> <l--plis anint-->
<d- param i d="p2" type="int"/> <l--p2is anint-->
</ d- net hod>
</ d- conmponent >
</l ogi c>
</ peer >

If the type attribute is omitted, the parameter type is assumed to be “string” — the value is then
converted into the type required by the function to which the named method maps (i.e.,

Harmonia, Inc. Page 60 02/08/2002

UIML 3.0 Language Specification

“myFunction” in the example above). Thistype conversion is performed in accordance with the
rules of the language in which the rendering engine is implemented.

By default, the return value from a method isignored — it is not made available to the element
enclosing the <call> from which the invocation is made. The return value can be made available
by specifying the return-type attribute of the <d-method> element, as in the following:

<peer >
<l ogi c>
<d- conponent i d="backl" maps-to="org.uinl.exanmple.nmyC ass">
<d-nmet hod id="ml" maps-to="nyFunction" return-type="int”">
<d-paramid="pl" type="int"/>
<d-param i d="p2" type="int"/>
</ d- net hod>
</ d- conmponent >
</l ogi c>
</ peer >

5.7.8.3 Invoking Methods Upon External Objects in RMI, CORBA,
LDAP, and EJB

So far, the examples shown have all made use of objects that are implicitly instantiated within
and managed by the same rendering engine that manages the user interface. UIML itself does
not require or even specify this particular behavior; however, additional details are typically
needed when the object instance whose method is to be invoked resides outside the rendering
engine' s execution space. These details include the class of which the object is an instance and
the object instance’ s location.

For example, consider the mechanicsinvolved in making a Java RMI invocation upon an
external object instance. The location of the Java virtual machine that hosts the external object
instance (e.g., a hostname) must be specified; additionally, the name by which that instance is
registered with the associated RMI registry must also be given. Once the object instanceis
found and areference of typej ava. | ang. Obj ect toitisobtained, that reference must then
be downcast into the proper object class.

The maps-to attribute of the <d-component> element is used to specify the external object’s class
asin the case where the object resides inside the rendering engine' s execution space. The

needed location information is supplied by means of the location attribute, asin the following
example:

<peer >
<l ogi c>
<d- conponent id="backl"
maps-to="org. ui n . exanpl e. nyd ass"
| ocation="rm :// nyHost. nyConpany. com Adder” >

<d-nmet hod i d="nl" maps-to="nyFuncti on"

Harmonia, Inc. Page 61 02/08/2002

UIML 3.0 Language Specification

return-type="int”>

<d- paramid="pl" type="int"/>
<d- param i d="p2" type="int"/>
</ d- met hod>
</ d- conponent >
</l ogi c>
</ peer>

As this example shows, the value of the location attribute is a standard URL, whose syntax
varies with the URL’s protocol, in thiscase, “r m ”. This particular URL states that the remote
object can be found on host “rmyHost . myConpany. cont, and that the object is registered
under the name “Adder ”. Once areference to this object is obtained by the rendering engine,
the reference is downcast to areferenceto class“or g. ui m . exanpl e. myC ass”.

A rendering engine implementation may support any protocol for the location attribute, as long
as the protocol supports obtaining object references. The Java Renderer version 1.0b supports
the protocols and corresponding URL formats shown below.

PROTOCOL URL FORMAT

Rmi rmi://hostname]:port]/registeredname

liop ilop://hostname]:port]/registeredname

Ldap Idap://hostname]:port]/entrypath/entryname
Ejb ejb://hostname[:port]/jndi_name

5.7.9 The <repeat>= Element

DTD

<l ELEMENT repeat (iterator,part*)>
<I ATTLI ST repeat EMPTY>

Description

A <repeat> element must enclose one <iterator> element and a set of one or more <part>
elements. The <part> elements denoted as children of the <repeat> element are repeated with
their children anumber of times designated by the <iterator> element. The <repeat> elements
parent <part> element will not be repeated.

A <repeat> element has the following legal children, ordering of the children does not matter:
» Each <repeat> element must have one and only one <iterator> child. The <iterator>
element denotes how many times the specified interface components will be repeated. |If
more than one <iterator> child is defined than the implementation must produce a
warning and use the last <iterator> defined in textual order.

» Each <repeat> must have one or more <part> elements as children. These <part>
elements represent the components to be repeated. |f the components are named (i.e.

Harmonia, Inc. Page 62 02/08/2002

UIML 3.0 Language Specification

have a defined ‘name’ attribute), then each repetition of the <part> will have‘_#
appended onto the part name where # is the integer representation of this iteration.

Nested repeats are allowed, meaning that a <repeat> can be a child of another <repeat>’s <part>
element descendents (not just first level children). This allows for the dynamic construction of
more complicated interfaces elements such as tables and static depth trees.

5.7.10 The <iterator> Element

DTD

<l ELEMENT iterator (#PCDATA|constant|property|call)>
<! ATTLI ST iterator
id NMTOKEN #REQUI RED>

Description

The <iterator> element defines the number of times the interface components should be
repeated. <iterator> elements can have only one child, but that child can be of four forms:
e Atextstring

e A <call> dement
e A <property> element
* A <constant> € ement

The form of the child isirrelevant so long asit resolvesto an integer value N. Thisinteger N is
then used as the maximum number of iterations that the repeat will perform, counting from 1 to
N. Note that the step value for an <iterator> element is currently always one.

5.7.10.1 Using <iterator> in <property> and <param>

The <iterator> element can be used in <property> and <param> elements to provide an integer
value representing the iteration number that is currently processing. In thisway, the <iterator>
element behaves very similarly to the <property> element.

It isimportant to note that an <iterator> is defined within the scope of the <repeat> it isachild
of. Thus, no other <iterator> elements may have the sameid if they are defined within a
descendent of the current <repeat>. Thisaso impliesthat an <iterator> whose <repeat> isan
ancestor of another <iterator> can be accessed within the scope of the descendent <iterator>.

Example
<ui m >
<part class="JDi al 0g” >

<r epeat >
<iterator id="i">10</iterator>

Harmonia, Inc. Page 63 02/08/2002

UIML 3.0 Language Specification

<part class = “JCheckBox”>
<styl e>
<property nane="text”><iterator id="i"/></property>
</style>
</ part>
</repeat >
</ part>

</U{n1>
The example above demonstrates the two uses of the <iterator> element and would result in the

appearance of a JDialog containing ten JCheckBoxes. The JCheckBoxes would be numbered 1
to 10.

5.7.11 The <restructure> Element
DTD
<l ELEMENT restructure (tenplate)?>
<I ATTLI ST restructure
at - part NMTOKEN # MPLI ED
how (uni on| cascade| repl ace| del et e) “repl ace”
wher e (first|last|before|after) “last”
wher e- part NMTOKEN #| MPLI ED
source CDATA #1 MPLI ED>

Description

The <restructure> element provides away for the Ul to change as a result of some condition
being met. Most conditions include but are not limited to user’ s interactions. For example, using
the Java AWT/Swing vocabulary for UIML, a Ul containing a window with a button and a panel
is described like this:

<structure>

<part class="JFrane" name="F">
<part class="JButton" nane="B"/>
<part class="JPanel" nanme="A"/>
</ part>

</ structure>

Suppose when theinitial Ul is displayed, we wanted only the button to appear. When the user
clicks the button, the panel appears. We would use the <restructure> element to define the
necessary changes within the Ul to remove the button and display the panel.

The semantics of UIML are changed to include the concept of avirtual Ul tree. During the
lifetime of a Ul, the parts comprising the Ul may change. (All parts that exist but are invisible to
an end user are till part of the tree.) The parts present in the Ul have a hierarchical relationship,
therefore forming atree. At any moment during the Ul lifetime, one could enumerate the tree of
parts that currently exist, and thisisthe virtual Ul tree. Each node in this tree correspondsto a
<part> element in the Ul generated by UIML. We call the tree "virtual" because it may or may

Harmonia, Inc. Page 64 02/08/2002

UIML 3.0 Language Specification

not be physically represented as a data structure on a computer, depending on how arendering
engine is implemented.

Theinitial value of the virtual Ul treeisthe content of the <structure> element in aUIML
document. During the Ul lifetime, the virtual Ul tree can be modified by deleting nodes or
adding nodes using the <restructure> tag. (The <restructure> tag is so-named because it modifies
the <structure> section’s representation in the virtual Ul tree.) The <restructure> tag can only
appear inside an <action> element in UIML.

5.7.11.1 Syntax of <restructure>

The syntax of <restructure> follows:

<restructure at-part="[part-nanel]"
how="append| cascade| repl ace| del et e"
where="first|last|before|after"
wher e- part ="[part-nane2] "
source="[tenpl ate-1ocation]">

The <restructure> element may not contain abody if one of the following holds:

» The source attribute is present
* how="delete" is present

Otherwise the <restructure> element must contain a body, and that body must contain exactly
one <template> element, which must contain exactly one <part> element that matches the part
specified in the at-part attribute.

57.11.2 Semantics of <restructure=>

The semantics of <restructure> are to modify the virtual Ul tree as follows:

how="delete" :

Delete from the current virtual Ul tree the sub-tree rooted at the part named in the “ at-part”
attribute. Also delete any properties or rules of the part. There can be no body for <restructure>.
Attributes where, where-part, and source cannot be used.

how="replace”:
Replaces the part specified by the “at-part” attribute with the parts defined as children of the
template T, where T is defined as the child of the restructure.

how="append”:

Appends parts defined as children of the template T, where T is defined as the child of the
restructure. The way parts are appended to the structure is defined through use of the “where”
and “where-part” attribute (see below).

Harmonia, Inc. Page 65 02/08/2002

UIML 3.0 Language Specification

how=" cascade" :

Cascades parts defined as children of the template T, where T is defined as the child of the
restructure. The way parts are cascaded to the structure is defined through use of the “where’
and “where-part” attribute (see below). The cascading behavior exhibits the same behavior as
found in Section 7.2.3

The where attribute can only be used when the source attribute is present and how="cascade" or
how="append" is present. The where-part attribute can be used only when where="before" or
where="after" is used.

The attributes have the following semantics. Let the part element specified by at-part be <part
name="P" ...>

If attribute where=""first" ispresent: All children of part P in the <template> named in the
sour ce attribute must be inserted as children of part P before the existing children.

If attribute where="last" ispresent: All children of the part P in <template> named in the
sour ce attribute must be inserted as children of part P after the existing children.

If attribute where="before" and where-part="[part-name]" is present: All children of part P
in the <template> named in the sour ce attribute must be inserted as children of part P before the
child of P with part name part-name, but after any children appearing before the child “ part-
name”.

If attribute where=" after" and where-part="[part-name]" is present: All children of part Pin
the <template> named in the source attribute must be inserted as children of part P after the child
of P with part name part-name, but before any subsequent children of P.

5.7.11.3 Examples of <restructure>

Consider the button and panel introduced at the beginning of the proposal, where the panel
contains three components: alabel, atext field, and a check box. The UIML lookslike this:

<structure>

<part class="JFrane" id="F">
<part class="JButton" id="B"/>
<part class="JPanel" id="A">
<part class="JLabel" id="L1"/>

<part class="JTextField" id="TF"/>
<part class="JCheckbox" id="C"'/>
</ part>
</ part>
</structure>

Append Examples
To add another label before L1, do this:

<restructure at-part="A" how="append"” where="first">

Harmonia, Inc. Page 66 02/08/2002

UIML 3.0 Language Specification

<tenplate id="T1">
<part>
<part class="JLabel" id="L2"/>
</ part>
</tenpl at e>
</restructure>

The panel now containsthe partsin thisorder: A_T1 L2, L1, TF, C. Note: the naming
convention used for parts that are added from atemplate is discussed in Section 7.2.
To add alabel and atext area between TF and C, do this:

<restructure at-part="A" how="append" where="after" where-part="TF">
<tenplate id="T2">
<part>
<part class="JLabel" id="L3"/>
<part class="JTextArea" id="TA"/>
</ part >
</tenpl at e>
</restructure>

(Alternately, one could have used where="before" where-part="C".) The order of
partsinthepanel isnow A_T1 L2, L1, TF,A_ T2 L3,A_ T2 TA,C.

Asthe Ul ismodified, the virtual Ul tree changes. At any point in time, when a
<restructure> is processed, the "where" attribute refers to the current virtual tree. So if we
executed the above restructures and then the following, the resulting order of components
inthe panel wouldbe A_T1 L2, L1, TF,A_T2 L3,A_T2 TA,A_ T3 L4,C:

<restructure at-part="A" how="append" where="before" where-part="C"'>
<tenplate id="T3">
<part>
<part class="JLabel" id="L4"/>
</ part>
</tenpl at e>
</restructure>

The template tag surrounding the part tag provides a resolution mechanism for any name
conflicts that might occur when using append. Consider the restructure tag below.

<restructure at-part="A" how="append">
<tenplate id="T4">
<part>
<part class="Label" id="L1"/>
</ part>
</tenpl at e>
</restructure>

Thereis aready apart named L1 asachild of A, but the part L1 being added gets
renamed to A.T4.L1, so now the panel A hasthe following children: A_T1 L2,
L1, TF,A T2 L3, A T2 TA,A T3 L4,C, A T4 L1.

Replace Example
To replace the entire panel with anew panel containing just alabel and atext field, do
this:

Harmonia, Inc. Page 67 02/08/2002

UIML 3.0 Language Specification

<restructure at-part="A" how="repl ace">
<tenpl ate id="T5>

<part>
<part class="JLabel" is="L1"/>
<part class="JTextField" is="TF"/>
</ part>

</tenpl at e>
</restructure>

The set of children of A inthevirtual Ul treeis replaced with the set of children
listed in the restructure tag. So now the panel has only the following children:
A T5 L1, A T5 TF.

Cascade Example
When cascade is used, parts in the template that have the same name as a child of the
<part> specified by at-part are not used, but any other partsin the template are added as
children of the <part>. For example:

<restructure at-part="A" how="cascade" where="|ast">
<tenplate id="T6">
<part>
<part class="JLabel" id="L1"/>
<part class="JLabel" id="L5"/>
</ part >
</tenpl ate>
</restructure>

Since A aready hasachild named L1 (A_T5 L1),theLlintemplate T6is not
used, but part L5 from the template is added as achild of A. So A's children are
nowA T5 L1, A T5 TF, A_T6 L5. Note that when checking for a part with the
same name, only the last part of afully-qualified nameischecked, soA_T5 L1
matches L 1.

Delete Example
To delete the panel, smply do this:

<restructure at-part="A" how="delete"/>

5.7.12 The <when-true> Element

DTD

<!l ELEMENT when-true ((property|call)*,restructure?, op?, equal ?, event?)>

Description

The <when-true> element defines a set of actions to be executed when the evaluation of a
conditional expression defined by the element <op> results to be the Boolean value true.

Harmonia, Inc. Page 68 02/08/2002

UIML 3.0 Language Specification

5.7.13 The <when-false> Element

DTD

<! ELEMENT when-fal se ((property|call)*, restructure?, op?, equal ?, event?)>

Description

The <when-false> element defines a set of actions to be executed when the evaluation of a
conditional expression defined by the element <op> results to be the Boolean value false.

5.7.14 The <by-default> Element
DTD

‘<!ELENENT by-default ((property|call)*,restructure?, op?, equal ?, event?)>

Description

The <by-default> element defines a set of actions to be executed when the evaluation of a
conditional expression defined by the element <op> results to be undeterminable or undefined.

5.7.15 The <param=> Element

DTD

<! ELEMENT par am (#PCDATA|
property]
reference
cal |
op|
event |
const ant |
iterator)>
<I ATTLI ST param
name NMIOKEN #| MPLI ED>

Description

Describes a single actual parameter of the method call specified by the parent <call> element.
Note that the values of all parametersin UIML are character strings. See Section 6.4.5 for
information on conversion of the arguments to the types required by the formal parameters of the
method being called.

If the number of <param> elements equals the number of formal parameters in the method being
called then the following hold:

Harmonia, Inc. Page 69 02/08/2002

UIML 3.0 Language Specification

The name attribute is optional, and isignored by the rendering engine if present.

The order of <param> elements within the <call> element must match the order of the
formal parameters in the method being called.

Otherwise there must be fewer <param> elements than formal parameters in the method being
called, and the following holds:

* Thename attribute is required on al param elements.

* The name attribute must be used by the rendering engine to match each <param>
element to aformal parameter in the method being called.

A <param> element must have exactly one child

Harmonia, Inc. Page 70 02/08/2002

UIML 3.0 Language Specification

6 Peer Components

This section describes the elements that go inside the <peers> element, their attributes, and their
syntax. Examples are provided to help show common usage of each element.

6.1 The <peers> Element

DTD
<! ELEMENT peers (presentation|logic)*>
<I ATTLI ST peers
id NMTOKEN #1 MPLI ED
sour ce CDATA #| MPLI ED
how (append| cascade| r epl ace) "repl ace"
export (hidden|optional|required) "optional">
Description

To facilitate extensibility, UIML includes a <peers> element that defines mappings from class,
property, event, and call names used in aUIML document to entities external to the UIML
document. The <peers> element has two child elements, for two types of mappings.

» The<presentation> element contains mappings of part and event classes, property
names, and event names to a Ul toolkit. This mapping defines a vocabulary to be used
with aUIML document, such as avocabulary of classes and names for VoiceXML.
Normally a UIML author does not write a < presentation> element, but instead uses
namesinaUIML document that have been defined in the list of vocabularies at
http://uiml.org/toolkits. Section 6.2.1 discusses vocabularies.

» The<logic> element maps names and classes used in <call> elementsto application
logic external to the UIML document. In large-scale software development, the <logic>
element is defined once to represent the API of the application logic (typically asa
<template> element), and then included in each Ul for the project.

Harmonia, Inc. Page 71 02/08/2002

UIML 3.0 Language Specification

6.2 The <presentation> Element

DTD
<! ELEMENT presentation (d-class*)>
<I ATTLI ST presentation
id NMTOKEN #1 MPLI ED
sour ce CDATA #1 MPLI ED
how (append| cascade| r epl ace) "repl ace"
export (hidden|optional|required) "optional"
base CDATA #REQUI RED>
Description

Every UIML document uses avocabulary. The vocabulary defines the legal class names that can
be used for parts and eventsin a UIML document, as well asthe legal property names. The
formal definition of avocabulary is done through a <presentation> element containing <d-
class> elements (see Section 6.2.2). Each <d-class> element defines alegal class name.

At present, the list of standard vocabulariesis posted on http://uiml.org/toolkits, in the form of a
set of <presentation> templates that may be included into UIML documents.

In the remainder of this section, we first discuss (Section 6.2.1) UIML’s use of a standard set of
vocabulary names, which is all that most UIML authors need to know about the < presentation>
element. Then (Section 6.2.2) we discuss how to define a new vocabulary using the children of
the <presentation> element.

6.2.1 Naming an Existing Vocabulary in <presentation>

Normally, aUIML author uses an existing vocabulary. Therefore UIML requires away to label
each UIML document with the vocabulary used in that document. The labeling follows a
convention, and authors of new UIML vocabularies must follow this convention.

There are two categories of vocabularies:

» Vocabularies with widespread use, whose definition is posted on uiml.org, in
http://uiml.org/toolkits. Examples are vocabulariesfor Java 1.3 AWT and Swing, HTML
3.2, WML, and VoiceXML. We call these base vocabularies.

e Custom vocabularies that individuals, companies, or other organizations define. These
may or may not be not posted on uiml.org. The vocabularies may be posted on web sites
around the world of interest to specific communities, or posted in a company's internal
network, or not posted at all. We call these custom vocabularies.

Typicaly acustom vocabulary extends a base vocabulary (e.g., a company creates custom Java
Ul classes that extend Swing classes). The unlikely exception is when someone creates a custom
vocabulary from scratch that does not rely on any base vocabulary, yet a rendering engine for
some base vocabulary can render that custom vocabulary. For example, someone might create a

Harmonia, Inc. Page 72 02/08/2002

UIML 3.0 Language Specification

new Ul toolkit for Java from scratch that does not use AWT or Swing, but design the classes so
that arendering engine for UIML using the Java 1.3 or Swing base vocabulary can still render
the custom classes.

A UIML document must be labeled by a base vocabulary name, and may be labeled by a custom
vocabulary name, in the manner described next.

6.2.1.1 Labeling Base Vocabularies with Attribute base

To easily determine the base language used within the UIML document, the <presentation>
element requires an attribute named base, which identifies the base target |anguage of the UIML
document.

The syntax of values for the "base" attribute must follow this convention:

<vocab- nane>_<vocab- ver si on>_<aut hor - of - vocab>_<aut hor' s- ver si on- of -
vocab>

Severa rules apply to base:
 Thevalue of baseis caseinsensitive.

» If thevalue of baseis x, then the following URL must define x:
http://uiml.org/toolkits/x.uiml.

This URL must contain a <template> element, whose child is a <presentation> element,
whose children define the vocabulary x. (Requeststo post a new file should be sent to

info@uiml.org.)

» Every rendering engine must implement one or more base vocabularies. If arendering
engine implements vocabulary "uiml.org/toolkits/x.uiml", then the rendering engine must
be able to render any document that contains <presentation base="x"> (with or without
the source attribute).

» For example, arendering engine could be created to display Uls using the Java 1.3 Swing
and AWT toolkits; in this case the rendering engine might recognize the vocabul aries
Java 1.3 Harmonia 1.0.uiml, JavaAWT _1.3 Harmonia_1.0.uiml, and JavaSwing_1.3 -
Harmonia_1.0.uiml. Such arendering engine must also render custom classes that a
UIML author creates that extend Swing classes, by writing their own < presentation>
element to extend the base vocabulary.

e Consider the following < presentation> element:

<presentation
source="MySwi ng_1. 0_JoeProgramer _0. 1. ui m #vocab"
base="Java_1.3 Harnmonia_1.0"/>

* The<presentation> element says that any rendering engine that implements vocabulary
uiml.org/toolkits/Java 1.3 Harmonia_1.0.uiml can render the UIML document

Harmonia, Inc. Page 73 02/08/2002

UIML 3.0 Language Specification

containing the <presentation> element, even though the rendering engine was written
without knowledge of what isin vocabulary MySwing_1.0 JoeProgrammer_0.1.uiml.

» (Itistheresponsibility of the UIML author to insure consistency between the values of
the source and base attributes. For example, the UIML author should not define class
names mapped to HTML tagsin MySwing_1.0_JoeProgrammer_0.1.uiml and then set
base to avocabulary for Java[e.g., Java 1.3 Harmonia 1.0].)

* Thefollowing table gives the vocabulary that a rendering engine actually uses to render a
UIML document. The table assumes that the <presentation> has the attribute ‘base="x"".

Does <presentation>

contain source Does Example
ttribut <presentation> Vocabulary isdefined by this: (see
attribute (€9, have body? below)

source="y")?

Combination of y and, if the body of

Yes Doesn't matter <presentation> is not empty, anything |#4
in the body of <presentation>
No |uim|.org/too| kits/x.uiml \#1,2,3
Yes uiml.org/toolkits/x.uiml augmented 45

by the body of <presentation>

Here are some examples of legal <presentation> elements and their meanings:

1

<presentation base="Java_1.3 Harmonia_1.0"/>

UIML document must be rendered by rendering engines implementing vocabulary
uiml.org/toolkits/Java 1.3 Harmonia 1.0.uiml.

<presentation base="HTM._3.2 Harmonia_1.0"/>

UIML document must be rendered by rendering engines implementing vocabulary
uiml.org/toolkitsyHTML_3.2_ Harmonia_1.0.uiml.

<presentation base="GenericJH 1.0 Harnonia_1.0"/>

UIML document must be rendered by rendering engines implementing vocabulary
uiml.org/toolkits/GenericJH_1.0 Harmonia 1.0.uiml.

<presentation base="Java_ 1.3 Harnonia_ 0. 8"
source="http://xyz.com MySwing_1.0 _xyz_ 0. 1. ui m #vocab"/>

UIML document must be rendered by rendering engine implementing vocabulary
uiml.org/toolkits/ Java 1.3 Harmonia 0.8.uiml, but the vocabulary used in this
UIML document is the combination of Java 1.3 Harmonia 0.8 and the presentation
defined in http://xyz.com/MySwing_1.0 xyz 0.1.uiml#vocab. Note that
http://xyz.com/MySwing_1.0 xyz 0.1.uiml#vocab must contain a <template>
element (see Section 7.1) whose id is vocab.

Harmonia, Inc. Page 74 02/08/2002

UIML 3.0 Language Specification

5. <presentation base="Java_1.3 Harnonia_0.8">
<d-cl ass name="M/Super Cool Button" used-in-tag="part" .../>

</ d-cl ass>
</ presentation>

UIML document must be rendered by a rendering engine implementing vocabulary
uiml.org/toolkits/Java 1.3 Harmonia 0.8.uiml, but the actual vocabulary used in this
UIML document is Java_1.3 Harmonia 0.8 augmented by the part class

MySuper Cool Button defined in the d-class element.

6.2.1.2 Labeling Custom Vocabularies with Attribute source

It is recommended that if a UIML author uses a custom vocabulary, that he/she creates a new
UIML file containing a <template> element whose id attribute is “vocab”, and whose body is a
<presentation> element containing <d-class> elements defining the custom vocabulary. (Unless
this recommended practice is followed, the custom vocabulary cannot be reused in multiple
UIML documents.) Furthermore, the name of the UIML file should use the following syntax:

<cust om vocab- nane>_<cust om vocab-ver si on>_<your - or gani zati on' s-
nane>_<your - ver si on- of - vocab>. ui n

For example, if you developed alibrary of classes that extends Java 1.3 Swing, and you call the
library "MySwing", and the current version of MySwing is 1.0, and your nameis
JoeProgrammer, and thisisthefirst UIML file you wrote to define the vocabulary (version 0.1),
then you might name the custom vocabulary file MySwving_1.0_JoeProgrammer_0.1.uiml. Any
UIML documents that use this custom vocabulary should then contain the following element:

<presentation
source="MySwi ng_1. 0_JoeProgramer _0. 1. ui m #vocab"
base="Java_1.3 Harnonia_1.0"/>

6.2.1.3 Permitted Optimization for Rendering Engine

An implementation of arendering engine may omit reading the <presentation> element to
reduce the execution time of and mitigate the effect of network delays upon rendering time.
Instead, the engine might cache copies of the presentation files for the toolkits that it supports
(e.g., Java 1.3 Harmonia 1.0 inthe examplein Section 2.2.1). Alternatively, the
<presentation> element’ s information might be hard-wired into the rendering engine, so that the
engine does not even have to spend time reading and processing the information.

6.2.1.4 Multiple Presentation Elements

A UIML document may contain multiple <presentation> elements. However, each element
must contain theid attribute. A rendering engine selects one of them based on information
outside the UIML document (e.g., as a command line option to the rendering engine).

Harmonia, Inc. Page 75 02/08/2002

UIML 3.0 Language Specification

6.2.1.5 Suggested Use of Base Attribute in Authoring Tools

When an authoring tool for UIML opens an existing UIML document, the tool can quickly
identify which vocabulary is used in the document from the base attribute, perhaps to display an
appropriate palette of user interface widgets for further editing of the document (e.g., a palette of
Java Swing objectsif the file uses the Java 1.3 vocabulary).

6.2.2 Creating a New Vocabulary Using <presentation>
This section discusses two vocabulary files, for HTML and Java. Based on these examples, one

can define anew vocabulary file. The full vocabulariesfor HTML and Java used here are
available at the following URLS:
e http://uiml.org/toolkitsyHTML 3.2 Harmonia 1.0.uiml

e http://uiml.org/toolkits/Java 1.3 Harmonia 1.0.uiml

6.2.2.1 Defining Legal Part Class Names Via <d-class>

HTML Case
To start with, suppose a UIML document contains the following:

<ui nl >
<interface>

<part class="Button”/>

</interface>
<peers>
<presentation base="HTM._3.2 Harnmonia_ 1.0"/>
</ peer s>
</uim>

The mapping of the Button part to HTML is defined by
uiml.org/toolkitsyHTML 3.2 Harmonia 1.0.uiml, which maps any part of class Button to the
HTML 3.2 <INPUT> tag:

<uinm>
<tenplate .../>
<presentation .../>

<d-class id="Button" used-in-tag="part” maps-type="tag"
maps-to="htm : | NPUT" >

</ d-cl ass>
</ presentation>
</tenpl at e>
</ uim>

UIML uses aset of elementsthat start with <d-...>. The“d-* prefix means that this element
defines a class, property, or parameter name. Thus <d-class> defines a class name.

Harmonia, Inc. Page 76 02/08/2002

UIML 3.0 Language Specification

Java Case

In contrast, suppose a UIML document uses a Java JButton:

<uim>
<interface>

<part class="JButton”/>

</interface>
<peer s>
<presentation base="Java_1.3 Harmonia_1.0"/>
</ peer s>
</uim>

The mapping of the JButton part to Javais defined by
uiml.org/toolkits/Java 1.3 Harmonia 1.0.uiml, which maps any part of class JButton to the
Swing JButton class:

<uim >
<tenplate .../>
<presentation .../>

<d-class id="JButton" used-in-tag="part" naps-type="cl ass"
maps-t o="j avax. swi ng. JButton">

</ d-cl ass>
</ presentati on>
</tenpl ate>
</ uim>

Note these differences between the HTML and Java <d-class> elements:
* Themaps-typeistag for amapping to amarkup language, like HTML, and classfor a
mapping to an imperative object-oriented language like Java.

» The maps-to attribute lists a namespace and tag in that namespace (“html:INPUT” for
HTML) or astring whose syntax is, at present, not defined in this spec
(“javax.swing.JButton” for Java).

Next we will discuss what goesin the ... inside each <d-class> in the above < presentation>
elements. This part answers the following questions:
» What property names can be used with the part class (e.g. the color of abutton)?

* What events and event listeners are used with the part class (e.g. the event of clicking a
button)?

» What properties exist for events (e.g. the X and Y positions for amouse click event)?
These are discussed in turn below.

Harmonia, Inc. Page 77 02/08/2002

UIML 3.0 Language Specification

6.2.2.2 Defining Legal Property Names for <part> Classes via <d-
property=

HTML Case

The UIML document below extends our previous example to give our HTML button atext label
that says “Pressme!”.

<uim>
<interface>

<part class="Button”>
<styl e><property nane="VALUE" >Press mne! </ property></styl e>
</ part>

</interface>
<peer s>
<presentation base="HTM._3.2 Harnmonia_ 1.0"/>
</ peer s>
</ uim>

Now let’slook at what is required in the <presentation> element to map the UIML property
VALUE to the corresponding VALUE attribute of the HTML <INPUT> tag. Thisisdefinedin
the third <d-property> element below:

<uinm >
<tenplate .../>
<presentation .../>
<d-cl ass i d="Button" maps-type="tag" maps-to="htm : | NPUT">

<d-property id="type" maps-type="attribute" maps-to="TYPE">
<d-param type="String">BUTTON</ d- par an®
</ d- property>

<d-property id="name" maps-type="attribute" maps-to="NAM">
<d- param type="String"/>
</ d- property>

<d-property id="val ue" nmaps-type="attribute" maps-to="VALUE">
<d- param type="String"/>
</ d- property>

</ d-cl ass>
</ presentation>
</tenpl at e>
</ uim>

The three <d-property> elements above say that an HTML 3.2 button has three properties: its
type (which isaways BUTTON, and therefore cannot be set in a UIML document, its name, and
its value (or the string text that appears in the button).

Harmonia, Inc. Page 78 02/08/2002

UIML 3.0 Language Specification

Java Case

Now consider the Java JButton. The UIML document below extends our previous example to
give our Java Swing button atext label that says “Press me!”.

<ui nl >
<interface>

<part class="JButton”>
<styl e><property name="text”>Press ne! </ property></styl e>
</ part>

</interface>
<peer s>
<presentation base="Java_1.3 Harmonia_1.0"/>
</ peer s>
</fuim>

Now let’slook at what is required in the <presentation> element to map the UIML property text
to the proper Java set method for javax.swing.JButton. Thisis defined in the two <d-property>
elements below:

<uim >
<tenplate .../>
<presentation .../>

<d-class id="JButton" used-in-tag="part" naps-type="cl ass"
maps-t o="j avax. swi ng. JButton">

<d-property id="text"
maps-type="set Met hod"
maps-to="set Text" >
<d-param type="java.lang. String"/>
</ d- property>

<d-property id="text"
return-type="java.l ang. String"
maps-type="get Met hod"
maps-to="get Text"/ >

</ d-cl ass>
</ presentation>
</tenpl at e>
</ uim>

The <d-property> elementsin the box above say that a property named text can be used with
JButtons. In a<property> element that sets the property, the Java method
setText(java.lang.Sring) should be used. To get the property, use javax.swing.JButton.getText().

A JButton has many other properties — these are defined by additional <d-property> elements

(e.g., to set color, font, icon) where the ellipsis appears in the <presentation> element in
Java 1.3 Harmonia 1.0.uiml.

Harmonia, Inc. Page 79 02/08/2002

UIML 3.0 Language Specification

The box above could aso contain <d-method> elements. Thisis useful for exposing methods in
the Java class that are not properties (and hence should not be accessed in UIML <property>
elements), but could be invoked viaa <call> element. For example, java.awt.List contains a
method add(...) to add another item to alist. An <action> in a UIML document might contain a
<call> to the add method.

6.2.2.3 Defining Legal Events and Listeners for Part Classes Via
<d-class>

HTML Case

The UIML document below extends our previous example to provide a behavior for an event
called onClick for our HTML button.

<ui nl >
<interface>

<part class="Button”>

<behavi or >
<rul e>
<condi ti on><event nanme="onCl i ck”/></condition>
<action>...</action>

</rul e>
</ behavi or >
</ part>

</interface>
<peer s>
<presentation base="HTM._3.2 Harmonia_ 1.0"/>
</ peer s>
</uim>

The <behavior> element in the box above causes the <action> element to be executed
whenever an onClick event occurs for the button. The meaning of onClick is defined by
additional linesin the <presentation> element:

<uin >
<tenplate .../>
<presentation .../>

<d-class id="ond ick" used-in-tag="event"
maps-type="attri bute"
maps-to="onC i ck"/>

<d-class id="Button" used-in-tag="part”
maps-type="tag"
maps-to="htm : | NPUT" >

| <event class="ondick"/>

</ d-cl ass>

Harmonia, Inc. Page 80 02/08/2002

UIML 3.0 Language Specification

</ presentati on>
</tenpl at e>
</ uim>

The above UIML says that one of the eventsin HTML is OnClick, and that a <part> whose class
is Button can receive an OnClick event.

To summarize, when writing rules, the class attribute of an event element in a condition can be
any of the names listed in an <event> element that is associated with the <part> in the
<presentation> section. In the UIML example above, a Button's events include OnClick, and
therefore the following line was used in the UIML document given earlier:

<condi ti on><event nane="onCl ick”/></condition>

Java Case

Java provides amuch richer Ul toolkit than HTML, and so the information required in the
<presentation> element is more complex.

There are two styles of events used by platforms:

* Method 1: A <part> defines how eventsfor it are handled.
» Method 2: A <part>does not define how eventsfor it are handled.

Method 1isusedinJaval.0 and in HTML. In Java 1.0, ajava.awt.Component had a method
called action(Event, Object). This method was called when an event occurred for the
Component. In HTML, many tags (representing <part>sin UIML) can contain attributes
denoting events. An examplein HTML is <input type="Button" onClick="myfunction"/>. In this
case the <part> defines the event handling (calling myfunction()). In UIML, this association
between the event onClick and myfunction is made by a <rule>.

Method 2 isused in Java 1.1 and later. UIML adopts the Java model of requiring a Listener

entity that defines how events are handled on behalf of a <part>. (If there exists atarget language
for UIML that uses Method 2 and also uses a concept entirely different than listeners, then UIML
will need modification.) In this case, a Listener class defines how events are handled. In UIML,
the association between the event mouseClicked and the actions to perform in response is made
by a<rule>. The UIML user is not aware of the Listener or Event classes involved.

Thus UIML must contain arich enough syntax to define the following:
» Class names representing events (such as "OnClick" for HTML, or "MouseEvent" for
Java)
» Class names representing event listeners for Method 2 (such as MouseL istener)
» Methods in event listeners (such as MouseListener.mouseClicked())

* A meansto associate components, listeners, and events.

» Event property names (such as"X" and "Y" coordinates for a MouseEvent)

Harmonia, Inc. Page 81 02/08/2002

UIML 3.0 Language Specification

Next we show what these look like for clicks on a JButton.

The UIML document below extends our previous example to provide a behavior for an event
called ActionListener.actionPerformed for our Java JButton.

<ui nl >
<interface>

<part class="JButton”>
<behavi or >
<rul e>
<condi ti on>
<event cl ass="ActionLi stener. acti onPerfornmed">
</ condi tion>
<acti on>

</ action>

</rul e>
</ behavi or >
</ part >

</interface>
<peer s>
<presentation base="Java_ 1.3 Harrmonia_ 1.0"/>
</ peer s>
</ uim>

Here are the elementsin <presentation> in Java 1.3 Harmonia_1.0.uiml to define the event
actionPerformed for a button click:

<uim >
<tenplate .../>
<presentation .../>
<l -- =Z================ Define BEvent (C asses ======================= --.>
<d- cl ass i d="ActionEvent" used-in-tag="event"

maps-type="cl ass"
maps-to="j ava. awt . event . Acti onEvent " >

</ d-cl ass>

<l -- =Z================ Defi ne Event Listener C asses ============== -->
<d-cl ass i d="ActionLi stener" used-in-tag="listener"
maps-type="cl ass"
maps-to="j ava. awt . event . Acti onLi st ener" >
<d- net hod id="actionPerformed" naps-to="actionPerforned">
<d- param i d="event" type="ActionEvent"></d-paranp
</ d- met hod>
</ d-cl ass>
<l -- =Z====z============= Define Part (asses ======================== -->

Harmonia, Inc. Page 82 02/08/2002

UIML 3.0 Language Specification

<d-cl ass i d="JButton" used-in-tag="part" nmaps-type="cl ass"
maps-t o="j avax. swi ng. JButton" >

<listener class="java.aw.event.ActionListener"
attacher="addAct i onLi stener"/>

</ d-cl ass>

</ presentati on>
</tenpl at e>
</uim>

The section under the comment “Define Event Classes’ defines a class named ActionEvent. The
children of <d-classid="ActionEvent"> are discussed in Section 6.2.2.4. Thisis anaogousto
the <d-classid="onClick”> element in the HTML <presentation> earlier.

The section under the comment “ Define Event Listener Classes’ uses the <d-class ... used-in-
tag="listener"> element to define a Java event listener. This section has no analogin the HTML
<presentation> earlier, because the HTML event model ("Method 1") does not use listeners.

The section under the comment “ Define Part Classes’ was shown in our earlier examples, and
defines the JButton class. Here we add <listener> elementsto list which listeners are used with
aJButton. The <listener> element includes an "attacher" attribute that names the method that the
JButton uses to attach the listener to itself. For example, the UIML above says that JButton has a
method called "addActionListener” that is used to attach an ActionListener to a JButton.

To summarize, the above UIML says that one of the events in Java AWT/Swing is ActionEvent,
one of the listenersis ActionListener, ActionListener has a method named actionPerformed that
processes ActionEvents, and a listener named ActionListener handles events for any <part>
whose class is JButton.

Recall the following lines from the UIML document earlier:

<condi ti on>
<event class="ActionListener.actionPerforned">
</ condition>

When writing rules, the class attribute of an event element in a condition uses a dotted notation
consisting of the form <listener class name>.<method class name>. The <listener class name> is
aclass name defined by a <d-class used-in-tag="listener"> element, such as ActionListener in the
UIML example above. The <method class name> is a method name defined in a <d-method>
element that is achild of the <d-class used-in-tag="listener"> element, such as actionPerformed
inthe UIML above.

Whenever a JButton is clicked, the Java Virtual M achine calls the actionPerformed method. The
<rule> aboveis therefore executed when actionPerformed is called on a JButton.

Harmonia, Inc. Page 83 02/08/2002

UIML 3.0 Language Specification

6.2.2.4 Defining Legal Event Property Names Via <d-class>

Let’s consider our UIML document again. Suppose we want to display the x coordinate of the
mouse pointer when it is clicked inside a button. The label on the button will be changed to
display the x coordinate. The following UIML document accomplishes this:

<uim>
<interface>

<part class="Button”>
<styl e><property nane="VALUE" >Press mne! </ property></styl e>
<behavi or >
<rul e>
<condi ti on>
<event nanme="MuselLi stener. noused icked”/>
</ condition>
<action>
<property nanme="VALUE" >
<property event-cl ass="Museli st ener. noused i cked”
name="X"/ >
</ property>
</ action>

</rul e>
</ behavi or >
</ part>

</interface>
<peer s>
<presentation base="Java_ 1.3 Harnmonia_ 1.0"/>
</ peer s>
</uim>

Here are the elementsin <presentation> in Java 1.3 Harmonia 1.0.uiml to define the property
named X for amouse click:

<uinm >
<tenplate .../>
<presentation .../>
<d-cl ass i d="MwuseEvent" used-in-tag="event"

maps-type="cl ass"
maps-t o="j ava. awt . event . MouseEvent " >

<d- net hod i d="source" maps-t o="get Sour ce"
return-type="java.l ang. Obj ect"/ >

<d- net hod id="id" maps-to="get| D'
return-type="int"/>

<d- net hod id="clickCount" maps-to="get C i ckCount"
return-type="int"/>

<d- net hod i d="point" maps-t o="get Poi nt"
return-type="int"/>

<d- et hod i d="X" maps-t o="get X"
return-type="int"/>

<d- net hod id="Y" maps-to="get Y"

return-type="int"/>
<d- net hod i d="i sPopupTri gger" maps-to="getl sPopupTrigger"”
return-type="bool ean"/ >

Harmonia, Inc. Page 84 02/08/2002

UIML 3.0 Language Specification

</ d-cl ass>

</ presentation>
</tenpl ate>
</uim>

6.3 The <logic> Element

DTD
<! ELEMENT | ogi ¢ (d-conponent*) >
<! ATTLI ST |l ogic
id NMTOKEN #1 MPLI ED
sour ce CDATA #| MPLI ED
how (append| cascade| r epl ace) "repl ace"
export (hidden|optional|required) "optional">
Description

The <logic> element describes how the Ul interacts with the underlying application logic that
implements the functionality manifested through the interface. The underlying logic might be
implemented by middleware in athree tier application, or it might be implemented by scriptsin
some scripting language, or it might be implemented by a set of objects whose methods are
invoked as the end-user interacts with the Ul, or by some combination of these (e.g., to check
for validity of data entered by an end-user into a Ul and then object methods are called), or in
other ways.

Thus, the <logic> element acts as the glue between a Ul described in UIML and other code. It
describes the calling conventions for methods in application logic that the Ul invokes. Examples
of such functions include objects in languages such as C++ or Java, CORBA objects, programs,
legacy systems, server-side scripts, databases, and scripts defined in various scripting languages.

Example of <logic> Element

Hereis an example of the <logic> element:

<l ogi c>
<d- conponent nane="Count er"
maps-t o="com har noni a. exanpl e. Count er 2" >
<d- net hod name="count" return-type="int" maps-to="count"/>
<d-net hod nanme="reset" return-type="int" maps-to="set Count">
<d- param name="newval " type="int"/>
</ d- met hod>
</ d- conmponent >
</l ogi c>

Harmonia, Inc. Page 85 02/08/2002

UIML 3.0 Language Specification

The fragment above says that there is an external object reached by name
com.harmonia.example.Counter2. This object is given the name Counter in the UIML document.
The component has two methods, named count and reset in the UIML document. These map,
respectively, to count and setCount in com.harmonia.example.Counter2. Each returns a value of
type int, where the meaning of int is whatever meaning ascribed by the language in which
com.harmonia.example.Counter 2 is implemented. Finally, count takes no arguments when
called, and setCount takes one argument, an int.

Example

The following UIML fragment describes the calling conventions for a variety of functionsin
external application logic and functionsin scripts. Note that URLS given below are for example
purposes only.

<l ogi c>
<d- component nane="backl1l" maps-to="org. uinm .exanmple.nyC ass">

<d- net hod name="ml" maps-to="nyfunction">
<d- param nane="pl"/>
<d- par am nanme="p2"/ >

</ d- net hod>

<d- et hod nane="nR" returns-val ue="true” naps-to="nk"/>

<d- et hod nane="master" returns-value="true” maps-to="nB">
<d- par am nanme="p3"/ >
</ d- met hod>

</ d- conmponent >

<d- component nane="back2" maps-to="org.uin .exanple.myd assl">
<d- met hod nane="n8" nmaps-to="m">
<d- par am nanme="p4"/ >
</ d- met hod>
</ d- conmponent >

<d- conponent nanme="S1">

<d- et hod nane="ml" returns-val ue="true” maps-to="Cube">
<d- param nane="i"/ >

<script type="application/ecnascript"><![CDATA
Cube(int i) {
return i*i*i;

}

11></script>
</ d- net hod>

</ d- conmponent >

Harmonia, Inc. Page 86 02/08/2002

UIML 3.0 Language Specification

<d- conponent nane="S2" nmaps-to="http://sonewhere/vbh"/>
<d- et hod nane="ml01" naps-to="f2">
<d- param nane="p5"/>
</ d- net hod>
</ d- conmponent >

</l ogi c>
6.4 Subelements of <presentation> and <logic>

6.4.1 The <d-component> Element

DTD

<! ELEMENT d- conmponent (d-net hod)*>

<I ATTLI ST d- conponent
id NMTOKEN #REQUI RED
source CDATA #| MPLI ED
how (append| cascade]| r epl ace) "repl ace"
export (hi dden| opti onal | required) "optional"
maps-to CDATA #| MPLI ED
| ocati on CDATA #1 MPLI ED>

Description

The <d-component> (a child of <logic> only) acts as a container for application methods (e.g., a
classin an object oriented language). A d-component contains d-methods.

The maps-to attribute specifies the platform-specific type of the component or container that is
being bound. The location attribute gives additional information (e.g., a URI) that is used by the
rendering engine to locate the widget, event, or application class at runtime.

6.4.2 The <d-class> Element

DTD

<!l ELEMENT d-cl ass (d-nethod*, d-property*, event*, |istener*)>

<I ATTLI ST d-cl ass
id NMTOKEN #REQUI RED
sour ce CDATA #| MPLI ED
how (append| cascade| r epl ace) "repl ace"
export (hi dden| optional | required) "optional"
maps-to CDATA #REQUI RED
maps-type CDATA #REQUI RED
used-in-tag (event]|listener|part) #REQUI RED>

Harmonia, Inc. Page 87 02/08/2002

UIML 3.0 Language Specification

Description

The <d-class> (achild of <presentation> only) element binds a name used in the rendering
property of apart or an <event> element elsewhere in the interface to a component that is part of
the presentation toolkit.

The maps-to attribute specifies the platform-specific type of the component or container that is
being bound.

6.4.3 The <d-property> Element

DTD
<! ELEMENT d- property (d-method*, d-parant)>
<I ATTLI ST d- property
id NMTOKEN #REQUI RED
maps-type (attribute| get Met hod| set Met hod| net hod) #REQUI RED
maps-to CDATA #REQUI RED
return-type CDATA #| MPLI ED>
Description

The <d-property> element specifies the mapping between the name appearing in a <property>
element and the associated methods that assign or retrieve a value for the property.

Example

<peer s>
<presentation>
<d- component nane="button" maps-to="java.aw .Button">

<d- property nanme="Col or">
<d- net hod returns-val ue="true” maps-to="getCol or"/>
</ d- met hod>
<d- et hod maps-t o="set Col or">

<d- param nane="col or”/ >

</ d- net hod>

</ d- property>

</ d- conmponent >
</ presentation>
</ peer s>
<interface>
<styl e>
<property name="Col or" part-nane="bEl ent >Bl ue</ property>
</styl e>

</interface>

Harmonia, Inc. Page 88 02/08/2002

UIML 3.0 Language Specification

6.4.4 The <d-method> Element

DTD
<! ELEMENT d- net hod (d-parant, script?)>
<! ATTLI ST d- et hod
id NMTOKEN #REQUI RED
source CDATA #1 MPLI ED
how (append| cascade| r epl ace) "repl ace"
export (hi dden| opti onal | required) "optional"
maps-to CDATA #REQUI RED
return-type CDATA #| MPLI ED>
Description

The <d-method> element describes a method in the external application logic or presentation
toolkit in terms of its optional formal parameters and optional return value.

The maps-to attribute specifies the name that is being bound. The value of maps-to givesthe
name of a method that can be executed. The method can represent atoolkit method (if itis
inside a <presentation> element), an application method (if it isinside a<logic> element), or
scripting code (with scripting nested inside the <d-method> element).

If the method described returns a value, the returns-val ue attribute should be specified and
assigned thevalue“true”. Thereturn value will be converted to a string before being used.
Otherwise, the returns-value attribute defaultsto “ f al se” , and any value that might be
returned by the method is discarded.

The <d-method> element supports three different execution models:

1. The method represents a remote (outside the rendering engine) executable code. This code
executes outside the run-time context of the rendering engine and is treated as a black box.
The rendering engine packages al the parameters, sends them to the server executing the
code (which can be on the same machine or across the network), and waitsfor areply. Here
isan example:

<d- conmponent nane="Math" naps-to="myC ass. Mat h. CommonRout i nes" >
<d- net hod name="findMean" returns-val ue="true” nmaps-to="cal cMean">
<d- param nanme="a"/ >
<d- par am nane="b"/ >
</ d- net hod>
</ d- conmponent >

2. The method represents alocal script. This script is embedded inside the method and is
executed within the run-time context of the rendering engine (i.e., it executes locally with
respect to the rendering engine). If the maps-to attribute for the component is missing, this
means that all the codeislocal. Hereisan example:

Harmonia, Inc. Page 89 02/08/2002

UIML 3.0 Language Specification

<d- conponent nane="Mat h">
<d- et hod nane="findMean" returns-val ue="true” maps-to="cal cMean">
<d- param nanme="a"/ >
<d- param name="b"/>
<script type="text/javascript">
<! [CDATA[
cal cMean(int a, int b) {
return (a+b)/2;
}
11>
</script>
</ d- net hod>
</ d- conmponent >

3. The method represents a combination of the above. Thisisuseful if you want to do some
error checking locally before calling aremote method or manipulate the result after itis
returned. The semantics of how to do this are under revision.

6.4.5 The <d-param> Element

DTD

<! ELEMENT d- par am (#PCDATA) >

<I ATTLI ST d- param
id NMTOKEN #1 MPLI ED
type CDATA #l MPLI ED>

Description

Describes asingle formal parameter of the function described by the parent <d-method>
element. Notethat all parameters are character strings. The string value of a matching <d-
param> element will be converted to a platform-specific data type specified by the type attribute,
and that type is the type of the formal parameter of the function (e.g., java.lang.String). Itisup
to some intermediary to convert parameters from UIML character stringsto other data types. For
example, if we have

<d- par an»37</ d- par an®
which is mapped to the parameter of function f(double) in this Java class

public class Denmp {
static void f(double);
}

then string “37” is converted by some intermediary to type double in Java.
Furthermore, if there is ambiguity in which function of the target language a parameter maps to,

the rules of the target language are used to resolve the ambiguity. For example, suppose class
Demo contains two functionsf as follows:

Harmonia, Inc. Page 90 02/08/2002

UIML 3.0 Language Specification

public class Denmp {
static void f(double);
static void f(float);

}

In this case the rules of Javawould determine whether string “37” would be converted to a

double or to afloat. (Note: The semantics of Java are to use the method “f(float)”. See Java
Developer Connection(sm) (JDC) Tech Tips, March 14, 2000,
http://devel oper.java.sun.com/devel oper/TechTips/2000/tt0314.html for more information on this

aspect of Java s semantics.)

See Section 5.7.15 on the significance of parameter order.

6.4.6 The <script> Element

DTD

<! ELEMENT scri pt (#PCDATA) >
<I ATTLI ST scri pt

id NMTOKEN #1 MPLI ED
type NMTOKEN #| MPLI ED
sour ce CDATA #1 MPLI ED
how (append| cascade| r epl ace) "repl ace"

export (hidden|optional|required) "optional">

Description

The <script> element contains a program written in the scripting language identified by the type
attribute. (Thisissimilar to the <script> element in HTML 4.0)

Harmonia, Inc.

Page 91

02/08/2002

UIML 3.0 Language Specification

7 Reusable Interface Components

UIML templates enable interface implementers to design parts of their Ul (or even the entire Ul
itself) as reusable components to be exploited by other Uls. For example, many Ulsfor

el ectronic commerce applications include a credit-card entry form. If such aformisdescribed in
UIML as atemplate, then it can be reused multiple times either within the same Ul or across
other Uls. This reduces the amount of UIML code needed to develop a Ul and also ensures a
consistent presentation across enterprise-wide Uls. Thisis desirable since end-userstend to
make fewer mistakes and are more efficient when presented with familiar Uls.

7.1 The <template> Element

DTD

<! ELEMENT t enpl ate (behavior|d-class|d-
conponent | constant | content|interface|l ogic|part]| peers|presentation|proper
ty|restructure|rul e|script|structure|style)>
<I ATTLI ST tenpl ate
i d NMIOKEN #| MPLI ED>

Description
The <template> element permits severa handy shortcuts when writing UIML. It allows
» onefragment of UIML to beinserted in multiple placesin a UIML document,
e oneUIML document to include a UIML fragment from another document, and
e cascading style and other elements, in a manner analogous to the CSS specification [2].

Templates work as follows. Most elements (see 5.2.2 for alist) can contain the source attribute;
let such an element be E. The source attribute names a <template> element (either within the
same document or in another document). The <template> element named must be an element of
the same type as the element E (i.e., have the same tag name). The source attribute causes the
body of the element inside the template to be combined with the body of E. The rulesto control
how this combining is done are explained later in Section 7.2.

Simple Example Using the source Attribute

<?xm version="1.0"7?>
<! DOCTYPE uim PUBLI C

"-//Harnonia//DTD UM 3.0 Draft//EN' http://uim.org/dtds/ U M.3_0a. dtd">
<ui nm >

<peer s>

<presentation base="Java_ 1.3 Harnonia_ 1.0"
source="http://uim.org/tool kits/Java_ 1.3 Harnonia_1.0.uimn #vocab"/>
</ peer s>

</ uim >
The <presentation> element contains a source attribute that namesa URL. The effect of thisis

to insert as the body of the <presentation> element a fragment that is named by the URL. The
URL “http://uiml.org/toolkits/'JavaAWT 1.3 Harmonia_1.0.uiml” in turn contains the following:

Harmonia, Inc. Page 92 02/08/2002

UIML 3.0 Language Specification

<?xm version="1.0"7?>
<! DOCTYPE ui ml PUBLIC
"-//UT//DID UM 3.0 Draft//EN' http://uim.org/dtds/ U M.3_0Oa. dtd">
<uim>
<tenpl ate i d="vocab">
<presentation base="Java_1.3 Harmonia_1.0">
<d-cl ass id="Franme" used-in-tag="part"
maps-type="cl ass"
maps-to="j ava. awt . Frane" >

</ d-cl ass>

</ presentati on>
<t enpl at e>
</ uim>

Note that the “#vocab” portion of the URL refersto the <template> element with an id attribute
of “vocab”. In the case where only one template existsin thefile, then this name can be omitted.
If the name is omitted and multiple templates exist, then the first oneis used.

Also note that the <IDOCTY PE ...> element isincluded in the template file, just asit isin the
sourcing UIML document. The <!IDOCTY PE ...> isrequired in the template, because tools that
process UIML files may process template files separatel y from a document which sources the
template, and such atool may use avalidating XML parser that requiresthe DTD. Including
<IDOCTYPE>in al UIML files has a second benefit: it permits discovery of mismatches
between the DTD version used in atemplate file and a sourcing file.

If the source attribute is not a URL but arelative path and file name or just afile name, then a
rendering engine must first look for the source file relative to the directory in which the sourcing
document was obtained. Thus, suppose that a UIML file X was located in the directory
C:\uimlFiles. Any source attribute specifying arelative file name as its value would be resolved
relative to C:\uimlFiles.

7.2 Rules for Templates

In the example of Section 7.1, the element containing the source attribute (E) has no body.
Therefore the body of the fragment isinserted asthe child of E. However, it isaso possible for
E to have abody. In this case, aset of rules must be specified on how to combine the bodies of
the two elements.

For example, consider thisUIML file:

<interface>
<structure>
<part class="label" nane="11">
</ structure>

<styl e source="file://phone. ui #nodel 508" >
<property nane="position" part-nane="1|abel ">2</property>

Harmonia, Inc. Page 93 02/08/2002

UIML 3.0 Language Specification

</styl e>
<interface>

Next suppose that file “phone.ui” contains the following:

<t enpl at e nane="nodel 508" >

<styl e>
<property nane="font_style" part-name="I|abel ">bol d</ property>
<property nane="position" part - nane="1abel ">1</ property>
</style>

<t enpl at e>

The <style> element in the main document already has a body and both <style> elements have a
property named position, which one should be used?

A <template> element is like a separate branch on the UIML tree (think of aDOM tree[13]). A
template branch can be joined with the main UIML tree anywhere there isa similar branch (i.e.,
the first and only child of template must have the same tag name as the element on the UIML
tree where the branches are joined). The interface implementer has three choices on how to
combine the <template> element with another element.

The methods are:
* replace,
e union, and
e cascade

When using thefirst choice, “replace,” al the children of the element on the main tree that
sources the template are deleted, and in their place al the children of the <template> element are
added (see Figure 1). With “union,” all the children of the element on the main tree that sources
the template are kept, and all the children of the <template> element are added to the list as well
(see Figure 2). In both cases, the children of the <template> element are given afully qualified
id, to distinguish them from children of the sourcing element. Thisfully qualifiedidis
constructed by identifying the child’ s location in the UIML tree. Thustheid is generated by
starting with the <ui m > element and tracing “downward” through the tree. The original id of
the element will be pre-pended with theid of every element aboveit inthe UIML tree. (e.g.,id=
“<interfaceid>__<structureid>__<grandparent id>__<parentid>__<original id>"). This
rule applies to any element irrespective of whether the id attribute is specified or not. Thisis
because the DOM assigns an id value for elements for which an id is not specified. To avoid
conflicts with the naming conventions other languages use, “ " has been chosen as delimiter for
id appending.

Thelast choiceis“cascade.” Thisissimilar to what happensin CSS[2]. The children from the
template are added to the element on the main tree. If thereisaconflict (e.g., two elements with
the same id), then the element on the main tree is retained (see Figure 3). See section 7.2.3 for a
more detailed explanation of conflict resolution and deep cascading.

Harmonia, Inc. Page 94 02/08/2002

UIML 3.0 Language Specification

Note that the figures below use the old naming convention which separate pieces of the fully
qualified namewith ‘." Instead of *_'.

Figure3: Part “A” sourcespart “B” using “cascade”

Below are common usage examples of templates that demonstrate the different rules:

7.2.1 Combine Using Replace

Interface parts can be reused by placing them inside a template and then sourcing that template at
the appropriate places in the <interface> element. The element that sources the template can also
include a default implementation of the element inside the template. If the templateisfor some
reason inaccessible (e.g., network problems), then the rendering engine can ignore the template

Harmonia, Inc. Page 95 02/08/2002

UIML 3.0 Language Specification

and still render the part. Using “replace” as the value for the how attribute, the UIML parser will
delete the default implementation and add the implementation from the templ ate.

Example

UIML enables the interface implementer to build alibrary of reusable interface components, and
then include them as needed in new UIML documents. In the following UIML fragment, a
dialog box defined in the <template> named DialogBox is inserted into the UIML document in
place of the following <part> element. Note that the dialog box can then be customized
elsewhere in the UIML document by setting various properties (including the content) of the
dialog box.

<tenpl at e i d="Di al ogBox" >
<part id="TopLevel ">
<part id="ConpanyLogo" class="InmageContai ner"/>
<part id="Message" class="Label"/>
<part id="Accept" class="Button"/>
</ part >
</tenpl at e>

<interface>
<structure>

<part id="Fil eNot FoundBox" cl ass="Di al ogBox"
sour ce="#Di al ogBox" how="repl ace">

<l-- Default inplementation -->
</ part>
</structure>

</interface>

This example demonstrates how a template can be used to represent a complex re-usable
interface object. Here the template represents what is commonly called an “OK Box”. Thisisa
simple dialog that contains a message and a button to hide or close the message box. The
construct is complex in that it is made up of multiple <part> elements yet represents a commonly
used interface object. This particular “OK Box” has been customized to hold the company logo
aswell as the message and button. Since the part sources the template using how="replace” the
body of the sourcing element (represented in the example by <!--Default Implementation -->)
will be removed and the body of the part in the template will become the body of the sourcing
part.

7.2.2 Combine Using Union

Runtime behavior varies significantly from device to device. However, on the same device
different platforms may share the same behavior. For example, both MS-Windows and X-
Windows have events like mouse movement and button clicks. It is therefore convenient, when

Harmonia, Inc. Page 96 02/08/2002

UIML 3.0 Language Specification

describing the behavior of similar platforms, to specify the common behavior (rules) ina
template and source the template in the behavior for each platform. Using “union” asthe value
for the how attribute, the UIML parser will append the list of common behavior rulesto the
<behavior> element in the main document.

Example

The following example shows how to reuse behavior rules:

<tenplate id="GJ _Rul es">
<behavi or >
<rule> <!-- Mbuse Mwvenent --> </rul e>
<rule> <l-- Button dick --> </rul e>
</ behavi or >
</tenpl ate>

<interface>

<behavi or id="X-W ndows" source="#GUJ _Rul es" how="uni on">
<rule> <!-- Mddle Muse Cick --> </rul e>
</ behavi or >

<behavi or id="Ms- W ndows" source="#GJ _Rul es" how="uni on">
<rule> <!-- Wndow Cosing --> </rul e>
</ behavi or >
</interface>

This example demonstrates that by using templates Ul designers can specify a set of operations
common across platforms on adevice or even possibly across devices. Here the template defines
aset of rulesfor common desktop Ul interactions, namely mouse movements and button clicks.
The Ul implementer then sources the template using how="union” to add the rules defined in the
template to their custom <behavior> element. In this case, the represented Ul running on a X-
Windows platform would have a <behavior> element consisting of three rules: arule for mouse
movements, arule for button clicks, and arule for middle mouse button clicks. Similarly, the Ul
running on a MS-Windows platform would have a <behavior> element with arule for mouse
movements, arule for button clicks, and arule for window closing. Notice that the UIML author
only had to define the rules for the common interactions once.

7.2.3 Combine Using Cascade

When using several UIML files to define a user interface, a UIML file may source other UIML
filesto include other parts not already within the interface defined in the current UIML file. The
sourced file may in turn source more files for more extensions to the set of interface components,
thereby increasing the richness of the presented interface. Through the use of the cascade value
of the attribute how, this ability to include any other parts from external sources can be achieved.

Styleiswhat dictates how an interface looks and feels. Many companies want the interfaces of
their applications to share a common look and feel when presented on the same platform. For
example, they want all the “about” dialogs to show their company logo and copyright statement,
they want the name of their company to be in a specia font and color everywhere it appears, and

Harmonia, Inc. Page 97 02/08/2002

UIML 3.0 Language Specification

they want the menus to have a special structure (e.g., File, Edit, View, etc...), etc. UIML allows
thisand more. All the common style information can be specified in atemplate and then
included in each of the interface descriptions. Using “cascade’ as the value for the how
attribute, will include the common style information but will also give the ability to customize
certain properties. Any local property with the same name will override the property in the
template.

Example

The following example demonstrates how to use common style properties and customize them:

<tenpl ate id="G aphical ">
<styl e>
<property nane="Titl eCol or" part-class="AD al og">Bl ue</ property>
<property nane="Titl eFont" part-class="ADi al og">Ari al </ property>
<property nane="rendering" part-class="ADi al og">Di al og</ property>
<property name="content" part-class="ADi al og">About: Ul T</property>
</ behavi or >
</tenpl at e>

<interface>

<style id="MyStyl e" source="#G aphi cal" how="cascade">
<property nane="content" part-name="mnmyAbout"
>About : Harnoni a, Inc.</property>
</style>
</interface>

The example above contains a template that defines the style for all parts of the class“ADialog”.
The ‘rendering’ property given in the template indicates that “ Adialog” will be rendered asa
‘Dialog’, which is mapped to some interface widget in the target vocabulary. The rest of the
properties defined in the template’ s <style> set the TitleColor property to “blue’, set the
TitleFont property to “Arial”, and set the content of the ADialog to “About: UIT”. When the
template is sourced in the interface, each of these properties will be applied to the part element
“myAbout”. However, since the content property has also been set in the style section of the
interface and the template was sourced using how="cascade”, the value assigned to content in
the template will be overwritten. Thus the result is that myAbout will be rendered as a“Diaog”,
the TitleColor property will be set to “blue’, the TitleFont property will be set to “Arial”, and the
content will read “About: Harmonia, Inc.”

Elements are said to be conflicting if one of two conditions is true:
* The source and target element has the same value for the id attribute.

» Neither the source nor the target element has an author-specified id and they both have
the same value for their class attribute.

Under the rules for cascade, if an element in the sourcing document conflicts with an element of

the target document the original element takes precedence over the target element. This allows
UIML authors to overwrite values being sourced from the template.

Harmonia, Inc. Page 98 02/08/2002

UIML 3.0 Language Specification

However, the depth at which this comparison between elements takes place isimportant. In the
UIML 2.0 specification, only the top-level elementsin the sourced and sourcing file are
compared. Any children of those elements are not compared. In this specification, the
how="cascade" attribute is interpreted to propagate down the element-tree for which it was
specified for. If thereis a conflict between the top-level elements, any children of the sourcing
element will also be compared. In turn, grandchildren of the sourcing element will also be
compared if there is a conflict between the child elements and so on. These comparisons would
continue till the conflicting elements are al resolved. The purpose of thisisto compare elements
from a bottom-up perspective rather than atop- down perspective.

7.3 Multiple Inclusions

Elements inside a template can source el ements inside other templates. Thisalowsa
hierarchical inclusion of UIML templates. Thisis useful when describing the peer components
to alanguage with an object hierarchy. For example, the Java AWT classes are organized in a
hierarchy with each child class inheriting the parent class's attributes (thus avoiding redefining
the attributes for each class). For example the “Window” inheritsits layout attributes from
“Container,” which inherits its formatting attributes from “ Component.”

Unfortunately this presents the possibility that atemplate may directly or indirectly source itself,
causing asourcing cycle. Itisan error if atemplate directly or indirectly sourcesitself. The
following example demonstrates how a template can indirectly source itself:

<tenplate id="A">
<part nanme="al" source="#B"/>
</tenpl at e>

<tenplate id="B">
<part name="b1l" source="#C'/>
</tenpl at e>

<tenplate id="C"'>

<part nane="cl" source="#A"/>
</tenpl at e>

In the example above, template “A” sources template “B” which in turn sources template “C”.
Template “C” then sources template “A”, forming a sourcing cycle (A->B->C->A). Such a
cycle cannot be resolved without special assumptions and must produce an error.

7.4 The export Attribute

DTD

<IENTITY % Export Opti ons
"export (hi dden| optional |required) 'optional'">

Description

By default all elements that appear inside a<template> element are visible (can be accessed)
from the elements at the location it isincluded and their children can be optionally modified.

Harmonia, Inc. Page 99 02/08/2002

UIML 3.0 Language Specification

UIML allows the encapsulation of the elements inside atemplate by controlling what isvisible
and what is not with the export attribute. Setting the export attribute to “optional” replicates the
default behavior, meaning that the element can be accessed (remains visible) by elements outside
the <template> element. Any element inside the template with the export attribute set to
“hidden” cannot have its properties changed outside the template, and a rendering engine must
generate an error if an attempt is made to change a hidden property outside the template. Also,
any element with the export attribute set to “required” must be assigned a value before the
template can be rendered.

The semantics of <part ... export="hidden”> mean that no properties of the part listed in the
template may be modified outside the template. The semantics of <part ... export="required” >
mean that all properties given in the template of the part must be defined outside the template.

The semantics of <part><property name="x" export="hidden”/></part> mean that property x
cannot be modified outside the template, regardless of whether the <part> element has an export
attribute. The semantics of <part><property name="x" export="required”/></part> mean that
property x must be defined outside the template, regardless of whether the <part> element has
an export attribute.

Example

In the following template, a message box has three parts. It requires that the content of one part
be assigned a value but hides the other two parts. Now, assume that this template is rendered as
adialog window, with alogo image, alabel, and an “Ok” button. The Ul that sourcesthis
template must provide the content for the label (and thus display a custom message), but cannot
modify the logo or the “Ok” button.

<tenpl ate i d="MDi al 0og" >
<part id="TopLevel ">
<part id="M/Logo" cl ass="Logo” export="hi dden"/>
<part id="MyMessage" cl ass="Label ">
<styl e>
<property name="content" export="required"/>
</style>
</ part>
<part id="Ck" class="OKButton” export="hidden"/>
</ part>
</tenpl at e>

Harmonia, Inc. Page 100 02/08/2002

UIML 3.0 Language Specification

8 Alternative Organizations of a UIML

Document

Until now, UIML documents shown have followed arigid format: appearing in the <uiml>
element isfirst the optional <head> element, followed by the <peers> element, and then the
<interface> element. Alternative document organizations are possible:

= The <content>, <style>, and <behavior> elements can be embedded within the <part>
element. Thismakesit easier to write UIML, because all information about an interface
part is centralized where the part is defined.

* TheUIML document can be split into multiple documents, with different documents
loaded only when an event triggers loading.

= A rendering engine can start rendering before an entire UIML document is received to
reduce latency for an end-user in large UIML documents.

The DTD presented in Appendix A permits these combinations. Refer to the DTD for precise
information on what organizations are legal.

Often it isdesirable to put UIML fragments into separate files, and then include one file within
another. This can be accomplished in two waysin UIML:

8.1 Normal XML Mechanism
XML alowsfileinclusion asillustrated below:

<?xm version="1.0" encodi ng="1S0O 8859-1"7?>

<?xm version="1.0"?>

<! DOCTYPE ui M PUBLIC
"-//Harnmonia//DTD UM 3.0 Draft//EN'
"http://uim.org/dtds/ U M.3_0a. dtd">

<IENTITY peers SYSTEM "http://uim.org/peers.ui">
<IENTITY parts SYSTEM "parts. ui">
<IENTITY style SYSTEM "styl e. ui ">
<IENTI TY content SYSTEM "content . ui ">
<l ENTI TY behavi or SYSTEM " behavi or . ui ">
<ui m >
&peers;
<interface>&parts; &styl e; &ont ent ; &ehavi or; </i nterface>
</uim>

8.2 UIML Template Mechanism

Using the <template> element a UIML document can be broken down into multiple pieces (as
explained in Section 7.1). The major difference between the normal XML mechanism and

UIML templatesis that templates provide more control on what information isvisible to the
main document (see Section 7.4). For example, a template may encapsulate the implementation
of adialog box and export only the content property of the input widget. Also, a smart rendering

Harmonia, Inc. Page 101 02/08/2002

UIML 3.0 Language Specification

engine may delay the loading and parsing of templates until that part of the code is reached,
whereas in the XML mechanism al the inclusions must be done during parsing.

Harmonia, Inc. Page 102 02/08/2002

UIML 3.0 Language Specification

References

[1]

[2]

[3]

[4]
[5]
[6]
[7]
[8]
[9]
[10]
[11]
[12]
[13]
[14]
[15]
[16]

[17]
[18]

T. Bray, et a, Extensible Markup Language (XML), W3C Proposed Recommendation
10-February-1998, REC-xml-19980210, February 10, 1998,

http://www.w3.0rg/ TR/REC-xml.

B. Bos, H. W. Lig, C. Lilley, I. Jacobs, Cascading Style Sheets, level 2, CSS2
Specification. W3C Recommendation 12-May-1998, http://www.w3.org/ TR/REC-
CSS2.

Marc Abrams, Constantinos Phanouriou, Alan L. Batongbacal, Stephen M. Williams,
Jonathan E. Shuster, “UIML: An Appliance-Independent XML User Interface
Language,” 8" International World Wide Web Conference, Toronto, May 1999,
http://www8.org/w8-papers/5b-hypertext-media/uiml/uiml.html. Also appeared in
Computer Networks, Vol. 31, pp. 1695-1708.

Marc Abrams, Constantinos Phanouriou , UIML: An XML Language for Building
Device-Independent User Interfaces, XML "99, Philadelphia, Dec. 1999.
Constantinos Phanouriou, UIML: A Device-Independent User Interface Markup
Language, http://scholar.lib.vt.edu/theses/avail abl e/etd-08122000-
19510051/unrestricted/PhanouriouETD. pdf

UIML1.0 specification, http://www.uiml.org/specs/uiml 1/index.htm, 1997.

UIML 2.0 specification, http://www.uiml.org/specs/uiml2/DraftSpec.htm, 2000.

J. Clark and S. Deach, eds, Extensible Style Language (XS.), W3C Proposed
Recommendation, 12 January 2000. http://www.w3.0rg/TR/xsl.

J. Clark, XSL Transformations (XSLT), W3C Recommendation 16 November 1999,
http://www.w3.0rg/ TR/xslt.

S. Bradner, Key words for use in RFCs to Indicate Requirement Levels,
http://www.ietf.org/rfc/rfc2119.txt, March 1997.

Wireless Markup Language (WML), Wireless Application Protocol, June 16, 1999,
http://www.wapforum.org/

Voice Extensible Markup Language (VoiceXML), VoiceXML Forum, August 17,
1999, http://www.voicexmlforum.org/

W3C, XForms— The Next Generation of Web Forms, 31 January 2002,
http://www.w3.org/MarkUp/Forms/

W3C, Document Object Model (DOM), http://www.w3.org/

XIML Forum, extensible Interface Markup Language (XIML), http://www.ximl.org/
R. Cover, The XML Cover Pages Extensible User Interface Language (XUL),
http://www.oasi s-open.org/cover/xul.html, August, 2000.

Harmonia, Inc., UIML-Java rendering engine User Manual,
http://www.harmonia.com/products/java/manual .htm

Harmonia, Inc., UIML Example Gallery,
http://www.harmonia.com/products/java/gallery/index.htm;
http://www.harmonia.com/products/html/examples.htm;
http://www.harmonia.com/products/wml/examples.htm; and
http://www.harmonia.com/products/voice/gallery.htm

Harmonia, Inc. Page 103 02/08/2002

UIML 3.0 Language Specification

Appendix A. UIML 3.0 Document Type
Definition

<?xm version="1.0" encodi ng="1S0O 8859-1"7?>

<I--
User Interface Markup Language (U M)
Devel oped by:
Har moni a, |nc.
Usage:
<?xm version="1.0"?>
<! DOCCTYPE uim PUBLIC "-//Harnonia//DTD UM 3.0a Draft//EN'
"http://uim.org/dtds/ U M.3_0a. dtd">
NOTE: This URL has not yet been activated.
<uinm >
<head> ... </ head>
<tenplate> ... </tenplate>
<peers> ... </ peer s>
<interface> ... </interface>
</uim>
Descri pti on:
This DID corresponds to the U M 3.0a specification
Change Hi story:
-->
<l -- =Z=================== Content Mydel s ======================= -_->
<l--
‘uimM' is the root elenment of a U M docunent.
-->

<IELEMENT uim (head?, (tenplate|interface|peers)*) >

<l--
The 'head' elenent is nmeant to contain netadata about the U M
docurent. You can specify nmetadata using the nmeta tag,
this is simlar to the head/ neta from HTM.

-

<! ELEMENT head (neta)*>
<! ELEMENT neta EMPTY>

Harmonia, Inc. Page 104 02/08/2002

UIML 3.0 Language Specification

<I ATTLI ST neta
nanme NMIOKEN #REQUI RED
content CDATA #REQUI RED>

<l--
The 'peers' elenent contains information that defines
how a U M. interface conponent is nmapped to the target platforns
renderi ng technol ogy and to the backend | ogic.

-->

<! ELEMENT peers (presentation|logic)*>
<I ATTLI ST peers

id NMTOKEN #1 MPLI ED
sour ce CDATA #| MPLI ED
how (uni on| cascade| repl ace) "repl ace"

export (hidden|optional|required) "optional">

<l--
The '"interface' element describes a user interface in terns of
presentation w dgets, conponent structure and behavi or

speci fications.

-->

<l ELEMENT interface (structure|style|content]|behavior)*>
<I ATTLI ST interface

id NMTOKEN #1 MPLI ED
sour ce CDATA #1 MPLI ED
how (uni on| cascade| repl ace) "repl ace"

export (hidden|optional|required) "optional">

<l--
The '"tenplate' el enent enables reuse of U M el enents.
When an el enent appears inside a tenplate elenent it can
sourced by another elenent with the sanme tag.

-

<! ELEMENT tenpl ate (behavior|constant|content|d-cl ass| d-
conponent | i nterface

| I ogi c| part| peers| presentation|property|restructure|rule
| script]|structure|style)>
<I ATTLI ST tenpl ate
i d NMIOKEN #| MPLI ED>

<l-- Peer related el ements -->

<I--
The 'presentation' elenent specifies the nappi ng between
abstract interface parts and pl atform dependent wi dgets.
-

<! ELEMENT presentation (d-class*)>
<I ATTLI ST presentation

id NMTOKEN #1 MPLI ED
sour ce CDATA #| MPLI ED
base CDATA #REQUI RED
how (uni on| cascade| repl ace) "repl ace"

Harmonia, Inc. Page 105 02/08/2002

UIML 3.0 Language Specification

export (hidden|optional|required) "optional">

<I--
The 'logic' element specifies the connection between the interface

and t he backend application, including support for scripting.
>

<! ELEMENT | ogi ¢ (d-conmponent*) >
<I ATTLI ST l ogic

id NMIOKEN #1 MPLI ED
sour ce CDATA #| MPLI ED
how (uni on| cascade| repl ace) "repl ace"

export (hidden|optional|required) "optional">

<I--

The ' d-conponent' el enent maps the nane used in a <call> elenment to

application logic external to the U M docunent (e.g., a class in
an

obj ect oriented |anguage or a function in a scripting | angauge).
-

<! ELEMENT d- conponent (d-nethod)*>
<I ATTLI ST d- conponent

id NMTOKEN #REQUI RED
source CDATA #| MPLI ED
how (uni on| cascade| repl ace) "repl ace"
export (hi dden| optional | required) "optional"
maps-to CDATA #1 MPLI ED
| ocati on CDATA #1 MPLI ED>
<l--
Maps cl ass nanes that can be used for parts and events, as
wel | as property and event data nanes, to U toolKkit.
-

<! ELEMENT d-cl ass (d-nethod*, d-property*, event*, |istener*)>
<I ATTLI ST d-cl ass

id NMTOKEN #REQUI RED
sour ce CDATA #1 MPLI ED
how (uni on| cascade| repl ace) "repl ace"
export (hi dden| optional | required) "optional"
used-in-tag (event|listener|part) #REQUI RED
maps-type (attribute|tag]|class) #REQUI RED
maps-to CDATA #REQUI RED>
<l--
Maps a property nane to nmethods in U toolkit that get and
set property’s val ue.
-->

<! ELEMENT d- property (d-method*, d-parant)>
<I ATTLI ST d- property
id NMTOKEN
#REQUI RED
maps-type (attribute| get Met hod| set Met hod| net hod)
#REQUI RED

Harmonia, Inc. Page 106 02/08/2002

UIML 3.0 Language Specification

maps-to CDATA
#REQUI RED

return-type CDATA
#1 MPLI ED>
<I--

Maps a nethod to a callable nethod or function in the APl of

t he application | ogic.
-->

<! ELEMENT d- met hod (d- parant, script?)>
<! ATTLI ST d- et hod

id NMTOKEN #REQUI RED
source CDATA #| MPLI ED
how (uni on| cascade| repl ace) "repl ace"
export (hi dden| optional | required) "optional"
maps-to CDATA #REQUI RED
return-type CDATA #| MPLI ED>

<l--

Defines a single formal paraneter to a <d-met hod>.
>

<! ELEMENT d- par am (#PCDATA) >

<I ATTLI ST d- param
id NMTIOKEN #1 MPLI ED
type CDATA #l MPLI ED>

<I--

The 'script' elenment contains executable script code. The t
specifies the scripting | anguage (see HTM.4.0).

>

<! ELEMENT scri pt (#PCDATA) >
<! ATTLI ST scri pt
id NMIOKEN
type NMIOKEN
sour ce CDATA
how (uni on| cascade| repl ace)
export (hidden|optional|required)

<l-- Interface related el enents -->

<l--

#1 MPLI ED
#1 MPLI ED
#1 MPLI ED
"repl ace"
"optional ">

The 'structure' element describes the initial organization

parts that conprise the user interface.
-->

<l ELEMENT structure (part*)>
<I ATTLI ST structure

id NMTOKEN
source CDATA
how (uni on| cascade| repl ace)

export (hidden|optional|required)

Harmonia, Inc. Page 107

#1 MPLI ED
#1 MPLI ED
"repl ace"
"optional ">

ype

of the

02/08/2002

UIML 3.0 Language Specification

<l--
Specifies a single abstract part of the user interface.
-->

<! ELEMENT part (style?, content?, behavior?, part*, repeat*)>
<I ATTLI ST part

id NMTOKEN #1 MPLI ED
cl ass NMTOKEN #1 MPLI ED
source CDATA #| MPLI ED
wher e (first|last|before|lafter) "last"
wher e- part NMIOKEN #1 MPLI ED
how (uni on| cascade| repl ace) "repl ace"
export (hi dden| optional | required) "optional">
<l--
A 'repeat' elenent encapsulates a sub-tree of the overall interface
virtual tree to be repeated O or nore tines. Each repeat MJST
have one 'iterator' child.
-->

<! ELEMENT repeat (iterator,part*)>
<I ATTLI ST repeat EMPTY>

<l--
An 'iterator' defines how many tinmes a sub-tree should be repeated
in an interface and serves as an indicator of the current
iteration.
-->

<! ELEMENT iterator (#PCDATA| constant|property|call)>
<! ATTLI ST iterator

id NMIOKEN #REQUI RED>
<l--
A 'style' element is conposed of one or nore 'property' elenents,
each of which specifies how a particular aspect of an interface
conponent's presentation is to be presented.
-->

<!l ELEMENT styl e (property*)>
<! ATTLI ST style

id NMTOKEN #| MPLI ED
source CDATA #| MPLI ED
how (uni on| cascade| repl ace) "repl ace"

export (hidden|optional|required) "optional">

<l--
A 'property' element is typically used to set a specified
property for sone interface conponent (or alternatively,
a class of interface conponents), using the elenment's
character data content as the value. |[If the 'operation'
attribute is given as "get", the elenent is equivalent to
a property-get operation, the value of which nmay be "returned"
as the content for an enclosing 'property' element.

Harmonia, Inc. Page 108 02/08/2002

UIML 3.0 Language Specification

<! ELEMENT property (#PCDATA| constant| property| reference| call| op
event| iterator)*>
<I ATTLI ST property

name NMTOKEN #1 MPLI ED
source CDATA #1 MPLI ED
how (uni on| cascade| repl ace) "repl ace"
export (hi dden| optional | required) "optional"
part - name NMTOKEN #| MPLI ED
part-class NMIOKEN #1 MPLI ED
event - name NMIOKEN #| MPLI ED
event - cl ass NMIOKEN #1 MPLI ED
cal | - nanme NMIOKEN #1 MPLI ED
call -class NMIOKEN #| MPLI ED>

<l--
A 'reference' nay be thought of as a property-get operation
where the "property" to be read is a 'constant' el enment defined
in the UM docunment's 'content' section

-->

<! ELEMENT r ef erence EMPTY>
<! ATTLI ST reference
const ant - name NMIOKEN #| MPLI ED

url - name NMTIOKEN #1 MPLI ED>
<l--
The 'content' elenent is conposed of one or nore 'constant
el ements, each of which specifies sone fixed val ue.
-

<! ELEMENT content (constant*)>
<I ATTLI ST cont ent

id NMTOKEN #1 MPLI ED
sour ce CDATA #| MPLI ED
how (uni on| cascade| repl ace) "repl ace"

export (hidden|optional|required) "optional">

<l --

‘constant' elenents may be hierarchically structured.
-2

<! ELEMENT constant (constant*)>
<I ATTLI ST const ant

id NMIOKEN #1 MPLI ED
sour ce CDATA #| MPLI ED
how (uni on| cascade| repl ace) "repl ace"
export (hidden|optional|required) "optional”
nodel CDATA #1 MPLI ED
val ue CDATA #| MPLI ED>
<l--
The ' behavior' elenent gives one or nore "rule"s that
specifies what '"action' is to be taken whenever an associ at ed
'condition' beconmes TRUE
-

Harmonia, Inc. Page 109 02/08/2002

<! ELEMENT
<! ATTLI ST

<! ELEMENT
<I ATTLI ST

<l--

UIML 3.0 Language Specification

behavi or (rul e*)>

behavi or

id NMTOKEN #1 MPLI ED
sour ce CDATA #| MPLI ED
how (uni on| cascade| repl ace) "repl ace"

export (hidden|optional|required) "optional">

rule (condition,action)?>

rul e

id NMTOKEN #1 MPLI ED
sour ce CDATA #1 MPLI ED
how (uni on| cascade| repl ace) "repl ace"

export (hidden|optional|required) "optional">

At the nonent, "rule"s nmay be associated with two types of
conditions: (1) whenever sone expression is equal to some other
expression; and (2) whenever some event is triggered and caught.

-->
<! ELEMENT
<! ELEMENT
<! ELEMENT
<I ATTLI ST

<! ELEMENT

condition (equal|event|op)>

equal (event, (constant| property]|reference|op))>
op (constant| property|reference|call|op|event)*>
ﬁgne CDATA #REQUI RED>

action (((property|call]|restructure)*, event?)| (when-

true?, when-fal se?, by-default?))>

<! ELEMENT

<! ELEMENT

<! ELEMENT

<! ELEMENT
<I ATTLI ST

<! ELEMENT
<I ATTLI ST

<l--

when-true ((property|call)*,restructure?, op?, equal ?, event?) >
when-fal se ((property|call)*, restructure?, op?, equal ?, event ?)>
by-default ((property|call)*,restructure?, op?, equal ?, event?)>

restructure (tenplate)?>
restructure

at - part NMIOKEN #1 MPLI ED
how (uni on| cascade| repl ace| del ete) "repl ace"
where (first|last|before|after) "l ast"

wher e- part NMIOKEN #| MPLI ED
source CDATA #1 MPLI ED>

call (parant)>

cal |

name NMTOKEN #| MPLI ED
cl ass NMIOKEN #| MPLI ED>

"event' denotes one of three things:
(1) Wien a child of <condition> or <op> denotes that when the

named

event is fired, the condition should be eval uated.
(2) When a child of <action> denotes that the named event should

Harmonia, Inc.

Page 110 02/08/2002

UIML 3.0 Language Specification

be fired.
(3) Inside <d-class> denotes that the naned event can occur for
the part class naned by the <d-cl ass>.
-->

<! ELEMENT event EMPTY>

<I ATTLI ST event
nane NMIOKEN #| MPLI ED
cl ass NMTOKEN #1 MPLI ED
part-nane NMIOKEN #I MPLI ED
part-class NMIOKEN #| MPLI ED>

<I--

'param denotes a single actual paraneter to a call-able routine.
- >

<! ELEMENT par am (#PCDATA| property|reference|call|op|event|iterator)*>
<I ATTLI ST par am
name NMIOKEN #| MPLI ED>

<I--
"l'istener' denotes that a nane defined with d-cl ass
used-in-tag="listener" should be attached as a listener to the
d-cl ass, which contains this <listener> el enent.

o>

<! ELEMENT | i stener EMPTY>

<! ATTLI ST I|i st ener
cl ass NMIOKEN #1 MPLI ED
attacher CDATA #l| MPLI ED>

Harmonia, Inc. Page 111 02/08/2002

UIML 3.0 Language Specification

Appendix B. Behavior Rule Selection
Algorithm

The <behavior> e ement contains one or more <rule> elements. Sometimes the condition for
more than one rule may be satisfied at the sametime. A UIML rendering engine must render
UIML in such away that when a condition of a<rule> element is true, the associated <action>
element is executed. UIML does not define any order on evaluation of <condition> elements.

/1 Non-determnistically choose a <rule> elenent fromU M file)
foreach (rul e inside behavior) do

// Evaluate the condition of the rule
if eval (rule.condition) == TRUE then

/1 A condition is found that evaluates to true
/1 Scan <action> el enents sequentially
foreach (el ement inside action) do

/1 1f the elenent is a property
if (elenent instanceof property) then
do property assi gnment

/1 If the elenent is a nethod
else if (elenent instanceof nethod) then
do net hod cal

/1 1f the element is an event
/1 This nmust be the |last elenent in the action
else if (elenent instanceof nethod) then

do event firing

RETURN

end foreach
/1 End when a rule is found and its actions are executed
RETURN

endi f
end foreach

Harmonia, Inc. Page 112 02/08/2002

UIML 3.0 Language Specification

Appendix C. Changes from UIML 2.0a
Specification (1/17/72001)

Following are changes from the Document Type Definition given in the 17 Jan 2000
specification (named UIML2_0Oa.dtd). Elements not listed have not changed.

<action element:
<action> can now have two possible sets of children: 1. Any number of <property>,
<call>, or<restructure> elements followed by one or zero <event> elements, or 2.
A <when-true> element followed by a <when-false> element followed by a <by-
default> element.

<attribute> element:
<attribute> isno longer avalid UIML element. It has been replaced by <d-property>

<behavior> element:
Attribute name has been replaced by attribute id.

<by-default> element:
New element in UIML 3.0.

<component> el ement:
<component> isno longer avalid UIML element. It has been replace by two
elements <d-class> and <d-component> for use in <presentation> and <logic>
respectively.

<condition> element:
<op> isnow avalid child of <condition>

<constant> element:
Attribute name has been replaced by attribute id.
#PCDATA isno longer avalid child of <constant>. Instead the attribute value has
been added.
Attribute model added

<content> element:
Attribute name has been replaced by attribute id.

<d-class>
New element in UIML 3.0.

<d-component> element:
New element in UIML 3.0.

<d-method>

Harmonia, Inc. Page 113 02/08/2002

UIML 3.0 Language Specification

New element in UIML 3.0.

<d-param> el ement:
New element in UIML 3.0.

<d-property> element:
New element in UIML 3.0.

<egual> element:
<op> isnow avalid child of <equal>

<interface> element:
Attribute name has been replaced by attribute id.

<listener> element:
New dement in UIML 3.0.

<logic> element:
<component> is no longer avalid child of <logic>. It has been replaced by <d-
component>.
Attribute name has been replaced by attribute id.

<method> element:
<method> isnot longer avalid UIML element. It has been replaced by <d-method>.

<op> element
New element in UIML 3.0.

<param> element:
This element has been split into two elements: <param>, which is used with the
<call> element; and <d-param>, which is used with the <d-method> element.
#PCDATA, <property>, <reference>, <op>, <event>, and <call> are now valid
children.

<part> element:
<repeat> isnow avalid child of <part>.
Attribute name has been replaced by attribute id.
Attributes where and where-part have been added for use with <restructure>.

<peers> element:
Attribute name has been replaced with the attribute id.

<presentation> element:
<component> isno longer avalid child of <presentation>. It has been replaced by
<d-class>.
Attribute name has been replaced by attribute id.

Harmonia, Inc. Page 114 02/08/2002

UIML 3.0 Language Specification

Attribute base has been added.

<property> element:
Attribute name has been replaced by attribute id.
<op>, <event>, and <iterator> are now valid children of <property>.

<reference> element:
Attribute url-name has been added

<restructure>
New element in UIML 3.0.

<returns> element:
<return>isno longer avaid UIIML element. Instead, use the returns-value attribute
in element <d-method>.

This change was made because the <returns> element was redundant with the type
attribute in the <d-method> element. The type attribute has been replaced by attribute
returns-value, hence <returns> is replaced by returns-value.

<rule> element:
Attribute name has been replaced by attribute id.

<script> element:
Attribute name has been replaced by attribute id.

<structure> element:
Attribute name has been replaced by attribute id.

<style> element:
Attribute name has been replaced by attribute id.

<system> element:
<system> isno longer avalid UIML element.

<template> element:
<component> is no longer avalid child of <template>
<d-class>, <d-component>, and <restructure> are now valid children of <template>
Attribute name was replaced by attributeid.

<uiml> element:
The DTD has changed to alow any number of <template>,<interface>, and <peers>
children in any order.
<when-false> element
New element in UIML 3.0.

Harmonia, Inc. Page 115 02/08/2002

UIML 3.0 Language Specification

<when-true> e ement:
New dement in UIML 3.0.

General changesinthe DTD
append is no longer avalid value for the source attribute present on many UIML elements. It
has been replaced with union.

Harmonia, Inc. Page 116 02/08/2002

