
wd-ublndrsc-ndrdoc-V1.0Draftq 1 19 August 2004 16:10

 1

Universal Business Language (UBL) 2

Naming and Design Rules 3

19 August 2004 4

Document identifier: 5
wd-ublndrsc-ndrdoc-V1pt1Draftq (Word) 6

Location: 7
 http://www.oasis-open.org/committees/ubl/ndrsc/drafts/ 8

Naming and Design Rules Subcommittee Co-chairs 9
Mavis Cournane, Cognitran Ltd <mavis.cournane@cognitran.com> 10
Mark Crawford, LMI <mcrawford@lmi.org> 11
Lisa Seaburg, Aeon LLC <lseaburg@aeon-llc.com> 12

Lead Editor: 13
Mark Crawford, LMI <mcrawford@lmi.org> 14

Contributors: 15
Bill Burcham, Sterling Commerce 16
Fabrice Desré, France Telecom 17
Matt Gertner, Schemantix 18
Jessica Glace, LMI 19
Arofan Gregory, Aeon LLC 20
Michael Grimley, US Navy 21
Eduardo Gutentag, Sun Microsystems 22
Sue Probert, CommerceOne 23
Gunther Stuhec, SAP 24
Paul Thorpe, OSS Nokalva 25
Jim Wilson, CIDX 26

Past Chair 27
Eve Maler, Sun Microsystems <eve.maler@sun.com> 28

Abstract: 29
This specification documents the naming and design rules and guidelines for the 30
construction of XML components from ebXML Core Components 31

Status: 32

wd-ublndrsc-ndrdoc-V1.0Draftq 2 19 August 2004 16:10

This is a draft document under consideration by the OASIS UBL TC for approval 33
as a TC and OASIS standard. 34
 35

Copyright © 2001, 2002, 2003, 2004 The Organization for the Advancement of 36
Structured Information Standards [OASIS] 37

wd-ublndrsc-ndrdoc-V1.0Draftq 3 19 August 2004 16:10

Table of Contents 38

1 Introduction 7 39
1.1 Audiences 7 40
1.2 Scope 8 41
1.3 Terminology and Notation 8 42
1.4 Guiding Principles 9 43

1.4.1 Adherence to General UBL Guiding Principles 9 44
1.4.2 Design For Extensibility 10 45
1.4.3 Code Generation 11 46

1.5 Choice of schema language 11 47
2 Relationship to ebXML Core Components 13 48

2.1 Mapping Business Information Entities to XSD 16 49
3 General XML Constructs 19 50

3.1 Overall Schema Structure 19 51
3.1.1 Root Element 20 52

3.2 Constraints 21 53
3.2.1 Naming Constraints 21 54
3.2.2 Modeling Constraints 21 55

3.3 Reusability Scheme 22 56
3.3.1 Managing by Types 22 57

3.4 Namespace Scheme 24 58
3.4.1 Declaring Namespaces 24 59
3.4.2 Namespace Uniform Resource Identifiers 25 60
3.4.3 Schema Location 26 61
3.4.4 Persistence 26 62

3.5 Versioning Scheme 26 63
3.6 Modularity 29 64

3.6.1 UBL Modularity Model 29 65
3.6.2 Internal and External schema modules 33 66
3.6.3 Internal schema modules 33 67
3.6.4 External schema modules 34 68

3.7 Documentation 38 69
3.7.1 Embedded documentation 38 70
3.7.2 Schema Annotation 41 71

4 Naming Rules 42 72
4.1 General Naming Rules 42 73

wd-ublndrsc-ndrdoc-V1.0Draftq 4 19 August 2004 16:10

4.2 Type Naming Rules 44 74
4.2.1 Complex Type Names for CCTS Aggregate Business Information 75
Entities 44 76
4.2.2 Complex Type Names for CCTS Basic Business Information Entities77
 45 78
4.2.3 Complex Type Names for CCTS Representation Terms 45 79
4.2.4 Complex Type Names for CCTS Core Component Types 46 80

4.3 Element Naming Rules 46 81
4.3.1 Element Names for CCTS Aggregate Business Information Entities82
 46 83
4.3.2 Element Names for CCTS Basic Business Information Entities 47 84
4.3.3 Element Names for CCTS Association Business Information Entities85
 48 86

4.4 Attribute Naming Rules 48 87
5 Declarations and Definitions 49 88

5.1 Type Definitions 49 89
5.1.1 General Type Definitions 49 90
5.1.2 Simple Types 49 91
5.1.3 Complex Types 50 92

5.2 Element Declarations 54 93
5.2.1 General Element Declarations 54 94
5.2.2 Elements Bound to Complex Types 54 95
5.2.3 Code List Import 55 96
5.2.4 Empty Elements 55 97
5.2.5 XSD:Any 55 98

5.3 Attribute Declarations 55 99
5.3.1 User Defined Attributes 55 100
5.3.2 Global Attributes 56 101
5.3.3 Supplementary Components 56 102
5.3.4 Schema Location 56 103
5.3.5 XSD:Nil 56 104
5.3.6 XSD:Any 56 105

6 Code Lists 57 106
7 Miscellaneous XSD Rules 59 107

7.1 XSD Simple Types 59 108
7.2 Namespace Declaration 59 109
7.3 XSD:Substitution Groups 59 110
7.4 XSD:Final 59 111
7.5 XSD: Notations 59 112

wd-ublndrsc-ndrdoc-V1.0Draftq 5 19 August 2004 16:10

7.6 XSD:All 60 113
7.7 XSD:Choice 60 114
7.8 XSD:Include 60 115
7.9 XSD:Union 60 116
7.10 XSD:Appinfo 60 117
7.11 Extension and Restriction 61 118

8 Instance Documents 62 119
8.1 Root Element 62 120
8.2 Validation 62 121
8.3 Character Encoding 62 122
8.4 Schema Instance Namespace Declaration 63 123
8.5 Empty Content. 63 124

Appendix A. UBL NDR Checklist 64 125
Table A1 — Code List Rules 82 126
Table A2. Constraint Rules Error! 127
Bookmark not defined. 128

Modeling Constraints Error! 129
Bookmark not defined. 130
Naming Constraints Error! 131
Bookmark not defined. 132

Table A3 — Declarations Rules Error! 133
Bookmark not defined. 134

Element Declarations Error! 135
Bookmark not defined. 136
Attribute Declarations Error! 137
Bookmark not defined. 138

Table A4. Documentation Rules Error! 139
Bookmark not defined. 140
Table A5. General XSD Rules Error! 141
Bookmark not defined. 142
Table A6 —Instance Documents Error! 143
Bookmark not defined. 144
Table A7 — Naming Rules Error! 145
Bookmark not defined. 146

General Naming rules Error! 147
Bookmark not defined. 148

Specific Naming Rules Error! 149
Bookmark not defined. 150

Element Naming Rules Error! 151
Bookmark not defined. 152

wd-ublndrsc-ndrdoc-V1.0Draftq 6 19 August 2004 16:10

Attribute Naming Rules Error! 153
Bookmark not defined. 154
Type Naming Rules Error! 155
Bookmark not defined. 156

Table A8 — Namespace Rules Error! 157
Bookmark not defined. 158
Table A9 — Root Element Declaration Rules Error! 159
Bookmark not defined. 160
Table A10 — Schema Structure Modularity Rules Error! 161
Bookmark not defined. 162
Table A11 — Standards Adherence Rules Error! 163
Bookmark not defined. 164
Table A12 — Type Definition Rules Error! 165
Bookmark not defined. 166

General Type Definitions Error! 167
Bookmark not defined. 168
Simple Type Definitions Error! 169
Bookmark not defined. 170

Table A13 — Versioning Rules Error! 171
Bookmark not defined. 172

Appendix B. Approved Acronyms and Abbreviations 83 173
Appendix C. Technical Terminology 84 174
Appendix D. References 89 175
Appendix E. Notices 90 176
 177

wd-ublndrsc-ndrdoc-V1.0Draftq 7 19 August 2004 16:10

1 Introduction 178
XML is often described as the lingua franca of e-commerce. The implication is that by 179
standardizing on XML, enterprises will be able to trade with anyone, any time, without 180
the need for the costly custom integration work that has been necessary in the past. But 181
this vision of XML-based “plug-and-play” commerce is overly simplistic. Of course 182
XML can be used to create electronic catalogs, purchase orders, invoices, shipping 183
notices, and the other documents needed to conduct business. But XML by itself doesn't 184
guarantee that these documents can be understood by any business other than the one that 185
creates them. XML is only the foundation on which additional standards can be defined 186
to achieve the goal of true interoperability. The Universal Business Language (UBL) 187
initiative is the next step in achieving this goal. 188
The task of creating a universal XML business language is a challenging one. Most large 189
enterprises have already invested significant time and money in an e-business 190
infrastructure and are reluctant to change the way they conduct electronic business. 191
Furthermore, every company has different requirements for the information exchanged in 192
a specific business process, such as procurement or supply-chain optimization. A 193
standard business language must strike a difficult balance, adapting to the specific needs 194
of a given company while remaining general enough to let different companies in 195
different industries communicate with each other. 196
The UBL effort addresses this problem by building on the work of the electronic business 197
XML (ebXML) initiative. EbXML, currently continuing development in the Organization 198
for the Advancement of Structured Information Standards (OASIS), is an initiative to 199
develop a technical framework that enables XML and other payloads to be utilized in a 200
consistent manner for the exchange of all electronic business data. UBL is organized as 201
an OASIS Technical Committee to guarantee a rigorous, open process for the 202
standardization of the XML business language. The development of UBL within OASIS 203
also helps ensure a fit with other essential ebXML specifications. UBL will be promoted 204
to the level of international standard. 205
The UBL Technical Committee has established the UBL Naming and Design Rules 206
Subcommittee with the charter to "Recommend to the TC rules and guidelines for 207
normative-form schema design, instance design, and markup naming, and write and 208
maintain documentation of these rules and guidelines". Accordingly, this specification 209
documents the rules and guidelines for the naming and design of XML components for 210
the UBL library. It contains only rules that have been agreed on by the OASIS UBL 211
Naming and Design Rules Subcommittee (NDR SC). Proposed rules, and rationales for 212
those that have been agreed on, appear in the accompanying NDR SC position papers, 213
which are available at http://www.oasis-open.org/committees/ubl/ndrsc/. 214

1.1 Audiences 215
This document has several primary and secondary targets that together constitute its 216
intended audience. Our primary target audience is the UBL Library Content 217
Subcommittee. Specifically, the UBL Technical Committee will use the rules in this 218
document to create normative form schema for business transactions. Developers 219

wd-ublndrsc-ndrdoc-V1.0Draftq 8 19 August 2004 16:10

implementing ebXML Core Components may find the rules contained herein sufficiently 220
useful to merit adoption as, or infusion into, their own approaches to ebXML Core 221
Component based XML schema development. All other XML Schema developers may 222
find the rules contained herein sufficiently useful to merit consideration for adoption as, 223
or infusion into, their own approaches to XML schema development. 224

1.2 Scope 225
This specification conveys a normative set of XML schema design rules and naming 226
conventions for the creation of business based XML schema for business documents 227
being exchanged between two parties using objects defined in accordance with the 228
ebXML Core Components Technical Specification. 229

1.3 Terminology and Notation 230
The key words MUST, MUST NOT, REQUIRED, SHALL, SHALL NOT, SHOULD, 231
SHOULD NOT, RECOMMENDED, MAY, and OPTIONAL in this document are to 232
be interpreted as described in Internet Engineering Task Force (IETF) Request for 233
Comments (RFC) 2119. Non-capitalized forms of these words are used in the regular 234
English sense. 235
[Definition] – A formal definition of a term. Definitions are normative. 236
[Example] – A representation of a definition or a rule. Examples are informative. 237
[Note] – Explanatory information. Notes are informative. 238
[RRRn] - Identification of a rule that requires conformance to ensure that an XML 239
Schema is UBL conformant. The value RRR is a prefix to categorize the type of 240
rule where the value of RRR is as defined in Table 1 and n (1..n) indicates the 241
sequential number of the rule within its category. In order to ensure continuity 242
across versions of the specification, rule numbers that are deleted in future 243
versions will not be re-issued, and any new rules will be assigned the next higher 244
number - regardless of location in the text. Future versions will contain an 245
appendix that lists deleted rules and the reason for their deletion. Only rules are 246
normative; all other text is explanatory. 247

Figure 1 - Rule Prefix Token Value 248
Rule Prefix Token Value

ATD Attribute Declaration
ATN Attribute Naming
CDL Code List
CTD ComplexType Definition
DOC Documentation
ELD Element Declaration
ELN Element Naming
GNR General Naming
GTD General Type Definition
GXS General XML Schema
IND Instance Document

MDC Modeling Constraints
NMC Naming Constraints

wd-ublndrsc-ndrdoc-V1.0Draftq 9 19 August 2004 16:10

NMS Namespace
RED Root Element Declaration
SSM Schema Structure Modularity
STD SimpleType Definition
VER Versioning

Bold - The bolding of words is used to represent example names or parts of names taken 249
from the library. 250
Courier – All words appearing in courier font are values, objects, and 251
keywords. 252
Italics – All words appearing in italics, when not titles or used for emphasis, are special 253
terms defined in Appendix A. 254
The terms “W3C XML Schema” and “XSD” are used throughout this document. They 255
are considered synonymous; both refer to XML Schemas that conform to Parts 1 and 2 of 256
the W3C XML Schema Definition Language (XSD) Recommendations. See Appendix A 257
for additional term definitions. 258

1.4 Guiding Principles 259
The UBL guiding principles encompass three areas: 260

 General UBL guiding principles 261
 Extensibility 262
 Code generation 263

1.4.1 Adherence to General UBL Guiding Principles 264
The UBL Technical Committee has approved a set of high-level guiding principles. The 265
UBL Naming and Design Rules Subcommittee (NDRSC) has followed these high-level 266
guiding principles for the design of UBL NDR. These guiding principles are: 267

1. Internet Use - UBL shall be straightforwardly usable over the Internet. 268
2. Interchange and Application Use–UBL is intended for interchange and 269

application use. 270
3. Tool Use and Support - The design of UBL will not make any 271

assumptions about sophisticated tools for creation, management, storage, 272
or presentation being available. The lowest common denominator for tools 273
is incredibly low (for example, Notepad) and the variety of tools used is 274
staggering. We do not see this situation changing in the near term. 275

4. Legibility - UBL documents should be human-readable and reasonably 276
clear. 277

5. Simplicity - The design of UBL must be as simple as possible (but no 278
simpler). 279

6. 80/20 Rule - The design of UBL should provide the 20% of features that 280
accommodate 80% of the needs. 281

7. Component Reuse -The design of UBL document types should contain as 282
many common features as possible. The nature of e-commerce 283
transactions is to pass along information that gets incorporated into the 284
next transaction down the line. For example, a purchase order contains 285
information that will be copied into the purchase order response. This 286
forms the basis of our need for a core library of reusable components. 287

wd-ublndrsc-ndrdoc-V1.0Draftq 10 19 August 2004 16:10

Reuse in this context is important, not only for the efficient development 288
of software, but also for keeping audit trails. 289

8. Standardization - The number of ways to express the same information in 290
a UBL document is to be kept as close to one as possible. 291

9. Domain Expertise - UBL will leverage expertise in a variety of domains 292
through interaction with appropriate development efforts. 293

10. Customization and Maintenance - The design of UBL must facilitate 294
customization and maintenance. 295

11. Context Sensitivity - The design of UBL must ensure that context-296
sensitive document types aren’t precluded. 297

12. Prescriptiveness - UBL design will balance prescriptiveness in any single 298
usage scenario with prescriptiveness across the breadth of usage scenarios 299
supported. Having precise, tight content models and Datatypes is a good 300
thing (and for this reason, we might want to advocate the creation of more 301
document type “flavors” rather than less; see below). However, in an 302
interchange format, it is often difficult to get the prescriptiveness that 303
would be desired in any single usage scenario. 304

13. Content Orientation - Most UBL document types should be as “content-305
oriented” (as opposed to merely structural) as possible. Some document 306
types, such as product catalogs, will likely have a place for structural 307
material such as paragraphs, but these will be rare. 308

14. XML Technology - UBL design will avail itself of standard XML 309
processing technology wherever possible (XML itself, XML Schema, 310
XSLT, XPath, and so on). However, UBL will be cautious about basing 311
decisions on “standards” (foundational or vocabulary) that are works in 312
progress. 313

15. Relationship to Other Namespaces - UBL design will be cautious about 314
making dependencies on other namespaces. UBL does not need to reuse 315
existing namespaces wherever possible. For example, XHTML might be 316
useful in catalogs and comments, but it brings its own kind of processing 317
overhead, and if its use is not prescribed carefully it could harm our goals 318
for content orientation as opposed to structural markup. 319

16. Legacy formats - UBL is not responsible for catering to legacy formats; 320
companies (such as ERP vendors) can compete to come up with good 321
solutions to permanent conversion. This is not to say that mappings to and 322
from other XML dialects or non-XML legacy formats wouldn’t be very 323
valuable. 324

17. Relationship to xCBL - UBL will not be a strict subset of xCBL, nor will 325
it be explicitly compatible with it in any way. 326

1.4.2 Design For Extensibility 327
Many e-commerce document types are, broadly speaking, useful but require minor 328
structural modifications for specific tasks or markets. When a truly common XML 329
structure is to be established for e-commerce, it needs to be easy and inexpensive to 330
modify. 331

wd-ublndrsc-ndrdoc-V1.0Draftq 11 19 August 2004 16:10

Many data structures used in e-commerce are very similar to “standard” data structures, 332
but have some significant semantic difference native to a particular industry or process. 333
In traditional Electronic Data Interchange (EDI), there has been a gradual increase in the 334
number of published components to accommodate market-specific variations. Handling 335
these variations are a requirement, and one that is not easy to meet. A related EDI 336
phenomenon is the overloading of the meaning and use of existing elements, which 337
greatly complicates interoperation. 338
To avoid the high degree of cross-application coordination required to handle structural 339
variations common to EDI and Document Type Definition (DTD) based systems - it is 340
necessary to accommodate the required variations in basic data structures without either 341
overloading the meaning and use of existing data elements, or requiring wholesale 342
addition of new data elements. This can be accomplished by allowing implementers to 343
specify new element types that inherit the properties of existing elements, and to also 344
specify exactly the structural and data content of the modifications. 345
This can be expressed by saying that extensions of core elements are driven by context.1 346
Context driven extensions should be renamed to distinguish them from their parents, and 347
designed so that only the new elements require new processing. 348
Similarly, data structures should be designed so that processes can be easily engineered to 349
ignore additions that are not needed. 350

1.4.3 Code Generation 351
The UBL NDR makes no assumptions on the availability or capabilities of tools to 352
generate UBL conformant XSD Schemas. In conformance with UBL guiding principle 3, 353
the UBL NDR design process has scrupulously avoided establishing any naming or 354
design rules that sub-optimizes the XSD in favor of tool generation. Additionally, in 355
conformance with UBL guiding principle 8, the NDR are sufficiently rigorous to avoid 356
requiring human judgment at schema generation time. 357

1.5 Choice of schema language 358

The W3C XML Schema Definition Language has become the generally accepted schema 359
language that is experiencing the most widespread adoption. Although other schema 360
languages exist that have their own pro’s and con’s, UBL has determined that the best 361
approach for developing an international XML business standard is to base its work on 362
W3C XSD. 363
 364

[STA1] All UBL schema design rules MUST be based on the W3C XML Schema 365
Recommendations: XML Schema Part 1: Structures and XML Schema 366
Part 2: Datatypes. 367

1 ebXML, Core Components Technical Specification – Part 8 of the ebXML Technical
Framework, V2.0, 11 August 2003

wd-ublndrsc-ndrdoc-V1.0Draftq 12 19 August 2004 16:10

A W3C technical specification holding recommended status represents consensus within 368
the W3C and has the W3C Director's stamp of approval. Recommendations are 369
appropriate for widespread deployment and promote W3C's mission. Before the Director 370
approves a recommendation, it must show an alignment with the W3C architecture. By 371
aligning with W3C specifications holding recommended status, UBL can ensure that its 372
products and deliverables are well suited for use by the widest possible audience with the 373
best availability of common support tools. 374

[STA2] All UBL schema and messages MUST be based on the W3C suite of 375
technical specifications holding recommendation status. 376

wd-ublndrsc-ndrdoc-V1.0Draftq 13 19 August 2004 16:10

2 Relationship to ebXML Core Components 377
 378
As shown in Figure 2-2, there are different types of ccts:CoreComponents and 379
ccts:BusinessInformationEntities. Each type of ccts:CoreComponent and 380
ccts:BusinessInformationEntity has specific relationships between and 381
amongst the other components and entities. The context neutral ccts:Core 382
Components are the linchpin that establishes the formal relationship between the various 383
context-specific ccts:BusinessInformationEntities. 384

wd-ublndrsc-ndrdoc-V1.0Draftq 14 19 August 2004 16:10

Figure 2-1 Core Components and Datatypes Metamodel2 385
 386

Core Component
Business Term 0..*

Registry Class
Unique Identifier 1..1
Dictionary EntryName 1..1
Definition 1..1

CC Property
Property Term 1..1
Cardinality 1..1

Aggregate Core Component (ACC)
Object Class Term 1..1

1..*1..*

Association Core Component (ASCC)

Association CC Property

1

0..*

1

0..* 1

1

1

1

Supplementary Component

Content Component

Basic Core Component (BCC)

Core Component Type (CCT)
Primary Representation Term 1..1
Secondary Representation Term 0..*

1..*1..*

11

Basic CC Property

11 11

Suppl ementary Component Restri cti on

Content Component Restriction

Data Type
Qual ifier Term 0..1

0..* 10..*
+basis

1
1

0..*

1

0..*

0..*0..*

0..*0..*

 387

2 Core Components Technical Specification, Part 8 of the ebXML Technical Framework Version 2.0
(Second Edition), UN/CEFACT, 15 November 2003

wd-ublndrsc-ndrdoc-V1.0Draftq 15 19 August 2004 16:10

Figure 2-2. Business Information Entities Basic Definition Model 388

Registry Class
Unique Identif ier 1..1
Dictionary Entry Name 1..1
Def inition 1..1

Business Context

Business Inf ormation Entity (BIE)
Business Term 0..*

1..*

0..*

+cont ex t 1..*

0..*

Core Component
0..* 10..*

+basis

1

Association BIE Property Association CC Property

Association Core
Component (ASCC)

1

1

1

1

Association Business
Inf ormation Enti ty (ASBI E)

1

1

1

1

10..*

+basis

10..*

Aggregate Business
Inf ormation Entity (ABIE)
Qualif ier Term 0..1
Cardinality 1..1

1

0..*

1

0..*

Aggregate Core
Component (ACC)

Object Class Term 1..1

0..*

1

0..*

1

10..*

+basis

10..*

CC Property
Property Term 1..1
Cardinality 1 .. 1

1..*1..*

BIE Property
Qualif ier Term 0..1

1..*1..*

10..*

+basis

10..*

Basic Business Inf ormation
Entity (BBIE)

Basic BIE Property

1

1

1

1

Basic Core Component (BCC)

10..*

+basis

10..*

Basic CC Property

1

1

1

1

Data Ty pe
Qualif ier Term 0..1

0..*

1

0..*

1
0..*

1
0..*

1

 389
Multiple ccts:BusinessInformationEntities, each expressing a different context, 390
can be associated to a single ccts:CoreComponent. A collection of 391
ccts:BusinessInformationEntities will constitute a business document. A 392
larger collection of ccts:BusinessInformationEntities will constitute a library 393
of reusable components. 394
UBL is developing a library of reusable components for XML syntactic expressions, as 395
well as the syntactic expressions themselves in the form of normative schemas. In 396
keeping with the tenets of the CCTS, the UBL component library will consist of 397
ccts:BusinessInformationEntities. More specifically, the UBL component 398
library consists of Aggregate Business Information Entities (ccts:Aggregate 399
BusinessInformationEntities), their underlying Basic Business Information 400

wd-ublndrsc-ndrdoc-V1.0Draftq 16 19 August 2004 16:10

Entities (ccts:BasicBusinessInformationEntities], and Association Business 401
Information Entities (ccts:AssociationBusinessInformationEntities) 402
developed in the context of the business process. UBL is committed to contributing its 403
library of reusable components for harmonization and inclusion in an ebXML Core 404
Component and Business Information library and registry. 405
Since UBL is concerning itself only with the development of 406
ccts:BusinessInformationEntities and their realization in XML, the UBL 407
metamodel is that subset of Figure 2-2 that consists of the ccts:Business 408
InformationEntity concepts. The UBL methodology defines no 409
ccts:CoreComponents. Since UBL will not be defining ccts:CoreComponents, 410
UBL will leave it to the ebXML library and registry owners to define the relationships 411
between the UBL developed ccts:BusinessInformationEntities and their 412
underlying ccts:CoreComponents. 413

2.1 Mapping Business Information Entities to XSD 414
UBL has defined how each of the ccts:BusinessInformationEntity components 415
map to an XSD construct (See figure 2-3). In defining this mapping, UBL has analyzed 416
the CCTS metamodel and determined the optimal usage of XSD to express the various 417
ccts:BusinessInformationEntity components. As stated above, a 418
ccts:BusinessInformationEntity can be a ccts:AggregateBusiness 419
InformationEntity, a ccts:BasicBusinessInformationEntity, or a 420
ccts:AssociationBusinessInformationEntity. In understanding the logic of 421
the UBL binding of ccts:BusinessInformationEntities to XSD expressions, it is 422
important to understand the basic constructs of the ccts:AggregateBusiness 423
InformationEntities and their relationships as shown in Figure 2-2. 424
Both Aggregate and Basic Business Information Entities must have a unique name 425
(Dictionary Entry Name). Both are treated as objects and both are defined as 426
xsd:ComplexTypes. 427
There are two kinds of Business Information Entity Properties - Basic and Association. A 428
Basic Business Information Entity Property represents an intrinsic property of an 429
Aggregate Business Information Entity. Basic Business Information Entity properties are 430
linked to a Datatype. . UBL defines two types of Datatypes – unspecialised and 431
specialised. The ubl:UnspecialisedDatatypes correspond to ccts:representation terms and 432
have no restrictions to the facets of the corresponding ccts:ContentComponent or 433
ccts:SupplementaryComponent. The ubl:SpecialisedDatatypes are derived from 434
ubl:UnspecializedDatatypes with restrictions to the facets of the corresponding 435
ccts:ContentComponent or ccts:SupplementaryComponent.DatatypeDatatype. 436
CCTS defines an approved set of primary and secondary representation terms. However, 437
these representation terms are simply naming conventions to identify the Datatype of an 438
object, not actual constructs. These representation terms are in fact the basis for 439
Datatypes as defined in the CCTS.. 440
Figure 2-3. UBL Document Metamodel 441

wd-ublndrsc-ndrdoc-V1.0Draftq 17 19 August 2004 16:10

Core Component Type
(CCT)

Specifies
restrictions

on

Data Type
(DT)

Basic Core
Component

(BCC)

Aggregate Core
Component

(ACC)

Association Core
Component

(ASCC)

Defines
a set of

values of

As Property
Aggregated

in

Further
restricts

Is based on

Qualifies the
Object Class of

Xsd:complexType or
 xsd:simpleType

xsd:complexType

xsd:complexType
(as BBIE Property)

xsd:element
(Declared as BBIE

Property)

xsd:complexType xsd:element

xsd:element

Basic Business Information
Entity (BBIE)

Aggregate Business
Information
Entity (ABIE)

Association Business
Information Entity

(ASBIE)

Defines a set of
values of

As
Property
aggregated

in

Message Assembly

 Assembly
Component

Aggregated
 in

Core Component Library

Adds
extra
information

Is based on

Data Type
(DT)

Aggregated
 in

442
 443
A ccts:Datatype “defines the set of valid values that can be used for a particular 444
Basic Core Component Property or Basic Business Information Entity 445
Property.Datatype”3 The ccts:Datatypes can be either unspecialized – no restrictions 446
applied – or specialized through the application of restrictions. The sum total of the 447
Datatypes is then instantiated as the basis for the various types defined in the UBL 448

3 Core Components Technical Specification, Part 8 of the ebXML Technical Framework Version 2.0
(Second Edition), UN/CEFACT, 15 November 2003

wd-ublndrsc-ndrdoc-V1.0Draftq 18 19 August 2004 16:10

schemas. CCTS supports Datatypes that are unspecialized, i.e. it enables users to define 449
their own Datatypes for their syntax neutral constructs. Thus ccts:Datatypes allow 450
UBL to identify facets for elements when restrictions to the corresponding 451
ccts:ContentComponent or ccts:SupplementaryComponent is required. 452
A ccts:AssociationBusinessInformationEntityProperty represents an 453
extrinsic property – in other words an association from one ccts:Aggregate 454
BusinessInformationEntityProperty instance to another ccts:Aggregate 455
BusinessInformationEntityProperty instance. It is the ccts:Aggregate 456
BusinessInformationEntityProperty that expresses the relationship between 457
ccts:AggregateBusinessInformationEntities. Due to their unique extrinsic 458
association role, ccts:AssociationBusinessInformationEntities are not 459
defined as xsd:complexTypes, rather they are either declared as elements that are then 460
bound to the xsd:complexType of the associated ccts:AggregateBusiness 461
InformationEntity, or they are reclassified ABIEs. 462

As stated above, ccts:BasicBusinessInformationEntities define the intrinsic 463
structure of a ccts:AggregateBusinessInformationEntity. These 464
ccts:BasicBusinessInformationEntities are the “leaf” types in the system in 465
that they contain no ccts:AssociationBusinessInformationEntity properties. 466
A ccts:BasicBusinessInformationEntity must have a 467
ccts:CoreComponentType. Ccts:CoreComponentTypes are low-level types, such 468
as Identifiers and Dates. A Ccts:CoreComponentType describes these low-level types 469
for use by ccts:CoreComponents, and (in parallel) a ccts:Datatype, 470
corresponding to that ccts:CoreComponentType, describes these low-level types for 471
use by ccts:BusinessInformationEntities. Every ccts:CoreComponentType 472
has a single ccts:ContentComponent and one or more ccts:Supplementary 473
Components. A ccts:ContentComponent is of some Primitive Type. All 474
ccts:CoreComponentTypes and their corresponding content and supplementary 475
components are pre-defined in the CCTS. UBL, in partnership with the Open 476
Applications Group has developed an xsd:schemaModule that defines each of the pre-477
defined ccts:CoreComponentTypes as xsd:complexTypes or xsd:simpleTypes 478
and declares ccts:SupplementaryComponents as xsd:attributes or uses the 479
predefined facets of the built-in xsd:Datatype for those that are used as the base 480
expression for an xsd:simpleType. 481

wd-ublndrsc-ndrdoc-V1.0Draftq 25 March 2004

3 General XML Constructs 482
This chapter defines UBL rules related to general XML constructs to include: 483

 Overall Schema Structure 484
 Naming and Modeling Constraints 485
 Reusability Scheme 486
 Namespace Scheme 487
 Versioning Scheme 488
 Modularity Strategy 489
 Schema Documentation Requirements 490

3.1 Overall Schema Structure 491
A key aspect of developing standards is to ensure consistency in their development. 492
Since UBL is envisioned to be a collaborative standards development effort, with liberal 493
developer customization opportunities through use of the xsd:extension and 494
xsd:restriction mechanisms, it is essential to provide a mechanism that will 495
guarantee that each occurrence of a UBL conformant schema will have the same look and 496
feel. 497
[GXS1] UBL Schema MUST conform to the following physical layout as applicable: 498
XML Declaration 499
<!-- ===== Copyright Notice ===== --> 500
“Copyright  2001-2004 The Organization for the Advancement of Structured 501

Information Standards (OASIS). All rights reserved. 502
<!-- ===== xsd:schema Element With Namespaces Declarations ===== --> 503
xsd:schema element to include version attribute and namespace declarations in the 504

following order: 505
 xmlns:xsd 506
 Target namespace 507
 Default namespace 508
 CommonAggregateComponents 509
 CommonBasicComponents 510
 CoreComponentTypes 511
 Unspecialised Datatypes 512
 Specialised Datatypes 513
 Identifier Schemes 514
 Code Lists 515
Attribute Declarations – elementFormDefault=”qualified” 516
attributeFormDefault=”unqualified” 517
<!-- ===== Imports ===== --> 518
CommonAggregateComponents schema module 519
CommonBasicComponents schema module 520
Unspecialized Types schema module 521
Specialized Types schema module 522
<!-- ===== Global Attributes ===== --> 523

wd-ublndrsc-ndrdoc-V1.0Draftq 25 March 2004

Global Attributes and Attribute Groups 524
<!-- ===== Root Element ===== --> 525
Root Element Declaration 526
Root Element Type Definition 527
<!-- ===== Element Declarations ===== --> 528
alphabetized order 529
<!-- ===== Type Definitions ===== --> 530
All type definitions segregated by basic and aggregates as follows 531
<!-- ===== Aggregate Business Information Entity Type Definitions ===== --> 532
alphabetized order of ccts:AggregateBusinessInformationEntity xsd:TypeDefinitions 533
<!-- =====Basic Business Information Entity Type Definitions ===== --> 534
alphabetized order of ccts:BasicBusinessInformationEntities 535
<!-- ===== Copyright Notice ===== --> 536
Required OASIS full copyright notice. 537

3.1.1 Root Element 538
Per XML 1.0, “There is exactly one element, called the root, or document element, no 539
part of which appears in the content of any other element.” XML 1.0 further states “The 540
root element of any document is considered to have signaled no intentions as regards 541
application space handling, unless it provides a value for this attribute or the attribute is 542
declared with a default value.” W3C XSD allows for any globally declared element to be 543
the document root element. To keep consistency in the instance documents and to adhere 544
to the underlying process model that supports each UBL Schema, it is desirable to have 545
one and only one element function as the root element. Since UBL follows a global 546
element declaration scheme (See Rule ELD2), each UBL Schema will identify one 547
element declaration in each schema as the document root element. This will be 548
accomplished through an xsd:annotation child element for that element in accordance 549
with the following rule: 550
[ELD1] Each UBL:DocumentSchema MUST identify one and only one global 551

element declaration that defines the document 552
ccts:AggregateBusinessInformationEntity being conveyed in the 553
Schema expression. That global element MUST include an 554
xsd:annotation child element which MUST further contain an 555
xsd:documentation child element that declares “This element MUST 556
be conveyed as the root element in any instance document 557
based on this Schema expression.” 558

[Definition] Document schema – 559

The overarching schema within a specific namespace that conveys the business 560
document functionality of that namespace. The document schema declares a target 561
namespace and is likely to pull in by including internal schema modules or importing 562
external schema modules. Each namespace will have one, and only one, document 563
schema. 564

 Example: 565

wd-ublndrsc-ndrdoc-V1.0Draftq 25 March 2004

<xsd:element name="Order" type="OrderType"> 566
 567
 <xsd:annotation> 568
 569
 <xsd:documentation>This element MUST be conveyed as the root 570
element in any instance document based on this Schema 571
expression</xsd:documentation> 572
 573
 </xsd:annotation> 574
 575
 </xsd:element> 576

3.2 Constraints 577
A key aspect of UBL is to base its work on process modeling and data analysis as 578
precursors to developing the UBL library. In determining how best to affect this work, 579
several constraints have been identified that directly impact both the process modeling 580
and data analysis, and the resultant UBL Schema. 581

3.2.1 Naming Constraints 582
A primary component of the UBL library documentation is its dictionary. The entries in 583
the dictionary fully define the pieces of information available for use in UBL business 584
messages. These entries contain fully conformant CCTS dictionary entry names as well 585
as truncated UBL XML element names developed in conformance with the rules in 586
section 4. The dictionary entry name ties the information to its standardized semantics, 587
while the name of the corresponding XML element or attribute is only shorthand for this 588
full name. The rules for element and attribute naming and dictionary entry naming are 589
different. 590
[NMC1] Each dictionary entry name MUST define one and only one fully qualified 591

path (FQP) for an element or attribute. 592
The fully qualified path anchors the use of that construct to a particular location in a 593
business message. The dictionary definition identifies any semantic dependencies that the 594
FQP has on other elements and attributes within the UBL library that are not otherwise 595
enforced or made explicit in its structural definition. The dictionary serves as a traditional 596
data dictionary, and also serves some of the functions of traditional implementation 597
guides. 598

3.2.2 Modeling Constraints 599
In keeping with UBL guiding principles, modeling constraints are limited to those 600
necessary to ensure consistency in development. 601

3.2.2.1 Defining Classes 602
UBL is based on instantiating ebXML ccts:CoreComponents. UBL models and the 603
XML expressions of those models are class driven. Specifically, classes are defined for 604
each ccts:BasicBusinessInformationEntity and ccts:AggregateBusiness 605
InformationEntity defined. UBL schemas define classes based on ebXML 606
ccts:BasicBusinessInformationEntities and 607
ccts:AggregateBusinessInformationEntities. 608
 609

wd-ublndrsc-ndrdoc-V1.0Draftq 25 March 2004

 610

3.2.2.2 Core Component Types 611
Each ccts:BasicBusinessInformationEntity has an associated 612
ccts:CoreComponentType. The CCTS specifies an approved set of 613
ccts:CoreComponentTypes. To ensure conformance, UBL is limited to using this 614
approved set. 615
[MDC1] UBL Libraries and Schemas MUST only use ebXML Core Component 616

approved ccts:CoreComponentTypes. 617

CustomizationsCustomization is a key aspect of UBL’s reusability across business 618
verticals. The UBL rules have been developed in recognition of the need to support 619
customizations. Specific UBL customization rules are detailed in the UBL customization 620
guidelines. 621

3.2.2.3 Mixed Content 622

UBL documents are designed to effect data-centric electronic commerce. Including 623
mixed content in business documents is undesirable because business transactions are 624
based on exchange of discrete pieces of data that must be clearly unambiguous. The 625
white space aspects of mixed content makes processing unnecessarily difficult and adds a 626
layer of complexity not desirable in business exchanges. 627
[MDC2] Mixed content MUST NOT be used except where contained in an 628

xsd:documentation element. 629

3.3 Reusability Scheme 630
The effecitive management of the UBL library requires that all element declarations are 631
unique across the breadth of the UBL library. Consequently, UBL elements are declared 632
globally, with the exception of Code and ID. 633
 634
 635

3.3.1.1 Reusable Elements 636
UBL elements are global and qualified., Hence the <Address> element is directly 637
reusable as a modular component and some software can be used without modification. 638
The UBL schema looks like this:, 639

<xsd:element name="Party" type="PartyType"/> 640
 <xsd:complexType name="PartyType"> 641
 <xsd:annotation> 642
 643
 <!--Documentation goes here--> </xsd:annotation> 644
 645
 <xsd:sequence> 646
 647

wd-ublndrsc-ndrdoc-V1.0Draftq 25 March 2004

 <xsd:element ref="cbc:MarkCareIndicator" minOccurs="0" 648
maxOccurs="1"> 649
 650
 ... 651
 652
 </xsd:element> 653
 654
 <xsd:element ref="cbc:MarkAttentionIndicator" minOccurs="0" 655
maxOccurs="1"> 656
 657
 ... 658
 659
 </xsd:element> 660
 661
 <xsd:element ref="PartyIdentification" minOccurs="0" 662
maxOccurs="unbounded"> 663
 664
 ... 665
 666
 </xsd:element> 667
 668
 <xsd:element ref="PartyName" minOccurs="0" maxOccurs="1"> 669
 670
 ... 671
 672
 </xsd:element> 673
 674
 <xsd:element ref="Address" minOccurs="0" maxOccurs="1"> 675
 676
 ... 677
 </xsd:element> 678
 ... 679
 680
 </xsd:sequence> 681
 682
 </xsd:complexType> 683
<xsd:element name="Address" type="AddressType"/> 684
 685
<xsd:complexType name="AddressType"> 686
 687
 ... 688
 689
 <xsd:sequence> 690
 691
 <xsd:element ref="cbc:CityName" minOccurs="0" maxOccurs="1"> 692
 693

wd-ublndrsc-ndrdoc-V1.0Draftq 25 March 2004

 ... 694
 695
 </xsd:element> 696
 697
 <xsd:element ref="cbc:PostalZone" minOccurs="0" maxOccurs="1"> 698
 699
 ... 700
 </xsd:element> 701
... 702
 703
 </xsd:sequence> 704
 705
 </xsd:complexType> 706
 707
 708

Software written to work with UBL's standard library will work with new assemblies of 709
the same components since global elements will remain consistent and unchanged. The 710
globally declared <Address> element is fully reusable without regard to the reusability 711
of types and provides a solid mechanism for ensuring that extensions to the UBL core 712
library will provide consistency and semantic clarity regardless of its placement within a 713
particular type. 714
The only cases where locally declared elements are seen to be advantageous are in the 715
case of Identifiers and Code. Since identification schemes are often very specific to 716
trading partner and small communities, these constructs require specific processing and 717
can not be generically treated in software. There is no reuse benefit to declaring them as 718
global elements. Codes are treated as a special case in UBL which is also highly 719
configurable according to trading partner or community preference. 720
[ELD2] All element declarations MUST be global with the exception of ID and Code 721

which MUST be local. 722

3.4 Namespace Scheme 723
The concept of XML namespaces is defined in the W3C XML namespaces technical 724
specification.4 The use of XML namespace is specified in the W3C XML Schema (XSD) 725
Recommendation. A namespace is declared in the root element of a Schema using a 726
namespace identifier. Namespace declarations can also identify an associated prefix – 727
shorthand identifier – that allows for compression of the namespace name. It is common 728
for an instance document to carry namespace declarations, so that it might be validated. 729

3.4.1 Declaring Namespaces 730
Neither XML 1.0 or XSD require the use of Namespaces. However the use of 731
namespaces is essential to managing the complex UBL library. UBL will use UBL-732
defined schemas (created by UBL) and UBL-used schemas(created by external activities) 733
and both require a consistent approach to namespace declarations. 734

4 Tim Bray, D Hollander, A Layman, R Tobin; Namespaces in XML 1.1, W3C Recommendation, February
2004.

wd-ublndrsc-ndrdoc-V1.0Draftq 25 March 2004

[NMS1] Every UBL-defined or -used schema module, except internal schema 735
modules, MUST have a namespace declared using the 736
xsd:targetNamespace attribute. 737

Ed Note – Internal schema modules would never have a target namespace 738
declared. 739

Each UBL schema module consists of a logical grouping of lower level artifacts that 740
together comprise an association that will be able to be used in a variety of UBL 741
schemas. These schema modules are grouped into a schema set collection. Each schema 742
set is assigned a namespace that identifies that group of schema modules. As constructs 743
are changed, new versions will be created. The schema set is the versioned entity, all 744
schema modules within that package are of the same version, and each version has a 745
unique namespace. 746

Definition. Schema Set 747

A collection of schema instances that together comprise the names in a specific UBL 748
namespace. 749

Schema validation ensures that an instance conforms to its declared schema. There are 750
never two (different) schemas with the same namespace URI. In keeping with Rule 751
NMS1, each UBL schema module will be part of a versioned namespace. 752
[NMS2] Every UBL-defined or -used schema set version MUST have its own unique 753

namespace. 754
UBLs extension methodology encourages a wide variety in the number of schema 755
modules that are created as derivations from UBL schema modules. Clarity and 756
consistency requires that customized schema not be confused with those developed by 757
UBL. 758
[NMS3] UBL namespaces MUST only contain UBL developed schema modules. 759

3.4.2 Namespace Uniform Resource Identifiers 760
A UBL namespace name must be a Uniform Resource Identifier (URI) reference that 761
conforms to RFC 2396.5 762
UBL has adopted the URN scheme as the standard for URIs for UBL namespaces, in 763
conformance with IETF’s RFC 31216 , as defined in this next section 764
Rule NMS2 requires separate namespaces for each UBL schema set. The UBL 765
versioning rules differentiate between committee draft and OASIS Standard status. For 766
each schema holding draft status, a UBL namespace must be declared and named. 767
 768
 [NMS4] The namespace names for UBL Schemas holding committee draft status 769

MUST be of the form: 770
urn:oasis:names:tc:ubl:schema:<subtype>:<document-id> 771

5 T. Berners-Lee, R. Fielding, L. Masinter; Internet Engineering Task Force (IETF) RFC 2396, Uniform
Resource Identifiers (URI): Generic Syntax, Internet Society, August 1998.
6 Karl Best, N. Walsh,; Internet Engineering Task Force (IETF) RFC 3121, A URN Namespace for OASIS,
June 2001.

wd-ublndrsc-ndrdoc-V1.0Draftq 25 March 2004

 772

 773
The format for document-id is found in the next section. 774
For each UBL schema holding OASIS Standard status, a UBL namespace must be 775
declared and named using the same notation, but with specification replacing tc. 776
[NMS5] The namespace names for UBL Schemas holding OASIS Standard status 777

MUST be of the form: 778
 779
urn:oasis:names:specification:ubl:schema:<subtype>:<docum780
ent-id> 781

3.4.3 Schema Location 782
UBL schemas use a URN namespace scheme. In contrast, schema locations are typically 783
defined as a URL. UBL schemas must be available both at design time and run time. As 784
such, the UBL schema locations will differ from the UBL namespace declarations. UBL, 785
as an OASIS TC, will utilize an OASIS URL for hosting UBL schemas. 786
 787
[NMS6] UBL Schema modules MUST be hosted under the UBL committee directory: 788
 http://www.oasis-789

open.org/committees/ubl/schema/<subtype>/UBL-<document-790
id>.<filetype> 791

3.4.4 Persistence 792
A key differentiator in selecting URNs for UBL namespaces is URN persistence. UBL 793
namespaces must never violate this functionality by subsequently changing a namespace 794
once it has been declared. Conversely, any changes to a schema will result in a new 795
namespace declaration. Thus a published schema version and its namespace association 796
will always be inviolate. 797
[NMS7] UBL published namespaces MUST never be changed. 798

3.5 Versioning Scheme 799
UBL namespaces conform to the OASIS namespace rules. The last field of the 800
namespace name is called document-id. UBL has decided to include versioning 801
information as part of the document-id component of the namespace. The version information 802
is divided into major and minor fields. The minor field has an optional revision 803
extension. For example, the namespace URI for the draft Invoice domain has this form: 804
urn:oasis:names:tc:ubl:schema:xsd:Invoice-805
<major>.<minor>[.<revision>] 806
The major-version field is “1” for the first release of a namespace. Subsequent major 807
releases increment the value by 1. For example, the first namespace URI for the first 808
major release of the Invoice document has the form: 809
urn:oasis:names:tc:ubl:schema:xsd:Invoice-1.0 810
The second major release will have a URI of the form: 811
urn:oasis:names:tc:ubl:schema:xsd:Invoice-2.0 812

wd-ublndrsc-ndrdoc-V1.0Draftq 25 March 2004

The distinguished value “0” (zero) is used in the minor-version position when defining a 813
new major version. In general, the namespace URI for every major release of the Invoice 814
domain has the form: 815
urn:oasis:names:tc:ubl:schema:xsd:Invoice:-<major-number>.0[.<revision>] 816
 817
[VER1] Every UBL Schema and schema module major version committee draft 818

MUST have an RFC 3121 document-id of the form 819
<name>-<major>.0[.<revision>] 820

 821
[VER2] Every UBL Schema and schema module major version OASIS Standard 822

MUST have an RFC 3121 document-id of the form 823
<name>-<major>.0 824

In UBL, the major-version field of a namespace URI must be changed in a release that 825
breaks compatibility with the previous release of that namespace. If a change does not 826
break compatibility then only the minor version need change. Subsequent minor releases 827
begin with minor-version 1. 828
Example: 829

Example 830
 831
The namespace URI for the first minor release of the Invoice domain has this 832
form: 833
 834
urn:oasis:names:tc:ubl:schema:xsd:Invoice-<major.1> 835

 836
[VER3] Every minor version release of a UBL schema or schema module draft MUST 837

have an RFC 3121 document-id of the form 838
<name>-<major >.<non-zero>[.<revision>] 839

 840
[VER4] Every minor version release of a UBL schema or schema module OASIS 841

Standard MUST have an RFC 3121 document-id of the form 842
<name>-<major >.<non-zero> 843

Once a schema version is assigned a namespace, that schema version and that namespace 844
will be associated in perpetuity. Any change to any schema module mandates association 845
with a new namespace. 846
[VER5] For UBL Minor version changes <name> MUST not change, 847
UBL is composed of a number of interdependent namespaces. For instance, namespaces 848
whose URI’s start with urn:oasis:names:tc:ubl:schema:xsd:Invoice-* are 849
dependent upon the common basic and aggregate namespaces, whose URI’s have the 850
form urn:oasis:names:tc:ubl:schema:xsd:CommonBasicComponents-* and 851
urn:oasis:names:tc:ubl:schema:xsd:CommonAggregateComponents-* 852
respectively. If either of the common namespaces change then its namespace URI must 853
change. If its namespace URI changes then any schema that imports the new version of 854
the namespace must also change (to update the namespace declaration). And since the 855
importing schema changes, its namespace URI in turn must change. The outcome is 856
twofold: 857

 There should never be ambiguity at the point of reference in a namespace 858
declaration or version identification. A dependent schema imports precisely 859

wd-ublndrsc-ndrdoc-V1.0Draftq 25 March 2004

the version of the namespace that is needed. The dependent schema never 860
needs to account for the possibility that the imported namespace can change. 861

 When a dependent schema is upgraded to import a new version of a schema, 862
the dependent schema’s version (in its namespace URI) must change. 863

Version numbers are based on a logical progression. All major and minor version 864
numbers will be based on positive integers. Version numbers always increment positively 865
by one. 866
[VER6] Every UBL Schema and schema module major version number MUST be a 867

sequentially assigned, incremental number greater than zero. 868
[VER7] Every UBL Schema and schema module minor version number MUST be a 869

sequentially assigned, incremental non-negative integer. 870
In keeping with rules NMS1 and NMS2, each schema minor version will be assigned a 871
separate namespace. 872
A minor revision (of a namespace) imports the schema module for the previous version. 873
For instance, the schema module defining: 874
urn:oasis:names:tc:ubl:schema:xsd:Invoice-1.2 875
will import the namespace: 876
urn:oasis:names:tc:ubl:schema:xsd:Invoice-1.1 877
The version 1.2 revision may define new complex types by extending or restricting 878
version 1.1 types. It may define brand new complex types and elements by 879
composition. It must not use the XSD redefine element to change the definition of a type 880
or element in the 1.1 version. 881
The opportunity exists in the version 1.2 revision to rename derived types. For 882
instance if version 1.1 defines Address and version 1.2 specializes Address it 883
would be possible to give the derived Address a new name, e.g. NewAddress. This is 884
not required since namespace qualification suffices to distinguish the two distinct types. 885
The minor revision may give a derived type a new name only if the semantics of the two 886
types are distinct. 887
For a particular namespace, the minor versions of a major version form a linearly-linked 888
family. The first minor version imports its parent major version. Each successive minor 889
version imports the schema module of the preceding minor version. 890

Example 891
 892
urn:oasis:names:tc:ubl:schema:xsd:Invoice-1.2 imports 893
urn:oasis:names:tc:ubl:schema:xsd:Invoice-1.1 which 894
imports urn:oasis:names:tc:ubl:schema:xsd:Invoice-1.0 895

 896
[VER8] A UBL minor version document schema MUST import its immediately 897

preceding version document schema. 898
To ensure that backwards compatibility through polymorphic processing of minor 899
versions within a major version, minor versions must be limited to certain allowed 900
changes. This guarantee of backward compatibility is built into the xsd:extension 901
mechanism. Thus, backward incompatible version changes can not be expressed using 902
this mechanism. 903
[VER9] UBL Schema and schema module minor version changes MUST be limited to 904

the use of xsd:extension or xsd:restriction to alter existing types or 905
add new constructs. 906

wd-ublndrsc-ndrdoc-V1.0Draftq 25 March 2004

 In addition to polymorphic processing considerations, semantic compatibility across 907
minor versions (as well as major versions) is essential. 908
[VER10] UBL Schema and schema module minor version changes MUST not break 909

semantic compatibility with prior versions. 910
 911

3.6 Modularity 912
There are many possible mappings of XML schema constructs to namespaces and to 913
files. As with other significant software artifacts, schemas can become large. In addition 914
to the logical taming of complexity that namespaces provide, dividing the physical 915
realization of schema into multiple files-schema modules-provides a mechanism whereby 916
reusable components can be imported as needed without the need to import overly 917
complex complete schema. 918
[SSM1] UBL Schema expressions MAY be split into multiple schema modules. 919

[Definition] schema module: A schema document containing type definitions and 920
element declarations intended to be reused in multiple schemas. 921

3.6.1 UBL Modularity Model 922
UBL relies extensively on modularity in schema design. There is no single UBL root 923
schema. Rather, there are a number of UBL document schemas, each of which expresses 924
a separate business function. The UBL modularity approach is structured so that users 925
can reuse individual document schemas without having to import the entire UBL 926
document schema library. Additionally, a document schema can import individual 927
modules without having to import all UBL schema modules. Each document schema will 928
define its own dependencies. The UBL schema modularity model ensures that logical 929
associations exist between document and internal schema modules and that individual 930
modules can be reused to the maximum extent possible. This is accomplished through the 931
use of document and internal schema modules as shown in Figure 3-1. 932

wd-ublndrsc-ndrdoc-V1.0Draftq 25 March 2004

Figure 3-1. UBL Schema Modularity Model 933
W3C XML SchemaFile Namespace

Document Schema Schema
Module

ExternalSchemaModule

InternalSchemaModule

1

11 1 1

Shaded area is a
"schema set"

Internal Schema Modules
are in same namespace as

Document Schema

The five required
namespaces are

represented by their
prefixes - udt, sdt, cbc,

cac, ccts

In different
namespace than

Document
Schema

imported

5..*

included

0..*

934
 935
If the contents of a namespace are small enough then they can be completely specified 936
within the document schema. 937
Figure 3-1 shows the one-to-one correspondence between document schemas and 938
namespaces. It also shows the one-to-one correspondence between files and schema 939
modules. As shown in figure 3-1, there are two types of schema in the UBL library - 940
DocumentSchema and SchemaModules. Document Schema are always in their own 941
namespace. Schema modules may be in a document schema namespace as in the case of 942
internal schema modules, or in a separate namespace as in the ubl:udt, ubl:sdt, 943
ubl:cbc, ubl:cac, ubl:cl, ubl:cct, and ubl:ccts schema modules. Both 944
types of schema modules are conformant with W3C XSD. 945
A namespace is an indivisible grouping of types. A “piece” of a namespace can never be 946
used without all its pieces. For larger namespaces, schema modules – internal schema 947
modules – may be defined. UBL document schemas may have zero or more internal 948
modules that they include. The document schema for a namespace then includes those 949
internal modules. 950

[Definition] Internal schema module: A schema that is part of a schema set within a 951
specific namespace. 952

Another way to visualize the structure is by example. Figure 3-2 depicts instances of the 953
various classes from the previous diagram. 954

wd-ublndrsc-ndrdoc-V1.0Draftq 25 March 2004

Figure 3-2 Classes 955

Document Schema Module

Internal Schema
Module(s)

Message Assembly

External Schema Modules
Common Basic

Components (CBC)
 Schema Module

Common Aggregate
Components (CAC)

 Schema Module

Unspecialized
DataTypes (UDT)
 Schema Module

Specialized
DataTypes (SDT)
Schema Module

Core Component Type
(CCT) Schema Module

Core Component
Parameters (CCTS)

Schema Module

Code List (CL)
Schema Module(s)

1

0..*

1
I
m
p
o
r
t
e
d

ImportedImported

Imported

0..*

1

1

Included

Imported

1

1

Imported

Imported

1
Imported

Imported

Imported

0..*

1

I
m
p
o
r
t
e
d

I
m
p
o
r
t
e
d

I
m
p
o
r
t
e
d

I
m
p
o
r
t
e
d

I
m
p
o
r
t
e
d

I
m
p
o
r
t
e
d

1

1

1

1

1

Imported

I
m
p
o
r
t
e
d

1

1
1

1

956
 957
Figure 3-3 shows how the order and invoice document schemas import the 958
"CommonAggregateComponents” and “CommonBasicComponents” external schema 959
modules. It also shows how the order document schema includes various internal 960
modules – modules local to that namespace. The clear boxes show how the various 961
schema modules are grouped into namespaces. 962

wd-ublndrsc-ndrdoc-V1.0Draftq 25 March 2004

Any UBL schema module, be it a document schema or an internal module may import 963
other document schemas from other namespaces. 964
Figure 3-3 Order and Invoice Schema Import of Common Component Schema Modules 965

...:Invoice:1:0

urn:oasis:names:specification:ubl:schema:Order:1:0

Order

Invoice

Common
Basic

Components

Common
Aggregate

Components

Specialized
Datatypes

...:commonbasiccomponents:1:0

...:CommonAggregateComponents:1:0

...:SpecializedDatatypes:1:0

...:unspecializedDatatypes:1:0

import

include

x:y:z urn

Control Schema

Internal Schema Module

External Schema Module

Legend

Unspecialized
Datatypes

CountryCode
CodeList

CurrencyCode
CodeList

Core
Component
Parameters

 966

wd-ublndrsc-ndrdoc-V1.0Draftq 25 March 2004

3.6.1.1 Limitations on Import 967
If two namespaces are mutually dependent then clearly, importing one will cause the 968
other to be imported as well. For this reason there must not exist circular dependencies 969
between UBL schema modules. By extension, there must not exist circular dependencies 970
between namespaces. A namespace “A” dependent upon type definitions or element 971
declaration defined in another namespace “B” must import “B’s” document schema. 972
[SSM2] A document schema in one UBL namespace that is dependent upon type 973

definitions or element declarations defined in another namespace MUST only 974
import the document schema from that namespace. 975

To ensure there is no ambiguity in understanding this rule, an additional rule is necessary 976
to address potentially circular dependencies as well –schema A must not import internal 977
schema modules of schema B. 978
[SSM3] A UBL document schema in one UBL namespace that is dependant upon type 979

definitions or element declarations defined in another namespace MUST NOT 980
import internal schema modules from that namespace. 981

3.6.1.2 Module Conformance 982
UBL has defined a set of naming and design rules that are carefully crafted to ensure 983
maximum interoperability and standardization. 984
[SSM4] Imported schema modules MUST be fully conformant with UBL naming and 985

design rules. 986

3.6.2 Internal and External schema modules 987
UBL will create schema modules which, as illustrated in Figure 3-1 and Figure 3-2, will 988
either be located in the same namespace as the corresponding document schema, or in a 989
separate namespace. 990
[SSM5] UBL schema modules MUST either be treated as external schema modules or 991

as internal schema modules of the document schema. 992

3.6.3 Internal schema modules 993
UBL internal schema modules do not declare a target namespace, but instead reside in the 994
namespace of their parent schema. All internal schema modules will be accessed using 995
xsd:include. 996
[SSM6] All UBL internal schema modules MUST be in the same namespace as their 997

corresponding document schema. 998
 UBL internal schema modules will necessarily have semantically meaningful names. 999
Internal schema module names will identify the parent schema module, the internal 1000
schema module function, and the schema module itself. 1001
[SSM7] Each UBL internal schema module MUST be named 1002

{ParentSchemaModuleName}{InternalSchemaModuleFunction}{sc1003
hema module} 1004

wd-ublndrsc-ndrdoc-V1.0Draftq 25 March 2004

3.6.4 External schema modules 1005
UBL is dedicated to maximizing reuse. As the complex types and global element 1006
declarations will be reused in multiple UBL schemas, a logical modularity approach is to 1007
create UBL schema modules based on collections of reusable types and elements. 1008
[SSM8] A UBL schema module MAY be created for reusable components. 1009
As identified in rule SSM2, UBL will create external schema modules. These external 1010
schema modules will be based on logical groupings of contents. At a minimum, UBL 1011
schema modules will be comprised of: 1012

 UBL CommonAggregateComponents 1013
 UBL CommonBasicComponents 1014
 UBL Code List(s) 1015
 CCTS Core Component Types 1016
 CCTS Unspecialized Datatypes 1017
 UBL Specialized Datatypes 1018
 CCTS Core Component Parameters - [Ed Note – Lise/Stephen have already 1019

written this section get from release and Lisa] 1020

3.6.4.1 UBL CommonAggregateComponents schema module 1021
The UBL library will also contain a wide variety of 1022
ccts:AggregateBusinessInformationEntities. . As defined in rule CTD1, 1023
each of these ccts:AggregateBusinessInformationEntity classes will be 1024
defined as an xsd:complexType. Although some of these xsd:complexTypes may 1025
be used on only one UBL Schema, many will be reused in multiple UBL schema 1026
modules. An aggregation of all of the 1027
ccts:AggregateBusinessInformationEntity xsd:ComplexType 1028
definitions that are used in multiple UBL schema modules into a single schema module 1029
of common aggregate types will provide for maximum ease of reuse. 1030
[SSM9] A schema module defining all ubl:CommonAggregateComponents MUST 1031

be created. 1032
The normative name for this xsd:ComplexType schema module will be based on its 1033
ccts:AggregateBusinessInformationEntity content. 1034
[SSM10] The ubl:CommonAggregateComponents schema module MUST be named 1035

“ubl:CommonAggregateComponents Schema Module” 1036

UBL CommonAggregateComponents schema module Namespace 1037
In keeping with the overall UBL namespace approach, a singular namespace must be 1038
created for storing the ubl:CommonAggregateComponents schema module. 1039
[NMS8] The ubl:CommonAggregateComponents schema module MUST reside in 1040

its own namespace. 1041
To ensure consistency in expressing this module, a normative token that will be used 1042
consistently in all UBL Schemas must be defined. 1043
[NMS9] The ubl:CommonAggregateComponents schema module MUST be 1044

represented by the token “cac”. 1045

wd-ublndrsc-ndrdoc-V1.0Draftq 25 March 2004

3.6.4.2 UBL CommonBasicComponents schema module 1046
The UBL library will contain a wide variety of ccts:BasicBusinessInformationEntities. 1047
These ccts:BasicBusinessInformationEntities are based on 1048
ccts:BasicBusinessInformationEntityProperties. The BBIE Properties are reusable in 1049
multiple BBIEs and per the CCTS are of type BBIE Property Type which are in turn of 1050
type Datatype. The BBIEs are reusable across multiple schema modules and per the 1051
CCTS are of Type BBIE Property Type. As defined in rule CTD1, each of these 1052
ccts:BasicBusinessInformationEntityProperty classes will be defined as an 1053
xsd:ComplexType. Although some of these xsd:ComplexTypes may be used in only one 1054
UBL Schema, many will be reused in multiple UBL schema modules. To maximize 1055
reuse and standardization, all of the ccts:BasicBusinessInformationEntityProperty 1056
xsd:ComplexType definitions that are used in multiple UBL schema modules will be 1057
aggregated into a single schema module of common basic types. 1058
 [SSM11] A schema module defining all ubl:CommonBasicComponents MUST be 1059

created. 1060
The normative name for this schema module will be based on its 1061
ccts:BasicBusinessInformationEntityProperty xsd:ComplexType content. 1062
[SSM12] The ubl:CommonBasicComponents schema module MUST be named 1063

“ubl:CommonBasicComponents Schema Module” 1064

UBL CommonBasicComponents schema module Namespace 1065
In keeping with the overall UBL namespace approach, a singular namespace must be 1066
created for storing the ubl:CommonBasicComponents schema module. 1067
[NMS10] The ubl:CommonBasicComponents schema module MUST reside in its 1068

own namespace. 1069
To ensure consistency in expressing the ubl:CommonBasicComponents schema 1070
module, a normative token that will be used consistently in all UBL Schema must be 1071
defined. 1072
[NMS11] The UBL:CommonBasicComponents schema module MUST be 1073

represented by the token “cbc”. 1074

3.6.4.3 CCTS Core Component Type schema module 1075
The CCTS defines an authorized set of Core Component Types 1076
(ccts:CoreComponentTypes) that convey content and supplementary information 1077
related to exchanged data. As the basis for all higher level CCTS models, the 1078
ccts:CoreComponentTypes are reusable in every UBL schema. An external 1079
schema module consisting of a complex type definition for each 1080
ccts:CoreComponentType is essential to maximize reusability. 1081
[SSM13] A schema module defining all ccts:CoreComponentTypes MUST be 1082

created. 1083
The normative name for the ccts:CoreComponentType schema module will be based 1084
on its content. 1085
[SSM14] The ccts:CoreComponentType schema module MUST be named 1086

“ccts:CoreComponentType Schema Module” 1087

wd-ublndrsc-ndrdoc-V1.0Draftq 25 March 2004

By design, ccts:CoreComponentTypes are generic in nature. As such, 1088
restrictions are not appropriate. Such restrictions will be applied through the application 1089
of Datatypes. Accordingly, the xsd:facet feature must not be used in the ccts:CCT 1090
schema module. 1091
[SSM15] The xsd:facet feature MUST not be used in the 1092

ccts:CoreComponentType schema module. 1093

Core Component Type schema module Namespace 1094
In keeping with the overall UBL namespace approach, a singular namespace must be 1095
created for storing the ccts:CoreComponentType schema module. 1096
[NMS12] The ccts:CoreComponentType schema module MUST reside in its own 1097

namespace. 1098
To ensure consistency in expressing the ccts:CoreComponentType schema module, a 1099
normative token that will be used in consistently in all UBL Schema must be defined. 1100
[NMS13] The ccts:CoreComponentType schema module namespace MUST be 1101

represented by the token “cct”. 1102

3.6.4.4 CCTS Datatypes schema modules 1103
The CCTS defines an authorized set of primary and secondary Representation Terms 1104
(ccts:RepresentationTerms) that describes the form of every 1105
ccts:BusinessInformationEntity. These ccts:RepresentationTerms are 1106
instantiated in the form of Datatypes that are reusable in every UBL schema. The 1107
ccts:Datatype defines the set of valid values that can be used for its associated 1108
ccts:BasicBusinessInformationEntity Property. These Datatypes may be 1109
specialized or unspecialized, that is to say restricted or unrestricted. We refer to these as 1110
ccts:UnspecializedDatatypes (even though they are technically 1111
ccts:Datatypes)or ubl:SpecialisedDatatypes. 1112

CCTS Unspecialised Datatypes Schema Module 1113
An external schema module consisting of a complex type definition for each 1114
ccts:UnspecialisedDatatype is essential to maximize reusability. However, since 1115
UBL is also using code list schema modules that themselves import the ccts:Datatype 1116
schema module, a separate schema module for 1117
ccts:CodeTypeUnspecialisedDatatype is also required, to avoid circular 1118
dependencies. 1119
[SSM16] A schema module defining all ccts:UnspecialisedDatatypes MUST 1120

be created. 1121
 1122
The normative name for the ccts:UnspecialisedDatatype schema module will be 1123
based on its content. 1124

wd-ublndrsc-ndrdoc-V1.0Draftq 25 March 2004

[SSM17] The ccts:UnspecialisedDatatype schema module MUST be named 1125
“ccts:UnspecialisedDatatype Schema Module” 1126

 1127
In keeping with the overall UBL namespace approach, a singular namespace must be 1128
created for storing the ccts:UnspecialisedDatatype schema module. 1129
[NMS14] The ccts:UnspecialisedDatatype schema module MUST reside in its 1130

own namespace. 1131
 1132
To ensure consistency in expressing the ccts:UnspecialisedDatatype schema 1133
module, a normative token that will be used consistently in all UBL Schema must be 1134
defined. 1135
[NMS15] The ccts:UnspecialisedDatatype schema module namespace MUST 1136

be represented by the token “udt”. 1137

UBL Specialised Datatypes 1138
UBL specialized Datatypes are restrictions on ccts:UnspecialisedDatatypes. These 1139
restrictions take the form of restrictions on the underlying ccts:CoreComponentType 1140
Datatype. The ubl:SpecialisedDatatype is defined by specifying restrictions on 1141
the ccts:CoreComponentType that forms the basis of the 1142
ccts:UnspecialisedDatatype. As specialized Datatypes are defined by individual 1143
users, they should be identified by those users. To ensure consistency of UBL specialized 1144
Datatypes (ubl:SpecialisedDatatypes) with the UBL modularity and reuse goals 1145
requires creating a single schema module that defines all 1146
ubl:SpecialisedDatatypes. 1147
[SSM18] A schema module defining all ubl:SpecialisedDatatypes MUST be 1148

created. 1149
The ubl:SpecialisedDatatypes schema module name must follow the UBL module 1150
naming approach. 1151
[SSM19] The ubl:SpecialisedDatatypes schema module MUST be named 1152

“ubl:SpecialisedDatatypes schema module” 1153

UBL Specialised Datatype schema module Namespace 1154
In keeping with the overall UBL namespace approach, a singular namespace must be 1155
created for storing the ubl:SpecialisedDatatypes schema module. 1156
[NMS16] The ubl:SpecialisedDatatypes schema module MUST reside in its 1157

own namespace. 1158
To ensure consistency in expressing the ubl:SpecialisedDatatypes schema 1159
module, a normative token that will be used in all UBL schemas must be defined. 1160
[NMS17] The ubl:SpecialisedDatatypes schema module namespace MUST be 1161

represented by the token “sdt”. 1162
 1163
[NMS18] The ubl:SpecialisedDatatypes schema module namespace MUST be 1164

represented by the token “sdt”. 1165

wd-ublndrsc-ndrdoc-V1.0Draftq 25 March 2004

3.7 Annotation and Documentation 1166
Annotation is an essential tool in understanding and reusing a schema. UBL, as an 1167
implementation of CCTS, requires an extensive amount of annotation to provide all 1168
necessary metadata required by the CCTS specification. Each construct declared or 1169
defined within the UBL library contains the requisite associated metadata to fully 1170
describe its nature and support the CCTS requirement. Accordingly, UBL schema 1171
metadata for each construct will be defined in the core component parameters. 1172

3.7.1 Schema Annotation 1173
Although the UBL schema annotation is necessary, its volume results in a considerable 1174
increase in the size of the UBL schemas with undesirable performance impacts. To 1175
address this issue, two normative schema will be developed for each UBL schema. A 1176
fully annotated schema will be provided to facilitate greater understanding of the schema 1177
module and its components, and to meet the CCTS metadata requirements. A schema 1178
devoid of annotation will also be provided that can be used at run-time if required to meet 1179
processor resource constraints. 1180
[GXS2] UBL MUST provide two normative schemas for each transaction. One 1181

schema shall be fully annotated. One schema shall be a run-time schema 1182
devoid of documentation. 1183

3.7.2 Embedded documentation 1184
The information about each UBL BIE is in the library spreadsheets. UBL spreadsheets 1185
contain all necessary information to produce fully annotated Schemas. Fully annotated 1186
Schemas are valuable tools to implementers to assist in understanding the nuances of the 1187
information contained therein. UBL annotations will consist of information currently 1188
required by Section 7 of the CCTS and supplemented by necessary information identified 1189
by LCSC. 1190
The absence of an optional annotation inside the structured set of annotations in the 1191
documentation element implies the use of the default value. For example, there are 1192
several annotations relating to context such as BusinessTermContext or IndustryContext 1193
whose absence implies that their value is "all contexts". 1194
The following rules describe the documentation requirements for each Datatype 1195
definition. 1196
[DOC1] The xsd:documentation element for every Datatype MUST contain a structured 1197

set of annotations in the following sequence and pattern: 1198
 ComponentType (mandatory): The type of component to which the 1199

object belongs. For Datatypes this must be “DT”. 1200
 DictionaryEntryName (mandatory): The official name of a Datatype. 1201
 Version (optional): An indication of the evolution over time of the 1202

Datatype. 1203
 Definition(mandatory): The semantic meaning of a Datatype. 1204
 ObjectClassQualifier (optional): The qualifier for the object class. 1205
 ObjectClass(optional): The Object Class represented by the 1206

Datatype. 1207

wd-ublndrsc-ndrdoc-V1.0Draftq 25 March 2004

 RepresentationTerm (mandatory): A Representation Term is an 1208
element of the name which describes the form in which the property 1209
is represented. 1210

 DataTypeQualifier (optional): semantically meaningful name that 1211
differentiates the Datatype from its underlying Core Component 1212
Type. 1213

 DataType (optional): Defines the underlying Core Component Type.. 1214
 [DOC2] A Datatype definition MAY contain one or more Content Component 1215

Restrictions to provide additional information on the relationship between the 1216
Datatype and its corresponding Core Component Type. If used the Content 1217
Component Restrictions must contain a structured set of annotations in the 1218
following patterns: 1219

 RestrictionType (mandatory): Defines the type of format restriction 1220
that applies to the Content Component. 1221

 RestrictionValue (mandatory): The actual value of the format 1222
restriction that applies to the Content Component. 1223

 ExpressionType (optional): Defines the type of the regular 1224
expression of the restriction value. 1225

[DOC3] A Datatype definition MAY contain one or more Supplementary Component 1226
Restrictions to provide additional information on the relationship between the 1227
Datatype and its corresponding Core Component Type. If used the 1228
Supplementary Component Restrictions must contain a structured set of 1229
annotations in the following patterns: 1230

 SupplementaryComponentName (mandatory): Identifies the 1231
Supplementary Component on which the restriction applies. 1232

 RestrictionValue (mandatory, repetitive): The actual value(s) 1233
that is (are) valid for the Supplementary Component 1234

 1235
The following rule describes the documentation requirements for each Basic Business 1236
Information Entity definition. 1237
[DOC4] The xsd:documentation element for every Basic Business Information Entity 1238

MUST contain a structured set of annotations in the following patterns: 1239
• ComponentType (mandatory): The type of component to which the object 1240

belongs. For Basic Business Information Entities this must be “BBIE”. 1241
• DictionaryEntryName (mandatory): The official name of a Basic Business 1242

Information Entity. 1243
• Version (optional): An indication of the evolution over time of the Basic 1244

Business Information Entity. 1245
• Definition(mandatory): The semantic meaning of a Basic Business 1246

Information Entity. 1247
• Cardinality(mandatory): Indication whether the Basic Business 1248

Information Entity represents a not-applicable, optional, mandatory 1249
and/or repetitive characteristic of the Aggregate Business Information 1250
Entity. 1251

• ObjectClassQualifier (optional): The qualifier for the object class. 1252

wd-ublndrsc-ndrdoc-V1.0Draftq 25 March 2004

• ObjectClass(mandatory): The Object Class containing the Basic Business 1253
Information Entity. 1254

• PropertyTermQualifier (optional): A qualifier is a word or words which 1255
help define and differentiate a Basic Business Information Entity. 1256

• PropertyTerm(mandatory): Property Term represents the distinguishing 1257
characteristic or Property of the Object Class and shall occur naturally in 1258
the definition of the Basic Business Information Entity. 1259

• RepresentationTerm (mandatory): A Representation Term describes the 1260
form in which the Basic Business Information Entity is represented. 1261

• DataTypeQualifier (optional): semantically meaningful name that 1262
differentiates the Datatype of the Basic Business Information Entity from 1263
its underlying Core Component Type. 1264

• DataType (mandatory): Defines the Datatype used for the Basic Business 1265
Information Entity. 1266

• AlternativeBusinessTerms (optional): Any synonym terms under which 1267
the Basic Business Information Entity is commonly known and used in the 1268
business. 1269

• Examples (optional): Examples of possible values for the Basic Business 1270
Information Entity. 1271

The following rule describes the documentation requirements for each Aggregate 1272
Business Information Entity definition. 1273
[DOC5] The xsd:documentation element for every Aggregate Business Information 1274

Entity MUST contain a structured set of annotations in the following sequence 1275
and pattern: 1276

 1277
• ComponentType (mandatory): The type of component to which the object 1278

belongs. For Aggregate Business Information Entities this must be “ABIE”. 1279
• DictionaryEntryName (mandatory): The official name of the Aggregate 1280

Business Information Entity . 1281
• Version (optional): An indication of the evolution over time of the Aggregate 1282

Business Information Entity. 1283
• Definition(mandatory): The semantic meaning of the Aggregate Business 1284

Information Entity. 1285
• ObjectClassQualifier (optional): The qualifier for the object class. 1286
• ObjectClass(mandatory): The Object Class represented by the Aggregate 1287

Business Information Entity. 1288
• AlternativeBusinessTerms (optional): Any synonym terms under which the 1289

Aggregate Business Information Entity is commonly known and used in the 1290
business. 1291

 1292
 1293
The following rule describes the documentation requirements for each Association 1294
Business Information Entity definition. 1295
 1296

wd-ublndrsc-ndrdoc-V1.0Draftq 25 March 2004

 [DOC6] The xsd:documentation element for every Association Business Information 1297
Entity element declaration MUST contain a structured set of annotations in the 1298
following sequence and pattern: 1299

 1300
• ComponentType (mandatory): The type of component to which the object 1301

belongs. For Association Business Information Entities this must be “ASBIE”. 1302
• DictionaryEntryName (mandatory): The official name of the Association 1303

Business Information Entity. 1304
• Version (optional): An indication of the evolution over time of the Association 1305

Business Information Entity. 1306
• Definition(mandatory): The semantic meaning of the Association Business 1307

Information Entity. 1308
• Cardinality(mandatory): Indication whether the Association Business 1309

Information Entity represents an optional, mandatory and/or repetitive 1310
assocation. 1311

• ObjectClass(mandatory): The Object Class containing the Association Business 1312
Information Entity. 1313

• PropertyTermQualifier (optional): A qualifier is a word or words which help 1314
define and differentiate the Association Business Information Entity. 1315

• PropertyTerm(mandatory): Property Term represents the Aggregate Business 1316
Information Entity contained by the Association Business Information Entity. 1317

• AssociatedObjectClassQualifier (optional): Associated Object Class Qualifiers 1318
describe the 'context' of the relationship with another ABIE. That is, it is the 1319
role the contained Aggregate Business Information Entity plays within its 1320
association with the containing Aggregate Business Information Entity. 1321

• AssociatedObjectClass (mandatory); Associated Object Class is the Object 1322
Class at the other end of this association. It represents the Aggregate Business 1323
Information Entity contained by the Association Business Information Entity. 1324

The following rule describes the documentation requirements for each Core Component 1325
definition. 1326
[DOC7] The xsd:documentation element for every Core Component Type MUST contain 1327

a structured set of annotations in the following sequence and pattern:: 1328
 1329

• ComponentType (mandatory): The type of component to which the object 1330
belongs. For Core Component Types this must be “CCT”. 1331

• DictionaryEntryName (mandatory): The official name of the Core Component 1332
Type, as defined by [CCTS]. 1333

• Version (optional): An indication of the evolution over time of the Core 1334
Component Type. 1335

• Definition (mandatory): The semantic meaning of the Core Component Type, as 1336
defined by [CCTS]. 1337

• ObjectClass (mandatory): The Object Class represented by the Core Component 1338
Type, as defined by [CCTS]. 1339

• PropertyTerm (mandatory): The Property Term represented by the Core 1340
Component Type, as defined by [CCTS]. 1341

wd-ublndrsc-ndrdoc-V1.0Draftq 42 17 August 2004

4 Naming Rules 1342
The rules in this section make use of the following special concepts related to XML 1343
elements and attributes: 1344

 Top-level element: An element that encloses a whole UBL business message. 1345
Note that UBL business messages might be carried by messaging transport 1346
protocols that themselves have higher-level XML structure. Thus, a UBL top-1347
level element is not necessarily the root element of the XML document that 1348
carries it. 1349

 Lower-level element: An element that appears inside a UBL business 1350
message. 1351

 Intermediate element: An element not at the top level that is of a complex 1352
type, only containing other elements and attributes. 1353

 Leaf element: An element containing only character data (though it may also 1354
have attributes). Note that, because of the XSD mechanisms involved, a leaf 1355
element that has attributes must be declared as having a complex type, but a 1356
leaf element with no attributes may be declared with either a simple type or a 1357
complex type. 1358

 Common attribute: An attribute that has identical meaning on the multiple 1359
elements on which it appears. A common attribute might or might not 1360
correspond to an XSD global attribute. 1361

4.1 General Naming Rules 1362
The CCTS contains specific ISO/IEC 11179 based naming rules for each CCTS 1363
construct. The UBL component library, as a syntax-neutral representation, is fully 1364
conformant to those rules. The UBL syntax-specific XSD instantiation of the UBL 1365
component library, in some cases refines the CCTS naming rules to leverage the 1366
capabilities of XML and XSD. Specifically, truncation rules are applied to allow for 1367
reuse of element names across parent element environments and to maintain brevity and 1368
clarity. 1369
In keeping with CCTS, UBL will use English as its normative language. If the UBL 1370
Library is translated into other languages for localization purposes, these additional 1371
languages might require additional restrictions. Such restrictions are expected be 1372
formulated as additional rules and published as appropriate. 1373
[GNR1] UBL XML element, attribute and type names MUST be in the English 1374

language, using the primary English spellings provided in the Oxford English 1375
Dictionary. 1376

UBL fully supports the concepts of data standardization contained in ISO 11179. CCTS, 1377
as an implementation of 11179, furthers its basic tenets of data standardization into 1378
higher-level constructs as expressed by the CCTS dictionary entry names of those 1379
constructs – such as those for ccts:BasicBusinessInformationEntities and 1380
ccts:AggregateBusinessInformationEntities. Since UBL is an 1381
implementation of CCTS, UBL uses CCTS dictionary entry names as the basis for UBL 1382

wd-ublndrsc-ndrdoc-V1.0Draftq 43 17 August 2004

XML schema construct names. UBL converts these ccts:DictionaryEntryNames into 1383
UBL XML schema construct names using strict transformation rules. 1384
[GNR2] UBL XML element, attribute and type names MUST be consistently derived 1385

from CCTS conformant dictionary entry names. 1386
The ISO 11179 specifies, and the CCTS uses, periods, spaces, other separators, and other 1387
characters not allowed by W3C XML. As such, these separators and characters are not 1388
appropriate for UBL XML component names. 1389
[GNR3] UBL XML element, attribute and type names constructed from 1390

ccts:DictionaryEntryNames MUST NOT include periods, spaces, 1391
other separators, or characters not allowed by W3C XML 1.0 for XML names. 1392

Acronyms and abbreviations impact on semantic interoperability and as such are to be 1393
avoided to the maximum extent practicable. Since some abbreviations will inevitably be 1394
necessary, UBL will maintain a normative list of authorized acronyms and abbreviations. 1395
Appendix B provides the current list of permissible acronyms, abbreviations and word 1396
truncations. The intent of this restriction is to facilitate the use of common semantics and 1397
greater understanding. Appendix B is a living document and will be updated to reflect 1398
growing requirements. 1399
[GNR4] UBL XML element, attribute, and simple and complex type names MUST 1400

NOT use acronyms, abbreviations, or other word truncations, except those in 1401
the list of exceptions published in Appendix B. 1402

UBL does not desire a proliferation of acronyms and abbreviations. Appendix B is an 1403
exception list and will be tightly controlled by UBL. Any additions will only occur after 1404
careful scrutiny to include assurance that any addition is critically necessary, and that any 1405
addition will not in any way create semantic ambiguity. 1406
[GNR5] Acronyms and abbreviations MUST only be added to the UBL approved 1407

acronym and abbreviation list after careful consideration for maximum 1408
understanding and reuse. 1409

Once an acronym or abbreviation has been approved, it is essential to ensuring semantic 1410
clarity and interoperability that the acronym or abbreviation is always used. 1411
[GNR6] The acronyms and abbreviations listed in Appendix B MUST always be used. 1412
[Ed. Note – editor to address issue of synch of acronym and abbreviation list with 1413
specific version of UBL] 1414
Generally speaking the names for UBL XML constructs must always be singular, the 1415
only exception permissible is where the concept itself is pluralized. 1416
[GNR7] UBL XML element, attribute and type names MUST be in singular form 1417

unless the concept itself is plural. 1418
 Example: 1419
Terms 1420

XML is case sensitive. Consistency in the use of case for a specific XML component 1421
(element, attribute, type) is essential to ensure every occurrence of a component is treated 1422
as the same. This is especially true in a business-based data-centric environment as is 1423
being addressed by UBL. Additionally, the use of visualization mechanisms such as 1424
capitalization techniques assist in ease of readability and ensure consistency in 1425
application and semantic clarity. The ebXML architecture document specifies a standard 1426

wd-ublndrsc-ndrdoc-V1.0Draftq 44 17 August 2004

use of camel case for expressing XML elements and attributes.7 UBL will adhere to the 1427
ebXML standard. Specifically, UBL element and type names will be in UpperCamelCase 1428
(UCC). 1429
[Ed. Note – add hyperlinks where appropriate] 1430
[GNR8] The UpperCamelCase (UCC) convention MUST be used for naming elements 1431

and types. 1432
Example: 1433
 1434
CurrencyBaseRate 1435
CityNameType 1436
 1437

UBL attribute names will be in lowerCamelCase (LCC). 1438
[GNR9] The lowerCamelCase (LCC) convention MUST be used for naming attributes. 1439

Example: 1440
 1441
amountCurrencyCodeListVersionID 1442
characterSetCode 1443

4.2 Type Naming Rules 1444
UBL identifies several categories of naming rules for types, namely for complex types 1445
based on Aggregate Business Information Entities, Basic Business Information Entities, 1446
Primary Representation Terms, Secondary Representation Terms and the Core 1447
Component Type. 1448
Each of these ccts constructs have a ccts:DictionaryEntryName that is a fully 1449
qualified construct based on ISO 11179. As such, these names convey explicit semantic 1450
clarity with respect to the data being described. Accordingly, these 1451
ccts:DictionaryEntryNames provide a mechanism for ensuring that UBL 1452
xsd:complexType names are semantically unambiguous, and that there are no 1453
duplications of UBL type names for different xsd:type constructs. 1454

4.2.1 Complex Type Names for CCTS Aggregate Business 1455
Information Entities 1456

 UBL xsd:complexType names for 1457
ccts:AggregateBusinessInformationEntities will be derived from their 1458
dictionary entry name by removing the object class to follow truncation rules, removing 1459
separators to follow general naming rules, and appending the suffix “Type”. 1460
[CTN1] A UBL xsd:complexType name based on an 1461

ccts:AggregateBusinessInformationEntity MUST be the 1462
ccts:DictionaryEntryName with the separators removed and with the 1463
“Details” suffix replaced with “Type”. 1464

Example: 1465
ccts:AggregateBusiness
 InformationEntity

UBL xsd:complexType

7 ebXML, ebXML Technical Architecture Specification v1.0.4, 16 February 2001

wd-ublndrsc-ndrdoc-V1.0Draftq 45 17 August 2004

Address. Details AddressType
Financial Account. Details FinancialAccountType

 1466

4.2.2 Complex Type Names for CCTS Basic Business Information 1467
Entity Properties 1468

BBIE Properties are reusable across multiple BBIEs. CCTS does not specify, but 1469
implies, that BBIE property names are the reusable property term and representation term 1470
of the family of BBIEs that are based on it. The UBL xsd:complexType names for 1471
ccts:BasicBusinessInformationEntity properties will be derived from the shared property 1472
and representation terms portion of the dictionary entry names in which they appear by 1473
removing separators to follow general naming rules, and appending the suffix “Type”. 1474
[CTN2] A UBL xsd:complexType name based on a 1475

ccts:BasicBusinessInformationEntityProperty MUST be the 1476
ccts:DictionaryEntryName shared property term and its qualifiers and 1477
representation term of the shared 1478
ccts:BasicBusinessInformationEntity, with the separators removed 1479
and with the “Type” suffix appended after the representation term. 1480

Example: 1481
 <!--===== Basic Business Information Entity Type Definitions =====-1482
-> 1483
 <xsd:complexType name="ChargeIndicatorType"> 1484
 ... 1485
 </xsd:comlextType> 1486

 1487

4.2.3 Complex Type Names for CCTS Unspecialised Datatypes 1488
UBL xsd:complexType names for ccts:UnspecialisedDatatypes will be derived from its 1489
dictionary entry name by removing separators to follow general naming rules, and 1490
appending the suffix “Type”. 1491
[CTN3] A UBL xsd:complexType for a cct:UnspecialisedDatatype used in the 1492

UBL model MUST have the name of the corresponding 1493
ccts:CoreComponentType, with the separators removed and with the 1494
“Type” suffix appended. 1495

Example: 1496
 <!-- ===== Primary Representation Term: AmountType ===== --> 1497
 <xsd:complexType name="AmountType"> 1498
 ... 1499
 </xsd:complexType> 1500

UBL xsd:complexType names for ccts:UnspecialisedDatatypes based on 1501
ccts:SecondaryRepresentationTerms will be derived from the 1502
ccts:SecondaryRepresentationTerm dictionary entry name by removing separators to 1503
follow general naming rules, and appending the suffix “Type”. 1504
[CTN4] A UBL xsd:complexType for a cct:UnspecialisedDatatype based on 1505

a ccts:SecondaryRepresentationTerm used in the UBL model MUST 1506
have the name of the corresponding 1507

wd-ublndrsc-ndrdoc-V1.0Draftq 46 17 August 2004

ccts:SecondaryRepresentationTerm, with the separators removed and 1508
with the “Type” suffix appended. 1509

Example: 1510
 <!-- ===== Secondary Representation Term: GraphicType ===== --> 1511
 <xsd:complexType name="GraphicType"> 1512
 ... 1513
 </xsd:complexType> 1514

4.2.4 Complex Type Names for CCTS Core Component Types 1515
UBL xsd:complexType names for ccts:CoreComponentTypes will be derived 1516
from the dictionary entry name by removing separators to follow general naming rules, 1517
and appending the suffix “Type”. 1518
[CTN5] A UBL xsd:complexType name based on a ccts:CoreComponentType 1519

MUST be the Dictionary entry name of the ccts:CoreComponentType, 1520
with the separators removed. 1521

Example: 1522
 <!-- ===== CCT: QuantityType ===== --> 1523
 <xsd:complexType name="QuantityType"> 1524
 ... 1525
 </xsd:complexType> 1526

4.2.5 Simple Type Names for CCTS Core Component Types 1527
UBL xsd:simpleType names for ccts:CoreComponentTypes will be derived from 1528
the dictionary entry name by removing separators to follow general naming rules.. 1529
[STN1] Each ccts:CCT simpleType definition name MUST be the ccts:CCT 1530

dictionary entry name with the separators removed 1531

4.3 Element Naming Rules 1532
As defined in the UBL Model (See Figure 2-3), UBL elements will be created for 1533
ccts:AggregateBusinessInformationEntities, ccts:BasicBusinessInformationEntities, and 1534
ccts:AssociationBusinessInformationEntities. UBL element names will reflect this 1535
relationship in full conformance with ISO11179 element naming rules. 1536

4.3.1 Element Names for CCTS Aggregate Business Information 1537
Entities 1538

[ELN1] A UBL global element name based on a ccts:ABIE MUST be the same as 1539
the name of the corresponding xsd:complexType to which it is bound, 1540
with the word “Type” removed. 1541

Example: 1542
For a ccts:AggregateBusinessInformationEntity of Party. Details, 1543
Rule CTN1 states that the Party. Details object class becomes PartyType 1544
xsd:ComplexType. Rule ELD3 states that for the PartyType 1545
xsd:ComplexType, a corresponding global element must be declared. Rule 1546
ELN1 states that the name of this corresponding global element must be Party. 1547
 1548
<xsd:element name="Party" type="PartyType"/> 1549

wd-ublndrsc-ndrdoc-V1.0Draftq 47 17 August 2004

 <xsd:complexType name="PartyType"> 1550
 1551
 <xsd:annotation> 1552
 1553
 <!--Documentation goes here--> </xsd:annotation> 1554
 1555
 <xsd:sequence> 1556
 1557
 <xsd:element ref="cbc:MarkCareIndicator" minOccurs="0" 1558
maxOccurs="1"> 1559
 1560
 ... 1561
 1562
 </xsd:element> 1563
 1564
 <xsd:element ref="cbc:MarkAttentionIndicator" minOccurs="0" 1565
maxOccurs="1"> 1566
 1567
 ... 1568
 1569
 </xsd:element> 1570
 1571
 <xsd:element ref="PartyIdentification" minOccurs="0" 1572
maxOccurs="unbounded"> 1573
 1574
 ... 1575
 1576
 </xsd:element> 1577
 1578
 <xsd:element ref="PartyName" minOccurs="0" maxOccurs="1"> 1579
 1580
 ... 1581
 1582
 </xsd:element> 1583
 1584
 <xsd:element ref="Address" minOccurs="0" maxOccurs="1"> 1585
 1586
 ... 1587
 </xsd:element> 1588
 ... 1589
 1590
 </xsd:sequence> 1591
 1592

4.3.2 </xsd:complexType>Element Names for CCTS Basic 1593
Business Information Entity Properties 1594

The same naming concept applies to 1595
ccts:BasicBusinessInformationEntityProperty 1596
[ELN2] A UBL global element name based on an unqualified ccts:BBIEProperty 1597

MUST be the same as the name of the corresponding xsd:complexType to 1598
which it is bound, with the word “Type” removed. 1599

Example: 1600
 <!--===== Basic Business Information Entity Type Definitions =====-1601
-> 1602
 <xsd:complexType name="ChargeIndicatorType"> 1603
 ... 1604
 </xsd:comlextType> 1605
 ... 1606
 <!--===== Basic Business Information Entity Property Element 1607
Declarations =====--> 1608
 <xsd:element name="ChargeIndicator" type="ChargeIndicatorType"/> 1609

wd-ublndrsc-ndrdoc-V1.0Draftq 48 17 August 2004

4.3.3 Element Names for CCTS Association Business Information 1610
Entities 1611

A ccts:AssociationBusinessInformationEntity is not a class like 1612
ccts:AggregateBusinessInformationEntities and like 1613
ccts:BasicBusinessInformationEntity Properties that are reused as 1614
ccts:BasicBusinessInformationEntities. Rather, it is an association between 1615
two classes. As such, an element representing the 1616
ccts:AssociationBusinessInformationEntity does not have its own unique 1617
xsd:ComplexType. Instead, when an element representing a 1618
ccts:AssociationBusinessInformationEntity is declared, the element is bound 1619
to the xsd:complexType of its associated 1620
ccts:AggregateBusinessInformationEntity. 1621
[ELN3]A UBL global element name based on a qualified ccts:ASBIE MUST be the 1622

ccts:ASBIE dictionary entry name property term and its qualifiers; and the 1623
object class term and qualifiers of its associated ccts:ABIE. All 1624
ccts:DictionaryEntryName separators MUST be removed. Redundant 1625
words in the ccts:ASBIE property term or its qualifiers and the associated 1626
ccts:ABIE object class term or its qualifiers MUST be dropped. 1627

 1628
[ELN4] A UBL global element name based on a qualified ccts:BBIEProperty MUST 1629

be the same as the name of the corresponding xsd:complexType to which it is 1630
bound, with the qualifier prefixed and with the word "Type" removed. 1631

Example: 1632
[Ed. Note – need to insert example here] 1633

4.4 Attribute Naming Rules 1634
UBL, as a transactional based XML exchange format, has chosen to significantly restrict 1635
the use of attributes. This restriction is in keeping with the fact that attribute usage is 1636
relegated to supplementary components only; all “primary” business data appears 1637
exclusively in element content. 1638
[ATN1] Each CCT:SupplementaryComponent xsd:attribute "name" MUST be the 1639

Dictionary Entry Name object class, property term and representation term of 1640
the ccts:SupplementaryComponent with the separators removed. 1641

Example: 1642
ccts:SupplementaryComponent ubl:attribute
Amount Currency.Identifier amountCurrencyID
Amount Currency. Code List
Version.Identifier

amountCurrencyCodeListVersionID

Measure Unit.Code measureUnitCode
 1643

wd-ublndrsc-ndrdoc-V1.0Draftq 49 17 August 2004

5 Declarations and Definitions 1644
In W3C XML Schema, elements are defined in terms of complex or simple types and 1645
attributes are defined in terms of simple types. The rules in this section govern the 1646
consistent structuring of these type constructs and the manner for unambiguously and 1647
thoroughly documenting them in the UBL Library. 1648

5.1 Type Definitions 1649

5.1.1 General Type Definitions 1650
Since UBL elements and types are intended to be reusable, all types must be named. This 1651
permits other types to establish elements that reference these types, and also supports the 1652
use of extensions for the purposes of versioning and customization. 1653
[GTD1] All types MUST be named. 1654
Example: 1655

 <xsd:complexType name="QuantityType"> 1656
 ... 1657
 </xsd:complexType> 1658

UBL disallows the use of xsd:any, because this feature permits the introduction of 1659
potentially unknown elements into an XML instance. UBL intends that all constructs 1660
within the instance be described by the schemas describing that instance - xsd:any is seen 1661
as working counter to the requirements of interoperability. 1662

[GTD2] The xsd:any Type MUST NOT be used. 1663

5.1.2 Simple Types 1664
The Core Components Specification provides a set of constructs for the modeling of 1665
basic data, Core Component Types. These are represented in UBL with a library of 1666
complex types, with the effect that most "simple" data is represented as property sets 1667
defined according to the CCTs, made up of content components and supplementary 1668
components. In most cases, the supplementary components are expressed as XML 1669
attributes, the content component becomes element content, and the CCT is represented 1670
with an xsd:complexType. There are exceptions to this rule in those cases where all of a 1671
CCTs properties can be expressed without the use of attributes. In these cases, an 1672
xsd:simpleType is used. 1673
[STD1] For every ccts:CCT whose supplementary components map directly onto the 1674

properties of a built-in xsd:Datatype, the ccts:CCT MUST be defined 1675
as a named xsd:simpleType in the ccts:CCT schema module. 1676

Example: 1677
 <!-- ===== CCT: DateTimeType ===== --> 1678
 <xsd:simpleType name="DateTimeType"> 1679
 ... 1680
 <xsd:restriction base="cct:DateTimeType"/> 1681
 </xsd:simpleType> 1682

wd-ublndrsc-ndrdoc-V1.0Draftq 50 17 August 2004

5.1.3 Complex Types 1683
Since even simple Datatypes are modeled as property sets in most cases, the XML 1684
expression of these models primarily employs xsd:complexType. To facilitate reuse, 1685
versioning, and customization, all complex types are named. The main exception to this 1686
form of representation concerns Aggregate Business Information Entities, which 1687
represent the relationship between an aggregate “parent” object and its aggregate 1688
properties, or children. 1689
[CTD1] For every class identified in the UBL model, a named xsd:complexType 1690

MUST be defined. 1691
Example: 1692

 <xsd:complexType name="BuildingNameType"> 1693
 1694
 1695
 1696
 </xsd:complexType> 1697

5.1.3.1 Aggregate Business Information Entities 1698
The relationship expressed by an Aggregate Business Information Entity is not directly 1699
represented with a class. Instead, this relationship is captured in UBL with a containment 1700
relationship, expressed in the content model of the parent object’s type with a sequence 1701
of elements. (Sequence facilitates the use of xsd:extension for versioning and 1702
customization.) The members of the sequence – elements which are themselves defined 1703
by reference to complex types – are the properties of the containing type. 1704
 [CTD2] Every ccts:ABIE xsd:complexType definition content model MUST 1705

use the xsd:sequence element with appropriate global element references, 1706
or local element declarations in the case of ID and Code, to reflect each 1707
property of its class as defined in the corresponding UBL model. 1708

Example: 1709
<xsd:complexType name="AddressType"> 1710
 1711
 ... 1712
 1713
 <xsd:sequence> 1714
 1715
 <xsd:element ref="cbc:CityName" minOccurs="0" maxOccurs="1"> 1716
 1717
 ... 1718
 1719
 </xsd:element> 1720
 1721
 <xsd:element ref="cbc:PostalZone" minOccurs="0" maxOccurs="1"> 1722
 1723
 ... 1724
 </xsd:element> 1725
... 1726
 1727
 </xsd:sequence> 1728
 1729

 </xsd:complexType> 1730

5.1.3.2 Basic Business Information Entities 1731
Basic Business Information Entities (BBIEs), in accordance with the Core Components 1732
Technical Specification, always have a primary representation term, and may have 1733

wd-ublndrsc-ndrdoc-V1.0Draftq 51 17 August 2004

secondary representation terms, which describes their structural representation. These 1734
representation terms are expressed in the UBL Model as Unspecialised Datatypes bound 1735
to a Core Component Type that describes their structure. In addition to the unspecialised 1736
Datatypes defined in CCTS, UBL has defined a set of specialised Datatypes that are 1737
derived from the CCTS unqualified Datatypes.There are a set of rules concerning the way 1738
these relationships are expressed in the UBL XML library. BBIE properties are 1739
represented with complex types. Within these are simpleContent elements that extend the 1740
Datatypes. 1741
[CTD3] Every ccts:BBIEProperty xsd:complexType definition content 1742

model MUST use the xsd:simpleContent element. 1743
 1744
[CTD4] Every ccts:BBIEProperty ComplexType content model 1745

xsd:simpleContent element MUST consist of an xsd:extension 1746
element. 1747

 1748
[CTD5] Every ccts:BBIEProperty xsd:complexType content model 1749

xsd:base attribute value MUST be the ccts:CCT of the unspecialised or 1750
specialised UBL Datatype as appropriate. 1751

Example: 1752
 <xsd:complexType name="StreetNameType"> 1753
 <xsd:simpleContent> 1754
 <xsd:extension base="cct:NameType"/> 1755
 </xsd:simpleContent> 1756
 </xsd:complexType> 1757

5.1.3.3 Datatypes 1758
There is a direct one-to-one relationship between ccts:CoreComponentTypes and 1759
ccts:PrimaryRepresentationTerms. Additionally, there are several 1760
ccts:SecondaryRepresentationTerms that are subsets of their parent 1761
ccts:PrimaryRepresentationTerm. The total set of 1762
ccts:RepresentationTerms by their nature represent ccts:Datatypes. 1763
Specifically, for each ccts:PrimaryRepresentationTerm or 1764
ccts:SecondaryRepresentationTerm, a ccts:UnspecialisedDatatype exists. 1765
In the UBL XML Library, these ccts:UnspecialisedDatatypes are expressed as 1766
complex or simple types that are of the type of its corresponding 1767
ccts:CoreComponentType. 1768
[CTD6] For every Datatype used in the UBL model, a named xsd:complexType or 1769

xsd:simpleType MUST be defined. 1770

5.1.3.3.1 Unspecialised Datatypes 1771
[CTD7] Every unspecialised Datatype must be based on a ccts:CCT represented in the 1772

CCT schema module, and must represent an approved primary or secondary 1773
representation term identified in the CCTS. 1774

[CTD8] Each unspecialised Datatype xsd:complexType must be based on its 1775
corresponding CCT xsd:complexType. 1776

wd-ublndrsc-ndrdoc-V1.0Draftq 52 17 August 2004

[CTD9] Every unspecialised Datatype that represents a primary representation term 1777
whose corresponding ccts:CCT is defined as an xsd:simpleType MUST also 1778
be defined as an xsd:simpleType and MUST be based on the same 1779
xsd:simpleType. 1780

[CTD10] Every unspecialised Datatype that represents a secondary representation term 1781
whose corresponding ccts:CCT is defined as an xsd:simpleType MUST also 1782
be defined as an xsd:simpleType and MUST be based on the same 1783
xsd:simpleType. 1784

[CTD11] Each unspecialised Datatype xsd:complexType definition must contain one 1785
xsd:simpleContent element. 1786

[CTD12] The unspecialised Primary Representation Term Datatype xsd:complexType 1787
definition xsd:simpleContent element must contain one xsd:restriction 1788
element with an xsd:base attribute whose value is equal to the corresponding 1789
cct:complexType 1790

 1791
 1792

5.1.3.4 Core Component Types 1793
 A CCT consists of a “content component” which may be supported by a set of properties 1794
referred to as “supplementary components”. CCTs may be expressed as a simple type 1795
(where possible), but may require expression as a complex type. Content components are 1796
expressed as extensions of the set of built-in xsd Datatypes. Supplementary components 1797
are expressed either as extensions of built-in Datatypes, or user-defined simple types. 1798
[CTD13] For every ccts:CCT whose supplementary components are not equivalent to 1799

the properties of a built-in xsd:Datatype, the ccts:CCT MUST be defined 1800
as a named xsd:complexType in the ccts:CCT schema module. 1801

CCTs complex types always have xsd:simpleContent, which is an extension of a built-in 1802
xsd Datatype. 1803
[CTD14] Each ccts:CCT xsd:complexType definition MUST contain one 1804

xsd:simpleContent element 1805
 1806
[CTD15] The ccts:CCT xsd:complexType definition xsd:simpleContent 1807

element MUST contain one xsd:extension element. This 1808
xsd:extension element MUST include an xsd:base attribute that 1809
defines the specific xsd:built-in Datatype required for the 1810
ccts:ContentComponent of the ccts:CCT. 1811

Example: 1812
 1813
<xsd:complexType name="QuantityType"> 1814
 1815
 ... 1816
 1817
 <xsd:simpleContent> 1818
 1819
 <xsd:extension base="xsd:decimal"> 1820
 1821
 <xsd:attribute name="quantityUnitCode" type="xsd:normalizedString" 1822
use="optional"/> 1823
 1824

wd-ublndrsc-ndrdoc-V1.0Draftq 53 17 August 2004

 <xsd:attribute name="quantityUnitCodeListID" 1825
type="xsd:normalizedString" use="optional"/> 1826
 1827
 <xsd:attribute name="quantityUnitCodeListAgencyID" 1828
type="xsd:normalizedString" use="optional"/> 1829
 1830
 <xsd:attribute name="quantityUnitCodeListAgencyName" 1831
type="xsd:string" use="optional"/> 1832
 1833
 </xsd:extension> 1834
 1835
 </xsd:simpleContent> 1836
 1837
</xsd:complexType> 1838

5.1.3.5 Supplementary Components 1839
Supplementary components are expressed with references to either built-in xsd 1840
Datatypes, or to user-defined simple types. 1841
[CTD16] Each CCT:SupplementaryComponent xsd:attribute “type” MUST 1842

define the specific xsd:built-in Datatype or the user defined 1843
xsd:simpleType for the ccts:SupplementaryComponent of the 1844
ccts:CCT. 1845

Example: 1846
<xsd:attribute name="measureUnitCode" type="xsd:normalizedString" use="required"/> 1847
[CTD17] Each ccts:SupplementaryComponent xsd:attribute user-defined 1848

xsd:simpleType MUST only be used when the 1849
ccts:SupplementaryComponent is based on a standardized code list for 1850
which a UBL conformant code list schema module has been created. 1851

 [CTD18] Each ccts:SupplementaryComponent xsd:attribute user defined 1852
xsd:simpleType MUST be the same xsd:simpleType from the 1853
appropriate UBL conformant code list schema module for that type. 1854

Supplementary components are either required or optional, based on the description of 1855
CCTs in the Core Components Technical Specification. 1856
[CTD19] Each ccts:Supplementary Component xsd:attribute “use” MUST 1857

define the occurrence of that ccts:SupplementaryComponent as either 1858
“required”, or “optional. 1859

Example: 1860
 <xsd:attribute name="amountCurrencyID" type="xsd:normalizedString" 1861
use="required"/> 1862
 1863
 <xsd:attribute name="amountCurrencyCodeListVersionID" 1864
type="xsd:normalizedString" use="optional"/> 1865

 1866

wd-ublndrsc-ndrdoc-V1.0Draftq 54 17 August 2004

5.2 Element Declarations 1867

5.2.1 General Element Declarations 1868

5.2.2 Elements Bound to Complex Types 1869
The binding of UBL elements to their xsd:complexTypes is based on the associations 1870
identified in the UBL model. For the ccts:BasicBusinessInformationEntities 1871
and ccts:AggregateInformationEntities, the UBL elements will be directly 1872
associated to its corresponding xsd:complexType. 1873
[ELD3] For every class identified in the UBL model, a global element bound to the 1874

corresponding xsd:complexType MUST be declared. 1875
Example: 1876

For the Party. Details object class, a complex type/global element declaration 1877
pair is created through the declaration of a Party element that is of type 1878
PartyType. 1879

The element thus created is useful for reuse in the building of new business messages. 1880
The complex type thus created is useful for both reuse and customization, in the building 1881
of both new and contextualized business messages. [TBD: point to a context 1882
methodology document or section from here.] 1883
Example: 1884

 <xsd:element name="BuyerParty" type="BuyerPartyType"/> 1885
 <xsd:complexType name="BuyerPartyType"> 1886
 ... 1887
 </xsd:complexType> 1888

 1889

5.2.2.1 Elements Representing ASBIEs 1890
A ccts:AssociationBusinessInformationEntity is not a class like 1891
ccts:AggregateBusinessInformationEntities and ccts:BasicBusiness 1892
InformationEntities are. Rather, it is an association between two classes. As such, 1893
the element declaration will reference the xsd:complexType of the associated 1894
ccts:AggregateBusinessInformationEntity. There are two types of ASBIEs – those that 1895
have qualifiers in the object class, and those that do not. 1896
[ELD4] When a ccts:ASBIE is unqualified, it is bound via reference to the global 1897

ccts:ABIE element to which it is associated. When an ccts:ABIE is 1898
qualified, a new element MUST be declared and bound to the 1899
xsd:complexType of its associated 1900
ccts:AggregateBusinessInformationEntity. 1901

 1902

5.2.2.2 Elements Bound to Core Component Types 1903
[ELD5] For each ccts:CCT simpleType, an xsd:restriction element 1904

MUST be declared. 1905

wd-ublndrsc-ndrdoc-V1.0Draftq 55 17 August 2004

5.2.3 Code List Import 1906
[ELD6] The code list xsd:import element MUST contain the namespace and 1907

schema location attributes. 1908

5.2.4 Empty Elements 1909
[ELD7] Empty elements MUST not be declared. 1910

5.2.5 Global Elements 1911
[ELD8] Global elements declared for Qualified BBIE Properties must be of the same 1912

type as its corresponding Unqualified BBIE Property. (i.e. Property Term + 1913
Representation Term.) 1914

 1915
<xsd:element name="AdditionalStreetName" type="cbc:StreetNameType"/> 1916

 1917

5.2.6 XSD:Any 1918
[ELD9] The xsd:any element MUST NOT be used. 1919

5.3 Attribute Declarations 1920
Attributes are W3C Schema constructs associated with elements that provide further 1921
information regarding elements. While elements can be thought of as containing data, 1922
attributes can be thought of as containing metadata. Unlike elements, attributes cannot be 1923
nested within each other—there are no “subattributes.” Therefore, attributes cannot be 1924
extended as elements can. Attribute order is not enforced by XML processors—that is, if 1925
the attribute order in an XML instance document is different than the order in which the 1926
attributes are declared in the schema to which the XML instance document conforms, no 1927
error will result. UBL has determined that these limitations dictate that UBL restrict the 1928
use of attributes to either XSD built-in attributes, or to Supplementary Components 1929
which by their nature within the CCTS metamodel only carry metadata. 1930

5.3.1 User Defined Attributes 1931
[ATD1] User defined attributes SHOULD NOT be used. When used, user defined 1932

attributes MUST only convey CCT:SupplementaryComponent 1933
information. 1934

 1935
[ATD2] The CCT:SupplementaryComponents for the ID CCT:CoreComponent MUST 1936

be declared in the following order: 1937
 1938
 Identifier. Content 1939
 Identification Scheme. Identifier 1940
 Identification Scheme. Name. Text 1941
 Identification Scheme. Agency. Identifier 1942
 Identification Scheme. Agency Name. Text 1943
 Identification Scheme. Version. Identifier 1944

wd-ublndrsc-ndrdoc-V1.0Draftq 56 17 August 2004

 Identification Scheme. Uniform Resource. Identifier 1945
 Identification Scheme Data. Uniform Resource. Identifier 1946

5.3.2 Global Attributes 1947
Rule ATD1 limits the use of attributes to cct:SupplementaryComponents. The current 1948
UBL library does not contain any attributes that are common to all UBL elements, 1949
however such a situation may arise in the future. If such common attributes are defined, 1950
then they will be declared using the xsd:globalattributegroup element using the 1951
following rules. 1952
[ATD3] If a UBL xsd:SchemaExpression contains one or more common 1953

attributes that apply to all UBL elements contained or included or imported 1954
therein, the common attributes MUST be declared as part of a global attribute 1955
group. 1956

 1957

5.3.3 Supplementary Components 1958
[ATD4] Within the ccts:CCT xsd:extension element an xsd:attribute 1959

MUST be declared for each ccts:SupplementaryComponent pertaining 1960
to that ccts:CCT. 1961

 1962
[ATD5] For each ccts:CCT simpleType xsd:Restriction element, an 1963

xsd:base attribute MUST be declared and set to the appropriate 1964
xsd:Datatype. 1965

5.3.4 DatatypeSchema Location 1966
UBL is an international standard that will be used in perpetuity by companies around the 1967
globe. It is important that these users have unfettered access to all UBL schema. 1968
[ATD6] Each xsd:schemaLocation attribute declaration MUST contain a system-1969

resolvable URL, which at the time of release from OASIS shall be a relative 1970
URL referencing the location of the schema or schema module in the release 1971
package. 1972

 1973

5.3.5 XSD:Nil 1974
 1975
[ATD7] The xsd built in nillable attribute MUST NOT be used for any UBL declared 1976

element. 1977

5.3.6 XSD:Any 1978
[ATD8] The xsd:any attribute MUST NOT be used. 1979

wd-ublndrsc-ndrdoc-V1.0Draftq 57 17 August 2004

6 Code Lists 1980
UBL has determined that the best approach for code lists is to handle them as schema 1981
modules. In recognition of the fact that most code lists are maintained by external 1982
agencies, UBL has determined that if code list owners all used the same normative form 1983
schema module, all users of those code lists could avoid a significant level of code list 1984
maintenance. By having each code list owner develop, maintain, and make available via 1985
the internet their code lists using the same normative form schema, code list users would 1986
be spared the unnecessary and duplicative efforts required for incorporation in the form 1987
of enumeration of such code lists into Schema, and would subsequently avoid the 1988
maintenance of such enumerations since code lists are handled as imported schema 1989
modules rather than cumbersome enumerations. To make this mechanism operational, 1990
UBL has defined a number of rules. To avoid enumeration of codes in the document or 1991
reusable schemas, UBL has determined that: 1992
[CDL1] All UBL Codes MUST be part of a UBL or externally maintained Code List. 1993
Because the majority of code lists are owned and maintained by external agencies, UBL 1994
will make maximum use of such external code lists where they exist. 1995
[CDL2] The UBL Library SHOULD identify and use external standardized code lists 1996

rather than develop its own UBL-native code lists. 1997
In some cases the UBL Library may extend an existing code list to meet specific business 1998
requirements. In others cases the UBL Library may have to create and maintain a code 1999
list where a suitable code list does not exist in the public domain. Both of these type of 2000
code lists would be considered UBL-internal code lists. 2001
[CDL3] The UBL Library MAY design and use an internal code list where an existing 2002

external code list needs to be extended, or where no suitable external code list 2003
exists. 2004

UBL-internal code lists will be designed with maximum re-use in mind to facilitate 2005
maximum use by others. 2006
If a UBL code list is created, the lists should be globally scoped (designed for reuse and 2007
sharing, using named types and namespaced Schema Modules) rather than locally scoped 2008
(not designed for others to use and therefore hidden from their use). 2009
To guarantee consistency within all code list schema modules all ubl-internal code lists 2010
and externally used code lists will use the UBL Code List Schema Module. This schema 2011
module will contain an enumeration of code list values. 2012
[CDL4] All UBL maintained or used Code Lists MUST be enumerated using the UBL 2013

Code List Schema Module. 2014
To guarantee consistency of code list schema module naming, the name of each UBL 2015
Code List Schema Module will adhere to a prescribed form. 2016
[CDL5] The name of each UBL Code List Schema Module MUST be of the form: 2017
 {Owning Organization}{Code List Name}{Code List Schema Module} 2018
Each code list used in the UBL schema MUST be imported individually. 2019
[CDL6] An xsd:Import element MUST be declared for every code list required in a 2020

UBL schema. 2021

wd-ublndrsc-ndrdoc-V1.0Draftq 58 17 August 2004

The UBL library allows partial implementations of code lists which may required by 2022
customizers. 2023
[CDL7] Users of the UBL Library MAY identify any subset they wish from an 2024

identified code list for their own trading community conformance 2025
requirements. 2026

The following rule describes the requirements for the xsd:schemaLocation for the 2027
importation of the code lists into a UBL business document. 2028
[CDL8] The xsd:schemaLocation MUST include the complete URI used to identify 2029

the relevant code list schema. 2030
 2031
 2032
 2033

2034

wd-ublndrsc-ndrdoc-V1.0Draftq 59 17 August 2004

7 Miscellaneous XSD Rules 2035
UBL, as a business standard vocabulary, requires consistency in its development. The 2036
number of UBL Schema developers will expand over time. To ensure consistency, it is 2037
necessary to address the optional features in XSD that are not addressed elsewhere. 2038

7.1 XSD Simple Types 2039
UBL guiding principles require maximum reuse. XSD provides for forty four built-in 2040
Datatypes expressed as simple types. In keeping with the maximize re-use guiding 2041
principle, these built-in xsd:SimpleTypes should be used wherever possible. 2042
[GXS3] Built-in XSD Simple Types SHOULD be used wherever possible. 2043

7.2 Namespace Declaration 2044
The W3C XSD specification allows for the use of any token to represent its location. To 2045
ensure consistency, UBL has adopted the generally accepted convention of using the 2046
“xsd” token for all UBL schema and schema modules. 2047
[GXS4] All W3C XML Schema constructs in UBL Schema and schema modules 2048

MUST contain the following namespace declaration on the xsd schema 2049
element: 2050

 xmlns:xsd="http://www.w3.org/2001/XMLSchema” 2051

7.3 XSD:Substitution Groups 2052
The xsd:SubstitutionGroups feature enables a type definition to identify substitution 2053
elements in a group. Although a useful feature in document centric XML applications, 2054
this feature is not used by UBL. 2055
[GXS5] The xsd:SubstitutionGroups feature MUST NOT be used. 2056

7.4 XSD:Final 2057
 2058
[GXS6] The xsd:final attribute MUST be used to control extensions. 2059

7.5 XSD: Notation 2060
The xsd:notation attribute identifies a notation. Notation declarations corresponding to all 2061
the <notation> element information items in the [children], if any, plus any included or 2062
imported declarations. Per XSD Part 2, “It is an ·error· for NOTATION to be used 2063
directly in a schema. Only Datatypes that are ·derived· from NOTATION by specifying 2064
a value for ·enumeration· can be used in a schema.” The UBL schema model does not 2065
require or support the use of this feature. 2066
 2067
[GXS7] xsd:notation MUST NOT be used. 2068

wd-ublndrsc-ndrdoc-V1.0Draftq 60 17 August 2004

7.6 XSD:All 2069
The xsd:all compositor requires occurrence indicators of minOccurs = 0 and maxOccurs 2070
= 1. The xsd:all compositor allows for elements to occur in any order. The result is that 2071
in an instance document, elements can occur in any order, are always optional, and never 2072
occur more than once. Such restrictions are inconsistent with data-centric scenarios such 2073
as UBL. 2074
[GXS8] The xsd:all element MUST NOT be used. 2075

7.7 XSD:Choice 2076
The xsd:choice compositor allows for any element declared inside it to occur in the 2077
instance document, but only one. As with the xsd:all compositor, this feature is 2078
inconsistent with business transaction exchanges and is not allowed in UBL. While 2079
xsd:choice is a very useful construct in situations where customisation and extensibility 2080
are not a concern, UBL does not use it because xsd:choice cannot be extended. 2081
[GXS9] The xsd:choice element SHOULD NOT be used where customisation and 2082

extensibility are a concern. 2083

7.8 XSD:Include 2084
The xsd:include feature provides a mechanism for bringing in schemas that reside in the 2085
same namespace. UBL employs multiple schema modules within a namespace. To 2086
avoid circular references, this feature will not be used except by the document schema. 2087
 2088
[GXS10] The xsd:include feature MUST only be used within a document schema. 2089

7.9 XSD:Union 2090
The xsd:union feature provides a mechanism whereby a Datatype is created as a 2091
union of two or more existing Datatypes. With UBL’s strict adherence to the use of 2092
ccts:Datatypes that are explicitly declared in the UBL library, this feature is inappropriate 2093
except for codelists. In some cases external customizers may choose to use this technique 2094
for Codelists and as such the use of the union technique may prove beneficial for 2095
customizers. 2096
 2097
[GXS11] The xsd:union technique MUST NOT be used except for Code Lists. The 2098

xsd:union technique MAY be used for Code Lists. 2099

7.10 XSD:Appinfo 2100
The xsd:appinfo feature is used by schema to convey processing instructions to a 2101
processing application, Stylesheet, or other tool. Some users of UBL have determined 2102
that this technique poses a security risk and have employed techniques for stripping 2103
xsd:appinfo from schemas. As UBL is committed to ensuring the widest possible 2104
target audience for its XML library, this feature is not used – except to convey non-2105
normative information. 2106
 2107

wd-ublndrsc-ndrdoc-V1.0Draftq 61 17 August 2004

[GXS12] UBL designed schema SHOULD NOT use xsd:appinfo. If used, 2108
xsd:appinfo MUST only be used to convey non-normative information. 2109

7.11 Extension and Restriction 2110
UBL fully recognizes the value of supporting extension and restriction of its core library 2111
by customizers. 2112
[GXS13] Complex Type extension or restriction MAY be used where appropriate. 2113

wd-ublndrsc-ndrdoc-V1.0Draftq 62 17 August 2004

8 Instance Documents 2114
Consistency in UBL instance documents is essential in a trade environment. UBL has 2115
defined several rules to help affect this consistency. 2116

8.1 Root Element 2117
UBL has chosen a global element approach. In XSD, every global element is eligible to 2118
act as a root element in an instance document. Rule ELD1 requires the identification of a 2119
single global element in each UBL schema to be carried as the root element in the 2120
instance document. UBL business documents (UBL instances) must have a single root 2121
element as defined in the corresponding UBL XSD. 2122
[RED1] Every UBL instance document must use the global element defined as the root 2123

element in the schema as its root element. 2124

8.2 Validation 2125
The UBL library and supporting schema are targeted at supporting business information 2126
exchanges. Business information exchanges require a high degree of precision to ensure 2127
that application processing and corresponding business cycle actions are reflective of the 2128
purpose, intent, and information content agreed to by both trading partners. Schemas 2129
provide the necessary mechanism for ensuring that instance documents do in fact support 2130
these requirements. 2131
[IND1] All UBL instance documents MUST validate to a corresponding schema. 2132

8.3 Character Encoding 2133
XML supports a wide variety of character encodings. Processors must understand which 2134
character encoding is employed in each XML document. XML 1.0 supports a default 2135
value of UTF-8 for character encoding, but best practice is to always identify the 2136
character encoding being employed. 2137
[IND2] All UBL instance documents MUST always identify their character encoding 2138

with the XML declaration. 2139
Example: 2140
 2141
Xml expression: UTF-8 2142

UBL, as an OASIS TC, is obligated to conform to agreements OASIS has entered into. 2143
OASIS is a liaison member of the ISO/IETF/ITU/UNCEFACT Memorandum of 2144
Understanding Management Group (MOUMG). Resolution 01/08 (MOU/MG01n83) 2145
requires the use of UTF-8. 2146
[IND3] In conformance with ISO/IETF/ITU/UNCEFACT Memorandum of 2147

Understanding Management Group (MOUMG) Resolution 01/08 2148
(MOU/MG01n83) as agreed to by OASIS, all UBL XML SHOULD be 2149
expressed using UTF-8. 2150

Example: 2151
 2152

wd-ublndrsc-ndrdoc-V1.0Draftq 63 17 August 2004

<?xml version=”1.0” encoding=”UTF-8” ?> 2153
 2154

8.4 Schema Instance Namespace Declaration 2155
 [IND4] All UBL instance documents MUST contain the following namespace 2156

declaration in the root element: 2157
xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance” 2158

8.5 Empty Content. 2159
Usage of empty elements within XML instance documents are a source of controversy 2160
for a variety of reasons. An empty element does not simply represent data that is 2161
missing. It may express data that is not applicable for some reason, trigger the expression 2162
of an attribute, denote all possible values instead of just one, mark the end of a series of 2163
data, or appear as a result of an error in XML file generation. Conversely, missing data 2164
elements can also have meaning - data not provided by a trading partner. In information 2165
exchange environments, different Trading Partners may allow, require or ban empty 2166
elements. UBL has determined that empty elements do not provide the level of assurance 2167
necessary for business information exchanges and as such will not be used. 2168
[IND5] UBL conformant instance documents MUST NOT contain an element devoid 2169

of content or null values. 2170
To ensure that no attempt is made to circumvent rule IND5, UBL also prohibits 2171
attempting to convey meaning by not conveying an element. 2172
[IND6] The absence of a construct or data in a UBL instance document MUST NOT 2173

carry meaning. 2174
 2175

wd-ublndrsc-ndrdoc-V1.0Draftq 64 17 August 2004

Appendix A. UBL NDR Checklist 2176

The following checklist constitutes all UBL XML naming and design rules as defined in 2177
UBL Naming and Design Rules version 1.0, xx November 2003. The checklist is in 2178
alphabetical sequence as follows: 2179
Attribute Declaration Rules (ATD) 2180
Attribute Naming Rules (ATN) 2181
Code List Rules (CDL) 2182
ComplexType Definition Rules (CTD) 2183
ComplexType Naming Rules (CTN) 2184
Documentation Rules (DOC0 2185
Element Declaration Rules (ELD) 2186
General Naming Rules (GNR) 2187
General Type Definition Rules (GTD) 2188
General XML Schema Rules (GXS) 2189
Instance Document Rules (IND) 2190
Modeling Constraints Rules (MDC) 2191
Naming Constraints Rules (NMC) 2192
Namespace Rules (NMS) 2193
Root Element Declaration Rules (RED) 2194
Schema Structure Modularity Rules (SSM) 2195
Standards Adherence Rules (STA) 2196
SimpleType Naming Rules (STN) 2197
SimpleType Definition Rules (STD) 2198
Versioning Rules (VER) 2199
 2200

2201

wd-ublndrsc-ndrdoc-V1.0Draftq 65 17 August 2004

•

wd-ublndrsc-ndrdoc-V1.0Draftq 66 17 August 2004

UBL Naming and Design Rules Checklist 2202
 2203
 2204

8.6 Attribute Declaration Rules
[ATD1] User defined attributes SHOULD NOT be used. When used, user defined

attributes MUST only convey CCT:SupplementaryComponent information.
[ATD2] The CCT:SupplementaryComponents for the ID CCT:CoreComponent

MUST be declared in the following order:

Identifier. Content
Identification Scheme. Identifier
Identification Scheme. Name. Text
Identification Scheme. Agency. Identifier
Identification Scheme. Agency Name. Text
Identification Scheme. Version. Identifier
Identification Scheme. Uniform Resource. Identifier
Identification Scheme Data. Uniform Resource. Identifier

[ATD3] If a UBL xsd:SchemaExpression contains one or more common attributes
that apply to all UBL elements contained or included or imported therein, the
common attributes MUST be declared as part of a global attribute group.

[ATD4] Within the ccts:CCT xsd:extension element an xsd:attribute MUST be
declared for each ccts:SupplementaryComponent pertaining to that
ccts:CCT.

[ATD5] For each ccts:CCT simpleType xsd:Restriction element, an xsd:base attribute
MUST be declared and set to the appropriate xsd:datatype.

[ATD6] Each xsd:schemaLocation attribute declaration MUST contain a system-
resolvable URL, which at the time of release from OASIS shall be a relative
URL referencing the location of the schema or schema module in the release
package.

[ATD7] The xsd built in nillable attribute MUST NOT be used for any UBL declared
element.

[ATD8] The xsd:any attribute MUST NOT be used.
 2205
 2206

8.7 Attribute Naming Rules
[ATN1] Each CCT:SupplementaryComponent xsd:attribute "name" MUST be the

dictionary entry name object class, property term and representation term of
the ccts:SupplementaryComponent with the separators removed.

 2207
 2208

wd-ublndrsc-ndrdoc-V1.0Draftq 67 17 August 2004

8.8 Code List Rules
[CDL1] All UBL Codes MUST be part of a UBL or externally maintained Code

List.
[CDL2] The UBL Library SHOULD identify and use external standardized code

lists rather than develop its own UBL-native code lists.
[CDL3] The UBL Library MAY design and use an internal code list where an

existing external code list needs to be extended, or where no suitable
external code list exists.

[CDL4] All UBL maintained or used Code Lists MUST be enumerated using the
UBL Code List Schema Module.

[CDL5] The name of each UBL Code List Schema Module MUST be of the form:
{Owning Organization}{Code List Name}{Code List Schema Module}

[CDL6] An xsd:Import element MUST be declared for every code list required in a
UBL schema.

[CDL7] Users of the UBL Library MAY identify any subset they wish from an
identified code list for their own trading community conformance
requirements.

[CDL8] The xsd:schemaLocation MUST include the complete URI used to identify
the relevant code list schema.

 2209
 2210

8.9 ComplexType Definition Rules
[CTD1] For every class identified in the UBL model, a named xsd:complexType

MUST be defined.
[CTD2] Every ccts:ABIE xsd:complexType definition content model MUST use

the xsd:sequence element with appropriate global element references, or
local element declarations in the case of ID and Code, to reflect each
property of its class as defined in the corresponding UBL model.

[CTD3] Every ccts:BBIEProperty xsd:complexType definition content model
MUST use the xsd:simpleContent element.

[CTD4] Every ccts:BBIEProperty ComplexType content model xsd:simpleContent
element MUST consist of an xsd:extension element.

[CTD5] Every ccts:BBIEProperty xsd:complexType content model xsd:base
attribute value MUST be the ccts:CCT of the unspecialised or specialised
UBL datatype as appropriate.

[CTD6] For every datatype used in the UBL model, a named xsd:complexType or
xsd:simpleType MUST be defined.

[CTD7] Every unspecialised Datatype must be based on a ccts:CCT represented in
the CCT schema module and must represent an approved primary or
secondary representation term identified in the CCTS.

[CTD8] Each unspecialised Datatype xsd:complexType must be based on its
corresponding CCT xsd:complexType.

 Every unspecialised Datatype that represents a primary representation term

wd-ublndrsc-ndrdoc-V1.0Draftq 68 17 August 2004

8.9 ComplexType Definition Rules
[CTD9] whose corresponding ccts:CCT is defined as an xsd:simpleType MUST

also be defined as an xsd:simpleType and MUST be based on the same
xsd:simpleType.

[CTD10] Every unspecialised Datatype that represents a secondary representation
term whose corresponding ccts:CCT is defined as an xsd:simpleType
MUST also be defined as an xsd:simpleType and MUST be based on the
same xsd:simpleType.

[CTD11] Each unspecialised Datatype xsd:complexType definition must contain one
xsd:simpleContent element.

[CTD12] The unspecialised Primary Representation Term Datatype
xsd:complextType definition xsd:simpleContent element must contain one
xsd:restriction element with an xsd:base attribute whose value is equal to
the corresponding cct:complexType.

[CTD13] For every ccts:CCT whose supplementary components are not equivalent
to the properties of a built-in xsd:datatype, the ccts:CCT MUST be defined
as a named xsd:complexType in the ccts:CCT schema module.

[CTD14] Each ccts:CCT xsd:complexType definition MUST contain one
xsd:simpleContent element

[CTD15] The ccts:CCT xsd:complexType definition xsd:simpleContent element
MUST contain one xsd:extension element. This xsd:extension element
MUST include an xsd:base attribute that defines the specific xsd:built-
inDatatype required for the ccts:ContentComponent of the ccts:CCT.

[CTD16] Each CCT:SupplementaryComponent xsd:attribute "type" MUST define
the specific xsd:built-in Datatype or the user defined xsd:simpleType for
the ccts:SupplementaryComponent of the ccts:CCT.

[CTD17] Each ccts:SupplementaryComponent xsd:attribute user-defined
xsd:simpleType MUST only be used when the
ccts:SupplementaryComponent is based on a standardized code list for
which a UBL conformant code list schema module has been created.

[CTD18] Each ccts:SupplementaryComponent xsd:attribute user defined
xsd:simpleType MUST be the same xsd:simpleType from the appropriate
UBL conformant code list schema module for that type.

[CTD19] Each ccts:Supplementary Component xsd:attribute "use" MUST define the
occurrence of that ccts:SupplementaryComponent as either "required", or
"optional.

 2211
 2212

8.10 ComplexType Naming Rules
[CTN1] A UBL xsd:complexType name based on an

ccts:AggregateBusinessInformationEntity MUST be the
ccts:DictionaryEntryName with the separators removed and with the
"Details" suffix replaced with "Type".

wd-ublndrsc-ndrdoc-V1.0Draftq 69 17 August 2004

8.10 ComplexType Naming Rules
[CTN2] A UBL xsd:complexType name based on a

ccts:BasicBusinessInformationEntityProperty MUST be the
ccts:DictionaryEntryName shared property term and its qualifiers and the
representation term of the shared ccts:BasicBusinessInformationEntity,
with the separators removed and with the "Type" suffix appended after the
representation term.

[CTN3] A UBL xsd:complexType for a cct:UnspecialisedDatatype used in the UBL
model MUST have the name of the corresponding
ccts:CoreComponentType, with the separators removed and with the
"Type" suffix appended.

[CTN4] A UBL xsd:complexType for a cct:UnspecialisedDatatype based on a
ccts:SecondaryRepresentationTerm used in the UBL model MUST have
the name of the corresponding ccts:SecondaryRepresentationTerm, with the
separators removed and with the "Type" suffix appended.

[CTN5] A UBL xsd:complexType name based on a ccts:CoreComponentType
MUST be the Dictionary entry name of the ccts:CoreComponentType, with
the separators removed.

 2213
 2214

8.11 Documentation Rules
[DOC1] The xsd:documentation element for every Datatype MUST contain a structured set

of annotations in the following sequence and pattern:
• ComponentType (mandatory): The type of component to which the object

belongs. For Datatypes this must be “DT”.
• DictionaryEntryName (mandatory): The official name of a Datatype.
• Version (optional): An indication of the evolution over time of the

Datatype.
• Definition(mandatory): The semantic meaning of a Datatype.
• ObjectClassQualifier (optional): The qualifier for the object class.
• ObjectClass(optional): The Object Class represented by the Datatype.
• RepresentationTerm (mandatory): A Representation Term is an element of

the name which describes the form in which the property is represented.
• DataTypeQualifier (optional): semantically meaningful name that

differentiates the Datatype from its underlying Core Component Type.
• DataType (optional): Defines the underlying Core Component Type.

wd-ublndrsc-ndrdoc-V1.0Draftq 70 17 August 2004

8.11 Documentation Rules
[DOC2] A Datatype definition MAY contain one or more Content Component Restrictions

to provide additional information on the relationship between the Datatype and its
corresponding Core Component Type. If used the Content Component
Restrictions must contain a structured set of annotations in the following patterns:

• RestrictionType (mandatory): Defines the type of format restriction that
applies to the Content Component.

• RestrictionValue (mandatory): The actual value of the format restriction
that applies to the Content Component.

• ExpressionType (optional): Defines the type of the regular expression of
the restriction value.

[DOC3] A Datatype definition MAY contain one or more Supplementary Component
Restrictions to provide additional information on the relationship between the
Datatype and its corresponding Core Component Type. If used the Supplementary
Component Restrictions must contain a structured set of annotations in the
following patterns:

• SupplementaryComponentName (mandatory): Identifies the
Supplementary Component on which the restriction applies.

• RestrictionValue (mandatory, repetitive): The actual value(s) that is (are)
valid for the Supplementary Component

wd-ublndrsc-ndrdoc-V1.0Draftq 71 17 August 2004

8.11 Documentation Rules
[DOC4] The xsd:documentation element for every Basic Business Information Entity

MUST contain a structured set of annotations in the following sequence and
pattern:

• ComponentType (mandatory): The type of component to which the object
belongs. For Basic Business Information Entities this must be “BBIE”.

• DictionaryEntryName (mandatory): The official name of a Basic Business
Information Entity.

• Version (optional): An indication of the evolution over time of the Basic
Business Information Entity.

• Definition(mandatory): The semantic meaning of a Basic Business
Information Entity.

• Cardinality(mandatory): Indication whether the Basic Business
Information Entity represents a not-applicable, optional, mandatory and/or
repetitive characteristic of the Aggregate Business Information Entity.

• ObjectClassQualifier (optional): The qualifier for the object class.
• ObjectClass(mandatory): The Object Class containing the Basic Business

Information Entity.
• PropertyTermQualifier (optional): A qualifier is a word or words which

help define and differentiate a Basic Business Information Entity.
• PropertyTerm(mandatory): Property Term represents the distinguishing

characteristic or Property of the Object Class and shall occur naturally in
the definition of the Basic Business Information Entity.

• RepresentationTerm (mandatory): A Representation Term describes the
form in which the Basic Business Information Entity is represented.

• DataTypeQualifier (optional): semantically meaningful name that
differentiates the Datatype of the Basic Business Information Entity from
its underlying Core Component Type.

• DataType (mandatory): Defines the Datatype used for the Basic Business
Information Entity.

• AlternativeBusinessTerms (optional): Any synonym terms under which the
Basic Business Information Entity is commonly known and used in the
business.

• Examples (optional): Examples of possible values for the Basic Business
Information Entity.

wd-ublndrsc-ndrdoc-V1.0Draftq 72 17 August 2004

8.11 Documentation Rules
[DOC5] The xsd:documentation element for every Aggregate Business Information Entity

MUST contain a structured set of annotations in the following sequence and
pattern:

• ComponentType (mandatory): The type of component to which the object
belongs. For Aggregate Business Information Entities this must be
“ABIE”.

• DictionaryEntryName (mandatory): The official name of the Aggregate
Business Information Entity .

• Version (optional): An indication of the evolution over time of the
Aggregate Business Information Entity.

• Definition(mandatory): The semantic meaning of the Aggregate Business
Information Entity.

• ObjectClassQualifier (optional): The qualifier for the object class.
• ObjectClass(mandatory): The Object Class represented by the Aggregate

Business Information Entity.
• AlternativeBusinessTerms (optional): Any synonym terms under which the

Aggregate Business Information Entity is commonly known and used in
the business.

wd-ublndrsc-ndrdoc-V1.0Draftq 73 17 August 2004

8.11 Documentation Rules
[DOC6] The xsd:documentation element for every Association Business Information

Entity element declaration MUST contain a structured set of annotations in the
following sequence and pattern:

• ComponentType (mandatory): The type of component to which the object
belongs. For Association Business Information Entities this must be
“ASBIE”.

• DictionaryEntryName (mandatory): The official name of the Association
Business Information Entity.

• Version (optional): An indication of the evolution over time of the
Association Business Information Entity.

• Definition(mandatory): The semantic meaning of the Association Business
Information Entity.

• Cardinality(mandatory): Indication whether the Association Business
Information Entity represents an optional, mandatory and/or repetitive
assocation.

• ObjectClass(mandatory): The Object Class containing the Association
Business Information Entity.

• PropertyTermQualifier (optional): A qualifier is a word or words which
help define and differentiate the Association Business Information Entity.

• PropertyTerm(mandatory): Property Term represents the Aggregate
Business Information Entity contained by the Association Business
Information Entity.

• AssociatedObjectClassQualifier (optional): Associated Object Class
Qualifiers describe the 'context' of the relationship with another ABIE.
That is, it is the role the contained Aggregate Business Information Entity
plays within its association with the containing Aggregate Business
Information Entity.

• AssociatedObjectClass (mandatory); Associated Object Class is the
Object Class at the other end of this association. It represents the
Aggregate Business Information Entity contained by the Association
Business Information Entity.

wd-ublndrsc-ndrdoc-V1.0Draftq 74 17 August 2004

8.11 Documentation Rules
[DOC7] The xsd:documentation element for every Core Component Type MUST contain a

structured set of annotations in the following sequence and pattern:
• ComponentType (mandatory): The type of component to which the object

belongs. For Core Component Types this must be “CCT”.
• DictionaryEntryName (mandatory): The official name of the Core

Component Type, as defined by [CCTS].
• Version (optional): An indication of the evolution over time of the Core

Component Type.
• Definition(mandatory): The semantic meaning of the Core Component

Type, as defined by [CCTS].
• ObjectClass(mandatory): The Object Class represented by the Core

Component Type, as defined by [CCTS].
• PropertyTerm(mandatory): The Property Term represented by the Core

Component Type, as defined by [CCTS].
 2215
 2216

8.12 Element Declaration Rules
[ELD1] Each UBL:ControlSchema MUST identify one and only one global element

declaration that defines the document
ccts:AggregateBusinessInformationEntity being conveyed in the Schema
expression. That global element MUST include an xsd:annotation child
element which MUST further contain an xsd:documentation child element
that declares "This element MUST be conveyed as the root element in any
instance document based on this Schema expression."

[ELD2] All element declarations MUST be global with the exception of ID and
Code which MUST be local.

[ELD3] For every class identified in the UBL model, a global element bound to the
corresponding xsd:complexType MUST be declared.

[ELD4] When a ccts:ASBIE is unqualified, it is bound via reference to the global
ccts:ABIE element to which it is associated. When an ccts:ABIE is
qualified, a new element MUST be declared and bound to the
xsd:complexType of its associated
ccts:AggregateBusinessInformationEntity.�

[ELD5] For each ccts:CCT simpleType, an xsd:restriction element MUST be
declared.

[ELD6] The code list xsd:import element MUST contain the namespace and
schema location attributes.

[ELD7] Empty elements MUST not be declared.
[ELD8] Global elements declared for Qualified BBIE Properties must be of the

same type as its corresponding Unqualified BBIE Property. (i.e. Property
Term + Representation Term.)

[ELD9] The xsd:any element MUST NOT be used.

wd-ublndrsc-ndrdoc-V1.0Draftq 75 17 August 2004

 2217
 2218

8.13 Element Naming Rules
[ELN1] A UBL global element name based on a ccts:ABIE MUST be the same as

the name of the corresponding xsd:complexType to which it is bound, with
the word "Type" removed.

[ELN2] A UBL global element name based on an unqualified ccts:BBIEProperty
MUST be the same as the name of the corresponding xsd:complexType to
which it is bound, with the word "Type" removed.

[ELN3] A UBL global element name based on a qualified ccts:ASBIE MUST be
the ccts:ASBIE dictionary entry name property term and its qualifiers; and
the object class term and qualifiers of its associated ccts:ABIE. All
ccts:DictionaryEntryName separators MUST be removed. Redundant
words in the ccts:ASBIE property term or its qualifiers and the associated
ccts:ABIE object class term or its qualifiers MUST be dropped.

[ELN4] A UBL global element name based on a Qualified ccts:BBIEProperty
MUST be the same as the name of the corresponding xsd:complexType to
which it is bound, with the Qualifier prepended(?) and with the word
"Type" removed.

 2219
 2220

8.14 General Naming Rules
[GNR1] UBL XML element, attribute and type names MUST be in the English

language, using the primary English spellings provided in the Oxford
English Dictionary.

[GNR2] UBL XML element, attribute and type names MUST be consistently
derived from CCTS conformant dictionary entry names.

[GNR3] UBL XML element, attribute and type names constructed from
ccts:DictionaryEntryNames MUST NOT include periods, spaces, other
separators, or characters not allowed by W3C XML 1.0 for XML names.

[GNR4] UBL XML element, attribute, and simple and complex type names MUST
NOT use acronyms, abbreviations, or other word truncations, except those
in the list of exceptions published in Appendix B.

[GNR5] Acronyms and abbreviations MUST only be added to the UBL approved
acronym and abbreviation list after careful consideration for maximum
understanding and reuse.

[GNR6] The acronyms and abbreviations listed in Appendix B MUST always be
used.

[GNR7] UBL XML element, attribute and type names MUST be in singular form
unless the concept itself is plural.

[GNR8] The UpperCamelCase (UCC) convention MUST be used for naming
elements and types.

[GNR9] The lowerCamelCase (LCC) convention MUST be used for naming

wd-ublndrsc-ndrdoc-V1.0Draftq 76 17 August 2004

attributes.
 2221
 2222

8.15 General Type Definition Rules
[GTD1] All types MUST be named.
[GTD2] The xsd:any Type MUST NOT be used.
 2223
 2224

8.16 General XML Schema Rules
[GXS1] UBL Schema MUST conform to the following physical layout as applicable:

XML Declaration
<!-- ===== Copyright Notice ===== -->
“Copyright © 2001-2004 The Organization for the Advancement of
Structured Information Standards (OASIS). All rights reserved.
<!-- ===== xsd:schema Element With Namespaces Declarations ===== -->
xsd:schema element to include version attribute and namespace declarations in
the following order:
 xmlns:xsd
 Target namespace
 Default namespace
 CommonAggregateCompone
nts
 CommonBasicComponents
 CoreComponentTypes
 Datatypes
 Identifier Schemes
 Code Lists
Attribute Declarations – elementFormDefault=”qualified”
attributeFormDefault=”unqualified”
<!-- ===== Imports ===== -->CommonAggregateComponents schema
module
CommonBasicComponents schema module
Representation Term schema module (to include CCT module)
Unspecialised Types schema module
Specialised Types schema module
<!-- ===== Global Attributes ===== -->
Global Attributes and Attribute Groups
<!-- ===== Root Element ===== -->
Root Element Declaration
Root Element Type Definition
<!-- ===== Element Declarations ===== -->
alphabetized order
<!-- ===== Type Definitions ===== -->

wd-ublndrsc-ndrdoc-V1.0Draftq 77 17 August 2004

8.16 General XML Schema Rules
All type definitions segregated by basic and aggregates as follows
<!-- ===== Aggregate Business Information Entity Type Definitions ===== -
->
alphabetized order of ccts:AggregateBusinessInformationEntity
xsd:TypeDefinitions
<!-- =====Basic Business Information Entity Type Definitions ===== -->
alphabetized order of ccts:BasicBusinessInformationEntities
<!-- ===== Copyright Notice ===== -->
Required OASIS full copyright notice.

[GXS2] UBL MUST provide two normative schemas for each transaction. One
schema shall be fully annotated. One schema shall be a run-time schema
devoid of documentation.

[GXS3] Built-in XSD Simple Types SHOULD be used wherever possible.
[GXS4] All W3C XML Schema constructs in UBL Schema and schema modules

MUST contain the following namespace declaration on the xsd schema
element: xmlns:xsd="http://www.w3.org/2001/XMLSchema"

[GXS5] The xsd:SubstitutionGroups feature MUST NOT be used.
[GXS6] The xsd:final attribute MUST be used to control extensions.
[GXS7] xsd:notations MUST NOT be used.
[GXS8] The xsd:all element MUST NOT be used.
[GXS9] The xsd:choice element SHOULD NOT be used where customisation and

extensibility are a concern.
[GXS10
]

The xsd:include feature MUST only be used within a document schema.

[GXS11
]

The xsd:union technique MUST NOT be used except for Code Lists. The
xsd:union technique MAY be used for Code Lists.

[GXS12
]

UBL designed schema SHOULD NOT use xsd:appinfo. If used, xsd:appinfo
MUST only be used to convey non-normative information.

[GXS13
]

Complex Type extension or restriction MAY be used where appropriate.

 2225
 2226

8.17 Instance Document Rules
[IND1] All UBL instance documents MUST validate to a corresponding schema.
[IND2] All UBL instance documents MUST always identify their character

encoding with the XML declaration.
[IND3] In conformance with ISO/IETF/ITU/UNCEFACT Memorandum of

Understanding Management Group (MOUMG) Resolution 01/08
(MOU/MG01n83) as agreed to by OASIS, all UBL XML SHOULD be
expressed using UTF-8.

[IND4] All UBL instance documents MUST contain the following namespace
declaration in the root element:

wd-ublndrsc-ndrdoc-V1.0Draftq 78 17 August 2004

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
[IND5] UBL conformant instance documents MUST NOT contain an element

devoid of content or null values.
[IND6] The absence of a construct or data in a UBL instance document MUST

NOT carry meaning.
 2227
 2228

8.18 Modeling Constraints Rules
[MDC1] UBL Libraries and Schemas MUST only use ebXML Core Component

approved ccts:CoreComponentTypes.
[MDC2] Mixed content MUST NOT be used except where contained in an

xsd:documentation element.
 2229
 2230

8.19 Naming Constraints Rules
[NMC1] Each dictionary entry name MUST define one and only one fully qualified path

(FQP) for an element or attribute.
 2231
 2232

8.20 Namespace Rules
[NMS1] Every UBL-defined or -used schema module MUST have a namespace declared

using the xsd:targetNamespace attribute.
[NMS2] Every UBL defined or used schema set version MUST have its own unique

namespace.
[NMS3] UBL namespaces MUST only contain UBL developed schema modules.
[NMS4] The namespace names for UBL Schemas holding committee draft status MUST

be of the form:
urn:oasis:names:tc:ubl:schema:<subtype>:<document-id>

[NMS5] The namespace names for UBL Schemas holding OASIS Standard status MUST
be of the form:

urn:oasis:names:specification:ubl:schema:<subtype>:<document-id>
[NMS6] UBL Schema modules MUST be hosted under the UBL committee directory:

http://www.oasis-open.org/committees/ubl/schema/<subtype>/UBL-<document-
id>.<filetype>

[NMS7] UBL published namespaces MUST never be changed.
[NMS8] The ubl:CommonAggregateComponents schema module MUST reside in its own

namespace.
[NMS9] The ubl:CommonAggregateComponents schema module MUST be represented

by the token "cac".
[NMS10] The ubl:CommonBasicComponents schema module MUST reside in its own

namespace.

wd-ublndrsc-ndrdoc-V1.0Draftq 79 17 August 2004

8.20 Namespace Rules
[NMS11] The UBL:CommonBasicComponents schema module MUST be represented by

the token "cbc".
[NMS12] The ccts:CoreComponentType schema module MUST reside in its own

namespace.
[NMS13] The ccts:CoreComponentType schema module namespace MUST be represented

by the token "cct".
[NMS14] The ccts:UnspecialisedDatatype schema module MUST reside in its own

namespace.
[NMS15] The ccts:UnspecialisedDatatype schema module namespace MUST be represented

by the token "udt".
[NMS16] The ubl:SpecialisedDatatypes schema module MUST reside in its own

namespace.
[NMS17] The ubl:SpecialisedDatatypes schema module namespace MUST be represented

by the token "sdt".
[NMS18] Each UBL:CodeList schema module MUST be maintained in a separate

namespace.
 2233
 2234

8.21 Root Element Declaration Rules
[RED1] Every UBL instance document must use the global element defined as the

root element in the schema as its root element.
 2235
 2236

8.22 Schema Structure Modularity Rules
[SSM1] UBL Schema expressions MAY be split into multiple schema modules.
[SSM2] A document schema in one UBL namespace that is dependent upon type

definitions or element declarations defined in another namespace MUST
only import the document schema from that namespace.

[SSM3] A UBL document schema in one UBL namespace that is dependant upon
type definitions or element declarations defined in another namespace
MUST NOT import internal schema modules from that namespace.

[SSM4] Imported schema modules MUST be fully conformant with UBL naming
and design rules.

[SSM5] UBL schema modules MUST either be treated as external schema modules
or as internal schema modules of the document schema.

[SSM6] All UBL internal schema modules MUST be in the same namespace as their
corresponding document schema.

[SSM7] Each UBL internal schema module MUST be named
{ParentSchemaModuleName}{InternalSchemaModuleFunction}{schema
module}

[SSM8] A UBL schema module MAY be created for reusable components.

wd-ublndrsc-ndrdoc-V1.0Draftq 80 17 August 2004

8.22 Schema Structure Modularity Rules
[SSM9] A schema module defining all ubl:CommonAggregateComponents MUST

be created.
[SSM10] The ubl:CommonAggregateComponents schema module MUST be named

"ubl:CommonAggregateComponents Schema Module"
[SSM11] A schema module defining all ubl:CommonBasicComponents MUST be

created.
[SSM12] The ubl:CommonBasicComponents schema module MUST be named

"ubl:CommonBasicComponents Schema Module"
[SSM13] A schema module defining all ccts:CoreComponentTypes MUST be created.
[SSM14] The ccts:CoreComponentType schema module MUST be named

"ccts:CoreComponentType Schema Module"
[SSM15] The xsd:facet feature MUST not be used in the ccts:CoreComponentType

schema module.
[SSM16]

A schema module defining all ccts:UnspecialisedDatatypes MUST be
created.

[SSM17] The ccts:UnspecialisedDatatype schema module MUST be named
"ccts:UnspecialisedDatatype Schema Module"

[SSM18] A schema module defining all ubl:SpecialisedDatatypes MUST be created.
[SSM19] The ubl:SpecialisedDatatypes schema module MUST be named

"ubl:SpecialisedDatatypes schema module"
 2237
 2238

8.23 Standards Adherence rules
[STA1] All UBL schema design rules MUST be based on the W3C XML Schema

Recommendations: XML Schema Part 1: Structures and XML Schema Part
2: Datatypes.

[STA2] All UBL schema and messages MUST be based on the W3C suite of
technical specifications holding recommendation status.

[STN1] Each CCTS:CCT simpleType definition name MUST be the ccts:CCT
dictionary entry name with the separators removed.

 2239

8.24 SimpleType Naming Rules
[STN1] Each CCTS:CCT simpleType definition name MUST be the ccts:CCT

dictionary entry name with the separators removed.
 2240

8.25 SimpleType Definition Rules
[STD1] For every ccts:CCT whose supplementary components map directly onto

the properties of a built-in xsd:DataType, the ccts:CCT MUST be defined

wd-ublndrsc-ndrdoc-V1.0Draftq 81 17 August 2004

as a named xsd:simpleType in the ccts:CCT schema module.
 2241
 2242
 2243

8.26 Versioning Rules
[VER1] Every UBL Schema and schema module major version committee draft

MUST have an RFC 3121 document-id of the form
<name>-<major>.0[.<revision>]

[VER2] Every UBL Schema and schema module major version OASIS Standard
MUST have an RFC 3121 document-id of the form

<name>-<major>.0
[VER3] Every minor version release of a UBL schema or schema module draft

MUST have an RFC 3121 document-id of the form
<name>-<major >.<non-zero>[.<revision>]

[VER4] Every minor version release of a UBL schema or schema module OASIS
Standard MUST have an RFC 3121 document-id of the form

<name>-<major >.<non-zero>
[VER5] For UBL Minor version changes, the name of the version construct MUST

NOT change.
[VER6] Every UBL Schema and schema module major version number MUST be a

sequentially assigned, incremental number greater than zero.
[VER7] Every UBL Schema and schema module minor version number MUST be

a sequentially assigned, incremental non-negative integer.
[VER8] A UBL minor version document schema MUST import its immediately

preceding version document schema.
[VER9] UBL Schema and schema module minor version changes MUST be limited

to the use of xsd:extension or xsd:restriction to alter existing types or add
new constructs.

[VER10] UBL Schema and schema module minor version changes MUST not break
semantic compatibility with prior versions.

 2244

wd-ublndrsc-ndrdoc-V1.0Draftq 82 17 August 2004

 2245

wd-ublndrsc-ndrdoc-V1.0Draftq 83 17 August 2004

Appendix B. Approved Acronyms and Abbreviations 2246

 2247
The following Acronyms and Abbreviations have been approved for UBL use: 2248

 A Dun & Bradstreet number must appear as "DUNS". [TBD: need example.] 2249
 "Identifier" must appear as "ID". 2250
 "Uniform Resource Identifier" must appear as "URI" 2251
 [Example] the "Uniform Resource. Identifier" portion of the Binary Object. 2252

Uniform Resource. Identifier supplementary component becomes "URI" in 2253
the resulting XML name). The use of URI for Uniform Resource Identifier 2254
takes precedence over the use of "ID" for "Identifier". 2255

wd-ublndrsc-ndrdoc-V1.0Draftq 84 17 August 2004

Appendix C. Technical Terminology 2256

 2257
Ad hoc schema processing Doing partial schema processing, but not with official

schema validator software; e.g., reading through
schema to get the default values out of it.

Application-level validation Adherence to business requirements, such as valid
account numbers.

Assembly Using parts of the library of reusable UBL components
to create a new kind of business document type.

Business Context Defines a context in which a business has chosen to
employ an information entity.
The formal description of a specific business
circumstance as identified by the values of a set of
Context Categories, allowing different business
circumstances to be uniquely distinguished.

Business Object An unambiguously identified, specified, referenceable,
registerable and re-useable scenario or scenario
component of a business transaction.
The term business object is used in two distinct but
related ways, with slightly different meanings for each
usage:
In a business model, business objects describe a
business itself, and its business context. The business
objects capture business concepts and express an
abstract view of the business’s “real world”. The term
“modeling business object” is used to designate this
usage.
In a design for a software system or in program code,
business objects reflects how business concepts are
represented in software. The abstraction here reflects
the transformation of business ideas into a software
realization. The term “systems business objects” is
used to designate this usage.

business semantic(s) A precise meaning of words from a business
perspective.

Business Term This is a synonym under which the Core Component or
Business Information Entity is commonly known and
used in the business. A Core Component or Business
Information Entity may have several business terms or
synonyms.

class A description of a set of objects that share the same
attributes, operations, methods, relationships, and
semantics. A class may use a set of interfaces to

wd-ublndrsc-ndrdoc-V1.0Draftq 85 17 August 2004

specify collections of operations it provides to its
environment. See interface.

class diagram Shows static structure of concepts, types, and classes.
Concepts show how users think about the world; types
show interfaces of software components; classes show
implementation of software components. (OMG
Distilled) A diagram that shows a collection of
declarative (static) model elements, such as classes,
types, and their contents and relationships. (Rational
Unified Process)

classification scheme This is an officially supported scheme to describe a
given Context Category

Common attribute An attribute that has identical meaning on the multiple
elements on which it appears. A common attribute
might or might not correspond to an XSD global
attribute.

component A physical, replaceable part of a system that packages
implementation and conforms to and provides the
realization of a set of interfaces. A component
represents a physical piece of implementation of a
system, including software code (source, binary or
executable) or equivalents such as scripts or command
files.

context Defines the circumstances in which a Business Process
may be used. This is specified by a set of Context
Categories known as Business Context. (See Business
Context.)

context category A group of one or more related values used to express a
characteristic of a business circumstance.

context driver Driver information that may be discovered from the
Trading Partner Profiles or the Registry Information
Model data at the Trading Partner Agreement design
time. Eight context categories defined: Business
Process, Product Classification, Industry
Classification, Geopolitical, Official Constraints,
Business Process Role,
Supporting Role, System Capabilities.

Document schema A schema document corresponding to a single
namespace, which is likely to pull in (by including or
importing) schema modules.

Core Component

A building block for the creation of a semantically
correct and meaningful information exchange package.
It contains only the information pieces necessary to
describe a specific concept.

Core Component Catalog The temporary collection of all metadata about each
Core Component that has been discovered during the

wd-ublndrsc-ndrdoc-V1.0Draftq 86 17 August 2004

development and initial testing of this Core Component
Technical Specification, pending the establishment of a
permanent Registry/Repository.

Core Component Library The Core Component Library is the part of the
registry/repository in which Core Components shall be
stored as Registry Classes. The Core Component
Library will contain all the Core Component Types,
Basic Core Components, Aggregate Core Components,
Basic Business Information Entities and Aggregate
Business Information Entities.

Core Component Type A Core Component which consists of one and only one
Content Component that carries the actual content plus
one or more Supplementary Components giving an
essential extra definition to the Content Component.
Core Component Types do not have business
semantics.

Datatype A descriptor of a set of values that lack identity and
whose operations do not have side effects. Datatypes
include primitive pre-defined types and user-definable
types. Pre-defined types include numbers, string and
time. User-definable types include enumerations.
Defines the set of valid values that can be used for a
particular Basic Core Component Property or Basic
Business Information Entity Property. It is defined by
specifying restrictions on the Core Component Type
that forms the basis of the Datatype.

DTD validation Adherence to an XML 1.0 DTD.
Generic BIE A semantic model that has a “zeroed” context. We are

assuming that it covers the requirements of 80% of
business uses, and therefore is useful in that state.

instance An individual entity satisfying the description of a class
or type.

Instance constraint checking Additional validation checking of an instance, beyond
what XSD makes available, that relies only on
constraints describable in terms of the instance and not
additional business knowledge; e.g., checking co-
occurrence constraints across elements and attributes.
Such constraints might be able to be described in terms
of Schematron.

Instance root/doctype This is still mushy. The transitive closure of all the
declarations imported from whatever namespaces are
necessary. A doctype may have several namespaces
used within it.

Intermediate element An element not at the top level that is of a complex
type, only containing other elements and attributes.

Internal schema module: A schema module that does not declare a target

wd-ublndrsc-ndrdoc-V1.0Draftq 87 17 August 2004

namespace.
Leaf element An element containing only character data (though it

may also have attributes). Note that, because of the
XSD mechanisms involved, a leaf element that has
attributes must be declared as having a complex type,
but a leaf element with no attributes may be declared
with either a simple type or a complex type.

Lower-level element An element that appears inside a business message.
Object Class The logical data grouping (in a logical data model) to

which a data element belongs (ISO11179). The Object
Class is the part of a Core Component’s Dictionary
Entry Name that represents an activity or object in a
specific Context.

Namespace schema module: A schema module that declares a target namespace and
is likely to pull in (by including or importing) schema
modules.

Naming Convention The set of rules that together comprise how the
dictionary entry name for Core Components and
Business Information Entities are constructed.

Schema Never use this term unqualified!
schema module A “schema document” (as defined by the XSD spec)

that is intended to be taken in combination with other
such schema documents to be used.

Schema module: A schema document containing type definitions and
element declarations.

Schema Processing Schema validation checking plus provision of default
values and provision of new infoset properties.

Schema Validation Adherence to an XSD schema.
semantic Relating to meaning in language; relating to the

connotations of words.
Top-level element An element that encloses a whole UBL business

message. Note that UBL business messages might be
carried by messaging transport protocols that
themselves have higher-level XML structure. Thus, a
UBL top-level element is not necessarily the root
element of the XML document that carries it.

type Description of a set of entities that share common
characteristics, relations, attributes, and semantics.
A stereotype of class that is used to specify an area of
instances (objects) together with the operations
applicable to the objects. A type may not contain any
methods. See class, instance. Contrast interface.

Syntax Neutral Model TBD Need definition.
Aggregate Business A collection of related pieces of business information

that together convey a distinct business meaning in a

wd-ublndrsc-ndrdoc-V1.0Draftq 88 17 August 2004

Information Entity (ABIE) specific Business Context. Expressed in modelling
terms, it is the representation of an Object Class, in a
specific Business Context.

Well-Formedness Checking Basic XML 1.0 adherence.

 2258

wd-ublndrsc-ndrdoc-V1.0Draftq 89 17 August 2004

Appendix D. References 2259

[CCTS] Core Components Technical Specification – Part 8 of the ebXML 2260
Technical Framework, Version 2.0 (Second Edition) 15 November 2261
2003 2262

[CCFeedback] Feedback from OASIS UBL TC to Draft Core Components 2263
Specification 1.8, version 5.2, May 4, 2002, http://oasis-2264
open.org/committees/ubl/lcsc/doc/ubl-cctscomments-5p2.pdf. 2265

[GOF] Design Patterns, Gamma, et al. ISBN 0201633612 2266
[ISONaming] ISO/IEC 11179, Final committee draft, Parts 1-6. 2267
(RFC) 2119 S. Bradner, Key words for use in RFCs to Indicate Requirement 2268

Levels, http://www.ietf.org/rfc/rfc2119.txt, IETF RFC 2119, March 2269
1997. 2270

[UBLChart] UBL TC Charter, http://oasis-2271
open.org/committees/ubl/charter/ubl.htm 2272

[XML] Extensible Markup Language (XML) 1.0 (Second Edition), W3C 2273
Recommendation, October 6, 2000 2274

(XSD) XML Schema, W3C Recommendations Parts 0, 1, and 2. 2 May 2275
2001. 2276

 2277
(XHTML) XHTML™ Basic, W3C Recommendation 19 December 2000: 2278

http://www.w3.org/TR/2000/REC-xhtml-basic-20001219 2279
 2280

wd-ublndrsc-ndrdoc-V1.0Draftq 90 17 August 2004

Appendix E. Notices 2281

OASIS takes no position regarding the validity or scope of any intellectual property or 2282
other rights that might be claimed to pertain to the implementation or use of the 2283
technology described in this document or the extent to which any license under such 2284
rights might or might not be available; neither does it represent that it has made any effort 2285
to identify any such rights. Information on OASIS's procedures with respect to rights in 2286
OASIS specifications can be found at the OASIS website. Copies of claims of rights 2287
made available for publication and any assurances of licenses to be made available, or the 2288
result of an attempt made to obtain a general license or permission for the use of such 2289
proprietary rights by implementors or users of this specification, can be obtained from the 2290
OASIS Executive Director. 2291
OASIS invites any interested party to bring to its attention any copyrights, patents or 2292
patent applications, or other proprietary rights which may cover technology that may be 2293
required to implement this specification. Please address the information to the OASIS 2294
Executive Director. 2295
Copyright © The Organization for the Advancement of Structured Information Standards 2296
[OASIS] 2001. All Rights Reserved. 2297
This document and translations of it may be copied and furnished to others, and 2298
derivative works that comment on or otherwise explain it or assist in its implementation 2299
may be prepared, copied, published and distributed, in whole or in part, without 2300
restriction of any kind, provided that the above copyright notice and this paragraph are 2301
included on all such copies and derivative works. However, this document itself does not 2302
be modified in any way, such as by removing the copyright notice or references to 2303
OASIS, except as needed for the purpose of developing OASIS specifications, in which 2304
case the procedures for copyrights defined in the OASIS Intellectual Property Rights 2305
document must be followed, or as required to translate it into languages other than 2306
English. 2307
The limited permissions granted above are perpetual and will not be revoked by OASIS 2308
or its successors or assigns. 2309
This document and the information contained herein is provided on an “AS IS” basis and 2310
OASIS DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING 2311
BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE 2312
INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED 2313
WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR 2314
PURPOSE. 2315
 2316

