

Trusted Mobile Platform

Software Architecture Description

10/27/2004

Trusted Mobile Platform

NTT DoCoMo, IBM, Intel Corporation

File Name: TMP_SWAD_rev1_00_20040405.doc

Trusted Mobile Platform
Software Architecture Description – Rev 1.00

2

Change History (Informative)
Type of Change Date Section Description

Rev 1.00 06/22/04 Revision 1.0 for release

Trusted Mobile Platform

Software Architecture Description
Rev. 1.00
June 23, 2004

Copy Right Notice
Copyright © 2002-2004, Intel Corporation, International Business Machines Corporation,
NTT DoCoMo, Inc. All Rights Reserved.

Status
This is a stable revision of the Trusted Mobile Platform Software Architecture
Description that was agreed upon by Trusted Mobile Platform Promoters.

Trusted Mobile Platform
Software Architecture Description – Rev 1.00

 3

Contents
1. INTRODUCTION ...8

1.1. DOCUMENT STRUCTURE..8

2. RELATED DOCUMENTS...10

3. ARCHITECTURE OVERVIEW...11

3.1. TRUSTED COMPUTING BASE (TCB)..12
3.2. INTEGRITY MEASUREMENT...13
3.3. DOMAIN SEPARATION..13
3.4. ACCESS CONTROL MODEL ..14
3.5. OTHER SECURITY SERVICES ...14

4. INTEGRITY MEASUREMENT ...15

4.1. TRUSTED BOOT ..15
4.2. MEASUREMENT VALUES..17
4.3. PREDICTED MEASUREMENT VALUES..18

4.3.1. Authenticated and Secure Boot ...18
4.4. RUN TIME INTEGRITY MEASUREMENTS ..19

5. DOMAIN SEPARATION...21

5.1. TCB-ENFORCED, OS-ENFORCED AND MANAGED DOMAINS..21
5.2. DOMAIN SEPARATION MECHANISMS AND SECURITY CLASSES ...22

5.2.1. Security Class 1..22
5.2.2. Security Class 2..23
5.2.3. Security Class 3..23

5.3. MANAGED DOMAINS..24
5.4. SUMMARY OF DOMAIN SEPARATION AND SECURITY CLASSES..24

6. ACCESS CONTROL MODEL ..25

6.1. AUTONOMOUS ACCESS CONTROL MODEL ...25
6.1.1. System Model ...26

6.1.1.1. Terminology .. 27
6.1.1.2. First Principles... 27
6.1.1.3. Service & Application Categories ... 28

6.1.2. Authorization..29
6.1.3. Access Control Model ...29
6.1.4. Administrative Model...31

Trusted Mobile Platform
Software Architecture Description – Rev 1.00

4

6.2. SYSTEM-MEDIATED ACCESS CONTROL MODEL ..32
6.2.1. Common Access Control Policy Language...33

6.3. SUMMARY OF ACCESS CONTROL AND SECURITY LEVELS ...33

7. SECURE STORAGE / SECURE FILE SYSTEM..34

7.1.1. Summary of Secure Storage/Secure File System and Security Level..................35
7.2. PROTECTED STORAGE ...35
7.3. PROTECTING MEMORY BY ENCRYPTION...37

7.3.1. Encrypting swap devices..37
7.3.2. Encrypting memory directly ..37

7.4. KEY AND CERTIFICATE MANAGEMENT ...38
7.4.1. Lifecycle Management ...38

7.4.1.1. Key Generation.. 38
7.4.1.2. Key Protection ... 38
7.4.1.3. Key Import/Export... 39
7.4.1.4. Key Certification ... 39
7.4.1.5. Key Backup ... 39

7.5. ENCRYPTED FILE SYSTEM...40
7.5.1. Implementation Options ..40
7.5.2. An Example in Encrypted File System Type Implementation.............................41

7.5.2.1. Mount operation .. 41
7.5.2.2. Unmount Operation ... 42
7.5.2.3. Read and Write Operation ... 42
7.5.2.4. File/Directory Creation.. 42

8. CRYPTOGRAPHIC API ...43

8.1. OVERVIEW ...43
8.1.1. Summary of Cryptographic API and Security Level ..46

8.2. REQUIRED AND RECOMMENDED FUNCTIONALITIES ..46
8.2.1. Symmetric Cipher ..46

8.2.1.1. Algorithms and Modes of operation.. 46
8.2.1.2. Key Generation.. 47

8.2.2. Asymmetric Cipher ..47
8.2.2.1. Algorithms and constructions.. 47
8.2.2.2. Key length ... 48
8.2.2.3. Key generation... 49
8.2.2.4. Optimizations .. 49

Trusted Mobile Platform
Software Architecture Description – Rev 1.00

 5

8.2.3. One-way Hash Function and MAC..50
8.2.4. Pseudo Random Number Generator (PRNG) ...50
8.2.5. Higher Level APIs ..50

8.3. LANGUAGE BINDINGS ..51
8.4. HARDWARE SUPPORT ..51

9. TPM SUPPORT SOFTWARE (TSS) ..53

9.1. OVERVIEW ...53
9.2. TSS REQUIREMENTS..53
9.3. THE TPM ...53

9.3.1. Authorization Protocols..54
9.3.2. Protected Storage ...54
9.3.3. Attestation ..54

9.4. TSS STACK...55
9.4.1. TSP ...56
9.4.2. TCS Components..56

9.4.2.1. Key and Credential Manager... 57
9.4.2.2. TCS Key Manager ... 57
9.4.2.3. TCS Key Cache ... 57
9.4.2.4. TCS Credential Manager ... 57
9.4.2.5. TPM Parameter Block Generator .. 57
9.4.2.6. Context Manager ... 58
9.4.2.7. Event Manager... 58
9.4.2.8. Audit Manager... 58

10. USER AUTHENTICATION ..59

10.1. IDENTIFYING THE USER...60
10.2. IDENTIFYING THE OWNER ...60
10.3. AUTHENTICATION MODULE API ...61
10.4. AUTHENTICATION BETWEEN OWNER AND TPM...62
10.5. PIN-CODE ..62
10.6. BIOMETRICS...62

10.6.1. Existing Biometric Authentication Technology...63
10.6.2. Possible Threats ...64
10.6.3. Trusted Biometric System Solution Example ...65
10.6.4. Trusted Biometric System Summary ..66

Trusted Mobile Platform
Software Architecture Description – Rev 1.00

6

10.6.5. References...67
10.7. USER AUTHENTICATION CONSIDERATION POINTS ..68

11. TRUSTED USER INTERFACE ..70

11.1. TRUSTED MODE MANAGER AND INDICATOR..71
11.1.1. With Trusted GUI...71
11.1.2. With Un-trusted GUI ...72

11.2. OPERATION OF TRUSTED USER INTERFACE ...74
11.2.1. Biometrics ...75

11.3. SUMMARY OF TRUSTED UI AND SECURITY LEVELS...76

12. PROVISIONING / DEVICE MANAGEMENT ...77

12.1. FUNCTIONS INCLUDED ...77
12.2. MANAGEMENT FRAMEWORK ..81
12.3. INITIALIZATION OF A DEVICE ..82
12.4. CONFIGURATION MANAGEMENT ..83
12.5. SOFTWARE DISTRIBUTION...83
12.6. SOFTWARE AND HARDWARE INVENTORY...85
12.7. KEY MANAGEMENT ...86
12.8. LOGGING ..86
12.9. AUDITING ...86
12.10. REMOTE SHUTDOWN AND RESTORING ..91
12.11. TPM MANAGEMENT..91

13. TRUST LEVEL GUIDELINES & SECURITY EVALUATION..92

APPENDIX A IMPLEMENTATION OPTIONS...94

TPM MANDATORY FUNCTIONS ...94
TSS_Bind ... 94
TPM_UnBind ... 94
TPM_CreateWrapKey.. 94
TSS_WrapKey.. 94
TSS_WrapKeyToPcr .. 94
TPM_LoadKey ... 94
TPM_EvictKey... 95
TPM_GetPubKey ... 95

Optional functions..95
TPM_SaveKeyContext... 95

Trusted Mobile Platform
Software Architecture Description – Rev 1.00

 7

TPM_LoadKeyContext .. 95
TPM_Seal ... 95
TPM_Unseal... 95

APPENDIX B DEFINITIONS AND ABBREVIATIONS ...96

Trusted Mobile Platform
Software Architecture Description – Rev 1.00

8

1. INTRODUCTION
Trusted Mobile Platform (TMP) is comprehensive end-to-end security architecture for
mobile wireless platforms. It consists of the hardware and software architectures, as
well as the protocol specifications. This document describes the software components
that take advantage of the hardware components (such as the Trusted Platform Module
and hardware domain separation) and that enhance the security of the platform. Some
of these software components also bridge the security features with the protocol defined
in the protocol specifications.

The Trusted Mobile Device (TMD) software architecture is designed so that these
components are operating system independent. It also accommodates different
security levels. Each component has different requirements that are applicable to the
three different security levels defined for a TMD. For example, biometric user
authentication is optional for a Security Class 1 TMD.

1.1. Document Structure

This document is structured as follows:
• Section 2 lists related documents
• Section 3 provides an overview of the software architecture
• Section 4 (Integrity Measurement), Section 5 (Domain Separation), and
Section 6 (Access Control) describe the basic security features of the operating
system
• Section 7 describes encrypted file systems and persistent memory protection
mechanisms
• Section 8 (Cryptographic API) and Section 9 (TSS) describe the library
software that provides cryptographic capabilities to application programs
• Section 10 (User Authentication) and Section 11 (Trusted User Interface) show
guidelines to design secure user interface.
• Section 12 describes TMD device management
• Section 13 describes Trust Level Guidelines, including relationship to software
certification

Trusted Mobile Platform
Software Architecture Description – Rev 1.00

 9

• Appendix A provides sample implementation options
• Appendix B provides a list of used acronyms and their definitions

Trusted Mobile Platform
Software Architecture Description – Rev 1.00

10

2. Related Documents

[1] FIPS PUB 140-2 Security Requirements for Cryptographic Modules
[2] PKCS Cryptographic Token Interface Standard
[3] RFC 2119
[4] Trusted Computing Group (TCPA) Design Philosophies and Concepts Version 1.0
[5] Trusted Computing Group (TCG) Main Specification Version 1.1b,

http://www.trustedcomputinggroup.org/, February 2002 (also known as Trusted
Computing Platform Alliance (TCPA) Main Specification Version 1.1b)

[6] TCPA Software Stack (TSS) Specification Version 1.0
[7] TMP Security Requirements
[8] TMP Hardware Architecture Description
[9] TMP Protocol Specification Document

[10] Provisioning Bootstrap 1.1”, Open Mobile Alliance

[11] OMA Provisioning Architecture Overview Specification”, Open Mobile Alliance
[12] SyncML Device Management Protocol, version 1.1”, SyncML
[13] SyncML Device Management Trees and Descriptions, version 1.1”, SyncML
[14] SyncML Device Management Standardized Objects, version 1.1”, SyncML
[15] SyncML Device Management Security, version 1.1”, SyncML
[16] Trusted Computing Group - Main Specification - Version 1.1b 22 “Mandatory / Optional

Functions”, Pages 150-176, February 2002
[17] Schneier, Bruce; Applied Cryptography, Second Edition, John Wiley & Sons, 1996.

"Section 22.1 Diffie-Hellman
[18] ANSI X9.63
[19] Schneier, Bruce; Applied Cryptography, Second Edition, John Wiley & Sons, 1996.

"Section 20.1 Digital Signature Algorithms"
[20] ANSI X9.62
[21] Common Criteria Part: Security functional requirements, Aug 1999, Ver. 2.1
[22] BioAPI Specification Version 1.1, March 16, 2001, the BioAPI Consortium

Trusted Mobile Platform
Software Architecture Description – Rev 1.00

 11

3. Architecture Overview
A Trusted Mobile Device (TMD) allows many different applications, either Java
applications or native applications, to run. Some applications are relatively more
trusted (e.g., bank applications) and others are less trusted (e.g., animated graphics in
a browser). These applications use the software services provided by the TMD system
software. At a minimum, the core services, such as security services (cryptographic
services, authentication services, etc.) and resource management (memory, process,
etc.) must be assumed to be trusted. There is also a trusted computing base (TCB)
that contains a minimal set of trusted components including the trusted boot code (Core
Root of Trust for Measurement). Malicious applications may try to attack the TCB by
modifying some part of it. Thus, the TCB needs to be protected from tampering. In
Security Class 2 devices, the TCB’s integrity is measured by the TPM. In Security Class
3 devices, the TCB is also protected by hardware storage mechanisms after trusted boot.
The TCB must also able to detect tampering through integrity measurements.

Different applications running on the same TMD may belong to different security
domains. A malicious application program may try to attack other applications. The
TMD’s domain separation provides protection against this type of attack. At the same
time, the separation model needs to allow flexible data exchange if the application’s
access control policy allows data exchange between applications. Secure data
exchange is achieved by an Inter Process Communication (IPC) mechanism. Access to
a specific domain is permitted, based on the TMD’s access control model, according to
the access control policies of the target domain.

In addition, the TMD software should provide a set of security services, including
cryptographic services, encrypted storage services, device management services, and
user authentication services. These are all integral parts of the TMD software
architecture. It should be noted that in an ideal case, all these components should
have ideally equal strength. Attackers always try to break the weakest part of the
system. Balancing the trust level of each component is a cost-effective way to design a
secure TMP device.

Trusted Mobile Platform
Software Architecture Description – Rev 1.00

12

Figure 3-1 Software Reference Architecture with TCB

Figure 3-1 shows the reference software architecture of a TMD. The operating system
relies on the device’s trust in the hardware TPM, the RTM, the Trusted Computing
Base (TCB), and protection mechanisms in the CPU. The operating system kernel and
a minimal set of related security services, together with the hardware, constitute the
TCB. Applications run within domains that are separated from other domains. The
TCB-enforced domain mode protects highly secured applications. These applications
have their own access control models and policies to protect their resources. OS-native
applications run within an OS-enforced domain (e.g., a process space) and are subject to
the access control mechanism provided by the OS. If the applications are written in
Java, Java’s domain separation mechanism is employed.

3.1. Trusted Computing Base (TCB)

The Trusted Computing Base (TCB), in the TMD software architecture, is a security
boundary that provides a level of trust in terms of the software integrity and the
domain separation. The TCB can be implemented in several different ways. Class 1
devices can rely on a closed system assumption (no user-modifiable system software) for
integrity and Java sandbox model for domain separation without having any special

Trusted Mobile Platform
Software Architecture Description – Rev 1.00

 13

hardware. For Security Class 2 devices, a hardened operating system with a trusted
bootstrap using a TPM would constitute a TCB. In Security Class 3 devices with a
hardware-based domain protection mechanism, the TCB is a trusted microkernel that
is small enough to be verified. It is clear that the level of trust that may be placed in the
TCB will vary according to the class of the device.

3.2. Integrity Measurement

In the TMD software architecture, several components need to reside in the TCB (or at
least these components need the use of the security services provided by the TCB).
Therefore it is very important that the TCB’s integrity is assured to be an appropriate
level for the trust level of the device. The use of integrity measurement in a trusted
bootstrap sequence is the [5] defined process of taking hash values of the software
configuration. These measurements can also be securely reported to remote agents.
Integrity measurements are dependent on two hardware components, the TPM
(Trusted Platform Module) and the CRTM (Core Root of Trust Measurement).

Mobile devices usually have a long rebooting cycle. Some cellular phones are rarely
turned off during their entire lifecycle. The longer the device is used after the
bootstrap, the greater the chance of an attack on the TCB. It is desirable that the TCB
integrity be measured periodically, even after bootstrap, so the TMD software
architecture also defines optional runtime integrity checking.

A TMD must be able to share information regarding the current configuration of the
platform with remote parties that desire to participate in some type of transaction.
The TMD must be able to attest to its configuration in a trusted way that ensures that
the attestation exchanged is the one collected by the trusted hardware and software.

3.3. Domain Separation

In TMD’s, the TCB should protect an application from other potentially malicious
applications. This is done by the TMD’s domain separation mechanisms. Specifically,
domain separation prohibits illegal access to memory (address space) used by other
applications.

Trusted Mobile Platform
Software Architecture Description – Rev 1.00

14

Domain separation can be achieved by several different mechanisms. When the
applications are written in Java, Java language-based separation, and Java-based
access control mechanisms, such as JAAS (Java Authentication and Authorization
Services) and OSGi, can provide application protection. For applications executing the
native machine language, the TCB should provide the necessary protection. Usually,
an operating system has the ability to separate one process space from another using
the hardware memory management unit. For the higher degree of protection in Class
3 devices, the TCB uses additional hardware support of the processor. These
mechanisms provide different levels of security and should be used accordingly.

3.4. Access Control Model

For highly secure applications, access control is based on the domain separation
provided by the TCB. Sometimes applications need to share information. For example,
an address book application may want to allow read access to its database from other
applications. This kind of security policy needs to be enforced by some access control
mechanism. As is the case in other components, the Trusted Mobile Device access
control model allows various different mechanisms to be employed. In Security Class 3
devices, a highly secure application has its own access control mechanisms and policies
to protect it from attacks coming from outside of the domain. This is the most flexible
yet most secure model. However, it requires each application to implement its own
access control mechanism. OS-native and Java applications can rely on the access
control models provided either by the OS or Java.

3.5. Other Security Services

Besides protecting the platform and the applications running on it, a Trusted Mobile
Device also provides several security-related services. These services include
cryptographic services, encrypted storage services, device management services, and
user authentication services.

Trusted Mobile Platform
Software Architecture Description – Rev 1.00

 15

4. Integrity measurement
A trusted platform includes software and hardware components that implement
functions critical to the trustworthiness and security of the platform. A trusted
platform must ensure that these critical components are not modified or replaced. The
trusted platform validates the integrity of these components by calculating a
cryptographic hash that is used to provide a measurement of the component. The
Trusted mobile device can also authenticate the source of a component by checking a
digital signature applied to the component. The Trusted mobile device must perform
these checks for all of the software and hardware components that comprise the TCB.
It may also check the integrity and authenticity of additional hardware and software
components that are not part of the TCB.

Security Class 1 TMDs do not have requirements to perform trusted boot and to
measure the platform integrity. Security Class 2 and Class 3 TMDs must satisfy the
following set of requirements for integrity measurements (Refer to the Trusted Mobile
Platform Hardware Architecture Description, Section 4.4 for a definition of the three
security levels):

• Perform an integrity check of the code that comprise the TCB after power-up
• Perform an integrity check of security and trust relevant hardware
• Measure and log sequences of software events
• Perform integrity measurements of applications and other software
components that are not part of the TCB
• Provide the results of integrity measurements to applications
• Gather integrity measurements using trusted hardware and software
• Securely store integrity measurements so that they cannot be modified by
un-trusted applications
• Initiate trusted boot by CRTM residing in the Root of Trust hardware
• Employ integrity measurements techniques defined by the [5]

4.1. Trusted Boot

Trusted boot is based on the transitive trust model defined in the [5]. Transitive trust

Trusted Mobile Platform
Software Architecture Description – Rev 1.00

16

allows the trust boundary to be systematically extended from a small, formally trusted
root to additional hardware and software components that are not initially part of the
platform root of trust. The transitive trust model starts with a small trusted element,
in this case the CRTM residing in the ROT hardware. The CRTM must be rigorously
tested and its manufacturing processes tightly controlled to guarantee that the code
has been implemented correctly and is correctly loaded onto the TMD platform. Using
the hardware ROT to store the CRTM guarantees that the code cannot be modified and
that this code is the first code to execute on power up. The CRTM, taking advantage of
the platform’s TPM, measures, validates and records the integrity measurements of
other software components on the platform. Components with recorded
measurements that match stored measurements provided by a Validation Entity (VE)
are considered trusted and can in turn be used to measure additional hardware and
software components. Figure 4-1 shows a block diagram representation of the
transitive trust process.

Figure 4-1 Transitive Trust Process

There are three components required to perform platform integrity metrics. These
components are:

1. The measurement process used to collect the metric
2. The predicted values of measured component
3. The actual values of measured component

Trusted Mobile Platform
Software Architecture Description – Rev 1.00

 17

The process to collect the platform integrity metrics and to compare the measured
values to predicted values is defined by the CRTM. The CRTM is stored in a ROM or a
flash memory with lockable boot area. The CRTM uses the TPM on the platform to
generate and store the measurement values. The measurement specifics, which
includes the definition of what get measured and the order of measurement, is platform
dependent and is defined by the platform builder. In a simple example, Figure 4-2
shows two approaches that can be used to measure an OS and three applications. In
the first instance, one measurement is made on the combined OS and three
applications. In the second instance, the OS and the three applications are measured
independently. Both measurement processes are valid and either may be used. To
collect these measurements, the CRTM must interface to the TPM that allows the
CRTM to transfer the data being measured to the TPM and collect the measurement
when the process is completed.

Figure 4-2 Methods of Integrity Measurements

4.2. Measurement Values

The actual value of a measured platform component is a cryptographic hash based on

Trusted Mobile Platform
Software Architecture Description – Rev 1.00

18

the SHA-1 algorithm of the object being measured. Two trusted elements, the CRTM
and the TPM, are used to ensure that the value is measured accurately and that the
measured value cannot be modified. The measured value is then compared to a
predicted (“known good”) value. If the measured value and predicted value match, the
measured component is validated as not being modified. If the measured and
predicted valued do not match, then the component has been modified and cannot be
trusted. The CRTM responds by notifying the user of this condition.

4.3. Predicted Measurement Values

Since the trustworthiness of the TMD depends upon the comparison between measured
and predicted values, it is essential that the predicted valued be entered and stored on
the platform in a highly reliable way. To ensure the correctness of the validation data
on the platform, that data can be stored on the platform in a credential or may simply
be digitally signed by the VE. There are also hardware options that could be used to
reliably store predicted measurement values such as One Time Programmable (OTP)
bits in flash memory. In addition to being stored reliably, the predicted values must
also be reliably inserted onto the platform. Potential VEs include equipment
manufacturers, OSVs, ISVs, and carriers. VEs generate the validation data (predicted
measurements) using any method that allows them to generate the SHA-1 hash value
for their component(s). The predicted measurement values are loaded to the trusted
platform as part of the manufacturing and provisioning process. The approved values
for components on the platform are not secret, but they must be protected against being
modified. Protecting the list of approved values by a checksum stored in the TPM does
this.

4.3.1. Authenticated and Secure Boot

The [5]defines two types of trusted boot: authenticated boot and secure boot. As used
in this document, “trusted boot” refers to both types of trusted boot, and both types of
trusted boot are allowed, based on the policy of the operator. In authenticated boot,
the CRTM starts by obtaining the measured integrity metrics. The measured
integrity metrics are compared to the predicted values inserted by the VEs. At that
point, the platform attempts to boot normally, even if the measured and predicted
measurement values differ. Secure boot also starts by collecting the measured

Trusted Mobile Platform
Software Architecture Description – Rev 1.00

 19

integrity metrics and comparing them to the predicted values. If the measured value
matches the predicted value, the SW is trusted and the boot continues normally. If the
measured and predicted values differ, a policy-defined action is taken to limit the
services provided by the platform. In essence, since the platform cannot be trusted in
this case, then any trust related services should be disabled.

4.4. Run time integrity measurements

The [5] defined a method to record system metrics after the OS is loaded and the
system is running. The measurement of the system is performed using the TPM with
the result being stored in a Platform Configuration Register (PCR) internal to the TPM
(Refer to Section 6 of the TMP Hardware Architecture Description). In this scenario, a
PCR in a TPM does not store a measurement based on one event (like boot) but stores
an integrity measurement in a PCR related to a sequence of events that take place on
the TMD. The process tracks both the value of the components being measured and
the order that they are executed and measured.

Internal to the TPM, the PCRs are used to store platform state. At power up, the
PCRs are set to zero. Run time integrity metrics are recorded by calling a
TPM_Extend operation. In an extend operation, the measured 160 bit integrity metric
for an event is concatenated with the current 160 bit value in a PCR to form a 320 bit
value. This concatenated value is then hashed using SHA-1 and the resulting 160 bit
result from the SHA-1 hash is loaded back into the PCR. This resulting value is
dependent upon the component currently being measured as well as all of the
components that were previously measured by prior extend operations relative to that
PCR.

Unlike personal computers, the usage model for TMDs is that they are personal
communications devices that remain powered on for very long periods of time and are
only infrequently powered down. The long time periods between power-down
operations, which reset the PCRs, makes it very difficult to gather and log meaningful
run time integrity measurements. Over the long period of time between power downs,
the TMD will perform a complex and arbitrary sequence of trusted and un-trusted
operations. There are two approaches that can be used to perform real time

Trusted Mobile Platform
Software Architecture Description – Rev 1.00

20

measurements on the platform. The first approach is to use a run time check based on
integrity metrics stored on the platform. The run time integrity measurements can be
executed at the specific point in time that the TMD needs to attest to its
trustworthiness. The run time integrity measurement would measure only those
software components needed to perform the specific trusted operation that is being
requested and would enable only the software components needed for that function.
This action could be preceded by a reset to the platform that would terminate all
operations and force the initiation of trusted boot using the CRTM. Subsequent to
boot, the requested process can be measured and its integrity metric compared to that
provided by the VE. If the measured value matches the value stored on the platform,
the application is launched.

The second approach for run time integrity measurements allows for the VE to supply
the integrity measurement to the platform. The protocol for this operation is
described in sections 5.4 and 5.5 of the Trusted Mobile Platform Protocol Specification
Document.

Trusted Mobile Platform
Software Architecture Description – Rev 1.00

 21

5. Domain Separation
Trusted platform architecture depends on domain separation (sometimes referred to as
“domain isolation”.) Applications and Services execute in isolation from each other
without observation and interference from other applications, services, and I/O devices.
Together with Access Control (see next section), domain separation protects code from
intentional or unintentional modification, and data from unauthorized access.

Domain separation implies a programming model in which a domain has complete
control over what parts of its runtime memory is shared with other domains. Typically,
the only form of sharing is that required to implement a trusted Inter-Process
Communication (IPC) mechanism. The programming models of most COTS operating
systems do not meet this requirement, and therefore could not be classified as Security
Class 3.

The programming model also implies that an application or service executing inside a
domain has complete control over what code gets executed inside that domain. This is
typically achieved by executing the code from a single signed manifest associated with
the domain. Current COTS operating systems do not meet this requirement; another
reason why a COTS OS would not be classified as Security Class 3.

Different systems architectures provide domain separation with different degrees of
protection. A Security Class 1 device provides less rigorously protected domains only,
which we will call “Managed Domains” in the following. A Class 2 device may rely on
the process memory space isolation provided by a COTS operating system. We will
call these domains “OS-enforced Domain”. A Class 3 device requires the strong domain
separation provided by a formally-evaluatable TCB and programming models that
control the sharing of memory. We will call these domains “TCB-enforced Domain”.

5.1. TCB-enforced, OS-enforced and Managed Domains

There are three forms of domain separation that may co-exist in a system;
TCB-enforced, OS-enforced and Managed Domains. The first two are process spaces in
which native machine language application code executes, while Managed Domains are

Trusted Mobile Platform
Software Architecture Description – Rev 1.00

22

execution stacks for Java applications. TCB-enforced domains and OS-enforced
domains are implemented by the native operating system. Managed Domains are
implemented by the Java Virtual Machine, or by another interpreter-based runtime
environment. An instance of the Java Virtual Machine would execute inside a separate
TCB-enforced or OS-enforced Domain, and may support multiple Managed Domains.
There may be multiple instances of the Java Virtual Machine (in multiple TCB- or
OS-enforced Domains), each supporting multiple Managed Domains. The concept of
different Security Classes correlates with the mechanism through which the Domains
are provided.

Figure 5-1 Domain Separation Model

5.2. Domain Separation Mechanisms and Security Classes

5.2.1. Security Class 1
Security Class 1 devices offer Managed Domains only. Such systems offer a limited
protection to the services executing in the domains. Therefore it is advisable to use
them preferably with tested and certified services. Although not as protected as the

Trusted Mobile Platform
Software Architecture Description – Rev 1.00

 23

Class 2 and Class 3 devices, services executing in these devices are better protected
than in a system using a plain operating system without any domain concept.

5.2.2. Security Class 2
Some versions of existing operating systems have significant security enhancements.
These enhancements take two different forms. One is to have extensive review (and
sometimes formal certification) for less vulnerable implementations. For example,
some commercial operating systems have a CAPP EAL-4 Common Criteria certification.
Other enhancements come from adding tighter and finer-grained access controls
mechanisms. SELinux and Trusted BSD are examples of such operating systems.
These types of operating system can be used to provide Security Class 2 domain
separation for a Trusted Mobile Device provided that is the appropriate forms of Access
Control are supported, and the appropriate programming models are supported.. Note
that the Security Class 2 Trusted Mobile Device must have a trusted boot capability,
and it must be possible to measure its integrity periodically using the TPM. Any
tampering with the operating system kernel would be detectable, and a reliant party
may choose not to trust the system if tampering has been detected.

5.2.3. Security Class 3
For Domain Separation to achieve the strongest level of security, the kernel must be
structured and implemented as a Trusted Computing Base (TCB). That is, it must be
small enough and stable enough to be formally evaluated. (Whether it is actually
evaluated is a business decision beyond the scope of this document). Such an
operating system kernel is often referred to as a trusted microkernel on top of which
operating system services are implemented as user processes inside Domains. This
style of operating system is sometimes referred to as a Client/Server style operating
system. The trusted microkernel provides an underlying Inter-Process Communication
mechanism that allows domains to communicate. If such an Operating System were to
be constructed from an existing COTS OS, the hardware may require memory
management extensions.

Existing COTS operating systems typically do not meet this requirement, but there are
some COTS OS that are microkernel-based (e.g., QNX), and may be suitable for
adaptation to Security Class 3.

Trusted Mobile Platform
Software Architecture Description – Rev 1.00

24

5.3. Managed Domains

A virtual machine exercises control over the bytecodes it is executing. The Java Virtual
Machine and the Java byte-code verifier together try to ensure that no two Java
applications interfere with each other; effectively providing Java Application Domain
separation.

The strength of the separation depends on the trustworthiness of the Java runtime
environment. Typically, the Java runtime environment is significantly more complex
than a trusted microkernel, and therefore cannot provide the same level of assurance. If
it is necessary to implement a highly secure application in Java, it would be possible to
run such an application on its own instance of the Java runtime in its own TCB- or
OS-enforced Domain.

5.4. Summary of Domain Separation and Security Classes

Security Level Security Class 1 Security Class 2 Security Class 3

Basic structure Standard OS with

interpreter runtime

environment (for

example Java and

OSGi)

Hardened COTS OS

(with mandatory access

control)

Microkernel (TCB)

Type of Domains Managed Domains only OS-enforced Domains,

optionally managed

domains

TCB-enforced Domains,

optionally OS-enforced

and Managed Domains

Trusted Mobile Platform
Software Architecture Description – Rev 1.00

 25

6. Access Control Model
A critical facet of a Trusted System is Access Control; a Trusted System is intended to
guarantee that only authorized access to data and resources is permitted.

The Trusted Mobile Device supports two access control models. The first one, called the
Autonomous Model, relies on each application that manages resource to enforce its own
access control policies. Each such application running in a domain is completely
autonomous as if it were running on a separate machine in a network. The mechanism
of its access control enforcement, the semantics of its access control policy language,
semantics of its data objects, its internal architecture, and its communication protocols
are unconstrained by this architecture; they are its own business. In this sense, the
architecture is completely open to allow applications to innovate. This model is
described in Section 6.1.

The second model (System-Mediated Model) relies on the underlying system software,
be it the operating system or middleware (such as Java), to enforce access control
policies. There has been several access control mechanisms proposed so far. Some are
integrated into the operating system (e.g., mandatory access control systems such as
SELinux) and some are features of middleware (e.g., Java’s JAAS and OSGi). This
model is described in Section 6.2.

Note that these two models are not mutually exclusive. As discussed in Section 5, a
domain may have sub-domains and the outer domain and the inner domains may have
different access control models. For example, in the Autonomous model, the TCB
provides a strong domain separation but no or little access control support, thus the
access control should instead be provided by the protected network application. On the
other hand, one TCB-enforced domain can host another layer of execution environment
for multiple sub-applications (e.g., multi-user operating system or Java), which in turn
provides the System Mediated Model.

6.1. Autonomous Access Control Model

The model described in this section can be viewed as a “Set of sand-boxes with

Trusted Mobile Platform
Software Architecture Description – Rev 1.00

26

privileges”. Each Protected Network Application (Data Service Provider) is autonomous
and is given a sand-box (a domain) in which to execute. The semantics of its objects, its
internal architecture, and its wireless communication protocols are unconstrained by
this architecture; they are its own business. In this sense, the architecture is
completely open to allow Data Service Providers to innovate. Unlike the original
concept of Java sand-boxes, these sand-boxes are given rights to use other services, by
contract (or by default). The Data Service in each sand-box implements and enforces its
access control policy as it sees fit within the confines of the domain1.

The model could be seen as supporting an arbitrary number of special-purpose closed
systems (the data services) in an open partitioned general-purpose system. The
difference is that the special-purpose systems are provided with a set of platform
services they can use to optimize development.

It is also possible that a suite of data service applications may be installed with a set of
middleware services developed by the service provider. These middleware services may
be represented as callable libraries in the data service domains or as protected domains
in their own right (augmenting the services of the platform).

6.1.1. System Model
As described in chapter 5, the basic system model consists of domains in which each
domain receives a degree of protection depending on the degree of security provided by
the system. Underlying the domains is a privileged layer (called the TCB in security
level 3) that creates and binds domains, and provides a mechanism to allow them to
communicate. Services and Applications are provisioned into domains, and execute
within their protection.

Given this basic system structure, there are many ways in which services and
applications can be decomposed into domains, and these choices represent different
approaches that could be taken by the system developer.

1 In the literature this model is called Domain and Type Enforcement (DTE)

Trusted Mobile Platform
Software Architecture Description – Rev 1.00

 27

6.1.1.1. Terminology

The Autonomous Access Control Model uses two terms frequently: Service and
Application.
A Service is anything that provides an API library and can be “invoked” locally by an
application.
A service may manage hardware resources or manage user-related objects.
An Application is anything that invokes a service.
An application may also have a UI.
An Application may also be a service. Typically, a Data Service Domain is an
application that manages valuable objects for the benefit of the user. In some cases, a
data service provider may also be a callable service with an API library for other client
applications to use.

6.1.1.2. First Principles

Applications and Services that enforce access control over resources or objects that they
manage must be provisioned into separate domains. Only code which the service or
application trusts will be allowed to execute in the domain alongside the service or
application. Normally, this package of code would be delivered as a signed manifest to
guarantee its integrity; no other code would be allowed to execute in the domain.

Domain isolation is required to protect access control policy enforcement. Since domain
isolation forces service execution threads into separate processes (inside their domains),
services must be invoked using an inter-process communication (IPC) facility provided
by the underlying privilege layer. An IPC is usually an asynchronous queuing
mechanism between processes. Much work has been done over the last two decades on
IPC, but system developers will determine the actual choice of IPC mechanism based
on available hardware and operating system facilities.

Usually, an RPC or Queuing runtime is layered on the IPC primitive and made
available as a library for API development. This represents the “stack” required to
invoke the service.

This style of operating system is commonly called a client/server model, since the IPC
mechanism acts as a network between domains. All the same architectural principles

Trusted Mobile Platform
Software Architecture Description – Rev 1.00

28

that apply to a secure network client/server model also apply to a client/server
operating system with the privileged layer IPC acting as the network:

• There will likely be a directory mechanism to find services in domains
• Connections may need to be authorized
• Normally in Client/Server, a Server executes on behalf of the client’s logged-in
user (that is, the thread of execution on the server has a security context that
identifies the user). However, to allow for mandatory access control, some services
may permit execution on behalf of the client application (that is, the security
context in the thread of execution on the server identifies the calling application).
• A service that manages resources (e.g., the file service, the TPM service)
supports multiple client applications on the platform (possibly concurrently). The
service is responsible for making sure that information (state) that it holds on
behalf of one client application does not leak into the state of another application.
In this sense, a server is stateful, and must protect the state of one application
client from another.
• A server is responsible for enforcing its own access control policy over the
resources/objects that it manages (e.g., as in a distributed file system).
• A server provides a client API library for applications to invoke it. This API
library is bound into the client application manifest.
• The API library (in conjunction with the “stack”) generates the protocol
messages that flow on the IPC channel

6.1.1.3. Service & Application Categories

Services and Applications fall into four categories:
1. Native Services: These services are divided into two sub-categories:

a. Services that require authorization to use
b. Services that do not require authorization to use

These services are either platform services that are provisioned on all platforms, or
middleware services installed by a service provider as part of its data services
implementation.

2. Native Network Data Applications (to which the User can subscribe): [These are
the so-called Data Services]. These Data Services may also provide services for
use by other applications, and a client API library to invoke them. Generally,
use of this type of service by other applications would require authorization.

3. Native Local Applications (PIM, Games, etc) in two sub-categories:
a. Those that use services requiring authorization

Trusted Mobile Platform
Software Architecture Description – Rev 1.00

 29

b. Those that don’t
4. Managed runtime applications in two categories:

a. Those that use natives services requiring authorization
b. Those that don’t

6.1.2. Authorization
An application that calls a service requiring authorization, must acquire authorization
credentials. These credentials can only be acquired from the owner of the service or a
trusted third-party. The term owner, here, refers to an agent of the business that
provides the service.

An authorization credential contains a statement of the rights granted in some policy
language. The choice of policy language is at the discretion of the grantor (the service).
In its simplest form, it is a right to bind to the service and call it (enjoying the full
semantics of the interface), but it may contain finer-grained rights that limit the full
semantics of the Service interface. A grantor or trusted third-party would sign the
credential. Detailed definition of authorization credentials is at the discretion of the
grantor.

The application developer, once all the authorization credentials have been acquired,
would bind the credentials into the application manifest before provisioning.
Acquiring authorization rights is part of a contractual process.

6.1.3. Access Control Model
The Access Control Model depends on Domain Isolation. Domain Isolation gives a
service tamper-resistant execution so that it can enforce its access control policies.
Every Native Service that requires authorization has two responsibilities:

• To honor the contractual rights of access to its objects; this entails the service
being its own access control enforcement point.
• To protect the semantics of its objects; the semantics of an object may include
discretionary access control over the object. In which case, the service implements
and manages that discretionary policy and chooses the mechanism. An example
would be the semantics of a file as provided by the File Service. Files would have
ACLs (Access Control Lists).

Trusted Mobile Platform
Software Architecture Description – Rev 1.00

30

An authorized IPC connection must be established before an application can invoke a
protected service. This connection can either be established when the application
domain is instantiated (early binding), or it can be established on the first use of the
service (late binding). The connection is established by presenting the appropriate
authorization credential to the domain binding mechanism in the privileged kernel.
The API library finds the target service using the domain directory, and then requests
the domain binding mechanism to establish a connection to the target service, passing
in the necessary authorization credential. The domain binding mechanism mediates
with the target service to request permission to bind. If the target service grants
permission (based on the credential), the domain binding mechanism will bind the
application and service domains. That is, a communication channel (IPC) will be
created to allow the two domains to communicate. If permission is denied, no
communication will be possible (by any means), and the requesting application will
simply be told that a binding request has failed due to lack of authorization. The
communication channel enables the application domain to exercise the interface of the
service domain and thereby to use some subset of the semantics of the service domain’s
objects or resources. The service domain may tailor the channel, based on the
fine-grained permissions, in order to optimize the invocation of the interface.

The binding and authorization mechanism between domains is entirely analogous to
the establishment of an authorized network connection between client and server; the
IPC mechanism is essentially a network that links the applications and services on the
platform. Just as network services are discovered through some network directory
mechanism, services on the platform are discovered using a local domain directory. Just
as, in the network, the client RPC or Object runtime performs discovery and binding.
On the platform, the runtime library performs the same discovery and binding services
on top of the IPC mechanism. Just as in network security, some kind of token (e.g., a
Kerberos ticket or a Digital Certificate) is required to authorize the connection, so also
on the platform the authorization credentials bound into the client are used to
authorize each connection that the client makes to a service. And finally, just as in
network communication, the details of the binding mechanisms are hidden under the
client API. The details of binding to a service are hidden under the client API on the
platform as well.

Trusted Mobile Platform
Software Architecture Description – Rev 1.00

 31

Figure 6-1 Binding Flow

6.1.4. Administrative Model
Administration starts with the manufacture of the device. At manufacture time, the
device would be given a unique ID. This ID could be an Endorsement Key within the
TPM (generated by the TPM manufacturer, as required in [5]), a public key (generated
either by the manufacturer or the Network Operator, or both), or could be a generated
serial number. In any case, the ID needs to be certified, either by creating an
administrative data base entry for the device or certifying the public key [the hash of
the public key could be the serial number]. The device has the ability to display its own
serial number, so no external label is necessary. The ID could be used as the authority
to authorize the provisioning of the device.

When the subscriber takes possession of the device, it must, if it is a phone product, be
given a phone number, and that phone number must be associated with the serial
number. This could be done by certification or by binding it into the administrative data
base entry.

Each service that is provisioned (including platform services) needs keys to identify

Trusted Mobile Platform
Software Architecture Description – Rev 1.00

32

them. These keys are generated by the provisioning service on the device. Platform
services could use symmetric keys; third-party services probably need public keys.
These keys are used to authenticate the service. For third-party services, the key would
be certified by the provisioning service.

The provisioning service would create an entry in the local domain data base whenever
a service (including platform service) is provisioned.

No on-device access control administration is necessary. Provisioning provides all the
administration necessary. A Service Provider receives its authorization credentials, and
a manifest generation tool embeds them in the manifest. When the service has been
qualified to the satisfaction of the Network Operator, the Network Operator can certify
its availability for subscription. When a consumer decides to pay for a subscription, the
service can be provisioned onto the subscriber’s device. Any updates to the service
would require re-provisioning. Provisioning could be a push model or a pull model. The
source could be either the Network Operator or the Service Provider (or even a
third-party). But, the provisioning mechanism always guarantees that the security
policy is properly administered.

6.2. System-Mediated Access Control Model

The Autonomous model is a simple yet flexible model. However, the application needs
to implement its own access control model. In addition, the access control policy in the
Autonomous model is completely controlled by the application because the application
implements its own access control mechanism. This model is appropriate as long as the
application owner can be fully trusted..

The System-Mediated Model provides a common access control model to multiple
applications in a domain. The applications can share the same enforcement mechanism,
the same syntax and semantics of the access control language. The applications do not
need to implement their own access control mechanisms. In addition, access control
enforced by the system (not by the resource owner) can protect sensitive resources even
if the applications have security breaches.

Trusted Mobile Platform
Software Architecture Description – Rev 1.00

 33

6.2.1. Common Access Control Policy Language
At this time, a common access control policy language has not been determined in this
specification. However, we envision that XACML (eXtensible Access Control Markup
Language) is one of the candidates.

Section 8 (Access Control Model) in the Trusted Mobile Platform Protocol Specification
introduces XACML (eXtensible Access Control Markup Language). On the other hand,
each system software or middleware may have a different form for expressing access
control policy. For example, in JAAS, the Java VM has a policy configuration file
named java.policy that contains access control rules. Operating systems have file
access control properties (e.g., access control bits in Unix file systems) or more
sophisticated access control policy configuration (e.g., policy files in SELinux).

6.3. Summary of Access Control and Security Levels

Security Level Security Class 1 Security Class 2 Security Class 3

Autonomous Model optional optional optional

System-Mediated Model optional optional optional

System-wide policy optional optional optional

In a Class 2 and Class 3 devices, at least one access control model should be supported.

Trusted Mobile Platform
Software Architecture Description – Rev 1.00

34

7. Secure storage / Secure file system
The Trusted Mobile Device must provide “secure” storage facilities. The operative
keyword here is “secure”, meaning that any confidential data for the specific entities in
the system are never exposed to other entities (e.g. any other unrelated processes
running on the same platform, or persons or servers connected to the platform through
network traffic) and that the integrity of the data should be preserved.

There are several levels of secure storage in the Trusted Mobile Device. A TPM
equipped TMD can provide a small amount of secure storage that is tamper resistant at
the hardware level. Since TPM storage is implemented as hardware with some
tamper resistance, it provides possibly the highest level of protection from both physical
and logical tampering. However, the size of discrete TPM storage is very restricted
mainly due to the hardware resources it can afford and it is not practical to store all
sensitive information for every running application within the TPM. Adding this
memory would greatly increase the cost of a Trusted Mobile Device. Therefore, the
Trusted Mobile Device should provide alternative methods of secure storage. Security
Class 2 platforms will not have the full set of hardware and software features to allow
for secure storage without encryption. Even in Security Class 3 devices, encryption
provides protection from physical attacks not protected by domain separation alone.
Based upon the notion of protected storage in connection with [5], the TMD can
effectively expand the amount of TPM storage to virtually as large as the amount of
logical memory in the platform. This is attained by taking advantage of the Storage
Root Key, a [5] concept explained briefly in the following section.

Another possible candidate for secure storage mechanism in system memory is to use
domain separation, which is incorporated into the Trusted Mobile Platform with
Security Class 3 devices (see Table 7-1Secure Storage/Secure File System with each
Security Level). Execution environments of running processes are rigorously isolated
with domain separation mechanisms provided by software or hardware, allowing the
possibility to attain secure storage facilities with domain separation quite easily.

Another consideration is necessary when protecting persistent data objects such as files.
Ordinary Operating Systems (OSes) provide different levels of access control
mechanisms for files based on the notion of user or group identities in the system. With

Trusted Mobile Platform
Software Architecture Description – Rev 1.00

 35

most OS’s having a special privileged user (or super user, e.g. root in UNIX-like systems
or Administrator in Windows), it is quite easy for a malicious user to access any file in
the system, if he or she also manages to break-in and get special privilege. A solution
that can be used to secure such non-volatile data is an encrypted file system, which can
be seen in several PC or workstation OS’s, commonly known as the Encrypted File
System (EFS) in Windows2000/XP or Cryptographic File System (CFS) for several
UNIX-like systems.

7.1.1. Summary of Secure Storage/Secure File System and Security
Level

Security Level Security Class 1 Security Class 2 Security Class 3

TPM Usage for

Secure Storage

None or Just use TPM’s

internal storage

TPM’s protected storage

facilities

Same as left

Domain Separation

for Secure Storage

None Yes /w Hardened OS &

Cryptographic Memory

System

Yes /w Secure Kernel

Encrypted File

System

None Yes Yes

Table 7-1 Secure Storage/Secure File System with each Security Level

7.2. Protected Storage

As described in the previous section, [5] is designed to have unlimited volume of
protected storage. This is attained under the notion of a key hierarchy, where only
keys are stored in the physically tamper resistant TPM hardware. The keys, except
for the root, are used to protect arbitrary data, which are all protected through
encryption by using one of several other keys. The root key in the hierarchy is called
the Storage Root Key (SRK) and it can be used to encrypt the keys within the second
layer, and then these second layer keys are used to encrypt the third layers, and so
forth. Since the SRK never leaves the TPM, it is sufficiently protected by the tamper
resistance of the TPM alone (not necessary to use the protection provided by
encryption). Other encryption-protected data or keys can be retrieved through the

Trusted Mobile Platform
Software Architecture Description – Rev 1.00

36

TPM and stored within the normal storage area such as platform’s ordinary memory
structure or hard disk. Before using a datum or a key, one must submit it to the TPM
and let the TPM do the required decryption.

Figure 7-1TPM Key Hierarchy

As seen in Figure 7-1 (TPM Key Hierarchy), storage keys can be either asymmetric key
pairs or symmetric keys, and data at the leaf level of the tree are the actual data to be
protected, such as signature keys, symmetric keys, or just arbitrary confidential data.
There are only two types of keys. First is non-migratable keys, which are generated
inside of the TPM and never leave it in plaintext form. The second is migratable keys,
which can be either created outside the TPM or leave the TPM without any form of
encryption. A migratable key is totally controlled by its creator’s TPM and can never
be utilized by inappropriate entities.

Two types of key operations can be used to conceal data: the seal operation is used to
encrypt data so that encrypted data can only be decrypted under specified conditions,

Trusted Mobile Platform
Software Architecture Description – Rev 1.00

 37

while the other operation, bind, and simply encrypts the data.

Conformant Trusted Mobile Devices at Security Class 2 or Class 3 levels should
implement the mandatory functions listed as [5] Mandatory/Optional Functions..

7.3. Protecting memory by encryption

Current COTS based multi-task operating systems have several drawbacks in
protecting data stored in memory. They lack the ability to efficiently separate the
memory space of one process from others. Although most operating systems
incorporate virtual addressing mechanisms that realize the isolation of processes’
memory spaces, there are still several sources for a process to interfere with other
processes’ memory data. For example, swapping or paging mechanism, which are
used when physical memory is exhausted during the execution, makes the contents of
one process’ memory accessible to any other processes by putting the data onto the
external storages. There also is a mechanism by which one process is able to examine
and modify other processes’ memory data on the fly, whose main purpose is to provide
the debugger programs (or alike) the ability to manage the execution of other processes
being debugged.

As for the Trusted Mobile Platform, Security Class 3 devices incorporate some kind of
domain separation mechanism, which eliminates such threats. However, Security
Class 1 and Class 2 devices do not have such mechanism and it is recommended that at
least Class 2 devices incorporate some mechanisms for protecting the data in memory
by encryption.

7.3.1. Encrypting swap devices
As for the swapping or paging operation, it is recommended that the operating system
kernel encrypts the content being swapped onto the external storage. This swapped
out data should be decrypted when they are swapped in to the memory.

7.3.2. Encrypting memory directly
Another possible solution to mitigate the threats being interfered by other processes is

Trusted Mobile Platform
Software Architecture Description – Rev 1.00

38

to encrypt data directly while stored in memory. Of course it is rather difficult to
encrypt data in memory because of both the encryption/decryption key management
and the efficiency of the encryption/decryption operation.

However, there is one possible candidate for such protection scheme [1], which realizes
the memory protection by encryption with reasonable overheads. It is recommended
that Security Class 2 Trusted Mobile Devices incorporate such kind of countermeasure
for memory sniffing. It may be useful even for Class 3 devices in order for the
processes belonging to the same security domain to be able to protect themselves from
each other.

7.4. Key and certificate management

Keys and certificates must be managed in such a way that no key is revealed to
unauthorized entities.

7.4.1. Lifecycle Management
Keys should be managed appropriately throughout its lifecycle, that is, from generation
to termination. For example, a key should be securely generated and the generated
key should be protected from unauthorized accesses. In conformance with the Trusted
Mobile Platform policies, lifecycle management of keys and/or certificates should follow
the following precautions:

7.4.1.1. Key Generation

Keys must be generated using a cryptographically strong pseudo/true random number
generator (PRNG) as a source.

7.4.1.2. Key Protection

Generated keys must be protected from unauthorized accesses, (e.g., adequate levels of
access control must be provided, both in memory and in persistent storage). This can be
done using TPM’s tamper resistance, using encryption, and/or by using encrypted file
system.

Trusted Mobile Platform
Software Architecture Description – Rev 1.00

 39

7.4.1.3. Key Import/Export

Keys created outside a TMD must be handled with special care when imported onto the
platform in order not to expose any fragment of the key to unauthorized entities during
the import operation (e.g., migration mechanism defined by [5]).

7.4.1.4. Key Certification

When an asymmetric key pair needs to be certified by a digital certificate, it is required
to submit some kind of Proof-of-Possession (POP) evidence for the corresponding
private key. The implementation should take care not to submit any data that can be
used to deduce any part of the encrypted key.

7.4.1.5. Key Backup

Key backup is required for several reasons. For instance, in the case of a key used to
protect important persistent data objects such as confidential files, it is a catastrophic if
the key is lost by accident. Not only the key itself, but also the important data
protected by the key is essentially lost. If the key in the example has been backed up,
it is quite simple to recover the lost key and the associated data encrypted with it from
the backup data. This is particularly important in the case of businesses, where an
employee may become unavailable for various reasons. There must be a key backup
mechanism to ensure that no data can be lost as the result of the loss of individual keys.
As was shown earlier, the TMD has notions of migratable and non-migratable keys.
For non-migratable keys, the TPM itself protects the keys and key backup by the
system software is not required. However, system software must back up migratable
keys. The backup operation must guarantee that the unprotected keys are not revealed.
Such backed-up migratable keys must be protected by encryption from unauthorized
accesses.

Trusted Mobile Platform
Software Architecture Description – Rev 1.00

40

7.5. Encrypted File System

 Figure 7-2 Possible Realization Points of Secure Storage

7.5.1. Implementation Options
There are several strategies for protecting data stored in files through cryptography:

• Application Level Protection
• Filesystem Level Protection
• Device Driver or Device Level Protection

This specification does not mandate which strategy or strategies a conformant
implementation must deploy. However, it shall mandate the conformant

Trusted Mobile Platform
Software Architecture Description – Rev 1.00

 41

implementation to deploy file encryption capabilities, obeying and following
characteristics in Security Class 2 and Class 3 devices:

• File encryption must be conducted without any vulnerability windows where
plaintext data can be accessed by inappropriate entities.
• At the worst, an encryption key must be provided as a pass-phrase and must
not be saved as persistent data in plaintext form. It is recommended that the
implementation include a mechanism mandating the selection of quality
pass-phrases.
• It is recommended for Security Class 3 level implementations with biometrics
devices incorporated that the implementation use biometric authentication as a
file encryption key activation mechanism.

It is recommended that the conformant implementation having the capability to
obfuscate the names of files so that inappropriate entities cannot deduce any
information from names of files.

7.5.2. An Example in Encrypted File System Type Implementation
When file encryption mechanisms described above are incorporated in an encrypted file
system implementation, the implementation should provide following functionalities
for application programs.

7.5.2.1. Mount operation

The mount operation provides a means for making a portion of disk drives visible to
application software. Since an encrypted file system can transparently encrypt and
decrypt files in the system using symmetric cipher, the mount operation requires the
key used for encryption and decryption. Although encrypted file systems for ordinary
PCs or workstations tend to use user-supplied passwords or pass-phrases to yield the
symmetric key, it might not be desirable for the mobile devices since the input interface
is not suitable for keying sufficiently complicated pass-phrases. Consequently,
conformant implementations should use a symmetric key for encryption and decryption.
This key is protected by symmetric or asymmetric key encryption key and the key to
activate the session key is supplied in the mount operation. The key encryption key is
best stored in the secure storage, so it should be part of the TPM key hierarchy.

Trusted Mobile Platform
Software Architecture Description – Rev 1.00

42

Conformant implementations should use 128bit AES keys for the symmetric algorithm
and 1024bit RSA keys for asymmetric algorithm.

7.5.2.2. Unmount Operation

The unmount operation removes the access to a portion of the disk drives through a file
interface provided by OS’s. This operation is almost same as that of normal file
system, except that all buffers associated with files belonging to the encrypted file
system must be erased before the unmount operation has completed.

7.5.2.3. Read and Write Operation

Read and write operations are almost same as that of normal file system except for the
transparent encryption/decryption operations. The file system must decrypt the
contents of files on read, and encrypt the data on write with the symmetric key supplied
in the mount operation.

7.5.2.4. File/Directory Creation

When a file or a directory is created in the encrypted file system, it is preferable to
make the name of the file/directory unreadable while the disk drives holding the
file/directory while being unmounted. This can be done, for example, by encrypting
the file/directory name with the symmetric key used for contents encryption/decryption.

Reference:
[1] “Cryptographic Memory System”, to be appeared in Usenix security 2004.

Trusted Mobile Platform
Software Architecture Description – Rev 1.00

 43

8. Cryptographic API

8.1. Overview

In general, a Cryptographic API (CAPI) is an application programming interface for
programmers who use crypto related functionalities such as encryption, decryption,
one-way hash calculation, digital signature creation and so forth, in their programs.
Just like other APIs, the CAPI should supply those functions through well-defined and
documented interfaces.

The method of integrating cryptographic functionality into the targeted
implementations requires that the developer tightly couples it to the associated
cryptographic module. There are several different CAPIs are available in today’s
security aware market. This section does not go into detail and nor recommend any
particular CAPIs. The implementer should consider a certain set of criteria when
choosing the CAPI integration. An example of such criteria is the one proposed by the
U.S. National Security Agency in evaluating the existing CAPIs [NSA]. The criteria
used by the evaluation are as follows:

1. Algorithm Independence
2. Application Independence
3. Crypto-module Independence
4. Degree of Cryptographic Awareness
5. Modular Design and Auxiliary Services
6. Legacy Support
7. Safe Programming
8. Security Perimeter.

The remaining part of this section describes higher levels of requirements that should
be satisfied by CAPIs for the Trusted Mobile Platform implementation. It is the
implementer’s responsibility how to break the requirements down to actual
implementation level.

Just as cryptography plays an important role in modern security technologies, so does

Trusted Mobile Platform
Software Architecture Description – Rev 1.00

44

in the Trusted Mobile Platform technology. A Trusted Mobile Platform heavily relies
on the fact that cryptographic functionalities can be properly supplied in timely fashion
in order for it to perform its required functionalities. For example, a Trusted Mobile
Platform with mobile class types 2 and 3; calculates the one-way hash of every
executive module such as boot loader, OS, installed peripheral devices, etc., and
compares it with the TPM-stored value known to be legitimate, before the module is
allowed to be executed. At the same time, information about the executive module is
used to update a PCR value by one-way hashing the current PCR value concatenated
with the information about the executive in order to reflect the status where the
platform is in. If such one-way hash calculation is not done properly, the result can be
catastrophic. Same can be said for other cryptographic operations. These
cryptographic functionalities are, in some sense, the fundamental for the Trusted
Mobile Platform.

Developers must undertake extreme contemplation when implementing a CAPI based
solution. The slightest conceivable errors or security holes may possibly lead to the
malfunctioning or the exploitation of the trusted platform. Mainly, when interfacing
with the TPM, make sure the implementation method is solid and secure. Most of the
vulnerabilities exist at the source code level through exploitable buffer methods and or
DMA calls.

Consideration points that the implementer should keep in mind for CAPI
implementation include, but are not limited to:

• Never breaching any confidential data such as decryption keys to improper
entities
• Wiping out memory region before returning it; IF the library uses dynamic
memory allocation mechanisms and IF it also uses such dynamically allocated
region to hold confidential data.
• Effectively mitigating side channel type attacks such as timing attack, power
analysis attack etc.

When implementing a CAPI implementation the implementer should keep in mind the
quality of implementation. It is quite (or maybe rather) difficult for most programmers
to implement an efficient application without any security holes. As mentioned before,
the majority of security holes reside at the source code level. Even the slightest errors

Trusted Mobile Platform
Software Architecture Description – Rev 1.00

 45

when implementing certain APIs may lead to vulnerabilities.

 Figure 8-1 Layers and Providers for Crypto-related functionalities

There are several levels of cryptographic functionalities the Trusted Mobile Platform
should provide. First, application program can conduct cryptographic operations
through the standard library interfaces provided by the OS. Second, certain
application environments (e.g., VMs), such as Java, provide programming interfaces for
cryptographic operation. And third, there should be a kernel level crypto provider that
can provide crypto-related functionalities to other kernel modules on request.

There are also several possibilities with regards to who supplies such functionalities:

• Mobile platform’s processor
• TPM’s cryptographic functionality
• Smart card modules. (UICC)

Of course, there are merits and shortcomings for each of them, so it is important to
select appropriate computational resources suitable for the situations.

Trusted Mobile Platform
Software Architecture Description – Rev 1.00

46

8.1.1. Summary of Cryptographic API and Security Level

Security Level Security Class 1 Security Class 2 Security Class 3

TPM Usage for
Crypto

None Possibly used for
offloading main
processor

Possibly used for
accelerating Crypto-
related operations

Decryption keys in
memory

No protection Keys should be protected
through the use of
cryptography

Keys should be
protected through the
use of domain
separation and
cryptography

User
authentication

PIN Pass-phrase
PIN protected digital
signature

PIN protected
biometrics

Table 8-1 Cryptographic API with each Security Level

8.2. Required and Recommended Functionalities

This section describes the necessary functionalities for Trusted Mobile Devices in terms
of types of functions and security levels.

8.2.1. Symmetric Cipher

8.2.1.1. Algorithms and Modes of operation

Conformant Cryptographic APIs must implement symmetric encryption/decryption
functionalities including following algorithms and modes of operation.

1. AES with 128 bit key

A) ECB mode (optional)
B) CBC mode (required)
C) CFB mode (optional)
D) OFB mode (optional)

2. 2-key Triple DES
A) ECB mode (optional)

Trusted Mobile Platform
Software Architecture Description – Rev 1.00

 47

B) CBC mode (recommended)

This specification does not inhibit support for cryptographic algorithms other than
those listed above. This specification does not mandate any type of stream cipher as
an implementation option. However, it is strongly recommended that conformant
Cryptographic APIs should contemplate criteria for their choice about algorithms.
Possible criteria are listed below.

Algorithms: Chosen algorithms should have been exposed to public peer review.

An implementation may use algorithms without such review, (e.g.
private algorithms that are not published) if it clearly states this
in its documentation.

Key’s entropy: It is desirable to use algorithms that can support key lengths of at

least 128 bits. If a Cryptographic API provides weaker keys, it
should be noted clearly in its documentation

Stream ciphers: If a Cryptographic API introduces stream ciphers, it should make

certain that weaknesses inherent to stream cipher are effectively
mitigated. Possible weaknesses include:

• Using the same key more than once.
• The possibility of modifying plain text in a controlled manner by exclusive
or-ing of artificial bit strings to the cipher text.

8.2.1.2. Key Generation

For key generation in symmetric ciphers, it is required that the implementation uses a
cryptographically strong pseudo/true random number generation algorithm.

8.2.2. Asymmetric Cipher

8.2.2.1. Algorithms and constructions

Conformant Cryptographic APIs implement asymmetric encryption/decryption
functions including the following algorithms and constructions.

1. RSA encryption and signature

Trusted Mobile Platform
Software Architecture Description – Rev 1.00

48

A) RSA-OAEP for encryption (a la PKCS#1 v2.1) (recommended) [PKCS]
B) RSA-PSS for signature (a la PKCS#1 v2.1) (recommended) [PKCS]
C) PKCS#1 v1.5 (required) [PKCS]

− Mainly used for backward compatibility with legacy implementations.
Necessary for mitigating Bleichenbacher attack by using all the predetermined
byte values for sanity check

2. DH key agreement (recommended) [DH]
3. ECDH key agreement (optional) [ECDH]
4. DSA signature (recommended) [DSA]
5. ECDSA signature (optional) [ECDSA]

Conformant Cryptographic APIs may implement asymmetric algorithms other than the
ones listed above with discretion. The documentation should clearly state the fact and
describes the rationale for the selection.

Note: Support for PKCS#1 v1.5 is required because it is mandatory for TPM [TCGMain].
If the TPM supports RSA-PSS and/or RSA-OAEP, the platform must support RSA-PSS
and/or RSA-OAEP. It is recommended to support RSA-PSS and RSA-OAEP because
they are considered to be more secure than PKCS#1 v1.5.

8.2.2.2. Key length

Conformant Cryptographic APIs must support the following key lengths for each
algorithm as defined below.
• Algorithms based on the hardness of factoring must support 1024 and 2048 bit
keys.
• For algorithms based on the hardness of discrete logarithms over finite
multiplicative group, (e.g. DH and DSA) key lengths of 1024 bit must be supported.
Moreover, in the case of DH it is required that key length 2048 bit is supported.
• For the algorithms based on the hardness of discrete logarithm over group of elliptic
curves over prime fields, (i.e. ECDH and ECDSA) 160 bit key lengths must be
supported

These key lengths are selected so that they are not likely to be broken by cryptanalysis
for at least for several years. However, there always potential threats that may result
from technological breakthroughs, such as invention of practical quantum computers.

Trusted Mobile Platform
Software Architecture Description – Rev 1.00

 49

When the occurrence of such an event becomes likely with high probability, these
criteria should be reconsidered. Also, these criteria should be reconsidered
periodically as state of the art cryptanalysis technology improves.

Restrictions or limitations on importing, exporting and using cryptography remain an
issue in some parts of the world. Depending on the locale and region, it may prove to
be a difficult to build, sell and or use the TMD. Please reference your region’s
cryptographic export regulations/law (for example http://www.bxa.doc.gov/ for US
export regulations/law). Under the assumption that the provider for Cryptographic API
wishes to provide equipments conformant to such cryptographic restrictions and or
regulations; it is acceptable to use a weaker form of cryptographic functions. The
implementer will need to keep in mind that this will make the platform much weaker
cryptographically. However the fact should be stated clearly in its documentation for
such cases.

8.2.2.3. Key generation

For key generation in asymmetric ciphers, it is required that the implementation use
cryptographically strong pseudo random number generation algorithm. Moreover, it
is recommended that RSA key pair generation meet the following criteria:
• Prime numbers P and Q have same bit length. (e.g., 512 bit in case of 1024
bit-length key.)
• The values of P and Q are not close to each other.
• Both P and Q are such that either P-1 or Q-1 does not have too many factors.

8.2.2.4. Optimizations

Conformant Cryptographic APIs should incorporate common optimization techniques
for multi precision integer arithmetic operations such as:
• Power optimization for most algorithms
• Optimization based on CRT, especially for RSA private key operation

Optimization is necessary because a TMD tends to use less powerful processors relative
to ordinary PCs to conserve power. Moreover, it is strongly recommended to
implement countermeasures that mitigate side channel attacks such as a ‘timing
attack’, wherever possible. One possible example of such countermeasures is blinding

Trusted Mobile Platform
Software Architecture Description – Rev 1.00

50

for powering operation. Since blinding makes overall performance worse in some
degree, but effectively protects them from ‘timing attack’. It is worthwhile to consider
incorporating such mechanisms into one’s Cryptographic API implementation.

8.2.3. One-way Hash Function and MAC
Conformant Cryptographic APIs must implement the SHA-1 hash algorithm and
HMAC algorithm using SHA-1 and at least a 128 bit long shared secret.
Cryptographic APIs should implement MD5 hash algorithm and HMAC algorithm with
MD5 for backward compatibility to legacy implementations. However some
conformant cryptographic APIs may implement hash algorithms and MAC algorithms
other than those listed above, though documentation should clearly states that such
algorithms may lack sufficient peer review and might be subject to attack.

8.2.4. Pseudo Random Number Generator (PRNG)
Conformant Cryptographic APIs must provide a cryptographically strong pseudo
random bit stream generation facility. It is recommended that the PRNG uses truly
random data, e.g. thermal noise, as the source for the pseudo random number
generation function. In a Security Class 2 or Class 3 Trusted Mobile Device, the
TPM’s random number generation function may be used as the random number source.

8.2.5. Higher Level APIs
In addition to the basic APIs listed in the preceding sections, it is desirable for users if
the API provides not only basic functionalities, but also APIs for higher level functions.
It is possible to build complex operations based on primitive functions, but this
approach is cumbersome for application programmers and might be error-prone. It is
recommended that Conformant Cryptographic APIs provide those higher level APIs for
application programmers. Examples of such higher level APIs are:

1. APIs for handling SSL/TLS functionalities
• Opening SSL-protected session

o Algorithms negotiation
o Sending, receiving, and verifying digital certificates
o Exchanging shared secrets

• Raising a normal session to a SSL-protected one by means such as
sending STARTTLS command in ESMTP or using upgrade mechanism

Trusted Mobile Platform
Software Architecture Description – Rev 1.00

 51

in HTTP/1.1
2. APIs for Managing digital certificates

• User enrolment to CA through certain protocols
o Certificate Signing Request (PKCS#10)
o Certificate Management Protocol (CMP)
o Simple Certificate Enrolment Protocol (SCEP)

• Retrieving own/other’s certificates
• Renewing certificates
• Revoking certificates

3. APIs for secure messaging
4. APIs for IPSec
5. APIs for Web Service Security

8.3. Language Bindings

Conformant CAPIs must provide its associated functionalities listed above by utilizing
software development languages like C and or Java. It is also recommended such
implementations should also provide C++ API. Conformant CAPIs may provide other
languages bindings at the implementers’ own discretion.

8.4. Hardware Support

In the case of Security Class 2 or Class 3 implementations, it is expected that TPM
incorporated into the platform provide several cryptographic capabilities with
hardware level. UICC is another candidate for providing cryptographic functionalities
to the platform. In such cases, it is desirable for a CAPI to provide a means to take
advantage of such hardware-based capabilities for cryptographic operations. However,
the actual realization mechanism is left to the implementers. Possible
implementation methods are:
• To provide a discrete function name for each hardware-driven cryptographic
functions.
• To provide an abstract layer, e.g. Microsoft’s Cryptographic Service Provider (CSP),
this can be dynamically selected during execution.
• To provide functionalities through device driver abstraction, which are adopted by
OpenBSD

Trusted Mobile Platform
Software Architecture Description – Rev 1.00

52

However, there should be enough contemplation before trying to use TPM or UICC as a
kind of off loader for main processor or accelerator for cryptographic operations. The
discrete TPM tends to be connected to memory or other resources in the platform with
narrower bus than that of the main processor and UICC may either be the same or in a
worse situation. Moreover, pure performance of the processor in TPM or UICC itself
tends to be far less powerful than that of the main processor. However, hardware
support can include an embedded TPM module. The embedded TPM will not have the
bus interface problems noted for the discrete TPM, and will likely have dedicated
hardware that will allow it to execute algorithms comparable to the CPU. In addition,
the overall security of the platform can be enhanced if the security processing is
conducted inside a secure boundary where keys are not exposed. So it is quite likely
that the overall performance of the platform would be better when all the crypto-related
operations are done only with the main processor on the platform.

References:
[NSA] "Cryptographic API Recommendation", National Security Agency (NSA Cross
Organization CAPI Team) - June 12, 1995

Trusted Mobile Platform
Software Architecture Description – Rev 1.00

 53

9. TPM Support Software (TSS)

9.1. Overview

TSS is a software stack that allows applications to communicate with the Trusted
Platform Module (TPM) in the TMD. It provides an API that exposes the functionality
provided by the TPM, namely Authentication, Authorization, Protected Storage and
Attestation. It also provides an interface for utilizing the TPM as a hardware-based
cryptographic service provider. This allows applications to use the TPM to generate
keys, encrypt/decrypt, sign etc. The TSS provides synchronized access for applications
consuming the services of the TPM. Additionally, the TSS manages TPM resources.
This section is based on the TSS specification developed by the [5] working group.

9.2. TSS Requirements

• Should provide applications a common standard interface independent of the TPM’s
hardware implementation.
• Should provide an interface for applications to use the TPM for cryptographic
operations, sealed storage and attestation. In addition, the TSS should provide
support for TPM ownership/administrative functions.
• Should not be possible to invoke TPM trust services by bypassing the TSS.
• Should manage the TPM hardware resources in a manner transparent to the
applications.
• Should provide logging/auditing services for TPM events.
• In addition to the TPM-based cryptographic support, the TSS should also provide
means for integrating industry standard cryptographic service providers.

9.3. The TPM

The Trusted Platform Module (TPM) is a secure hardware subsystem as defined by the
Trusted Computing Group (TCG), formerly Trusted Computing Platform Alliance
(TCPA). The TPM is permanently attached to the platform and serves as a

Trusted Mobile Platform
Software Architecture Description – Rev 1.00

54

hardware-based root of trust. The TPM h/w provides cryptographic functionality like –
RNG, hashing, HMAC, Asymmetric Key Generation, Asymmetric
Encryption/Decryption etc. It comprises of 160-bit Platform Configuration Registers
(PCRs) to hold the results of a SHA-1 operation. The TPM has at least 8 such registers
and are used to record the results of software integrity measurement during trusted
boot.

9.3.1. Authorization Protocols
The authorization protocols are used to authorize the use of TPM or authenticate the
entity using the TPM. They are based on the rolling nonce model. The two main
protocols are Object Independent Authorization Protocol (OIAP) and Object Specific
Authorization Protocol (OSAP). OIAP allows authorization of any TPM object after
acceptable proof of authorization for each TPM object is presented. OSAP allows an
authorization session to be established only with a specific TPM object. Multiple
commands can be sent to the TPM as long as they involve a specific TPM object and the
proof of authorization has to be presented only once.

9.3.2. Protected Storage
A TPM has limited amount of non-volatile storage used for storing TPM unique keys, a
storage root key (SRK), ownership related data, flags for configuring the TPM etc. The
TPM uses the storage root key to encrypt the rest of the keys and data which can then
be stored in bulk storage. In addition, the TPM provides the capability to seal keys or
data to the software integrity measurement value stored in the PCRs. Sealed data can
be unsealed only if the platform is in the specified state. For example, a secret can be
sealed to a specific version of an operating system. That secret is released or unsealed
only when the platform has booted the specified operating system and it has not been
tampered.

9.3.3. Attestation
Attestation is a process by which a platform reports its software environment to a
challenger seeking to evaluate its trustworthiness. When a platform receives such a
request, the TPM signs the integrity metrics recorded in the PCR during trusted boot
and reports it back to the challenger. The TPM uses an Attestation Identity Key (AIK)
to sign the hash values stored in the PCRs. The Certificate Authority (CA) issues the

Trusted Mobile Platform
Software Architecture Description – Rev 1.00

 55

AIK. Upon receiving the attestation record from the platform, the challenger verifies
the signature, thus authenticating the platform. It then verifies the reported integrity
data and makes a trust decision. Thus, attestation allows an entity to determine if the
software environment in a platform has been compromised before engaging in any
further transactions.

9.4. TSS Stack

As shown in Figure 9-1 TSS Stack, the TSS stack is comprised of TPM device drivers,
TSS core services (TCS) and the TSS service provider (TSP). The TPM device driver is a
hardware specific driver typically provided by the TPM vendor. The device driver
library interface provides a common standard TPM interface for all the applications.
TSS Core Services (TCS) provides the infrastructure required to manage keys and
credentials, serialization of commands to the TPM, and context, event & audit
management. Applications communicate to the TCS using the TSS Service Provider
(TSP) layer. The TSP is the topmost component in the stack and provides TPM services
for applications.

Trusted Mobile Platform
Software Architecture Description – Rev 1.00

56

Figure 9-1 TSS Stack

9.4.1. TSP
The TSS Service Provider (TSP) module provides an API to applications using the TPM.
The TSP hides the management of TSS related authorization sessions from the calling
application by initiating required authorization sessions and handling all internal data
for the session. The availability of existing general purpose Cryptographic
Infrastructure (e.g. CDSA, MS-CAPI, and PKCS #11) can be integrated into the TSP,
hence providing applications with services, which might not have otherwise been
available from the TSS. The Cryptographic Service Provider (CSP) is integrated within
the TSP, therefore applications can choose to use either the cryptographic service
provided by the TPM or use the service available from the integrated Cryptographic
Service Provider.

9.4.2. TCS Components
The TCS provides a common set of services required for managing the TPM in a TMD.

Trusted Mobile Platform
Software Architecture Description – Rev 1.00

 57

There is typically one TCS per platform. It communicates with the TPM via the device
driver library.

9.4.2.1. Key and Credential Manager

This TCS module manages the user and platform keys and credentials. The key
manager facilitates the definition and management of a flexible persistent key
hierarchy, which allows different key hierarchy structures (e.g. deep key hierarchy,
shallow key hierarchy, etc.) to be managed. The credential manager facilitates access to
the different platform credentials stored in the system.

9.4.2.2. TCS Key Manager

The TCS Key manager provides support for defining a key hierarchy rooted in the
storage root key (SRK) in the TPM. All keys are registered in persistent database and
assigned a UUID. The keys are referenced and retrieved using the UUID.

9.4.2.3. TCS Key Cache

The TCS key cache provides a mechanism for managing the limited physical storage in
the TPM. The key cache provides virtual storage for keys so that applications don’t
have to be concerned about storage capacity of the TPM. The key cache is responsible
for loading and unloading the appropriate keys in the TPM, thus ensuring that correct
key is in the TPM when the application is ready to use it.

9.4.2.4. TCS Credential Manager

The TCS Credential Manager manages the different platform credentials associated
with the TMD. TCS might mandate the use of access control for applications to retrieve
these credentials, hence alleviating privacy concerns.

9.4.2.5. TPM Parameter Block Generator

Since the TPM is a serial device, there has to be functionality in the TSS to multiplex
simultaneous requests for resources from different services/applications to the TPM.
The TPM Parameter Block Generator is responsible for this functionality, and does so
by serializing, synchronizing, and processing TPM commands. As part of its

Trusted Mobile Platform
Software Architecture Description – Rev 1.00

58

serialization, it will build byte streams for input to the TPM, and process byte stream
output from the TPM.

9.4.2.6. Context Manager

The Context Manager in the TCS is responsible for assigning dynamic handles that
allow for efficient usage of both the application and the TCS’s resources. Hence, each
resource that a calling application can work with will be assigned to a certain context
represented by a handle within the Context Manager. Each handle will provide context
for a set of interrelated TPM operations. Different threads within the application may
share the same context or may acquire separate contexts per application.

The Context Manager is also useful for allocating memory in the TCS, which will be
provided to the calling application (either external or internal to the TCS) on demand
and will be assigned a certain context within the Context Manager.

9.4.2.7. Event Manager

This component of the TCS manages PCR events associated with respective PCRs.
The hash value recorded in a PCR is not by itself very meaningful. The TCS event
manager maintains an event log that describes the event that was measured, the hash
value and the order in which the events occurred. The event manager allows access to
a challenger so that the cumulative hash value reported by the TPM via attestation can
be interpreted.

9.4.2.8. Audit Manager

The TPM generates an audit event in response to the TPM executing a function that
has the audit flag set to TRUE for that function. The TPM also maintains the details for
the last audit event in a log, and keeps track of all events that occur after TPM
initialization. There are two portions of the log, an internal value kept by the TPM, and
the external log of values that reflect the internal state. The TCS Audit Manager will be
responsible for supporting this functionality of the TPM. Also, the Audit manager will
support TPM mechanisms for re-synchronizing the internal and external logs.

Trusted Mobile Platform
Software Architecture Description – Rev 1.00

 59

10. User Authentication
User authentication is a process to establish the validity of a user and if they are who
they claim to be. Typically the method is via some challenge-response request that the
user must satisfy: if the user is the individual they claim to be, the user must then
enter their password. Not all authentication methods are of this type, there are also
hardware based authentication implementations (such as the use of pin-code and
biometric devices), with suitable modules, which may be substituted seamlessly for
more standard approaches for user authentication on the Trusted Mobile Device.

Trust in a mobile device is established at several layers. In order to establish trust
between the mobile device, network operator and other trusted third parties, proper
user authentication and identification mechanism is necessary. Efficient use of the
security policy is necessary in identifying a trusted source. Implementation of user
authentication on the Trusted Mobile Device allows proper authentication between the
user and the service. The service operator also has the obligation to identify that it is
a trusted source. The process of establishing trust between the TMD and the service
provider is defined in Section 8.3.4 – Mutual Authentication of [9].

This section will discuss how a user can be authenticated on a Trusted Mobile Device.
The following subsections will discuss several hardware and software based
authentications methods.

"What you know" Password and pass-phrases
"What you have" Tokens: physical keys and USIM
"What you are" Static biometrics: fingerprint, iris, face, etc
"What you do" Dynamic biometrics: voice, signature, etc.

Table 10-1 The four principal forms of Authentication are:

These four principle methods of user authentication and authorization are the
cornerstones of any well-implemented security policy. Since simple passwords are
rarely sufficiently strong, developing and designing a comprehensive strategy that
includes strong user authentication methods is imperative.

Trusted Mobile Platform
Software Architecture Description – Rev 1.00

60

.

10.1. Identifying the User

Attestation plays a key role in user authentication on the TMD. The process involves an
Attestation Identity Key (AIK), which proves the identity of the platform and the user
while protecting the user privacy. Only the TMD owner can create an AIK by
generating a RSA key pair and requesting an identity certificate from a trusted third
party called the Privacy CA. The Privacy CA verifies the request, generates an identity
certificate and returns it after it encrypt the message by the public key of the
Endorsement Key of the requesting platform, so the only the genuine TMD can
decrypts the response. A user needs to present the authorization secret of the AIK
(which is presumably passed from the TMD owner to a user, if they are different
individuals) to use the AIK to conduct attestation. The TMD must provide a mechanism
to authenticate the user against TPM before executing operations that use AIKs. The
communication protocols for requesting AIKs and exchanging attestation are defined in
Section 5 of [9].

10.2. Identifying the Owner

The TMD owner needs to declare the ownership of the platform by the
TPM_TakeOwnership operation before using features of the TPM. The operation
creates the Storage Root Key (SRK), and returns the owner authorization secret as well
as the SRK authorization secret. The TMD owner must be properly authenticated
before owner specific TPM operations are conducted. The TMD owner or user must be
authenticated against the SRK authorization secret before accessing the protected
storage.

Trusted Mobile Platform
Software Architecture Description – Rev 1.00

 61

10.3. Authentication module API

TPM UICC

(1)

(3)
(4)

Network
Operator

Owner

Trusted Mobile
Platform

Service Providers
(2)

Figure 10-1 Possible authenticating parties

Authentication of the Trusted Mobile Device involves several entities as shown in 10-1
(Possible Authenticating Parties). Possible authenticating pairs are as follows:

• Between the network operator and subscriber
• Between the service provider and consumer
• Between the user and the equipment
• Between the owner and TPM

As shown in Figure 10-1 (Possible Authenticating Parties), one authentication method
between a network operator and a subscriber is done via the USIM, an application
stored within the UICC, and the network operator while establishing network
connection. This mechanism is defined by network architectures such as 3G and is
independent of the current Trusted Mobile Platform specification. Therefore this
document leaves this first method uncommented. For more information regarding
case two, please reference the Protocol Specification Document [9].

Trusted Mobile Platform
Software Architecture Description – Rev 1.00

62

10.4. Authentication between owner and TPM

Conformant Cryptographic APIs must implement authentication functionalities
between the owner and the TPM if the platform supports TPM. The TPM supports
two challenge-and-response-based authentication methods called OIAP (Object
Independent Authorization Protocol) and OSAP (Object Specific Authorization Protocol)
[TCG]. Both of these protocols must be supported.

10.5. PIN-Code

PIN code entry is probably the easiest way to authorize the user to their mobile device.
PIN codes rely on user memorization of at least a four to seven digit PIN code. The
PIN code entry can be registered at the time of mobile device provisioning to the user,
and it should be changed every 4-6 months. There is a security risk associated with
PINs since the PIN code can be cracked through brute force attacks. It is
recommended that if the manufacturer uses PIN code for user authentication, then it
should be used in combination with another stronger form of user authentication, such
as biometrics or a pass phase.

In the process of registering and/or changing the PIN code, the PIN will be registered
with the TPM and/or the device’s secure operating system. The AIK will not be
effected in anyway since it is only used to reference the mobile unit’s locality
identification. The network operator and the TPM will properly register the new PIN
code and/or future changes to a pin code. It is recommended that a secure utility
application be provided for client management to allow changes to the user PIN.
Changes to the PIN must be updated with the network operator.

10.6. Biometrics

The ever-growing use in using biometric based technology as a security method has
increased in recent years. As mentioned and described in the Trusted Mobile Platform
Hardware Architecture Document (HWAD), several industries have recently stepped
up efforts in increasing the security of password based identity and migrating to
biometric solutions. Methods of biometric use-cases have introduced physical access

Trusted Mobile Platform
Software Architecture Description – Rev 1.00

 63

control, spanning to small mobile devices. A well designed biometric implementation
is fundamental in maintaining a trustworthy computing base. Biometric systems
must ensure the following basic attributes to maintain a trustworthy session:

• Biometric information must come from a “live” person at the time of user
authentication and verification.
• Biometric information matches the master biometric data on file.

The integrator must understand the user point of view and always establish trust, that
he or she is using an “authentic” and trusted biometric system. The integrator must
also assess that in many real-life applications, a user may want to retain privacy when
accessing a service with biometric authentication.

Based aforementioned integration issues above, this section will also discuss possible
threats, requirements and provide a detail solution for both biometric system integrity
and biometric data protection. This solution makes use of an extension of [5]
technology; and ensures that an unauthorized entity is not able to access sensitive
information during biometric authentication.

10.6.1. Existing Biometric Authentication Technology

Today the existing biometric technologies have two procedures that are widely used in
identification verification by biometric systems:
• Enrolment. A method that the biometric unit captures biometric code (BC) (an
individual’s biometric information) as a sort of registration template.
• Matching. Biometric Data (BD) (recently captured biometric information) is
compared to the BC, to decide whether or not it matches.

Biometric implementation techniques vary depending on the vendor. The BC and BD
will vary from fingerprint, and hand geometry to voice, retina, face and behavioural
characteristics according to the biometric techniques used by the vendor. [DaFrMa98],
[IEEE00], [JaRoPr98], [Rat99] and [Way98].

Since this section does not focus on any particular biometric technique, it only will

Trusted Mobile Platform
Software Architecture Description – Rev 1.00

64

discuss the protection of biometric information and check integrity of the whole system,
based on a typical user authentication model. As shown in Figure 10-2 (Biometric
enrollment and authentication process) shows an example of letting a valid user access
a computing platform, by involving three entities: Smart Card (SC) / SIM – holding the
user BC, a Biometric Reader (BR) collecting the user’s BD and the accessed computing
platform running the matching process. This model is different from the existing
biometrics with smart card technology, such as [BoRe95] and [Sei86], because it
combines user authentication with integrity checking of the platform and Biometric
Reader.

Figure 10-2 Biometric enrollment and authentication process

10.6.2. Possible Threats

When implementing a [5] biometric compliant trusted mobile device, the implementer
must keep in mind the possible threats regarding biometric data protection and
systems integrity. These threats have been addressed in [ChPeVa00]:

1. Interception of communications between the SC and the Trusted Platform. If the

BC is sent in clear text or protected weakly, an eavesdropper could obtain the BC by
listening in on communications between the SC and platform. This is a particular

Trusted Mobile Platform
Software Architecture Description – Rev 1.00

 65

problem if the SC communicates with the platform over public networks, because
the platform is not located locally to the user.

2. Interception of communication between the Trusted Platform and the BR. If the
BD is sent in clear text or protected weakly with mere scrambling on the line, an
eavesdropper could obtain the BD by monitoring communications between the BR
and platform. Again this is a particular problem if public networks are involved in
the communications.

3. Malicious BRs. A malicious BR is able to record the BD of a user, and a malicious
BR is able to send a fake BD of a user. Malicious code alters the state of the
biometric reader.

4. Malicious platform. A malicious platform can obtain both the BC and BD of a user
and of course a malicious platform can give a fake result of the user authentication.

10.6.3. Trusted Biometric System Solution Example
The proposed solution in this subsection is an example of establishing a trusted
relationship among a SIM (SC), a Trusted Biometric Reader (TBR) and the trusted
mobile platform. This trusted relationship among the user, BR and the trusted mobile
platform demonstrates means of storing a version of the biometric comparison software.
The solution allows two options in implementation. The first option allows the storing
of biometric comparison software within the TPM. The second option allows a version of
the biometric comparison software signed with a trusted third party, with the private
keys stored within the platform, and the third party’s public key certificate is verifiable
to the TPM. Alternatively, the implementer can add extra feature sets of the existing
standard TPM by adding an authentication function, (e.g., the ability to verify a digital
signature based on its public-key certificate and a biometric matching function) with
the option to extend some trusted software that can interoperate with the standard
TPM, with such trusted software. Since the nature of the TPM executes upon boot
time: the biometric comparison software is checked for integrity with the reference to
the signed version and the third-party public key certificate ; and if the integrity check
fails, the biometric comparison software would be prevented from loading. If the
integrity check fails, it may be arranged that the complete platform integrity check
fails.

As shown in Figure 10-2, the transaction between TPM, SC and BR; the BC is stored in

Trusted Mobile Platform
Software Architecture Description – Rev 1.00

66

the SIM (SC) and is transferred into the TPM during the authentication procedure.
Or another alternate method is to have the BC centralized and stored (for example in
the TPM) in order process administration quickly. In the later case, the SC would
still be used for integrity checking purpose. Although in certain hostile environments
a BR “maybe”, potentially untrustworthy and so there is an option for the TPM to
require authentication with the BR and additional integrity check at the hardware
level. The SC should be able to check the integrity of both the platform and also the
BR (via the TPM). The TPM would then be able to perform integrity tests onto the
platform, and the stored value of the BR integrity would be apart of the authentication
protocol. Upon signing on using the SC, the mutual authentication between the TPM
and the SC would check the integrity of the TPM, before proceeding further. This
method can be combined with an additional integrity check by the TPM onto the BR.
The BC would then be transferred from the SC to the TPM, which is protected via the
Trusted I/O or through the use of encryption. Optionally, comparison software is also
sent from the SC to the TPM. The TPM authenticates the BR and or authenticates to
the TPM and the certificates are exchanged. This method should be left optional for
the implementer because the BR may only have integrity check-related information or
a serial number and may not have the cryptographic functionality needed for
authentication purposes. The SC and BR have no direct communication link in
general, therefore it does not authenticate directly. After the user is satisfied with the
TMD’s trustworthy state, the user would then apply user’s finger onto the fingerprint
sensor (or equivalent in other biometric methods). The BD is then sent from the BR to
the TPM. The method of communications is protected via the Trusted I/O or through
the use of encryption. The TPM then makes a comparison between the BC and BD to
see whether if the BD matches with the data that is registered with the TPM. The
TPM can then report the findings to the user directly via the display, or to the SC,
signed using the TPM’s private signing key. Reporting these findings to the SC could
prove to be useful if it is desired that the SC should release certain secret information
only when it has been determined that the user is the valid owner of the SC.

10.6.4. Trusted Biometric System Summary
Based on the solution given to the above subsection, biometric authentication can be
carried out, as follows:
• Mutual Authentication between the trusted mobile platform and the SIM (SC) and
optionally with the BR. The SC would then verify the integrity of the given trusted

Trusted Mobile Platform
Software Architecture Description – Rev 1.00

 67

mobile device and the biometric reader (BR). The integrity checking process allows
and ensures that the TPM has a good record of the trusted mobile device and the
biometric reader state (e.g., composition and current environment).
• The SIM (SC) allows the user to see that the TPM authentication and the platform
and BR integrity checking has been successful (based on the methods discussed in
[BaCHChPePr002]).
• The TPM authenticates the SIM (SC) identity and obtains the biometric code (BC)
from the SIM (SC).
• The biometric reader (BR) takes the biometric device (BD) and negotiates with the
TPM in a secure manner using a symmetric key, to validate its authenticity.
• The TPM compares the biometric device (BD) and the biometric code (BC) by using
a biometric algorithm. Under the assumption that the information does match,
according to the previously defined user threshold – the TPM will allow the user to log
into the trusted mobile device (TMD) and access the appropriate services. (This user
defined threshold is dependent upon the type of biometrics used in authentications and
its associated applications involved in the process.)

10.6.5. References

[BaChChPePr002] B. Balacheff, D. Chan, L. Chen, S. Pearson, and G. Proudler.
Securing smartcard intelligent adjuncts using trusted computing platform
technology. In the Proceedings of IEIF Fourth Smart Card Research and
Advanced Application Conference (CARDIS 2000), pp 177-195, Bristol, UK,
20-22 September 2000.

[BoRe95] E. Bovelandar and R.L. van Renesse. Smart cards and biometrics: an
overview.

In the Proceedings of the 12th World Conference on Computer Security,
Audit and Control, 1995.

[ChPeVa00] L. Chen, S. Pearson, and A. Vamvakas.

On Enhancing Biometric Authentication with Data Protection. In the
Proceedings of the Fourth International Conference on Knowledge-Based
Intelligent Engineering Systems & Allied Technologies, pp 249-252, IEEE,

Trusted Mobile Platform
Software Architecture Description – Rev 1.00

68

2000.

[DaFrMa98] G. I. Davida, Y. Frankel and B. J. Matt.

On Enabling Secure Applications Through Off-line Biometric Identification.
In the Proceedings of 1998 IEEE Symposium on Security and Privacy, pp
148-157, 1998.

[IEEE00] Special Issue on Biometrics, Computer, Vol 33, No 2, IEEE, February 2000.

[JaRoPr98] A.K. Jain, A. Ross and S. Prabhakar.

Biometrics-based web access. MSU Technical Report TR98-33, 1998.

[Rat99] N.K. Ratha et al..
A biometrics-based secure authentication system. In the Proceedings of IEEE
Workshop on Automatic Identification Advanced Technologies, pp 70-73,
1999.

[Sei86] S. Seidman.
Biometrics and smart cards combine to offer high security. Journal of
Nuclear Materials Management, vol 15, pp 143-145, INMM Annual Meeting,
1986.

[Way98] J.L. Wayman.
A generalized biometric identification system model. In the Proceedings of
the 31st Asilomar Conference on Signals, Systems and Computers, pp
291-295, 1998.

10.7. User Authentication Consideration Points

The use of a fingerprint authentication and a pin code is an excellent authentication
model for identifying both the mobile device and user. The TPM would manage the
finger print’s mathematical code, and bind/associate it with the AIK. This information
would be one of two keys needed to access the TMD. The other recommended method
along with the use of biometrics is pin code and/or a SIM/USIM. All of the users
authenticating information would be encrypted and managed by the TPM within the
secure domain. It is recommended that an alternative form of authentication be

Trusted Mobile Platform
Software Architecture Description – Rev 1.00

 69

provided at all times, allowing the possibility of a fallback method for authentication.
There may be damage to the biometric device or the biometric device may not function
properly in a hostile environment. In either case, device management should allow
the user to specify the preferred level of security.

Trusted Mobile Platform
Software Architecture Description – Rev 1.00

70

11. Trusted User Interface
Security Class 3 level TMD’s have an option to provide a Trusted User Interface (TUI)
that enables secure interactions between a user and a device, including the security
elements inside of the device (e.g. TPM, Smart Card, or SIM/WIM). The input/output
interface between the user and the Trusted Mobile Device should be protected or
hidden from interception, observation, and hacking. This section describes the Trusted
User Interface from the software architecture point of view. Also please refer to the
‘Trusted I/O section in “Trusted Mobile Platform Hardware Architecture Description”
[TMP-HWAD], since this discussion is tightly linked to the user interface devices.

The requirements for the user interface of the TMD are as listed below:

• The Trusted mobile device shall be able to display a trusted message on the screen or
display (for Security Class 2 and Class 3 devices).

• The Trusted mobile device shall provide security mechanisms that ensure that trusted
messages are accurately and completely displayed. Security mechanisms to be employed
may include hashing the message to be displayed and/or encryption of the message that
will be displayed (for Security Class 3 device).

• The Trusted mobile device shall provide an indicator, referred to as a Trusted Mode
Indicator (TMI), activated by a Trusted Mode Manager (TMM) when the displayed
message is trusted. The indicator must be activated (turned on) when the trusted mode is
entered and deactivated (turned off) when the TMP leaves the trusted mode and enters the
un-trusted mode of operation (for Security Class 2 and Class 3 devices).

• The default state of the TMI shall be the deactivated mode (for Security Class 2 and
Class 3 devices).

• The Trusted mobile device may provide security mechanisms that ensure that trusted
input (i.e. from a keyboard) is received by the TMD without any modification, deletion or
addition to the input data stream. Security mechanisms to be employed may include
hashing or encryption of the message or data being input (for Security Class 2 and Class 3
devices).

Trusted Mobile Platform
Software Architecture Description – Rev 1.00

 71

• The Trusted Mobile Device shall preclude the possibility that trusted information being
displayed or trusted data from an input device can be copied and replayed to impersonate a
valid user or message (for class 1- and class 2 security devices).

The Trusted mobile device has a special output device referred to as Trusted Mode
Indicator (TMI). TMI is directly controlled by the Trusted Computing Base (TCB) or the
Trusted GUI Manager and securely reports the operating state of the device to the user.
Generally, the Trusted mobile device has some sort of bitmap display unit, i.e. a
General purpose Display Unit (GDU), and input devices. If the GDU and input devices
are used by an application via an un-trusted GUI Manager, it is difficult to confirm the
legitimacy of the messages displayed to the user. The TMI solves this problem. The user
can easily evaluate the trustworthiness of such messages by means of the TMI. The
look and feel of the user interface is also important for trustworthiness. The user
interface should use an intuitively recognizable universal ergonomics design since the
user of the device will not in general be a computer security specialist.

11.1. Trusted Mode Manager and Indicator

The Trusted User Interface (TUI) must indicate the trustworthiness of the user
interface. Here we present two example architectures to achieve this requirement. The
first architecture is when the TUI is provided by a Trusted GUI system. The second is
when the GUI system on the device does not have sufficiently trustworthy features to
be a Security Class 2 or Class 3 TMD, and then the TCB must provide a trusted GUI
system.

11.1.1. With Trusted GUI
If the device supports a Trusted GUI System, an additional indicator which shows the
trustworthiness of the device may not be needed since a GUI system has a dedicated
and trusted screen region for this purpose (see Fig 11-1). The Trusted Mode Manager
(TMM) will also control the mode of the user interface, either trusted or normal. The
TMM may be a part of a trusted GUI system or TCB. A trusted GUI System must
support following features:
• Trusted region:
The trusted region is managed by the TMM and displays the operating mode of the

Trusted Mobile Platform
Software Architecture Description – Rev 1.00

72

device. The application screen can’t override this trusted region. In trusted operation
mode, the application region is also used by TMM to establish trusted interaction with
the user.
• Labeled windows/applications:
Each window has a (domain) label and is displayed in the trusted region for ease of
recognition by the user. An icon image in a trusted region may represent the label.
• Trusted Path:
This is an individual interface path managed by the Trusted GUI System, so other
applications cannot interfere with this interface.
• Access Control.
 A Mandatory Access Control Policy controls the use of the GUI system.
• Integrity.
The Trusted GUI System is a part of the TCB. This must be verified using a [5] Trusted
Boot or Code Signing.

Figure 11-1Trusted GUI System Architecture and screen example

11.1.2. With Un-trusted GUI
Figure 11-2 shows an implementation example of the Trusted User Interface working
with an un-trusted GUI library. The Trusted Mode Manager (TMM) within the TCB
boundary manages the modes of the device operation, Trusted Mode or Normal
Operating Mode. In normal mode, the un-trusted GUI library manages the frame buffer.

Trusted Mobile Platform
Software Architecture Description – Rev 1.00

 73

If a malicious application provides a false user interface, it is difficult for a user to
detect.

The TMM and TMI eliminate this kind of threat (Figure 11-3). If an application wants
to start a trusted communication with a user, the application sends a request to the
TMM. Then the TMM activates its own trusted GUI on the GDU in place of the
un-trusted GUI library, and at the same time the TMI indicates the Trusted Mode state.
The application supplies messages to be displayed and requests actions from the user,
such as password entry, confirmations, and selections. Additionally, the TMM checks
the domain information and reports on the legitimacy of the requested application to
the user. The TMM also supports trusted connections between remote services. A
later section provides a further description of these connections.

Figure 11-2 Architecture of the Trusted User Interface with Un-trusted GUI System

Trusted Mobile Platform
Software Architecture Description – Rev 1.00

74

Figure 11-3 Behavior of the Trusted Mode Indicator

11.2. Operation of Trusted User Interface

This subsection describes the operations supported by the TUI.
• User Verification (e.g., PIN entry, PIN management)

− TPM Authorization. The Authorization Secret associated with a TPM key is
used for authentication between a user or service entity and the TPM, as
when a user logs into the domain using a Trusted Mobile Device. To achieve
this, the TMM supports the OIAP and OSAP protocols to create secure
connections with the TPM and protect the user’s Authorization Secret.

− PIN for the security element (e.g., Smartcard, SIM). The TUI must provide
a trusted path between the user and the security elements attached to the
device.

− GUI for Biometrics device.
− User authentication (e.g., Login to remote/local service). To access remote

entities, the TMM supports a security protocol to establish end-to-end
security between a user and a remote entity.

• Signing
• Display of certificate details
• Display of security parameters.
• Device lock and unlock.
• Display access history.
• Display a warning message to the user regarding the inappropriate use of the

Trusted Mobile Platform
Software Architecture Description – Rev 1.00

 75

device.

11.2.1. Biometrics
Biometric devices are an alternative input method and extend the usability and
security of the device. The TMM and the BioAPI framework should work together.
Figure 11-4 shows the architectural diagram of the BioAPI and TUI [BioAPI]. The
Biometrics Service Provider (BSP) has an optional GUI streaming call-back capability.
The BSP calls the trusted GUI function supported by the TMM through this call-back.
The Trusted Mobile Device that includes biometrics should support this capability.

Figure11-4 Block diagram of BioAPI and TUI

Trusted Mobile Platform
Software Architecture Description – Rev 1.00

76

11.3. Summary of Trusted UI and Security Levels

Security Class Class 1 Class 2 Class 3

Trusted Mode Indicator (or

Trusted Display Region)

No Yes Yes

Cryptographic mechanism for

protecting the integrated I/O

devices

No No (rely on device-level

tamper- evidence

package)

No (rely on device-level

tamper-resistance

package)

Cryptographic mechanism for

protecting the external I/O

devices

No Yes (if allowed to handle

sensitive data)

Yes (if allowed to handle

sensitive data)

BioAPI interface No Option Option

Trusted Mobile Platform
Software Architecture Description – Rev 1.00

 77

12. Provisioning / Device Management
 “Provisioning” and “device management” are used to initialize or update resources in a
Trusted Mobile Device, and retrieve information in a Trusted Mobile Device remotely.
In this nature, those are tightly linked with a security policy.

The basis of trust in the Trusted Mobile Device is an integrity measurement of software
components in a mobile device, and comparison between a predicted value and a
measured value. Updating software will require updating a predicted value as well.

Security Class 1 device includes trusted boot with an integrity measurement. But due
to its trust level, it is basically for a closed or semi-open platform. Provisioning and
device management will be done in proprietary ways in most of cases or limited to the
software in JVM that provides a security mechanism additionally

Security Class 2 and 3 devices must satisfy a set of requirements follows.

• Provide an authentication mechanism; the client or the server may send
credentials to each other or challenge the other to send them.

• Provide for the integrity of messages passed between a client and a server;
integrity is achieved by using HMAC (Hashed Message Authentication Code)
or similar way.

• Provide confidentiality of information being transferred; use of SSL/TLS is
encouraged

• Provide an access control mechanism along with an access control list (ACL).
The access to resources will be based on an ACL.

• Provide an interface to update a predicted value in a secure way

12.1. Functions included

“Provisioning” is to manage handset parameters centrally and update parameters and
software remotely. Parameters include telephone related information like roaming
lists, and the required information for the data communication like a mail server
address and a proxy server address. Typically, there are two types of provisioning.
One is an initial provisioning to bootstrap a device from an un-configured state to a

Trusted Mobile Platform
Software Architecture Description – Rev 1.00

78

provisioned state that is a normal operating mode. The other is continuous
provisioning to a device that is in a provisioned state. The example is to download new
software to provide a new service and set parameters properly.

“Device management” is the term mainly used in the IT world, and typically consists of
the following functions.

• Configuration management
− Configuration management is central management of the

configuration parameters of devices.
• Software distribution

− Software distribution includes an initial distribution of software,
update of software and un-installation of software.

• Software and hardware inventory management
− Inventory management is maintains information about the installed

software, parameters for software/hardware setting, hardware
vendor information including parts/serial number of a device, and
hardware configuration information such as memory size up to date.
This information will be referred by an administrator to distribute
new software or change parameters, or by a customer service to
identify the problem that a customer reports.

• Key Management
− Key management is defined as the generation, registration,

certification, storage, distribution, installation, usage, archiving,
deletion, recovery, and destruction of key material and related
structures and attributes in accordance with a security policy
[ISO7498-2, NISTIR-4972, ISO11770-1]. Further, ISO7498-2 regards
key management as part of Security Management, but does not
dictate where this functionality must reside in a system or protocol
stack.

• Notification (Alert)
− Notification works in two directions. One is a notification from a

server to a device sent via SMS and WAP Push [25], and the other is
a notification from a client to server to inform of either an error
condition or an alert threshold. A notification from a server is
sometimes combined with one of device management functions to

Trusted Mobile Platform
Software Architecture Description – Rev 1.00

 79

initiate it from a server, but is not part of device management. An
example of usage is to send a SMS to a device, invoke the device
management program in a device to start communication with a
server, and then update parameters. On the other hand, a
notification from a client to a server is part of device management.
This is for the early warning of an error to a network operator to
prepare for an appropriate action to a device.

• Logging (Error log/History log)
− Logging is relatively important in TMDs. Typically, logging

includes an error log and a history log such as an installation log of
programs. One additional important function regarding logging is a
history log to include any security related incidents such as an
unauthorized attempt of access important resources, any security
policy changes, any attempt to call APIs in TSS, etc. Those event
logs are stored in the device and retrieved from a server.

• Remote monitoring
− This function provides monitoring of key events, screen drawn,

program invocation, CPU usage, and others for remote diagnostics.
• Remote diagnostics

− The remote diagnostics is an advanced function of remote
maintenance to find the cause of errors remotely. The typical way
of remote diagnostics is to invoke a program, which is delivered from
a server or resides in a device remotely. This is totally device
dependent functions, and is provided by a device manufacturer.

In addition to those basic device management functions, with considering the unique
characteristics of mobile devices, an emergency shutdown mechanism is required for
devices that are lost or stolen. This mechanism will invalidate all essential
information and valuables in a lost or stolen device and restore them to another device
if invalidation is successful.

Another unique aspect is [5] related functions which is part of inventory and
configuration management. This is to retrieve values in PCRs remotely.

Trusted Mobile Platform
Software Architecture Description – Rev 1.00

80

Functions Provisioning Device Mgmt Mobile/TCG TMP Focus

Bootstrap * *

Configuration Management * * *

Software Distribution * * *

S/W and H/W Inventory * *

Key Management * *

Notification (Alert) *

Logging * *

Remote Monitoring *

Remote Diagnostics *

Emergency Shutdown * *

TPM Management * *

Table 12-1 Focused functions

Table 12-1 shows the functions to be focused by each category. A function marked with
an asterisk is a focused function. The rightmost column shows the functions to be
focused on by the Trusted Mobile Platform research. There are two major reasons that
specific functions are focused.

• Functions are required to build a trusted platform.
− Bootstrap
− Configuration Management
− Software Distribution
− Key Management
− Logging
− Emergency Shutdown
− TPM Management

• Functions are needed for special consideration to work on a trusted platform.
− Software and Hardware Inventory

All functions are optional for Security Class 1 devices. Even for Security Class 2 and 3
devices, all functions are optional. But, supporting Configuration Management,
Software Distribution, Inventory and Logging function are recommended.

Trusted Mobile Platform
Software Architecture Description – Rev 1.00

 81

12.2. Management Framework

Management
Server

Distribution
Server

Management
Data

Software
Repository

Device
Management

Agent
Management

Tree

Device
Management

Agent
Management

Tree

Device (Terminal) Server

Figure 12-1 Management Framework Overview

The basic framework for the device management is shown above.
• Management Server / Distribution Server

The management server handles several management requests working with the
device management agent that is embedded into a device. The distribution
server may not be a separate server, but helps the management server to
distribute software to devices. Typically, an administrator submits a single
request to the management server to apply it to multiple devices.

• Device Management Agent
The device management agent communicates with the device management server,
interprets requests and invokes device management tasks in a device to perform
requests from the server. The examples of device management tasks are software
distribution and configuration update. The communication between the device
management agent and the device management server needs to be secured.

• Management Data / Software Repository
The device management server has the management data and software repository
to be delivered. Typically, the management data includes configuration
parameters for a device, list of installed software, device information and user
information.

• Management Tree (in a device)
The management tree consists of management items (objects) and parameters
(values) to them. By setting and reading values, the device management agent
along with appropriate device management tasks interacts with the device.

Trusted Mobile Platform
Software Architecture Description – Rev 1.00

82

The scope of this document is limited to define the software architecture inside a device.
The design objective is to make this device management mechanism work with existing
device management servers with embracing part of existing device management agent.

12.3. Initialization of a device

In most cases, a device is shipped from a factory in an un-configured state. A network
operator or a service provider must initially provision it, but the way of the initial
provisioning is totally dependent to the business model. The reference specification
for this initial provisioning is Open Mobile Alliance (OMA) Provisioning Bootstrap 1.1.

Here is an overview to bootstrap a device from “un-configured” state to “provisioned
state.

TPS Access StateTPS Access State

Device is bootstrapped with information about TPS

TPS : Trusted Proxy Server

TPS Loads the mobile equipment with
information about access points and proxies

Unconfigured StateUnconfigured State BootstrapBootstrap
FunctionalityFunctionalityInformation about TPS

TPSTPS

Provisioned StateProvisioned State

Device accesses contents via one or more proxies.

WAP ProxyWAP Proxy

Initial set of connectivity information
- Network access point, Proxy

Configuration success indication

Request

Response

Figure 12-2 Initial Provisioning

Once a device goes to a provisioned state, the device management server will take over
the management responsibility.

Trusted Mobile Platform
Software Architecture Description – Rev 1.00

 83

12.4. Configuration Management

Configuration management is needed to change a setting of parameters for OS, device
drivers and applications remotely. The managed object is a single node (entity) in a
management tree, and includes combinations of keys and values. By reading and
writing a value of a target managed object, the configuration will be changed. Each
managed object is “access controlled” so that multiple management entities can co-work
for a single device.

12.5. Software Distribution

Software distribution is one of the most important management functions. Usually,
this function is combined with software inventory management to track the software
installed in the device. There are two types of software distribution. One is a user
initiated download, and the other is an operator initiated download. There are several
software downloading solutions available in today’s mobile market. One example for
user-initiated download is MIDP 2.0, which defines the protocol for downloading
MIDlets. From the management point of view, both user initiated download and an
operator initiated download need to be considered.

The software includes both Java program and Native program. From the management
point of view, there are three types of management for software.

Trusted Mobile Platform
Software Architecture Description – Rev 1.00

84

Figure 12-3 Management Overview

Platform management is the left-most portion of the figure is used to update the OS,
device driver and other default native software. This mechanism can be used to
download or update other native applications.

There are two types of Java application management corresponding to specifications in
J2ME. One is the AMS (Application Management Software) specification, which is
part of MIDP (Mobile Information Device Profile) and PDAP (PDA Profile), and the
other is OSGi (Open Service Gateway initiative) specification that defines a life-cycle
management of Java program that is called “Bundle” in OSGi’s wording. MIDP and
PDAP are the profile on CLDC (Connected Limited Device Capability) for the resource
constraint device. OSGi reference implementation runs on Foundation Profile,
Personal Profile or Personal Basis Profile on CDC (Connected Device Configuration),
which is for the larger class of device. OSGi R3 defines Minimum as a proper subset of
Foundation/CDC to reduce a footprint.

Both MIDP/CLDC and OSGi define their unique security model and policy. For
example, MIDP 2.0 introduces the concept of trusted applications that may be
permitted to use sensitive and restricted APIs. A trusted MIDlet suite is identified
through signing and verification using X.509 PKI. An un-trusted MIDlet suite is a

Trusted Mobile Platform
Software Architecture Description – Rev 1.00

 85

MIDlet suite for which the origin and the integrity of the JAR file can not be trusted by
the device, and run in the un-trusted domain with a restrict use of APIs. Security for
trusted MIDlet suites is based on protection domains. Each protection domain defines
the permissions that may be granted to a MIDlet suite in a domain. The permission
consists of “Allowed” permission that explicitly allow an access to a given protected API
with no user interaction, and “User” permission that requires an explicit user
permission granted after the prompt given to the user.

The software distribution (update) sub-system will update the software/file/data which
are not part of the device management agent itself. So, even if it is running in a
complete separated domain in a Security Class 3l device, it needs to update
software/file/data in the other domains. In addition to this, the software distribution
(update) sub-system may update the critical portion of the platform. The TCB is one of
the potential targets to be updated in critical cases. After the completion of updating
software, the predicted value will be compared with a measured value to check the
integrity of the software that needs to be updated. So, the device management agent
or appropriate subsystems need to be part of TCB.

The Software update process is as follows:
1. The server and the client are authenticated to each other.
2. The server informs which software is to be updated.
3. The client checks whether the software specified can be updated by this server or

not.
4. The client checks whether the software is currently in use or not. If not, then

updating process will start. If in use, either the update is postponed or cached in
a device in an appropriate format.

5. The client may back up the current image and configuration data.
6. The server sends a software image to the device.
7. The software is updated.
8. The client updates a predicted value of the software for an integrity measurement.
9. The client sends back a return code to the server.

12.6. Software and Hardware Inventory

The inventory function tracks the hardware information in a device and the version of

Trusted Mobile Platform
Software Architecture Description – Rev 1.00

86

software installed in a device. The software inventory function is typically combined
with the software distribution function to update old software for a new one. Similar
to configuration management, the software and hardware inventory information will be
retrieved from a management tree. Each managed object is “access controlled” so that
multiple management entities can co-work for a single device.

12.7. Key Management

See Section 7.3 of [9] for requirements on key management on a TMD.

12.8. Logging

Logging is important for identifying problems or checking usage. A log file usually
includes essential information for both the device manufacturer and user and must be
encrypted. Those log files need to be retrieved from a server for diagnostic purposes.
The set of requirement for a platform is as follows.
• Trusted Mobile Devices shall provide an interface to log event.
• A single record shall include, at least, date & time, user (requester), event type,

event information and access right.
• Trusted Mobile Devices shall encrypt log files.
• Trusted Mobile Devices shall provide an interface to retrieve log.
• Trusted Mobile Devices shall provide an interface to flush log file.

Note: There would be different levels of logging on a TMD, such as TPM, TSS, OS, and
application generated logs. However, support for a generic logging mechanism is not
provided in the current version of specification and will be discussed in future versions
of the specifications.

12.9. Auditing

At runtime, applications use auditing to generate statistics and track usage. The
statistics and usage gathered can help define the data to capture. For example, in the
case of auditing a high-value e-Ticket usage, as a statistic, the trusted mobile device
operator (or service provider) shall use the audit data to find out how many people
changed their e-Tickets during a given period. Furthermore, transaction attributes

Trusted Mobile Platform
Software Architecture Description – Rev 1.00

 87

(such as transaction and server IDs), transaction value and time shall be logged for
further auditing and non-repudiation purposes. For tracking usage, the mobile device
operator or service provider could track when an e-Ticket for a particular user was
changed. The usage data can help track down issues in e-Ticket management and
distribution.

Auditing services include the following major components, as shown in

Figure 12-4 Common Access Control Services (CACS) Architecture on Trusted Mobile
Device:

• Audit trail generation and usage of the hardware-based signature and hashing
capabilities.
• Secure storage of audit trail.
• Hardware-based time stamping.

To provide an owner of a trusted mobile device with the ability to determine that
certain operations on the device have been executed, auditing of commands is necessary.
In this specification, the audit value is a digest held internally to the TPM and
externally as a log of all audited commands. With the log held externally to the TPM,
the internal digest must allow the log auditor to determine the presence of attacks
against the log.
It is proposed that the audit trails are signed by the TPM’s RSA signing capabilities and

Trusted Mobile Platform
Software Architecture Description – Rev 1.00

88

that they are hashed using SHA or MD5, and encrypted with a hardware-generated
(private) key.

The trusted mobile device owner and service provider should have the ability to set
which functions generate an audit event and to change which functions generate the
event at any time. The status of the audit generation is not very sensitive information
and so the command to determine the status of the audit generation is not an owner
authorized command.

It is necessary to have verification of the external audit log both during a power session
(i.e., while the device is powered) and across power sessions and to enable detection of
partial or inconsistent audit logs throughout the lifetime of a TPM.

The Trusted Mobile Device should hold an internal record consisting of a non-volatile
counter (that increments once per session, when the first audit event of that session
occurs) and a digest (that holds the digest of the current session). The audit digest is
volatile. It is easier to build a high endurance non-volatile counter than a high
endurance non-volatile digest. This arrangement is insufficient, however, because it
would allow the truncation of an audit log of any session without trace. It is therefore
necessary to perform an explicit close operation on the audit session. If there is no
record of a close-audit event in an audit session, anything could have happened after
the last audit event in the audit log.

The essence of a trusted hardware-based audit recording mechanism consists of the
following steps:

• The Trusted Mobile Platform shall contain a volatile digest used like a PCR
(auditDigest), where the Integrity Metrics are digests of command parameters in
the current audit session.
• An audit session shall open when the auditDigest is extended from its NULL
state. This occurs whenever an audited command is executed AND no audit
session currently exists, and in no other circumstances. When an audit session
opens, a non-volatile counter is automatically incremented.
• An audit session closes when the Trusted Mobile Platform receives a
TPM_GetAuditEventSigned command with a CloseAudit parameter asserted.

Trusted Mobile Platform
Software Architecture Description – Rev 1.00

 89

An audit session shall be considered closed if the value in the volatile digest is
invalid (for whatever reason).
• TPM_GetCapability shall report the effect of TPM_Startup on the volatile
digest. Note that the Trusted Mobile Platform may initialize the volatile digest
on the first audit command after TPM_Startup(ST_CLEAR), or on the first audit
command after any version of TPM_Startup, or may be independent of
TPM_Startup.
• When the Trusted Mobile Platform signs its auditDigest, it signs the
concatenation of the non-volatile counter and the volatile digest, and exports the
value of the non-volatile counter, plus the value of the volatile digest, plus the
value of the signature.

Note that if a TPM_SaveState is an audited command, TPM_SaveState should be
issued before TPM_GetAuditEventSigned with CloseAudit asserted. This is safe
because TPM_GetAuditEventSigned does not alter any parameter that is preserved by
TPM_SaveState.

The Trusted Mobile Device shall maintain an audit monotonic count that is only
available for audit purposes. The increment of this audit counter is under the sole
control of the TPM if the TPM provides such capability or this shall be controlled by the
TCB and is not usable for other count purposes. This monotonic count must be
incremented by one whenever the audit digest is “extended” from a NULL state.

Each command ordinal shall have an indicator in non-volatile TPM memory that
indicates if execution of the command will generate an audit event. The setting of
ordinal indicator should be under control of the Mobile Device’s Owner.

The Audit Monotonic Counter (AMC) performs the task of sequencing audit logs across
audit sessions. The AMC shall have no other uses other than the audit log. The TPM
and the associated trusted mobile device should be matched such that the expected
AMC endurance matches the expected platform audit sessions and sleep cycles. It is
expected that such an AMC would not roll over. If the AMC were to roll over, and the
storage of the AMC still allowed updates, the AMC could cycle and start at 0 again.
Such an AMC must last for at least 7 years or at least 1,000,000 audit sessions
whichever occurs first, which should be sufficient for expected mCommerce usage

Trusted Mobile Platform
Software Architecture Description – Rev 1.00

90

scenarios, such as e-Ticket use models.

The Trusted Mobile Device shall generate an audit event in response to the execution of
a function that has the audit flag set to TRUE for that function. The Trusted Mobile
Platform shall maintain an extended value for all audited operations and it would keep
an audit monotonic counter for the device (TCG_COUNTER_VALUE which starts at 0
and increments according to the rules of auditing).

Time stamping strengthens the security of an auditing function. The Trusted Mobile
Platform should provide a very reliable, hardware-based time stamping service. The
Trusted Mobile Platform shall provide a service to apply a timestamp to information
blobs, such as audit logs. The timestamp, which should be provided by the trusted
mobile platform, would not be an actual Universal Time Clock (UTC) value but it
should be the number of timer ticks the TPM has counted. It is the responsibility of the
calling application (say, an m-Commerce application) to associate the ticks to an actual
UTC time, if deemed necessary.

Figure 12-5 Auditing Capabilities of Trusted Mobile Platform

Trusted Mobile Platform
Software Architecture Description – Rev 1.00

 91

12.10. Remote shutdown and restoring

One of the key characteristics of a mobile device is that they are “easily lost or stolen”.
On the secure platform, valuables such as digital cache and expensive digital contents
will exist and can be transferred among secure platforms. In order to protect their use
by unauthorized users and to protect the user’s property, the following items are
required.

• Properties in a device need to be encrypted. Properties include phone
numbers, addresses, calendar information, and other valuable data for local
applications in a device.
• Anonymous access to valuable information and content should not be allowed.
Password protection or similar mechanism is required.
• Valuable content should not be transferred, even locally, without explicit
permission from an owner.
• The option to make valuable information erasable and to shutdown a device
remotely is required. In this case, the rights to use valuable content or value of
digital cache should be transferred back to the server, and transferred to a new
device if applicable.

From the Trusted Mobile Platform stand point, 1) is addressed by the encrypted file
system (see section 7) 2) is a guideline for applications on TMDs, and 3) is to be
addressed to DRM (Digital Rights Management) which is not a focus area for this
research.

12.11. TPM Management

TPM Management is similar to configuration management and the inventory function.
This allows the server to retrieve PCR values from the TPM in a secure way. Using
TPM_Quote in a local device can retrieve these values. When this function is called,
the TPM collects the values of current Platform Configuration Registers (PCRs),
combines them with a nonce to generate a special structure called
TCPA_QUOTE_INFO and returns the signature on this structure. This is required to
ensure the platform is secured, and determine if the device management function
should be started or not.

Trusted Mobile Platform
Software Architecture Description – Rev 1.00

92

13. Trust Level Guidelines & Security Evaluation
As described in Section 4 of the Hardware Architecture Description Document, the
trust levels defined for a Trusted Mobile Device are Security Class 1, Class 2, and Class
3. The Software Architecture characteristics associated with each level are defined in
Table 13-1.

Security Class Security Feature

Class 1 Class 2 Class 3

TPM -SW TPM or equivalent - HW TPM ([5] subset) -Integrated TPM or MCM

CPU architecture -No requirement - MMU -HW domain separation, trusted

DMA

Integrity and

attestation

-Minimal integrity checks - Integrity checks and source

authentication (Trusted boot)

-Trusted boot

-Runtime integrity checks

Domain

separation

enforcement

-COTS OS separation (user

account + process)

-Java (JAAS or OSGi)

- Hardened OS

- Encrypted memory system

-Secure processor architecture

-SW domain separation

Access control - Discretionary - Mandatory + discretionary -Mandatory + discretionary

Software

certification

- No certification - CAPP EAL 2 or equivalent

(No formal certification.)

-CAPP EAL 3 or equivalent

User

authentication

-PIN -Passphrase -Hardware crypto

-Biometrics

Root of Trust -None -ROM or equivalent -ROM or equivalent

SW Architecture -No TCB -TCB -TCB

Secure storage -No - Through encryption -Encryption & domain separation

Table 13-1 SW features by security level

Security Class 2 and class 3 Trusted Mobile Devices must be evaluated against
established public security standards. The best avenues for this certification are
through the Common Criteria using EAL evaluation for software components. These
certification methods are more systems and software oriented than is FIPS-140-2 and
they have the added advantage of being recognized internationally. At a system level,

Trusted Mobile Platform
Software Architecture Description – Rev 1.00

 93

it may be difficult to achieve more than an EAL level 2-3 certification due to the lack of
certain critical security features like HW and SW domain separation and trusted I/O.
Security Class 3 level Trusted Mobile Devices will have these additional security
features and should be developed with the objective of being able to achieve
certification to EAL level 2-3.

Due to the complexity of the Trusted Mobile Device and the fact that different vendors
will develop various components, the security evaluation should be executed in two
phases. In the first phase, their developers will certify individual hardware and
software components that are inside the security boundary. Items that should be
subjected to individual certifications include the TPM, the secure processor, the CRTM,
the Secure OS kernel, the TSS and other hardware or software components that can be
readily bounded and evaluated.

Individually certified components can be assembled to construct a trusted platform, but
the use of the certified components alone does not ensure that the resulting platform
can be trusted. A platform level Common Criteria evaluation must also be performed.
Use of individually certified components make the platform level evaluation less
difficult and should result in achievement of a higher certification level. Appropriate
platform level certification will be discussed in the future.

Trusted Mobile Platform
Software Architecture Description – Rev 1.00

94

Appendix A Implementation Options

TPM Mandatory Functions

TSS_Bind

Function that allows the creation of a TPM protected data, by an entity outside of the
TPM. In contrast to the TPM_Seal function, the TSS_Bind function is used to only
conceal data with encryption and is not applicable to other purposes such as using PCR
values to determine the validity of data when decrypted.

TPM_UnBind

Function that decrypts data that is originally encrypted for protection by the TSS_Bind
function.

TPM_CreateWrapKey

Function that allows the creation of a new symmetric key for TPM equivalents that use
symmetric algorithms for wrapping.

TSS_WrapKey

Function to create a migratable key from data outside of the TPM.

TSS_WrapKeyToPcr

Function that allows similar functionality as TSS_WrapKey, with the exception that
the key can be used to only seal data to a certain PCR.

TPM_LoadKey

Function that allows the loading of a symmetric key pair into the TPM. A key must be
loaded into a TPM prior to being used in any operation that the TPM performs. If the
designated key is non-migratble, the TPM should check if the key is actually generated
by the TPM.

Trusted Mobile Platform
Software Architecture Description – Rev 1.00

 95

TPM_EvictKey

Function allowing the capability to unload a key from the TPM.

TPM_GetPubKey

Function allowing the capability to get a public key from the TPM.

Optional functions

TPM_SaveKeyContext

Function that allows redundant keys to be flushed from TPM.

TPM_LoadKeyContext

Function to reload cached keys into TPM again.

TPM_Seal

Function that allows the data to be locked using the TPM protected storage mechanism.
Data may be revealed only in a certain condition where the platform it resides on.

TPM_Unseal

Function that allows data to be revealed after locked by the TPM_Seal function by the
platform, when the platform is in the pre-defined condition.

Trusted Mobile Platform
Software Architecture Description – Rev 1.00

96

Appendix B Definitions and Abbreviations

For the purpose of this document, the following definitions apply:

AES Advanced Encryption Standard. New block cipher algorithm selected

as a standard for U.S. federal government
AIK Attestation Identity Key
API Application Program Interface
BAPI Biometric API
BSAFE Library for cryptographic operations produced by RSA Security
CA Certificate Authority. An entity that vouches a user’s identity by

issuing a digital certificate
CBC Cipher Block Chaining. A mode of operation for block cipher
CDSA Common Data Security Architecture
CFS Cryptographic file system. File encryption mechanism incorporated

into the file system, seen on several UNIX-like operating systems.
CRT Chinese Remainder Theorem
CRTM Core Root of Trust Measurement
CryptoAPI Cryptographic API supplied by Microsoft’s Windows Operating System
CSP Cryptographic Service Provider
DES Data Encryption Standard. Classical block cipher algorithm formerly

selected as a standard for U.S. federal government
DH Diffie-Hellman. A method to exchange secret data securely based on

the hardness of discrete logarithm over finite multiplicative group.
DSA Digital Signature Algorithm. One of the digital signature algorithms

selected as a standard for U.S. federal government. This is based on
the hardness of discrete logarithm over finite multiplicative group.

ECB Electric Code Book. A mode of operation for block cipher
ECDH Elliptic Curve Diffie-Hellman. A method to exchange secret data

securely based on the hardness of discrete logarithm over group of
elliptic curves over prime fields.

ECDSA Elliptic Curve Digital Signature Algorithm. Digital signature
algorithms based on the hardness of discrete logarithm over group of

PAGE 97
Trusted Mobile Platform

Software Architecture Description – Revision 0.01

 97

elliptic curves over prime fields.
EFS Encrypted File System. Windows2000/XP’s file encryption

mechanism incorporated into the file system.
FIPS Federal Information Processing Standards
IPSec Internet Protocol Security. Suite of secure protocols that collectively

provides confidentiality, integrity, and authentication mechanisms to
IP.

JAAS JAVA Authentication and Authorization Service
MAC Message Authentication Code. A number derived from data and

shared secret among creator and verifier(s), which can provide a means
to verify the integrity of the data

OAEP Optimal Asymmetric Encryption Padding. A construction method for
asymmetrically encrypted data with provable security.

OIAP Object Independent Authorization Protocol
OpenSSL Open source version of cryptographic library developed by several

volunteers on the Internet
OSAP Object Specific Authorization Protocol
OSGi Open Service Gateway initiative
PCR Platform Configuration Register. One of the elements of TPM
PRNG Pseudo Random Number Generator
PIN Personal Identification Number
PKCS Public Key Cryptography Standard. De-facto standard for syntax of

cryptographically processed data, which is defined by RSA Security
PSS Probabilistic Signature Scheme. A construction method for digital

signature data with provable security.
RSA Rivest-Shamir-Adleman. Asymmetric algorithm used for both

encryption and signing.
RTM Root of Trust for Measurement
SK Storage keys. Lower level keys in TCG’s storage key hierarchy tree.
SRK Storage Root Key. The root key in TCG’s storage key hierarchy tree.
SSL Secure Sockets Layer. A security protocol invented by Netscape

Communications, which protects client/server style communications
over the Internet.

TCB Trusted Code Base

Trusted Mobile Platform
Software Architecture Description – Rev 1.00

98

TCG Trusted Computing Group
TCPA Trusted Computing Platform Alliance
TCS TSS Core Services
TLS Transport Layer Security. SSL’s descendant that is under

standardization in IETF
TMI Trusted Mode Indicator
TMM Trusted Mode Manager
TMP Trusted Mobile Platform
TPM Trusted Platform Module
TSP TSS Service Provider
TSS TPM Support Software
TUI Trusted User Interface
UICC UMTS Integrated Circuit Card. A smart card module equipped with

3GPP user equipment. A UICC contains at lease one USIM
application

USIM Universal Subscriber Identity Module. A UICC-stored application
used for authentication between subscriber and network operator.

UUID Universal Unique Identifier
VM Virtual Machine
WAP Wireless Application Protocol
WIM WAP Identity Module

