
PAGE 1
Trusted Mobile Platform

Protocol Specification Document – Revision 1.00

Trusted Mobile Platform
Protocol Specification Document

04/05/2004

Trusted Mobile Platform
NTT DoCoMo, IBM, Intel Corporation

File Name: tmp_protocol_spec_rev1_00__20040405.doc

PAGE 2
Trusted Mobile Platform

Protocol Specification Document – Revision 1.00

Trusted Mobile Platform
Protocol Specification

Rev. 1.00
04/05/2004

Authors
Selim Aissi (Intel)

Hiroshi Maruyama (IBM)

Fumiaki Miura (NTT DoCoMo)

Taiga Nakamura (IBM)

Daniel Saito (NTT DoCoMo)

Atsushi Takeshita (NTT DoCoMo)

Dave Wheeler (Intel)

Sachiko Yoshihama (IBM)

Copyright Notice
Copyright© 2002-2004, Intel Corporation, International Business Machines
Corporation, NTT DoCoMo, Inc. All rights reserved.

Status
This is a stable revision of the Trusted Mobile Platform Protocol Specification that was agreed
upon by Trusted Mobile Platform promoters.

Table of Contents

1 Introduction ... 7

1.1 Structure of This Document.. 7
1.2 Notational Conventions .. 7

2 Protocol Design General Principles... 8
2.1 Trusted Mobile Platform Design Principles ... 8
2.2 Layered Protocol... 9
2.3 Summary of Trusted Mobile Platform Protocol Requirements and Solutions
...11

PAGE 3
Trusted Mobile Platform

Protocol Specification Document – Revision 1.00

3 Protocols Overview ... 12

3.1 Actors... 12
3.2 Trusted Mobile Platform Phase Zero Scenarios................................. 13

3.2.1 Issuance of an Identity and Subscription to a Service 13
3.2.2 E-Ticket Scenario Overview ... 17
3.2.3 An Example Ticket Purchasing Protocol... 19
3.2.4 Mobile Wallet Scenario ... 20
3.2.5 Business Workflow Scenario .. 23
3.2.6 Unsubscription from a Service and Revocation of an Identity 26

4 WS-Security Profiles ... 29
4.1 Web Services ... 29
4.2 Namespaces .. 29
4.3 WS-Security [WS-Security] .. 30
4.4 SOAP Message Structure .. 31

4.4.1 Message Integrity ... 31
4.4.2 Message Confidentiality ... 32
4.4.3 Message Authentication ... 32

4.4.3.1 Stateless message exchange ... 32
4.4.3.2 Stateful message exchange.. 32

4.4.4 Derived Keys .. 33
4.5 Minimalist Profile of WS-Security ... 33
4.6 WS-Trust .. 33
4.7 Context Establishment ... 33

4.7.1 Diffie-Hellman Key Exchange ... 34
4.7.1.1 Protocol Overview ... 34
4.7.1.2 Message 1 Syntax and Processing ... 35
4.7.1.3 Message 2 Syntax and Processing ... 36
4.7.1.4 Message 3 Syntax and Processing ... 37
4.7.1.5 Message 4 Syntax and Processing ... 38

4.7.2 Public Key-Based Key Exchange ... 39
4.7.3 Symmetric Key-Based Key Exchange .. 39
4.7.4 Tearing Down Session Context .. 39
4.7.5 Diffie-Hellman Parameter Element ... 40

4.8 SOAP Fault .. 41
4.9 XML Encryption.. 41
4.10 XML Digital Signature... 41
4.11 Use of TPM for Cryptographic Operations ... 42
4.12 Security Assertion Markup-Language (SAML) 43
4.13 Access Control Policy Language (XACML).. 43
4.14 Schema.. 43

5 Attestation and Supporting Infrastructure .. 45
5.1 Introduction .. 45
5.2 Protocols Overview .. 45
5.3 Privacy CA Protocol ... 47

5.3.1 Token formats ... 47
5.3.1.1 Identity Certificate Request Token... 47
5.3.1.2 Identity Certificate Response Token .. 47

PAGE 4
Trusted Mobile Platform

Protocol Specification Document – Revision 1.00

5.3.2 Requesting an Identity Certificate... 47
5.3.3 Returning an identity Certificate.. 48

5.4 Validation Data Protocol ... 48
5.4.1 Token formats ... 49

5.4.1.1 Validation Certificate Request Token 49
5.4.1.2 Validation Certificate Response Token 50

5.4.2 Requesting a Validation Data Certificate in Push Mode 50
5.4.3 Returning a Validation Data Certificate in Push Mode 50
5.4.4 Attaching a Validation Data Certificate.. 51
5.4.5 Requesting a Validation Data Certificate in Pull Mode.................... 52
5.4.6 Returning a Validation Data Certificate in Pull Mode 52

5.5 Integrity Reporting Protocol.. 53
5.5.1 Signature algorithm with integrity metrics 54

5.5.1.1 Sign_RSA_PCR .. 54
5.5.1.2 Verify_RSA_PCR .. 54
5.5.1.3 Bindings of Sign_RSA_PCR and Verify_RSA_PCR................ 55
5.5.1.4 SSL/TLS Binding ... 55
5.5.1.5 XML Signature Binding.. 55

5.6 Schema Definition .. 55
5.7 Remote Data Binding ... 56

5.7.1 Definition of Key Remote Data Binding .. 56
5.7.2 Remote Data Binding Protocol ... 56
5.7.3 Ticket Creation ... 57
5.7.4 Remote Data Redemption Protocol .. 58

5.8 Security Considerations ... 59
6 Fair Contract Signing Protocol .. 60

6.1 Abstract Protocol Definition.. 60
6.1.1 Two Forms of Valid Contracts... 60

6.1.1.1 Standard contract .. 60
6.1.1.2 Notarized contract ... 60

6.1.2 Description of Optimistic Fair Contract Signing Protocol 61
6.2 Message Structures ... 63

6.2.1 Namespaces... 63
6.2.2 Assertions... 64
6.2.3 Commitments ... 64
6.2.4 Standard Contract... 66
6.2.5 Notarized Contract.. 67
6.2.6 Aborted Contract .. 69

6.3 Protocol.. 70
6.3.1 The commitment request from Alice to Bob:................................... 70
6.3.2 The commitment response from Bob to Alice 70
6.3.3 Contract request from Alice to Bob: .. 70
6.3.4 Contract response from Bob to Alice: ... 71
6.3.5 Abort request from Alice to Trent: ... 71
6.3.6 Abort response from Trent to Alice: .. 72
6.3.7 Resolve request from Alice or Bob to Trent: 72
6.3.8 Resolve response from Trent to Alice or Bob: 73

PAGE 5
Trusted Mobile Platform

Protocol Specification Document – Revision 1.00

6.4 Scenario Example .. 73
6.5 Schema.. 74

7 Mobile Device Management.. 80
7.1 Introduction ... 80
7.2 Software Download... 80

7.2.1 Definition of Software Download .. 80
7.2.2 Software Download Requirements ... 80
7.2.3 Core Software Download Scenario .. 81
7.2.4 Application Software Download Scenario... 81
7.2.5 Software Download Threat Analysis and mitigating method............. 81
7.2 6 Core Software Download Protocols.. 83

7.2.6.1 Mutual Authentication ... 83
7.2.6.2 Software Download Protocol .. 83

7. 3 Key Management... 84
7.3.1 Definition of Key Management ... 84
7.3.1.1 Trusted Mobile Platform Key Management Protocols.................... 84
7.3.2 Key Types... 86
7.3.3 Key Registration and Certification .. 87
7.3.4 Key Management Infrastructure ... 87
7.3.5 Key Distribution .. 88

7.3. 5.1 Symmetric Key Distribution Protocols 88
7.3.5.1.1 Public Key-Based Symmetric Key Distribution Protocol
... 88

7.3.5.2 Use of SSL and TLS... 89
7.3.5.3 Related Standards ... 89

8 Access Control Architecture .. 90
8.1 Introduction ... 90

8.1.1 Scope ... 90
8.1.2 Overview of Access Control Mechanisms .. 90

8.2 Terminology .. 91
8.3 Architecture... 93

8.3.1 Control Domains... 93
8.3.2 Notes of CLDC, MIDP, MExE, and OSGi ... 95
8.3.3 Access Control Matrix... 96
8.3.4 Two-Way Authentication ... 100
8.3.5 Policies... 103

8.4 An Example Access Control Implementation .. 103
8.5 Authorization, Policy Language and Enforcement 105

8.5.1 Introduction .. 105
8.5.2 Authorization .. 106
8.5.3 Policy Language and Enforcement... 106
8.5.4 XACML Policy Example.. 107

9 Related Standards..114
9.1 TLS (Recommended)...114
9.2 X.509 v3 (Recommended) ...114
9.3 TCG ...114
9.4 XML Security / WS-Security (Recommended, Profiled)115

PAGE 6
Trusted Mobile Platform

Protocol Specification Document – Revision 1.00

9.5 PKIX (Optional) ..115
9.6 SPKI (Supported)...115
9.7 IPSec (Supported) ...115
9.8 SSH (Supported) ...115
9.9 PGP (Supported) ...115
9.10 S/MIME (Supported) ..115
9.11 GSM SIM-based Authentication (Transparent).....................................115

10 Security Considerations ...117
10. 1 Introduction ...117
10.2 Operational Issues after a Breach in Security......................................117

10.2.1 Operational Policy One: Service Provider Continues Service
without fixing vulnerability...118
10.2.2 Operational Policy Two: Service Providers will only allow clients
that have installed the proper security patch. ...118
10.2.3 Operational Policy Three: Service Providers will only allow clients
that have been ‘reinitialized’. ..118

11 Future Agenda..119
11.1 Attestation and Supporting Infrastructure ...119

11.1.1 Registration of Trusted Integrity Measurements119
11.1.2 Migration..119
11.1.3 Maintenance ..119
11.1.4 Backup of User Data ...119

11.2 Access Control .. 120
11.3 Key Exchange Protocol Bindings .. 120
11.4 Device Management ... 120

12 References.. 121
12. 1 Normative References ... 121
12. 2 Informative References.. 123

13 Terminologies and Abbreviations... 124
Appendix A. Change History (Informative)... 126
Appendix B. TCG Technology for Attestation (Informative)........................ 128

13.1 Creation and activation of TCG identity key.. 128
13.1.1 Assumptions... 128
13.1.2 Overview of the procedure ... 129
13.1. 3 MakeIdentity .. 129
13.1.4 Identity certificate request and response...................................... 129
13.1.5 ActivateIdentity ... 130

PAGE 7
Trusted Mobile Platform

Protocol Specification Document – Revision 1.00

1 Introduction

The Trusted Mobile Platform is a project to establish technologies for enhancing platform security
and trustworthiness on wireless devices. It is based on a platform architecture comprised of
hardware and software with security features that can be used as a basis for establishing trust in
the entire platform. With the enhanced trust, it enables supporting various mission-critical
business applications, such as those described in the Phase Zero document [PhaseZero], and
enables data service businesses to be brought to the mobile industry.

Security is a significant concern for mobile device users. How can data exchanged over the air
be protected from eavesdropping? How can the user be certain that information received from
a service is authentic and has not been changed since it was created? How is the device
protected from malicious downloaded programs such as viruses? The Trusted Mobile
Platform specifications provide appropriate protections which address a multiplicity of security
concerns, including the above ones.

This document defines a set of protocols that enable the Trusted Mobile Platform, described in
the Hardware Architecture Description [HWAD] and Software Architecture Description [SWAD]
documents, to communicate with other platforms securely. The intent of the Protocol
specification document is not to create a complete set of protocols from scratch. Rather, this
document investigates available and emerging open standards, by identifying specific areas that
are currently missing to support trusted mobile devices.

1.1 Structure of This Document

This document is organized as follows. Section 2 revisits the general principles described in the
Phase Zero document [PhaseZero] and the multi-layered approach to the protocol design.
Section 3 explains how the protocols defined in this document can be used in typical scenarios.
Section 4 defines a profile of WS-Security standards [WS-Security] for the Trusted Mobile
devices. Protocols specifically designed to support TCG functionality [TCG] is defined in Section
5. One of the major threats identified in the Phase Zero document [PhaseZero] is a loss of
communication during a transaction. The Fair Contract Signing Protocol defined in Section 6
addresses this threat. Protocols supporting for device management, including key management,
are specified in Section 7. Section 8 demonstrates a generic model of access control among
various control domains. . Section 9 addresses various security protocol standards and how they
relate to this specification. The document concludes with numerous security considerations when
applying these protocols described in Section 10.

1.2 Notational Conventions

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD",
"SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be
interpreted as described in RFC 2119 [Keywords]

PAGE 8
Trusted Mobile Platform

Protocol Specification Document – Revision 1.00

2 Protocol Design General Principles

In this section the general principles used to define the Trusted Mobile Platform protocols and the
scope and design framework are described.

2.1 Trusted Mobile Platform Design Principles

The following design principles were identified in the Phase Zero document [PhaseZero].

Enhanced Security: The Trusted Mobile Platform specifications shall provide a set of technologies to
offer a range of security applications to enhance platform security on wireless devices.

Deployment Target: The Trusted Mobile Platform specifications shall target deployments in 2005 or
later.

Leverage Existing Standards: The Trusted Mobile Platform specifications shall use existing
standards wherever possible, unless they can explicitly justify the need for developing a new
specification.

Friendliness with the Internet: We are living in the Eco-systems. The Trusted Mobile Platform
specifications shall be friendly with the Internet standards and technologies.

Win-win Technology: The Trusted Mobile Platform specifications shall support applications that
enable win-win situations to everyone in the value chain, minimize conflict with existing players and
barrier to entry, and leverage existing player.

Security Concerns: The Trusted Mobile Platform specifications shall explicitly describe any security
concern if there exists such a threat that they are not able to address.

User Experience: The Trusted Mobile Platform specifications shall enable user experience to be very
simple and intuitive, so that they accommodate consumer applications as well as business
applications.

Efficiency: The Trusted Mobile Platform specifications shall enable efficient implementations on
mobile devices with limited resources, such as CPU, memory, IO, and efficient use of communication
bandwidth.

Security Levels: The Trusted Mobile Platform specifications shall provide multiple security levels to
accommodate a variety of security requirements or trade-offs from various applications.

Security Analysis: We shall consider the possibility of applying security analysis techniques, either
formal ones or methodological ones, to the Trusted Mobile Platform specifications and
implementations.

Fail-Secure: The Trusted Mobile Platform specifications shall be designed with possible failures of
any constituents taken into account. These failures shall not introduce new vulnerabilities.

Privacy: Privacy shall be considered wherever applicable.

Deployment and Maintenance: The Trusted Mobile Platform specifications shall support application
systems that are easy to deploy and maintain.

PAGE 9
Trusted Mobile Platform

Protocol Specification Document – Revision 1.00

Simplified Model: The Trusted Mobile Platform specifications shall reduce the number of players and
simplify interdependency between them, as long as they are able to achieve the required security
levels, in order to facilitate and accelerate adoption of the platform.

Simple Specifications: The Trusted Mobile Platform specifications shall be simple and concise.

Scalability: The Trusted Mobile Platform specifications shall support application systems that are
easy to scale to accommodate millions of users in a relatively short period of time.

Extensibility: The Trusted Mobile Platform specifications shall be extensible so that it is easy to add
new functionalities and mechanisms to address new types of applications and threats.

Mobility: The Trusted Mobile Platform specifications shall address inherent characteristics of mobile
communications. Compared with wired communications, mobile communications suffers from a
higher probability of being disconnected in the middle of transactions, and no recovery for a long time
or practically forever.

Transaction Time: Minimizing transaction time is one of the most important performance elements
for better user experiences. The Trusted Mobile Platform specifications shall enable optimized
transaction time for every application.

Operator Domain Trust: The operator domain is typically considered to be safer than that of the
Internet. Due to the introduction of open terminals and hybrid network architectures combining
various short range private communications that may be connected to the Internet, this assumption
tends to be weaker. The Trusted Mobile Platform specifications shall address the aspect of reducing
operator domain trust issues.

2.2 Layered Protocol

Based on these design principles, the Trusted Mobile Platform protocol has the layered architecture
as shown in Figure 2-1 Trusted Mobile Platform Protocol Layered Architecture.

PAGE 10
Trusted Mobile Platform

Protocol Specification Document – Revision 1.00

Figure 2-1Trusted Mobile Platform Protocol Layered Architecture

At the bottom, Trusted Mobile Platform assumes the base protocol, which consists of TCP/IP [TCP/IP]
and some form of proximity connection, such as Bluetooth [Bluetooth] or ISO 14443 [ISO14443].
These base protocols may support some form of security such as IPSec [IPSec], The Trusted Mobile
Platform protocol does not assume any of them. Non-protected applications, such as normal Web
browsing, can use the base protocol without any further protection.

The next layer of the Trusted Mobile Platform protocol is the secure transport substrate, which is
typically the transport layer Security (TLS, also known as Secure Sockets Layer or SSL) [TLS].
SSL/TLS is the most widely used security protocol on today’s Internet. All Trusted Mobile devices
are RECOMMENDED to support SSL/TLS with the current Internet practices. These practices
include, embedding a set of trusted root CA certificates (trust anchors) in the applications such as
Web browsers. SSL/TLS mandates the server side authentication based on server’s X.509
certificates, but the client side authentication is optional. In Trusted Mobile Devices, client
authentication should be done either through traditional password-based authentication (either by
HTTP basic authentication [HTTPBasicAuth] or HTML form-based authentication [HTML]) or by
SSL/TLS client authentication [TLS]. Supporting SSL/TLS allows the users of Trusted Mobile devices
access the large number of the Internet applications (e.g., Web sites) currently available. Many
Internet applications, such as secure Web browsing (https) and secure mail box (pops) can use this
layer.

Trusted Mobile devices may optionally have a set of protocols specific to Trusted Mobile devices,
called Trusted Mobile Platform High Security Options. These options provide higher level of
protections such as end-to-end protection by taking advantage of the Trusted Mobile device, most
notably the use of the TPM (Trusted Platform Module). This layer also defines a protocol that
specifically addresses the concern of unstable wireless network when conducting transactions. This
is done through the Fair Contract Signing Protocol. Applications that require higher level of
protection, such as e-Ticket and B2B/B2E, may use the protocols defined in this layer, with or without
the transport layer protection provided by SSL/TLS.

PAGE 11
Trusted Mobile Platform

Protocol Specification Document – Revision 1.00

The device also has a set of management protocols that support management of the device. This
includes key management, software download, and general device management. The core software
download scenario described in the Phase Zero document [PhaseZero] may use this layer of the
Trusted Mobile Platform protocol.

2.3 Summary of Trusted Mobile Platform Protocol Requirements and Solutions

The following table summarizes the identified requirements and corresponding Trusted Mobile
Platform solutions.

Requirement Possible Trusted Mobile Platform solutions

End-to-end confidentiality/Integrity SSL/TLS, Profiled WS-Security

Mutual authentication SSL/TLS (+HTTP Auth), Profiled WS-Security

Digital signature / Non-repudiation XML Signature (profiled), Contract (new)

Digital ticket format
(authorization format) SAML

Prevention of ticket duplication Remote data binding protocol (new)

Authorization protocol WS-Security+WS-Trust (profiled)

Robustness against network failure &
un-trusted party Optimistic fair contract signing protocol (new)

Key management infrastructure WS-Trust, X.509

Access control language XACML

Device integrity TCG-defined X.509 attribute certificate,
RSA_PCR algorithm (new)

Device integrity infrastructure TCG credentials + WS-Trust (profiled)

Device properties TBD

Device management TBD

PAGE 12
Trusted Mobile Platform

Protocol Specification Document – Revision 1.00

3 Protocols Overview

This section provides an overview of the protocols defined for the Trusted Mobile Platform. This
section is informative, and is not intended to replace any normative specifications, but to provide the
reader with descriptive and graphical representation of how the Trusted Mobile Platform protocols are
utilized to support application scenarios. Should there be a conflict between this section and other
normative specifications, the normative specifications shall take precedence.

The second section of this document provides a high level view of the use of Trusted Mobile Platform
protocols, followed by examples of their use through the Phase Zero scenarios [PhaseZero]. The
purpose of the Trusted Mobile Platform Phase Zero Scenarios section is to provide traceability to the
Phase Zero requirements for protocols. The scenario examples are informative.

3.1 Actors

The following sections present several scenarios with different entities such as organizations, people,
or physical objects that are assumed to participate in the scenarios. Some terms were imported from
[TCG] while others are defined in this section for convenience. For flexibility, different terms are used
to describe each entity that act out a particular role. In the real-world, a single entity may act multiple
roles. For example, in the typical consumer market, the device user is usually the device owner.

TPM The Trusted Platform Module as defined in [TCG].

TMD A Trusted Mobile Device (TMD) is a device that implements the
Trusted Mobile Platform specifications.

Device Manufacturer The manufacturer that produces TMD.

Software Configuration Service

A service that configures the core software of a TMD. The
software configuration service is presumably trusted by the
device manufacture and the VE, and is responsible for keeping
track of software configuration that is known to be trusted. The
software configuration service registers the integrity metrics of
the known configurations with the validation entity.

VE A Validation Entity (VE) is a trusted third party vouches for a
TMD that it is working properly and in an expected state.

Privacy CA A trusted third party that issues platform identities.

Service Provider
Provides application services some of which require the trust
mechanism provided by Trusted Mobile Platform specifications.
E.g., the merchant who issues event tickets in the e-Ticket
scenario.

Device Owner The owner of a TMD.

Device User The user of a TMD.

PAGE 13
Trusted Mobile Platform

Protocol Specification Document – Revision 1.00

3.2 Trusted Mobile Platform Phase Zero Scenarios

The following sections map the Trusted Mobile Platform protocols to the Phase Zero scenarios.

3.2.1 Issuance of an Identity and Subscription to a Service

Figure 3-1 shows a typical sequence of actions that occur when a platform identity is issued and the
user subscribes to a service using that identity. This particular scenario illustrates a case in which the
user subscribes to a service immediately after the identity is issued. However, it is also possible that a
user subscribes to multiple services using a single identity

PAGE 14
Trusted Mobile Platform

Protocol Specification Document – Revision 1.00

Figure 3-1 Issuance of an Identity and Subscription to a Service

TTrruusstteedd MMoobbiillee
DDeevviiccee

SSeerrvviiccee PPrroovviiddeerr SSooffttwwaarree CCoonnffiigg..
SSvvcc

PPrriivvaaccyy CCAA DDeevviiccee OOwwnneerr DDeevviiccee UUsseerr

TPM_MakeIdentity (owner secret)
Create an identity key pair and signature

PCAResponse

TCPA_IDENTITY_CREDENTIAL

TCPA_IDENTITY_REQ (pub-key, label, platform certificates,...)

TPM_ActivateIdentity

Browsing for services

Application software installation (section 7)

Create an application domain and set ACL (Section 8)

Subscribe

Subscribe completed

Sign-up request

Identity auth

II ss ss uu aa nn cc ee oo ff aa nn ii dd ee nn tt ii tt yy
SS uu bb ss cc rr ii pp tt ii oo nn tt oo aa ss ee rr vv ii cc ee

Privacy CA Protocol
 (Section 5.3)

Context Establishment (Section 4.7)

Validation Data Protocol (Section 5.4)

PAGE 15
Trusted Mobile Platform

Protocol Specification Document – Revision 1.00

The issuance of an identity may take place in the following sequence:

1) The device owner requests to create a platform identity through the user interface of the
TMD.

2) The TMD calls TPM_MakeIdentity to generate a new asymmetric key-pair and the
identity-binding signature that links the information necessary to request an identity, such as
the created key-pair, an identity name, endorsement certificate, platform certificate, etc. The
device subsequently calls TSS_CollateIdentityRequest to assemble all the
information.

3) The assembled information is sent to the privacy CA, which then creates and returns the
identity certificate. The protocol for exchanging identity request and response is defined as
the Privacy CA protocol in section 5.3.

4) The TMD decrypts the data, check if it is intended for the TPM the device contains, and
recovers the identity certificate. These processes are done using
TPM_ActivateIdentity and TSS_RecoverIdentity calls as defined in [TCG].

5) An identity authorization secret may be passed to the device user for later use. The identity
authorization allows the device user to use the platform identity on behalf of the device
owner.

The subscription to a service may take place in the following sequence:

6) The device user browses services provided by a service provider. When he/she decides to
subscribe, the TMD creates a secure session using the Context Establishment Protocol
(Section 4.7).

7) The integrity metrics of the TMD, which is sent to the service provider as a part of the
Context Establishment Protocol, is sent to the VE using the Validation Data Protocol (See
section 5.4). The VE checks the integrity metrics against its registry, and responds with the
trust status of the metrics. For example, if the integrity metrics matches the one that is
already registered by the Software Configuration Service as a “safe” configuration, the VE
vouches for it. If the integrity metrics is unknown, or known to be untrusted, the VE will return
a warning.

8) The TMD send subscription request to the service provider. If the service provider is satisfied
by the validation result from the VE, it creates an application domain and properly configures
the access control list for the domain (See section 8).

9) The service provider then install the application software into the newly created application
domain using the Terminal Management capability described in section 7.

Note that there may be many alternatives to implement this scenario. For example:

 The identity authorization may be passed to the service provider instead of the device user.
This may be a useful scenario if the device owner trusts a service provider and allows the
user to subscribe to any service provided by that particular service provider. For example, in
an enterprise scenario, the device owner (i.e., IT division of the company) allows the device
user (i.e., employee) to subscribe to any service on the intranet (i.e., the services provided
by the company).

 The Context Establishment protocol may be replaced by the enhanced SSL/TLS defined in
section 5.5, since it also provides a way to exchange the integrity metrics and to setup
secure session.

 The figure illustrates a scenario in which the pull mode of the Validation Data Protocol is
used. Alternatively, the push mode of the Validation Data Protocol may also be used, in
which case the TMD obtains the validation certificate from the VE in advance, and send it
along with the subscription request message.

The Privacy-CA is concerned with the following security problems:

PAGE 16
Trusted Mobile Platform

Protocol Specification Document – Revision 1.00

Issue/Concern Mitigation Technique
A non-owner requests an
identity

The action of creating an identity is protected by the owner
authorization secret

A non-genuine TPM requests
an identity

The privacy CA verifies endorsement and platform
credential sent from the TMD

The Device Owner is concerned with the following security problems:

Issue/Concern Mitigation Technique

The identity request is
peeked/stolen by an
eavesdropper

The request is symmetrically encrypted by using a random
nonce as a key, which is asymmetrically encrypted by the
public key of the privacy CA, thus the request can be
decrypted only the requested privacy CA.

The issued identity is
peeked/stolen by an
eavesdropper

The issued identity is asymmetrically encrypted by using
the requesting TPM’s public endorsement key, thus it can
be decrypted only by the requesting TPM, since the
private endorsement key never leaves the TPM.

A rogue pretends to be the
privacy CA

Since the request is encrypted by the public key of the
privacy CA, only the genuine privacy CA, that the owner
intended to request, can decrypt it.

A malicious user tries to
subscribe to a service using
an identity, which he/she is
not authorized to use

Only the user, who is authorized by the device owner to
use an identity, can present an identity authorization
secret.

A rogue creates an
application domain

The admin authorization secret has to be given to the
service provider..

The Service Provider is concerned with the following security problems:

Issue/Concern Mitigation Technique

A non-genuine TMD
subscribes to a service

The attestation signature, sent in the Context
Establishment Protocol, proves that the requester owns
an identity certified by a trusted privacy CA. The privacy
CA knows that the identity is associated with a particular
TPM and a TMD.

The software on the TMD is
compromised

The integrity metrics in the attestation signature (sent in
the Context Establishment Protocol) proves that the
platform software is in an expected state, which is verified
against the VE.

Eavesdropper peeks the
messages between the
device and the service
provider

Each message in a secure context, established by the
Context Establishment Protocol, is protected by the
session secret.

Replay attack
Each message in a secure context, established by the
Context Establishment Protocol, has a unique sequence
id, thus the reply attack can be detected.

Installed application
software/data is
unexpectedly modified

The application domain belongs to the service provider
and is protected even from the device owner.

PAGE 17
Trusted Mobile Platform

Protocol Specification Document – Revision 1.00

3.2.2 E-Ticket Scenario Overview

The e-Ticket scenario defines the use of mobile devices to purchase and utilize tickets for access
to physical events (e.g. sporting events, concerts, movies, etc.) The steps required to enact the
e-Ticket scenario are outlined in Figure 3-2, on the next page.

PAGE 18
Trusted Mobile Platform

Protocol Specification Document – Revision 1.00

Figure 3-2 E-Ticket Scenario

CCuussttoommeerr (TMD) MMeerrcchhaanntt
(Payee)

AAddmmiissssiioonn
SSeerrvveerr

BBaannkk

Browse for tickets

eeTTiicckkeett IIssssuuiinngg SSeerrvviiccee

Ticket-Contract-Request

Verify credit

Create & Sign Ticket (Section 4.10 XML Signature, SAML)

Post Payment

Ticket Purchase Response

Open gate

Validate request

TT ii cc kk ee tt PP uu rr cc hh aa ss ee
AA

dd mm
ii ss ss ii oo nn

Admission Request

Authorize

Ticket-Contract-Response

Ticket-Purchase-Request

VVaalliiddaattiioonn EEnnttiittyy

Context Establishment (Section 4.7) Validation Data Protocol (Section 5.4)

Context Establishment (Section 4.7)

Validation Data Protocol (Section 5.4)

Fair Contract
Signing Protocol

(Section 6)

Remote Data Binding Protocol (Section 5.7)

Remote Data Redemption Protocol (Section 5.7)

PAGE 19
Trusted Mobile Platform

Protocol Specification Document – Revision 1.00

1) First, the device user browses tickets of the event that he/she is interested in.
2) The user requests ticket purchase through the user interface. The TMD obtains integrity metrics from TPM

(i.e., by calling TPM_Quote with passing identity authorization secret to TPM). The TMD then sends integrity
metrics to the e-Ticket issuing service (i.e., Service Provider) using the Context Establishment Protocol
(Section 4.7). Similar to the previous scenario, the Context Establishment Protocol may replace the
enhanced SSL/TLS.

3) The e-Ticket issuing service then asks the VE to validate the integrity metrics.
4) When the e-Ticket issuing service is satisfied by the validation result, the e-Ticket issuing service and the

TMD can exchange a purchase contract by the Fair Contract Signing Protocol (Section 6).
5) As the contract progresses, the e-Ticket issuing service may communicate with a bank to verify if the user

has enough credit to buy the tickets.
6) The electrical representation of tickets is created by the merchant (or the event promoter) in the form of a

SAML assertion, and signed by the merchant to avoid forgery. The e-Ticket issuing service installs the ticket
into the TMD by the Remote Data Binding Protocol (Section 5.7), ensuring that the tickets can be accessed
only by the ticket issuing service.

Upon admission to the event venue, e-Tickets may be exchanged in the following sequence:

7) When arriving at the venue, the device communicates with the Admission Server, possibly through the
proximity protocol such as Bluetooth. The TMD again obtains the integrity metrics from TPM by using
the identity authorization secret, and sets up a secure session with the Admission Server using the
Context Establishment Protocol.

8) The Admission Server then asks the VE to validate the integrity metrics.
9) When the Admission Server is satisfied by the validation result, the Admission Server and the device

exchange the Admission request and response in the Fair Contract Signing Protocol.
10) The Admission Server redeems the e-Ticket by the Remote Data Redemption Protocol.
11) Upon completion of ticket exchange, the Admission Server opens the gate to let the user in.

Note that similar to the previous section, there are several alternatives to implement this scenario; for example,
enhanced SSL/TLS handshake can replace the Context Establishment Protocol.

3.2.3 An Example Ticket Purchasing Protocol

Note that the Ticket Purchasing Protocol described in this section is an example, and this document does not
define an application protocol.

The Ticket Purchasing Protocol (TPP) is initiated by the user of a device to request the purchase of a particular
ticket at a particular price. Attributes of the ticket may vary, and are determined by browsing for the appropriate
ticket to purchase [step 1]. Therefore the ticket attributes are an input to the TTP. These attributes shall include,
but not be limited to, the following elements:

 Event name
 Ticket Event Date (the date or dates or dates range the ticket is used for)
 Ticket Issuer
 Ticket Serial Number
 Ticket Purchase Timestamp
 Ticket Type (e.g. child, adult, student, senior, etc)
 Ticket Usage (e.g. one-time-use, all-day-use, n-times-use, etc)
 Ticket Price (Cost), including a breakdown to identify discounts, taxes, handling fees,

etc

PAGE 20
Trusted Mobile Platform

Protocol Specification Document – Revision 1.00

Multiple tickets are handled by having a sequence of separate ticket attributes grouped together with a count for
the number of tickets and a total price for all the grouped tickets. The TTP transmits the ticket attributes in a
Ticket-Purchase-Request to the ticket issuer. The Ticket-Purchase-Request message shall be protected from
unauthorized disclosure (privacy) and unauthorized modification (integrity).

The ticket issuer is concerned with the following security problems:

Issue/Concern Mitigation Technique
Alteration of the purchased
ticket details after ticket
issuance
Forgery of a ticket

Ticket is digitally signed by issuer

Duplication of purchased
tickets

The Remote Data Binding Protocol ensures that the
tickets are encrypted by a key that is known only to the
ticket issuer, thus event the device owner cannot access
the tickets data.

A ticket is used multiple times The Remote Data Redemption Protocol ensures that the
ticket is removed from the TMD after it is used.

Issuing a ticket that is not
paid for (unfairness) TPP is implemented using a fair-exchange protocol

The Customer (ticket buyer) is concerned with the following security problems:

3.2.4 Mobile Wallet Scenario

In the Mobile Wallet scenario, we use a Trusted Mobile Device to purchase prepaid value tokens from the value
token brokerage via a value token charger. The TMD can then purchase in-expensive items, such as a can of
soda, from vending machine using value tokens. Figure 3-3 shows an example sequence that may occur in this
scenario.

Note: This document does not intend to specify an e-cash or micro payment protocol but rather to show an
example of how technologies defined in this specification can be used to build such an application.

Issue/Concern Mitigation Technique
Hijacking a purchased ticket
over the air Ticket is delivered over a secure tunnel

Stealing a ticket at the ticket
issuer before the ticket is sent

Ticket is linked to user’s handheld device by digital
signature

Stealing a ticket from the
user’s handheld device

Ticket is transmitted only to trusted platforms that protect
ticket

Purchasing a ticket from an
unauthorized ticket issuer
(buying a forgery)

Ticket issuer is authenticated before purchase details are
transmitted

Being charged for a ticket
that is never delivered
(unfairness)

TPP is implemented using a fair-exchange protocol

PAGE 21
Trusted Mobile Platform

Protocol Specification Document – Revision 1.00

Figure 3-3 Mobile Wallet Scenario

VVaalluuee TTookkeenn CChhaarrggeerr VVaalluuee TTookkeenn
BBrrookkeerraaggee

MMeerrcchhaanntt BBaannkk CCuussttoommeerr ((TTMMDD)) VVaalliiddaattiioonn EEnnttiittyy VVeennddiinngg MMaacchhiinnee

CC
hh aa rr gg ee vv aa ll uu ee tt oo kk ee nn ss

PP uu rr cc hh aa ss ee aa nn ii tt ee mm
 uu ss ii nn gg vv aa ll uu ee tt oo kk ee nn ss

Verify credit

Post payment

Load value token (Section 4.10 XML Signature, 4.12 SAML)

Pass an item

Aggregate value tokens

Push a coupon

Value tokens contract request

Value tokens contract response

Value tokens purchase request

Value tokens purchase response

Purchase Request

Item Purchase response

Context Establishment Protocol (Section 4.7) Validation Data Protocol (Section 5.4, pull mode)

Context Establishment Protocol (Section 4.7)

Get certificate for the current integrity metrics by Validation Data Protocol (Section 5.4, push mode)

Non-electric interaction

Proximity Protocol

TCP/IP Fair Contract Signing
Protocol (Section 6)

Remote Data Redemption Protocol (Section 5.7)

Remote Data Binding Protocol (Section 5.7)

PAGE 22
Trusted Mobile Platform

Protocol Specification Document – Revision 1.00

First, a customer purchase value tokens from a value token brokerage.

1) The customer goes to the proximity of a kiosk-like value token charger that is equipped with a wireless
proximity communication protocol (e.g., Bluetooth) to purchase value tokens. The value token charger works
as a gateway between proximity communication protocol and the Internet infrastructure.

2) The user requests ticket purchase through the user interface. The TMD establishes a secure communication
context using the Context Establishment Protocol (Section 4.7) against the value token brokerage, via the
value token charger acting as a gateway. At the same time, the TMD and the value token brokerage
authenticate each other. Note that since the Context Establishment Protocol is based on the WS-Security
[WS-Security], the TMD and the value token brokerage does not have to share a direct TCP/IP connection
to keep a secure communication context.

3) The value token brokerage asks the VE to validate attestation it received from the TMD in the process of the
context establishment.

4) When the value token brokerage is satisfied with the validation result, the value token brokerage and the
TMD can exchange a purchase contract. The contract can be made securely by using the Fair Contract
Signing Protocol (Section 6).

5) As the contract progresses, the e-Ticket issuing service may communicate with a bank to verify if the user
has enough credit to buy the value tokens.

6) The electrical representation of value tokens is created by the merchant (or the event promoter) in the form
of a SAML assertion (Section 4.12), and signed by the merchant to avoid forgery. The value token brokerage
installs the value tokens into the TMD by the Remote Data Binding Protocol (Section 5.7), ensuring that the
value tokens can be accessed only by the value token brokerage.

After the value tokens are stored in the TMD, the customer purchases an item using the value tokens.

7) The TMD requests a certificate from the VE using the push mode of the Validation Data Protocol. The

certificate attests that the current integrity metrics of the TMD is trusted. The request may happen anytime
and the certificate is valid as long as the TMD has the same integrity metrics.

8) The customer goes to the proximity of a vending machine, and set up a secure context using the Context
Establishment Protocol on top of the proximity protocol. At the same time, the TMD and the vending
machine authenticate each other.

9) The TMD and the vending machine exchange purchasing contract using the Fair Contract Signing Protocol
(Section 6).

10) The value token is redeemed by the vending machine by the Remote Data redemption Protocol while an
item (e.g., a can of soda) is released in return.

11) In addition, the vending machine may push an electric discount coupon to the TMD. The coupon may be a
SAML assertion signed by the value token brokerage.

12) The consumed value token is aggregated to the value token brokerage from the vending machine.

The value token brokerage and vending machine are concerned with the following security problems:

Issue/Concern Mitigation Technique
Alteration of a value token
Forgery of a value token

The value token is digitally signed by the issuer

Replay attack Each message in the secure context has sequence
number in it, thus the replay attack can be detected.

Duplication of a value token

The Remote Data Binding Protocol ensures that the
tickets are encrypted by a key that is known only to the
ticket issuer, thus event the device owner cannot access
the tickets data.

A value token is used multiple
times

The Remote Data Redemption Protocol ensures that the
value token is removed from the TMD after it is used.

PAGE 23
Trusted Mobile Platform

Protocol Specification Document – Revision 1.00

Issuing a ticket that is not
paid for (unfairness) Purchase takes place in the Fair Contract Signing protocol

The customer is concerned with the following security problems:

3.2.5 Business Workflow Scenario

The Phase-Zero document [PhaseZero] identifies several applications in the Business Workflow use-case. In
this section, we chose a basic business-to-employee application to exercise a use of the Trusted Mobile Platform
protocols in the scenario. In this scenario, we assume that a centralized Workflow Server controls a workflow by
generating a form, notifying each employee for approval, and verifying the signature of the approver. Figure 3-4
shows a typical sequence that occurs when an employee requests a reimbursement which will be approved by
his manager.

Issue/Concern Mitigation Technique
Hijacking a purchased value
tokens over the air

Value token is encrypted by the session secret that is
known only to the value token brokerage and the TMD.

Stealing a value token from
the TMD

The value token is stored in the protected storage which
can be accessed only by the authorized user

Purchasing a value token
from an unauthorized ticket
issuer (buying a forgery)

Ticket issuer is authenticated before purchase details are
transmitted

Being charged for a value
token that is never delivered
(unfairness)

Purchase takes place in the Fair Contract Signing protocol

PAGE 24
Trusted Mobile Platform

Protocol Specification Document – Revision 1.00

Figure 3-4 Business Workflow Scenario (B2E)

WWoorrkkffllooww SSeerrvveerr AApppprroovveerr TTMMDD
((MMaannaaggeerr))

 IInniittiiaattoorr TTMMDD
((EEmmppllooyyeeee))

Sign_RSA_PCR

Context Establishment Protocol (Section 4.7)
Validation Data Protocol (Section 5.4, pull mode)

VVaalliiddaattiioonn EEnnttiittyy
((TTrruusstteedd AAuutthhoorriittyy))

Load the form

Submit the form

Notification

Context Establishment Protocol (Section 4.7)

Load the form

Submit the form

Verify_RSA_PCR

Validation Data Protocol (Section 5.4, pull mode)

Sign_RSA_PCR

Verify_RSA_PCR

Fill-in the reimbursement request

PAGE 25
Trusted Mobile Platform

Protocol Specification Document – Revision 1.00

1) First, the employee attempts to initiate a reimbursement request by accessing the Workflow Server. The

employee and the Workflow server authenticate each other and setup a secure communication context
using the Context Establishment Protocol (Section 4.7).

2) The Workflow Server accesses the VE to validate the identity and the integrity metrics of the employee’s
Trusted Mobile Device (TMD), which are sent as a part of the Context Establishment Protocol.

3) The client load the request form generated by the Workflow Server.
4) The employee fills-in the form.
5) The employee signs the form using the Sign_RSA_PCR operation and submits it. The Sign_RSA_PCR

operation will sign the timestamp, digest of the form, and the current integrity metrics of the TMD.
6) The Workflow Server verifies the signature by the Verify_RSA_PCR operation.
7) The Workflow Server sends a notification to the employee’s manager’s TMD, who is the first approver in this

scenario.
8) The manager’s TMD establishes a secure communication context with the Workflow Server.
9) The Workflow Server verifies accesses the VE to validate the identity and the integrity metrics of the

manager’s TMD, which are sent as a part of the Context Establishment Protocol.
10) The manager’s TMD loads the form.
11) The manager signs the form using the Sign_RSA_PCR operation and submits it. The Sign_RSA_PCR

operation will sign the timestamp, digest of the form, the employee’s signature, and the current integrity
metrics of the manager’s TMD.

12) The Workflow Server verifies the manager’s signature by the Verify_RSA_PCR operation.
13) The process between 7-12 may repeat if there are multiple approver after the first-line manager.

The employee is concerned with the following security problems:

Issue/Concern Mitigation Technique
Violation of privacy by eavesdropping the
form

The form is encrypted by the session secret that is
exchanged and shared only with the Workflow Server.

Alternation of the form The form is signed by the employee’s attestation
signature

Submission to a fake Workflow Server The Workflow Server and the employee authenticate
each other before initiating the transaction.

The manager forgets approving the form, or
ignores it pretending there was no
submission

The Workflow Server acts as a trusted third party and
responsible for keeping track of the workflow. The
Workflow Server notifies the manager if the approval was
not made for a certain period of time, and notifies his/her
superior if no action was taken for long time.

A malicious unauthorized user who has
physical access to the TMD sends a request
without the employee’s consent

It requires the authorization secret to sing the form using
the Sign_RSA_PCR operation.

The manager is concerned with the following security problems:

Issue/Concern Mitigation Technique

Replay Attack Since the form and the timestamp are signed, the
workflow server can verify the duplication.

Violation of privacy by eavesdropping the
form

The form is encrypted by the session secret that is
exchanged and shared only with the Workflow Server.

Form submission from a fake employee The form is signed by the employee’s attestation
signature.

Alternation of the form
The form, along with the employee’s signature and
timestamp, is signed by the manager’s attestation
signature

Notification from a fake Workflow Server The Workflow Server and the manager authenticate each

PAGE 26
Trusted Mobile Platform

Protocol Specification Document – Revision 1.00

other before initiating the transaction.

The Workflow Server is concerned with the following:

Issue/Concern Mitigation Technique
Replay Attack Since the form and the timestamp are signed, the

workflow server can verify the duplication.
Integrity of a TMD is compromised Attestation signature used to establish the secure context

and sign the form includes the PCR value when the
signature is made, thus the state of the TMD at that point
can be verified.

Communicating to a fake employee /
manager

The form is signed by the employee’s attestation
signature.

3.2.6 Unsubscription from a Service and Revocation of an Identity

Figure 3-5 shows a typical sequence of actions that occur when a user unsubscribes from a service.

PAGE 27
Trusted Mobile Platform

Protocol Specification Document – Revision 1.00

Figure 3-5 Unsubscription from a Service and Revocation of an Identity

TTrruusstteedd MMoobbiillee
DDeevviiccee

SSeerrvviiccee PPrroovviiddeerr SSooffttwwaarree CCoonnffiigg.. SSvvcc PPrriivvaaccyy CCAA DDeevviiccee OOwwnneerr VVaalliiddaattiioonn EEnnttiittyy UUsseerr

Remove the application domain (section 7)

Remove the application software (section 8)

Unsubscribe

Unsubscribe completed

Sign-off request

Remove Identity

UU
nn ss bb ss cc rr ii bb ee ff rr oo mm

 aa ss ee rr vv ii cc ee
RR

ee vv oo cc aa tt ii oo nn oo ff aa nn ii dd ee nn tt ii tt yy

Unsubscribe all the
services that use the
identity

Revoke Identity Credential

Validation Data Protocol (Section 5.4)

Context Establishment Protocol (Section 4.7)

PAGE 28
Trusted Mobile Platform

Protocol Specification Document – Revision 1.00

1) The user attempts to unsubscribe from a service through the user interface on the device.
2) The TMD sets up a secure session with the service provider using the Context

Establishment protocol.
3) The integrity metrics sent to the service provider is validated by the VE and the result is

returned to the service provider.
4) The TMD sends an unsubscription request to the service provider.
5) When the service provider is satisfied by the validation result, it remotely removes

application software on the TMD. (See section 7).
6) The service provider then removes the application domain associated with its service, and

then clears the access control list for the domain. (See section 8)

The device owner may revoke the platform identity to avoid further use. It is anticipated that the
user (or the device owner) unsubscribes from all the services that use a platform identity before
revoking it.

7) The device owner attempts to revoke the identity through the user interface on the device.
The request should be accompanied by the owner authorization secret, so only the
legitimate owner can revoke the identity.

The Device User is concerned with the following security problems:

Issue/Concern Mitigation Technique
A rogue, who has physical
access to the device,
unsubscribes from a service
using the device

The action requires authorization secret on the platform
identity by which the user subscribed to the service.

An intermediate pretends to
be the service provider and
uninstalls the service

The user authenticates the service provider by the Context
Establishment Protocol.

The Service Provider is concerned with the following security problems:

Issue/Concern Mitigation Technique
The core software on the
device is compromised

The service provider verifies the integrity metrics in the
attestation, which is exchanged in the Context
Establishment Protocol.

An intermediate pretends to
be the device to unsubscribe
from a service

The service provider authenticates the requester by the
Context Establishment Protocol, in which attestation is
exchanged.

PAGE 29
Trusted Mobile Platform

Protocol Specification Document – Revision 1.00

4 WS-Security Profiles

4.1 Web Services

Trusted Mobile Devices are used as client platforms for distributed applications. Well-known
applications such as Web browsers and e-mail clients still utilize existing protocols and data
formats such as HTTP, HTML, POP3, SMTP, and MIME. General distributed applications
require a standard framework for distributed computing. Distributed computing frameworks such
as DCE, CORBA, and DCOM are commonly used within today’s network infrastructure. Recently,
Web services have introduced yet another distributed computing framework that enables
loosely-coupled applications, supporting a wide variety of platforms (including Microsoft’s
Windows platforms and Unix-based platforms). Due to the ubiquitous nature of Web services
capabilities, it is well anticipated that Web services will be widely used as a preferred distributed
computing framework within the next few years. The fundamental nature that the trusted mobile
devices are programmable distributed computing platforms, they should be capable of
communicating with these servers (services).

From a security requirement point of view, authentication, confidentiality, and integrity are
currently provided by Transport Layer Security (TLS), under the assumption that there is a direct
TCP/IP connection between the client platform and the server. On the other hand, a Class 3
Trusted Mobile Platform provides additional protection in the following used cases:

When there is no direct TCP/IP connection between the client and the server. For example, the
network operator has a gateway between the public Internet and their private access network.
With the weaker operator domain trust assumption (see Section 2.1), Trusted Mobile Devices will
have to depend on the message layer security rather than the transport layer security.

When security requirements are beyond authentication, confidentiality, and integrity.
Non-repudiation of a message is one such example. Another example is when a message needs
to be associated with its proper authorization information. Trusted Mobile Platforms also need to
exchange the platform integrity claims. These security requirements are essential for realizing the
e-ticket scenario and the B2B scenario described in the Phase Zero document [PhaseZero].

When the communications pattern are not synchronous and peer-to-peer. Asynchronous
communications require message-level protection. Also multi-party communications would
require additional security mechanism(s).

The Web Services Security specification [WS-Security] provides flexible, extensible, and
interoperable framework to the security protocol. The Trusted Mobile Platform takes
advantages of WS-Security to support the Trusted Mobile Platform’s High Security Option.
However, WS-Security as a whole is a large and complex specification, not all of which i practical
to a resource-constrained mobile device. This section defines profiles to WS-Security; so that it
can be efficiently implemented on such devices while preserving interoperability.

4.2 Namespaces

The following namespaces are used in this document. Unless explicitly stated otherwise, the
prefixes in this table are assumed to be bound to the corresponding namespace URI’s
[NameSpace] [URI].

Prefix Namespace Defined in
S http://www.w3.org/2001/12/soap-envelope [SOAP11]

PAGE 30
Trusted Mobile Platform

Protocol Specification Document – Revision 1.00

ds http://www.w3.org/2000/09/xmldsig# [XML-Signature]
xenc http://www.w3.org/2001/04/xmlenc# [XML-Encryption]
wsse http://schemas.xmlsoap.org/ws/2002/06/secext [WS-Security]
wst http://schemas.xmlsoap.org/ws/2002/12/secext [WS-Trust/WS-SecureC

onversation]
wsa http://schemas.xmlsoap.org/ws/2003/03/address

ing
[WS-Addressing]

wsu http://schemas.xmlsoap.org/ws/2003/06/utility [WS-Security]
saml urn:oasis:names:tc:SAML:1.0:assertion [SAML]
tmpa http://schemas.trusted-mobile.org/protocol/20

03/06/ws
[TMP-Protocol]

This specification explicitly REQUIRES supporting SOAP 1.1 [SOAP11] because it is the basis
for the suite of Web Services Security specifications as of June 2003. However, we anticipate
that SOAP 1.2 [SOAP12] will also be used. Therefore, it is RECOMMENDED that
implementations support SOAP 1.2 and allow SOAP 1.1 messages according to the version
transition rules described in Appendix A of [SOAP12-Part1].

4.3 WS-Security [WS-Security]

The types of security tokens that MUST be supported are listed in the following table.

QName Description

wsse:UsernameToken Username, optionally with a password [WS-Security].

wsse:BinarySecurityToken
Binary security token [WS-Security]. See the next table for the details
of subtypes.

saml:Assertion
SAML Assertion [SAML]. See [WS-SAML] for the details of this
binding

wsse:UsernameToken
Used for asserting the user’s identity. This token is simple to
implement, and useful in certain situations where impersonation is
required (for example, a gateway impersonates the end user).

wsse:BinarySecurityToken A generic type that may have different types of existing security
tokens, including X.509 certificates and TCG-specific credentials.

saml:Assertion Used for carrying authorization information.

The types of binary security token that MUST be supported in this specification are listed in the
following table.

QName Description

wsse:X509v3 X.509 v3 certificate [WS-X509].

tmpa:TpmIdentityCredential TCG identity credential. See Section 5.3 for details.

tmpa:TCGValidationData TCG validation data token. See Section 5.4 for details.

PAGE 31
Trusted Mobile Platform

Protocol Specification Document – Revision 1.00

4.4 SOAP Message Structure

The following shows the structural overview of a SOAP envelope conforming to this profile.

<S:Envelope xmlns:S=”…”>

 <S:Header>

 <wsse:Security>

 <wsse:BinarySecurityToken> … </wsse:BinarySecurityToken>

 <xenc:EncryptedKey> … </xenc:EncryptedKey>

 <ds:Signature> … </ds:Signature>

 </wsse:Security>

 <wsa:From wsu:Id=”…”> … </wsa:From>

 <wsa:To wsu:Id=”…”> … </wsa:To>

 <wsa:MessageId wsu:Id=”…”> … </wsa:MessageId>

 <wsu:Timestamp wsu:Id=”…”> … </wsu:Timestamp>

 </S:Header>

 <S:Body wsu:Id=”…”>

 <xenc:EncryptedData> … </xenc:EncryptedData>

 </S:Body>

</S:Envelope>

4.4.1 Message Integrity

For message integrity, a SOAP message SHOULD be digitally signed. When a SOAP message
is signed, the SOAP Body element MUST always be signed. Besides, the following message
header blocks MUST be present and signed. Signing these header blocks ensures that a
captured message cannot be used for other purposes (e.g., sending it to other destinations,
spoofing the message sender, or replaying the message). These header blocks MUST appear
after the ds:Signature element that signs them so that the receiving endpoint can process
them efficiently. In addition, the references to these header blocks MUST be done through
intra-document references (i.e., URI=“#...”).

Header Block Description

wsa:From The source endpoint of this message [WS-Addressing]

wsa:To The destination endpoint of this message [WS-Addressing]

wsu:Timestamp Timestamp of the message creation [WS-Security]

wsa:MessageID A unique identifier of the message [WS-Addressing]

In order to ensure message freshness, the endpoint that received a signed message SHOULD
keep some form of a message Timestamp and MessageID in the resident cache for a duration
that is defined by the endpoint’s policy. When receiving a new message, the recipient SHOULD
look up the cache for detecting replay attacks. If a message with the same MessageID is found

PAGE 32
Trusted Mobile Platform

Protocol Specification Document – Revision 1.00

in the cache, the recipient MUST cease processing the newly received message and MAY report
the error to the sender. The recipient SHOULD reject the message if the time-stamp has expired
for the given cache duration time.

The signature key may be either the sender’s private key or a session context secret (an HMAC
key that is derived from a session context) if such a context exists (See 4.7 for establishing a
context).

4.4.2 Message Confidentiality

When a SOAP message is encrypted, the content of the SOAP Body element MUST always be
encrypted.

If there is a shared session secret (See 4.7 for establishing a context), the message MAY be
encrypted by the secret or a key derived from the secret. If there is no such shared secret, an
encryption key needs to be generated and wrapped in a <xenc:EncryptedKey> element,
which is protected by the recipient’s public key.

4.4.3 Message Authentication

For proper message authentication, a message must be signed and encrypted as described in
this section. There are two scenarios how mutually-authenticated message exchange can be
performed with this specification.

4.4.3.1 Stateless message exchange

If there is a no session secret shared by the parties, each message needs to be signed by the
sender’s private key and encrypted by the receiver’s public key (through encryption by a
temporary symmetric key that is encrypted by the receiver’s public key). With the signature,
which includes the sender’s name, recipient’s name, message Id, timestamp, and the message
body in its scope, the receiver can verify that the message is actually coming from the sender
and being addressed to the receiver, that the message has not been modified during the
transmission, and that the message is not a replay of a previous message.

With the encryption, the sender can be confident that the message is only read by the intended
receiver. Note that message authentication does not guarantee the delivery of the message. If a
message delivery confirmation is necessary, the application needs to use a request-response
pattern. In this case, the <wsa:RelatesTo> header block [WS-Addressing] SHOULD be used
in the reply message (which is also signed and encrypted) so that the sender can verify the
delivery of the first message.

4.4.3.2 Stateful message exchange

If there is a session secret shared by the parties, each message can be signed (i.e., HMAC’ed)
and encrypted by the session secret or keys that are derived from the session secret. The
session secret is shared by performing one of the session establishment protocols described in
Section 4.7. Since the session secret is shared only if the both parties are properly authenticated
and nobody else knows the session secret (unless one of the parties release the secret to others),
the use of the session secret is strongly tied to the authenticity of the parties. Therefore, the
messages signed and encrypted by the session secret or keys that are derived from the session
secret can be considered to be authenticated. That is, the sender can be confident that the only
entity who can read the message is the receiver and the receiver can be confident that the
message is coming from the sender. In addition, message integrity and message confidentiality
are maintained.

PAGE 33
Trusted Mobile Platform

Protocol Specification Document – Revision 1.00

4.4.4 Derived Keys

When a session secret is used for protecting messages, it is RECOMMENDED that actual keys
to be used for signing and encryption are derived from the session key using the mechanism
defined in Section 5 of WS-SecureConversation [WS-SecureConversation]. In such a case,
one <wsse:DerivedKeyToken> for each derived key is included in the <wsse:Security>
header block. This <wsse:DerivedKeyToken> element in turn refers to the security context
token being used.

4.5 Minimalist Profile of WS-Security

Class 3 Trusted Mobile Devices are RECOMMENDED to support the Minimalist Profile of
WS-Security [Minimal-WS-Security]. Due to the limitations of mobile devices, limited resources
in terms of processing power, memory, and power consumption, it is important to keep in mind
that the protocol is implemented as a one-pass process. The Minimalist Profile allows the
receiving endpoint to perform WS-Security processing in a streaming manner.

A Trusted Mobile Device that supports the Minimalist Profile of WS-Security SHOULD advertise
its capability so that the communicating party can create messages conforming to the Minimalist
Profile of WS-Security. How this advertisement should be conducted is out of scope of this
specification. Any endpoint that potentially communicates with a Trusted Mobile Platform device
is RECOMMENDED to always to generate SOAP messages conforming to the Minimalist
Profile.

4.6 WS-Trust

WS-Trust [WS-Trust] defines a protocol between endpoints and a security token service. It is
RECOMMENDED for Class 3 Trusted Mobile Platforms to support WS-Trust in the following
situations:

For requesting and receiving TCG-related credentials to the device. See Section 5 for the
detailed use of WS-Trust for this purpose.

For establishing a security context between two endpoints. (See Section 4.7 for the details).

For obtaining and validating certificates. See Section 7.3 for more on key management issues. If
the infrastructure (i.e., CA, directory, etc.) supports WS-Trust, the implementation is
RECOMMENDED to use WS-Trust.

For exchanging other application specific tokens such as SAML tokens for authorization.

WS-Trust is can be used for any one of the above features. If the device is to use the above
features, WS-Trust should be implemented. Since WS-Trust is not a standard document as of
June 30, 2003, we expect that WS-Trust will evolve in the future. Implementations should be
prepared to adopt to these changes.

4.7 Context Establishment

When two parties exchange multiple messages in succession, it is desirable that they exchange
a common session key and use this key for signing and encrypting the messages instead of
using expensive public key operations. This subsection describes the protocols for establishing
and destroying security context. It shows how these two endpoints authenticate each other and

PAGE 34
Trusted Mobile Platform

Protocol Specification Document – Revision 1.00

share a fresh session secret. We propose the following three protocols depending on
requirements of the situation.

1. Diffie-Hellman key exchange (Section 4.7.1)
When the both parties want to use a signature-only key for authentication, this protocol can
be used. An example of such situation is that the parties use attestation keys for both
authentication and attestation.

2. Public key based key exchange (Section 4.7.2)
When one party has a TPM with a capability of generating a symmetric key inside the TPM,
this protocol can be used for securing the session key.

3. Symmetric key based key exchange (Section 4.7.3)
When the parties already share a symmetric key (session secret) and want to use it for
establishing a new context, this protocol can be used. Also this protocol can be used for
verifying the proof of possession of the shared session secret.

For a Class 3 Trusted Mobile Device, it is RECOMMENDED that one of the above protocols is
implemented.

A session is represented as a security context token [WS-SecureConversation]. During the
session, the communicating parties keep the security context token along with the session secret
that is exchanged using one of the protocols described below. The security context token has a
global Id (URI) that is unique to both parties. When referring to the session secret, this URI
SHOULD be used in a <wsse:SecurityTokenReference> element.

4.7.1 Diffie-Hellman Key Exchange

4.7.1.1 Protocol Overview

The overview of this protocol is shown in Figure 4-1 DH-based Context Establishment Protocol.
This protocol is based on ephemeral Diffie-Hellman key exchange with digital signatures for
authentication.

PAGE 35
Trusted Mobile Platform

Protocol Specification Document – Revision 1.00

Figure 4-1 DH-based Context Establishment Protocol

4.7.1.2 Message 1 Syntax and Processing

The requester, Alice, first generates a random number r1 and sends it to the responder, Bob. The
following shows the syntax of Message 1 sent from Alice to Bob.

<wst:RequestSecurityToken>

 <wst:TokenType>tmpa:SessionContextToken</wst:TokenType>

 <wst:RequestType>wst:ReqIssue</wst:RequestType>

 <tmpa:Requester>

 <wsse:Nonce>FZEkQjaigph/bqYNlGJYpMQ6/ds=</wsse:Nonce>

 </tmpa:Requester>

</wst:RequestSecurityToken>

The following describes elements and attributes used in the <wst:RequestSecurityToken>
element.
/RequestSecurityToken/TokenType

This mandatory element represents the type of the security token being requested and
MUST contain the qname “tmpa:SessionContextToken”.

/RequestSecurityToken/RequestType
This mandatory element represents the type of this request and MUST contain the QName
“wst:ReqIssue”.

/RequestSecurityToken/tmpa:Requester
This mandatory element contains information on the requester.

/RequestSecurityToken/tmpa:Requester/Nonce

Alice Bob

Generate
random r1 1. SecurityTokenRequest, r1

Prepare p, g, x,
X=gx mod p

2. r2, p, g, X

Generate
ContextToken
K=sha1(r1 | r2
| Yx mod p)

3. Y, [r1,r2,p,g,X,Y]SigA

4. SecurityContextToken, [r1,r2,p,g,X,Y] SigB

Generate y
Y=gy mod p

 Verify SigA

K=sha1(r1 | r2 |
Xy mod p)

Verify SigB

Generate r2

PAGE 36
Trusted Mobile Platform

Protocol Specification Document – Revision 1.00

This mandatory element contains the base64-encoded random number r1.

/RequestSecurityToken/tmpa:Requester /@{any}
This is an extensibility mechanism to allow additional attributes, based on schemas, to be
added to the element.

/RequestSecurityToken/tmpa:Requester /{any}
 This is an extensibility mechanism to allow additional elements to be used.

If Bob receives a message that does not conform to the syntax of Message 1, he MAY report
the syntax error to Alice using the SOAP fault code defined in 4.8.

4.7.1.3 Message 2 Syntax and Processing

On receipt of this message, the responder (Bob) generates its own random number r2. In
addition, Bob needs to have prepared a Diffie-Hellman key pair, X and x such that X=gx mod p.
This Diffie-Hellman key generation can be done at any time. (e.g., Bob’s Diffie-Hellman key may
be generated at the startup time. Bob responds with this Diffie-Hellman key along with the freshly
generated random number r2).

The following is the syntax of Message 2 from Bob to Alice.

<wst:RequestSecurityTokenResponse>

 <wst:SignChallenge>

 <wst:Challenge>

 <tmpa:Responder>

 <wsse:Nonce>FZEkQjaigph/bqYNlGJYpMQ6/ds=</wsse:Nonce>

 <tmpa:DiffieHellmanPublic> … </tmpa:DiffieHellmanPublic>

 </tmpa:Responder>

 </wst:Challenge>

 </wst:SignChallenge>

</wst:RequestSecurityTokenResponse>>

The following describes elements and attributes used in Message 2.

/RequestSecurityTokenResponse/SignChallenge

This mandatory element represents that Bob is requesting Alice’s signature.

/RequestSecurityTokenResponse/SignChallenge/Challenge
This mandatory element specifies the element that needs to be signed by Alice.

/RequestSecurityTokenResponse/SignChallenge/Challenge/tmpa:Responder
This mandatory element represents Bob’s cryptographic parameters, including the
Diffie-Hellman key and the random number r2.

PAGE 37
Trusted Mobile Platform

Protocol Specification Document – Revision 1.00

/RequestSecurityTokenResponse/…/tmpa:Responder/Nonce

This mandatory element contains the base64-encoded random number r2.

/RequestSecurityTokenResponse/…/tmpa:Responder/tmpa:DiffieHelmanPublic
This mandatory element represents Bob’s Diffie-Hellman public key. See 4.7.4 for the details
of this element

/RequestSecurityTokenResponse/…/tmpa:Responder /@{any}
This is an extensibility mechanism to allow additional attributes, based on schemas, to be
added to the element.

/RequestSecurityToken Response/…/tmpa:Responder /{any}
This is an extensibility mechanism to allow additional elements to be used.

If Alice receives a message that does not conform to the syntax of Message 2 as a response to
her Message 1, she MUST abort the protocol and MUST report the syntax error to Bob using the
SOAP fault code defined in 4.8.

4.7.1.4 Message 3 Syntax and Processing

After receiving Message 2 from Bob, Alice generates her ephemeral Diffie-Hellman key pair, y
and Y such that Y=gy mod p. Then she signs r1, r2, Bob’s public key, and Alice’s public key using
her authentication key (for example, her AIK). The message sent back to Bob, Message 3, has
the following syntax. This message MUST be signed by Alice’s authentication key using the
syntax described in 4.4 SOAP Message Structure.

<wst:RequestSecurityTokenResponse>

 <wst:SignChallengeResponse>

 <tmpa:Requester>

 <wsse:Nonce>FZEkQjaigph/bqYNlGJYpMQ6/ds=</wsse:Nonce>

 <tmpa:DiffieHellmanPublic> … </tmpa:DiffieHellmanPublic>

 </tmpa:Requester>

 <tmpa:Responder>

 <wsse:Nonce>FZEkQjaigph/bqYNlGJYpMQ6/ds=</wsse:Nonce>

 <tmpa:DiffieHellmanPublic> … </tmpa:DiffieHellmanPublic>

 </tmpa:Responder>

 </wst:SignChallengeResponse>

</wst:RequestSecurityTokenResponse>

The following describes elements and attributes used in Message 3.

/RequestSecurityTokenResponse/SignChallengeResponse

This mandatory element represents Alice’s response to Bob’s signing challenge.

/RequestSecurityTokenResponse/SignChallengeResponse/tmpa:Requester

PAGE 38
Trusted Mobile Platform

Protocol Specification Document – Revision 1.00

This mandatory element contains cryptographic parameters of Alice.

/RequestSecurityTokenResponse/…/tmpa:Requester/Nonce
This mandatory element contains the base64-encoded random number r1.

/RequestSecurityTokenResponse/…/tmpa:Requester/tmpa:DiffieHelmanPublic
This mandatory element represents Alice’s Diffie-Hellman public key. See 4.7.4 for the
details of this element

/RequestSecurityTokenResponse/SignChallengeResponse/tmpa:Responder
This mandatory element contains cryptographic parameters of Bob.

/RequestSecurityTokenResponse/…/tmpa:Responder/Nonce
This mandatory element contains the base64-encoded random number r2.

/RequestSecurityTokenResponse/…/tmpa:Responder/tmpa:DiffieHelmanPublic
This mandatory element represents Bob’s Diffie-Hellman public key. See 4.7.4 for the details
of this element

Upon receipt of Message 3, Bob MUST verify Alice’s signature on the message. If the syntax is
incorrect, the signature does not verify, or at that time Bob can decide whether that signature key
can not be trusted according to his policy, Bob MUST abort the protocol session. Bob MAY also
report the error using the SOAP fault code defined in 4.8.

4.7.1.5 Message 4 Syntax and Processing

If Bob is satisfied with Message 3, he constructs a security context token, generates the session
key K such that K=sha1(r1 | r2 | Yx mod p) where | denotes string concatenation.

Bob then sends the final message, Message 4, back to Alice. The syntax of this message is as
follows. This message MUST be signed by Bob’s authentication key using the syntax described
in 4.4 SOAP Message Structure

<wst:RequestSecurityTokenResponse>

 <wst:RequestedSecurityToken>

 <wst:SecurityContextToken> … </wst:SecurityContextToken>

 <wst:RequestedSecurityToken>

 <tmpa:Requester> … </tmpa:Requester>

 <tmpa:Responder> … </tmpa:Responder>

</wst:RequestedSecurityToken>

The following describes elements and attributes used in Message 4.

/RequestSecurityTokenResponse/RequestedSecurityToken

This mandatory element represents the security context token returned by Bob. This
element MUST contain a single element that is the security context token generated by
Bob.

PAGE 39
Trusted Mobile Platform

Protocol Specification Document – Revision 1.00

/RequestSecurityTokenResponse/ tmpa:Requester

This mandatory element contains cryptographic parameters of Alice, including the
Diffie-Hellman key and the random number r1.

/RequestSecurityTokenResponse/tmpa:Responder
This mandatory element contains cryptographic parameters of Bob, including the
Diffie-Hellman key and the random number r2.

Upon receipt of Message 4, Alice MUST verify Bob’s signature on the message. If the syntax is
wrong, the signature does not verify, or Alice can decide that the signature key cannot be trusted
according to her policy, Alice MUST abort the protocol session. Alice also MUST report the
error using the SOAP fault code defined in 4.8

4.7.2 Public Key-Based Key Exchange

The general description of this protocol is given in Section 7.3.2. Binding of this protocol to
WS-Security is TBD.

4.7.3 Symmetric Key-Based Key Exchange

The general description of this protocol is given in Section 8.3.4. Binding of this protocol to
WS-Security is TBD.

4.7.4 Tearing Down Session Context

For tearing down an existing session context, we need a way to revoke the security context token
representing the session context. Unfortunately the current WS-Trust draft does not define how
to revoke an already-issued security token. We temporary define the following request type of
WS-Trust for our purpose. We expect that WS-Trust will define a mechanism to do this, and this
specification will be subsumed by the new WS-Trust definition once it is defined.

QName Description

tmpa:ReqRevoke Revoke request of security token

The following illustrates the syntax of a session tear-down request.

<wst:RequestSecurityToken>

 <wst:TokenType>tmpa:SessionContextToken</wst:TokenType>

 <wst:RequestType>tmpa:ReqRevoke</wst:RequestType>

 <wst:Base>

 <wst:Reference URI=””/>

 </wst:Base>

</wst:RequestSecurityToken>

The following describes elements and attributes used in this request.
/RequestSecurityTokenResponse/TokenType

The value of this mandatory element MUST be the qname
“tmpa:SessionContextToken”..

PAGE 40
Trusted Mobile Platform

Protocol Specification Document – Revision 1.00

/RequestSecurityTokenResponse/RequestType

The value of this mandatory element MUST be the qname “tmpa:reqRevoke”.

/RequestSecurityTokenResponse/Base
This mandatory element contains a reference to the session context being revoked.

This message MUST be signed (HMAC’ed) using a key derived from the session context that is
being revoked.

On the successful revocation of the security token, the security token service MUST return a
message with an empty <wst:RequestSecurityTokenResponse> as the body. If the
revocation is not successful, a SOAP fault message using the fault codes in Section 4.8
SHOULD be returned. In both cases, the reply message MUST be signed using a key derived
from the current session context. Upon successful completion of this exchange, both parties
MUST invalidate the security context token (e.g., removing it from the memory).

4.7.5 Diffie-Hellman Parameter Element

The Diffie-Hellman public key parameters are represented by the following syntax. Note that
when Alice sends her public key using this syntax, the modulus and the generator are
OPTIONAL mainly due to the fact that these values are the same, as with Bob’s values. All the
parameters MUST be aligned to byte boundaries (i.e., their bit length is multiple of 8).

 <tmpa:DiffieHellmanPublic>

 <tmpa:Modulus>PoBmL7mRw/GI…3JSyzhDpRlY=</tmpa:Modulus>

 <tmpa:Generator>dNCglMprbcYT…OCrLNczvAm=</tmpa:Generator>

 <tmpa:Public>w/GFShuO2SIXp…65QAw=</tmpa:Public>

 </tmpa:DiffieHellmanPublic>

The following describes elements and attributes used in <tmpa:DiffieHellmanPublic>
element.

/DiffieHellmanPublic/Modulus

This element contains the base64-encoded modulus (p) of the key. This element is
mandatory when Bob sends its key to Alice. This element is optional when Alice sends
her key to Bob.

/DiffieHellmanPublic/Generator
This element contains the base64-encoded generator (g) of the key. This element is
mandatory when Bob sends its key to Alice. This element is optional when Alice sends
her key to Bob.

/DiffieHellmanPublic/Public
This mandatory element contains the base64-encoded public key part (X or Y) of the
key.

PAGE 41
Trusted Mobile Platform

Protocol Specification Document – Revision 1.00

4.8 SOAP Fault

Endpoints MUST use the SOAP fault codes defined in WS-Security [WS-Security] and
WS-Trust [WS-Trust] when reporting errors. The errors relevant to this specification are
shown in the following table.

Error that occurred Faultcode
The request was invalid or malformed wst:InvalidRequest

Authentication Failed wsse:FailedAuthentication

The specified request failed wst:RequestFailed

Security token has been revoked wsse:InvalidSecurityToken

Insufficient Digest Elements wst:AuthenticationBadElements

The specified RequestSecurityToken
is not understood.

wst:BadRequest

4.9 XML Encryption

WS-Security requires the use of W3C XML Encryption [XML-Encryption]. Therefore, a Class 3
Trusted Mobile Device MUST implement XML Encryption. In addition, it is RECOMMENDED
that a Class 3 Trusted Mobile Device also provide an API so that applications can use XML
Encryption for application-level confidentiality. The algorithms that MUST be supported are
summarized in the following table. These algorithm URIs are defined in [XML-Encryption].

Algorithm URI Description

http://www.w3.org/2001/04/xmlenc#aes128-cbc AES 128 bit

http://www.w3.org/2001/04/xmlenc#rsa-1_5 RSA v1.5 key transport

http://www.w3.org/2001/04/xmlenc#rsa-oaep-mgf1p RSA OAEP key transport

In addition, it is RECOMMENDED that the device also supports Triple DES
(http:www.w3.org/2001/04/xmlenc#tripledes-cbc) for interoperability with existing applications.

4.10 XML Digital Signature

WS-Security requires the use of W3C XML Signature [XML-Signature]. Therefore, a Class 3
Trusted Mobile Device MUST implement XML Signature. In addition, it is RECOMMENDED that
a Class 3 Trusted Mobile Devices also provide an API so that application can use XML Signature
for application-level integrity and non-repudiation. The algorithms that MUST be supported are
summarized in the following table. These algorithm URIs are defined in [XML-Signature].
Support for other algorithms defined in [XML-Signature] is RECOMMENDED but not required
by this specification.

Algorithm URI Description

http://www.w3.org/2000/09/xmldsig#sha1 SHA1 digest

PAGE 42
Trusted Mobile Platform

Protocol Specification Document – Revision 1.00

http://www.w3.org/2000/09/xmldsig#base64 Base64 Encoding

http://www.w3.org/2000/09/xmldsig#hmac-sha1 HMAC-SHA1 [RFC2014]

http://www.w3.org/2000/09/xmldsig#rsa-sha1 RSA signature (PKCS#1
v1.5) with SHA1

http://www.w3.org/2000/09/xmldsig#enveloped-signature Enveloped signature
transform

http://www.w3.org/2001/10/xml-exc-c14n# Exclusive canonicalization
[EXC-C14N]

http://www.trustedcomputinggroup.org/algorithms/xmlsig
-pcr

TCG signature with PCR
values (see Section 5.5)

Note #1: Although DSA algorithm is mandated by XML Signature, it is optional in Trusted Mobile
 Platform because TPM may not have DSA signing capability.

Note #2:Support for PKCS#1 v1.5 is required because it is mandatory for TPM defined in [TCG].
If the TPM supports RSA-PSS, the platform MUST support RSA-PSS. It is
RECOMMENDED to support RSA-PSS because they are considered to be more
secure than PKCS#1 v1.5.

4.11 Use of TPM for Cryptographic Operations

The Trusted Mobile Device has a hardware module (TPM) that provides secure cryptographic
operations. In this specification, it is RECOMMENDED that the TPM’s capability is used
whenever appropriate in the following situations.

Random number generation
TPM provides h/w-based random number generation, which is considered to be more secure
than any known software implementation. It is RECOMMENDED that whenever a random
number is needed, the TPM's PRNG is used (e.g., generation of temporary symmetric keys,
generation of initialization vectors for encryption, generation of random numbers in the session
establishment protocols).

Digital signature
When a digital signature is required, it can be done within the TPM. This allows the signing key to
be very well protected inside the TPM, thus enhancing the security.

Attestation signature
As a special case of digital signature, one may use TPM_QUOTE so that (1) the signature is done
via the AIK which is protected by the TPM, thus, enhancing security, and (2) the signature
contains the hash of selected PCR values so that the signature is bound to a particular integrity
metric of the platform. If an attestation signature is used in the context establishment protocol
(4.7), the session is bound to the platform’s state.

Protecting session secret
The session secret (K) can also be protected using the TPM. After the session secret is
exchanged, it is stored in the TPM. Every so often, the session key is retrieved and used for
generating actual encryption keys and HMAC keys. For example, some policy may allow that a
session lasts 24 hours, but for each message a temporary encryption key and an HMAC key is
generated from the session secret and the message id (within the session). This way, it is harder
to hijack a session by stealing the session secret.

PAGE 43
Trusted Mobile Platform

Protocol Specification Document – Revision 1.00

4.12 Security Assertion Markup-Language (SAML)

The SAML Assertions [SAML] is a prerequisite for the fair contract signing protocol (Section 6). If
the device is to use the fair contract singing protocol, SAML assertions MUST be supported. On
the other hand, the SAML protocol is subsumed by WS-Trust and thus, the use of the SAML
protocol SHOULD be avoided.

4.13 Access Control Policy Language (XACML)

In this specification, it is RECOMMENDED to use XACML [XACML] for the access control policy
language. An example for using XACML is provided in section 8.5.4.

4.14 Schema

The schema for the XML syntax used in this section is given below.

<?xml version="1.0" encoding="UTF-8"?>

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"

xmlns:ds="http://www.w3.org/2000/09/xmldsig#"

xmlns:wsse=http://schemas.xmlsoap.org/ws/2002/06/secext

xmlns:wsu="http://schemas.xmlsoap.org/ws/2003/06/utility"

xmlns:tmpa="http://schemas.trusted-mobile.org/protocol/2006/06/ws"

targetNamespace="http://schemas.trusted-mobile.org/protocol/2006/06/ws

">

 <xsd:element name="Requester">

 <xsd:complexType>

 <xsd:sequence>

 <xsd:element ref="wsse:Nonce"/>

 <xsd:element ref="tmpa:DiffieHellmanPublic"

 minOccurs="0" maxOccurs="1"/>

 </xsd:sequence>

 </xsd:complexType>

 </xsd:element>

 <xsd:element name="Responder">

 <xsd:complexType>

 <xsd:sequence>

 <xsd:element ref="wsse:Nonce"/>

 <xsd:element ref="tmpa:DiffieHellmanPublic"/>

 </xsd:sequence>

 </xsd:complexType>

PAGE 44
Trusted Mobile Platform

Protocol Specification Document – Revision 1.00

 </xsd:element>

 <xsd:element name="DiffieHellmanPublic">

 <xsd:complexType>

 <xsd:sequence>

 <xsd:element ref="tmpa:Modulus" type="xsd:base64Binary"

 minOccurs="0" maxOccurs="1"/>

 <xsd:element ref="tmpa:Generator" type="xsd:base64Binary"

 minOccurs="0" maxOccurs="1"/>

 <xsd:element ref="tmpa:Public" type="xsd:base64Binary"/>

 </xsd:sequence>

 </xsd:complexType>

 </xsd:element>

</xsd:schema>

PAGE 45
Trusted Mobile Platform

Protocol Specification Document – Revision 1.00

5 Attestation and Supporting Infrastructure

5.1 Introduction

TCG (Trusted Computing Group) is an industry specification that enables trust in computing
platforms. The main specification [TCG] defines a trusted subsystem that provides useful
security capabilities, structures and APIs for utilizing these capabilities from enhanced operating
systems and applications to compose a secure computing environment, and trust entities that
supports that environment.

A number of credentials and certificates defined in [TCG] play an important role in making a
trusted platform interact with other entities. These certificates are the evidences that the design
and implementation of the system are appropriate and conforming to the specification, a certain
identity is derived from a genuine security subsystem called a Trusted Platform Module (TPM),
and a certain platform configuration is known and thus considered to be trusted. However, the
way of exchanging the certificates is not defined in [TCG]. Since some credentials are created
and transmitted at the time of operation, protocols for certificates exchange are necessary.

Another kind of protocol is needed when TCG functions are accessed by remote entities. For
example, one very important feature of a trusted platform is to support the integrity measurement
and reporting capability, which enables the platform to provide mechanisms for cryptographically
reporting the current hardware and software configuration of a computer device to challengers.

This specification defines a set of protocols that work among Trusted Mobile Devices, services,
and trust entities. Since interoperability is essential for attestation-based trust infrastructure to be
widely used in various network environments, the protocols are designed based on the Web
Services Security specifications.

The following namespace is used in this document.

Prefix Namespace Defined in

tmp http://schemas.trusted-mobile.org/protocol This document

wsse http://schemas.xmlsoap.org/ws/2002/06/secext [WS-Security]

wst http://schemas.xmlsoap.org/ws/2002/12/secext [WS-Trust]

wsu http://schemas.xmlsoap.org/ws/2002/07/utility [WS-Security]

5.2 Protocols Overview

Figure 5-1 illustrates the scope of this section.

PAGE 46
Trusted Mobile Platform

Protocol Specification Document – Revision 1.00

Figure 5-1 Protocol Overview

1. Privacy CA protocol between the platform and the privacy CA. This protocol is
used to request a TPM identity certificate for the identity
created inside the TPM on the platform. To preserve the
pseudonymity of the identity, special request/response
message formats are defined in [TCG].

2. Validation data protocol between the platform and the validation entity. This
protocol is used by the platform to request a validation
certificate for the current platform configuration, which is
then pushed to the service along with the messages in the
protocol 4 and 5.

3. Validation data protocol between the service and the validation entity. This protocol
is used by the service to ask for the validation of the
configuration of a certain platform configuration.

4. Integrity reporting protocol between the platform and the service. This protocol is
used for the remote platform integrity reporting.

Protocol 1, 2, and 3 is related to the exchange of a TPM identity certificate and a validation data
certificate. This specification does not define protocols for exchanging a TPM endorsement
certificate, a platform endorsement certificate and a platform conformance certificate because
they are usually created and distributed offline.

Protocol 4 and 5 are related to the remote access to TCG functionalities. Since the platform
integrity attestation is often performed before other calls, it is defined independently.

In addition, Section 5.7 defines a protocol that cryptographically binds a token to a Trusted
Mobile Device. This protocol enables the e-Ticket scenario where the ticket cannot be duplicated
by the device user.

Platform

Service

Validation
Entity

Privacy CA

1

3

2

4

PAGE 47
Trusted Mobile Platform

Protocol Specification Document – Revision 1.00

5.3 Privacy CA Protocol

Privacy CA protocol is the communication between the platform and the privacy CA to assess a
platform and attest to the TPM identity. The resultant TPM identity certificate is an X.509 public
key certificate created and signed by the Privacy CA. [TCG] defines the message formats for
this protocol. These messages have unique syntax since they are designed to preserve the
pseudonymity of the identity. For this reason, the TPM identity certificate is never transmitted in
plaintext. In this specification, the certificate that is encrypted and encoded is defined as a special
binary security token.

5.3.1 Token formats

In this specification, identity certificate request and response are exchanged using Web Services
Trust Language (WS-Trust) messages. The WS-Trust specification [WS-Trust] defines a set of
XML elements that are placed under SOAP body elements and are used to request and issue
security tokens. Security token is a representation of a collection of any claims, so what to be
defined here are the definitions of token formats for this Privacy-CA protocol.

5.3.1.1 Identity Certificate Request Token

This token MUST be placed in tmp:TpmIdentityCredentialRequest element when
requesting a TPM identity certificate. The format of the token is defined in Section 4.30.2 and
9.4.1 of [TCG].

5.3.1.2 Identity Certificate Response Token

This token MUST be an encrypted and encoded TPM identity certificate. It is returned from the
Privacy CA to the platform. The format of the token is defined in Section 9.4.2 of [TCG].

tmp:TpmIdentityCredential is specified as the type of the security token.

5.3.2 Requesting an Identity Certificate

Below is an example of sending the TPM identity certificate request as a TCG-specific certificate
request (using the ReqIssue request type [WS-Trust]). This example is a SOAP message and
all elements other than the identity certificate request token are defined in the WS-Trust spec
[WS-Trust].

<S:Envelope xmlns:S="http://schemas.xmlsoap.org/soap/envelope/"

 xmlns:wsu="http://schemas.xmlsoap.org/ws/2002/07/utility"

 xmlns:wst="http://schemas.xmlsoap.org/ws/2002/12/secext"

 xmlns:tmp="http://schemas.trusted-mobile.org/protocol">

<S:Body wsu:Id="req">

 <wst:RequestSecurityToken>

 <wst:TokenType>tmp:TpmIdentityCredential</wst:TokenType>

 <wst:RequestType>wst:ReqIssue</wst:RequestType>

 <tmp:TpmIdentityCredentialRequest>

 ZyBha2FuIGRpcGFrYWkNCkRFU0NSSVBUSU9OPVBpbGloIGJhaGFzYSB1bnR1ayBk

PAGE 48
Trusted Mobile Platform

Protocol Specification Document – Revision 1.00

 aXBhc2FuZyBkYXJpIGRhZnRhciBkaWJhd2FoIGluaQ0KT0s9U2V0dWp1DQpDYW5j

 ZWw9UGVtYmF0YWxhbg==

 </tmp:TpmIdentityCredentialRequest>

 </wst:RequestSecurityToken>

</S:Body>

</S:Envelope>

5.3.3 Returning an identity Certificate

Below is an example SOAP message of returning a TCG-specific response (encrypted
certificate) as a binary security token.

<S:Envelope xmlns:S="http://schemas.xmlsoap.org/soap/envelope/"

 xmlns:wsu=http://schemas.xmlsoap.org/ws/2002/07/utility

 xmlns:wsse="http://schemas.xmlsoap.org/ws/2002/06/secext"

 xmlns:wst="http://schemas.xmlsoap.org/ws/2002/12/secext"

 xmlns:tmp="http://schemas.trusted-mobile.org/protocol">

<S:Body wsu:Id="res">

 <wst:RequestSecurityTokenResponse>

 <wst:TokenType>tmp:TpmIdentityCredential</wst:TokenType>

 <wst:RequestedSecurityToken>

 <wsse:BinarySecurityToken

 ValueType="tmp:TpmIdentityCredential"

 EncodingType="wsse:Base64Binary">

 MIIEZzCCA9CgAwIBAgIQEmtJZc0...

 </wsse:BinarySecurityToken>

 </wst:RequestedSecurityToken>

 </wst:RequestSecurityTokenResponse>

</S:Body>

</S:Envelope>

5.4 Validation Data Protocol

The validation data certificate typically represents an assertion by the component validation entity
that the component instructions referenced by the certificate have the attributes conveyed in the
certificate.

PAGE 49
Trusted Mobile Platform

Protocol Specification Document – Revision 1.00

There are two types of validation data request: push mode and pull mode. In push mode, the
platform gets the validation data certificate for the current value of platform integrity metrics (a
blue paper-like icon in Figure 5-2 Push Mode Validation Data Protocol). Then this certificate can
be attached in a message to the server.

Figure 5-2 Push Mode Validation Data Protocol

On the other hand, in pull mode, the server requests that the Validation Entity (VE) validates the
platform configuration.

Figure 5-3 Pull Mode Validation Data Protocol

5.4.1 Token formats

5.4.1.1 Validation Certificate Request Token

Validation certificate request is an X.509 attribute certificate request. This is used by the platform
to request a validation data certificate to the Validation Entity.

The format of the request: is defined in [CRMF]

TPM

Validation data protocol

Server

VE

TPM

Validation data protocol

Server

VE

PAGE 50
Trusted Mobile Platform

Protocol Specification Document – Revision 1.00

5.4.1.2 Validation Certificate Response Token

Validation certificate response token is a binary security token that is an X.509 attribute certificate
representing the credential for the validation data. The format and the syntax of the validation
data certificate is described in Section 4.32.4 and 9.5.4 of [TCG].

In [TCG], the certificate is intended to describe the integrity metric of each component. However,
in a real situation, it is often more of interest to consider whether a set of hardware and software
components can be trusted as a whole. Therefore, the validation certificate response MAY refer
to a set of components. When the certificate refers to such a set of components, the certificate
MAY contain the “PCR composite hash” attribute and the “PCR indices” attributes. If these
attributed is not specified, the Holder field MUST be the value of the TCG_COMPOSITE_HASH
(defined in Section 10.4.5 of [TCG]) and the Subject Alternative Name field MUST be the value
of the PCR indices array with RDNs of the component set endorser.

tmp:TCGValidationData is specified as the type of the security token.

5.4.2 Requesting a Validation Data Certificate in Push Mode

Below is the example SOAP message of requesting a security token: Send the TCG validation
data request as an attribute certificate request (using the ReqIssue request type [WS-Trust])

<S:Envelope xmlns:S="http://schemas.xmlsoap.org/soap/envelope/"

 xmlns:wsu="http://schemas.xmlsoap.org/ws/2002/07/utility"

 xmlns:wst="http://schemas.xmlsoap.org/ws/2002/12/secext"

 xmlns:tmp="http://schemas.trusted-mobile.org/protocol">

<S:Body wsu:Id="req">

 <wst:RequestSecurityToken>

 <wst:TokenType>tmp:TCGValidationData</wst:TokenType>

 <wst:RequestType>wst:ReqIssue</wst:RequestType>

 <tmp:ValidationDataRequest>

 ZyBha2FuIGRpcGFrYWkNCkRFU0NSSVBUSU9OPVBpbGloIGJhaGFzYSB1bnR1ayBk

 aXBhc2FuZyBkYXJpIGRhZnRhciBkaWJhd2FoIGluaQ0KT0s9U2V0dWp1DQpDYW5j

 ZWw9UGVtYmF0YWxhbg==

 </tmp:ValidationDataRequest>

 </wst:RequestSecurityToken>

</S:Body>

</S:Envelope>

5.4.3 Returning a Validation Data Certificate in Push Mode

Below is the example SOAP message of returning the validation data attribute as a binary
security token

<S:Envelope xmlns:S="http://schemas.xmlsoap.org/soap/envelope/"

PAGE 51
Trusted Mobile Platform

Protocol Specification Document – Revision 1.00

 xmlns:wsu="http://schemas.xmlsoap.org/ws/2002/07/utility"

 xmlns:wsse="http://schemas.xmlsoap.org/ws/2002/06/secext"

 xmlns:wst="http://schemas.xmlsoap.org/ws/2002/12/secext"

 xmlns:tmp="http://schemas.trusted-mobile.org/protocol">

<S:Body wsu:Id="res">

 <wst:RequestSecurityTokenResponse>

 <wst:TokenType>tmp:TCGValidationData</wst:TokenType>

 <wst:RequestedSecurityToken>

 <wsse:BinarySecurityToken

 ValueType="tmp:TCGValidationData"

 EncodingType="wsse:Base64Binary">

 MIIEZzCCA9CgAwIBAgIQEmtJZc0...

 </wsse:BinarySecurityToken>

 </wst:RequestedSecurityToken>

 </wst:RequestSecurityTokenResponse>

</S:Body>

</S:Envelope>

5.4.4 Attaching a Validation Data Certificate

Below is the example SOAP message of attaching a validation data certificate in the header of
arbitrary SOAP message. This particular example does not specify when and how this message
is transmitted. One most typical usage is that the certificate is attached in the message for
integrity reporting protocol.

<S:Envelope xmlns:S="http://schemas.xmlsoap.org/soap/envelope/"

 xmlns:wsu="http://schemas.xmlsoap.org/ws/2002/07/utility"

 xmlns:wsse="http://schemas.xmlsoap.org/ws/2002/06/secext"

 xmlns:tmp="http://schemas.trusted-mobile.org/protocol">

<S:Header>

 <wsse:Security>

 <wsse:BinarySecurityToken

 ValueType="tmp:TCGValidationData"

 EncodingType="wsse:Base64Binary">

 MIIEZzCCA9CgAwIBAgIQEmtJZc0...

 </wsse:BinarySecurityToken>

 </wsse:Security>

</S:Header>

PAGE 52
Trusted Mobile Platform

Protocol Specification Document – Revision 1.00

<S:Body wsu:Id="res">

 : <!–- body of the request -->

</S:Body>

</S:Envelope>

5.4.5 Requesting a Validation Data Certificate in Pull Mode

Below is an example SOAP message of sending the validation request (ReqValidate
[WS-Trust]), which is represented as an (unsigned) security token. Alternatively, the same
protocol as push model can be used.

<S:Envelope xmlns:S="http://schemas.xmlsoap.org/soap/envelope/"

 xmlns:wsu="http://schemas.xmlsoap.org/ws/2002/07/utility"

 xmlns:wst="http://schemas.xmlsoap.org/ws/2002/12/secext"

 xmlns:tmp="http://schemas.trusted-mobile.org/protocol">

<S:Body wsu:Id="req">

 <wst:RequestSecurityToken>

 <wst:TokenType>tmp:TCGValidationData</wst:TokenType>

 <wst:RequestType>wst:ReqValidate</wst:RequestType>

 <tmp:ValidationDataRequest>

 ZyBha2FuIGRpcGFrYWkNCkRFU0NSSVBUSU9OPVBpbGloIGJhaGFzYSB1bnR1ayBk

 aXBhc2FuZyBkYXJpIGRhZnRhciBkaWJhd2FoIGluaQ0KT0s9U2V0dWp1DQpDYW5j

 ZWw9UGVtYmF0YWxhbg==

 </tmp:ValidationDataRequest>

 </wst:RequestSecurityToken>

</S:Body>

</S:Envelope>

5.4.6 Returning a Validation Data Certificate in Pull Mode

Below is an example of returning the validation data attribute as a binary security token

<S:Envelope xmlns:S="http://schemas.xmlsoap.org/soap/envelope/"

 xmlns:wsu="http://schemas.xmlsoap.org/ws/2002/07/utility"

 xmlns:wsse="http://schemas.xmlsoap.org/ws/2002/06/secext"

 xmlns:wst="http://schemas.xmlsoap.org/ws/2002/12/secext"

 xmlns:tmp="http://schemas.trusted-mobile.org/protocol">

<S:Body wsu:Id="res">

 <wst:RequestSecurityTokenResponse>

PAGE 53
Trusted Mobile Platform

Protocol Specification Document – Revision 1.00

 <wst:TokenType>tmp:TCGValidationData</wst:TokenType>

 <wst:RequestedSecurityToken>

 <wsse:BinarySecurityToken

 ValueType="tmp:TCGValidationData"

 EncodingType="wsse:Base64Binary">

 MIIEZzCCA9CgAwIBAgIQEmtJZc0...

 </wsse:BinarySecurityToken>

 </wst:RequestedSecurityToken>

 </wst:RequestSecurityTokenResponse>

</S:Body>

</S:Envelope>

5.5 Integrity Reporting Protocol

The PCR registers contain the integrity metrics of the platform. These values can be reported by
using TPM_Quote, the quote function defined in Section 6.3.3 of [TCG]. When this function is
called, the TPM collects the values of current Platform Configuration Registers (PCRs),
combines them with a nonce to generate a special structure called TCG_QUOTE_INFO (defined
in Section 4.29 of [TCG]) and return the signature on this structure. There are two scenarios
where attestation signature (signature created by TPM_Quote) is useful:

1. Online Attestation: A service may want to check the integrity of the platform it is
communicating with. In this case, the freshness of the attestation signature must be verified;
i.e., it must be bound to a fresh nonce (Figure 5-4). In this specification, online attestation
can be performed in two ways. One is to use the RSA_PCR signature algorithm in SSL/TLS
(see Section 5.5.1.4). The other is to use the RSA_PCR signature algorithm in the Context
Establishment protocol (4.7).

Figure 5-4 Online Attestation

2. Content attestation: A platform may want to have a proof of its integrity at the time of
signing a document. In this case, content must be bound to the PCR values at the time of
signing. The verifier (possibly the service) knows that the signature on the document is done
by a platform of a known configuration (See Figure 5-5)

Service Platform

TPM

PCR

Nonce

Key [Nonce, PCR]Key

PAGE 54
Trusted Mobile Platform

Protocol Specification Document – Revision 1.00

Figure 5-5 Content Attestation

To enable both scenarios, this specification defines a new signature algorithm format that can be
used in various existing protocols including SSL/TLS and XML Signature.

5.5.1 Signature algorithm with integrity metrics

A set of two operations, Sign_RSA_PCR and Verify_RSA_PCR, constitutes a new signing /
verification algorithm based on TPM_Quote. Specifically, the signature value of Sign_RSA_PCR
contains the PCR value information at the time of signing. Since Sign_RSA_PCR uses
TPM_Quote, the key length is always 2048 bits.

5.5.1.1 Sign_RSA_PCR

Sign_RSA_PCR takes three inputs: the first value is a specification of the key to be used. The
second input a 160 bit data containing an arbitrary data to be signed, which is passed as the
externalData parameter in the TPM_Quote call. The third input is a specification of PCR
registers whose values are to be included in the signature.

The signature, which is the output of Sign_RSA_PCR, is defined as a concatenation of TCG_
QUOTE_INFO as defined in Section 4.29 of [TCG] and the value of sig returned by the
TPM_Quote call. Since TCG_QUOTE_INFO is always 48 bytes and sig is always 256 bytes, the
total length of the signature is always 304 bytes.

5.5.1.2 Verify_RSA_PCR

Verify_RSA_PCR takes one input parameter: the signature created by Sign_RSA_PCR. In the
verification process, the signature is first split into two parts; the first 48 bytes of the signature
represent TCG_QUOTE_INFO and the rest part is the value of the RSA signature done by the
TPM_Quote call. Then the following things MUST be tested:

The first part contains a valid TCG_QUOTE_INFO structure. This means the version field MUST
be the correct, and the fixed field MUST be the ASCII string “QUOT”.

Service

[Hash(Doc), PCR]Key

Doc

Platform
TPM

PCR Key

PAGE 55
Trusted Mobile Platform

Protocol Specification Document – Revision 1.00

The externalData field of the first part is the expected value (i.e., either the nonce or the hash
of the signed document).

The second part MUST be the RSASSA-PKCS1-v1.5 signature of the first part according to the
given public key (of the TPM identity key.)

5.5.1.3 Bindings of Sign_RSA_PCR and Verify_RSA_PCR

Sign_RSA_PCR and Verify_RSA_PCR can be used anywhere this signature is useful. When
they are applied in an existing protocol, the way to specify this signature algorithm is required. In
this specification, we define two such bindings: SSL/TLS binding and XML Signature binding.
These bindings are RECOMMEND ways to use this attestation signature algorithm.

5.5.1.4 SSL/TLS Binding

The SSL/TLS Binding is useful when online attestation is necessary. In SSL/TLS [TLS], the
signature algorithm used in the Handshake Protocol is specified as a CipherSuite. In this
specification, we define a single CipherSuite, TLS_RSA_PCR_WITH_3DES_EDE_CBC_SHA (this
needs to be submitted to ITEF WG and be approved). This CipherSuite indicates that
Sign_RSA_PCR and Verify_RSA_PCR MUST be used when performing the client
authentication. The server side authentication is the normal RSA operation as defined in [TLS].

5.5.1.5 XML Signature Binding

The XML Signature Binding is useful when content attestation is necessary. In XML Signature,
the algorithm is specified by an algorithm URI. This specification defines the following URI for
Sign_RSA_PCR and Verify_RSA_PCR.

http://www.trustedcomputinggroup.org/algorithms/xmlsig-pcr

5.6 Schema Definition

The schema for this specification is described below.

<?xml version="1.0" encoding="UTF-8"?>

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"

 xmlns:tmp="http://schemas.trusted-mobile.org/protocol"

 targetNamespace="http://schemas.trusted-mobile.org/protocol">

 <xsd:element name="TpmIdentityCredentialRequest"

 type="xsd:base64Binary" />

 <xsd:element name="ValidationDataRequest" type="xsd:base64Binary" />

 <xsd:simpleType name="TokenTypeEnum">

 <xsd:restriction base="xsd:QName">

 <xsd:enumeration value="tmp:TpmIdentityCredential" />

 <xsd:enumeration value="tmp:TCGValidationData" />

PAGE 56
Trusted Mobile Platform

Protocol Specification Document – Revision 1.00

 </xsd:restriction>

 </xsd:simpleType>

</xsd:schema>

5.7 Remote Data Binding

5.7.1 Definition of Key Remote Data Binding

Often in the physical world we carry objects that give us permissions, but we do not have the
ability or authority to modify or duplicate them. In some cases, we do not even have the ability to
examine the contents of these objects, or are not aware of (nor care) about the contents.
Examples include the SIM cards used in our cell-phones, or the magnetic stripe on subway
tickets. These objects act as tickets that grant us access, in one case to a cell-phone network, in
the other case to a subway.

In the digital world, it is convenient to be able to construct these types of objects for use. And, in
fact, several cryptographic techniques have been used to create non-forgeable tokens. What has
not been accomplished is the ability to bind a token to a person (or device) with that person’s
consent, but without that person being able to modify or duplicate the token. This type of
functionality is necessary in cases where duplication would be harmful. An electronic ticket is one
such example.

Remote Data Binding uses features of a TPM to bind a token (e.g. a ticket) to a device with the
user’s consent. However, following this binding, the user is not able to modify or duplicate the
token.

5.7.2 Remote Data Binding Protocol

Figure 5-6 depicts the remote data binding protocol for an electronic ticket. The paragraphs
following describe the elements of this protocol.

PAGE 57
Trusted Mobile Platform

Protocol Specification Document – Revision 1.00

TCPA TPM Enabled Device
With Key Hierarchy

SRK

AIKUser Key

Ticket Key TPM
Ticket Granting

Agent

1. Ticket Request

2. TPM_GetAuditEventSigned

3. TPM_CreateWrapKey
4. TPM_CreateMigrationBlob

5. Send Blob

6. TPM_ChangeAuth

7. TPM_GetAuditEventSigned

8. Ticket Manifest, Ticket,
Ticket Redemption Stub

Figure 5-6 Remote Data Binding Protocol

The TPM is embedded in a mobile device, and the user of the device has access to the Storage
Root Key (SRK), at least one Attestation Identity Key (AIK), and a personal storage key (Users
Key). The remote data binding protocol will create a ticket key under the protection of the TPM
and provide a ticket to the device protected under that key.

Once the ticket request is provided to the ticket granting agent (step 1), the user’s device will
perform ordinary TPM commands to create a migratable key inside the TPM (step 3). The key is
extracted securely in a migratable blob (step 4), and then shipped to the ticket granting agent
(step 5). The ticket granting agent then changes the authentication value for the key in a secure
manner (step 6). In order to ensure that the key is not tampered with before the authentication
value is changed, the ticket granting agent performs two audits surrounding the other protocol
steps (step 2 and step 7). This allows the ticket granting agent to check the actions that were
performed on the TPM and the migratable key, ensuring that the user did not also migrate the
key to anyone else (including themselves).

Once this process is completed, the ticket granting agent can ensure that the key in the TPM was
properly created, and only the ticket granting agent has access to the key itself. These properties
are guaranteed by the TPM. The ticket granting agent can then use this key to protect data and
bind that data to the TPM’s device.

5.7.3 Ticket Creation

The ticket granting agent creates a ticket using the key it received from the TPM through
migration. The ticket must be bound to the TPM’s device, and the ticket must be protected from
modification and duplication. The ticket is provided in three parts: the ticket manifest, the ticket
itself, and the ticket redemption stub.

PAGE 58
Trusted Mobile Platform

Protocol Specification Document – Revision 1.00

The ticket manifest is a non-redeemable ticket description, signed by the ticket granting agent,
which describes what the actual ticket contains. This manifest is required since the ticket itself is
encrypted and not able to be inspected by the user. The manifest is signed in order to represent
a legal contract that the actual ticket is equivalent to that which is represented in the manifest,
and also to protect the manifest from unauthorized modification.

The ticket itself is signed by the ticket granting agent and also encrypted using the TPM key that
was migrated to the ticket granting agent in Step 5 of the protocol.

The ticket redemption stub is used to authenticate the source of the TPM, and contains the
authentication value for the ticket key stored in the TPM, and a ticket identifier. It also contains an
AIK certificate that will be used to authenticate the TPM prior to redemption of the ticket. The
ticket redemption stub is encrypted with the public key of ticket redemption agent.

5.7.4 Remote Data Redemption Protocol

The user begins the ticket redemption process by sending the ticket redemption stub and the
ticket manifest to the ticket redemption agent (step 1). The manifest acts as a ticket claim by the
user of the device, claiming that he holds the ticket in the manifest. The ticket redemption agent
determines if this is the appropriate location and date to redeem the ticket represented by the
manifest. If the redemption agent approves the ticket manifest, the agent must then authenticate
the TPM. Authentication proceeds by requesting a TPM_Quote using a nonce value (step 2).
The TPM produces the requested quote (step 3) and sends the quote information to the ticket
redemption agent (step 4).

If the agent believes the TPM is authentic based on checking the quote data, and the AIK used to
sign the quote data is the same AIK that was provided in the ticket redemption stub, then this
proves the TMP device that was issued the ticket is conversing with the redemption agent. The
agent then constructs a proper TPM_Unbind request using the authentication value retrieved
from the decrypted ticket stub (step 5). The user decrypts the key using the authentication on the
parent key (step 6). This step authenticates that the user is redeeming the key to the TPM. The
TPM decrypts the ticket and returns the decrypted ticket to the user. The user sends the ticket to
the ticket redemption agent for redemption (step 7). Upon receipt of the decrypted ticket, the
agent ensures that the ticket matches the ticket manifest (e.g. using a ticket identifier) that was
presented on the original request (in step 1). If these match, the ticket redemption is granted.

When the redemption agent provides the TPM_Unbind request to the TPM device, the ticket is
considered redeemed and not valid for further use. This is because the ticket can be decrypted
by the user once the TPM_Unbind request is issued. If the user decrypts the ticket and does not
return the ticket to the ticket redemption agent, it is possible to duplicate the ticket (because it is
now decrypted). This requirement to redeem the ticket at this point is necessary to prevent an
early redemption attempt that does not return the ticket to the redemption agent, and then
duplicates the ticket. If an duplication attack is discovered, it can be shown that the user had to
collude in such an attempt since the both the AIK used for the TPM_Quote and the user key that
is the parent of the ticket key had to be accessed. Access to both these keys requires an
authentication value that only the user knows (see TCG specification for TPM_Quote and
TPM_LoadKey).

PAGE 59
Trusted Mobile Platform

Protocol Specification Document – Revision 1.00

TCPA TPM Enabled Device
With Key Hierarchy

SRK

AIKUser Key

Ticket Key TPM Ticket Redeemer

1. Ticket Redemption Request,
Ticket Redemption Stub, ticket manifest

6. TPM_LoadKey

7. Decrypted ticket

2. Request Auth (nonce)

5. TPM_Unbind (Auth value)

3. TPM_GetQuote (nonce)

4. Quote Info

Figure 5-7 Remote Ticket Redemption Protocol

5.8 Security Considerations

This section did not provide explicit protection of the messages exchanged between the device
and trusted third parties except for the protection mechanisms that are built-in into the TCG data
format. In order to protect the messages in transmission, appropriate mechanisms need to be
applied. As discussed in Section 4, SSL/TLS with mutual authentication can provide adequate
protection if there is a direct TCP/IP connection between the device and the trusted third party.
Otherwise, the protection mechanism described in Section 4 should be employed.

Implementers of this specification should be aware that security tokens (credentials and
certificates) must have an expiration time and also they are subject to revocation. In particular, if
the push mode of operation (Section 5.4.3) is used, the verifier who receives a validation security
token should check the status of security tokens using the wsse:ReqValidate message of
WS-Trust according to the platform’s policy.

PAGE 60
Trusted Mobile Platform

Protocol Specification Document – Revision 1.00

6 Fair Contract Signing Protocol

Reliable and atomic transaction is one of the key requirements for TMP. In the e-Ticket scenario
described in the Phase 0 document, when the user purchases an electronic ticket using a mobile
device, the paying event and the ticket receiving event must be atomic and inseparable; either
they both occur or neither one occurs. Although this is a general requirement for virtually any
network-based transactions, TMP has identified that this is a much more serious problem for
mobile devices because wireless network connections are less reliable especially when the
clients are moving.

This section defines the TMP Fair Contract Signing Protocol, which allows exchanging
signatures in an atomic way. The protocol uses the idea of Optimistic Fair Contract Signing
recently proposed by Asokan, Shoup, and Waidner [Asokan1998].

6.1 Abstract Protocol Definition

Let us assume party A and party B are exchanging a contract, and T is a trusted third party. M
denotes the body of the contract. T is always trusted and eventually reachable even if there are
network problems. In addition, we assume that A, B, and T can be mutually authenticated.

The basic idea is to first exchange pre-contracts, that is, commitments to sign the contract. Once
Alice receives Bob’s pre-contract in return for her pre-contract, she knows that Bob has
committed to sign the contract so she can sign the contract without risk. If Bob refuses to sign the
contract, Alice can go to Trent, the trusted third party, with the two pre-contacts (commitments)
and have Trent certify the contract.

A pre-contract is defined as a signature on m, A, and B.

A’s pre-contract = sigA(m, A, B, T)
B’s pre-contract = sigB(m, A, B, T)

Next, we need to define the concept of a valid contract.

6.1.1 Two Forms of Valid Contracts

There are two types of valid contract.

6.1.1.1 Standard contract

This is the contract body signed by both parties, that is, a pair of signatures on m.

Standard contract = { sigA(m, A, B), sigB(m, A, B) }

If no messages are lost during the protocol and both parties behave as expected, this is the
contract shared by A and B. This type of valid contract can be created without the help of a
trusted third party.

6.1.1.2 Notarized contract

If something goes wrong in the protocol, a party who has both pre-contracts can ask T for
arbitration. Under certain conditions, T can issue an alternate form of a valid contract by signing
the two pre-contracts as shown below.

PAGE 61
Trusted Mobile Platform

Protocol Specification Document – Revision 1.00

Notarized contract = sigT(sigA(m, A, B, T), sigB(m, A, B, T))

A notarized contract is created by T if either A or B requests T to do so when there is something
wrong. By definition, it has the exact same validity as the corresponding standard contract.

The concept of a notarized contract is essential to optimistic fair contract signing. TMP platforms
MUST support both forms as valid signatures on message m.

6.1.2 Description of Optimistic Fair Contract Signing Protocol

Figure 6-1 illustrates the normal flow of the protocol. The general idea is that A and B first
exchange pre-contracts, then exchange valid contracts.

1. A and B exchange pre-contracts (commitment to sign the contract)
2. If 1 succeeds, A and B exchange the actual contract.
3. If 2 also succeeds, the protocol terminates normally. In this case, T is never

involved in the transaction.
4. If anything goes wrong, A or B can request that T abort or resolve the

transaction. T resolves the transaction by converting a pair of pre-contracts to
a valid contract by signing the pair of pre-contracts.

As soon as B receives A’s signature in me3, B can create his own signature and have a standard
valid contract. Therefore, the time of agreement formation for B is at the reception of message
me3. At this point, B can be sure that the contract cannot be reversed so he can proceed to the
next step of his application.

A B
me1 = sigA(m, A, B, T)

me2 = sigB(m, A, B, T)

me3 = sigA(m, A, B)

me4 = sigB(m, A, B)

Standard contract: {me3, me4}
Notarized contract: sigT{me1, me2}

A B
me1 = sigA(m, A, B, T)

me2 = sigB(m, A, B, T)

me3 = sigA(m, A, B)

me4 = sigB(m, A, B)

Standard contract: {me3, me4}
Notarized contract: sigT{me1, me2}

PAGE 62
Trusted Mobile Platform

Protocol Specification Document – Revision 1.00

Figure 6-1 Overview of the Optimistic Fair Exchange

If A sends her pre-contract (me1) to B, but does not receive B’s pre-contract (me2), A MAY ask T
to abort the protocol by sending an abort message as shown in Figure 6-2. T decides if the
contract has already been agreed upon and if so, returns a notarized contract to A. If a contract
has not been agreed upon, T records the abort of the contract and confirms it by returning a
signed abort message to A.

Figure 6-2 Abort Protocol

On the other hand, if B sends his pre-contract (me2) but does not receive A’s signature (me3), B
MAY ask T to resolve the situation by sending a resolve message containing the two
pre-contracts to T (Figure 6.3). T MUST return a signed abort message if the protocol has
already been aborted. Otherwise, T MUST return a notarized contract.

Likewise, if A sends her signature (me3) but does not receive B’s signature (me4), A MAY ask T
for a notarized contract using the resolve protocol.

Note that the resolve protocol and the abort protocol MUST be serialized at T so that only one of
them is successful, never both.

A T

or

sigA(m, A, B, abort)

sigT(sigA(m, A, B, T), sigB(m, A, B, T))

sigT(sigA(m, A, B, abort))

A T

or

sigA(m, A, B, abort)

sigT(sigA(m, A, B, T), sigB(m, A, B, T))

sigT(sigA(m, A, B, abort))

PAGE 63
Trusted Mobile Platform

Protocol Specification Document – Revision 1.00

Figure 6-3 Resolve Protocol

Note also that only A can abort the protocol. This is reasonable because it is A who makes a
commitment (by sending her pre-contract) first. This does not cause any unfairness. Because B
cannot abort the protocol, A can be sure that the contract is agreed on the receipt of B’s
pre-contract (me2). From A’s perspective, the time of agreement formation is when it receives
me2 (as long as A intends to sign the contract). It is a safe decision because A already has the
two pre-contracts with which A can always obtain a notarized contract from T.

6.2 Message Structures

6.2.1 Namespaces

The XML namespace URI [Namespace] [URI] that MUST be used by implementations of this
specification is:

 http://schemas.trusted-mobile.org/protocol/2003/06/ofcs
The following namespaces are used in this section. Unless explicitly stated otherwise, the
prefixes in this table are assumed to be bound to the corresponding namespace URI’s.

Prefix Namespace Defined in
ofcs http://schemas.trusted-mobile.org/protocol/2003/06/ofcs This document
ds http://www.w3.org/2000/09/xmldsig# [XML-Signature]
wsse http://schemas.xmlsoap.org/ws/2002/12/secext [WS-Security]
saml urn:oasis:names:tc:SAML:1.0:assertion [SAML]

A or B T

or

(sigA(m, A, B, T), sigB(m, A, B, T))

sigT(sigA(m, A, B, abort))

sigT(sigA(m, A, B, T), sigB(m, A, B, T))

A or B T

or

(sigA(m, A, B, T), sigB(m, A, B, T))

sigT(sigA(m, A, B, abort))

sigT(sigA(m, A, B, T), sigB(m, A, B, T))

PAGE 64
Trusted Mobile Platform

Protocol Specification Document – Revision 1.00

6.2.2 Assertions

The body of a contract MUST be represented as a pair of the SAML <saml:Assertion>
elements. We assume that the contents of these assertions are mutually agreed upon (but not
yet signed) prior to conducting our optimistic fair exchange protocol. For example, Alice
browses a catalogue of electronic tickets and decides which ticket she wishes to buy at what
price.

6.2.3 Commitments

Next we define an XML representation of a pre-contract sigA(m,A,B,T). We introduce a new XML
element type <Commitment> to represent a pre-contract. A commitment consists of two digest
values, one for assertion S1 and one for asset ion S2. A commitment also contains the identity
of each participant, including the trusted third party T. A participant’s identity can be
represented as an X.509 certificate, which is referenced by a
<wsse:SecurityTokenReference> element as defined in WS-Security [WS-Security].
This construct also allows very flexible and general ways of referring to various other types of
identity tokens. A commitment must be signed by A or B depending on who is making this
commitment.

The following represents an overview of the syntax of the <ofcs:Commitment> element.

<ofcs:Commitment CommitmentID=”C1”>

 <ofcs:Initiator>

<ds:Reference URI=”...”>

 ...

</ds:Reference>

</wsse:SecurityTokenReference>

 ...

<wsse:SecurityTokenReference>

 </ofcs:Initiator>

 <ofcs:Responder>

<ds:Reference URI=”..”>

 ...

</ds:Reference>

<wsse:SecurityTokenReference>

 ...

</wsse:SecurityTokenReference>

 </ofcs:Responder>

 <ofcs:Broker>

<wsse:SecurityTokenReference>

 ...

</wsse:SecurityTokenReference>

PAGE 65
Trusted Mobile Platform

Protocol Specification Document – Revision 1.00

 </ofcs:Broker>

<ds:Signature>

 ...

</ds:Signature>

</ofcs:Commitment>

The following describes elements and attributes used in a <ofcs:Commitment> element.
/Commitment/Initiator

This mandatory element represents the information on the first participant of the protocol.

/Commitment/Initiator/ds:Reference
This mandatory element refers to the assertion made by the first participant. The content
of this element conforms to the Reference element of XML Signature.

/Commitment/Initiator/wsse:SecurityTokenReference
This mandatory element refers to a security token that represents the identity of the first
participant, such as an X.509 certificate.

/Commitment/Responder
This mandatory element represents the information on the second participant of the
protocol.

/Commitment/Responder/ds:Reference
This mandatory element refers to the assertion made by the second participant. The
content of this element conforms to the Reference element of XML Signature.

/Commitment/Responder/wsse:SecurityTokenReference
This mandatory element refers to a security token that represents the identity of the
second participant, such as an X.509 certificate.

/Commitment/Broker
This mandatory element represents the information on the trusted third party.

/Commitment/Broker/wsse:SecurityTokenReference/
This mandatory element refers to a security token that represents the identity of the
trusted third party, such as an X.509 certificate.

/Commitment/ds:Signature
This mandatory element contains an XML signature on the <Commitment> element
either by the first participant or the second participant.

Note that we allow indirection for assertion referrals through <ds:Reference> rather than
directly embedding the assertions within a commitment. There are several reasons for this
design.

PAGE 66
Trusted Mobile Platform

Protocol Specification Document – Revision 1.00

First, assertions can be arbitrary complex and it might be inconvenient or even infeasible to
embed assertions into a commitment. Second, the communicating parties may want to keep the
assertions confidential even from the eyes of the trusted third party. If the assertions are
embedded in a commitment, they need to be sent to T whenever the resolve protocol is
executed. Third, a commitment is included in a notarized contract if the standard contract could
not be obtained for some reason. Alice may need to present a notarized contract to another party
as a proof that Bob has agreed on assertion S2 but Alice may not want to disclose the details of
her assertion, S1. For example, Alice may want to keep her credit card payment information (S1)
secret when she presents the purchased ticket (S2) to a ticket gate.

6.2.4 Standard Contract

A contract is represented by a new XML element type <ofcs:Contract>. As we described in
the previous section, there are two types of contracts; standard contracts and notarized contracts.
TMP platforms must treat them as having the exact same semantics even though their internal
structure may be different. The syntax of a standard contract consists of the digests of the two
assertions, S1 and S2, and identities of A and B. A standard valid contract must be signed by
both A and B. A standard contract is valid if and only if both A’s signature and B’s signature are
valid according the validator’s policy.

The following represents an overview of the syntax of the <ofcs:Contract> element when it is
a standard contract.

<ofcs:Contract ContractID=”C1”>

 <ofcs:Initiator>

<ds:Reference URI=”...”>

 ...

</ds:Reference>

<wsse:SecurityTokenReference>

 ...

</wsse:SecurityTokenReference>

 </ofcs:Initiator>

 <ofcs:Responder>

<ds:Reference URI=”..”>

 ...

</ds:Reference>

<wsse:SecurityTokenReference>

 ...

</wsse:SecurityTokenReference>

 </ofcs:Responder>

<ds:Signature> ... </ds:Signature>

<ds:Signature> ... </ds:Signature>

</ofcs:Commitment>

PAGE 67
Trusted Mobile Platform

Protocol Specification Document – Revision 1.00

The following describes elements and attributes used in a <ofcs:Contract> element.

/Contract/Initiator

This mandatory element represents the information on the first participant of the protocol.

/Contract/Initiator/ds:Reference
This mandatory element refers to the assertion S1 made by the first participant. The
content of this element conforms to the Reference element of XML Signature.

/Contract/Initiator/wsse:SecurityTokenReference
This mandatory element refers to a security token that represents the identity of the first
participant, such as an X.509 certificate.

/Contract/Responder
This mandatory element represents the information on the second participant of the
protocol.

/Contract/Responder/ds:Reference
This mandatory element refers to the assertion S2 made by the second participant. The
content of this element conforms to the Reference element of XML Signature.

/Contract/Responder/wsse:SecurityTokenReference
This mandatory element refers to a security token that represents the identity of the
second participant, such as an X.509 certificate.

/Contract/Broker/wsse:SecurityTokenReference/
This mandatory element refers to a security token that represents the identity of the
trusted third party, such as an X.509 certificate

/Contract/ds:Signature
These mandatory elements contain XML signatures on the <Contract> element by the
first participant and the second participant. The signature scope must cover both the
<Initiator> element and the <Responder> element.

An application can treat a valid contract as an alternative form of A’s digital signature on assertion
S1 or B’s digital signature on S2 independent from the other assertion. For example, if a valid
contract between Alice and Bob contains Alice’s payment assertion S1, a payment application
can use this contract in lieu of Alice’s signed payment after verifying that the digest value of S1 is
correct.

6.2.5 Notarized Contract

A notarized contract is an alternate form of <Contract>. It consists of the digests of two
assertions, identities of the two parties, references to two commitments, and T’s signature on
them. A notarized contract is valid if and only if the signature is valid. An application that receives
a notarized contract needs to verify only one signature instead of two signatures (which is the
case for a standard contract). The application does not need to retrieve commitments to check
their contents because it can trust T to have made the necessary checks when T signed the
notarized contract.

PAGE 68
Trusted Mobile Platform

Protocol Specification Document – Revision 1.00

The following represents an overview of the syntax of the <ofcs:Contract> element when it is
a notarized contract.

<ofcs:Contract ContractID=”C1”>

 <ofcs:Initiator>

<ds:Reference URI=”...”>

 ...

</ds:Reference>

<wsse:SecurityTokenReference>

 ...

</wsse:SecurityTokenReference>

<ofcs:CommitmentRef RefID=”...”/>

 </ofcs:Initiator>

 <ofcs:Responder>

<ds:Reference URI=”..”>

 ...

</ds:Reference>

<wsse:SecurityTokenReference>

 ...

</wsse:SecurityTokenReference>

<ofcs:CommitmentRef RefID=”...”/>

 </ofcs:Responder>

<ds:Signature> ... </ds:Signature>

</ofcs:Contract>

The following describes elements and attributes used in a <ofcs:Contract> element.

/Contract/Initiator

This mandatory element represents the information on the first participant of the protocol.

/Contract/Initiator/ds:Reference
This mandatory element refers to the assertion S1 made by the first participant. The
content of this element conforms to the Reference element of XML Signature.

/Contract/Initiator/wsse:SecurityTokenReference
This mandatory element refers to a security token that represents the identity of the first
participant, such as an X.509 certificate.

/Contract/Initiator/CommitmentRef
This mandatory element refers to the <ofcs:Commitment> document by the first
participant.

PAGE 69
Trusted Mobile Platform

Protocol Specification Document – Revision 1.00

/Contract/Responder

This mandatory element represents the information on the second participant of the
protocol.

/Contract/Responder/ds:Reference
This mandatory element refers to the assertion S2 made by the second participant. The
content of this element conforms to the Reference element of XML Signature.

/Contract/Responder/wsse:SecurityTokenReference
This mandatory element refers to a security token that represents the identity of the
second participant, such as an X.509 certificate.

/Contract/Initiator/CommitmentRef
This mandatory element refers to the <ofcs:Commitment> document by the second
participant.

/Contract/Broker/wsse:SecurityTokenReference/
This mandatory element refers to a security token that represents the identity of the
trusted third party, such as an X.509 certificate

/Contract/ds:Signature
These mandatory elements contain an XML signature by the trusted third party on the
<Contract> element.

6.2.6 Aborted Contract

When A requests to abort the protocol and this request is confirmed by T, A should receive a
confirmation of the abort as follows.

The following represents an overview of the syntax of the <ofcs:AbortedContract> element
when it is a notarized contract.

<ofcs:AbortedContract ContractID=”C1”>

<ofcs:CommitmentRef RefID=”...”/>

<ds:Signature> ... </ds:Signature>

</ofcs:AbortedContract>

The following describes elements and attributes used in a <ofcs:AbortedContract>
element.

/AbortedContract//CommitmentRef

This mandatory element refers to the <ofcs:Commitment> document by the first
participant that has been committed but to be aborted.

/AbortedContract/ds:Signature
This mandatory element contains an XML signature by the trusted third party on the
<AbortedContract> element.

PAGE 70
Trusted Mobile Platform

Protocol Specification Document – Revision 1.00

6.3 Protocol

Now we define a set of protocols. Following the Web Services protocol tradition, we use
<XXRequest> and <XXResponse> combinations to describe request-response pairs. The
following illustrates the basic structure of these messages.

6.3.1 The commitment request from Alice to Bob:

The first round trip between Alice and Bob is an exchange of pre-contracts (commitments). Alice
first creates a <ofcs:commitment> structure (6.2.3) by signing the assertions and sends an
<ofcs:CommitmentRequest> message to Bob as follows. This element contains a single
element that MUST be <ofcs:Commitment>.

<ofcs:CommitmentRequest>

<ofcs:Commitment CommitmentID=“C1”>

Signed by Alice ...

</ofcs:Commitment>

</ofcs:CommitmentRequest>

If this message does not conform to this syntax, the signature by Alice does not verify, or
Bob does not trust the signing key, Bob MUST abort the protocol and MAY return a SOAP
fault as described in Section 4.8.

6.3.2 The commitment response from Bob to Alice

Bob signs the same commitment and returns it to Alice. This message has an
<ofcs:CommitmentResponse> element whose only child element is the commitment signed
by Bob.

<ofcs:CommitmentResponse>

<ofcs:Commitment CommitmentID=“C2”>

Signed by Bob ...

</ofcs:Commitment>

</ofcs:CommitmentResponse>

If this message does not arrive before a deadline that is set by Alice’s policy, the message does
not conform to this syntax, the signature by Bob does not verify, or Alice does not trust the
signing key, Alice MUST abort the protocol and MUST initiate the abort protocol with Trent
(6.3.5).

6.3.3 Contract request from Alice to Bob:

The second round trip normally is an exchange of the signatures of the standard contract. Alice
first creates a standard contract using the <ofcs:Contract> structure (6.2.4), signs it, and

PAGE 71
Trusted Mobile Platform

Protocol Specification Document – Revision 1.00

sends it to Bob using the <ofcs:ContractRequest> element whose only child is the
<ofcs:Contract> element.

<ofcs:ContractRequest>

<ofcs:Contract>

Signed by Alice ...

</ofcs:Contract>

</ofcs:ContractRequest>

If this message does not conform to this syntax, this message does not arrive before a deadline
that is set by Bob’s policy, the signature by Alice does not verify, or Bob does not trust the signing
key, Bob MUST abort the protocol and MUST initiate the resolve protocol (6.3.7) with Trent. In
addition, Bob MAY send a SOAP fault as described in Section 4.8 to Alice.

6.3.4 Contract response from Bob to Alice:

Bob signs the same contract using his signature key and returns the signed contract,
represented as <ofcs:Contract> with Bob’s signature, to Alice using the
<ofcs:ContractResponse> element as follows.

<ofcs:ContractResponse>

<ofcs:Contract>

Signed by Bob ...

</ofcs:Contract>

</ofcs:ContractResponse>

If this message does not conform to this syntax, this message does not arrive before a deadline
that is set by Alice’s policy, the signature by Bob does not verify, or Alice does not trust the
signing key, Alice MUST initiate the resolve protocol (6.3.7) with Trent. In addition, Alice MAY
send a SOAP fault as described in Section 4.8 to Bob.

6.3.5 Abort request from Alice to Trent:

If Alice does not receive Bob’s proper commitment, she needs to abort the transaction by
sending an abort request to the trusted third party, Trent. This message has a single element,
<ofcs:AbortRequest>, whose only child element is the commitment that has been sent to
Bob.

<ofcs:AbortRequest>

<ofcs:Commitment CommitmentIDRef=“C1”>

Signed by Alice

</ofcs:Commitment>

</ofcs:AbortRequest>

If this message does not conform to this syntax, the signature by Alice does not verify, or Trent

PAGE 72
Trusted Mobile Platform

Protocol Specification Document – Revision 1.00

does not trust the signing key, Trent MUST return a SOAP fault as described in Section 4.8 to
Alice.

6.3.6 Abort response from Trent to Alice:

Trent returns either a notarized contract or an aborted contract, depending on the status of the
contract. This message consists of an <ofcs:AbortResponse>, whose only child element is
either <ofcs:Contract> that is a notarized contract by Trent as follows

<ofcs:AbortResponse>

<ofcs:Contract contractID=“123456789”>

 Notarized contract Signed by Trent ...

</ofcs:Contract>

</ofcs:AbortResponse>

or an <ofcs:AbortedContract> signed by Trent as follows.

<ofcs:AbortResponse>

<ofcs:AbortedContract contractID=“123456789”>

 Signed by Trent ...

</ofcs:AbortedContract>

</ofcs:AbortResponse>

If this message does not conform to the above syntax, this message does not arrive before a
deadline that is set by Alice’s policy, the signature by Trent does not verify, or Alice does not trust
the signing key, Alice MUST retry the request until it succeeds.

6.3.7 Resolve request from Alice or Bob to Trent:

Any party who has two commitments can ask Trent to resolve the contract by sending these two
commitments. This message consists of a single <ofcs:ResolveRequest> element that has
two child elements both of which are <ofcs:Commitment>. One is Alice’s commitment and the
other is Bob’s commitment.

<ofcs:ResolveRequest>

<ofcs:Commitment> Signed by Alice </ofcs:Commitment>

<ofcs:Commitment> Signed by Bob </ofcs:Commitment>

</ofcs:ResolveRequest>

If this message does not conform to the above syntax, the signature by Alice or Bob does not
verify, or Trent does not trust the signing keys, Trent MUST return a SOAP fault as described in
Section 4.8 to the requester.

PAGE 73
Trusted Mobile Platform

Protocol Specification Document – Revision 1.00

6.3.8 Resolve response from Trent to Alice or Bob:

When Trent receives a <ResolveRequest> message, Trent first checks if the contract has
already been aborted. If so, he returns an <AbortedContract> message. If not, he verifies the
signatures on the received commitments and then checks if these commitments are for the same
contract by comparing the <Digest> elements in each commitment. If they match, then Trent
records that the contract has been signed, and returns a notarized contract to the requester.

<ofcs:ResolveResponse>

<ofcs:Contract contractID=“123456789”>

 Notarized contract Signed by Trent ...

</ofcs:Contract>

</ofcs:ResolveResponse>

or

<ofcs:ResolveResponse>

<ofcs:AbortedContract contractID=“123456789”>

 Signed by Trent ...

</ofcs:AbortedContract>

</ofcs:ResolveResponse>

If this message does not conform to the above syntax, this message does not arrive before a
deadline that is set by the requester’s policy, the signature by Trent does not verify, or the
requester does not trust the signing key, the requester MUST retry the request until it succeeds.

6.4 Scenario Example

Let us consider the e-ticket purchasing scenario using the protocol defined in this section. Alice
wants to purchase a baseball ticket, which is represented as a SAML assertion shown below.

Ticket assertion:
<saml:Assertion

AssertionID=“TicketInfo003”

Issuer="Company"

IssueInstant="2002-07-10T13:18:00-05:00">

<ticket:TicketStatement

Resource="http://GameServer.com/Game123"

Decision="Permit">

<saml:Subject>

<saml:NameIdentifier NameQualifier="myDev/BobNobody"/>

</saml:Subject>

PAGE 74
Trusted Mobile Platform

Protocol Specification Document – Revision 1.00

<saml:Action>Enter</saml:Action>

<ticket:GameName>

San Francisco Giants vs Seattle Mariners

</ticket:GameName>

...

</ticket:TicketStatement>

</saml:Assertion>

For this assertion to be a valid ticket, it must be digitally signed by the ticket issuer. Here, instead
of having the issuer’s signature directly on this assertion, we use our optimistic fair contract
signing protocol to obtain a valid contract, which can be used as an alternate form of the issuer’s
signature.

Alice creates her payment assertion (which authorizes her credit company to pay the ticket price
to the ticket issuer) and initiates the protocol. This payment becomes valid if and only if the
contract is signed, so she does not need to worry about paying without receiving the ticket.

If no messages are lost and both Alice and Bob are faithful, Alice will receive a valid standard
contract as the second return value (i.e., in <ofcs:ContractResponse>). In this case, there is
no need to contact Trent. She then presents both the ticket assertion and the valid contract at the
ticket gate. The ticket gate verifies the contract and checks if the hash value of the ticket matches
the hash value in the contract. If they check out, the ticket gate let Alice in. Note that the ticket
gate does not need to access Alice’s payment information even though it is a part of the signed
contract.

If Alice does not receive a standard contract from Bob, Alice still can receive a contract by asking
Trent to resolve the contract if she has Bob’s pre-contract. In this case, Alice uses a notarized
contract instead of a standard contract. The ticket gate should accept both forms of the contract
as long as it is valid.

If Alice does not even receive Bob’s pre-contract, Alice should contact Trent to see if Bob is
willing to sign the contract. Alice will receive either a notarized contract or an
<AbortedContract> message.

From Bob’s point of view, as soon as he receives Alice’s signature on the contract, he can
conclude that the contract has been signed and can immediately contact the financial institute for
the payment resolution by presenting the contract together with Alice’s payment statement.

6.5 Schema

An informative graphical representation of the schema for the <ofcs:Contract> element is
shown in Figure 6-4.

PAGE 75
Trusted Mobile Platform

Protocol Specification Document – Revision 1.00

Figure 6-4 Schema Overview of <ofcs:Contract> (informative)

An informative graphical representation of the schema for the <ofcs:Contract> element is
shown in Figure 6-5.

Figure 6-5. Schema Overview of <ofcs:Commitment> (informative)

The complete schema definition for this section is given below.

<xsd:schema

targetNamespace="http://schemas.trusted-mobile.org/protocol/2006/06/of

PAGE 76
Trusted Mobile Platform

Protocol Specification Document – Revision 1.00

cs"

xmlns:ofcs="http://schemas.trusted-mobile.org/protocol/2006/06/ofcs"

xmlns:wsse="http://schemas.xmlsoap.org/ws/2002/12/secext"

xmlns:ds="http://www.w3.org/2000/09/xmldsig#"

xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<xsd:import namespace="http://schemas.xmlsoap.org/ws/2002/12/secext"

schemaLocation="wss.xsd"/>

 <xsd:element name="Commitment">

 <xsd:complexType>

 <xsd:sequence>

 <xsd:element ref="ofcs:Initiator"/>

 <xsd:element ref="ofcs:Responder"/>

 <xsd:element ref="ofcs:Broker"/>

 <xsd:element ref="ds:Signature" maxOccurs="1"/>

 </xsd:sequence>

 <xsd:attribute name="CommitmentID" type="ofcs:IDType"

use="required"/>

 </xsd:complexType>

 </xsd:element>

 <xsd:element name="Contract">

 <xsd:complexType>

 <xsd:sequence>

 <xsd:element ref="ofcs:Initiator"/>

 <xsd:element ref="ofcs:Responder"/>

 <xsd:element ref="ds:Signature" minOccurs="1" maxOccurs="2"/>

 </xsd:sequence>

 <xsd:attribute name="ContractID" type="ofcs:IDType"

use="required"/>

 </xsd:complexType>

 </xsd:element>

 <xsd:element name="AbortedContract">

 <xsd:complexType>

 <xsd:sequence>

 <xsd:element ref="ofcs:CommitmentRef"/>

 <xsd:element ref="ds:Signature"/>

 </xsd:sequence>

 <xsd:attribute name="ContractID" type="ofcs:IDType"

use="required"/>

PAGE 77
Trusted Mobile Platform

Protocol Specification Document – Revision 1.00

 </xsd:complexType>

 </xsd:element>

 <xsd:element name="CommitmentRequest">

 <xsd:complexType>

 <xsd:sequence>

 <xsd:element ref="ofcs:Commitment"/>

 </xsd:sequence>

 </xsd:complexType>

 </xsd:element>

 <xsd:element name="CommitmentResponse">

 <xsd:complexType>

 <xsd:sequence>

 <xsd:element ref="ofcs:Commitment"/>

 </xsd:sequence>

 </xsd:complexType>

 </xsd:element>

 <xsd:element name="ContractRequest">

 <xsd:complexType>

 <xsd:sequence>

 <xsd:element ref="ofcs:Contract"/>

 </xsd:sequence>

 </xsd:complexType>

 </xsd:element>

 <xsd:element name="ContractResponse">

 <xsd:complexType>

 <xsd:sequence>

 <xsd:element ref="ofcs:Contract"/>

 </xsd:sequence>

 </xsd:complexType>

 </xsd:element>

 <xsd:element name="AbortRequest">

 <xsd:complexType>

 <xsd:sequence>

 <xsd:element ref="ofcs:Commitment"/>

 </xsd:sequence>

 </xsd:complexType>

PAGE 78
Trusted Mobile Platform

Protocol Specification Document – Revision 1.00

 </xsd:element>

 <xsd:element name="AbortResponse">

 <xsd:complexType>

 <xsd:choice>

 <xsd:sequence>

 <xsd:element ref="ofcs:Contract"/>

 </xsd:sequence>

 <xsd:sequence>

 <xsd:element ref="ofcs:AbortedContract"/>

 </xsd:sequence>

 </xsd:choice>

 </xsd:complexType>

 </xsd:element>

 <xsd:element name="ResolveRequest">

 <xsd:complexType>

 <xsd:sequence>

 <xsd:element ref="ofcs:Commitment" minOccurs="2" maxOccurs="2"/>

 </xsd:sequence>

 </xsd:complexType>

 </xsd:element>

 <xsd:element name="ResolveResponse">

 <xsd:complexType>

 <xsd:choice>

 <xsd:sequence>

 <xsd:element ref="ofcs:Contract"/>

 </xsd:sequence>

 <xsd:sequence>

 <xsd:element ref="ofcs:AbortedContract"/>

 </xsd:sequence>

 </xsd:choice>

 </xsd:complexType>

 </xsd:element>

 <xsd:element name="Initiator">

 <xsd:complexType>

 <xsd:sequence>

 <xsd:element ref="ds:Reference"/>

PAGE 79
Trusted Mobile Platform

Protocol Specification Document – Revision 1.00

 <xsd:element ref="wsse:SecurityTokenReference"/>

 <xsd:element ref="ofcs:CommitmentRef" minOccurs="0"

maxOccurs="1"/>

 </xsd:sequence>

 </xsd:complexType>

 </xsd:element>

 <xsd:element name="Responder">

 <xsd:complexType>

 <xsd:sequence>

 <xsd:element ref="ds:Reference"/>

 <xsd:element ref="wsse:SecurityTokenReference"/>

 <xsd:element ref="ofcs:CommitmentRef" minOccurs="0"

maxOccurs="1"/>

 </xsd:sequence>

 </xsd:complexType>

 </xsd:element>

 <xsd:element name="Broker">

 <xsd:complexType>

 <xsd:sequence>

 <xsd:element ref="wsse:SecurityTokenReference"/>

 </xsd:sequence>

 </xsd:complexType>

 </xsd:element>

 <xsd:element name="CommitmentRef">

 <xsd:complexType>

 <xsd:attribute name="RefID" type="ofcs:IDReferenceType"

use="required"/>

 </xsd:complexType>

 </xsd:element>

 <xsd:simpleType name="IDType">

 <xsd:restriction base="xsd:string"/>

 </xsd:simpleType>

 <xsd:simpleType name="IDReferenceType">

 <xsd:restriction base="xsd:string"/>

 </xsd:simpleType>

</xsd:schema>

PAGE 80
Trusted Mobile Platform

Protocol Specification Document – Revision 1.00

7 Mobile Device Management

7.1 Introduction

Mobile device management consists of varying features and functionalities to allow the user and
or the service provider to install, update, or modify the software and configurations of a Trusted
Mobile Device (TMD). This section discusses the process of the software download, key
management and the associated protocols and practices.

7.2 Software Download

7.2.1 Definition of Software Download

The purpose of this section is to describe how software download can be deployed remotely,
and to identify requirements imposed upon the TMDs to support these deployments. This
section will show guidance to mobile network operators and manufactures of the trusted mobile
platforms, for the software deployment in a secure and trusted manner. It is RECOMMENDED
that a TMD supports the software download capability. If a TMD supports the software
download, it MUST follow the statement in this section.

A TMD should provide mechanisms that allow user interaction to discover new software patches
and/or upgrades that can be loaded into the TMD. A download may be triggered by a software
provider in the form of a notification (e.g., message push). In either case, this process MUST be
implemented in some secure form or fashion. For example, the discovery application may be a
browser based or native application, as long as it supports a secure mechanism as described
further in this section. Different permutations may exist in facilitating a secure means of
negotiation. Solutions for the core software (e.g., OS kernel, browser) download may differ from
those for an application software download.

Other means of installation utilizing local or proximity communication mechanisms (e.g.
Bluetooth™ wireless technology, serial cable, IrDA™, etc...) MAY also be supported by a TMD,
but are outside of the scope of this document. An example of a software download may consist
of the following processes: initiation, secure context establishment (including mutual
authentication), capability negotiation, download acceptance, software download integrity test,
and installation of the software. Additional requirements (and use cases) may be identified if the
software downloading capability is extended to support temporary or semi-permanent software.

7.2.2 Software Download Requirements

The software download protocol supports the following functional and security capabilities to
allow downloading the core software and highly trusted applications.

Authenticity Authenticity of the downloaded software MUST be ensured by either
one or both of the following methods:
1) The TMD MUST authenticate the software provider before
exchanging security sensitive information. The software provider
SHOULD authenticate the TMD.

2) The TMD SHOULD authenticate the downloaded software using
the attached digital signature.

PAGE 81
Trusted Mobile Platform

Protocol Specification Document – Revision 1.00

Integrity Integrity of the data and messages exchanged between two parties
SHOULD be securely protected to avoid forgery. Especially the
integrity of the software being downloaded MUST be ensured.

Confidentiality Data and messages exchanged between two parties MUST be
encrypted if the information requires confidentiality.

Full Updates Full update (i.e., to update whole OS) as well as partial, differential
updates SHOULD be supported, in a secure manner.

User Consent The installation process SHOULD take into account the user’s
preference to defer the process, since the installation process MAY
interrupt the user’s current activity on the TMD. The installation
could consume the rest of the battery power on the TMD, which
SHOULD be avoided if the user is not willing to risk loss of service
due to a low battery condition. The TMD user SHOULD be able to
make the final decision on whether to install the software, not to
install, or postpone is the install until some future time convenient
for the user.

7.2.3 Core Software Download Scenario

The core software download may be initiated by a user of a TMD to start downloading from a
Trusted Software Configuration Service (TSCS). In this document, a TSCS is defined as a
conceptual entity which is responsible for keeping track of versions and configurations of the
trusted core software (e.g., OS). In the real world, a TSCS may be provided by an entity such
as a network operator, manufacturer, or a delegate of such a trusted entity. The TSCS
SHOULD then authenticate the TMD. The TSCS and the TMD MAY then exchange capability
information of the TMD, to see whether the TMD is capable of accepting, installing and executing
the downloadable software code. If both parties (TMD and TSCS) agree that the download is
possible, the TSCS SHOULD send a download acceptance message, which MAY provide the
proper information on certification / type approval of the software code, download procedures,
scheduling and installation options. After receiving the downloaded software, the TMD
SHOULD conduct a software integrity test by verifying the signature on the downloaded software.
Upon the TMD passing all the qualifying test suites, the software installation SHOULD takes
place at the mobile device user’s consent.

7.2.4 Application Software Download Scenario

An application software download takes place in a similar manner as the core software download,
except that the software provider is not necessarily a TSCS. Some security requirements may
be lightened for downloading less-trusted applications, while only highly trusted applications
should be able to access protected capabilities of the TMD.

7.2.5 Software Download Threat Analysis and mitigating method

Software download is one of the many key features residing in the TMD. Considering the high
security nature of this feature and its associated protocols, it is pertinent to address the security
threats that the software download function MUST mitigate.

Unauthorized Server

Malicious / fictitious server masquerading as a trusted server
(See 7.2.6.1 – Mutual Authentication)

PAGE 82
Trusted Mobile Platform

Protocol Specification Document – Revision 1.00

Unauthorized Client
 Malicious / Competitor trying to access the Server.

(See 7.2.6.1 – Mutual Authentication)

Malicious Software

Update Software with malicious intent to harm infrastructure and/or to
deviate from the mobile device’s expected behavior.

(See 7.2.6.1 – Mutual Authentication)

Man-in-the-Middle Attack

An attack where the attacker is able to read, and possibly modify at will,
messages between two parties without letting either party know that they
have been attacked. The attacker is able to observe and intercept
messages going between the two victims.

(See 7.2.6.1 – Mutual Authentication)

Replay Attack

An attack in which a valid data transmission is maliciously or fraudulently
repeated, either by the originator or by an adversary who intercepts the data
and retransmits it, possibly as part of a masquerade attack.

(See 7.2.6.1 – Mutual Authentication)

Even though the integrity of the software code to be upgraded is assured by a digital signature,
TMDs are still prone to probable threats such as replay attacks. Figure 7-1 Case Scenario for
the Replay Attack Threat illustrates a possible replay attack by a malicious attacker with the intent
to circumvent the data transmission between a TSCS and a TMD. The attacker may intercept
communication between a TSCS and TMD to obtain a copy of the software code with a valid
signature of the TSCS. Occasionally vulnerabilities are found in an old version of software and
the new version is released to fix the vulnerability. The malicious attacker can again intercept the
communication between the TSCS and a TMD, and masquerade as old vulnerability prone
software, as the newer build; by using a replay attack technique. When the TMD credulously
installs the old software, the malicious attacker can exploit the older vulnerabilities.

See [WG2ThreatModel] for more comprehensive analysis of threat models on Trusted Mobile
Platforms.

PAGE 83
Trusted Mobile Platform

Protocol Specification Document – Revision 1.00

Figure 7-1 Case Scenario for the Replay Attack Threat

7.2 6 Core Software Download Protocols

7.2.6.1 Mutual Authentication

The concept of the mutual authentication is provided in Section 8.3.4 (Two-Way Authentication)
The client and service SHOULD prove respective identity to each other by exchanging an
authorization token or another form of valid credential, before starting a transaction. After
authenticating each other, two parties can exchange a common session key that can be used to
establish a secure communication context as discussed in Section 4. (Context Establishment),
SSL/TLS is one example method for mutual authentication and secure communication context.
The use of digital signatures should be used to prove integrity and of the data and the identity of
the data provider.

7.2.6.2 Software Download Protocol

The software download protocol SHOULD be designed to provide protection against
unauthorized disclosure and modification for all elements downloaded onto the TMD.

The software download protocol SHOULD observe the following technologies to achieve secure
transaction:

SSL/TLS:

The utilization of SSL/TLS can mitigate the attacks listed above.
SSL/TLS server authentication MUST be utilized to authenticate the
server identity. In order to prevent an unauthorized client from
accessing the server, the Software Download Protocol SHOULD utilizes
the SSL/TLS client authentication function or some other means to

PAGE 84
Trusted Mobile Platform

Protocol Specification Document – Revision 1.00

authenticate the client.

SSL/TLS with TPM extension:

An attestation signature SHOULD be utilized in the SSL/TLS handshake
protocol, to prove the identity and integrity of the TMD. An attestation
signature may be conveyed using the TLS Extension Mechanism (see
Section 7.3.5.2 (Use of SSL and TLS) and [TLSExt]) or the SSL/TLS
binding described in Section 5.5.1.4 (SSL/TLS Binding).

Digital Signature (with a timestamp or nonce):

The utilization of digital signatures ensures the integrity of the
downloaded software. The software provider SHOULD sign the software
code along with a timestamp or nonce, to allow the TMD to detect replay
attacks as well as to make sure that the downloaded software is the
newest version. A TMD MAY generate a nonce and send it to the
software provider before downloading the software, in which case the
software provider SHOULD include the nonce in the signature that
authenticates the software code being downloaded.

An example data exchange MAY be comprised of two parts, a header and a payload. The
header component consists of the software identification and a reference to the software provider.
This software identification can also be represented through a digital signature from the software
provider. A version number SHOULD be used mainly to identify different software builds. A
digital signature SHOULD be used to verify the integrity of the software code.

The payload is rather self explanatory. A payload contains software code that needs to be
upgraded, such as a hardware-specific binary image for that designated TMD, or a JAR file for
the code written in Java. Optional agents to perform the software installation may be placed in
this payload, which also needs to be integrity protected using digital signatures.

7. 3 Key Management

7.3.1 Definition of Key Management

Key management is defined as the attributes in accordance with a security policy referred in
[ISO7498-2, NISTIR-4972, and ISO11770-1]. Further more, [ISO7498-2] key management is
of Security Management, but does not dictate where this functionality must reside in a system or
protocol stack.

7.3.1.1 Trusted Mobile Platform Key Management Protocols

Key management is concerned with more than just preventing keys from being revealed to
unauthorized entities. [ISO11770-1] specifies that Key management is susceptible to a number
of threats. These are:

 Disclosure of key material

 Modification of key material

 Unauthorized Deletion of key material

PAGE 85
Trusted Mobile Platform

Protocol Specification Document – Revision 1.00

 Unauthorized Revocation of keys

 Masquerade of authorities or users to gain access to key management services

 Delay in execution of key management functions (Denial of Service)

 Misuse of keys

Key management covers a broad number of services as defined above. However, it is not
necessary for the Trusted Mobile Platform to standardize all of those areas. Specifically,
areas that do not affect interoperability SHALL not require standardized protocols. These
areas of key management that do not require standardized protocols still require a trusted
platform to define the security requirements that must be met in order to mitigate the threats
outlined above. These requirements are defined by [SWAD] and [HWAD], and include the
key management areas:

Key Generation Key generation involves the creation of key material locally on a
platform

Key Storage

Key storage involves the temporary, short-term placement of key
material and related attributes when the key is not in use by a platform.
In contrast, key archiving is the long-term storage of key material and
related attributes on storage outside of the platform.

Key Installation Key installation is the setting up of a key for legitimate use on a platform
(e.g. loading from key storage).

Key Usage Key usage involves the use of key material by elements of a platform.

Key Deletion Key deletion involves the removal of key material and related attributes
from a particular platform.

Key Recovery Key recovery is the process of restoring a previously archived (and
possibly deleted) key to a platform

Key destruction involves deleting all archival copies of key material, and key revocation involves
an authority revoking a key’s association with an identity. These actions are beyond the scope
of the Trusted Mobile Platform specifications, since it requires services beyond the client platform,
and involve the external key infrastructure.

Key Destruction Key destruction includes key deletion plus the destruction of all key
archives stored off the platform for the key being destroyed.

Key Revocation Key revocation is removal of a key from a registry, and optionally publishing
information that the key association is no longer valid

Therefore, the Trusted Mobile Platform Protocol specification defines the key management
services of registration, certification, and distribution of keys.

Key registration

 Key registration includes insertion of a key into a public or private
registry service which associates that key with an entity – e.g. a trusted
platform.

 Key registration and key certification may be performed in a single
transaction. (See 7.3.4 - Key Registration and Certification.)

Key certification Key certification includes the use of one or more authorities to create a
certificate and certify a key, (usually pertaining to a public component of an

PAGE 86
Trusted Mobile Platform

Protocol Specification Document – Revision 1.00

asymmetric key pair.)

Key distribution

Key distribution involves the transport of key material and related attributes
from one platform to another. This includes the possible negotiation of key
attributes and parameters with a remote entity. (See .7.3.6 - Key
Distribution.)

7.3.2 Key Types

The Trusted Mobile Device maintains several key types. These include TCG specified keys,
and Trusted Platform specified keys. Some of these keys are protected by the TCG/TPM, while
others exist in a protected key ring (e.g. protected under a key from the SRK).

The TCG specific keys include: the Endorsement Key (EK), Attestation Identity Keys (AIK), and
the Storage Root Key (SRK). Additional storage keys may be created by the user, system or
applications, and a TPM maintenance key may be specified by the TPM manufacturer.

There are a set of TCG credentials that exist as an X.509 certificate, that operate as root keys for
endorsement agents. These include the Endorsement Credential, Conformance Credentials, the
Platform Credential, and Validation Credentials. There are one or more Trusted Third Party root
certificates that sign the AIK certificates.

The Trusted Mobile Platform specification defines a set of keys to supplement the TCG specified
keys. These include a User Identity Key (UIK) for use in authenticating an end-user, Platform
Encryption Keys (PEK) for use in platform protocols where a user specific key is not necessary or
recommended, and temporary keys that are used to protect sessions. , A Trusted Mobile
Device MAY have a set of Code Signing Keys and Maintenance Keys. The former as TTP keys
representing entities that are trusted to sign downloadable code for the platform and the latter for
protecting platform updates and patches by the OEM or manufacturer.

The diagram below shows the recommended breakdown of keys and how they should be
protected in a Trusted Mobile Device.

PAGE 87
Trusted Mobile Platform

Protocol Specification Document – Revision 1.00

Private Keys Protected by TPM

Public Keys Protected by TPM
(in a public key ring)

Other TMD Keys

Special TPM Key •User Identity Keys
•Attestation Identity Keys
•Platform Encryption Keys

•Trusted Third Party Keys
•Code Signing Keys
•Maintenance Keys
•OEM/Manufacturer

•Temporary Keys
•Symmetric Keys

•Endorsement Keys
•PIVEK, PUBEK

•Validation Keys
•Storage Root Key
•Other Storage Keys
•TPM Maintenance Key

Mandatory to Support

Recommended to Support

Figure 7-2 Trusted Mobile Device Key Types

7.3.3 Key Registration and Certification

Protocols for key registration and certification are described in this document in Section 5
Attestation and Supporting Infrastructure. These sections cover the creation, registration, and
certification of Attestation Identity Keys (AIKs).

Other keys on the platform that require registration and certification include:

Trusted Code Signing Keys Used to sign trusted boot code, trusted applications, and
code updates.

User Identity Keys Used to identify and authenticate a platform user to the
platform, to the network, or network entity for the purpose
of granting access rights and privileges.

These keys MAY use registration and certification mechanisms defined in [PKIX].

7.3.4 Key Management Infrastructure

Trusted Mobile Devices depend on a Public Key infrastructure for various key management
services. The specification of these infrastructure components is beyond the scope of this
specification. It is recommended that Trusted Mobile Devices comply with [PKIX] for interfacing
with a PKI.

PAGE 88
Trusted Mobile Platform

Protocol Specification Document – Revision 1.00

7.3.5 Key Distribution

Key distribution is an important part of several protocols in the Trusted Mobile Platform.
Methods for key distribution are well known and varied. Trusted Mobile Platform proposes two
types of key distribution protocols for symmetric keys (see section 7.3.5.1 - Symmetric Key
Distribution Protocol). The distribution of asymmetric keys may be provided through [PKIX].

7.3. 5.1 Symmetric Key Distribution Protocols

This specification defines three mechanisms for symmetric key distribution. The first uses
Diffie-Hellman to produce a new, shared secret, and the second uses asymmetric keys to share
key material that is used to create symmetric keys. This protocol is fully described in Section 4.7
(Context Establishment). In order for a high degree of trust to be associated with the creation of
keys, these functions must be rooted in the TPM of the trusted platform. The second one is
public key-based key exchange and described in the following subsection. The third one is to
use an already-shared symmetric key to exchange a new key. This protocol is described in
Section 8.3.4 (Two-Way Authentication).

7.3.5.1.1 Public Key-Based Symmetric Key Distribution Protocol
The following protocol is based on the symmetric key distribution scheme provided by SSL and
TLS and provides a mechanism for two parties to authenticate one another (through the
signatures) and share key data. This scheme is preferred since it can be accomplished by the
cryptographic functions provided in current TPMs. The key created with these key distribution
schemes can be used with symmetric encryption algorithms, message authentication codes, of
HMAC.

S e c u rity C o n te xt R e q u e s t,
E -P ub (S i g n[S e s s io n - ID , R a nd 1])

R e q u e s to r R e s p o nd e r

S e c u rity C o n te xt R e s p o ns e , S e s s io n- ID ,
E -P ub (S i g n[S e s s io n - ID , R a nd 1 , R a nd 2])

E K [S o m e M e s s a ge]
K = K D F (R 1 ,R 2)

E x a m p le K D F () f u n cti o n co u ld b e S H A -1

K = K D F (R 1 ,R 2)

Figure 7-3 Public Key-Based Symmetric Key Distribution

This abstract authentication scheme will be bound to a specific wire format. This is intended to
include binding to WS-Security as mentioned in Section 4.7 (WS-Security) in future revisions of
this specification.

PAGE 89
Trusted Mobile Platform

Protocol Specification Document – Revision 1.00

7.3.5.2 Use of SSL and TLS

The use of SSL and/or TLS is recommended by this specification in order to create
cryptographically protected tunnels between the communicating parties. Such a practice will
enhance communication security by providing basic confidentiality and integrity of the messages
as the messages pass between end-points. The additional levels of security protection (e.g.
SOAP message protections) are provided to ensure protection beyond the communication
channel, as well as provide stronger security services (e.g. non-repudiation proof of source,
trusted platform attestation, etc...).

Although the basic use of SSL and TLS are valuable, additional trust can be achieved by
extending the services within these protocols. Particularly, tying the exchanges to attestation
values from the TPM can leverage trust measurements into the authentication phase of the TLS
exchanges.

[TLSExt] specifies a series of extensions to TLS that allows custom extensions to be defined for
the client-server exchanges. The format of this extension is show below:

struct {
 ProtocolVersion client_version;
 Random random; SessionID session_id;
 CipherSuite cipher_suites<2..2^16-1>;
 CompressionMethod compression_methods<1..2^8-1>;
 Extension client_hello_extension_list<0..2^16-1>;
} ClientHello;

struct {
 ExtensionType extension_type;
 opaque extension_data<0..2^16-1>;
} Extension;

Trusted Mobile Platform recommends an extension to TLS using a Platform_Config_Flag
as an extension that identifies the use of a Platform_Config_PDU. The
Platform_Config_PDU sent from the server contains the selection of PCR registers or a
nonce value. The client returns a Platform_Config_PDU with the signed PCRs or nonce.
The certificate containing the AIK public key is provided through the Client Certificate message.

7.3.5.3 Related Standards

ISO11770-1 “Information Technology – Security Techniques – Key Management, Part 1: Key
Management Framework” [ISO11770-1]

ISO7498-2 “Information Processing Systems – Open Systems Interconnection, Basic Reference
Model, Security Architecture” [ISO7498-2]

NISTIR 4972 “A Study of OSI Key Management” [NISTIR 4972]

PAGE 90
Trusted Mobile Platform

Protocol Specification Document – Revision 1.00

8 Access Control Architecture

8.1 Introduction

8.1.1 Scope

The scope of this section is to provide access control architecture for the Trusted Mobile Platform
project. The objective of the section is to recommend a security solution for implementing
mCommerce-enabled Trusted Mobile devices. The guiding design principles for the access
control architecture proposed in this section are:

• Guarding against the threats described in the WG2 and WG3 Threat Model documents
[WG2ThreatModel][WG3ThreatModel].

• Making full-use of the TPM security capabilities to enhance the platform and transaction
security.

• Meeting the security requirements described in the Phase Zero document [PhaseZero].

• Enabling the Trusted Mobile Platform protocols.

• Making full use Java’s Runtime Security capabilities, while extending them to take advantage
of the TPM.

8.1.2 Overview of Access Control Mechanisms

The mobile phone is rapidly evolving into much more than a wireless telephone. It is transforming
into a personal trusted device, with the ability to handle a wide variety of new services and
applications such as banking, payments, ticketing and secure access-based operations.

The decision of which access controls to implement is based on organizational policy and on two
generally accepted standards of practice: separation of duties and least privilege. For controls to
be accepted and, therefore, used effectively, they MUST not disrupt the usual workflow; more than
it should be necessary (may place a burden onto administrators, auditors, or authorized users).
To ensure that access controls adequately protect all of the resources, it is necessary to first
categorize the resources.

Policies establish levels of sensitivity (e.g., confidential) for data and other resources. These
levels should be used for guidance on the proper procedures for handling objects — for example,
instructions not to copy. They may be used as a basis for access control decisions as well. In
this case, users (or owners) are granted access to only those resources at or below a specific level
of sensitivity. Labels may be used to indicate the sensitivity level of electronically stored objects.
For the Trusted Mobile Platform, the sensitivity levels need to be defined and named based on the
types of secrets that must be protected (e.g., cryptographic keys) for the specific implementation,
and not necessarily following commonly used naming schemes (e.g., Confidential) used in other
frameworks such the Multi-Level Security (MLS).

In addition, the access control policy may be based on compartmentalization of resources. For
example, access controls may all relate to a particular project or to a particular field of endeavor.
Implementation of the access controls may involve either single compartments or combinations of

PAGE 91
Trusted Mobile Platform

Protocol Specification Document – Revision 1.00

them. These units of involvement are called categories, though the term “compartment” and
“category” are often used interchangeably. Neither term applies to restrictions on handling of data.
Individuals may need authorization to all categories associated with a resource to be entitled
access to it or to any one of the categories.

The access control policy may distinguish among types of access as well. For example, billing
applications may be authorized to read credit files, but modification of such files may be restricted
to those responsible for compiling credit data.

One advantage of the use of sensitivity levels is that it allows security measures, which can be
expensive, to be used selectively. Although the use of sensitivity levels may be costly, it affords
protection that is otherwise unavailable and may well be cost-justified in many organizations.

Policy-based controls may be characterized as either mandatory or discretionary. With
Mandatory Access Controls (MACs), only administrators and non-owners of resources may make
decisions that bear on or derive from this policy. Only an administrator may change the category
of a resource, and no one may grant a right of access that is explicitly forbidden in the access
control policy. MAC (as indicated in Table 8-2 Access Control Matrix) is only required for certain
types of secrets (e.g., SRK and AIK keys) and private data (e.g., User Profiles), which necessitate
tightly-guarded access. Discretionary Access Control (DAC) is used for all other objects.

Access controls that are not based on the MAC policies are characterized as Discretionary Access
Controls (DACs) or as “need-to-know” controls. The latter term connotes least privilege — those
who may read an item of data are precisely those whose tasks entail the need.

It is important to note that mandatory controls are prohibitive (i.e., all that is not expressly permitted
is forbidden), not only permissive. Only within that context do discretionary controls operate,
prohibiting still more access with the same exclusionary principle.

Access controls can extend beyond limiting which subjects can gain what type of access to which
objects. Administrators can limit access to certain times of day or days of the week. Typically,
the period during which access would be permitted is 9 a.m. to 5 p.m. Monday through Friday.
Such a limitation is designed to ensure that access takes place only when permitted, to discourage
unauthorized use of data. Further, subjects’ rights to access might be suspended when needed.

When subjects leave an organization altogether, their rights MUST be terminated rather than
merely suspended.

8.2 Terminology

Table 8-1 Terminology

Term Definition

Access Control
A process by which use of system resources is regulated according to
security policies and is permitted by only authorized entities according
to those policies.

Access Control List
(ACL)

A representation of who (user, group) can perform particular actions or
Resources.

PAGE 92
Trusted Mobile Platform

Protocol Specification Document – Revision 1.00

Term Definition

Attribute A descriptor that represents a characteristic of an object or subject.

Authentication

Authentication is the process of ascertaining the validity of either the
device or the server’s identity.

Authorization

The process of allowing or denying a principal access to a resource,
based on an Access Control Matrix (or a corresponding ACL),
membership to a group, role attribute, rule, or some other evaluation
criteria.

Confidentiality

Confidentiality is the ability to keep contents secret from all but the two
entities exchanging a message. It does not limit the visibility of the
message (being able to eavesdrop), but it does prevent the
interpretation of the data being transmitted. Effectively this prevents
the contents of a message being understood by anybody but the
intended sender and intended recipient.

Credentials

Credentials are elements that are required to prove authenticity (e.g.
username and password).

Discretionary
Access Control
(DAC)

An access control service that enforces a security policy based on the
identity of system entities and their authorizations to access system
resources. This service is termed "discretionary" because an entity
might have access rights that permit the entity to enable another entity
to access some resource.

Integrity

Integrity is the ability for a message or a system to maintain its content
or at a minimum, have the ability to detect modification or corruption of
its content.

Mandatory Access
Control (MAC)

An access control service that restricts access to objects based on the
sensitivity (as represented by a label) of the information contained in
the objects and the formal authorization of subjects to access
information of such sensitivity. This kind of access control is called
"mandatory" because an entity that can access a resource may not
enable another entity to access that resource.

Object A system element that contains or receives information.

Permission The authority-based right that allows a user to perform an action.

Principal A system entity whose identity can be authenticated.

Resource The object of value that a user or system is attempting to access.

Role An attribute that represents a collection of permissions.

PAGE 93
Trusted Mobile Platform

Protocol Specification Document – Revision 1.00

Term Definition

Session

A continuous connection between the device and the server
established for the purpose of carrying out one or more operations.

Security Domain

An environment or context that is defined by security models and a
security architecture, including a set of resources and set of system
entities that are authorized to access the resources. One or more
security domains may reside in a single administrative domain.

Security Policy
A set of rules and practices that specify or regulate how a system or
organization provides security services to protect sensitive and critical
system resources.

Subject A system entity that causes information to flow among objects or
changes the system state.

User The person in possession of a personal trusted device and able to
verify himself/herself to that device.

8.3 Architecture

8.3.1 Control Domains

Figure 8-1 illustrates the 6 Control Domains defined for the Trusted Mobile Platform architecture.
The Owner Domain is the Root Domain, which owns all of its resources and which initiates any
transaction. The Owner Domain interacts with all other 5 domains based on defined policies.
The trust relationships between the 6 domains are defined by an Access Control Matrix (see Table
8-2 An Example Access Control Matrix) and are manifested in Policies. Policies are instantiations
of the access control permissions can be found in the Access Control Matrix.

PAGE 94
Trusted Mobile Platform

Protocol Specification Document – Revision 1.00

Figure 8-1 Trusted Mobile Platform Control Domains

The proposed access control architecture is based on a combination of Mandatory Access Control
(MAC) and Discretionary Access Control (DAC) mechanisms. Various research results have
shown that MAC is essential for the security of the whole system and that MAC mechanisms are
very effective in supporting complex relationships between different entities in the computing
environment, such as in the case of the Trusted Mobile Platform, where various secrets and trust
elements need to be protected to ensure the trustworthiness of the platform [Loscocco 1998]. In
MAC, the administrator imposes access control policies and object owners cannot change that
policy. DAC policies, however, can be utilized for all other non-sensitive information, as
manifested in Table 8-2 Access Control Matrix.

PAGE 95
Trusted Mobile Platform

Protocol Specification Document – Revision 1.00

MACs can simply be implemented based on security labels associated with each object and each
user. A label on an object is called a security classification. The resulting MAC policies MUST
be transparent to the user.

8.3.2 Notes of CLDC, MIDP, MExE, and OSGi

This section is informative.

The purpose of this section is to shed some light on the limitations of the most popular Java-based
models for mobile device security. Although the Trusted Mobile Platform access control uses
some of the main concepts of the models described in this section (e.g., control domains), great
care is taken in avoiding the limitations of the CLDC [CLDC], MIDP [J2ME], MExE [3GPP] and
OSGi [OSGi] models. The goal is to learn limitations from those examples and define a powerful
access control architecture for the Trusted Mobile Platform.

Currently, as the JVM and API specifications for mobile devices, Connected Limited Device
Configuration (CLDC) and Mobile Information Device Profile (MIDP) are standardized and the
reference implementations based on those specifications have been shipped [J2ME].

However, as for the security of Java applications, only a byte-code verifier and a sandbox model
are defined on CLDC. The verifier is expected to verify that the byte-code of the Java applications
that conform to the Java language and the virtual machine specification. In the sandbox model,
all Java programs are treated as potentially suspicious. Therefore, the sandbox model restricts all
Java applications to use pre-defined safe functions within the mobile device. This creates a great
constraint on using the Java applications on mobile devices. For example, Java applications
cannot access private user data or hardware resources on the device due to safeguards against
malicious applications from affecting the TMD. If these applications are considered “trusted” , the
application has the ability to access those functions. Java applications that are considered
“trusted” can provide more functionality on mobile devices.

In MExE [3GPP], a security domain is introduced to define permission of application actions in the
device including access control to resources and information in the device. Three security
domains, which are Operator Domain, Manufacturer Domain and Third Party Domain, and
available functions (actions) for each domain are defined. Applications not belonging to the
above domains are regarded as Un-trusted and their functions are largely restricted. Though
detailed actions of Java APIs in the terminal are not defined in the MExE specification, the API
actions should be defined in a consistent way with policy of the security domain.

There are several problems in implementing an access control framework in the MExE
specification described above. Certificate configuration management must be supported to
handle an expired certificate. If the number of available domain is large, the verification time
becomes unacceptably long because the device must verify all of the public keys corresponding to
the domain for each program certificate. A way to give a certificate and signature to a program is
undefined in the MExE specification.

In addition to the problems in validating and determining a domain of the program, there are
problems relevant to downloading a Java application in CLDC and MIDP specifications. An
application descriptor file (ADF) is used in downloading a Java application into the device. The
ADF contains information about the Java application to be downloaded, such as a URL for the
JAR file of the downloaded application, a size of the JAR file.

PAGE 96
Trusted Mobile Platform

Protocol Specification Document – Revision 1.00

In order to maintain validation of the ADF, a certificate and signature are considered to be attached
to the ADF. This constitutes a problem, as the ADF size will be slightly larger as the size for the
certificate and signature to be added to the similar JAR file, as described above. Additionally, if a
signature is attached to the JAR, malicious alternation of the JAR can be detected, but not that of
the ADF. The MExE specification does not provide a solution to the alternation problem (See
Section 7.2 for more on Core Software Download).

The Core Platform Expert Group of the Open Services Gateway Initiative (OSGi) consortium
[OSGi] needed to be able to change the permissions associated with code running at various
service gateways. This change needed to be specified remotely and without having to reload the
code at any of the service gateways. Due to footprint constraints (the deployment platform must
be something small like Java 2 Micro Edition (J2ME), they were not able to leverage the dynamic
permissions design implemented in J2SE version 1.4 [J2SE].

The Java 2 security model is too restrictive for an environment such as the OSGi service platform
where multiple services from different vendors may be downloaded on demand, without a
corresponding entry in the system policy file. Additionally, the permissions associated with a
service's bundle of downloaded code may need to change over time, for example, when the
bundle gets updated or when its configuration changes.

The OSGi specification defines a PermissionAdmin service that provides a standard interface
for assigning Java 2 permissions to bundles based on their location. This allows for permissions
to be setup before a bundle is installed on an OSGi service platform, and for the permissions to be
modified at any time during the bundle's lifecycle. Updates to the permissions become effective
immediately and persist across restarts of the OSGi service platform.

The scope of the OSGi specification is focused on defining a services gateway; the OSGi
specification does not purport to be a sophisticated component model for developing complex
applications. As such, the limitations of OSGi are not shortcomings per se, but result from the fact
that some developers may try to build complex applications with it.

8.3.3 Access Control Matrix

The Access Control Matrix is a useful model for understanding the behavior and properties of
access control systems. This matrix defines the trust relationships between the control domains
and sub-domains. The implementation of the access control matrix can be based on a
combination of Access Control Lists (ACLs), permission files, and an enforcement engine, such as
Java’s Security Manager and Access Controller. Policies are based on the relationships defined
in the Access Control Matrix.

Four types of accesses are necessary to define the relationships between the objects and subjects.
The first type, File Access, which includes the following permissions: Read (R), Write (W), and
Execute (E). The second type is Message Access, which is necessary because of the need to
control the exchange of messages between trusted and non-trusted domains and subjects.
Message Access includes the following permissions: Send (S) and Receive (RC). The third type
of access is Process Access, which controls the start and termination of processes such as Core
Software Download, including the following permissions: Initiate (I), and Terminate (T). The fourth
type of access is Key Accesses. This access type includes Create (C) and Use (U)

The following table defines an example of the access control matrix for a Trusted Mobile Platform
and contains the subjects, objects, and the types of access allowed. Since the subjects also
interact with each other, and hence the need to establish trust relationships between them, they

PAGE 97
Trusted Mobile Platform

Protocol Specification Document – Revision 1.00

are also considered as objects in this architecture (see Table 8-2 An Example Access Control
Matrix).

The access control matrix reference (see Table 8-2 An Example Access Control Matrix), describes
the type of access a subject can have in an object for any subject-object pair. These types of
access are either mandatory (MAC-based) or discretionary (DAC-based). Note that Table 8-2 is
only an example for the e-ticket scenario, and not a part of normative specification. However, an
implementation of the Trusted Mobile Platform should define a similar access control matrix to
clearly define the mandatory access control policy.

PAGE 98
Trusted Mobile Platform

Protocol Specification Document – Revision 1.00

Table 8-2 An Example Access Control Matrix

Objects

Subjects

 SR
K

AI
K

O
th

er

ke
ys

in

TP

M

eT
ic

ke
t

Lo
ca

tio
n

D
at

a

U
se

r P
ro

fil
es

A
ud

it
Lo

g

M
A

C
 P

ol
ic

y

D
AC

 P
ol

ic
y

C
or

e
So

ftw
ar

e
D

ow
nl

oa
d

O
w

ne
r

U
se

r’

O
pe

ra
to

r

M
an

uf
ac

tu
re

N
on

-tr
us

te
d

us
er

’

TT
P’

S
er

vi
ce

Pr

ov
id

er
’

Owner (O),
incl. system
software

CM,
UM

CM,
UM

CD,
UD

X RD,
W D

RD,
W D

RM,
WM

RM,
WM

RD,
W D

ID, TD NA S D,
RCD

S D,
RCD

S D,
RCD

S D,
RCD

S D,
RCD

S D,
RCD

User (U) UM UM, CM,
UM

RM,
(mani
fest
only)

RM, RM,
WM

RM RM R D,
W D

IM, TM S D,
RCD

S D,
RCD

S D,
RCD

S D,
RCD

S D,
RCD

S D,
RCD

S D,
RCD

Operator
(OP)

UD UD CD,
U D

X RM, W

D
RD RM, RM R D,

W D
ID, TD S D,

RCD
S D,
RCD

NA X S D,
RCD

S D,
RCD

S D,
RCD

Manufacturer
(M)

UD UD X X X X RM WM
RM

R D,
W D

ID, TD S D,
RCD

S D,
RCD

X NA X S D,
RCD

X

Non-trusted
User (N)

X X X X X X X X X X S D,
RCD

S D,
RCD

S D,
RCD

X X X S D,

TTP UD UD CD,
UD

X RD RD RD X X X S D,
RCD

S D,
RCD

S D,
RCD

S D,
RCD

X S D,
RCD

S D,
RCD

Service
Provider (S)

UD UD CD,
UD

RD,
W D

RD RD X X RD,
W D

 S D,
RCD

S D,
RCD

S D,
RCD

X RCD S D,
RCD

S D,
RCD

PAGE 99
Trusted Mobile Platform

Protocol Specification Document – Revision 1.00

Legend for Access Types:

Key Access C Create
 U Use

File Access R Read
 W Write

Process Access I Initiate
 T Terminate

Message Access S Send
 RC Receive

()M Mandatory Access Type
()D Discretionary Access Type
X No Access

Example

RM

Read Mandatory Access Type

This access control matrix represents the access relationships for the Trusted Mobile Device and
SHOULD be the basis for its standard policy. In this table, mandatory policies are expected to
be enforced on every Trusted Mobile Device of the same model. On the other hand,
discretionary policies can be set depending on the device models (set by the manufacturer), the
configuration of the device (set by the owner or the operator), or in some cases the user’s
preference (set by the user). Implementations may take different approaches to realize the
policies. For example, some policies are expected to be built-in hardware features (such as
protection of TPM keys). Other policies could be hard-coded in the system software or enforced
by lack of access features. Yet, other policies could be implemented using more generic access
control mechanisms as described in the Software Architecture Description [SWAD].

The second column of the table (SRK) shows the access control relationships for the Storage
Root Key. The device owner (or the device’s system software that represents the owner’s
privilege) must be able to create a SRK. This is a part of the mandatory policy and marked as
CM in the table (mandatory creatable). On the other hand, the user must be able to use this key
for any operation that requires the use of a TPM. This is marked as UM in the table (mandatory
usable). The use of the SRK is necessary in general for other domains, but the DAC policy may
limit the use of the SRK for certain domains. Therefore, for other domains such as OP and TTP,
they are marked as UD (discretionary usable). Non-trusted users are not allowed to use the
TPM capabilities, so the use of SRK is marked as X (no access) in the table.

Attestation Identity Keys (AIKs) are also created by the device owner. The use of an AIK is
subject to the discretionary policy. For other keys in the TPM, the user should always be able to
create and use such keys. For other domains, the use would be determined by the
discretionary policy.

E-ticket is a special type of data object for Trusted Mobile Devices. It is created by a ticket
issuer (a service provider) and redeemed by a ticket redeemer (another service provider).
Because an e-ticket needs special handling, only the user can access the manifest part of the
ticket. Section 5.7 provides additional details on how the Remote Data Binding Protocol
protects e-tickets.

Location data and user profiles are the user’s private data and therefore must to be properly
protected. Additionally, the user should always be able to see and modify (in the case of user

PAGE 100
Trusted Mobile Platform

Protocol Specification Document – Revision 1.00

profiles) the information. In some case, the location data is provided by the system software
and in other cases the network operator determines the location data. Therefore both the owner
(system software) and the network operator are marked as discretionary write (WD) for the
location data.

The audit log should be written by the system software. It may contain sensitive private data so
access to the audit logs needs to be limited. On the other hand, the device owner and the
manufacturer must be allowed to access the log for problem resolutions purposes.

The MAC policy should be determined by the combination of the manufacturer and the owner.
On the other hand, the user and the network operator can participate in the determination of the
DAC policy. In some cases, some service providers MAY also need to set a DAC policy for its
own data (such as an e-Ticket).

Downloading and updating the core software also require access control. The owner, the user,
the operator, or the manufacturer should be able to initiate and terminate software update.
However, there is a strong requirement that the end user must always be able to override the
download operation. For that reason, the user has mandatory initiation and mandatory
termination rights in the table.

8.3.4 Two-Way Authentication

Two-Way (Mutual) authentication is quite simple conceptually. The client and server MUST
prove their respective identities to each other before performing any application functions. The
central principal of two-way authentication is that neither party MUST "trust" the other before
identity has been proven. What this means in practical terms is that the service MUST be able
to determine who the client is without asking the client and the client MUST be able to determine
who the server is without asking the server.

The value of a server being able to authenticate a client is well known. The value of a client
being able to authenticate a server is less understood. Authenticating a server enables the
client to trust the information it gets from the server and to feel secure in sending sensitive
information to the server. The ability of a client to authenticate a server is particularly important
in mobile applications that support delegation of the client's security context (in other words, the
client authorizes the server to act as its delegate in accessing additional servers, such as a bank
or a credit bureau, or network resources).

In a Trusted Mobile Device, two-way authentication can be implemented using one of several
ways. SSL/TLS, which is recommended for the Trusted Mobile Device, has a mutual
authentication capability. Also, Section 4.7 describes session establishment protocols that
authenticate both parties. While the session establishment protocols can be used during
initialization, the scheme proposed in this section extends the authentication process to future
two-way authentication sessions.

In the rest of this subsection, we propose a simple two-way authentication scheme, which
assumes that the user is already registered with the operator. This abstract authentication
scheme will be bound to specific wire formats. It is intended that a binding to WS-Security is
included in Section 4.7 in future revisions of this specification.

At initialization, the following operations SHALL be performed before any mutual authentication
can take place:

• Collect device integrity metrics.

PAGE 101
Trusted Mobile Platform

Protocol Specification Document – Revision 1.00

• User re-logs into the operator’s (or service provider’s) network.

• The operator (or service provider) checks the mobile device’s integrity. The mobile device
will be trusted only if the reported PCR value is trusted.

The following diagram describes the proposed two-way authentication mechanism, which
assumes a secret (HMAC) key is shared between the trusted user and the operator (or TTP).

Figure 8-2 Sequence Diagram for Two-Way Authentication

 The following table summarizes the notations used in the above sequence diagram.

Table 8-3 Notation for Two-Way Authentication

Symbol Definition

|| Concatenation operations.

AU User authentication algorithm.

PAGE 102
Trusted Mobile Platform

Protocol Specification Document – Revision 1.00

CIPH A string of bits used to conceal the new temporary identity TIDO’ whilst it is in transit
between the operator and the user.

EK Shared-key encryption.

KOU Key input

PCRU Platform Configuration Register value that binds the message to the specific trusted
platform in use.

RECU A user-specific identity (such as the Home Location Register [3GPP] or a subset of it),
which helps authenticate the sender and guarantees entity-authentication.

RESO,
RESU Challenge-responses generated by the operator and the user, respectively.

RNDU,
RNDO Random challenges generated by the user and the operator, respectively.

TIDO A (temporary) identity is used to identify the trusted user to the operator with which
she is currently registered. It is known both to the user and to the current operator.

TIDO’ The new temporary user identity for use with the TTP. TIDO’ replaces the current
temporary identity TIDO.

A description of the sequence diagram follows. The User of a Trusted Mobile device MUST first
enter a unique PIN number (or password/pass-phrase) to identify herself. In step 1, the hash of
the concatenation of four separate values is sent to the TTP. The four values are: RECU, PCRU,
TIDO, and RNDU. The hash value is easier to transport and verify than four different values.

Note that RNDU MUST be generated using the trusted hardware’s RNG services. PCRU binds
the message to the specific trusted platform in use.

Then, in step 3, the TTP verifies the hash value. If the verification passes, an encrypted
message that includes the concatenation of (RNDO II KOU II TIDo’ II CIPHO II RESO II IDO) is sent
to the trusted user, step 4. The already-shared encryption EK is used to encrypt the messages
in order to protect the authentication message while in transit.

Then, RESO is calculated using the user authentication algorithm AU with key input KOU and data
string input the concatenation of RNDO, RNDU and TIDO’. The user authentication algorithm AU
takes input a secret key and a data string and outputs a check value RESU. RESU is calculated
using the user authentication AU with the key input KOU and data string input the concatenation of
RNDU and RNDO.

Please note that CIPH MUST be calculated using an identity hiding algorithm CU with secret key
input KOU and data string input RNDU and that the identity hiding algorithm CU MUST take as
input a secret key and a data string and then output a string CIPH used to conceal a user identity.

In step 5, the encrypted value RESU of is sent to the TTP. And finally, in step 6, an
authentication message is sent to the trusted user.

PAGE 103
Trusted Mobile Platform

Protocol Specification Document – Revision 1.00

Note: This section discusses authentication between two network entities (e.g., a TMD and a
server). Authentication of a user against a TMD, for example by a PIN code or
biometrics, is discussed in Section 10 of [SWAD].

8.3.5 Policies

A security policy is a set of rules regarding the use of security services (e.g., mutual
authentication between servers is required) and the details of security service implementation
(e.g., a key length of at least 128 bits is required).

It MUST be assured that code, data, processes, and system resources are protected by access
control policies. Access control policies determine what entities can create, read, modify,
execute, and change access to resources. The code that enforces the policies, the rules that
define the policies and the linkage between them MUST be protected.

Policies SHALL be defined and used within the Trusted Mobile Platform framework to control
interactions within the framework. Policies SHALL be used to govern aspects of the system as
a whole, examples including policies related to security, privacy and message handling.

Privacy policies SHALL be used to proactively define how and when personal information may
be released, to whom, for what purpose, and, for how long. Such policies will have implications
on the selection and use of security services. For example, appropriate confidentiality services
are required to maintain the privacy of personal information during transit or storage. As a result,
mechanisms designed to ensure confidentiality MAY be used to reduce the risks of inappropriate
information disclosure. Such privacy policies may also have an impact on what information is
routed.

Non-repudiation requirements SHALL introduce policies for logging and audit record
maintenance, the use of timestamps and digital signatures, and more stringent authentication.

Section 8.5 below provides more details on the authorization, policy language and enforcement
mechanisms.

8.4 An Example Access Control Implementation

This section is informative.

The generic architecture of Access Control of Trusted Mobile Device is described in the Software
Architecture Description [SWAD]. This subsection illustrates one example implementation of
access control. In this implementation, the security features and policies that are supported by
the mobile device are enabled by a component called Common Access Control Service (CACS)
Layer, which extends Java’s SecurityManager and AccessController classes. At
runtime, the CACS layer decides what policies are to be enforced when a connection request is
made (both for inbound and outbound connections). Based on the domain (see Auditing
Capabilities of Trusted Mobile Platform), device, device type and whether the domain or device is
trusted or un-trusted, the CACS layer can enforce application level authentication, encryption of
the session and any other specific access policies.

The CACS layer (see Figure 8-3 Common Access Control Services (CACS) Architecture on
Trusted Mobile Device), needs information regarding devices and domains as well as services
before it can take a decision whether or not to allow access and if so, to what services. This
information is manifested in the Access Control Matrix (see Section 8.3.3) and is described in the
Hash of Policy files, which are securely stored on the TPM’s Data Integrity Registers (DIRs).

PAGE 104
Trusted Mobile Platform

Protocol Specification Document – Revision 1.00

Figure 8-3 Common Access Control Services (CACS) Architecture on Trusted Mobile
Device

The proposed CACS layer modularizes the security services and abstracts their enforcement as
an extension to the Java runtime environment. This is possible because, in Java 1.2, the
content of a security policy is totally separated from not only the implementation mechanism but
also the interfaces. This leaves maximum room for extensibility and modularization. It also
allows the policy files to be configured entirely separately from the runtime environment, thus
reducing the complexity of system administration. Also, in Java 1.2, the access control
algorithm is cleanly separated from the semantics of the permissions that it is checking. This
allows the reuse of the access controller with application-specific permission classes that are
introduced later (after device shipped).

Mutual authentication is also implemented at the CACS layer using Java’s extensible
LoginContext classes. In the proposed architecture, applications remain independent of the
underlying authentication services (e.g., TPM, SIM card, biometric). (See Figure 8-4
CACS-based authentication.)

PAGE 105
Trusted Mobile Platform

Protocol Specification Document – Revision 1.00

Figure 8-4 CACS-based authentication

The CACS layer provides security services based on the following capabilities of the TPM:

• The TPM strengthens the mutual authentication process by generating the random
challenge RNDU (and possibly RNDO).

• The TPM stores event logs in its registers for auditing purposes.

• The TPM will provide cryptographic services, to include asymmetric key generation,
digital signatures, hashing, and encryption.

• The key used during access control can be securely stored using the TPM’s Secure Key
Storage capabilities.

• The runtime auditing functions will make full use of the TPM’s PCR registers, Secure
Data Storage, and Session Storage capabilities.

8.5 Authorization, Policy Language and Enforcement

8.5.1 Introduction

The development of an Access Control system requires the definition of the subjects and objects
against which authorizations must be specified and access control must be enforced. Therefore,
there is a need to define a common authorization model for all the trust domains.

There is also a need for a common language for expressing security policies. If implemented
across the Trusted Mobile Platform’s trust domains, a common policy language allows the
domain users and owners to manage the enforcement of all the elements of its security policy in
all of its components. Managing security policy MAY include some or all of the following steps:
writing, reviewing, testing, approving, issuing, combining, analyzing, modifying, withdrawing,
retrieving and enforcing policy.

TPM

Common Access Control Services (CACS)

LoginContext

Biometric SIM Card

Application

PAGE 106
Trusted Mobile Platform

Protocol Specification Document – Revision 1.00

8.5.2 Authorization

A good authorization model (and supporting language) should support authorizations at all levels
of granularity, including individual documents and elements within them. The object granularity
for which authorizations should be specified should span from single elements to attributes within
individual documents, where elements and attributes can be referenced by means of path
expressions.

SAML [SAML] and XACML [XACML] SHOULD be used to specify and express policies and
authorizations. WS-Security [WS-Security] SHOULD be used for managing and exchanging
trust relationships. Authorizations SHOULD be made accessible to each access control domain.
Each access control domain that receives such a request will lookup authorization policies that
are relevant to the authorization request. It then appends these to the request, digitally signs the
modified request, and forwards it to the next access control domain in the ordered list of the ACL.

Authorizations MUST be stored in a safe and protected place if they are not digitally signed, so
that tampering with them is prevented.

Authorizations MUST be either positive (permissions) or negative (denials). The reason for
having both positive and negative authorizations is to provide a simple and effective way to
specify authorizations applicable to sets of subjects/objects with support for exceptions.

8.5.3 Policy Language and Enforcement

The major requirements for a Policy Language to support the Trusted Mobile Platform access
control architecture, which includes 6 separate Control Domains (as well as MAC- and
DAC-based policies), are:

• The ability to independently administer multiple policies controlling access to the same
resources.

• The ability to select algorithms for reconciling conflicting policies.

• The ability to efficiently locate all the policies that are potentially applicable to a given decision
without sacrificing the flexibility described above.

XACML [XACML] meets the three requirements above by including two related languages: a
policy language that defines access control and a request/response language in which queries
and decisions are conveyed. The policy language is used to express access control policies
(who can do what on what). The request/response language expresses queries about whether
a particular access should be allowed (requests) and describes answers to those queries
(responses).

While SAML [SAML] assertion provides a mechanism for making authentication and
authorization assertions, a vocabulary is also needed for expressing the rules needed to make
authorization decisions. One XML vocabulary created specifically for expressing authorization
rules is the XACML. XACML defines: an XML vocabulary for expressing authorization rules, an
XML vocabulary for expressing a variety of conditions to be used in creating rules, how rules are
to be combined and evaluated, and means for creating policy statements, a collection of rules
applicable to a subject.

While the XACML specification uses the SAML definitions for subjects and actions, it itdefines
rules as targets, effects and conditions (where a target includes resources, subjects and actions),
and effects (where an effect is either "Allow" or "Deny").

PAGE 107
Trusted Mobile Platform

Protocol Specification Document – Revision 1.00

A deployed XACML access control system SHOULD work the following way:

• A subject S seeks access to some object O.

• The subject submits its query to the entity protecting the resource. This entity is called a
Policy Enforcement Point (PEP).

• The PEP forms a request (using the XACML request language) based on the attributes of
the subject, action, resource, and other relevant information.

• The PEP then sends this request to a Policy Decision Point (PDP), which examines the
request, retrieves policies (written in the XACML policy language) that are applicable to this
request, and determines whether access should be granted according to the XACML rules
for evaluating policies.

• That answer (expressed in the XACML response language) is returned to the PEP, which
can then allow or deny access to the requester.

Each XACML policy document SHOULD have exactly one Policy or PolicySet root XML tag.
A PolicySet is a container that can hold other Policies or PolicySets, as well as references
to policies found in remote locations. A Policy represents a single access-control policy,
expressed through a set of Rules.

XACML defines and describes "layering" between XML entities to clearly distinguish between
security technologies that create policy, collect the data required for policy evaluation, evaluate
policy, and enforce policy.

Because a generic Policy or PolicySet may contain multiple policies or Rules, each of which
may evaluate to different access control decisions, XACML needs some way of reconciling the
decisions each makes. In XACML, this is done through a collection of Combining Algorithms.
Each algorithm represents a different way of combining multiple decisions into a single decision.
XACML utilizes Policy Combining Algorithms (used by PolicySet) and Rule Combining
Algorithms (used by Policy). The Deny Overrides Algorithm is an example of these indicating
that no matter what, if any evaluation returns Deny, or no evaluation permits, the final result is
also Deny. These Combining Algorithms MAY be used to build up complex policies to suit the
specific Trusted Mobile Platform implementation needs.

It is RECOMMENDED that the Policy Enforcement work in the following fashion:

• The PDP receives a request to determine if access should be granted to a resource based
on rule sets, or policies, that are already defined.

• Access control information is kept in a physically separate repository that is referenced when
a request is made.

• XPaths are defined within tags in the XML resource that inform the parser to check the
XACML policies and where to find them.

8.5.4 XACML Policy Example

This section is informative.

PAGE 108
Trusted Mobile Platform

Protocol Specification Document – Revision 1.00

Assume that a corporation named e-Ticket Corporation (e.g., eticketcorp.com) has an
access control policy, which states: any user with a name in the "eticketcorp.com" namespace is
allowed to perform any action on any resource.

In XACML, this policy should be expressed as follows. An XACML policy consists of header
information, an optional text description of the policy, a target, one or more rules, and an optional
set of obligations.

The header for this Policy is:

<?xml version=1.0" encoding="UTF-8"?>

<Policy

 xmlns="urn:oasis:names:tc:xacml:1.0:policy"

 xmlns:function="urn:oasis:names:tc:xacml:1.0:function"

 xmlns:identifier="urn:oasis:names:tc:xacml:1.0"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="urn:oasis:names:tc:xacml:1.0:policy

 http://www.oasis-open.org/.../cs-xacml-schema-policy-01.xsd"

 PolicyId="identifier:example:eTicketPolicy1"

RuleCombiningAlgId="identifier:rule-combining-algorithm:deny-overrides

">

The above header introduces the XACML Policy, and then it defines a set of namespace prefixes.
Element names used in the document should be treated as if they were prefixed by the URN
urn:oasis:names:tc:xacml:1.0:policy. Also, element names prefixed with the words
function, identifier, or xsi should be treated as if they were prefixed instead by the
specified URNs. Then, a URL to the schema for XACML policies is provided.

The name eTicketPolicy1 is assigned to this policy instance. The name of a policy should
be unique for a given PDP so that there is no ambiguity if one policy is referenced from another
policy.

Finally, the algorithm that will be used to resolve the results of the various rules that may be in the
policy is provided. The deny-overrides algorithm specified here says that, if any rule returns a
Deny Access result, the policy must return a Deny Access result. If all rules return a Permit
Access result, then the policy must return a Permit Access result. The algorithm also says what
to do if errors were encountered in evaluating any rules, and what to do with rules that do not
apply to a particular request.

Now, let’s provide a text description of the policy. This description is optional.

 <Description>

 e-Ticket Corporation access control policy

 </Description>

PAGE 109
Trusted Mobile Platform

Protocol Specification Document – Revision 1.00

Hereinafter, the decision requests to which this policy applies will be described. If the subject,
resource and action in a decision request do not match the values specified in the Target, then
the remainder of the policy does not need to be evaluated. This Target section is very useful for
creating an index to a set of policies. In this (e-Ticket) implementation example, the Target
section says the policy is applicable to any decision request.

<Target>

 <Subjects>

 <AnySubject/>

 </Subjects>

 <Resources>

 <AnyResource/>

 </Resources>

 <Actions>

 <AnyAction/>

 </Actions>

 </Target>

The <Rule> element specifies a rule in the policy. Just as for a policy, each rule must have a
unique identifier for any PDP that will be using the policy. The identifier for this rule is then
specified.

As an Effect, this rule will generate a Permit result, if the rule evaluates to TRUE. Rules may
have an effect of either Permit or Deny. In this case, the rule will return a result of Permit,
meaning that, as far as this one rule is concerned, the requested access should be permitted. If
a rule evaluates to FALSE, then it returns a result of NotApplicable. If there is some error in
evaluating the rule, the rule returns a result of Indeterminate. As mentioned above, the rule
combining algorithm for the policy tells how various rule results are combined into a single policy
result.

<Rule

 RuleId="identifier:example: eTicketPolicy1"

 Effect="Permit">

An optional <Description> element specifies description of the rule.

<Description>

 Any subject with a name in the eticketcorp.com domain

 can perform any action on any resource.

</Description>

PAGE 110
Trusted Mobile Platform

Protocol Specification Document – Revision 1.00

The <Target> element specifies the target of the rule. The Target of a rule describes the
decision requests to which this rule applies. If the subject, resource, and action in a decision
request do not match the values specified in the rule Target, then the remainder of the rule does
not need to be evaluated, and a result of NotApplicable is returned.

 <Target>

This Target is similar to the Target of the policy itself, but with one important difference. In this
case, a specific value is spelled out and the subject in the decision request must match this value.
The <SubjectMatch> element specifies a matching function (MatchId), a pointer to a specific
subject attribute in the request (SubjectAttributeDesignator), and a literal value. The
matching function will be used to compare the value of the subject attribute with the literal value.
Only if the match returns TRUE will this rule apply to a particular decision request. If the match
returns FALSE, then this rule will return a result of NotApplicable.

 <Subjects>

 <Subject>

 <SubjectMatch MatchId="function:rfc822name-match">

 <SubjectAttributeDesignator

 AttributeId="identifier:subject:subject-id"

 DataType="identifier:datatype:rfc822name"/>

 <AttributeValue

 DataType="identifier:datatype:rfc822name">eticketcorp.com

 </AttributeValue>

 </SubjectMatch>

 </Subject>

 </Subjects>

 <Resources>

 <AnyResource/>

 </Resources>

 <Actions>

 <AnyAction/>

 </Actions>

 </Target>

Finally, the rule and the policy need to be closed. In this rule, all the work is done in the Target
specification. In more complex rules, the Target may have been followed by a Condition (which
could also be a set of conditions to be AND-ed or OR-ed together).

As mentioned above, this policy has only one rule, but more complex policies MAY have any
number of rules.

PAGE 111
Trusted Mobile Platform

Protocol Specification Document – Revision 1.00

 </Rule>

 </xacml:Policy>

Next example shows a decision request that may be submitted to a PDP using the policy above.
In English, the access request that generates the decision request may be stated as follows:

John Doe, with a name "johndoe", wants to receive an e-Ticket from his Service Provider
eticketcorp.com (see Figure 8-2 Sequence Diagram for Two-Way Authentication for other
access types).

In XACML, the information related to this access request is formatted into a Request Context
statement that looks as follows.

First, the header for the Request must be defined.

<?xml version="1.0" encoding="UTF-8"?>

 <Request

 xmlns="urn:oasis:names:tc:xacml:1.0:context"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="urn:oasis:names:tc:xacml:1.0:context

http://www.oasis-open.org/tc/xacml/1.0/sc-xacml-schema-context-01.xsd"

>

Then, the <Subject> element contains one or more attributes of the entity making the access
request. There can be multiple subjects, and each subject can have multiple attributes. In this
case, there is only one subject, and the subject has only one attribute: the subject's identity,
expressed as a name, is johndoe.

 <Subject>

 <Attribute

 AttributeId="urn:oasis:names:tc:xacml:1.0:subject:subject-id"

 DataType="identifier:rfc822name">

 <AttributeValue>johndoe</AttributeValue>

 </Attribute>

 </Subject>

The <Resource> element contains one or more attributes of the resource to which the subject
(or subjects) has requested access. There must be only one <Resource> per decision request.
There is only one attribute for the resource to which John Doe has requested access: the
resource identity, which is http://eticketcorp.com/etickets/issued/johndoe.

PAGE 112
Trusted Mobile Platform

Protocol Specification Document – Revision 1.00

 <Resource>

 <Attribute

 AttributeId="identifier:resource:resource-uri"

 DataType="xs:anyURI">

 <AttributeValue>http://eticketcorp.com/etickets/issued

/johndoe</AttributeValue>

 </Attribute>

 </Resource>

The <Action> element should contain one or more attributes of an action that the subject (or
subjects) wishes to take on the resource. There can be only one action per decision request.
The following code describes the identity of the action John Doe wishes to take, which is Receive.

 <Action>

 <Attribute

 AttributeId="identifier:action:action-id"

 DataType="xs:string">

 <AttributeValue>Receive</AttributeValue>

 </Attribute>

 </Action>

Then, close the request.

</Request>

A more complex request may contain some attributes not associated with any of the subject, the
resource, or the action. These would have been placed in an optional <Environment>
element following the action.

The PDP processing this request context locates the policy in its policy repository. It compares
the subject, resource and action in the request context with the subjects, resources and actions in
the policy target. Since the policy target matches the <AnySubject/>, <AnyResource/> and
<AnyAction/> elements, the policy matches this context.

The PDP now compares the subject, resource and action in the request context with the target of
the one rule in this policy. The requested resource matches the <AnyResource/> element and
the requested action matches the <AnyAction/> element, but the requesting subject-id attribute
does not match "*@eticketcorp.com".

As a result, there is no rule in this policy that returns a "Permit" result for this request. The
rule-combining algorithm for the policy specifies that, in this case, a result of "Deny" should be

PAGE 113
Trusted Mobile Platform

Protocol Specification Document – Revision 1.00

returned. The response context looks as follows:

<?xml version="1.0" encoding="UTF-8"?>

 <Response

 xmlns="urn:oasis:names:tc:xacml:1.0:context"

 xsi:schemaLocation="urn:oasis:names:tc:xacml:1.0:context

http://www.oasis-open.org/tc/xacml/1.0/sc-xacml-schema-context-01.xsd"

>

The <Result> element contains the result of evaluating the decision request against the policy.
In this case, the result is Deny. A policy can return Permit, Deny, NotApplicable, or
Indeterminate.

 <Result>

 <Decision>Deny</Decision>

 </Result>

Finally, the response is closed.

</Response>

PAGE 114
Trusted Mobile Platform

Protocol Specification Document – Revision 1.00

9 Related Standards

There are a number of security protocol standards. A Trusted Mobile Device is recommended
to implement some of them while other standards may be optionally implemented. Yet another
category is that the TMD can support the protocol using its unique capability such as the
protected storage of the TPM or the attestation signature. This section describes the summary
of these standards that are relevant to the Trusted Mobile Platform protocols. The following
table shows the categorization of these standards.

Category Label Description

Mandatory This standard is an essential part of the Trusted Mobile Platform and
MUST be implemented in all compliant TMDs.

Recommended This standard constitutes a significant value-add to the TMD and
therefore is RECOMMENDED to be implemented.

Optional
Implementation of this standard is OPTIONAL. If it is implemented, the
other Trusted Mobile Platform protocols SHOULD take advantage of this
protocol.

Supported This standard can use the capabilities of TMD to enhance its security or
functionality.

Transparent Support of this standard is completely independent from the Trusted
Mobile Platform capabilities.

Note: Details of how the standards marked as Mandatory, Recommended, or Optional are
applied to the Trusted Mobile Platform protocols are given in the corresponding
sections of this document.

9.1 TLS (Recommended)

The support for TLS (RFC-2246) [TLS] is RECOMMENDED. If a TMD supports TLS, it
MUST have a TLS client features. It is RECOMMENDED that the TMD support TLS client
authentication capability. It is RECOMMENDED that the device support the use of
Sign_RSA_PCR described in Section 5.5.1. Also, a TMD SHOULD use the keys stored in
the TPM whenever appropriate. A TMD MAY implement the server side TLS capability.

9.2 X.509 v3 (Recommended)

If a TMD supports the authentication based on public-key cryptography, X.509 v3 certificate
MUST be supported. This specification does not specify any extensions to X.509 certificate
attributes, but the other standards such as TCG [TCG] and PKIX [PKIX] requires their own
specific attribute extensions.

9.3 TCG

TCG [TCG] defines a set of message formats regarding endorsement key credentials, platform
credentials, identity key credentials, and validation data. Section 5 defines in detail how these
messages are exchanged. A class 2 or 3 TMD must support [TCG] capabilities as defined in
[HWAD]. A class 1 TMD device is RECOMMENDED to support software TPM or function similar
to TPM as described in [HWAD].

PAGE 115
Trusted Mobile Platform

Protocol Specification Document – Revision 1.00

9.4 XML Security / WS-Security (Recommended, Profiled)

It is RECOMMENDED that profiled versions of XML Signature, XML Encryption, Exclusive
Canonicalization, WS-Security, WS-Trust, WS-SecureConversation, SAML, and XACML are
supported by the TMD. The details of the profiles are given in Section 4.

9.5 PKIX (Optional)

When the device has WS-Trust [WS-Trust] capability, the support for PKIX is OPTIONAL.
However, if the device has no WS-Trust, it MUST implement PKIX, including certificate request,
certificate retrieval, and certificate revocation.

9.6 SPKI (Supported)

Implementation of SPKI [SPKI] can use a signature key stored in the TPM. Also, TPM
protected storage should be used for protecting keys.

9.7 IPSec (Supported)

Implementations of IPSec [IPSec] (RFC-2401) can use a signature key stored in the TPM. It
also can use the protected storage for securely storing the symmetric secrets.

9.8 SSH (Supported)

Implementations of SSH can use a signature key stored in the TPM. It also can use the protected
storage for securely storing the symmetric secrets.

9.9 PGP (Supported)

Implementations of PGP can use a signature key stored in the TPM. It also can use the
protected storage for securely storing the symmetric secrets.

9.10 S/MIME (Supported)

Implementations of S/MIME can use a signature key stored in the TPM. It also can use the
protected storage for securely storing the symmetric secrets.

9.11 GSM SIM-based Authentication (Transparent)

GSM defines its own authentication protocol based on the SIM card. This protocol is illustrated
in Figure 9-1. Note that in this figure, the SIM card is depicted as MT, or Mobile Terminal.
Since the SIM card directly talks to the AC (Access Control server), a TMD is unrelated to this
protocol. Although the TMD should provide a means to relay these messages between the SIM
card and the AC, this communication should be opaque to the TMD. In other words, the TMD is
transparent to this protocol.

PAGE 116
Trusted Mobile Platform

Protocol Specification Document – Revision 1.00

MT Mobile Terminal
AC Access Controller
AS Authentication Server
MSC (Operator’s) Mobile Switching Center
IMSI GSM International Subscriber Identity
SRES Signed Response (using algorithms stored on SIM card)

Figure 9-1 GSM Authentication Protocol

MT AC AS MSC
1: AC addresses solicitation and advertisement

2: MT_AC_AUTHSTART_REQ (IMSI, nounce)

3: AC_AS_AUTHSTART_REQ(IMSI, nounce)

4: AS_MSC_GETTRIPLETS_REQ(IMSI)

4’: MSC_AS_GETTRIPLETS_RESP(IMSI)

5: AS_AC_AUTHSTART_RESP(IMSI, nounce)

6: AC_MT_AUTHSTART_RESP(RAND,MAC_RAND)

7: MT verifies MAC_RAND

8: MT generates MAC_SRES

9: MT_AC_AUTHSTART_REQ(MAC_SRES)
10: AC_AS_AUTHANSWER_REQ(MAC, SRES)

11: AS verifies MAC_SRES

12: AS_AC_AUTHANSWER_RESP (result)

13’:AS_AC_STARTACCOUNTING_RESP

13: AC_AS_STARTACCOUNTING_REQ
15: MT
checks
result

14: AC_MT_AUTHANSWER_RESP 9result)

PAGE 117
Trusted Mobile Platform

Protocol Specification Document – Revision 1.00

10 Security Considerations

10. 1 Introduction

The Trusted Mobile Platform’s objective is to address the multi-level framework associated in
establishing a Trusted Mobile Platform. The architecture framework documents are structured
and divided into three different specifications. The protocol specification (this document)
addresses several characteristics in the exchange and data flow between its associated trusted
parties. The Hardware Architecture Description [HWAD] addresses high-level hardware
architecture design of a trusted mobile device. The Software Architecture Description [SWAD]
addresses key software components to develop a secure solution to maintain trust between
hardware, software and protocol environments.

There are several security considerations that any implementer of the Trusted Mobile Platform
should pay attentions. For example, the Trusted Mobile Platform does not prevent or mitigate
any Denial of Service (DoS) attacks. As the majority of the protocols defined in the protocol
specification relies on the trust infrastructure, the implementations need to understand the
security levels of the trust infrastructure and should set appropriate policies. Policies need to be
in place to determine on balancing the level of risks and the cost of implementing security
mechanisms to mitigate the risks.

The implementer must keep in mind to address fundamental security policy considerations which
are necessary for practical use (e.g., Proper SSL/TLS implementation/design and user privacy
protecting examination). This section, at the time of this draft, has no answers to address
against some of these key issues, for example interoperability and scalability. Hence, the scope
of this document is left open ended for the Platform operators to apply other means of security
(e.g., anti-virus, anti-spam, intrusion detection, and firewall). The specification does not address
operational considerations.

10.2 Operational Issues after a Breach in Security

In addressing operational issues in an event of a security breach, the service operator
MUST evaluate the breach of security. It is assumed that the security breach is executed
through existing/new backdoor vulnerabilities on the Trusted Mobile Platform. The service
operator MUST assess the vulnerability risk to the overall system. The system architecture
of the trusted mobile platform is designed in mind to detect these anomalies; before
vulnerability poses a threat onto the Trusted Platform. This section can only theorize what
can transpose, facilitate and remedy the situation, such as factors which exist that may
reflect onto the Platform; reliability of the device or the wireless network interference may
prevent Trusted Platform to communicate and resolve vulnerabilities.

The possibility of exploiting backdoors and vulnerabilities may exist on the trusted mobile
device. It is assumed that the network operators can fix the security vulnerability; by
providing a security patch; however it is up to the user's will and has the option to accept the
software update. These are one of many issues that need to be addressed, however
unfortunately this specification can only contribute as guidelines and framework in keeping
the network and the trusted mobile device secure.

These operational policies demonstrate different severity levels in assessing the security
vulnerability risk to service operations; the service operator operational requirement would fit into
the categories, as mentioned below:

PAGE 118
Trusted Mobile Platform

Protocol Specification Document – Revision 1.00

10.2.1 Operational Policy One:
Service Provider Continues Service without fixing vulnerability.

In policy one, the Trusted Mobile Platform continues to be in operation. The vulnerability may
have the tendency to disrupt revenue-producing services (some of which may be providing
real-time services, so any disruption will cause a significant loss) and thus; poses a security risk.
The attack is either likely or unlikely, depending on the nature of the vulnerability and the
likelihood of the service being targeted. The service provider may choose to continue
communicating with the device by taking the risk. This may be justified by the nature of the
service (whose value as being a real-time and/or mission critical service is very high) and the
likelihood of the possible attacks.

10.2.2 Operational Policy Two:
Service Providers will only allow clients that have installed the proper security
patch.

In policy two, some mobile devices may have backdoors and the knowledge that vulnerabilities
may exist. The trusted state of the mobile platform may be considered ‘un-trusted’ since the
nature of the platform has been compromised. However, the service provider understands the
ramifications of halting services. One applicable solution is to interrupt or limit the trusted
services to mobile devices that pose a threat with backdoors. The service provider / mobile
device manufacture may eventually provide a patch for this backdoor. As result users who do
not apply the proper security patch, their trusted service may be hindered until they install the
proper security patch. For users who choose not to install the proper security patch may quit the
trusted service (due to limitation of trusted services, on the mobile devices that are effected), but
the service provider will allow the ability to continue the trusted services to the rest of the
customer base.

10.2.3 Operational Policy Three:
Service Providers will only allow clients that have been ‘reinitialized’.

In policy three, some mobile devices may have backdoors and the knowledge that vulnerabilities
may exist. The trusted state of the mobile platform is considered ‘un-trusted’ since the nature of
the platform has been compromised, in some form or fashion. The manufacturer
reclaims/recalls the affected devices, reinitializes them, and redistributes them to the affected
consumer base. This would be considered the most secure approach, but heavily impacts the
business due to the service’s unavailability to the affected consumer base; which could be
prohibitively large. Under this situation, service provider may get frustrated in protecting its
‘trusted state’. The service provider may then cancel and or stop the whole trusted service
offering. Resulting in the attrition of the consumer base, service provider support and effecting
overall business model.

PAGE 119
Trusted Mobile Platform

Protocol Specification Document – Revision 1.00

11 Future Agenda

Many potential Trusted Mobile Platform protocols and/or protocol-bindings have been identified
while drafting this specification, although some of them have not been fully addressed. This
section describes some of such protocols that are possibly going to be defined in future versions
of this specification. This section is informative. There is no intention to guarantee that
protocols listed in this section will be defined as parts of any future versions of the Trusted Mobile
Platform specifications.

11.1 Attestation and Supporting Infrastructure

Since [TCG] focuses on defining a set of structures, APIs, and credentials for the trusted platform
subsystems, it requires additional network protocols to efficiently communicate with, and utilize
the feature of the Trusted Mobile Platform from the networked entities. Some of such protocols
are defined in section 5 to support functions such as creation of platform identities or validation of
the platform integrity measurement. This section describes other potential protocols that are not
defined in this specification.

11.1.1 Registration of Trusted Integrity Measurements

In order to attest to a particular state of a Trusted Mobile Device, the manufacturer (or its
delegate) is responsible for keeping track of core software configurations and communicate with
the validation entity to vouch for the integrity measurement of the trusted configurations. A
network protocol for registering trusted configurations with validation entities may be defined.

11.1.2 Migration

[TCG] defines functions to securely archive migratable keys stored in the protected storage of
the TPM to be transferred to other entities. A public key has to be authorized by the Trusted
Mobile Device’s owner before creating a migration archive, therefore only an authorized entity
that has the associated private key can decrypt the archive. Network protocols for authorizing a
public key, and creating and transferring the migration archive may be defined.

11.1.3 Maintenance

[TCG] defines functions to securely archive non-migratable keys stored in the protected storage
of the TPM to be transferred to the manufacturer (or its delegate). Network protocols for
creating and transferring the migration archive may be defined.

11.1.4 Backup of User Data

A backup of a user’s confidential data on a Trusted Mobile Device can be securely performed
using cryptographic protection provided by the TPM. For example, a copy of a user’s data in the
protected storage hierarchy of the TPM can be sent over the network without revealing its
content, as long as the storage key protecting the data is not revealed. The backup of the
storage key can be made secure using the migration or the maintenance feature of the TPM.
(See Section 11.1.2 Migration and 11.1.3 Maintenance). The protocols for creating a backup of
the data and restoring it over the network may be defined.

PAGE 120
Trusted Mobile Platform

Protocol Specification Document – Revision 1.00

11.2 Access Control

Additional protocols for enhancing access control mechanisms discussed in section 8 may be
defined. In particular, a remote entity may create an application domain and configure the
Discretionary Access Control (DAC) policy of the domain. An example of such a use case is a
service provider creating an application domain on the Trusted Mobile Device and configures the
DAC of the domain, so the particular information used by the service can be updated only by the
service provider. It is intended by authors to define a common AC language for Trusted Mobile
Platforms in the future version of this specification.

Also, future versions of this specifications document, the access control section will further
address other aspects including manageability, provisioning, and administration.

11.3 Key Exchange Protocol Bindings

A few key exchanging methods are defined in this document, but bindings to the network
protocol are not defined. The protocol binding of the following key exchange methods may be
defined.

Section 7.3.5.1.1 Public Key-Based Symmetric Key Distribution Protocol

Section 8.3.4 Symmetric Key-Based Key Exchange

See Section 4.7 for more information.

11.4 Device Management

This document defines requirements for device management (Section 7). Methods for the
software download and installation may be defined in future versions of the Trusted Mobile
Platform specification.

The protocols for the following device management capabilities described in Section 12 of
[SWAD] are not defined in the current version of the Trusted Mobile Platform specifications.
Future versions of the Trusted Mobile Platform specifications may define protocols for these
capabilities.

 Configuration management
 Software and hardware inventory management
 Notification (alert)
 Logging
 Remote Monitoring
 Remote Diagnostics

PAGE 121
Trusted Mobile Platform

Protocol Specification Document – Revision 1.00

12 References

12. 1 Normative References

[KEYWORDS] S. Bradner, "Key words for use in RFCs to Indicate Requirement
Levels," RFC 2119, Harvard University, March 1997

[RFC2234] “Augmented BNF for Syntax Specifications: ABNF”. D. Crocker, Ed.,
P. Overell. November 1997. URL:http://www.ietf.org/rfc/rfc2234.txt

[CRMF] RFC 2511, “Internet X. 509 Certificate Request Message Format”,
March 1999. http://www.ietf.org/rfc/rfc2511.txt.

[EXC-C14N] “Canonical XML” Version 1.0, W3C Recommendation 15 March
2001. http://www.w3.org/TR/xml-c14n.

[HTTPBasicAuth] RFC 2617, “HTTP Authentication: Basic and Digest Access
Authentication”, June 1999. http://www.ietf.org/rfc/rfc2617.txt.

[HWAD] “Trusted Mobile Platform Hardware Architecture Description”, version
1.0, 30 June 2003. http://www.trusted-mobile.org/.

[IPSec] RFC 2401 “Security Architecture for the Internet Protocol”, November
1998. http://www.ietf.org/rfc/rfc2411.txt

[ISO11770-1] “Information Technology – Security Techniques – Key Management,
Part 1: Key Management Framework”

[ISO7498-2] “Information Processing Systems – Open Systems Interconnection,
Basic Reference Model, Security Architecture”

[Minimal-WS-Security] “SOAP Message Security: Minimalist Profile (MProf)” Working Draft
1.5, March 7, 2003. http://www.oasis-open.org

[NISTIR-4972] “A Study of OSI Key Management”

[PhaseZero] “Trusted Mobile Platform Phase-0 Document”, version 1.0, 30 June
2003. http://www.trusted-mobile.org/

[SAML] “Assertions and Protocol for the OASIS Security Assertion Markup
Language (SAML) V1.1”, May 2003. http://www.oasis-open.org/

[SOAP11] W3C Note, "SOAP: Simple Object Access Protocol 1.1," 08 May
2000. http://www.w3.org/TR/SOAP/

[SOAP12] See [SOAP12-Part0], [SOAP12-Part1] and [SOAP12-Part3]

[SOAP12-Part0] W3C Recommendation 24 June 2003, SOAP Version 1.2 Part 0:
Primer, SOAP Version 1.2 Part 0: Primer

[SOAP12-Part1] W3C Recommendation 24 June 2003, SOAP Version 1.2 Part 1:

PAGE 122
Trusted Mobile Platform

Protocol Specification Document – Revision 1.00

Messaging Framework, http://www.w3.org/TR/soap12-part1/

[SOAP12-Part2] W3C Recommendation 24 June 2003, SOAP Version 1.2 Part 2:
Adjuncts, http://www.w3.org/TR/soap12-part2/

[SSL3] A. Frier, P. Karlton, and P. Kocher, "The SSL 3.0 Protocol", Netscape
Communications Corp., Nov 18, 1996

[SWAD] “Trusted Mobile Platform Software Architecture Description”, version
1.0, 30 June 2003. http://www.trusted-mobile.org/.

[TCG]
Trusted Computing Group (TCG) Main Specification Version 1.1b”,
February 2002. http://www.trustedcomputinggroup.org/ (also
previously known as Trusted Computing Platform Alliance (TCPA)
Main Specification Version 1.1b).

[TCP/IP] Defined in many RFC documents by the Internet Engineering Task
Force. See http://www.ietf.org

[TLS] RFC 2246, “The TLS Protocol” Version 1.0.
http://www.ietf.org/rfc/rfc2246.txt.

[TLSExt] RFC3546, “Transport Layer Security (TLS) Extensions”, June 2003.
http://www.ietf.org/rfc/rfc3546.txt.

[URI] T. Berners-Lee, R. Fielding, L. Masinter, "Uniform Resource
Identifiers (URI): Generic Syntax," RFC 2396.

[WS-SAML] “Web Services Security: SAML Token Profile”, Working Draft 06, 21
February 2003. http://www.oasis-open.org/.

[WS-Security] “Web-Services Security: SOAP Message Security”, Working Draft 12,
Monday 21 April 2003. http://www.oasis-open.org.

[WS-Trust] “Web Services Trust Language (WS-Trust)”, Draft 18 December
2002, http://www-106.ibm.com/developerworks/library/ws-trust/

[WS-X509] "Web Services Security: X509 Certificate Token Profile" Working Draft
05, 6th June 2003. http://www.oasis-open.org/.

[XACML] “eXtensible Access Control Markup Language (XACML)” Version 1.0,
OASIS Standard, 18 February 2003. http://www.oasis-open.org/

[XML-Encryption] “XML Encryption Syntax and Processing”, W3C Recommendation 10
December 2002. http://www.w3.org/Encryption/2001/

[XML-Namespace] “Namespaces in XML”, W3C Recommendation, 14 January 1999.
http://www.w3.org/TR/1999/REC-xml-names-19990114/.

[XML-Signature] “XML-Signature Syntax and Processing”, W3C Recommendation 12
February 2002. http://www.w3.org/Signature/.

PAGE 123
Trusted Mobile Platform

Protocol Specification Document – Revision 1.00

12. 2 Informative References

[3GPP] http://www.3gpp.org/

[Afaria] http://www.xcellenet.com/public/products/afaria/afaria.asp

[Asokan1998] Asokan, N., Shoup, V., Waidner, M., “Optimistic Fair Exchange of Digital
Signatures”, IEEE Journal on Selected Areas in Communications.

[Bluetooth] Bluetooth SIG, “Specification of the Bluetooth System”, Revision 1.1,
February, 2001. http://www.bluetooth.org

[CLDC]
Java Community Process, “JSR-000139 Connected Limited Device
Configuration 1.1 (Final Release)”,
http://jcp.org/aboutJava/communityprocess/final/jsr139/index.html

[ISO14443]
International Standards Organization, ISO/IEC 14443, “Identification Cards
– Contactless integrated circuit(s) cards – Proximity cards”, April, 2000,
http://www.iso.org

[J2ME] http://java.sun.com/j2me/

[J2SE] http://java.sun.com/j2se/

[Loscocco 1998]
P. Loscocco, et al. “The Inevitability of Failure: The Flawed Assumption of
Security in Modern Computing Environments”. Proceedings of the 21st
National Information Systems Security Conference. October 1998.

[MIDP2.0] “Mobile Information Device Profile for Java 2 Micro Edition”, Version 2.0.
http://java.sun.com/products/midp/

[OSGi] http://www.osgi.org/

[PKIX] RFC 2527, “Internet X.509 Public Key Infrastructure Certificate Policy and
Certification Practices Framework”, March 1999.

[PGP] RFC 1991, “PGP Message Exchange Format”, August 1996.

[ProvOTA] C. Enrique Ortiz "Introduction to OTA Application Provisioning", November
2002. http://wireless.java.sun.com/midp/articles/ota/

[ProvMIDP]
“Over The Air User Initiated Provisioning Recommended Practice for the
Mobile Information Device Profile”, Version 1.0, May 7, 2001.
http://java.sun.com/products/midp/OTAProvisioning-1.0.pdf.

[S/MIME-MSG] RFC 2663, “S/MIME Version 3 Message Specification”, June 1999.

[SPKI] RFC 2693, “SPKI Certificate Theory”, September 1999.

PAGE 124
Trusted Mobile Platform

Protocol Specification Document – Revision 1.00

13 Terminologies and Abbreviations

ACL Access Control List
ADF Application Descriptor File
AIK Attestation Identity Key [TCG]
B2B Business to Business
B2E Business to Employee
CA Certificate Authority
CACS Common Access control Service
CE Conformance Entity
CLDC Connected Limited Device Configuration
CORBA Common Object Request Broker Architecture
DAC Discretionary Access Control
DCE Distributed Computing Environment
DCOM Distributed Component Object Model
DIR Data Integrity Register. [TCG] requires at least one Data Integrity Register

(DIR). A DIR holds 160-bit value and is in TCG-shielded location. The
DIRs may be used for any purpose, but may be useful to applications
taking measurements, but where an appropriate PCR cannot be identified.

EK Endorsement Key [TCG]
eTicket A downloaded object that asserts that a fare or admission has been paid.

An eTicket may include additional attributes such as the time and the
venue of an event the ticket may be used for admission.

GPRS General Packet Radio Service
GSM Global System for Mobile Communications, http://www.gsmworld.com/.
HLR Home Location Register [3GPP]
HMAC Hashed Message Authentication Code
HTTP Hyper Text Transfer Protocol
HTML Hyper Text Markup Language
IrDA Infrared Data Association
J2ME Java 2 Micro Edition
J2SE Java 2 Standard Edition
JAR Java Archive
MAC Mandatory Access Control / Message Authentication Code
MExE Mobile Station Application Execution Environment,

http://www.mobilemexe.com/.
MIDP Mobile Information Device Profile
MIME Multipurpose Internet Mail Extensions [RFC2045]
OSGi Open Services Gateway Initiative, http://www.osgi.org/.
PCR Platform Configurations Register [TCG]. A PCR consists of a 160-bit field

that holds a discrete integrity measurement. The PCR data structure is in a
TCG-shielded location. [TCG] requires a TPM implementation to provide

PAGE 125
Trusted Mobile Platform

Protocol Specification Document – Revision 1.00

16 or more independent PCRs. These PCRs are identified by index and
are numbered from 0 (that is, PCR0 through PCR15 are required for TCG
compliance).

PEK Platform Encryption Key
POP3 Post Office Protocol Version 3 [RFC1081]
S/MIME Secure MIME [S/MIME-MSG]
SAML Security Assertion Markup Language [SAML]
SMTP Single Mail Transfer Protocol [RFC821]
SOAP Simple Object Access Protocol [W3C]
SRK Storage Root Key [TCG]
SSH Secure Shell
SSL Secure Socket Layer [SSL3]
TCB Trusted Computing Base [TCG]
TCG Trusted Computing Group [TCG]
TLS Transport Layer Security [TLS]
TMD Trusted Mobile Device
TPM Trusted Platform Module. A keywords starts with TPM_ refers to a

command or structure defined in [TCG].
TSS TCG Supported Software [TCG]. A keyword starts with TSS_ refers to a

command or structure defined in [TCG].
TTP Trusted Third Party
UIK User Identity Key
URI Universal Resource Identifier [URI]
VE Validation Entity [TCG]
XACML Extensible Access Control Markup Language
XML Extensible Markup Language

PAGE 126
Trusted Mobile Platform

Protocol Specification Document – Revision 1.00

Appendix A. Change History (Informative)
Revision Date Section Description
Initial drop 02/13/2003 The initial version of this document.
0.01 03/03/2003 6 Merged: rev0_01-1__20030227-Section6-hm
0.02 03/17/2003 2,3,5,8 Merged:

03 Protocols Overview.doc
Access Control Architecture V0_1- Aissi
02 TMP Protocol Design General Principles
05 TCPA Enablement_20030313_taiga

0.02-2

04/10/2003 4,5,7,8 Merged:
 07 Management(edited by Takeshita, Ver0,1)
 Access Control Architecture V0_1- Aissi.doc
 04 WS-Security Profiles
 05 TCPA Enablement_20030401_sachiko-q
Added author names of Section 9

0.03 06/02/2003 3, 5
Appendix

C

Merged’
TCPA Enablement in section 5 with some parts moved to

Appendix C (Taiga)
Scenarios (Sachiko)

0.04 06/12/2003 3, 4,5,6 Restructured section 3. (by Dave W. [tmp-wg-two 95] and
Sachiko)

Update on section 4 by Hiroshi [tmp-wg-two 92] and Daniel
[tmp-wg-two 94]

Added schemata in section 5.
Added schemata and description in section 6 by Hiroshi

[tmp-wg-two 93]
0.05 06/13/2003 7,9,10,11 Update from NTT DoCoMo (TMP_

PROTOCOL_DRAFT.DCM.REVISION-ONE.doc)
Added references and abbreviations.

0.06 06/14/2003 1 Update on Introduction [tmp-wg-two 91]
0.07 06/16/2003 8 Update on Access Control Architecture [tmp-wg-two 112]
0.08 06/25/2003 1, 2, 3, 4, 5,

6, 7, 9,
10,11, 12,

13

“Introduction” update [tmp-wg-two 152].
“Protocol Design General Principles” update [tmp-wg-two

155].
“Protocols Overview” update [tmp-wg-two 167].
“WS Security” update [tmp-wg-tw 149].
“TCPA Enablement” update [tmp-wg-two 150] with new

“Remote Data Binding” [tmp-wg-two 146] as Section 5.7.
“Terminal Management” update [tmp-wg-two 166].
“Key Management” [tmp-wg-two 145] inserted as Section 7.4.
“Fair Contract Signing Protocol” update [tmp-wg-two 151].
New “Related Standard” [tmp-wg-two 143] inserted as Section 9.
“Security Consideration” update [tmp-wg-two 166].
New “Future Agenda” [tmp-wg-two 153] inserted as Section 11.
Addition to section References and Definitions and

Abbreviations.
0.09 06/25/2003 7.3, 8 “Core Software Download” example updated [tmp-wg-two 175]

“Access Control” updated [tmp-wg-two 176]
0.10 07/01/2003 1, 4, 7, 8,

10, 11
“Introduction” update [tmp-wg-two 211]
“WS-Security” update [tmp-wg-two 211]
“Device Management” update [tmp-wg-two 214]
“Access Control” update [tmp-wg-two 209]
“Security Considerations” update [tmp-wg-two 215]
“Future Agenda” update [tmp-wg-two 216]

0.11 07/04/2003 Final WG draft for internal reviews.
0.12 09/30/2003 all Applied comments from joint WG2-3 discussions to resolve

inconsistencies between documents.
0.13 10/07/2003 3.1

5.1
5.7

7.3.3

Too many TCG in a paragraph – sentences revisited.
Too many TCG in paragraphs – sentences revisited.
“TCG TPM” was changed to “TPM”
Reference to section 5 title was corrected.

PAGE 127
Trusted Mobile Platform

Protocol Specification Document – Revision 1.00

Revision Date Section Description
13.1 Sentences revisited.

0.90 10/15/2003 1 Removed "Over time, it is intended that the protocols specified in
this document can be incorporated into appropriate protocol
standards."

0.91 10/20/2003 all Editorial changes from NTT DoCoMo. (filename:
tmp_protocol_spec_rev0_90_20031015_DCM_Modified.doc)

0.92 10/20/2003 all Changed domain names from tmpalliance.org or
trustedmobile.org to trusted-mobile.org.

Fixed wrong references and other editorial errors.
1.00 4/5/2004 Version 1.0 release.

PAGE 128
Trusted Mobile Platform

Protocol Specification Document – Revision 1.00

Appendix B. TCG Technology for Attestation
(Informative)

13.1 Creation and activation of TCG identity key

TCG defines a set of structures, APIs and credentials for creating and activating an Attestation
Identity Key (AIK). This is one of the most important functionalities of trusted platforms and it is
strongly related to the philosophy of the overall TCG design.

The description below is prepared for the better understanding of how TCG is designed to deal
with the identity key and why the protocols are needed to support it. This section is for the
informational purpose only and does not intend to override [TCG].

13.1.1 Assumptions

1. Identity key is a “pseudonym” that is associated with the Trusted Platform Module (TPM). A
platform with the TPM can create and use any number of identity keys. Note that each TPM
already has its own unique key called an Endorsement Key, which is an asymmetric key-pair and
whose private key never comes out of the TPM.

There are basically two reasons why an identity key is needed separately from the endorsement
key:

 Security

 Privacy.

From security point of view, the endorsement key is the most critical long-term secret in TPM,
thus it is better to avoid using it in cryptographic operations (encryption, signing) for utilizing TCG
functionalities. Once the endorsement key for a certain TPM is revealed all security dependent
on that TPM is compromised. From privacy point of view, using a single key in many different
situations may lead to the concern of privacy breach. For example, if the endorsement key is
visible to multiple services, they can correlate all access from the platform that has the TPM with
this endorsement key.

2. There is a trusted third party that issues the credential that a certain identity key is come from a
genuine TPM. This TTP is called Privacy CA. There can be multiple Privacy CAs, but each
identity key is associated to exactly one Privacy CA when it is created.

Only the Privacy CA should be able to have the knowledge of the matching of the identity key
and the endorsement key (i.e., the TPM) for the privacy reason. Most of the complication in the
process of creating and activating an identity is derived to this requirement.

3. An identity key can only be used for the special ways of signing. It cannot be used for
encryption or usual signing operation. More precisely, it can be used for two dedicated
purposes: (1) to respond to integrity attestation, and (2) to certify that other keys are associated
with the genuine TPM. The identity key can be used only via the special APIs (TPM_Quote
and TPM_CertifyKey, respectively), and it always signs the determined TCG structure.

Nevertheless, it is possible to use the identity key for signing general data in special cases.
TPM_Quote API accepts an external data as an input parameter and includes it in the data
structure that is signed by the identity key. This data structure also contains the hash of integrity

PAGE 129
Trusted Mobile Platform

Protocol Specification Document – Revision 1.00

metrics, so the platform integrity at the time the data is signed can be proved by using the identity
key.

13.1.2 Overview of the procedure

Figure 13-1 (Creating and Activating an Identity Key) illustrates the procedure of creating and
activating an identity key.

Figure 13-1 Creating and Activating an Identity Key

The whole process can be divided into three independent processes:
1. Call the TPM_MakeIdentity function to create an identity and prepare for requesting an
identity credential.

2. Send an identity request to Privacy CA and receive a response.

3. Call the TPM_ActivateIdentity function to activate an identity and obtain the identity
credential.

** Step 2.) Involves the communication between the platform and the Privacy CA, and that is
where the Privacy CA protocol is needed.

13.1. 3 MakeIdentity

When TPM_MakeIdentity is called, the TPM internally generates an identity key-pair and
returns the public key of the identity key, signed as part the wrapped structure by its private key.
The private key does not come out of the TPM in plaintext.

13.1.4 Identity certificate request and response

Once the key-pair is created, it can be used in the subsequent TPM_Quote and
TPM_CertifyKey calls. However, it is useless at this stage because there is no proof that this
key is associated with a genuine TPM.

To actually make use of the identity key, an identity certificate needs to be issued by the Privacy
CA. Platform (or platform owner) constructs activation request and get a response.

Privacy CA protocol TPM

TCG_IDENTITY_REQ

TCG_SYM_CA_ATTESTATION = enc_sessionKey2(TCG_IDENTITY_CREDENTIAL)

TCG_ASYM_CA_CONTENTS = (digest(idPubKey), sessionKey2)

TCG_SYM_CA_ATTESTATION
enc_pubEK(TCG_ASYM_CA_CONTENTS)

TCG_IDENTITY_PROOF= (idPubKey, label, endorsementCredential, platformCredential, conformanceCredential,

 sig_idPrivKey(hash(label, caPubKey), idPubKey)

TCG_SYMMETRIC_KEY = (sessionKey1)

PCAResponse

1. Call TPM_MakeIdentity

2. Construct activation request

3. Get response

4. Call TPM_ActivateIdentity to

get sessionKey2

5. Get TCG_IDENTITY_CREDENTIAL

TPM_MakeIdentity

TPM_ActivateIdentity

symBlob = enc_sessionKey1(TCG_IDENTITY_PROOF)
asymBlob = enc_caPubKey(TCG_SYMMETRIC_KEY)

Privacy CA

PAGE 130
Trusted Mobile Platform

Protocol Specification Document – Revision 1.00

TCG_IDENTITY_REQ (defined in Section 4.30.2 and 9.4.1 of [TCG]) is the structure sent as a
message from the platform to the Privacy CA. It consists of the TCG_IDENTITY_PROOF
structure (defined in Section 4.30.3 of [TCG]) encrypted by the session key, and the session key
encrypted by the public key of the Private CA. The TCG_IDENTITY_PROOF structure includes
a public key of the identity key to be certified, as well as a set of credentials for the platform.

PCAResponse (defined in 9.4.2 of [TCG]) is the structure sent as a message from the Privacy
CA to the platform. It consists of the TCG_SYM_CA_ATTESTATION structure (Section 4.30.5 of
[TCG]) encrypted by the second session key, and this session key encrypted by the public key of
the endorsement key-pair.

As is seen, these request and response are very different from the one used for usual certificate
request. This is designed so for the purpose of fulfilling the following requirements.

 For security reason, it should be avoided, whenever possible, to use the private key of
the endorsement key-pair, because it is the most critical long-term secret in TCG
system. Note that any part of identity request is not signed by the endorsement key.

 For privacy reason, the eavesdropper should not be able to know the mapping between
the identity key and the endorsement key associated with the TPM.

Finally, some important details are omitted. For example, TCG_IDENTITY_REQ also includes a
property called “label”, which creates the cryptographic binding between MakeIdentity output
and the request to the Privacy CA. Refer to [TCG] for the complete description of the protocol.

13.1.5 ActivateIdentity

TPM_ActivateIdentity (as defined in 9.3.4 of [TCG]) is an API that provides the functionality
for decrypting the session key. Since the session key is encrypted by the endorsement key-pair,
only the TPM that was originally used to generate the identity key can decrypt it. Once the
decrypted PCAResponse session key obtains, the platform (or the platform owner) can recover
the identity certificate.

