
On Database Theory and XML

Dan Suciu
University of Washington

www.cs.washington.edu/homes/suciu

Abstract

Over the years, the connection between database the-
ory and database practice has weakened. We argue
here that the new challenges posed by XML and its
applications are strengthening this connection today.
We illustrate three examples of theoretical problems
arising from XML applications, based on our own re-
search.

1 On Database Theory

The �eld of relational databases is the product of a
theoretician, E.F. Codd, from the early 70s. Rela-
tional databases had to struggle for a while against
the industry proposal CODASYL [58], but then be-
came universally adopted and today we have both
a strong industry and a ourishing research �eld.
The end of 70's and early 80's were golden years
for database theoreticians. Theory had two principal
threads [61], relational database theory (dependency
theory, universal relation theory, acyclic hypergraph
theory), and transaction processing. Many contribu-
tions of this period inuenced database systems and
the industry. Papers from that time analyzing the
state of theoretical database research and its relation-
ship to database systems concluded that the �eld was
in a healthy state [61, 52]. Over time, however, the-
oretical research became less connected to database
systems. New �elds, like deductive databases (recur-
sive queries) [60, 7, 8], nested relations [1, 32, 51] the-
ory of object-oriented query languages [35, 36, 2, 3, 4],
ended up having little or no inuence on the indus-
try, despite their practical motivation and excellent
results. Other areas, especially in the 90s, where di-
rectly motivated by theoretical questions and were
totally ignored by practitioners: query languages
and complexity classes [63, 30, 31, 59], topics in �-
nite model theory [57, 10], topological and constraint
databases [34, 47, 45].
In 1995 Christos Papadimitriou wrote a thought

provoking essay entitled Database Metatheory: Ask-
ing the Big Queries [46], analyzing the state of
database theory at that time. Two of its ideas are
especially relevant to our discussion. The �rst is
that theory in Computer Science is inevitable. Unlike
traditional natural sciences which study an objective
world, Computer Science is a science of the arti�cial,

studying artifacts that only exists as a result of scien-
ti�c activity. The second is to adapt Kuhn's paradigm
principle for natural sciences to Computer Science.
Under this principle, a science evolves in a cycle con-
sisting of three states: from normal science to crisis,
to revolution, then back to normal science. In Kuhn's
theory the crisis occurs when new observations and
measurements about the objective reality fail to agree
with the the science's accepted paradigm; during a
revolution a new paradigm is developed, consistent
with the new observations. Clearly, this de�nition of
a crisis does not apply to a �eld of Computer Science,
since there is no real world to observe.
Instead, Papadimitriou suggest another de�nition.

Consider the graph of all research units1 in a given
�eld. An edge from x to y represents the fact that
x inuenced y. Normal science is de�ned by a graph
which is multiply connected (i.e. remains connected
even if several nodes are removed); a science in cri-
sis is de�ned by one which is almost disconnected,
with two major connected components correspond-
ing to theoretical and applied projects respectively.
This de�nition is interesting for two reasons. First,
it should be possible to automatically monitor the
healthiness of our research �eld, e.g. by using the
DBLP bibliography database [41]. Second, it rein-
forces our general belief that our science is healthy if
theory and practice are strongly connected: the gen-
eral feeling in the mid 90's was that this connection
was weakening.
What caused this rift in a �eld which started with

theoreticians and practitioners working so closely ?
While there are probably a large number of reasons
that we don't claim to know, there is one in particular
that is of importance to our discussion: the tension
between the theoreticians' quest to explore new av-
enues, branching out of Codd's pure relational frame-
work, and the practitioners' need to improve sys-
tems in the existing framework (relational/SQL) and
for existing applications (client/server). Theoreti-
cians explore new query languages (e.g. with recur-
sion [60]), new data models [51], new usages of data
(e.g. incomplete information [29]), or entirely new
frameworks (e.g. constraint databases [34]). Prac-
titioners improve the execution of relational opera-
tors [24] or improve relational optimizers [53, 25, 26,

1I.e. projects, papers, group { Papadimitriou leaves pur-
posedly the term unde�ned.

1

42, 48].
One particular theoretical result that has been ob-

tained long time ago but never used in practice is
on query containment. Consider the following two
queries:

Q1 = SELECT DISTINCT x.name
FROM Person x
WHERE x.department = ``sales''

Q2 = SELECT DISTINCT x.name
FROM Person x, Person y, Person z
WHERE x.department = ``sales'' AND

x.manager = y.manager AND
y.fax = z.fax

Q1 and Q2 compute the same answers, but Q2
does this in a more cumbersome way: we say that
Q1 and Q2 are equivalent, or, at a �ner level, that
Q1 is contained in Q2 and Q2 is contained in Q1.
Obviously, Q1 is the simplest expression computing
this answer, so Q1 is called a minimal query, while
Q2 is not minimal. The problem of checking whether
a query is contained in another and of minimizing a
query has been solved long time ago by Chandra and
Merlin [14] for conjunctive queries2. Still, none of the
major commercial databases minimizes Q2 to replace
it with Q1, and for a good reason: minimization is ex-
pensive, and in the most common applications SQL
queries are written by users who don't write ineÆ-
cient queries like Q2. However, theoreticians have
continued to study this problem for a variety of other
types of queries: in the presence of functional and
inclusion dependencies [33], for queries with one level
of negation [50, 40], with order [37, 62], with recur-
sion [56, 15], with nested relations [39], with aggre-
gates [44], and with regular expressions [23].

2 On XML

Internet applications and the new ways in which they
handle data are changing the role of database the-
ory and its relationship with practice. They use a
new data model, the semistructured data model, with
XML syntax; this in itself o�ers a rich source of prob-
lems for database theory, some will be illustrated be-
low. Moreover, these applications perform data man-
agement operations that were not common in tra-
ditional database applications, such as data trans-
formations, query translation, data transport, and
stream-based processing.
XML itself and concepts related to its use are cre-

ated within standards bodies, especially W3C work-
ing groups. This is a new phenomenon, since tradi-
tionally artifacts in Computer Science were created

2Same as SQL's SELEC-DISTINCT-FROM-WHERE
queries where only equality predicates are allowed in
WHERE.

in academic and industrial research labs before be-
ing adopted by the industry or standards commit-
tees. While more academics are now getting involved
in the W3C working groups, standards and concepts
are sometimes created faster than research communi-
ties can validate them.

3 DB Theory and XML

We see a double role of theory in the Web age. One
is a long term of conceptualization and rationaliza-
tion which can lead to improvements in existing stan-
dards. This is a traditional role, and it will probably
take years; perhaps an early example in this cate-
gory is the recent work on keys for XML by Bune-
man et al. [11]. The second is more short term: to
answer critical technical questions that may either
help the working groups or the implementors. We
discuss here three particular problems: XML pub-
lishing, XML typechecking, and XML storage. Their
particular choice is inuenced by our own previous
work in [21, 20, 43, 19], and is not intended to be
an exhaustive, or even representative list of XML re-
search problems.

XML Publishing XML publishing is the problem
of transforming existing, relational data into XML.
Conceptually, this is the same as de�ning an XML
view over the relational data, but this view is consid-
erably more complex than relational views. The re-
lational data is normalized: at and fragmented into
many relations. Often the relational schema is also
proprietary, since it represents the company's inter-
nal organization (relation names may correspond to
business units) or to the company's policy (whether
price is an attribute of Product or of the Product
- Customer relationship). By contrast, XML data
is unnormalized: nested and monolithic. Moreover,
its raison d'�etre is to have a public schema, shared
across a community, or, at least between a few part-
ners; for example www.biztalk.org lists about 458
public XML schemas.
Consider the following relational schema:

Product(pid, pname, price)
Customer(cid, cname, address)
Orders(oid, pid, cid, date)
Complaints(oid, text)

Suppose we want to export it into an XML docu-
ment with the following DTD:

<!ELEMENT products (product)*>
<!ELEMENT product (productID, name, price,

order*, complaint*)>
<!ELEMENT order (customerID, date,

customerName, customerAddress)>
<!ELEMENT complaint (customerID, text)>

2

CREATE VIEW order AS /* <order> nodes */
SELECT DISTINCT product2.pid, orders2.date,

customer2.cid, customer2.name, customer2.Address
FROM Product product2, Orders orders2,

Customer customer2
WHERE product2.pid = orders2.pid AND

orders2.cid = customer2.cid

CREATE VIEW complaint AS /* <complaint> nodes */
SELECT DISTINCT product3.pid,

customer3.cid, product3.pid
FROM Product product3, Orders orders3,

Customer customer3, Complaint complaint3
WHERE product3.pid = orders3.pid AND

orders3.cid = customer3.cid AND
order3.oid = complaint3.oid

((
((

(
(
(
(
((

((
(

hhhhh
hh
hhhh

hh
h

CREATE VIEW product AS /* <product> nodes */
SELECT DISTINCT product1.pid, product1.name, product1.price
FROM Product product1

Figure 1: Views for <product>, <order>, and <complaint> arranged in a viewtree

Various XML publishing systems [21, 12, 54, 49]
use di�erent formalisms for de�ning the XML view.
What they share in common the fact that, at least
conceptually, a separate relational view is de�ned for
every element type in the DTD. For our example,
Fig. 1 illustrates the views for the three of the twelve
tags: <product>, <order>, and <complaint>. These
views are arranged in a tree, called viewtree [21], cor-
responding to the hierarchical structure of the DTD.
The meaning of the viewtree is the following. Each

tuple in each view corresponds to a node in the
XML document (tuples in product correspond to
<product> nodes, etc). For any two tuples x, y, if
x's view is a parent of y's view in the viewtree, and
the two tuples have the same values in the �elds that
form the primary key of x, then the node correspond-
ing to x is a parent of that corresponding to y.
The interesting case for us here is when the XML

view is virtual3. Here the system accepts XML
queries over the view, and translates them into SQL.
For example, consider the following XQuery [13] ex-
pression, returning all complaints �led by customers
for products ordered in 1999.

FOR $p IN document("xmlview")/productcs/product,
$cid IN $p/order[date="1999"]/customerID,
$t IN $p/complaint[customerID=$cid]/text

RETURN <result> <pid> $p/productID </pid>
<complaint> $t </complaint>

</result>

The SilkRoute system [21] describes in detail how
XML queries can be composed with the XML view
and translated into SQL4. Intuitively, this corre-
sponds to binding the XQuery variables to the nodes
in the viewtree, then combining all SQL expressions
of the the matched nodes. In our example all three
nodes in the viewtree are touched by the query, hence
the combined SQL query is:

3Materialized XML views are discussed in [54, 20].
4SilkRoute uses XML-QL rather than XQuery.

SELECT DISTINCT product1.pid, complaint3.text
FROM Product product1, Product product2,

Orders orders2, Customer customer2
Product product3, Orders orders3,
Customer customer3, Complaint complaint3

WHERE product1.pid = product2.pid AND
product1.pid = product3.pid AND
product2.pid = orders2.pid AND
orders2.cid = customer2.cid AND
product3.pid = orders3.pid AND
orders3.cid = customer3.cid AND
order3.oid = complaint3.oid AND
order2.date = "1999"

The problem becomes clear now: this query per-
forms more joins than necessary. In other words, this
query is not minimal. The reason is that we gen-
erated this query automatically, by combining join
conditions from three di�erent relational views, and
they happened to share some common subexpres-
sions. Some redundant joins can be easily eliminated,
for example it follows from the viewtree structure
that the tuple variables product2 and product3 are
redundant, but others may require a general-purpose
minimization algorithm. We may also need to take
into account constraints in the databases. In our ex-
ample, if we assume that pid, cid is a key in Orders,
the query can simpli�ed to:

SELECT DISTINCT product1.pid, complaint3.text
FROM Product product1, Orders orders2,

Customer customer2, Complaint complaint3
WHERE product1.pid = orders2.pid AND

orders2.cid = customer2.cid AND
order2.oid = complaint3.oid AND
order2.date = "1999"

This phenomenon is not new: when views are un-
folded in SQL queries they can also introduce re-
peated subexpressions (hence, non-minimal queries).
However, joins across multiple views are rare in the
relational world, so query minimization is not critical.

3

By contrast, in XML publishing every node type is
de�ned by a di�erent relational view, and we should
expect queries to frequently join many of them: here
minimization, either in the engine or in some middle-
ware, is a necessity.
While query containment (and, hence, minimiza-

tion) is NP complete for conjunctive queries, recent
advances in theoretical database research have cre-
ated powerful tools that could lead to practical min-
imization algorithms. Chekuri and Rajaraman [16]
have shown that containment can be checked eÆ-
ciently if the queries have a small query width. Ko-
laitis and Vardi [38] established additional relation-
ships to tree-widths, �rst order logic with bounded
variables, and the constraint satisfaction problem (see
also [64]).

XML Typechecking Although XML can be
schema-less, most XML instances will probably be
associated to some form of schema, either a DTD or
an XML-Schema [9]. Given a program that gener-
ates an XML document, typechecking is the problem
of deciding whether the generated XML document
always conforms to a given output DTD (or XML-
Schema); this should not be confused with validation,
which checks conformance of a given XML document
to a DTD (or XML-Schema). It is possible to do
typechecking dynamically, by validating the gener-
ated XML document at runtime, but this creates the
possibility of runtime errors, and slows down an ap-
plication. Static typechecking is more desirable, but
also more diÆcult, since it requires a thorough anal-
ysis of the program generating the XML document.
Static XML typechecking is undecidable if an arbi-

trary C++ or Java program is generating the XML
document, due to Rice's theorem. The more in-
teresting question is whether typechecking is possi-
ble for more restricted languages, like XSLT [17] or
XQuery [13], since in all likelihood, most dynami-
cally generated XML documents will be created by
scripts/queries written in these languages. In the fol-
lowing discussion we assume the XML types to be
given by DTDs: everything carries over to XML-
Schemas too. Given two DTDs �1, �2, and given an
XML transformation f : XML ! XML expressed
in some query language, the typechecking problem
asks whether for every document D conforming to �1
(in notation: D 2 �1), f(D) conforms to �1:

8D 2 �1; f(D) 2 �2

All systems that o�er static typechecking today,
including the XQuery Algebra [13], base their type-
checking algorithm on type inference, which we for-
malize here as follows: given an input DTD �1 and
transformation f , compute the \output DTD"

f(�1)
def
= ff(D) j D 2 �1g

If we knew how to do type inference, then type
checking is easy: given �1; �2, and f , �rst infer the
output type (i.e. compute f(�1)), then check whether
f(�1) � �2, which is possible based on the fact that
containment of two regular expressions is decidable5.
This is the point where we need some input from

theory. It turns out that type inference is not pos-
sible, not even for the simplest subsets of query lan-
guages. Systems that do type inference compute an
approximate output DTD that will lead to false neg-
atives in the typechecking procedure. To see such an
example, consider the input DTD �1:

�1 = < !ELEMENT root (elm�) >

The query below iterates over the input document
three times, producing �rst an <a> element for each
<elm>, then a element, then a <c> element. We
give f below, expressed in XQuery:

f =
<result>
FOR $x IN "doc.xml"/root/elm RETURN <a> $x/text()
FOR $x IN "doc.xml"/root/elm RETURN $x/text()
FOR $x IN "doc.xml"/root/elm RETURN <c> $x/text() </c>
</result>

Thus, for the input XML document <root>
<elm/> <elm/> ...<elm/> </root>, in short elmn,
the query will return the output document an:bn:cn.
Today's systems will infer the following output

DTD for this query:

� = < !ELEMENT result (a�; b�; c�) >

While this seems reasonable, it is obviously not the
correct one, which, according to the de�nition should
be:

f(�1) =< !ELEMENT result (fan; bn; cn j n � 0g) >

Obviously, this is not a real DTD, and perhaps
not very interesting in practice, and one may wonder
if one should accept, for all practical purposes, the
inferred output DTD a*,b*,c*. The problem, how-
ever, is that with this inferred DTD one may fail to
correctly typecheck. To see an example, consider the
following output DTD:

�2 = <!ELEMENT result (((a; a)�; (b; b)�; (c; c)�) j
((a; a)�; a; (b; b)�; b; (c; c)�; c)) >

It says that there are either an even number of a's,
b's, and c's, or an odd number of a's, b's, and c's.

5In addition, both DTDs and XML-Schema restrict the reg-
ular expressions such that their associated automaton is deter-
ministic. If �2 has this property, then one can check f(�1) � �2
in PTIME.

4

?

Figure 2: The XML Storage Problem

Clearly f typechecks with respect to �1 and �2, but,
using the \inferred" type � , we have � 6� �2, hence
the typechecking procedure based on type inference
will fail.
This is a serious limitation of the type inference

approach. If users want to generate XML documents
that conform to the type �2 and correctly write the
program f for that purpose, the system will reject
it claiming (incorrectly) that it does not typecheck.
This limitation needs to be investigated by theoretical
research.
One may argue that �2 is not a \practical" output

type. But this begs for a de�nition of \practical"
DTDs. Even if we had one, the question remains
whether type inference is complete for that restricted
set of DTDs.
Another question is whether typechecking is possi-

ble without using type inference. One answer, given
in [43], is a surprising \yes", for a large class of XML
transformations that include recursive traversal of the
XML tree, e.g. like in XSLT. However, these trans-
formations do not allow us to do joins: this may be
acceptable for XSLT, but certainly such a result is
useless for query languages like XQuery, or extensions
of SQL with XML publishing features. When one
adds joins, typechecking becomes undecidable, even
if one attempts to restrict DTD's in various ways to
\practical" DTDs [6, 5].
Today the most promising approach to typecheck-

ing remains that based on type inference. The XDuce
language [27, 28] de�nes a type inference system for
a functional language with recursion; the XQuery
algebra de�nes a type inference system using XML
Schema as its type system. Since we know that
this approach cannot be as robust as typechecking
in general-purpose programming languages, a study
of its applicability and limitations is needed.

XML Storage XML data is a labeled tree; a rela-
tion is a table. The problem of storing XML data in
one or several tables, suggested in Fig. 2, is a chal-
lenging one, both for theoreticians and practicians.
Since the tree is meant to describe some irregular
structure while tables are by de�nition regular, we
are attempting to store some irregular data into a
regular data type. In addition to the pure combina-
torial aspect, there is a logical aspect to the storage
problem: given a storage mapping, one needs to be
able to translate queries formulated over the XML

data into relational queries formulated over the re-
lational storage. The combination of combinatorics
and logic make the problem particularly appealing.
Several approaches have been tried so far. The

simplest is to store XML as a graph, in a ternary re-
lation (two columns for the edges, the third for the
labels and/or data values). This approach is explored
by Florescu and Kossman in [22]. The price one pays
for its simplicity is that many self-joins of the edge ta-
ble are required in order to reconstruct a given XML
element: one join for each subelement. Shanmuga-
sundaram et al. [55] use the DTD (or XML-Schema)
to derive a relational schema. One table is created
for each element type that can occur in a collection
position. This technique works well in practice when-
ever one has a schema for the XML document. A
subtle problem is that the resulting storage is very
sensitive to that schema. For example if the content
of <person> changes from (name, phone) to (name,
phone*) then we need to move all phone numbers to a
separate table, although perhaps the XML document
has changed very little.
The case when the XML document has no schema,

or when the schema changes frequently is harder, and
has a more dramatic impact on performance. An ap-
proach is proposed in [19], which uses data mining on
the XML instance to infer a relational schema. The
idea is to �nd regularities than may exists in a given
XML data instance, and to organize the storage based
on those regularities. Another approach is proposed
in [18]. Here all data values of the XML document
are stored together and a smart index allows eÆcient
access based on the path expression and, possibly,
based on the data value.
The challenge in any storage schema is that it has

to be exible enough to accommodate any XML data,
yet it has to be as eÆcient as regular data storage
when the XML data happens to be regular. Find-
ing the largest regular subset in an irregular data
instance is a problem which can be formulated and
addressed theoretically. A related problem is that of
quantifying the degree of irregularity in a semistruc-
tured data instance. For instance, in the simple case
of at XML data, elements can be viewed as records
with variable �elds; a boolean matrix S describes the
structure completely, with Sij equal 1 when element
i contains �eld j, and 0 otherwise. It is easy to see
that if the data instance can be stored perfectly in k
separate tables then the rank of the matrix is k. Here
k is a measure of semistructuredness, since the larger
it is, the more irregular the data. Finding a general
de�nition of semistructuredness remains a topic for
future research.

4 Conclusions

We have described three XML research problems, in-
spired from our own work. XML's semistructured
data model represents paradigm shift for theoretical

5

database research. It is not the �rst one: for example
the object-oriented data model can also be considered
a paradigm shift, which generated a vast amount of
theoretical and applied research. This time, however,
the shift comes from outside the community (XML
was imposed on us) and this, at least, settles eas-
ily the question of applicability. It o�ers us both a
chance both to apply research on old topics (query
containment) and to conduct research on new topics
(typechecking).

Acknowledgment I would like to thank Gerome
Miklau for his comments.

References

[1] S. Abiteboul and N. Bidoit. Non �rst normal form rela-
tions to represent hierarchical organized data. In Proceed-
ings of the Third ACM SIGACT-SIGMOD Symposium
on Principles of Database Systems, April 2-4, 1984, Wa-
terloo, Ontario, Canada, pages 191{200. ACM, 1984.

[2] S. Abiteboul and P. Kanellakis. Object identity as a
query language primitive. In Proceedings of ACM SIG-
MOD Conference on Management of Data, pages 159{
173, Portland, Oregon, 1989.

[3] S. Abiteboul and P. C. Kanellakis. Object identity as a
query language primitive. JACM, 45(5):798{842, 1998.

[4] S. Abiteboul, P. C. Kanellakis, and E. Waller.
Method schemas. In Proceedings of the Ninth ACM
SIGACT-SIGMOD-SIGART Symposium on Principles
of Database Systems, April 2-4, 1990, Nashville, Ten-
nessee, pages 16{27. ACM Press, 1990.

[5] N. Alon, T. Milo, F. Neven, D. Suciu, and V. Vianu.
Typechecking xml views of relational databases. In LICS,
2001.

[6] N. Alon, T. Milo, F. Neven, D. Suciu, and V. Vianu. Xml
with data values: Typechecking revisited. In PODS, 2001.

[7] F. Bancilhon, D. Maier, Y. Sagiv, and J. D. Ullman.
Magic sets and other strange ways to implement logic
programs. In Proceedings of the Fifth ACM SIGACT-
SIGMOD Symposium on Principles of Database Systems,
March 24-26, 1986, Cambridge, Massachusetts, pages 1{
16. ACM, 1986.

[8] F. Bancilhon and R. Ramakrishnan. An amateur's intro-
duction to recursive query processing strategies. In Pro-
ceedings of ACM SIGMOD Conference on Management
of Data, May 1986.

[9] D. Beech, S. Lawrence, M. Maloney, N. Mendelsohn, and
H. Thompson. Xml schema part 1: Structures, May 1999.
http://www.w3.org/TR/xmlschema-1/.

[10] M. Benedikt, G. Dong, L. Libkin, and L. Wong. Re-
lational expressive power of constraint query languages.
In Proceedings of the Fifteenth ACM SIGACT-SIGMOD-
SIGART Symposium on Principles of Database Systems,
June 3-5, 1996, Montreal, Canada, pages 5{16. ACM
Press, 1996.

[11] P. Buneman, S. Davidson, W. Fan, C. Hara, and W. Tan.
Keys for XML. In Proceedings of the 10th WWW Con-
ference, pages 201{210, 2001.

[12] M. Carey, D. Florescu, Z. Ives, Y. Lu, J. Shanmugasun-
daram, E. Shekita, and S. subramanian. XPERANTO:
publishing object-relational data as XML. In Proceedings
of WebDB, Dallas, TX, May 2000.

[13] D. Chamberlin, D. Florescu, J. Robie, J. Simeon, and
M. Stefanescu. XQuery: a query language for XML, 2001.
available from the W3C, http://www.w3.org/TR/query.

[14] A. Chandra and P. Merlin. Optimal implementation of
conjunctive queries in relational data bases. In Proceed-
ings of 9th ACM Symposium on Thoery of Computing,
pages 77{90, Boulder, Colorado, May 1977.

[15] S. Chaudhuri and M. Y. Vardi. On the equivalence of re-
cursive and nonrecursive Datalog programs. In Proceed-
ings of 11th ACM Symposium on Principles of Database
Systems, 1992.

[16] C. Chekuri and A. Rajaraman. Conjunctive query con-
tainment revisited. In F. N. Afrati and P. Kolaitis, editors,
Database Theory - ICDT '97, 6th International Confer-
ence, Delphi, Greece, January 8-10, 1997, Proceedings,
volume 1186 of Lecture Notes in Computer Science, pages
56{70. Springer, 1997.

[17] J. Clark. XSL transformations (XSLT) spec-
i�cation, 1999. available from the W3C,
http://www.w3.org/TR/WD-xslt.

[18] B. Cooper, N. Sample, M. Franklin, G. Hjaltason, and
M. Shadmon. A fast index for semistructured data. In
VLDB, 2001.

[19] A. Deutsch, M. Fernandez, and D. Suciu. Storing
semistructured data with STORED. In Proceedings of
the ACM SIGMOD International Conference on Man-
agement of Data, pages 431{442, 1999.

[20] M. Fernandez, A. Morishima, and D. Suciu. EÆcient
evaluation of XML middle-ware queries. In Proceedings
of ACM SIGMOD Conference on Management of Data,
Santa Barbara, 2001.

[21] M. Fernandez, D. Suciu, and W. Tan. SilkRoute: trad-
ing between relations and XML. In Proceedings of the
WWW9, pages 723{746, Amsterdam, 2000.

[22] D. Florescu and D. Kossmann. Storing and querying xml
data using an rdbms. IEEE Data Engineering Bulletin,
22(3), 1999.

[23] D. Florescu, A. Levy, and D. Suciu. Query containment
for conjunctive queries with regular expressions. In Pro-
ceedings of the ACM SIGACT-SIGMOD Symposium on
Principles of Database Systems, pages 139{148, 1998.

[24] G. Graefe. Query evaluation techniques for large
databases. ACM Computing Surveys, 25(2):73{170, June
1993.

[25] G. Graefe and D. J. DeWitt. The exodus optimizer gener-
ator. In U. Dayal and I. L. Traiger, editors, Proceedings of
the Association for Computing Machinery Special Inter-
est Group on Management of Data 1987 Annual Confer-
ence, San Francisco, California, May 27-29, 1987, pages
160{172. ACM Press, 1987.

[26] G. Graefe and W. J. McKenna. The volcano optimizer
generator: Extensibility and eÆcient search. In Proceed-
ings of the Ninth International Conference on Data Engi-
neering, April 19-23, 1993, Vienna, Austria, pages 209{
218. IEEE Computer Society, 1993.

[27] B. C. P. Haruo Hosoya. Xduce: An xml processing
language (preliminary report). In WebDB'2000, 2000.
http://www.research.att.com/conf/webdb2000/.

[28] B. C. P. Haruo Hosoya. Regular expression pattern
matching for xml. In ACM SIGPLAN, SIGACT Sympo-
sium on Principles of Programming Languages (POPL),
January 2001.

[29] T. Imielinski and W. Lipski. Incomplete information in
relational databases. Journal of the ACM, 31:761{791,
October 1984.

[30] N. Immerman. Relational queries computable in polyno-
mial time. Information and Control, 68:86{104, 1986.

[31] N. Immerman. Languages that capture complexity
classes. SIAM Journal of Computing, 16:760{778, 1987.

6

[32] G. Jaeschke and H. J. Schek. Remarks on the alge-
bra of non-�rst-normal-form relations. In Proceedings
ACM SIGACT/SIGMOD Symposium on Principles of
Database Systems, pages 124{138, Los Angeles, Califor-
nia, March 1982.

[33] D. S. Johnson and A. C. Klug. Testing containment of
conjunctive queries under functional and inclusion depen-
dencies. In Proceedings of the ACM Symposium on Prin-
ciples of Database Systems, March 29-31, 1982, Los An-
geles, California, pages 164{169. ACM, 1982.

[34] P. C. Kanellakis, G. M. Kuper, and P. Z. Revesz. Con-
straint query languages. In Proceedings of the Ninth
ACM SIGACT-SIGMOD-SIGART Symposium on Prin-
ciples of Database Systems, April 2-4, 1990, Nashville,
Tennessee, pages 299{313. ACM Press, 1990.

[35] M. Kifer and G. Lausen. F-logic: A higher order language
for reasoning about objects, inheritance, and scheme. In
Proceedings of ACM-SIGMOD 1989, pages 46{57, June
1989.

[36] M. Kifer, G. Lausen, and J. Wu. Logical foundations of
object-oriented and frame-based languages. Journal of
the ACM, 42(4):741{843, 1995.

[37] A. C. Klug. On conjunctive queries containing inequali-
ties. JACM, 35(1):146{160, 1988.

[38] P. Kolaitis and M. Vardi. Conjunctive-query contain-
ment and constraint satisfaction. In Proceedings of ACM
SIGACT-SIGMOD-SIGART Symposium on Principles
of Database Systems, 1998.

[39] A. Levy and D. Suciu. Deciding containment for queries
with complex objects. In Proceedings of the ACM
SIGACT-SIGMOD-SIGART Symposium on Principles
of Database Systems, 1997.

[40] A. Y. Levy and Y. Sagiv. Queries independent of up-
dates. In R. Agrawal, S. Baker, and D. A. Bell, editors,
19th International Conference on Very Large Data Bases,
August 24-27, 1993, Dublin, Ireland, Proceedings, pages
171{181. Morgan Kaufmann, 1993.

[41] M. Ley. Computer science bibliography (dblp).
http://dblp.uni-trier.de.

[42] G. M. Lohman. Grammar-like functional rules for rep-
resenting query optimization alternatives. In H. Boral
and P.-�A. Larson, editors, Proceedings of the 1988 ACM
SIGMOD International Conference on Management of
Data, Chicago, Illinois, June 1-3, 1988, pages 18{27.
ACM Press, 1988.

[43] T. Milo, D. Suciu, and V. Vianu. Typechecking for xml
transformers. In Proceedings of the ACM Symposium on
Principles of Database Systems, pages 11{22, Dallas, TX,
2000.

[44] W. Nutt, Y. Sagiv, and S. Shurin. Deciding equivalences
among aggregate queries. In Proceedings of the Seven-
teenth ACM SIGACT-SIGMOD-SIGART Symposium on
Principles of Database Systems, June 1-3, 1998, Seattle,
Washington, pages 214{223. ACM Press, 1998.

[45] C. Papadimitriou, D. Suciu, and V. Vianu. Topologi-
cal queries in spatial databases. In Proceedings of 15th
ACM SIGACT-SIGMOD-SIGART Symposium on Prin-
ciples of Database Systems, Montreal, Canada, June 1995.

[46] C. H. Papadimitriou. Database metatheory: Asking
the big queries. In Proceedings of the Fourteenth ACM
SIGACT-SIGMOD-SIGART Symposium on Principles
of Database Systems, May 22-25, 1995, San Jose, Cali-
fornia, pages 1{10. ACM Press, 1995.

[47] J. Paredaens, J. Van den Bussche, and D. Van Gucht. To-
wards a theory of spatial database queries. In Proceedings
of 13th ACM Symposium on Principles of Database Sys-
tems, pages 279{288, Minneapolis, Minnesota, May 1988.

[48] H. Pirahesh, J. M. Hellerstein, and W. Hasan. Exten-
sible rule-based query rewrite optimization in Starburst.
SIGMOD Record, 21(2):39{48, June 1992.

[49] M. Rys. Bringing the internet to your database: using
SQLServer 2000 and XML to build loosely-coupled sys-
tems. In Proceedings of the International Conference on
Data Engineering, pages 465{472, 2001.

[50] Y. Sagiv and M. Yannakakis. Equivalences among rela-
tional expressions with the union and di�erence operators.
Journal of the ACM, 27:633{655, 1980.

[51] H.-J. Schek and M. H. Scholl. The relational model
with relation-valued attributes. Information Systems,
11(2):137{147, 1986.

[52] P. G. Selinger. Chickens and eggs | the interrelations of
systems and theory. In Proceedings of 6th ACM Sympo-
sium on Principles of Database Systems, pages 250{253,
1987.

[53] P. G. Selinger, M. M. Astrahan, D. D. Chamberlin, R. A.
Lorie, and T. G. Price. Access path selection in a re-
lational database management system. In Proceedings
of ACM SIGMOD International Conference on Manage-
ment of Data, pages 23{34, 1979. Reprinted in Readings
in Database Systems, Morgan-Kaufmann, 1988.

[54] J. Shanmugasundaram, E. Shekita, R. Barr, M. Carey,
B. Lindsay, H. Pirahesh, and B. Reinwald. EÆciently pub-
lishing relational data as xml documents. In Proceedings
of VLDB, pages 65{76, Cairo, Egipt, September 2000.

[55] J. Shanmugasundaram, K. Tufte, G. He, C. Zhang, D. De-
Witt, and J. Naughton. Relational databases for query-
ing XML documents: limitations and opportunities. In
Proceedings of VLDB, pages 302{314, Edinburgh, UK,
September 1999.

[56] O. Shmueli. Decidability and expressiveness aspects of
logic queries. In Proceedings of ACM Symp. on Principles
of Database Systems, pages 237{249, 1987.

[57] A. P. Stolboushkin and M. A. Taitslin. Finite queries do
not have e�ective syntax. In Proceedings of the Fourteenth
ACM SIGACT-SIGMOD-SIGART Symposium on Prin-
ciples of Database Systems, May 22-25, 1995, San Jose,
California, pages 277{285. ACM Press, 1995.

[58] M. Stonebraker and J. Hellerstein. Readings in Database
Systems. Morgan Kaufmann, 1998.

[59] D. Suciu and V. Breazu-Tannen. A query language for
NC. In Proceedings of 13th ACM SIGACT-SIGMOD-
SIGART Symposium on Principles of Database Systems,
pages 167{178, Minneapolis, Minnesota, May 1994.

[60] J. D. Ullman. Implementation of logical query languages
for databases. TODS, 10(3):289{321, 1985.

[61] J. D. Ullman. Database theory: Past and future. In Pro-
ceedings of the Sixth ACM SIGACT-SIGMOD-SIGART
Symposium on Principles of Database Systems, March
23-25, 1987, San Diego, California, pages 1{10. ACM,
1987.

[62] R. van der Meyden. The complexity of querying inde�nite
data about linearly ordered domains. In Proceedings of the
Eleventh ACM SIGACT-SIGMOD-SIGART Symposium
on Principles of Database Systems, June 2-4, 1992, San
Diego, California, pages 331{345. ACM Press, 1992.

[63] M. Y. Vardi. The complexity of relational query lan-
guages. In Proceedings of 14th ACM SIGACT Sympo-
sium on the Theory of Computing, pages 137{146, San
Francisco, California, 1982.

[64] M. Y. Vardi. Constraint satisfaction in database theory.
In Proceedings of PODS, pages 76{85, Dallas, TX, 2000.

7

