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Abstract

We have developed a new approach for reliably multicasting time-
critical data to heterogeneous clients over mesh-based overlay
networks. To facilitate intelligent content pruning, data streams
are comprised of a sequence of XML packets and forwarded by
application-level XML routers. XML routers perform content-
based routing of individual XML packets to other routers or clients
based upon queries that describe the information needs of down-
stream nodes. Our PC-based XML router prototype can route an 18
Mbit per second XML stream.

Our routers use a novel Diversity Control Protocol (DCP) for
router-to-router and router-to-client communication. DCP reassem-
bles a received stream of packets from one or more senders using
the first copy of a packet to arrive from any sender. When each
node is connected to n parents, the resulting network is resilient
to (n − 1) router or independent link failures without repair. As-
sociated mesh algorithms permit the system to recover to (n − 1)
resilience after node and/or link failure. We have deployed a dis-
tributed network of XML routers that streams real-time air traffic
control data. Experimental results show multiple senders improve
reliability and latency when compared to tree-based networks.

1 Introduction

Our research is motivated by an interest in highly reliable data dis-
tribution technologies that can deliver information to end clients
with low latency in the presence of both node and link failures. Low
latency can be crucial for certain data that are extremely time crit-
ical. For example, real-time trading systems rely upon the timely
arrival of current security prices, air-traffic control systems require
up-to-the-second data on aircraft position and status, and gaps or
delay in live network video and audio feeds can be distracting. In
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such environments, even a sub-second pause in a data feed while a
delivery network retransmits or reconfigures may be unacceptable.
Recent studies have shown the Internet recovers from failures on a
much slower scale, often on the order of minutes [2, 20].

We observe that the achievable latency of a reliable data stream is
bounded by the packet loss-recovery mechanism. Packet losses can
be handled by retransmission or redundant coding. Retransmission
methods limit recovery time to the round-trip delay between com-
municating nodes. In order to avoid retransmission in the face of
loss redundant data must be sent.

This work is based upon the assumption that, in certain cases, the
value of reliable and timely data delivery may justify increased
transport costs if the cost increase allows us to meet a desired reli-
ability goal. Systems often try to avoid the delay penalty by using
loss-resistant coding schemes which encode redundant information
into the data stream. We extend this redundancy to network deliv-
ery paths and senders. Recent work in overlay networks has shown
that multiple, distinct paths often exist between hosts on the In-
ternet [2]. We attempt to leverage these redundant network links.
While some may consider this additional bandwidth wasteful, we
believe the system described herein presents an interesting and el-
egant method of utilizing additional network resources to achieve
levels of reliability and latency previously difficult to obtain.

Our basic approach is to construct a content distribution mesh,
where every node is connected to n parents, receiving duplicate
packet streams from each of its parents. The value of n is a config-
uration parameter that is used to select the desired trade-off between
latency, reliability, and transport costs. By maintaining an acyclic
mesh, this approach guarantees that the minimum cut of the mesh
is n nodes or independent links. Thus, a mesh is resilient to (n−1)
node or (n− 1) independent link failures (we say (n− 1) resilient)
without repair. If a mesh failure occurs, recovery algorithms restore
the mesh to (n − 1) resilience in a few seconds.

Our architecture is based upon an overlay network that transports
XML streams. An XML packet is a single independent XML docu-
ment [7]. An XML stream is a sequence of XML packets, and each
XML packet in a stream can have a different document type def-
inition (DTD). When clients join an overlay network they specify
an XML query that describes the XML packets they would like to
receive. It is the job of the overlay network to configure itself to
deliver the desired XML stream to a client at reasonable cost given
reliability goals. Queries are expressed in a general language such
as XQuery [11].

Our overlay network is implemented by XML routers. An XML
router is a node that receives XML packets on one or more input



links and forwards a subset of the XML packets it receives to each
output link. Each output link has a query that describes the por-
tion of the router’s XML stream that should be sent to the host on
that link. XML routers are components in a distributed publish-
subscribe network and implement the selective forwarding of XML
packets according to subscriptions described by queries.

XML has a number of advantages over a byte stream for multicast
delivery. First, XML permits the network to interpret client data
needs in terms of well-defined XML queries. Second, XML pack-
ets suggest what logical units of data will be processed together by
a client and thus can aid network scheduling. Third, many tools and
standards exist for XML making it easy for both the data originator
and receiver to build robust applications. Finally, our approach al-
lows applications and databases to push part of their processing into
the network fabric. We expect that query languages such as XQuery
will become standardized, allowing a single language to be used to
describe data requirements. This standardization will permit appli-
cations to program our network fabric to deliver the data they need
in a simple, consistent fashion.

The primary disadvantage of XML is often thought to be the in-
creased number of bytes required to represent the same information
in XML when compared to an application specific encoding. How-
ever, our experimental results suggest that conventional data com-
pression eliminates this disadvantage. While an XML stream must
be decompressed and recompressed at any router that wishes to do
query matching, a router that passes all packets to every client can
bypass the XML switch component entirely, and no decompression
or compression need be performed. Thus, routers can include a
fast-path for clients that subscribe to the unfiltered XML stream.

This paper makes three distinct, novel contributions:

• XML Routing. To the best of our knowledge, we describe the
first packet-based network XML router to support arbitrary
content routing. We believe that systems for XML routing
will be useful in a wide variety of contexts and will be ef-
ficient because XML wrapper overhead can be removed by
appropriate use of data compression technology.

• Mesh-based overlay networks. We describe the first over-
lay network to use multiple, redundant paths for simultane-
ous transport of multicast streams. Our mesh approach offers
better latency performance than tree-based approaches.

• Diversity Control Protocol. We describe a novel protocol that
uses source-independent sequence numbers to reliably recon-
struct a sequenced packet stream from multiple sources. DCP
reduces latency and improves reliability when compared with
conventional single-sender approaches.

The remainder of this paper describes our current XML routing in-
frastructure in the following sections:

• Previous work (Section 2)

• Architecture of our XML routing system (Section 3)

• Mesh algorithms and distribution protocol (Section 4)

• Experimental results and our air traffic control application
(Section 5)

• Issues involved in routing XML over a mesh (Section 6)

• Conclusions (Section 7)

2 Previous work

Our work on XML routers and DCP builds on a large body of past
work in reliable multicast and overlay networks. We consider re-
lated work in four areas: reliable multicast, overlay networks, re-
dundant coding and transmission schemes, and publish-subscribe
networks.

2.1 Reliable multicast

Reliable multicast systems send a stream of packets to a set of
receivers. Reliable multicast systems are often built on IP Multi-
cast [3]. IP Multicast packets are duplicated by the network layer
as late as possible to minimize the network resources consumed to
deliver a single packet to multiple receivers. Acknowledgments are
required to make IP Multicast reliable. If a packet is damaged in
transmit or is lost, either a receiver will send a negative acknowl-
edgment to the sender [14, 22, 27, 41, 43], or the lack of a positive
acknowledgment from a receiver will cause the sender to retrans-
mit [17, 22, 43]. Express [15] is a single-source multicast system
that simplifies IP Multicast in the face of multiple data sources but
is still integrated with the network fabric.

Of particular note is RMX [12], which shares similar goals with
our work. RMX provides real-time reliable multicast to hetero-
geneous clients through the use of application-specific transcoding
gateways. For example, it supports re-encoding images using lossy
compression to service under-provisioned clients. By using self-
describing XML tags, our architecture allows similar functionality
to be provided in a general fashion by having clients with differ-
ent resource constraints subscribe to different (likely non-disjoint)
portions of the data stream.

2.2 Overlay networks

An overlay network is a virtual network fabric that is implemented
by application level routers that communicate with each other and
end clients using normal IP network facilities. Overlay networks
typically use reliable point-to-point byte streams, such as TCP,
to implement reliable multicast. The goal of an overlay network
is typically to provide increased robustness [2, 35] or additional,
sophisticated network services, such as wide-area stream broad-
cast [16, 30, 37], without underlying network assistance. In fact,
network operators may be unaware that such services are running
on their network.

One advantage of building our network as an overlay is that it
is easy to modify and deploy without the cooperation of network
providers. We have adopted the use of overlay networks as an ef-
fective way to build a robust mesh that can effectively route XML
packets. End-system-multicast [13] is an overlay-based multicast
system that constructs meshes during spanning tree discovery but
does not use redundant mesh links for information delivery.

2.3 Redundant encoding and transmission

Loss-tolerant encoding schemes (often termed erasure, tornado, or
forward error correcting (FEC) codes) use redundant information
to support the reconstruction of a data stream in the face of a cer-
tain amount of packet loss [25]. For example, in Digital Fountain’s
Meta-Content protocol [9] packets are encoded to allow a receiver



to recover a data stream even if a certain fraction of Meta-Content
packets are never received.

Our approach to redundancy is based on sender and channel diver-
sity while loss-tolerant encoding schemes typically use only packet
diversity [9, 33]. We use channel diversity because experimen-
tal data suggests that Internet packet errors are highly path depen-
dent [2, 29, 35]. We use sender diversity because in single-sender
systems a sender failure is likely to cause a stream gap during recov-
ery [30]. Based on these assumptions, we believe that, with appro-
priately configured levels of mesh redundancy, sender and channel
diversity can provide lower loss rates and latency than packet diver-
sity, albeit at a higher cost.

Several previous systems have leveraged channel diversity, sender
diversity, or both in an end-to-end fashion. Dispersity routing [24]
and IDA [31] split the transfer of information over multiple net-
work paths to provide enhanced reliability and performance. Sim-
ulation results and analytic studies have shown the benefits of this
approach [5, 6]. In addition, tornado codes have been suggested
to combine parallel downloads to improve reliability and perfor-
mance [8]. Application-level dispersity routing, IDA, and parallel
downloads use multiple network paths but do not provide for any
loss recovery along a single path within the network fabric. Our
use of application-level routers allows us to perform loss recovery
inside of the network fabric and, thus, improve loss resilience. Fur-
ther, the block encoding scheme used by Digital Fountain may add
additional latency during decoding. We discuss our loss resilience
results in Section 5.

2.4 Publish-subscribe systems

Publish-subscribe networks, such as Tibco’s TIBTMRendezvous
[28], Elvin4 [36], Siena [10], Gryphon [4], and XMLBlaster [1]
permit receivers to specify the portion of a data stream that they
would like to receive. Receivers typically subscribe to messages
using a query that summarizes their interests. Streams may be en-
coded such that the same content, but in varying levels of fidelity,
may be requested by each client [26, 42]. Siena and Gryphon both
provide distributed implementations of singly connected graphs for
information distribution, but neither provides XML-based routing.

XMLBlaster [1] is a publish-subscribe system based on XML
packet streams, but it only permits queries over a specific header
field. Our semantics permit queries over any field in an XML
packet. We believe that the overhead of making each XML packet
a fully formatted document is a small price to pay for the result-
ing flexibility and rational query semantics. This is especially the
case when data compression causes the markup overhead in each
XML packet to become negligible. To our knowledge, no existing
stream-based publish-subscribe network uses redundant meshes for
reliability or performance enhancement.

3 Resilient mesh networks

As shown in Figure 1, a typical overlay network for routing an XML
stream contains one or more root routers (R1-R2), a variable num-
ber of internal routers (I1-I3), and a variable number of edge clients
(C1-C3). Root routers are the origin of data and are assumed to
have independent means of generating their XML stream. Internal
routers receive the XML stream from their parent routers and for-
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Figure 1: A mesh network comprising root routers (R1-R2), inner
XML routers (I1-I3) and clients (C1-C3).

ward elements of the stream to their children as required. Clients
connect to routers and provide a query that describes the portions
of the XML stream they would like to receive.

The content carried by routers in a mesh can be statically or dynam-
ically configured. Typically, with static configuration the internal
routers carry all of the XML packets available from the root routers.
Thus, with a static approach to content configuration clients have a
wide choice of routers that can service their request without recon-
figuration delay. Unfortunately, such a mesh requires a fixed band-
width capacity throughout. We can leverage the expressive power
of XML to better control bandwidth usage.

Dynamic content configuration allows a router to carry only the
packet stream necessary to service its children. In this case, a router
disjoins all of the queries it receives from its children and forwards
the resulting query to its parent routers. Note that since each router
combines the queries of each of its children when subscribing to
its parent routers, each router need only store queries for its imme-
diate children. This results in significant bandwidth savings when
clients are uninterested in the full contents of the data stream. The
disadvantage of this scheme is that the mesh may not have a suf-
ficient number of routers that currently carry the traffic needed by
a node searching for an additional parent during mesh construction
or repair. If a client requests information that is not available in that
portion of the mesh, there will be a delay while the mesh readjusts
to supply the required information although this additional startup
delay is tolerable in most situations. During reconstruction, the data
should be available from the current parent set. During initializa-
tion, it simply adds a slight additional startup latency.

Clients wishing to join an (n − 1)-resilient mesh perform four dis-
tinct operations: (1) composing an XML query that describes the
data desired, (2) contacting n existing routers that can service the
query, (3) sending these n routers the XML query it has composed,
and (4) receiving the XML stream described by the query. One par-
ticular algorithm for discovering routers is described in Section 4.

Each router includes a query table that describes the portion of the
XML stream each of its children wishes to receive. Thus, each
router functions as a splitter that takes a single XML stream and
refines it for each child. Often a child is only interested in a subset
of a stream (such as all air traffic landing in Seattle). Expressing this
desire to routers saves last-mile bandwidth and end-host processing.



Our architecture also admits XML combining routers. A combining
router merges XML feeds from different sources into a single XML
feed. This can be accomplished by simply forwarding unmodified
packets from both sources, or it can involve application-specific
processing. For example, in our air traffic control application we
are investigating merging our XML stream of air traffic data with
an XML stream of runway conditions.

We will call a node k-resilient when any combination of k other
nodes and independent links in the mesh can fail and the node will
still receive its XML stream. We say a mesh is k-resilient when
all of its nodes are k-resilient. The level of resilience in a network
can vary according to the needs of end clients. Although we hereto-
fore have described a uniform mesh architecture with a fixed router
fan-in of n, it is entirely possible to build meshes with non-uniform
fan-in. The only constraint is that in order to assure a desired level
of resilience all the way to the root, the resilience of a child’s par-
ents must be equal to, or greater than the child’s desired resilience.
For example, one could build a core network that is 2-resilient, and
certain clients could choose to be 1-resilient. The failure of a core
router will most likely reduce the resilience level of many periph-
eral routers and clients until the mesh can reconfigure, but the mesh
will continue to provide service to all clients except those clients
directly connected only to the failed node. Thus, in certain circum-
stances, it may make sense to improve the resilience only of key
portions of a network that provide service to many clients. We are
investigating issues surrounding optimal mesh configuration.

4 Algorithms and protocols

An XML router implements three key algorithms and protocols:

• XML router core. The XML core is the engine that receives
and forwards packets according to queries. Its job is to effi-
ciently evaluate each received XML packet against all output
link queries.

• Diversity Control Protocol (DCP). DCP implements resilient
mesh communication by allowing a receiver to reassemble a
packet stream from diverse sources.

• Mesh initialization and maintenance. A set of algorithms au-
tomatically organizes routers and clients into a mesh and re-
pairs the mesh when faults occur.

4.1 XML router core

Figure 2 shows the internal structure of an XML router. An XML
router consists of three major components:

• An input component that acquires XML streams for presen-
tation to the XML switch. The input component is respon-
sible for maintaining DCP connections to the parents of the
router and implementing the mesh initialization and recon-
figuration algorithms. In addition, the input component im-
plements data decompression. Our input component can also
connect to TCP XML streams for compatibility.

Although, in many instances, the input component will ac-
quire a single XML stream for routing, an input component
could connect to distinct meshes and merge multiple XML
streams for routing. The input component is also responsible
for forwarding the disjunction of its link queries to its parents.

DCP TCP

Input

XML
Switch

Output

DCP TCP

Link
Query

Figure 2: The internal architecture of an XML router comprises the
input component, XML switch, and output component. Output link
queries control XML packet forwarding.

• An XML switch that compares received packets against link
queries, and forwards matching packets to the requesting
links. An efficient XML switch attempts to combine distinct
link queries into a single state machine that matches all of the
link queries in a single pass over an incoming packet.

• An output component that forwards packets on output links
using DCP. In addition, the output component is responsible
for handling join requests from prospective children and im-
plements link-based data compression. Our output compo-
nent additionally can produce TCP XML streams for potential
compatibility with non-DCP children.

4.2 Diversity control protocol

The Diversity control protocol (DCP) is so named because of the in-
herent sender diversity that it implements. The essential idea behind
DCP is that a receiver can reassemble a packet stream from diverse
senders. In DCP, the same stream of packets is sent to a receiver by
multiple sources where the desired level of redundancy may vary
between nodes in a mesh. As shown in Figure 3, a DCP receiver
reassembles the packet stream using the first error-free packet re-
ceived from any source.

4.2.1 Sequencing

Proper in-order packet stream reassembly requires that all DCP
packets be assigned identifiers that admit a total ordering and that
the total ordering must be known to the participants. DCP further
requires identifiers obey the following invariants:

• For a given content stream, packet identifiers must be associ-
ated only with packet content and not be sender specific. This
allows receivers to properly reassemble a stream based upon
identifiers alone.

• Since packets may travel through a variable number of inter-
mediate router hops, the identifiers with a particular stream
must be selected at root routers and remain identifiable
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Figure 3: The Diversity Control Protocol (DCP) reassembles a
packet stream from diverse senders.

throughout the mesh. Thus, the set of root routers for a partic-
ular stream must originate the same packet stream and assign
the same identifiers to the same packets. This must be true
even if the root routers do not generate the stream at precisely
the same time or rate.

• Receiver identifier processing must admit gaps. Since inter-
mediate routers may not forward packets containing content
that was not requested by a particular receiver, the identifiers
of these packets will not be received.

Our approach to satisfying these three invariants is to assign a
monotonically increasing 32-bit application serial number (AN) to
every DCP packet when the packet is created at a root router. Ev-
ery router that forwards DCP packets maintains the last packet AN
sent on each output link. The last AN sent on a link is included in
the next packet along with the next packet’s current AN number.
Including a client-specific previous AN in each packet permits a re-
ceiver to reassemble the stream of packets from a sender in the pres-
ence of missing ANs. In our application, missing ANs are caused
by filtered XML packets.

While routers may remove packets from the datagram stream, DCP
itself is a reliable transport protocol. Hence, any missing datagram
(as indicated by a hole in the AN sequence chain) will be retrans-
mitted. In order to maintain redundancy invariants throughout the
mesh, retransmissions are requested at each hop rather than end-
to-end. Similarly, packets are buffered and transmitted in-order at
each hop. This ensures that every node can consider each parent
an independent source of ordered datagrams. We return to consider
the implications of out-of-order forwarding in section 6.4.

DCP currently uses UDP as a transport mechanism to facilitate de-
ployment at the application layer. Distinct DCP streams are cur-
rently transmitted on separate UDP ports. In our application, one
DCP packet is used to transport one XML packet. This is possible
because our XML packets are relatively small. If XML packets do
not fit into a single IP packet envelope, an AN could describe both
the XML packet number being transmitted and the IP packet within
the XML packet. The important invariant is that an AN be based
upon the content of a packet and not on when or by whom it was
generated.

Ver. Flags Checksum

AN

Previous AN

Figure 4: DCP Packet Header

Figure 4 shows the layout of a DCP packet. In addition to the ANs
we have already mentioned, a DCP packet includes a 4-bit version
number to allow DCP to evolve and a set of 8 bit flags. The flags
permit a sender to request an acknowledgment, a receiver to send an
acknowledgment or request a retransmission, and for the exchange
of keep-alive and connection-establishment and tear-down informa-
tion. The entire packet is covered by a 16-bit checksum which may
be optionally disabled if encapsulated in UDP or when carrying
streams insensitive to corruption.

While our use of DCP is as a datagram protocol, DCP is equally
well-suited for the transmission of byte streams. A bit in the flags
field is used to indicate that DCP is operating in stream mode.
When used as a stream protocol, the AN simply refers to the se-
quence number of the first byte of the datagram, as in TCP. Simi-
larly, the previous AN refers to the last byte of the previous packet
in stream mode. Note that this construction allows for fragmenta-
tion or reframing of DCP packets if desired, albeit at the expense of
additional complexity and buffering at the receivers. Additionally,
if multiple root servers are in use each server must take care to se-
quence the data identically. Datagram and streaming mode cannot
be used during the same DCP connection.

4.2.2 Retransmission

When a receiver joins multiple DCP senders, it waits for the first
packet to arrive from any one of the hosts and uses the AN of this
packet as its current AN. Packets that are subsequently received
with a lower AN than the current AN are discarded and packets
that are received with an AN in the future are buffered. A packet
with the current AN in the previous AN field is considered the next
packet in the reassembled stream and the current AN is updated. If
a receiver does not receive an appropriate packet after a fixed in-
terval, it sends a negative acknowledgment (NACK) to all senders
with its current AN. This retransmission is sent only to the receiver
requesting it. In a fashion similar to TCP’s fast retransmit, a NACK
is generated after a much shorter timeout if a packet with a subse-
quent AN is received, indicating either a lost or reordered packet.
This NACK serves as a request for all senders to retransmit all pack-
ets after the receiver’s current AN.

Assuming a regular mesh construction (equal numbers of parents
and children), the negative acknowledgment process does not suffer
from ACK implosion even with high degree. An individual receiver
only generates a NACK if an AN is not received from any of its
parents. Due to the (assumed) pairwise independence of packet
loss between distinct senders and receivers, this probability drops
exponentially with degree as discussed in section 5.1.2. Hence, the
probability that a sender receives any NACKs at all decreases with
increasing degree, avoiding the NACK implosion problem.



Senders transmit packets in order to a receiver and request an ac-
knowledgment from a receiver from time to time. Our current im-
plementation requests positive acknowledgment after a fixed num-
ber of packets has been sent. A receiver responds to a request
for acknowledgment with an acknowledgment that contains the last
AN (or last byte in streaming mode) it has processed. This serves
to limit the amount of buffering required at each node and allows
for rapid resynchronization of senders and receivers. If the current
sender has not yet sent that AN (byte), it squelches its transmissions
until after that AN (byte). A receiver can also send an unsolicited
acknowledgment to squelch a sender that is behind. In contrast, if
a receiver continually fails to respond to acknowledgment requests,
or persistently lags behind the sequence space (indicating insuffi-
cient bandwidth between sender and receiver), the connection is
terminated. The receiver must then reconnect to a new point in the
mesh (presumably with a higher-bandwidth link).

4.3 Mesh formation and maintenance

A mesh begins life as a set of root routers that are all capable of sup-
plying an XML stream of interest. We assume that failures of root
routers are independent and, thus, each has an independent means
of deriving the XML stream. As noted above, however, roots must
be uniform in their DCP packetization and sequence number selec-
tion. Additional roots may be added to a mesh at any time provided
they have a mechanism to synchronize their content stream with the
existing root nodes.

Mesh discovery is outside the scope of this document, but one
method of distributing the set of root nodes for a particular content
stream is through DNS. All of the IP addresses for the root routers
for a service could be stored in a DNS address record. For example,
stream.asdi.faa.gov might be a DNS name that maps to a
set of root routers that supply an XML stream of air traffic control
data for North America.

4.3.1 Adding routers and clients

When a new internal router is added to a mesh, it can either be
statically configured with a set of parents or the new router can
select its own parents based upon performance experiments. A wide
variety of automatic configuration algorithms can be used to form
the mesh depending on the particular desires of the node. These
may vary widely depending upon whether the mesh is controlled by
a single administrative entity concerned with overall characteristics
of the mesh such as its resilience or depth, or the new node has a
more specific purpose. Clients join the mesh in the same fashion.

Rather than specify a particular algorithm or policy, we admit a host
of possibilities by providing a set of mesh primitives that new nodes
can use to discover the topology of the mesh and locate themselves
within it. Each router supports the following primitives:

• Join (Q): A new node is added as a child of the router with
query Q provided the current node is willing to admit a child
with such a query.

• Children (Q): The router responds with its children that sub-
scribe to a subset of Q. A full child list may be elicited by
specifying a query that matches the entire stream.

• Parents: The router responds with its parent set.

1. Initialize the set S to be the root routers.

2. For each node in S, send a join request and
remove the node from S.

3. If a node accepts the join, add it to the parent
set P . If n nodes are in P , quit.

4. If a node declines the join, ask it for a list of its
children, and add them to S.

5. If S is not empty, go to Step 2.

Figure 5: Parent selection algorithm. Each node runs this algorithm
to construct an (n − 1)-resilient mesh.

Using these three operations, it is possible for a new node to com-
pletely walk a mesh to determine its optimal location. We note that
the optimum location may vary depending on the particular desires
of the joining node. We have currently implemented a very simple
algorithm for automatic parent selection for a client seeking (n−1)
resilience shown in Figure 5.

This simple algorithm seeks to find a set of routers that are closest
to the root routers and uses the timing of responses to select among
candidates. The algorithm also assumes that potential parents are
configured to reject join requests when they are at maximum de-
sired capacity or they do not wish to service a requested query. We
contemplate additional research on improved algorithms that are
based upon both depth in the mesh and observed packet latency to
select optimal parents for a new child.

Routers may refuse to serve as parents for policy reasons, if they
are not receiving the portion of the XML feed necessary to service
a new child’s query, or if they are over-subscribed. If a prospective
parent is not receiving part of the feed necessary for a new child, the
prospective parent may be configured to push an expanded query up
to its parent, thus propagating the information request up the mesh.

4.3.2 Mesh repair

Our mesh repair algorithm recovers from parent failures. If one
of the parents of a node fails, the node actively attempts to join a
new parent. The method used to obtain a new parent is currently
identical to that used to obtain initial parents with one caveat. To
guarantee that a mesh is acyclic, each router maintains a level num-
ber that is one greater than the maximum level of all of its parents.
A router’s level number is established when a router first joins the
network. During mesh recovery, a router will only join parents that
have a level number that is less than its own level number. If this is
not possible during recovery, then a router must disconnect from all
of its children and do a cold re-initialization to return to its desired
level of resilience.

Our repair algorithm recovers (n − 1) resilience of the mesh if a
non-root router fails. As discussed earlier, (n − 1) resilience is a
fundamental property of any acyclic mesh where each child has n
parents. This can be seen by forming an acyclic graph that is a dual
of a mesh. In this dual graph each child is represented as a vertex
that has directed edges to all of the child’s parents. The min-cut of
this graph is n vertices or edges if each vertex has out degree n.
Thus (n − 1) nodes or (n − 1) distinct paths can fail and a node
will still be connected to a root.



Due to occasional internal node failures, a mesh repaired using our
algorithm will have a tendency to flatten out over time as nodes
are forced to select parents with lower level numbers during each
repair process. If the mesh structure is to serve extremely long-
running streams, it may be necessary for nodes to occasionally re-
move themselves from the mesh and select an entirely new location
in order to preserve the depth of the mesh and prevent overloading
of root nodes. We have not yet explored efficient algorithms for
determining when to start this process.

5 Evaluation

We have developed two separate implementations of our XML
router. Our full-featured, multi-threaded Java implementation uses
DCP for router-to-router and router-to-client communication. We
have also implemented a prototype high-performance router based
on Click [19]. The goal of our Java implementation was to ad-
equately support our air traffic control application and it does
not attempt to maximize absolute performance. In contrast, the
Click router attempts to achieve production-grade performance us-
ing freely available XML parsing technology. Below, we report
our experiences with both routers. We are mainly interested in un-
derstanding how routers will behave in a mesh under varying con-
figurations. Thus, our evaluation focuses on the effects of mesh
redundancy on DCP reliability and performance. We also provide
performance results from our Click-based XML router.

5.1 DCP performance

The Diversity Control Protocol has several attractive features in-
dependent of the format of the data stream. In particular, DCP-
based meshes can achieve substantially lower effective loss rates
and latency than tree-based distribution networks. Further, the re-
dundancy can be utilized to absorb unexpected decreases in the link
capacity between nodes. In this section, we quantify these effects
using our Java XML router. All results presented in this section rep-
resent the average of several experiments each consisting of 1000
to 10000 XML-encoded ASDI packets.

5.1.1 Experimental design

The experimental setup consisted of four 600MHz PIIIs, two run-
ning Linux 2.2.14, and two running FreeBSD 4.0. Each machine
used 100Mbit Intel EtherExpress Pro100 Ethernet controllers and
128 Mbytes of memory. The roots and all intermediate XML router
nodes were run on one Linux machine using Sun’s JDK version
1.3. The XML client node was run on the other Linux machine,
also with Sun’s JDK version 1.3.

For each experiment, the root node received an XML feed contain-
ing a 1Kbyte per second substream of the live ASDI flight data
described in the following section. While each node in our experi-
mental topology requests the entire test XML stream, it does so by
specifying an XML query predicate, hence each packet is parsed
by the intermediate nodes as part of the forwarding process. The
intermediate nodes connect to the root over the loopback interface,
so there was no packet loss. The desired link loss rates between
intermediate and client nodes were obtained by routing each DCP
connection through one of the FreeBSD machines which passed
the packets through an appropriately configured Dummynet [32]
tunnel.
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Figure 6: Loss rates experienced by a client as a function of indi-
vidual parent loss rates and the number of parents.

The one-way latency between the client and parent nodes was negli-
gible (0.1ms) with respect to the millisecond granularity of the Java-
based timing mechanisms we used to measure packet latency. Vari-
ability in the observed latency of XML packets can be attributed
both to the inherent non-uniformity of XML parsing times and to
thread scheduling uncertainties of the JDK.

5.1.2 Redundancy reduces loss exponentially

We assume that packet loss is independent across parents. This
assumption is false if a problematic portion of the communication
path to a set of parents is shared. In our ideal model, if each parent
has an identical loss rate, p, a node with n parents should expect
a combined loss rate of pn. Figure 6 verifies this experimentally,
showing the DCP loss rate experienced at clients with 2, 3, and 4
parents where the loss rate at each parent is independently identi-
cally distributed (i.i.d.) with uniform probability p varying from
[0, 0.5].

For a traditional tree-based distribution network, the loss rate ex-
perienced at the client corresponds directly to the loss rate of its
parent. The graph shows, however, that a mesh topology is able to
provide acceptable delivery rates over even extremely lossy chan-
nels. A node with four parents can expect a loss rate of less than
5% even if each of the parents individually experiences a loss rate
of up to 45%.

Most Internet links do not experience extremely high loss rates. In
fact, typical long-term average loss rates are on the order of 2–5%
with substantially higher burst rates [29]. In such cases, a mesh
with n = 2 still limits the loss rate at the client to substantially less
than 1%. Decreased loss rate is not the only gain from multiple
parents, however.

5.1.3 Latency

Even in cases where acceptable loss rates can be provided by a tree-
based network (reliability may be assured by retransmission), sig-
nificant improvements in latency can be achieved by increasing re-
dundancy. In DCP, loss is not detected until the receipt of a later
packet since each individual packet is not acknowledged. However,
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Figure 8: Average per-packet latency from root to client for a range
of effective loss rates. Effective loss rates for each level of redun-
dancy are taken from Figure 6.

because we expect the Internet to reorder packets [29], a packet is
not assumed lost until some time after its successor arrives (cur-
rently 5ms).

In order to magnify the effects of retransmissions in a LAN envi-
ronment with short round-trip times, our test XML feed was specif-
ically constructed to have relatively long inter-packet intervals. In
our experiments, a single retransmission adds approximately 300ms
to the latency for the lost packet. In practice, streams are likely to
have a shorter inter-arrival period but longer RTTs, resulting in a
similar effect. As can be seen in Figure 7, packet loss significantly
impacts the average packet latency at the client for non-redundant
configurations. Meshes with higher levels of redundancy perform
much better.

A redundant topology performs even better than the effective loss
rate of Figure 5 suggests. This is because clients with multiple par-
ents use the first copy of each XML packet they receive. In general,
the expected minimum of multiple samples from any distribution
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Figure 9: Experimental multi-tier topologies. A two-hop TCP path
with a TCP splice in the middle, a 1-resilient DCP mesh of depth
two, and an erasure code using two disjoint paths of length two with
simple forwarding at the intermediate nodes. The loss rates on all
links is identical.

is guaranteed to be at least as good as expected value of a single
sample. Figure 8 shows the average latency for several levels of
redundancy with respect to effective loss rates.

5.1.4 Multi-tier meshes

The improvement in latency and throughput becomes even more
dramatic as the the depth of the mesh increases. We demonstrate
this by measuring the throughput performance of a two-tier mesh
using both DCP and TCP and analytically derive the expected per-
formance of a carousel-based erasure code scheme. As shown in
Figure 9, our experimental 1-resilient DCP mesh has five nodes:
two servers delivering identical streams, two intermediate nodes,
and one client. In the case of TCP, the mesh has only three nodes:
a server, client, and one intermediate node that splices the two sep-
arate TCP connections. In both cases, the client, server, and in-
termediate nodes are connected with point-to-point Ethernet links.
We analyze the performance of erasure coding over a hypothetical
topology consisting of a server and client connected by two disjoint,
two-hop paths. The nodes in the middle simply forward packets
and, unlike TCP and DCP, do not request retransmissions of lost
packets.

In our experiments we used Dummynet to limit the bandwidth of
each link to 75Kbits per second and set the server to transmit data in
262-byte bursts at a rate of 19Kbits per second—significantly under
link capacity. Each link in the mesh has a one-way latency of 10ms.
Figure 10 shows the throughput observed at the client as the loss
rate is adjusted for all links uniformly. Note that TCP’s throughput
drops rapidly as the loss rate increases. The redundant links are of
no use to TCP as a duplicate TCP connection on a redundant path
would suffer the same fate. DCP, on the other hand, is able to utilize
both links at the same time to provide successful transfer at much
higher loss rates.

We note that in the case of multi-hop networks with sufficient band-
width, DCP outperforms carousel-based erasure coding techniques
such as those used by Digital Fountain [9]. Such schemes do not
retransmit lost packets. Instead, they encode the data stream at a
fixed rate using an erasure code which enables any lost packets to
be recovered by simply receiving an additional number of encoding
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Figure 10: Observed throughput of a two-tier mesh with uniform
link loss rates using both 1-resilient DCP and TCP. The stream is
served in 262-byte chunks at a rate of 2381 bytes per second. DCP
downloads utilize two parents at each tier while TCP can support
only one at each tier. We also plot the expected performance of
a simple carousel-based erasure code using two disjoint, two-hop
paths.

packets. A maximum-distance-separable erasure code requires that
the client simply receive as many packets as comprised the origi-
nal data stream, regardless of which packets they are. In practice,
many codes (including those used by Digital Fountain) are not quite
maximum-distance-separable, requiring a few additional packets.

Because carousel erasure coding is typically deployed end-to-end
with no retransmissions within the network, the loss rates at each
hop are cumulative. Whereas, DCP reassembles the stream and re-
transmits a full set of redundant packets at each tier of the mesh.
A naive carousel-based distribution network could support appli-
cations such as ours by ensuring each packet contains all the data
necessary to decode the current input packet plus any additional
redundant data required to support the erasure code.

A carousel erasure code can utilize redundant links by sending
an encoded version of each data packet down all available links.
Hence, we can calculate an upper bound on the performance of
such an erasure code by assuming only one packet of any encoding
set must be received. Given a distribution network with n separate
paths, each comprised of l hops with link loss rate p, it is easy to
see that each path successfully delivers the packet with probability
(1 − p)l. In the best case, each data packet can be successfully de-
coded by the client if only one of the encoding packets is received,
which occurs with probability 1 − (1 − (1 − p)l)n. To recover
lost packets, the client must receive additional encoding packets
which are lost with the same probability. Hence, the throughput of
such a scheme can be computed by simply multiplying the input
data rate by the effective reception rate. Using this formula, Fig-
ure 10 shows the expected performance of a sufficiently low-rate
maximum-distance-separable erasure code over the two-tier topol-
ogy shown in Figure 9.
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Figure 11: Forwarding rates for a Click-based XML router with a
varying number of children. Each child requested the entire input
XML stream specified through a trivial XPath expression.

5.2 XML routing performance

Figure 11 shows the forwarding rates achieved by our Click XML
router installed as a kernel module. We measured the forwarding
capacity by generating a constant stream of identical UDP packets
containing a 262-byte XML-encoded ASDI flight update (similar to
the one in Figure 12) at a fixed rate and sending them to our XML
router. The router parses each XML packet, applies the appropri-
ate child predicates, and forwards the packet to the children with
matching predicates.

The tests were conducted on an 800Mhz dual-processor Intel PIII
in uni-processor mode with two Ethernet controllers: an on-board
Intel EtherExpress PRO 100Mbit/s PCI controller and an Intel
PRO/1000 Gigabit Ethernet PCI card. We use uni-processor mode
because our XML parsing code is not known to be SMP-safe. Pack-
ets were received on the 100Mbit interface and forwarded out the
Gigabit interface. Because Click does not support polling on the
100Mbit controller packet input was interrupt driven.

The maximum loss-free forwarding rate varies with the number of
children. Additional children add processing overhead for addi-
tional link queries. With only one client and a simple query expres-
sion, our implementation is able to forward slightly more than 9,000
262-byte packets per second, or about 19 Mbit/second. The more
complicated the packet and expression, the slower the forwarding
rate.

In order to better understand the impact of query complexity, we
timed the XML parser and query evaluator separately. Our Click
XML router uses the Gnome XML library, libxml. The library pro-
vides both an XML parser and an XPath (a subset of XQuery) eval-
uator. We have made no attempts to optimize the performance of
this library. Thus, our measured performance represents a lower
bound, and we expect an efficient implementation could perform
much better. Table 1 shows the time taken to apply a variety of
queries to the same 262-byte sample XML flight packet. We find
that complex expressions can take over twice the time to evaluate in
the context of an XML packet than simple ones. In all cases, packet
processing cost is dominated by XML parsing time.



XQuery Time (µs)
Parse 64.2

true() 4.5
/flight/flightleg/altitude > 300 7.1
starts-with(string(/flight/id),’TWA’) 8.9
substring-before(string(/flight/flightleg \

/coordinate/lat),’N’) > 2327 14.5

Table 1: Time to evaluate various queries in an 800Mhz PIII. Pars-
ing a standard 262-byte XML flight update requires 64.2µs. The
four XQuery expressions shown here select the entire feed, flights
above 30,000 feet, Trans World Airlines flights, and flights cur-
rently north of the Tropic of Cancer, respectively.

5.3 Experience with air traffic control data

Our original motivation for developing XML routers was to build
an infrastructure for distributing and processing real-time air traf-
fic control data. Our laboratory receives the Aircraft Situational
Display to Industry (ASDI) [40] feed via a private IP intranet con-
nection to the U.S. Department of Transportation (DOT). The ASDI
feed provides detailed information about the state of North Amer-
ican airspace. ASDI messages include information on flight plans,
departures, flight location, and landings. A position update is re-
ceived approximately once a minute for all enroute aircraft. The
ASDI feed is directly distributed to most major airlines and is used
for collaborative planning between the FAA and the airlines.

The ASDI feed as distributed by the DOT is encoded in ASCII with
a specific compact character encoding for each ASDI message type.
Efforts were made to make native ASDI messages a compressed
format by virtue of their terseness. The ASDI feed is the union of
feeds from multiple Air Route Traffic Control Centers (ARTCCs)
and countries (USA & Canada). Unfortunately, messages that can-
not be parsed using the ASDI specification arise. Thus, at the outset
of our work, we built an ASDI feed parser and carefully gathered
examples of non-standard messages. We slowly tuned our ASDI
feed parser to handle undocumented cases and, today, still find the
occasional new message format.

Early in our work, we decided to convert each ASDI message into a
corresponding XML packet to create an XML packet stream. This
decision guaranteed that all of our applications would have an easy
to parse and well-defined XML DTD to consume. Furthermore,
it centralized our interpretation of the ASDI feed so that it could
be updated as new undocumented message types were identified.
We call the XML stream that is created from the ASDI feed the
XML ATC stream. Figure 12 shows a sample flight in both ASDI
encoding and our XML encoding.

The XML-encoded ASDI packets contain widely varying amounts
of data depending on the type of event being reported: flight de-
partures, arrivals, position updates, or other auditing information.
Packet size ranges from around 250 bytes to almost 1000 bytes, for
an average of about 350 bytes per packet. The stream is diurnal,
peaking in the early evening with an average packet inter-arrival
time of about 14ms, resulting in an XML data stream of about 25
Kbytes per second.

ASDI Format:

153014022245CCZVTZ UAL1021 512 290 4928N/12003W

XML Format:

<?xml version="1.0"?>
<messageid>153014022245CCZVTZ</messageid>
<flight>

<id>UAL1021</id>
<flightleg status="active">
<speed type="ground">512</speed>
<altitude type="reported" mode="plain">

290
</altitude>
<coordinate>

<lat>4928N</lat>
<lon>12003W</lon>

</coordinate>
</flightleg>

</flight>

Figure 12: The same flight data formatted in ASDI and XML. In
practice, we omit the Message ID field from the XML encoding.
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Figure 13: Average bandwidth utilization of the full XML stream
and the native ASDI format vs. time of day. In both cases the
Message ID field (see Figure 12) is removed from all packets at the
root nodes.

Our primary concern in converting the ASDI feed to XML was
potential bandwidth bloat. Figure 13 shows the bandwidth of the
ASDI feed in both native and XML formats averaged over five
minute intervals. Simply converting the feed to XML results in
approximately a four-fold increase in bandwidth when compared
to the native ASDI feed. We ran both the XML and native ASDI
streams through a Lempel-Ziv [21] data compressor. Figure 14
shows the bandwidth of compressed forms of the same streams
shown in Figure 13. While the ASDI feed compresses over a factor
of two, the XML feed compresses over a factor of 10. The net re-
sult is a compressed XML ATC stream is only slightly larger than a
compressed ASDI feed and more efficient than the raw ASDI feed.
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Figure 14: Average bandwidth utilization of the compressed XML
stream and the compressed ASDI format vs. time of day. Again, in
both cases the Message ID field is removed from all packets at the
root nodes.

We have run mesh networks with two root routers and four internal
routers but a single root router is more typical. This is because
our DOT link is a single point of failure and terminates at our root
router(s). We are adding a second communication line to the DOT
to connect to their backup ASDI system. This will enable us to
have two root routers with independent failure modes. Application
serial numbers (ANs) in our ATC application are provided by the
FAA. Hence, synchronizing multiple roots is straightforward. Each
ASDI message includes a Message ID that we use as the AN of the
corresponding XML packet.

Figure 15 shows one interface to the XML ATC stream. This graph-
ical client implements DCP and connects to our XML router mesh.
The panel on the left of the screen can be used to control the display
of aircraft information. Different colors are used to depict aircraft
altitude and the client will coast the position of an aircraft between
position updates. For our particular application domain of air traffic
control data, XML proved to be a robust and efficient mechanism
for distribution. We anticipate adding new types of clients, includ-
ing an XML stream recorder, to our current system.

6 Discussion

This section considers the strengths and weaknesses of our ap-
proach to content routing using XML. While we believe that many
of the techniques we developed for our ATC application are widely
applicable, we would like to make our assumptions clear.

6.1 AN generation

One difficulty in providing redundant packet sources is providing a
standardized sequence space for packet streams that obey the three
invariants we outlined in Section 4.2.1. Often, application-specific
solutions will present themselves, such as source-derived sequence
numbers or time codes. However, in the absence of application-
provided sequence numbers, it is necessary to use other approaches,
such as cumulative byte counts, block fingerprint matching [23, 38,
39], or other derived metrics.

Figure 15: Java-based client for XML ATC stream showing con-
trols and air traffic.

When a combining router merges XML streams, packets in the
combined stream must have appropriate ANs. Simply using the
ANs from the original uncombined packets for packets in the com-
bined stream will typically not work as packets from different
streams will in general have incomparable ANs. One solution is
for the combining router to become the root of a new stream and
establish its own totally ordered AN space. However, this would
create a single point of failure if sequence assignments in this space
are not coordinated with another combining router. Another ap-
proach is to make AN space partially ordered. For example, the
AN space for a combined stream could be a pair of the AN of the
source packet in its original stream along with an integer suffix that
identifies the source XML stream. Packets with ANs from different
source streams would not be sequenced across streams, but a client
could recover the ordering of XML packets within each stream.

6.2 Flow control

Nodes are responsible for monitoring the loss rate of streams from
their parent and adjusting their predicates appropriately. Limited
per-child buffering is available at each node, and clients may be
disconnected if they are consequently unable to consume the data
stream at an acceptable rate.

The squelching mechanism of DCP allows parents to avoid wast-
ing bandwidth sending packets to a child that the child has already
received. If a child is unable to keep up with the long-term aver-
age rate of the stream, however, queues will build up and action
must be taken. If the client is able to subsist with a smaller sub-
set of the data stream, it may wish to conduct join experiments in
order to determine the appropriate XML query for its bandwidth
constraints [26, 42]. Otherwise, clients persistently unable to keep
up with the data stream will be disconnected by their parents.



6.3 Redundancy

We expect that most mesh networks will use n = 2. This level of
redundancy allows for single points of failure and allows mesh re-
pair to proceed without stream flow interruption. We expect that as
future networks increase in capacity a moderate amount of packet
redundancy will be acceptable for high-value streams to achieve
specific reliability and performance goals. Secondary storage is of-
ten replicated for similar reasons.

We have assumed in our analysis that errors from different par-
ents are independent. This assumption can be violated in numerous
ways, but the most likely reason will be shared communication path
components from a child to its parents. In addition, network-wide
effects, such as distributed-denial-of-service attacks, could cause
independent parents to have dependent packet losses. To maximize
link independence, we plan to explore using routers in distinct In-
ternet autonomous systems (ASs) and ensuring that last-mile band-
width is adequate to each AS. In certain applications, it may also be
possible to use private intranets to better control error assumptions.

6.4 Router XML stream reassembly

Each of our routers recreates the original XML stream before it is
processed by the XML switch. We do this to guarantee that every
XML packet is forwarded by every router, to allow a client to ask
for retransmissions from any of its parents, and to potentially allow
the XML switch to keep stream-dependent state between packets
that could be used by queries. The amount of buffering required
is bounded by requiring positive acknowledgments as discussed in
section 4.2.2.

If XML packets are forwarded out-of-order by an XML switch then
a router does not necessarily need to buffer packets or recreate
the original sequenced XML stream. This is, indeed, the case in
our ATC application, although in our ATC application every XML
router does recreate the original XML stream. If an XML router
need not recreate the original XML stream, a router could process
each received packet independently and would not need to process
every packet in an XML stream. In this scenario, a client places in-
creasing reliance upon the redundancy of the mesh to ensure timely
delivery of packets that are not received from a particular router.
In particular, since all levels may forward out of sequence, the la-
tency induced by a retransmission request from the client may be
large. Hence, we have not yet considered how to handle reliable,
out-of-order delivery with bounded latency.

6.5 Packet acknowledgments

For asynchronous, variable-bandwidth data streams, packet loss
can be detected either by the lack of packet acknowledgments at a
sender or by a gap in packet sequence at a receiver. DCP currently
relies upon the latter technique. If inter-arrival times are large, per-
packet ACKs may be required to provide the appropriate level of
responsiveness. Unfortunately, positive acknowledgment schemes
admit a well-known implosion problem where the sender is flooded
with acknowledgments from each of its children.

While our implementation currently uses unicast UDP to transport
DCP packets, DCP could employ IP Multicast where available. The
negative acknowledgment system we describe is capable of han-
dling IP Multicast packet losses. If IP Multicast were employed, a

DCP output component would send a single packet to an appropri-
ate multicast group of its children based upon the children’s queries.

6.6 Dynamic timer adjustment

A robust DCP implementation should be able to automatically ad-
just its timers to the characteristics of the link between nodes. In
particular, the negative acknowledgment timer should be set only
long enough to admit observed packet reordering, which clearly
depends on the inter-packet arrival of the flow. Being too slow re-
sults in poor latency, being too jumpy results in wasted bandwidth.
Similarly, several timers relating to mesh liveliness would benefit
from automatic refinement. In particular, nodes expect to receive
data from their parents every so often. If no data is available in that
interval, the parent sends a keep-alive message. A similar mecha-
nism is employed by the parent to insure the continued presence of
its children. Clearly the timer should be proportional to the stream
data rate, in order to avoid excessive probing. We are currently
exploring applying known techniques to these problems [18].

7 Conclusions and future work

This paper presented three key ideas. First, we introduced the idea
of XML routers that switch self-describing XML packets based
upon any field. Second, we showed how XML routers can be or-
ganized into a resilient overlay network that can tolerate both node
and link failures without reconfiguration and without interrupting
real-time data transport. Finally, we introduced the Diversity Com-
munication Protocol as a way for peers to use redundant packet
transmissions to reduce latency and improve reliability.

A wide variety of extensions can be made to the work presently
reported, both in protocol refinements and additional functionality.
We are actively investigating methods of DCP self-tuning, both for
adaptive timers and sophisticated flow control. DCP can also can
be used for uninterpreted byte streams. Thus, DCP-like ideas may
find application in contexts outside of XML routers. For example,
contemporary work on reliable overlay networks (RONs) could use
DCP as a RON communication protocol to maximize performance
and reliability [2].

Just as secondary storage has become viewed as expendable in pur-
suit of enhanced functionality and performance [34], we believe
that, for certain tightly-constrained applications, network band-
width across multiple paths may be similarly viewed as well-spent
in return for substantial gains in reliability and latency. It is un-
likely that multiple disjoint paths with excess capacity will always
exist on the last mile to a client. Hence, many installations may
benefit from meshes that change to lower levels of redundancy at
critical network points such as points-of-presence before last mile
cable.

Within the scope of XML routing, our current XML routers could
be extended to support.

• More sophisticated XML mesh building and maintenance al-
gorithms.

• Combiners that integrate multiple XML streams for multicast
transport as a single stream.

• Using XML routers for duplex communication.



• Other XML network components, such as stream storage and
replay.

• Transcoding XML routers that produce output packets that are
derivatives of input packets, based upon client queries.

Even in its current form, however, we believe our architecture
demonstrates XML is a viable mechanism for content distribution,
providing a natural way to encapsulate related data, and a conve-
nient semantic framing mechanism for intelligent network transport
and routing.
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