
Rough Draft

 Page 1 of 17

 A Comparison of XPDL, BPML and BPEL4WS
Cape Visions

Robert Shapiro

Version Date Author Description
1.0 3/25/02 RMS First draft of Comparison
1.1 4/2/02 RMS Revision based on suggestions by Roberta Norin, APEngines.
1.2 4/3/02 RMS Revision after WfMC WG1 teleconference
1.3 4/15/02 RMS Minor edit
1.4 8/27/02 RMS Revision after BPML 1.0 (6/24/02) release, WfMC XPDL

1.0 beta (7/30/02) and BPEL4WS 1.0 (8/9/02).

1 Introduction
The Business Process Modeling Language (BPML) is representative of a new family of process
definition languages intended for expressing abstract and executable processes that address all
aspects of enterprise business processes, including in particular those areas important for web-
based services. Microsoft’s XLANG is another member of this family, as is IBM’s Web Services
Flow Language (WSFL). These latter two have now been combined in BPEL4WS.

In this paper we focus on a comparison of BPML with XPDL, the WfMC proposed standard for
an XML-based process definition interchange language. Comments (in red) have been added to
extend the comparison to BPEL4WS, hereafter abbreviated to BPEL.

Section 2.11.4 (Activity Details) contains brief descriptions included for the benefit of
readers unfamiliar with BPML.

1.1 Objectives
Our primary objective is to clarify the differences between the BPML and XPDL (and BPEL)
paradigms. We are interested in exposing what can be done with one language and cannot be
done, or done only with difficulty in the other. When simple extensions are possible, we propose
them.

We are also concerned about the work being done by the three standards organizations:

• WfMC

• OMG

• BPMI

 Rough Draft

5/19/2001 9:14 Page 2 of 17 Shapiro-XPDL.doc

This effort intends to create a common modeling notation (BPMN). The comparison of BPML
and XPDL should expose some of the challenges in this undertaking.

As of August, 2002, BPMN remains a BPMI activity: no significant cooperation has developed
between the three organizations

In addition to BPML, on 26 June 2002, BEA Systems, Intalio, SAP and Sun announced the
publication of the XML-based WSCI, a specification that:

• Defines the behavior of Web service interfaces

• Forms part of the ongoing Web service process flow composition efforts (often referred to as
orchestration, choreography or workflow)

Incorporating many aspects of BPML, WSCI focuses on the choreography of web services. We
do not explore this topic further in this paper.

There are at least three other important projects that address Business Process Management
System (BPMS) issues in a Web Services context:

• ebXML(OASIS/UN)

• WSFL (IBM)

• XLang (MS)

In August 2002 Microsoft/IBM released a new specification, BPEL4WS, which combines
XLANG and WSFL.

It is our intent to include a discussion of functionality contained in any of these which should be
part of a business process definition language, BPMN or supported by BPM simulation
technology.

Rough Draft

 Page 3 of 17

2 BPML/XPDL Comparison

2.1 Overview
BPML and XPDL (and BPEL) are XML-based process definition languages. They provide a
formal model for expressing executable processes that addresses all aspects of enterprise business
processes. They are based on significantly different paradigms.

Each paradigm utilizes activities as the basic components of process definition. In each, activities
are always part of some particular process. Each has instance-relevant data, property for BPML
and workflow-relevant data (data fields) for XPDL (and Containers for BPEL), which can be
referred to in routing logic and expressions.

BPML is conceived of as a block-structured programming language. Recursive block structure
plays a significant role in scoping issues that are relevant for declarations, definitions and process
execution. Flow control (routing) is handled entirely by block structure concepts (e.g. execute all
the activities in the block sequentially).

XPDL is conceived of as a graph-structured language with additional concepts to handle blocks.
Scoping issues are relevant at the package and process levels. Process definitions cannot be
nested. Routing is handled by specification of transitions between activities. The activities in a
process can be thought of as the nodes of a directed graph, with the transitions being the edges.
Conditions associated with the transitions determine at execution time which activity or activities
should be executed next

BPEL is a block-structured programming language, allowing recursive blocks but restricting
definitions and declarations to the top level. Within a block graph-structured flow concepts are
supported to a limited extent, constrained by inheritance from previous generation workflow
software (only acyclic graphs, hence no loops; some constraints on going across block
boundaries; a complicated semantics for determining whether an activity actually happens).

BPML focuses on issues important in defining web services. This is reflected in several ways:

• Activity types specifically for message interchange, event handling, compensation (in
case of failure), delay.

• Attributes to support instance correlation, extraction of parts of messages, locating
service instances.

• Support for transactions, utilizing the block structure context, exception handling and
compensation.

XPDL focuses on issues relevant to the distribution of work.

• Activity attribute specifies the resource(s) required to perform an activity. This is an
expression, evaluated at execution time, which determines the resource required.

• Activity attribute specifies the application(s) required to implement an activity.

 Rough Draft

5/19/2001 9:14 Page 4 of 17 Shapiro-XPDL.doc

• These concepts together support the notion of a resource (e.g. participant), in conjunction
with an application, performing the activity. The implementation of work list handlers to
achieve this lies outside the domain of the process definitions.

BPEL focuses on issues important in defining web services and does this in a way which is quite
similar to BPML.

2.2 Block Structured versus Directed Graph
It is not the purpose of this paper to argue the merits of these two approaches. We make two
points in this regard.

• Block structures work well in programming languages.

• Business operations people are used to flow diagrams and other graphical notations.

It seems likely that business users of BPML and XPDL would prefer to use a GUI based, at least
in part, on diagrams. We are concerned here with questions about what can be represented in one
language and not the other.

Translation of blocked-structured flow control (routing) into a graph structure presents no
fundamental difficulties. The reverse is more problematic. This can be facilitated by imposing a
set of restrictions on the graph structure that guarantee it to be ‘well-structured’. It is likely that
Business Process Management Systems that use BPML will support some type of graphical tool
for process definition that imposes such restrictions. It remains to be seen whether such
restrictions limit the usability of BPML. We do not pursue this topic in this paper.

BPEL attempts to offer the best of both approaches by introducing a flow construct and using
links to create ‘arbitrary’ flow dependencies between the activities contained within the flow
construct. However, there are constraints which rule out loops and crossing certain structural
boundaries; additionally the semantics relies on a complicated formulation which tests and
propagates the status of links. It is possible that a graphical front end could simplify this and be
more user-friendly to the business analyst.

2.3 Definitions and Recursive Block Structure
BPML makes extensive use of block structure scoping related to definitions and declarations.
Complex activities refer to activity sets which have an associated context. In the context it is
possible to declare or re-declare properties, define or re-define processes (nested processes) and
so forth. (Many other features are scoped by the context in which they appear, including error
handling, transactions and connectors (for message handling). Since a complex activity can
appear in an activity set, this nesting is recursive.

XPDL only allows process definitions on the top level. Hence there are no nested processes.
Since workflow relevant data is declared either on the top level, or within a process definition, it
is limited to 2 scope levels. We make no assessment here as to whether nested process definitions
are an important feature. BPEL does not support nested process definition. Furthermore, the

 Rough Draft

5/19/2001 9:14 Page 5 of 17 Shapiro-XPDL.doc

equivalent of workflow relevant data, containers, are global in scope. (The current spec also fails
to make clear whether (or how) containers are instance-specific).

In what follows we make use of two new constructs included in XPDL 1.0 beta, blockactivity
and activityset. The block activity is then like the complex activities in BPML, with attributes for
designating the type of complex activity and other information appropriate to defining a context
for an activity set. Including data field declarations in the context would allow the same scoping
possibilities as BPML. To implement nested processes, process definitions would also have to be
included.

Most of the features associated with BPML complex activities could be represented in XPDL by
the block activity. This construct refers by name to a set of activities that have no transitions
outside the set. The construction process for the BPML all activity, for instance, would simply
introduce a first and last activity within the activity set, where the first activity is an andsplit and
the last activity is an andjoin. There would be a transition from the first activity to each of the
activities within the block and a transition from each activity to the last activity. Other types of
complex activities could be represented by transitions that implement the appropriate control
logic. In the sequel we suggest an alternate approach which makes the translation from BPML to
XPDL easier, but passes some of the burden onto the workflow or simulation engine that executes
the XML definitions. In so doing we are not making a recommendation to change XPDL.

(The August 2002 WfMC XPDL 1.0 beta has included a version of BlockActivity and
ActivitySet that can by trivially extended to implement complex activities.)

2.4 Specialized Atomic Activities
BPML (and BPEL) includes a number of specialized atomic activities. Some of these in turn
require a particular set of attributes to support their specific function. In XPDL there are several
basic types:

• Implemented by sub-flow, synchronous and asynchronous.

• Implemented by application

• Routing activity (dummy, for routing purposes only)

• Block activity (proposal: replaces loop activity and inline block)

It is natural to map the atomic BPML activities into XPDL activities. There are several issues.

• BPML (and BPEL) does not have the notion of an application. The BPML Call activity is
identical (except for scoping issues) to an XPDL activity implemented by a synchronous
sub-flow. The BPML Spawn activity is like the XPDL asynchronous sub-flow, except for
some special bookkeeping aspects.

• In BPEL all processes are instantiated by reception of a message. (“The only way to
instantiate a business process in BPEL4WS is to annotate a receive activity with the
createInstance attribute set to "yes"”).

• Otherwise, additional attributes must be used in XPDL to carry the information needed
by the specialized BPML activity.

 Rough Draft

5/19/2001 9:14 Page 6 of 17 Shapiro-XPDL.doc

2.5 Activities and Attributes for WSDL Messages
BPML (and BPEL) build on top of WSDL. They each have specific activities with the
appropriate attributes to utilize the standard WSDL messages. XPDL activities would be
extended to do the same by the addition of appropriate attributes.

BPML BPEL XPDL

action

Implements the standard WSDL
message patterns:
One-way, request-response, solicit-
response, notification

receive, reply, invoke Would required
additional attributes (and
applications/tools and
library functions)

correlation
Used to match the message to the
right instantiation of the process.

correlation Workflow relevant data is
instance specific. The
correlation attribute
would have to be used to
identify the right
instance.

locator
Used to find the correct service.
Refer to WSCI spec.

Service link, partners,
service reference

call

An action can perform an arbitrary
set of activities only if its
semantics require that these
activities be performed in order for
the action to complete, specifically
when performing the WSDL
request-response operation.

Not supported

output, selector
Used to construct messages from
property values.

propertyalias, assign,
query, container

Connector

Used in the specification of the
interaction between services in the
Global Model.

Refer also to WSCI spec.

See Service Composition,
also Relationship to WS-
Transaction Specification

 Rough Draft

5/19/2001 9:14 Page 7 of 17 Shapiro-XPDL.doc

2.6 Web Services Orchestration

2.6.1 BPML and WSCI

2.6.2 BPEL and Business Protocols
Business processes can be described in two ways. Executable business processes model actual
behavior of a participant in a business interaction. Business protocols, in contrast, use process
descriptions that specify the mutually visible message exchange behavior of each of the parties
involved in the protocol, without revealing their internal behavior. The process descriptions for
business protocols are called abstract processes. BPEL4WS is meant to be used to model the
behavior of both executable and abstract processes.

2.7 Specialized Complex Activities
Complex BPML activities refer to sets of activities and provide some type of routing logic or
flow for the entire set.

 XPDL 1.0 includes a block activity which refers to an activityset. This block activity could have
an attribute that specifies the flow logic for the activities in the activity set, or the flow logic
could be generated and represented by transitions between the activities in the set.

Additional information, such as context, would be provided by attributes of the block activity.
The activity set could be defined with a block name and referred to by the block activity. This
would make the activity set definition reusable. On the other hand, to match BPML scoping, the
activity set should be defined within the block activity. In this solution there need be no
transitions defined for any of these activities, since the routing logic is completely specified by
the block activity.

2.8 Transactions and Exception handlers
BPML (and BPEL) provide constructs for supporting Transactions and handling various types of
errors or exception. This includes the so-called ACID or atomic transactions, as well as open
nested transactions (supported in BPEL as Long Running Transactions). The constructs include
various attributes, scoping rules and error handling logic. They could map into XPDL attributes
or special library functions. No discussion here of details. Some of these require a sophisticated
syntax which should be handled by appropriate extension of the XPDL XML Schema. In BPML
(and BPEL) these all have a well-defined semantics.

BPML BPEL XPDL

compensate

Associated with an exception
handler in a context.

compensate

Associated with a
compensation handler in
a scope.

Would required additional
attributes and library
functions

event handlers

time-out, fault

event handlers

compensation handler.
fault handler (Used in

XPDL 1.0 has been
extended to include the
specification of Deadlines

 Rough Draft

5/19/2001 9:14 Page 8 of 17 Shapiro-XPDL.doc

conjunction with catch
and throw.)

and an exception handler
for deadlines and other
exception conditions.

2.9 XPDL Constructs with no BPML (or BPEL) Analog

We have already discussed block structure versus graph structure in respect to flow logic and do
not repeat that discussion here. An arbitrary XPDL activity network cannot be represented
directly in BPML (or BPEL). One which satisfies certain constraints can be.

• BPML (or BPEL) provides no way of declaring participants or defining, in the activities,
an expression, possibly based on the instance values of properties, that specifies the
resource(s) required to perform the activity. Of course it would be easy to add this
construct to the definition of an activity, but it is not immediately clear how the semantics
would be defined.

• BPML (or BPEL) does not have the concept of application, neither in a declarative
context for the package, nor as an implementation of an activity. Another way of looking
at this is to say that there is no distinction being made between a BPML process and an
application invoked in performing an activity.

• Both of these constructs could be supported by utilization of the BPML action activity.
For instance, using the WSDL Solicit-response, a message containing the performer
expression (or its value, as a set of participants) could be sent to a service which
implements the work list handler and responds with the assigned participant(s). This
could be extended to include designation of the application.

• XPDL contains a number of special attributes useful in areas such as version control,
simulation and so forth. These could easily be added to BPML (or BPEL).

2.10 High level constructs

BPML XPDL BPEL

package Package No equivalent

process

Instantiation issues must be
examined. Top level processes
are special. Processes may be
instantiated by message arrival.
Processes are the only reusable

WorkflowProcess

In addition to input/output
parameters, other required
attributes include: instantiation
type and scope. Process contains
an activitySet.

process

 Rough Draft

5/19/2001 9:14 Page 9 of 17 Shapiro-XPDL.doc

units.

Nested process

Definition within a context
(such as a top level process).

Would require block activity with
an element that allowed
definitions, including process
definitions.

No nested processes.

import ExternalPackage import

activitySet

A context is associated with an
activity set. Properties are
shared within an instance of a
context. Scoping issues to be
clarified.

activityset (introduced in XPDL
1.0 beta)

This is the only construct for
grouping activities other than
process. Scoping issues remain.
Used in 1.0 beta to implement
sub-map.

Scope is used in
conjunction with
compensation handlers
and fault handlers

complex activity

Consists of one or more activity
sets. Are activity sets reusable?
I don’t think so.

All, choice, foreach, sequence,
switch, until, while.

block activity.

Refers to activityset by name.

Proposal: all BPML complex
activities are xpdl block
activities referring to an
activityset and using other
attributes to describe routing
logic (or adding transitions and
conditions to the activities in the
set).

Structured activities

Sequence, switch, while,
pick and flow.

activity

There are a lot of different
kinds of atomic activities and
complex activities.

activity

It seems natural to use activity
attributes to represent the
different kinds of activities.

activity

See separate tables for atomic
activities and complex
activities.

Atomic activities map to xpdl
activities. Other attributes used
for details.

Complex activities map to xpdl
route activities with a reference to
the appropriate block. Other
attributes used for control logic.

 Rough Draft

5/19/2001 9:14 Page 10 of 17 Shapiro-XPDL.doc

2.11 Activities

2.11.1 Activity Set and Complex Activities

BPML XPDL

For all these cases: a block activity
referring to an activity set by name.
All flow logic could be made
explicit (implemented by transitions
and conditions) or retained in the
block activity.

BPEL

activitySet

Attributes to specify activitySet and
context information

scope

context

Declarative information
associated with an activitySet.

Declarations, including properties
which are like workflow relevant
data (e.g. data fields or variables)

Associated with scope

property

See discussion in table about
context.

Workflow relevant data

Scoping differences

container

Selector

Obtains a property value
from a message.

 part and query
attributes, used in
extracting property
values from messages
(and containers)

all Attribute to specify all.

A special case of andsplit/andjoin.
See also spawn/join.

flow
See discussion of links,
join conditions and graph
structure.

choice Attributes to specify choice and
event handlers

pick

foreach Attribute to specify foreach and list
(as expression)

No equivalent

sequence Attribute to specify sequence. sequence

switch Attribute to specify switch and list
of (condition,activitySet) pairs.

switch

until Attribute to specify until and
condition

No equivalent

while Attribute to specify while and
condition

while

 Rough Draft

5/19/2001 9:14 Page 11 of 17 Shapiro-XPDL.doc

2.11.2 Atomic Activities

BPML XPDL BPEL

action
performs an indirect assignment as the
result of any operation that receives an
input message. By default the entire
message contents are assigned to a
property with the same name as the
message. Handles all WSDL message
patterns.

Attributes for correlate (list), locate,
call, portType and operation.

receive
reply
invoke
These handle the
various WSDL
message patterns.
No equivalent to
call.

assign

Changes the value of a property.

Attributes for property and
expression

assign
Changes the value
of an XML
value(message) in a
container

call Implemented by synchronous sub-
flow

No equivalent. All
instantiations done
by receiving a
message.

compensate Attributes for transaction.

compensate

delay Attribute for specification of delay wait

empty Dummy activity (route). empty

fault Attribute for name of fault throw/catch

join

This waits for n instances of a process to
complete. Context of instantiation
relevant. Used with spawn.

Attributes to specify process and
count.

No equivalent. Join
condition is used in
conjunction with
flow construct and
links to handle
concurrency and
graph structures.

spawn

Used with join.

Implemented by asynchronous sub-
flow.

However, a major use of spawn is in
connection with join, and this is a
special kind of andsplit followed by
andjoin. Bookkeeping entirely
automatic.

All instantiations
done by receiving a
message.

No explicit terminate No explicit terminate terminate

 Rough Draft

5/19/2001 9:14 Page 12 of 17 Shapiro-XPDL.doc

2.11.3 Context related constructs

BPML XPDL

property

Inherited from all ancestors (block structure
allows arbitrary depth). Declaration makes it
local to context in which it occurs. Package
level property declarations are instantiated in
each top level process and thereafter the
process instance property values are
independent

Workflow relevant data

Only two levels of declaration: package and
process. Route activity for block (activitySET)
could allow more declarative levels.

Instance properties

Whenever an activity, transaction or process is
instantiated, a property is instantiated in the
current context to provide the instance
identifier and state of that activity, transaction
or process. These properties are collectively
known as instance properties.

Requires implicit declaration of instance
properties.

Used in exception handling, etc.

exception

Same scoping idea.

Need to add exception information to process
definition and new block construct (routing
block for activity set).

transaction

Similar issues as exception

Same treatment as exception

connector

Similar issues as exception

Same treatment as exception

completion

activitySet

process definition (nested) Process definitions can’t be nested.

What problems arise if this is changed? Could
the activity set block context information
simply allow a process definition? What are the
run time and name scoping issues that must be
dealt with?

Event handlers associated with context

Invoke activitySet

Message, time-out, fault all are events

 Rough Draft

5/19/2001 9:14 Page 13 of 17 Shapiro-XPDL.doc

2.11.4 Activity Details

2.11.4.1 Action
Action provides the context for performing an operation. In particular, it
pertains to operations involving the exchange of messages with participants.

<action
name = NCName
portType = QName
operation = NCName
{extension attribute}>
Content: (documentation?, correlate*, locate?, call?,
output*)

</action>
An action does not define the operation that is to be performed, but indicates which
operation will be performed and provides the execution context. An action is atomic and
so can only refer to a single atomic operation.
Operations are defined by other specifications and imported by a BPML document using
the import element. Referencing operations defined by the WSDL specification is a
normative part of the BPML specification

Correlate

Correlating an action establishes a relation between the context in which the
action occurs and the message received by the action through properties that are
shared by the context and the message.

Locate
A locator is required if the action must identify the service instance. This
specifically applies when performing the WSDL notification and solicit-response
operations. The locate element is not allowed for other WSDL operations. A
service instance can be located in one of three ways:

1. dynamically by URI
2. dynamically by lookup
3. statically

. Call a process. Like call activity

Output
It is necessary to construct to outputs only for actions that involve sending a
message. This applies specifically when performing the WSDL request-response,
notification and solicit-response operations. The output element is not allowed for
the WSDL one-way operation.

.WSDL operations
When the action performs an operation defined by WSDL, the portType and
operation attributes are used. The portType attribute references the WSDL port
type definition, while the operation attribute references the particular operation of
that port type definition. Actions may refer to the following WSDL operations:
• One-way The process receives the input message. Correlation may be
required.
• Request-response The process receives the input message, constructs and
sends an output message back to the sender. Any work done between the input

 Rough Draft

5/19/2001 9:14 Page 14 of 17 Shapiro-XPDL.doc

and output messages is performed by calling a process. Correlation may be
required.
• Solicit-response The process constructs and sends a message and waits for a
response from
the recipient. The recipient must be unambiguously identified by using the locate
element.
• Notification The process constructs and sends a message. The recipient must
be unambiguously identified by using the locate element.

•

2.11.4.2 All
Activities are executed in non-sequential order. A particular order must not be enforced,
however, there is no requirement for activities to be executed in parallel.

2.11.4.3 Assign
The property attribute provides the property name.
The value is constructed using one of the following three means:
• value Provides an XML value that is statically provided in the content of that element
• select Provides an XPath expression that is evaluated in the context in which the
activity is used
• extension element Supports other mechanisms by which the value is constructed
The three uses are mutually exclusive and cannot be combined in the same element. If
the extension element defines a form of expression, such as an XQueryX query, it is
always evaluated in the context in which this activity is used.

2.11.4.4 Call
• Can instantiate processes whose definition is visible from the current context. The
process is instantiated in the same context in which it is defined, which may be different
than the context from which the process is called.
• Waits until the instantiated process completes, either successfully or with a fault. If the
called process faults, the call activity completes with the same fault code.
• Does not directly affect any call, spawn or join activity relating to the same process and
occurring in the same or different context.

2.11.4.5 Choice
The choice activity is a complex activity. It selects and executes one activity set in
response to a triggered event.

2.11.4.6 Compensate
The compensate activity is an atomic activity. It performs compensation for all instances
of the named transaction.

2.11.4.7 Delay
The delay activity is an atomic activity. It expresses the passage of time.

 Rough Draft

5/19/2001 9:14 Page 15 of 17 Shapiro-XPDL.doc

2.11.4.8 Empty
This activity can be used in places where an activity is expected, but no work is to be
performed.

2.11.4.9 Fault
The fault code is specified using the code attribute. The fault occurs immediately in the
current context, see the definition of exception handling for how faults and other
exceptions are handled.

2.11.4.10 Foreach
The foreach activity repeats once for each item in the resulting list, in the same order in
which the list was constructed. The value of the current item is held in the property
bpml:current. That property is accessible only from the context of the activity set.

2.11.4.11 Join
The join activity is an atomic activity. It waits for instances of process to complete.

2.11.4.12 Sequence
The sequence activity is a complex activity. It performs all the activities within the activity
set in sequential order.

2.11.4.13 Spawn
The process attribute names the spawned process and does not wait for it to perform any
activity. Instead, the activity completes immediately. The spawn activity can only
instantiate processes whose definition is visible from the current context. The process is
instantiated in the same context in which it is defined. This context may be different than
the one from which the process is spawned.
This activity modifies the process instance list. This list is maintained as a property and
has the same name as the process under the current context. As such, it can affect join
activities.

2.11.4.14 Switch
The switch activity is a complex activity. It selects and executes one activity set based on
the evaluation of one or more conditions.

2.11.4.15 Until
The activity set is executed at least once. After completion of the activity set, the
condition is evaluated. The process is repeated if the condition evaluates to false.
Otherwise, the until activity completes.

2.11.4.16 While
The condition is evaluated once before the activity set is executed. The activity set is
executed only if the condition evaluates to true, otherwise the while activity completes.
This process is repeated until the condition evaluates to false.

Rough Draft

 Page 16 of 17

3 Questions
• In BPML activity sets are not re-usable. Implementing them as re-usable inline blocks

might depend upon whether they have a context specified or not. Need to examine
scoping issues

• A process refers to an activity set. A process can evidently not be defined within an
activity set. So how do you define a nested process? Consider the following:

o Although a process definition is based on the activity type, a process definition
cannot be used as an activity within an activity set. An activity must execute
within a context. As a result, activities must be part of an activity set. In turn,
activity sets are always contained within a larger definition. This definition can
be a complex activity, a process definition, or some other construct such as
exception or compensation.

o A process is an activity set that is not contained within any other activity.

o Notice that a context allows definition of a nested process: element defines a
nested process that will be instantiated in that context and overrides any other
definition with the same name that would be visible in this context.

o A complex action may involve the execution of a nested process, by instantiating
that process and waiting for it to complete within the confines of the action. This
can be done using the call. When referring to a WSDL operation this element is
used only for request-response operations.

Rough Draft

 Page 17 of 17

4 References
[1] BPML working draft March 25, 2002.

[2] BPML working draft June 24, 2002.

[3] BPEL4WS (Business Process Execution Language for Web Services) Version 1.0 Aug 9, 2002

[4] Workflow Process Definition Language - XML Process Definition Language Document
Number WFMC-TC-1025 Document Status – Draft 0.04a (Alpha Status) March 01, 2001
Version 0.04 (Draft)

[5] Workflow Process Definition Interface -- XML Process Definition Language. Document
Number WFMC-TC-1025 Document Status - XPDL 1.0 beta. (July 30, 2002) .

[6] WSDL Web Services Description Language (WSDL) 1.1 W3C Note 15 March 2001

[7] Web Services Choreography Interface (WSCI) 1.0, BEA, Intalio, Sun, SAP et al, June 2002

[8] Web Services Coordination (WS-Coordination) BEA Systems, International Business
Machines Corporation, Microsoft Corporation 9 August 2002

