
ConTeXtualized local ontology specification via CTXML∗

Paolo Bouquet1 Antonia Donà2 Luciano Serafini2 and Stefano Zanobini1

1Dept. of Computer Information and Communication Technologies, University of Trento, Italy
2ITC-Irst, Via Sommarive – Località Povo, 38050 Trento, Italy

bouquet@dit.unitn.it, antodona@itc.it,
serafini@itc.it, stefano.zanobini@libero.it

Abstract

In many application areas, such as the semantic web, knowl-
edge management, distributed databases, it’s been recognized
that we need an explicit way to represent meanings. A ma-
jor issue in all these efforts is the problem of semantic inter-
operability, namely the problem of communication between
agents using languages with different semantic. Following
(Bonifacio, Bouquet, & Traverso 2002), we claim that a tech-
nological infrastructure for semantic interoperability between
“semantically autonomous” communities must be based on
the capability of representing local ontologies and mappings
between them, rather than on the attempt of creating a global,
supposedly shared, conceptualization. The goal of this pa-
per is to define a theoretical framework and a concrete lan-
guage for the specification of local ontologies and mappings
between them.

Introduction
In many application areas, such as the semantic web, knowl-
edge management, distributed databases, it’s been recog-
nized that we need an explicit way to represent meanings.
This is needed to enhance (or enable) services like search,
knowledge and service integration, discovery. This pro-
duced efforts like ontology development, semantic-based
markup languages, agent communication languages.

A major issue in all these efforts is the problem of se-
mantic interoperability. Even in restricted domains, like
medicine, tourism, banking, automotive, it is very difficult
to find an agreement on common vocabularies and shared
conceptualizations. This leads to a situation in which differ-
ent agents use the same word to mean different things, use
different words to mean the same thing, use different granu-
larity to describe the same domain, describe a domain from
a different perspective, and so on. All together, this is what
researchers call semantic heterogeneity, namely a situation
in which agents do not understand each others as they use
languages with heterogeneous semantic.

∗This work has been partially supported by the project
EDAMOK Enabling Distributed and Autonomous Management of
Knowledge, funded by the Provincia Autonoma di Trento with de-
liberation number 1060 on date 4/5/2001.
Copyright c© 2002, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

A common approach to overcome semantic heterogene-
ity is to introduce shared representations of meanings. In-
deed, it is obvious that designing any semantic-based ap-
plication would be much easier if people agreed to orga-
nize and exchange information in a common language with
a common semantic. However, in general this is not the
case. Despite the effort for defining a standard semantic
for various domains, people seem to resist to such an at-
tempt of homogenization. Partly, this is due to practical
problems (it can be very costly to change the overall or-
ganization of a database, or the classification of large col-
lections of documents. But we believe that there are also
theoretical reasons why this homogeneity is not accepted,
and in the end is not even desirable. In fact, lots of cog-
nitive and organizational studies show that there is a close
relationship between knowledge and identity. Knowledge is
not simply a matter of accumulating “true sentences” about
the world, but is also a matter of interpretation schemas (e.g.
paradigms (Kuhn 1979), contexts (Benerecetti, Bouquet, &
Ghidini 2000), mental models (Johnson-Laird 1983), per-
spectives (Boland & R.V.Tenkasi 1995), . . .), which allow
people to make sense of what they know. Therefore, any
attempt of imposing external interpretation schemas (and a
definition of meaning always presupposes some interpreta-
tion schema, at least implicitly) is perceived as an attack to
an individual’s or a community’s identity. Moreover, inter-
pretation schemas are an essential part of what people know,
as each of them provides an alternative lens through which
reality can be read. Thus, imposing a single schema is al-
ways a loss of global knowledge, as we throw away possibly
innovative perspectives.

If we accept that interpretation schemas are important,
then we need to approach the problem of semantic interop-
erability from a different perspective. Instead of pushing to-
wards a greater uniformity, we need a theoretical framework
in which:

• different conceptualizations (called “local ontologies”)
can be autonomously represented and managed (and,
therefore, we call them contextualized);

• people can discover and represent relationships between
local ontologies;

• the relationships between local ontologies can be used to
provide semantic-based services without destroying the

“semantic identity” of the involved parties.

We see meaning negotiation as the process that dynami-
cally enable agents to discover relationships between local
ontologies. The goal of this paper is to create an “environ-
ment” in which the preconditions for meaning negotiation
are satisfied. In particular, on the one hand, we define a
theoretical framework in which local ontologies and map-
pings between them can be represented; on the other hand,
we provide a language for describing what we call a con-
text space, namely a collection of contexts and their map-
pings; this language is called ConTeXt Markup Language
(CTXML) and is based on XML and XML-Schema. Lo-
cal ontologies are represented as contexts, in the sense dis-
cussed in formal papers like (Ghidini & Giunchiglia 2001;
Benerecetti, Bouquet, & Ghidini 2000). In what follows, we
will use knowledge management as our main motivation for
contextualized local ontologies; however, as we said at the
beginning, we believe that similar motivations can be found
in any semantically distributed application, e.g. the semantic
web.

Contextualized local ontologies in knowledge
management

Knowledge has been recognized as one of the most impor-
tant assets of modern organizations. (Drucker 1994) claims
that we are entering “the knowledge era”, in which the basic
economic resource is no longer capital, or natural resources,
or labour, but knowledge.

As a managerial practice, Knowledge Management (KM)
can be described as a collection of methodologies and tools
that provide support in creating new knowledge within
the organization and codifying such newly created knowl-
edge into “storable objects” (e.g. documents, repositories,
databases, procedures, forms).

(Bonifacio, Bouquet, & Traverso 2002) shows that in KM
we can find the same dichotomy between centralized and
distributed approaches to knowledge, and provides motiva-
tions to support a distributed approach to KM, namely an
approach that starts from the recognition that there exist au-
tonomous communities within an organization and that tech-
nology should supports knowledge exchange not by elim-
inating differences, but by designing systems that will en-
able semantic interoperability between autonomous com-
munities.

We assume that autonomous communities organize their
(local) knowledge according to a local ontology, i.e. a set
of terms and relations between terms, which provides a con-
ceptualization of the piece of world which is relevant for the
objectives of that community. Examples of local ontologies
are: a set of shared directories, a taxonomy used by a scien-
tific community, and so on. Each community (team, group,
and so on) within an organization has its own conceptualiza-
tion of the world, which is partial (i.e., covers only a portion
of the world), approximate (i.e., has a degree of granular-
ity), and perspectival (i.e., reflects the community’s view-
point on the world). Each local conceptualization represents
a community’s perspective on the world (see for example the
concept of perspective making in (Boland & R.V.Tenkasi

1995)), and contributes to define a community’s identity.
In general, different perspectives are not completely unre-
lated. For example, two communities may have different
viewpoints on the same domain, or have overlapping inter-
ests. Possible existing relations between different perspec-
tives can be seen as mappings between the relative different
and autonomous conceptualizations. These mappings can-
not be defined beforehand, as they presuppose a complete
understanding of the two conceptualizations, which in gen-
eral is not the case. This means that mappings can be discov-
ered dynamically. e.g. through communication, experience,
trial and error. In other words, through meaning negotia-
tion. We are now going to describe the theoretical frame-
work presented in the introduction with respect to such a
KM scenario.

Contexts
The abstract representation of a context is a triple
〈c,A ,R 〉, where: c is a context identifier; A is a collection
of explicit assumptions; and R is an explicit representation.

The context identifier c is a unique identifier associated
with a context; explicit assumptions are attributes (parame-
ter/value pairs) that provide meta-information about the con-
text (e.g., the context owner, or its history); the explicit rep-
resentation is the real content of a context, namely a concep-
tualization, and is represented as a labelled tree. Possible
reference models for the content of contexts can be based
on first order logics, propositional logics, description log-
ics, general graph structures (graphs, acyclic graphs, lattices,
etc.), concept hierarchies, and so on. In this paper, we chose
to use concept hierarchies (in the sense defined in (B̈uchner
et al. 1999)).

Concept hierarchies are built from a set L of labels. L is
composed by two disjoint subsets:

1. LC (concept labels);
2. LR (relation labels).

LR is split into hierarchical (LH) and non-hierarchical – or
general – labels (LG).

Definition 1 (Concept hierarchy). A concept hierarchy is
a graph H = 〈C,E〉, where C is a finite set of nodes, E a
finite set of directed edges between nodes, and all the nodes
and edges have a label from L, such that the edges labelled
with hierarchical labels form a tree.

We don’t put any restriction on the set LC of concept la-
bels, whereas we require that LR = {is-a,part-of, inst-of},
where: is-a represents the subclass relation (for instance
“Cat is-a Animal”, “Man is-a Mortal”); part-of represents
the relation of being part of (for instance, “Leg part-of
Man”, “Tenor part-of Choir”); inst-of represents the fact that
a certain individual is an instance of a concept (for instance
“Paolo inst-of Man”, “Michele inst-of Tenor”).

Contexts can be given a concrete representation using dif-
ferent languages: XML, XML-schema, KIF, CycL, Ontolin-
gua, DAML-OIL, RDF, RDF-schema (see (Corcho & Pérez
) for a survey on these languages). Among them, we decided
to adopt XML and XML-Schema.

2

The concrete representation of a context is an XML doc-
ument composed of two main parts: the header and the con-
tent. The header is an XML document containing the fol-
lowing components:

Owner The owner of the context. This is important in KM
applications, as it can be used, for example, to grant per-
missions, and to allow users to assign a degree of con-
fidence to a context based on their trust in the context
owner.

Group The group in which this context has been developed.
This is necessary as the owner can be a member of differ-
ent groups.

Security Contains information about the access rights,
passwords, encryption, etc.

History Contains information on how a context was gener-
ated. Examples are: “from scratch”, “by combining (por-
tions of) existing contexts”, “by copying some existing
context”.

The content of a context is a concrete representation of a
concept hierarchy in an XML-schema. Since XML-schema
is an XML document, an XML-schema document can be in-
cluded in the XML-document that describes a context. The
elements and the edges of a concept hierarchy are repre-
sented via XML-schema constructs as follows:

1. Each node of a concept hierarchy is represented either as
a complexType or as an element. For example, the con-
cept “Man” and its instance “Paolo” would be represented
as follows:

<complexType name="Man"/>
<element name="Paolo" type="Man"/>

2. The relation is-a is represented via the element
extension. Thus, the relation “Man is-a Mortal” is rep-
resented as follows:

<complextype name="Man">
<extension base="Mortal"/>

</complexType>

3. The relation part-of is represented through a combination
of the primitives element and extension. For exam-
ple, to declare that “Keyboard”, “Monitor”, and “Case”
are elements of a “Personal Computer”, one can use the
following XML-schema:

<complextype name="PC">
<extension base="anything">

<element name="keyboard"
type="PCKeyboard"/>

<element name="monitor"
type="PCMonitor"/>

<element name="case"
type="PCCase"/>

</extension>
</complexType>

4. The relation inst-of is represented through the primitive
element. The example shows the declaration of the fact
that that “NokiaAB inst-of PCMonitor”.

Text minimg

Instance of

Instance of

</complextype>

<complextype name = "article">
 <attribute name = "author type="strung"/>

Context23.xml

<Content>

</Content>

. . .

. . .

Doc23summary.xml

<article>
 <author>
 paolo rossi
 </author>
</article>

Quantum phisics
paolo rossi

blaldkf;j fak
lkadflakfjd;
lakdjf;lakfa
lkajf;lkajd;fl
;lakjf;lakjdf
;lakdjf;lakjdf
lakjd;flkajd
akd alfja alkf
l alfja flla fk

 sdkaljfalklk
klasd akfha
akfha kahdf a’a =
kadh aj f ajf ad
la;jdf
;ladjf
lajd ;a;dfkja f

a;lkdfja;ldfkj

Context.xsd

What
we define
in this
document

for a generic
context)

(an XML schema

Figure 1: CTXML

Entertainment

Shopping

isa

Games Music

isa isa

Comics &
Animation

Movies &
Films

isa

SoundTracks

Platoon O.S.T.

isaisa

isa

instanceOf

partOf

Credit Cards
VHS

Stefano Accorsi

instanceOf

Actors

Syn: Movies

Television

isa

isa

Education

isa

Animation

isa isa

Cartoons

isa

Warner Bros

instanceOf

Looney Tunes

Artists

SEE_ALSO

SEE_ALSO

Figure 2: The context structure ’Entertainment’

<element name="NokiaAB"
type="PCMonitor"/>

In order to validate a context, we can write down a DTD,
or another XML-schema, that describes the structure of the
XML-schema for Concept Hierarchies. For uniformity rea-
sons, we chose to express the structure of a context in an
XML-schema document. An overview of the intuition un-
derlying the concrete representation of the content (i.e. the
explicit representation) of a context is depicted in Figure 1.
Context.xsd is an XML schema that describes the struc-
ture of a generic context; any context can be specified as
an XML document (e.g., context23.xml) of the type de-
scribed by context.xsd.

An example
In this section we present an example of two contexts that
represent the domain of Entertainment; the conceptual struc-

3

tures are portions of the web directory structures of two
well-known Internet search engines. The graphical repre-
sentation of the two structures is shown in Figure 2 and Fig-
ure 4, respectively.

Hierarchical arcs of both context structures are not la-
belled by any relation, as this information is left implicit.
These relations can be guessed on the basis of the seman-
tics of the labels of the nodes. In the pictures above,
we deliberately added relation labels as an example. Fur-
thermore, both contexts contain a non-hierarchical relation,
called ”SEE ALSO”.

As we said, a context is represented as an XML docu-
ment composed of two parts: header and content (i.e., the
concept hierarchy). The context header of ’Entertainment’
is described below, while the the concept hierarchy is repre-
sented in Figure 3. For the sake of simplicity, we chose to
report in Figure 3 only a subset of concepts and relations of
the original concept hierarchy.

<ctxHeader ctxId="cxt01"
label="Entertainment"
add-manager="antodona"
status="draft">

<owner>
<agentId>Agent02</agentId>

</owner>
<group>
<groupId>Entertainment</groupId>

</group>
<security>
<accessRights>read</accessRights>
<encription>none</encription>

</security>
<history>
<version>v1.0</version>
<generatedFrom>

<operationType>scratch</operationType>
<elementUri/>

</generatedFrom>
</history>
</ctxHeader>

In Figure 3, one can easily recognize a piece of XML-
Schema with definitions of new complexType and element
as components of a new schema. The last part of the doc-
ument is the reference to existing mappings for the defined
context:

<mappingForCtx mapId="map01"/>

The other selected context is the one of the ’Arts and En-
tertainment’. The concept hierarchy is depicted in Figure 4.
For lack of space, we do not provide the XML code of this
context.

Mappings
The explicit representations of two contexts can describe a
common portion of the world. For instance, a context about
“cars components” and a context about “radio and hi-fi”
might overlap on “radio and hi-fi for cars”. Despite this fact,
it is not guaranteed that the common part about “radio and

Entertainment

Newspaper

isaisa

Arts &

Movies

On Video
Syn: Home Video
Syn: VHS
Syn: Video Tape

isa
isa

SoundTracks DVD

isa

IMAX

isa
isa

In Theatre

Music

isa
isa

Magazines

isa

Games

isa

partOf
partOf

Console Cartridges

instanceOf

PlayStation

RELATED_TO

RELATED_TO

Figure 4: The context structure ’Arts and Entertainment’

hi-fi for cars” is conceptualized in the same way in the two
contexts. Nonetheless, the concepts in the two contexts are
in some relation. Of course, it is essential that we provide a
way of defining such a relation between concepts of the two
contexts (for example, to return relevant documents from a
context as an answer to a query asked in the other context).
This is achieved by introducing the idea of a context map-
ping. In this section we give a data structure for context
mapping.

The general intuitions behind a context mapping are the
following:

• a context mapping is directional. Indeed, we want to be
able to represent the situation in which a context c1 im-
ports information from another context c2 using a certain
context mapping m, without forcing c2 to use the same
(or the inverse) mapping m to import the information for
context c1.

• a context mapping should not be limited to the represen-
tation of equivalence between concepts of two different
contexts. It should allow for the representation of rela-
tions between concepts at different abstraction level. For
instance, a context mapping should be able to represent
the fact that the concept “printer” in a context is more gen-
eral than the concept “laser printer” in some other context.

A mapping is a relation between a context (called source)
and another context (called target), and it can be formally
represented by a 4-tuple

〈

m,cs,M ,ct
〉

, where m is a unique
identifier for the mapping; cs and ct are two different context
identifiers, for the source and the target context respectively;
M is the real mapping, i.e. the actual relation between the
explicit representations of cs and ct .

Let us define the abstract structure of mappings between
two context hierarchies.

Definition 2. A context mapping is a 4-tuple
〈

m,cs,M ,ct
〉

,
where:

1. m a unique identifier associated with a mapping;

2. cs and ct are distinct context identifiers, called source and
target context;

3. M is concept mapping from the content of the source con-
text to the content of the target context. Where a context
mapping from a concept hierarchies Hs = 〈Cs,Es〉 to Ht =

4

<ctxContent language="en">
<CHContent>
<schema xmlns="http://www.w3.org/2001/XMLSchema"

targetNamespace="http://.../entertainmentYahoo">
<complexType name="Entertainment">
<annotation>

<appinfo><label>Entertainment</label></appinfo>
</annotation>
</complexType>
<complexType name="Entertainment_Shopping">
<annotation>

<appinfo><label>Shopping</label></appinfo>
<documentation> This is the node Shopping which IS_A Entertainment </documentation>

</annotation>
<complexContent>

<extension base="Entertainment">
<element name="CreditCards" type="Entertainment_Shopping_CreditCards"/>

</extension>
</complexContent>

</complexType>
<complexType name="Entertainment_Shopping_CreditCards">
<annotation>

<appinfo><label>CreditCards</label></appinfo>
<documentation> This is the node CreditCards which is
PART_OF the node Shopping </documentation>

</annotation>
</complexType>
<complexType name="Entertainment_Music">
<annotation>

<appinfo><label>Music</label></appinfo>
<documentation> This is the node Music which IS_A Entertainment </documentation>

</annotation>
<complexContent>

<extension base="Entertainment"/>
</complexContent>

</complexType>
<complexType name="Entertainment_Music_SoundTracks">
<annotation>

<appinfo><label>SoundTracks</label></appinfo>
<documentation>

This is the node SoundTracks which IS_A Entertainment_Music
</documentation>

</annotation>
<complexContent>

<extension base="Entertainment_Music"/>
</complexContent>

</complexType>
<element name="PlatoonO.S.T." type="Entertainment_Music_SoundTracks">
<annotation>

<appinfo>
<label>PlatoonO.S.T</label>

</appinfo>
<documentation>

This is the node PlatoonO.S.T which is an
INSTANCE_OF Entertainment_Music_SoundTracks

</documentation>
</annotation>

</element>
</schema>
</CHContent>
</ctxContent>

Figure 3: XML for the concept hierarchy

5

Entertainment

Shopping

Music Comics &
Animation

Movies &
Films

VHS Actors

Stefano Accorsi

SoundTracks

Platoon O.S.T.

Credit Cards

Games Television

Education Animation

Cartoons Artists

Warner Bros

Looney Tunes

Arts & Entertainment

Games

Console Cartridges

Newspaper

PlayStation

MoviesMusicMagazines

SoundTracks

DVD On Video In Theatre

IMAX

Equivalent Compatible

Than
General

Less

Figure 5: Mapping between ’Entertainment’ and ’Arts and Entertainment’

〈Ct ,Et〉, is a tuple of relations
〈

w
−→,

v
−→,

⊥
−→,

∗
−→,

≡
−→

〉

each of which is a subset of Cs ×Ct .

Intuitively c1
w

−→ c2 means that c1 is more general than c2

(e.g., animal is more general than dog); c1
v

−→ c2 means that

c1 is less general than c2; c1
≡

−→ c2 means that c1
v

−→ c2 and

c1
w

−→ c2; c1
⊥

−→ c2 means that c1 is disjoint from c2 (e.g.,
mountain is disjoint from sea), c1

∗
−→ c2 means that c1 is

compatible with c2 (e.g., cars are compatible with hi-fi, as
there are hi-fi for cars).

Distributed Description Logics (Borgida & Serafini 2002)
provides a basic formal framework in which multiple con-
cept hierarchies related mappings can be described.

The concrete representation of a mapping is an XML doc-
ument which structure is described by the another XML-
schema. Similary to contexts, a concrete mapping is com-
posed of two parts: a header, which contains attributes of
the mapping (e.g., an identifiers, the ids of the source and

target contexts, and so on); and a content, namely the actual
mapping between the explicit representations of the source
and target contexts.

An example
Figure 5 shows a graphical representation of a subset of the
possible relations between concepts of ’Entertainment’ and
concepts of ’Arts and Entertainment’.

As contexts, mappings are represented as an xml file, in-
stance of a defined XML-Schema, and composed by two
parts: the header and the set of relations. For the example
of Figure 5 the header is the following, while the content of
the mapping is represented in Figure 6. Note that there are

examples of
v

−→ (Less General Than),
∗

−→ (Compatible),
≡

−→ (Equivalent) relations between concepts. The definition
of all the other relation is similar except for the name.

<mapHeader mapId="map01">
<owner>

6

<mapContent>
<CH2CHContent>
<schema xmlns="http://www.w3.org/2001/XMLSchema"

targetNamespace="http://.../Yahoo2Epinions"
xmlns:ctxSource="http://.../entertainmentYahoo"
xmlns:ctxTarget="http://.../artsEntertainmentEpinions">

<complexType name="lessGeneralThan">
<choice>

<element name="pair1">
<complexType>
<sequence>

<element type="ctxSource:Entertainment" name="source"/>
<element type="ctxTarget:artsEntertainment" name="target"/>

</sequence>
</complexType>

</element>
</choice>

</complexType>
<complexType name="equivalent">
<choice>

<element name="pair1">
<complexType>
<sequence>

<element type="ctxSource:Entertainment_Games" name="source"/>
<element type="ctxTarget:artsEntertainment_Games" name="target"/>

</sequence>
</complexType>

</element>
</choice>

</complexType>
<complexType name="compatible">
<choice>

<element name="pair1">
<complexType>
<sequence>

<element type="ctxSource:Entertainment_Television" name="source"/>
<element type="ctxTarget:artsEntertainment_Movies_OnVIdeo" name="target"/>

</sequence>
</complexType>

</element>
</choice>

</complexType>
</schema>
</CH2CHContent>
</mapContent>

Figure 6: XML for mapping

7

<agentId>Agent02</agentId>
</owner>
<group>
<groupId>Entertainment</groupId>

</group>
<security>
<accessRights>modify</accessRights>
<encription>none</encription>

</security>
<history>
<version>v1.0</version>
<generatedFrom>

<operationType>scratch</operationType>
<elementUri/>

</generatedFrom>
<generatesList/>

</history>
<mapSource ctxId="cxt01" ctxVersion="v1.0"/>
<mapTarget ctxId="ctx02" ctxVersion="v1.0"/>
</mapHeader>

Conclusions
In this paper we described a theoretical framework for con-
texts and mapping for distributed knowledge management.
We also provide a concrete language that allow to specify
contexts and mappings. In a further work (also presented to
this workshop) we have outlined the main ideas of a linguis-
tic based algorithm for automatic discovering of mappings
between contexts.

References
Benerecetti, M.; Bouquet, P.; and Ghidini, C. 2000. Con-
textual Reasoning Distilled. Journal of Theoretical and Ex-
perimental Artificial Intelligence 12(3):279–305.
Boland, J., and R.V.Tenkasi. 1995. Perspective making and
perspective taking in communities of knowing. Organiza-
tional Science 6(4):350–372.
Bonifacio, M.; Bouquet, P.; and Traverso, P. 2002.
Enabling distributed knowledge management. manage-
rial and technological implications. Novatica and Infor-
matik/Informatique III(1).
Borgida, A., and Serafini, L. 2002. Distributed de-
scription logics. In Horrocks, I., and Tessaris, S.,
eds., Proceedings of the 2002 Intl. Workshop on De-
scription Logics (DL2002). Toulouse: CEUR-WS.
ONLINE: http://CEUR-WS.org/Vol-53/, ARCHIVE:
ftp://SunSITE.Informatik.RWTH-Aachen.DE/pub/
publications/CEUR-WS/Vol-53.tar.gz.
Büchner, A.; Ranta, M.; Hughes, J.; and Mäntylä, M. 1999.
Semantic information mediation among multiple product
ontologies. In Proc. 4th World Conference on Integrated
Design & Process Technology.
Corcho, O., and Pérez, A. G. A roadmap to ontology spec-
ification language. In Knowledge Engineering and Knowl-
edge Management. Methods, Models and Tools. Prooceed-
ings of the 12th International Conference, EKAW 2000,
80–96.

Drucker, P. 1994. Post Capitalist Society. Cambridge Uni-
versity Press.
Ghidini, C., and Giunchiglia, F. 2001. Local models se-
mantics, or contextual reasoning = locality + compatibility.
127(2):221–259.
Johnson-Laird, P. N. 1983. Mental Models. Cambridge
University Press.
Kuhn, T. 1979. The structure of Scientific Revolutions.
University of Chicago Press.

8

