
TRANSFORMING XML INTO MUSIC NOTATION

�

�
� � �
� � �

2
4

2
4

� ���

� � � � � � �

� � � � � � � � � � � �

� � � � � � �
���

� � � � � � �

	

 ��� 	

 ��� 	

 ��� 	

 ���

� � � � � � �
� � � ���

 � � � �

TRANSFORMING XML INTO MUSIC NOTATION

A Thesis
in TCC402

Presented to

The Faculty of the
School of Engineering and Applied Science

University of Virginia

In Partial Fulfillment

of the Requirements for the Degree

Bachelor of Science in Computer Science

by

Baron Schwartz

April 10, 2003

On my honor as a University student, on this assignment I have neither given nor received unau-
thorized aid as defined by the Honor Guidelines for Papers in TCC Courses.

Approved (Technical Advisor)
Worthy Martin

Approved (TCC Advisor)
Betsy Mendelsohn

Preface

Several years ago, I was trying to notate some music to send to my brother. I thought that a search

of the Internet would find a free notation editor, but there were no good free programs for creating

notation. There were several for displaying it, but they made me install all sorts of things on my

computer (and reboot — I had not yet discovered GNU/Linux), and did not do what I wanted.

Frustrated, I searched for music markup languages and found nothing. I could not understand why

no one had met this seemingly obvious need.

I quickly had the idea to create my own XML format, so I sent a message to my advisor. His

reply directed me to Perry Roland, and I learned that my initial impression — “no one has done

this before” — was the opposite of the truth. As my interest turned into a thesis project, my

research has impressed upon me what a difficult problem this is, and how much better off we will

all be when it is finally solved.

This thesis is based on the MEI format as of December 2002. Much has changed since then,

but I needed to ignore it in order to finish my work. I apologize for any information that is out of

date or inaccurate.

I owe a debt of gratitude to Perry Roland and Worthy Martin for their help and time. I am

fortunate to work with two people so intelligent, knowledgeable, and patient. My thanks also go

to Professor Peter Norton. I hope my writing reflects his teaching. A special thanks to my family,

especially my brother Nathaniel, and to the friends that I haven’t seen much since I started working

on this project, including Matt, Kris, Dana, and Wendy and Ian.

Baron Schwartz

March 2003

iii

Contents

Acronyms ix

Abstract xi

I Thesis 1

1 Introduction 2
1.1 Background . 2
1.2 Problem Definition, Scope, and Success Criteria . 3
1.3 Rationale . 4
1.4 Social Impact . 5
1.5 Overview of Contents . 6

2 Literature Review 7
2.1 Common Musical Notation and Musical Complexity 7
2.2 Computer Representations of Music and Musical Notation 8
2.3 Chapter Summary . 12

3 Music and Music Notation 13
3.1 What is Music? . 13
3.2 Music Preservation . 14
3.3 Music Notation . 14
3.4 Chapter Summary . 16

4 XML and XSLT 17
4.1 Overview . 17
4.2 What is XML? . 18

4.2.1 Syntax . 18
4.2.2 Document Type Definitions . 20
4.2.3 Well-Formed and Valid Documents . 21
4.2.4 The Complete Sonnet Example . 22
4.2.5 Document Structure . 22
4.2.6 Manipulating XML Files . 23
4.2.7 Advantages and Uses of XML . 24

4.3 XSLT . 25
4.3.1 Mathematical Properties . 25
4.3.2 Syntax and Language Constructs . 26

iv

CONTENTS v

4.3.3 XPath . 27
4.3.4 Transformations . 27

4.4 Chapter Summary . 30

5 The Music Encoding Initiative 31
5.1 What is the MEI? . 31
5.2 Requirements . 32
5.3 The MEI DTD . 33

5.3.1 DTD Structure . 33
5.3.2 Inheritance and Propagation . 35
5.3.3 Familiar Terminology . 36
5.3.4 Critical Apparatus . 37

5.4 A Sample MEI File . 37
5.5 Chapter Summary . 39

6 Project Research 40
6.1 Transformations . 40

6.1.1 A Sample Transformation . 42
6.1.2 Results . 44

6.2 Content and Presentation . 45
6.2.1 HTML and CSS . 45
6.2.2 Results . 48

6.3 Chapter Summary . 48

7 Methods 49
7.1 Activities . 49
7.2 Materials, Equipment, and Software . 50
7.3 New Languages and Technologies . 51
7.4 Stumbling Blocks . 51
7.5 Valuable Resources . 52

8 Conclusion 53
8.1 Interpretation . 54
8.2 Recommendations . 54

II Appendices 57

A Suggestions for the MEI Project 58
A.1 Avoid Non-Standard Extensions . 58
A.2 Avoid Terse Attribute and Element Names . 59
A.3 Avoid Using #PCDATA for Attribute Values . 60
A.4 Avoid Including Formatting Information in the DTD 62
A.5 Discourage Authors From Modifying the DTD . 63
A.6 Avoid Creating a Monolithic DTD . 63
A.7 Use Configuration Management Tools . 64

CONTENTS vi

B Visual Rendering of Music Notation 65
B.1 Nested Boxes . 66
B.2 Self-Aware Elements . 67

C Stylesheet Design Concerns 68
C.1 Why Have a Style Language? . 68
C.2 Categories of Style Information . 69
C.3 A Default Stylesheet . 70
C.4 Stylesheets as an Extension Mechanism . 71
C.5 Stylesheet Namespaces . 71
C.6 A System of Units . 72
C.7 Attaching Style to a Document . 74

D Mup: The Music Publisher 75

E Comparison of MEI and MusicXML 77

F DTDs and XML Schema 81

G Transformation Test Cases 83
G.1 The Mozart Trio . 84
G.2 The Mozart Clarinet Quintet . 85
G.3 The Saltarello . 86
G.4 The Telemann Aria . 86
G.5 Unmeasured Chant . 88
G.6 The Binchois Magnificat . 88
G.7 Summary . 90

H Code Listing: XSLT Transformation Program 91

I Code Listing: Mary Had a Little Lamb 112

List of Figures

1.1 Musical data should be usable for many purposes. 3

3.1 The time value of each group of notes adds up to one whole note. 14
3.2 A simple example of music notation. 15
3.3 The same example in 2

2 time. 15
3.4 Advanced notation example. 16

4.1 Cross-nested HTML tags . 19
4.2 Properly nested XML tags . 19
4.3 A Venn diagram illustrating that a valid XML file must be well-formed. 21
4.4 The DOM tree for the sonnet file. 23
4.5 A simple MathML example. 24
4.6 A simple SVG example. 25
4.7 A graphical view of an XSLT transformation. 28

5.1 Attribute propagation and inheritance . 36

6.1 Two extremes of equivalency . 41
6.2 MEI-encoded files are equivalent to music notation 42
6.3 The fully transformed “Mary Had a Little Lamb.” 44
6.4 Mup does not support the archaic double-G clef . 45

8.1 Viewing notation as essential content removes MEI further from reality 55

A.1 The results of the beamstyle=4,4,4,4 parameter to Mup 61
A.2 Positioning and bulge value of a phrase mark . 62

B.1 An element box and its handles . 66

C.1 Standard positioning for the ends of a slur . 69

G.1 The Mozart Trio . 84
G.2 The Mozart Trio . 85
G.3 The Mozart piano sonata . 86
G.4 The original figure . 86
G.5 Anonymous saltarello. 87
G.6 The original figure . 87
G.7 The Telemann Aria . 88
G.8 The original figure . 89
G.9 Unmeasured chant in modern notation . 89

vii

LIST OF FIGURES viii

G.10 The original figure . 89
G.11 The Binchois Magnificat . 90
G.12 The original figure . 90

Acronyms

API Application Programmer Interface. A defined interface for interacting with some program
from another program.

CMN Common Musical Notation.

CSS Cascading Style Sheets. A visual formatting language for HTML and other languages.

DARMS Digital Alternate Representation of Musical Scores. A file format for representing mu-
sical scores.

DOM Document Object Model. One way to manipulate XML files.

DTD Document Type Definition. A structural definition of an XML language such as MEI.

EPS Encapsulated PostScript. A “bounded” PostScript image.

GNU GNU’s Not Unix. Free, high-quality software.

HTML Hypertext Markup Language. The most common markup langage for Web pages.

MEI Music Encoding Initiative. An XML format for encoding musical information.

MIDI Musical Instrument Digital Interface. A common interchange format for musical informa-
tion.

PDF Portable Document Format. A universal document format.

SAX Simple API for XML. An alternative to the DOM.

SGML Standardized General Markup Language. A general markup language that is the parent
of XML, HTML, and many other languages.

SMDL Standard Music Description Language. An SGML language for describing music.

SQL Structured Query Language. A language for querying relational databases.

SVG Scalable Vector Graphics. A language for defining graphics, often called “the XML version
of PostScript.”

TEI Text Encoding Initiative. An encoding framework for texts.

URL Uniform Resource Locator. An electronic “address” for a resource such as a file.

ix

LIST OF FIGURES x

WC3 World Wide Web Consortium. A standards body that has standardized many common Web
technologies.

XHTML Extensible Hypertext Markup Language. The XML version of HTML.

XML Extensible Markup Language. A structured syntax for markup languages.

XSLT Extensible Stylesheet Language: Transformations. A language tailored for transforming
XML documents into other forms.

Abstract

This thesis project tested whether an XML (Extensible Markup Language) encoding of musical data

can be transformed into printed music notation. The encoding format is called MEI, the Music

Encoding Initiative, and is intended to become a framework for encoding musical data to enable

storage, retrieval, and transmission. Because music notation requires a superset of the information

needed for most other purposes, successful transformation into music notation indicates that the

MEI format represents enough information about musical data to be useful for other purposes.

The thesis also analyzes the design of the MEI format, and suggests design techniques, such as

variations on stylesheet languages, that may result in a more flexible, extensible format.

xi

Part I

Thesis

1

Chapter 1

Introduction

This thesis project examines a new XML file format designed to encode musical data. The XML

format, known as MEI,1 is intended to support generic information retrieval and usage. The thesis

research demonstrates the format’s feasibility and suggests directions for further research.

1.1 Background

Computers are natural tools for manipulating musical information. For example, there is software

for composing scores and tablature, creating MIDI files, analyzing music, and cataloging, indexing,

and searching libraries of works. These uses all imply storage and retrieval of musical information.

Some tools use databases to store musical information, but most use files. Unfortunately, files

created for one purpose may not be usable for others. For instance, a file that stores bibliographical

information is probably not useful for reproducing printed notation faithfully. The files may be

incompatible even when the uses are similar; one format for printed scores is unlikely to be readable

by another program. This is overwhelmingly true of the many file formats that exist. Because each

fails to address some need adequately, and because the formats are not designed to be extensible,

programmers have reinvented the wheel dozens of times, leading to vast bodies of computer-encoded

knowledge that cannot be shared effectively. It is often possible to translate between formats, but

unless the data is trivial, some information is usually lost.
1MEI stands for Musical Encoding Initiative and is pronounced “may.” The format was formerly known as MDL,

or Music Description Language. See [32] for details.

2

CHAPTER 1. INTRODUCTION 3

The need for a universal format is self-evident; clearly, one would like to encode data once and

use it many times for many purposes, as shown in Figure 1.1. However, this does not describe a

universal file format completely. Any such format must at least address the majority of its users’

needs “out of the box,” be easy to use without modification, be easy for software developers to

work with, and be extensible to other purposes easily. Perry Roland, a researcher at the University

of Virginia’s Digital Library project, intends to develop MEI into such a format. MEI uses XML, a

universal data-interchange syntax, to define a musical-data encoding. MEI’s ability to store musical

information in a universally accessible way is mostly untested.

Perform

Transmit

Search

Analyze Catalogue

Retrieve

Interpret

Musical Data

View as Notation

Figure 1.1: Musical data should be usable for many purposes. In this example, the oval repre-
sents the encoded musical data; rectangles represent uses of that data. The arrows indicate that
universally encoded data can be used for many purposes.

1.2 Problem Definition, Scope, and Success Criteria

The thesis proposal identified two areas of research:

• Can Perry Roland’s MEI format be used to generate printed music notation?

• How is it possible to separate information about musical content from information about its

presentation?

The first question is a feasibility test for a subset of possible uses. In practice, notation is a very

important use for musical data; most existing file formats are designed to encode music notation.

Simply transforming a MEI file into printed music, which is fairly straightforward with a special

scripting language called XSLT, can answer the question. It is easy to process the resulting text file

into the industry-standard Postscript format with the Mup music publication program, creating

high-quality printable files.2 This demonstrates that MEI files can encode enough information
2Adobe PostScript is a stack-based page description language that describes shapes with arbitrary precision.

CHAPTER 1. INTRODUCTION 4

about music to generate a printed view of it.

The second question is beyond the scope of an undergraduate thesis, but specific issues are

small enough to address. These include defining “content and presentation” as it applies to MEI,

suggesting a standard means of extending the MEI format, and because music notation is such an

important use of MEI, suggesting a way to think about music notation’s visual layout. The intent

is to avoid mistakes that have kept other formats from being universally useful.

The success criteria for the research are informal. To answer the first question above, it is only

necessary to demonstrate that a MEI-to-PostScript transformation is possible. The second question

is too large to answer fully, so I chose to define the question more clearly, and include additional

thoughts as appendices to this thesis.

1.3 Rationale

This project helps solve an important, difficult problem. It is important because the lack of a

universal musical data format limits the use of musical data. It is difficult because of the size and

complexity of the problem.

Musicians, software developers, publishers, and researchers continue to waste a great deal of

time, money, and effort on formats that cannot be used effectively for anything but the purposes for

which they were designed. In the end, the user bears the costs. The lack of a good way to exchange

music over the Internet, for example, means that people often purchase it by mail. Customers

can purchase some music in Adobe’s Portable Document Format (PDF), but these files can only

be viewed and printed. There is no way to embed music notation in a web page or view it in a

browser. Plug-ins exist for some browsers, but they are not widely supported, and the user is forced

to download and install the plug-in, which uses a proprietary format itself [59, 53].

Not only does the user pay too much for what he or she can do, but many things are impossible

to do. There are no truly excellent programs for writing music notation at a reasonable price, for

example. Thus, the end user has for decades been paying too much for too little functionality.

The problem is difficult because music is complicated [51], and because there is a great deal

of it to encode. One of the first bibliographical projects, RISM, identified the need to catalog 1.5

million works more than 50 years ago [10, p. 318].

CHAPTER 1. INTRODUCTION 5

MEI is one step towards a good format. Once the format exists, developers can use it to create

the tools. This project helps develop the MEI format by showing that it is useful for a single

purpose, that of creating printed music notation.

1.4 Social Impact

This thesis research will impact society by either encouraging or discouraging development and

adoption of the MEI format. In the short term, it will only impact academics and researchers, but

in the long term it could affect many organizations, corporations, and individuals.

Because of the academic nature of the MEI project at this point, this project will only affect

researchers working on this and similar projects. Given that the MEI project and format are new

and experimental, very few people are involved with it at present, and only Mr. Roland has invested

significantly in it. This limited deployment and involvement constrains the format’s impact in the

short term, and by extension, this project’s impact.

Assuming that the format is developed actively and eventually adopted as a standard, this

project could eventually impact more of the research and development community that centers

around musical information storage, retrieval, and analysis. It could also affect developers interested

in writing applications for interactively creating music notation, if they consider using MEI — either

as a file format for storing generated notation files, or as an interchange format. This project could

also affect users and developers of other programs if MEI becomes a common interchange format.

Any format that emerges as a standard will have great social and financial impact. The ability

to store musical data in a single type of file and use it for any purpose would revolutionize the

music industry and academia. Many existing tools would need to support such a standard. People

would use such music files in entirely different ways; for example, the ability to transmit them

easily across the Internet would change the way people buy and use sheet music. This could impact

music publishers heavily, possibly forcing a change in business models. In 1999, music publishing

revenues reached $6.57 billion; reprint and sale of printed music constituted a total of over $711

million, or almost 11% [38, p. 3–8]. Such a large industry could be very sensitive to a technological

change such as MEI. In the best case, however, the effects could be positive, leading to reduced

costs, greater ease of use, less redundant data, and even uses that are currently not possible because

CHAPTER 1. INTRODUCTION 6

there is no standard way to encode music.

I anticipate that these changes will be very slow if they happen. There is too much music encoded

in too many other formats; converting such music to a universal standard will be a long, painful

process. Rather, if a standard emerges, it will do so slowly and in the face of great resistance

from publishers, who stand to benefit from keeping proprietary standards in place. Although

sheet music sales have, with the advent of recordings, become a secondary source of revenue, they

remain important because sheet music for any given song may be distributed in many different

arrangements and in different markets [4, p. 47]. In fact, one sheet company distributed an award-

winning song in versions for piano and voice, piano solo, easy piano, and many other formats, for

a total of 13 different versions [4, p. 203]. This market might even expand once moved online.

1.5 Overview of Contents

This thesis first introduces the reader to the concepts and technologies needed to understand the

project. These include a review of relevant literature, music and music notation, XML and related

technologies, and Perry Roland’s Music Encoding Initiative. The thesis then presents the project’s

research method and results, and concludes by analyzing the results and presenting suggestions

for further work. Appendices present the project’s findings in more detail, analyze additional

technologies, and elaborate on recommendations.

Chapter 2

Literature Review

This chapter introduces some of the existing musical file format standards and prior research in

the field. Since people have used so many file formats for so long, it is important to understand

them for several reasons. First, none of them is adequate for every possible need, or even for most

needs. All have some flaw or fail to address some need. This has prevented people from adopting

any single format, and forced people to create new languages. A universal format must succeed

where all these languages have failed. It must also duplicate all the successes of these languages.

Finally, much software exists to work with most of these languages, and compatibility is an issue

to keep in mind when designing or evaluating a new format.

2.1 Common Musical Notation and Musical Complexity

Because common musical notation is the most common means of notating music graphically, many

file formats are designed to encode notation itself rather than some other aspect of music. This

presents unique challenges and creates some constraints on the format’s usefulness.

Common musical notation is a highly complex system of symbols that evolved over centuries.

Selfridge-Field states that it has survived partly because of its flexibility and ability to communi-

cate a composer’s intent [51, p. 4]. CMN is complex because music is complex; even the most basic

music is difficult to describe. According to Selfridge-Field, music exists in several contexts: the

sound context, the notation or graphical context, the rational or analytical context, and the gestu-

ral context — performers’ gestures and the composer’s directions for these gestures, motions, and

7

CHAPTER 2. LITERATURE REVIEW 8

actions. Downie extends this into “seven facets, each of which plays a variety of roles in defining the

MIR [Music Information Retrieval] domain. These facets are the pitch, temporal, harmonic, tim-

bral, editorial, textual, and bibliographic facets” [10, p. 297]. Music’s attributes (pitch, duration,

tempo, dynamic level, articulation, parts, timbral definition, and orientation) are often complex

themselves. Duration, for example, can be either relative or absolute. Musical notation represents

this complexity ingeniously: “graphical features have been used very cleverly to convey aspects of

sound that must be accommodated in the realization of a single note” [51, p. 7–11].

CMN’s long history and oral tradition have made it imprecise. For example, grace notes are

interpreted in various ways.1 In theory, they have no time value, but in practice they must either

borrow their time value from the note following, or steal it from the one preceding — yet a computer

cannot steal time that has already passed [51, p. 18–19]. Grace notes and other features of music

notation may require either looking into the future or making multiple passes over a piece; many

early formats attempted to design a single-pass encoding, which is one reason they failed. In

general, it is very difficult to encode CMN with computers.

2.2 Computer Representations of Music and Musical Notation

There are many formats for representing musical data digitally, so this thesis will only examine

some of the more important ones. The following paragraphs explore various formats, comparing

and contrasting their uses, similarities and differences, and strengths and weaknesses. Since many

formats solve similar problems in similar ways, some formats are discussed together.

The first important computer music language was DARMS, the Digital Alternate Representa-

tion of Music, which is very powerful and has been extended into several dialects. Stefan Bauer-

Mengelberg and others developed it in 1963, and it is now viewed by many as the most mature and

complete way to represent musical notation digitally [52, p. 163]. It is limited in that it is designed

for creating printed notation. For example, it does not even record pitch explicitly. This makes it

very difficult to extract information about the music itself from a DARMS file.

MusiCopy, a project at the Ohio State University, produced important advances in musical
1A grace note, or a group of grace notes (called a groupetto) is usually rendered in a smaller size than ‘regular’

notes, and is sometimes connected to the following ‘regular’ note by a slur.

CHAPTER 2. LITERATURE REVIEW 9

notation in the 1980s. The MusiCopy researchers wanted to enable musical typesetting by computer,

just as with textual typesetting. Building on the work of Donald Knuth’s TEX typesetting program,

the MusiCopy researchers investigated problems such as line breaking, which is difficult because

inter-note spacings cannot follow a simple linear rule as for text. When slightly modified, Knuth’s

model can handle all of the choices but the spacing by assigning penalties for badly broken lines

and minimizing the total cost of the penalized lines. TEX’s algorithm assumes that the last line of

a paragraph does not have to be full. However, the last line of music must be full, which requires

extra processing [16, p. 2–4]. MusiCopy also investigated how to slant beams between notes

while maintaining readability and avoiding interference. Non-interference “is the idea that most

characters and signs in music be kept within the staff as much as possible” [56, p. 2]. The results

are impressive; in the case of note spacing, “the results of the algorithm have been compared with

good manual spacing of music, and the two are almost indistinguishable in the majority of cases”

[15, p. 1].

Mup appears to be based on MusiCopy. Mup is both a descriptive language and a program

to process the encoded music into finished musical notation. It produces Postscript, the standard

file format for high-quality press-ready printing. Mup bears out the MusiCopy research, which

concluded that “ultimately, for every character, an absolute Cartesian coordinate with respect to

the page, must be provided” [43, p. 2]. PostScript indeed describes each and every mark on the

page in terms of its x and y coordinates.

TEX, the de facto standard for producing high quality manuscripts such as textbooks, can also

be extended to handle music notation. Several variants exist, including MuTEX, MusicTEX, and

MusiXTEX[37]. The need to embed musical notation into TEX documentation, and the fact that

TEX itself provides a convenient platform for high-quality typesetting, motivated these extensions.

Brook and Gould developed the Plaine and Easie Code for indexing and cataloging music.

Plaine and Easie is text-based, and uses standard typewriter symbols. It is intended for meaningful

bibliographical entries and card catalogs. Repertoire Internationale des Sources Musicales (RISM)

uses it as the basis for a major bibliographical project, RISM Series A/II [19, p. 363–4]. It is simple

and does not pretend to represent musical notation completely.

GUIDO, another text-based code, is based on the belief that “existing representations are

CHAPTER 2. LITERATURE REVIEW 10

either too weak to encode all the required information (like, for example, MIDI), or they are too

complex. . . its key feature is representational adequacy” [45, p. 1].

Some codes are based on programming languages. Canon is an example of a set of Lisp macros

(extensions); it evolved into Arctic [8, p. 47–56]. CMN2 is another [50, p. 218]. The TEX-

based codes are based on Donald Knuth’s TEX typesetting language. Other languages are based on

common Unix tools; music is a troff preprocessor for printing scores. Muscript is a Perl script that

produces Postscript output from text. Humdrum is a set of tools for analyzing music represented in

kern, which “permits the representation of the bare bones of traditional Western musical notation

— pitch duration, and voicing” [21, p. 377]. Humdrum uses UNIX tools and languages, such

as grep and awk, to analyze music in terms of, for example, melodic accent in Gregorian chant.

MuseData uses a database to represent the logical content of musical scores in a software-neutral

fashion [17, p. 402].

GNU LilyPond is a free system for typesetting music. The input is plain text, and looks similar

to TEX. According to the LilyPond website, “LilyPond prints beautiful sheet music. It produces

music notation from a description file” [28]. NoteEdit is another free system for GNU/Linux. Its

file format is similar to Mup, and it can in fact read most Mup files. It allows the user to edit

notation graphically and export it to a variety of other formats, including GNU LilyPond and

MusiXTEX [39].

There are also many sound-related codes. The most important is MIDI, a standard way to

represent musical events. MIDI can represent pitch, volume, and other characteristics of music as

sound. Many extended MIDI formats exist, but MIDI is most important as an interchange format.

More codes can be translated to and from MIDI formats than any other [18, p. 69], making MIDI

an important interchange format for any proposed musical encoding. Unfortunately, MIDI is only

a series of instructions in the form “turn on a sound of a given pitch at the specified time for a

certain duration,” and is thus a very poor interchange format because it only stores data about the

performance domain. The fact that it is the best existing interchange format reveals the extent to

which musical data cannot be shared effectively.

Many of these encodings are procedural, in that the encoding is actually evaluated to generate
2CMN stands for the unfortunately named Common Music Notation, not to be confused with actual common

music notation.

CHAPTER 2. LITERATURE REVIEW 11

the final output, as opposed to declarative. Declarative languages simply store information, but

procedural ones store instructions to a processor. Procedural codes include the TEX-based codes,

Canon, Muscript, and GNU LilyPond.

Codes in the SGML [58] family are the most important to this project, because XML is an

SGML derivative and MEI is an XML format. There is a long history of development efforts on

SGML formats leading up to XML. HyTime is an application of SGML developed in the late 1980’s.

It defines a meta-language that was never implemented fully because of its complexity. HyTime is

important to this discussion because of the time elements that it used to extend SGML, making

possible SMDL, the Standard Music Description Language. SMDL is an application of HyTime

[55, p. 469]. Together, HyTime and SMDL can “represent sound, notation in any graphical

form, and processes of each that can be described by any mathematical formula” [55, p. 479].

SMDL itself organizes music into several domains, and places the most importance on the logical;

the other domains are the visual, the gestural, and the analytical. SMDL can describe nearly

anything, including alternate tunings, but “visual and analytic domains are largely undefined by

the Standard” [57, p. 38], which leaves them to the implementer. This extremely general approach

makes SMDL largely useless for encoding music. It attempts to include anything that could be

considered music, defines such confusing terms as “contuse event,” and uses unintelligible tag names

for encoding music. These factors have contributed to a lack of interest in SMDL.

There are several XML encodings at present. Unfortunately, authors have repeated past mis-

takes in creating XML encodings. The major formats are MML, MusicML, NIFFXML, MusiXML,

MusicXML, and MEI, the subject of this thesis. Some of these were short-lived or experimental,

but MusicXML is being actively promoted. MusicXML attempts to be sufficient, not optimal, as

an interchange format between musical notation, performance, analysis, and retrieval software [14,

p. 114]. MEI attempts to represent common western music notation from the mid-seventeenth

century onward and to function as an archival data format [46, p. 126]. EMNML, or Enhanced

Musical Notation Markup Language, is the result of a Master’s thesis in Computer Science. EM-

NML addresses the lack of a standard way to transmit music over the Internet, so the format is

built to handle transport issues [31]. XML is inherently a good choice for storing data, but as of

yet no XML format solves the problem of how to store musical data in a way that is universally

CHAPTER 2. LITERATURE REVIEW 12

accessible.

It should now be clear that there are many major formats, and almost as many different problems

they are built to solve. There are also major divisions in their approaches to encoding musical data,

such as procedural vs. declarative encodings. This variety of formats, and their almost mutually

incompatible goals and methods, combine with the fact that none of them is a complete solution to

create a huge, complicated body of computer-encoded knowledge that is relatively useless for most

purposes. The solution to this problem (a universal format) may be a simple idea, but neither the

format nor its adoption will be simple.

2.3 Chapter Summary

A great deal of work has gone into developing music representation formats, especially for repre-

senting music notation, but no universally useful format exists yet. Most of the groundwork for

notational needs already exists, but other domains are still largely unsupported and immature. It

is possible that XML’s inherent advantages for storing data can provide a basis for a universal,

standardized format.

Chapter 3

Music and Music Notation

This chapter defines music both as information and as music notation,1 and introduces music

notation briefly. It is necessary to restrict the definition of “music” in order to understand the

problem the MEI format attempts to solve. The reader must also understand the basics of music

notation to understand how MEI files are transformed into music notation.

3.1 What is Music?

The word “music” means many different things — for example, “a song,” “the idea of a song,”

“all music, in general,” or “pitched events with durations.” There are also differing opinions on

what constitutes the “authoritative” version or form of a particular work. One could claim that

the authoritative version of Beethoven’s 9th symphony existed only in his head, while another view

is that it “is” what he wrote down. A good definition of “music” is a necessity for using computers

to encode music.

This thesis views music as information and defines it as events with pitch and a start time

and duration. Depending on the piece, it may also be necessary to consider other fundamental

information, such as the lyrics. The MEI project defines musical data as notation and defines

music as “that which can be notated in common Western musical notation” [48].
1For the purposes of this thesis, “music notation” means common Western music notation.

13

CHAPTER 3. MUSIC AND MUSIC NOTATION 14

3.2 Music Preservation

There are many reasons to preserve music. Recreating a performance is an obvious one, but one

might also want to analyze the music or retrieve information for a cataloging or searching function,

for example. Ideally, the composer’s thoughts could be preserved, but we must settle for preserving

either a performance, or instructions on how to recreate a performance.

Recordings simply preserve the sound vibrations of a particular performance,2 but because

recording is a recent invention, it has been standard practice for centuries to preserve music by

leaving instructions for recreating a performance. Because the most complete and useful means of

doing this is music notation [51], representing notation adequately is a minimum goal for preserving

music.

3.3 Music Notation

Common music notation, or CMN, is essentially a graph of pitch against time. Time progresses

from left to right, and pitch varies vertically.

Time values are based on a fractional system. Notes are named whole note, � , half note, � ,

and so on down to 128th notes.3 Different note shapes and varying numbers of flags on the stems

indicate different time values; quarter notes have a stem but no flag � , and eighth notes have one

flag on the stem �
�

. 16th through 128th notes have additional flags on the stem. Placing a dot

��� after a note increases its time value by 50%. Figure 3.1 demonstrates a variety of notes with

different time values.

� � � �
�
�
��
�
���
�
���
�

�
���
��

�
���
��

� � ��� � � �

Figure 3.1: The time value of each group of notes adds up to one whole note.

Music is notated on a staff, which is usually a series of five horizontal lines. A note’s pitch is

indicated by the combination of its vertical position and a clef that identifies a particular pitch.
2Digital recordings do not record vibrations, but the measured amplitude of the vibrations, typically around 44,100

times every second.
3British musicians use a variety of other names, such as semibreve and crotchet.

CHAPTER 3. MUSIC AND MUSIC NOTATION 15

Pitches are named with the letters A through G. The pitch may be raised or lowered a half-step

by placing a
�
or

�
in front of it. Figure 3.2 shows a staff with a treble clef , which indicates that

the G above middle C is to be placed on the second line up from the bottom.4 The staff has a key

signature of 1
�
, which means that all F notes on the staff are to be played as F

�
by default. The

next item on the staff is the time signature 4
4 , which indicates the basic unit of time and how many

units of time are in a measure. Measures are separated by vertical bar lines and usually contain

exactly the right number of notes to add up to the time signature. In Figure 3.2, the numerator

indicates that there are 4 units in a measure, and the denominator declares a quarter note to be

the basic unit of time. This example contains the notes from middle C up to the C above. Each is

a quarter note, which according to the time signature has the time value of one beat. Of course, it

is possible to notate exactly the same music in a different time signature, as shown in Figure 3.3.

�
4
4 � � � � � � � �

Figure 3.2: A simple example of music notation.

�
2
2 � � � � � � � �

Figure 3.3: The same example in 2
2 time.

Music notation is very complex; there are many shorthand notations and special cases. For

instance, the flags on adjacent notes are often beamed � � together for clarity. It is also possible

to notate a tremendous variety of information, including lyrics, performance instructions, and

dynamics, as well as instrument-specific information such as guitar fingerings. Figure 3.4 on the

next page demonstrates some of these features.

This brief introduction to music notation demonstrates that it is possible to record instructions

for performing a piece of music, thus preserving in some sense the composer’s intentions. Again,

the essential representation is a graph of pitch against time; the notation shows a series of pitched

events with a start time and a duration.
4The treble clef is a stylized G that curls around the second line on the staff.

CHAPTER 3. MUSIC AND MUSIC NOTATION 16

�
4
4

-Sama ple lyrics for

b� � � c � �
d �

e

this -sim ple piece

� � �
g

� � � �
f

Figure 3.4: This example demonstrates more advanced notation elements. From right to left, they
are: a) lyrics beneath the notes b) a beamed pair of eighth notes c) a slurred pair of quarter notes,
indicating that the notes should be blended together as much as possible d) an “accidental”

�
in

front of an F, which cancels the automatic sharp implied by the key signature e) a phrase mark,
indicating that all the notes are to be performed as one “phrase” (perhaps in one breath) f) a
crescendo, instructing the performer to increase the volume g) two tied eighth notes, which are
performed as one note with the combined time value of both.

3.4 Chapter Summary

This chapter explained that “music” means many things to many people. It discussed some goals

and methods of preserving music, and introduced music notation, the most important means of

preserving music briefly. A good definition of “music” is important to this project because the

definition of “music” influences heavily what data are encoded in MEI files. Music notation is

important because it is the desired output of the MEI feasibility testing.

Chapter 4

XML and XSLT

This chapter introduces XML and XSLT. XML is a meta-language for designing data languages,

and XSLT is a programming language for transforming XML documents. XML syntax is extremely

powerful for data storage because it imposes structure on the data and requires the file to have a

standard syntax. XSLT is useful because it is designed to work directly with XML files. This thesis

project used XSLT to transform MEI files from XML format to an intermediate format, Mup, from

which printed music notation can be produced.

4.1 Overview

Since its creation in 1997, XML has become a ubiquitous tool for data representation, making it a

natural choice for a universal music encoding. An XML file is a plain text file that contains both

data and special markup to indicate the data’s structure. XML itself is a set of syntax rules that a

file must follow; additional rules are usually imposed on the data in the form of a DTD (Document

Type Definition) or XML Schema. Whereas XML requires a certain syntax, the DTD or XML

Schema requires the data to be of certain types and appear in certain places within the file. The

combination of these two restrictions allows a computer to manipulate the file, for example viewing

it as a hierarchical “tree” of data. XSLT builds another tree structure in the computer’s memory

by selecting data from the XML file’s tree. This second tree is the XSLT transformation’s output.

17

CHAPTER 4. XML AND XSLT 18

4.2 What is XML?

XML stands for eXtensible Markup Language:

Extensible Markup Language (XML) is a simple, very flexible text format derived from
SGML (ISO 8879). Originally designed to meet the challenges of large-scale electronic
publishing, XML is also playing an increasingly important role in the exchange of a
wide variety of data on the Web and elsewhere. [11]

SGML (Standardized General Markup Language) is an extremely general framework for creating

markup languages. XML is a limited subset of SGML that simplifies the rules without sacrificing

the ability to represent almost any conceivable kind of data.1 Both SGML and XML are named

somewhat confusingly — they are not languages, but are meta-languages for defining languages.

4.2.1 Syntax

XML and SGML documents contain structured plain text. Authors indicate the structure by

placing special text, called markup tags, around text the data. For example, suppose the datum is

Shakespeare’s Sonnet XVIII (we will later see musical data examples, but for now a simple example

is better):

Shall I compare thee to a summer’s day?
Thou art more lovely and more temperate:
Rough winds do shake the darling buds of May,
And summer’s lease hath all too short a date;
. . .

This could be written in XML as follows:

1 <sonnet>
2 <line>Shall I compare thee to a summer’s day?</line>
3 <line>Thou art more lovely and more temperate:</line>
4 <line>Rough winds do shake the darling buds of May,</line>
5 <line>And summer’s lease hath all too short a date;</line>
6 ...
7 </sonnet>

1See [58] for a comparison of SGML and XML.

CHAPTER 4. XML AND XSLT 19

The structural delimiters are tags, which begin and end with angle brackets <...>. The text

between the angle brackets contains information about the element ; at a minimum, it names the

element. An element consists of an opening tag, the element’s contents, and a closing tag. Closing

tags have the same name as the opening tag, but start with </. Elements can contain text, other

elements, or a mixture of the two; elements can also be empty. The example above is a <sonnet>

element that contains four <line> elements, each of which contains text.2

SGML permits extremely general syntax rules. For example, tags are case-insensitive, do not

have to be closed, and can be cross-nested. XML’s stricter rules remove complexity from SGML.

Tags are strictly case-sensitive, elements must always be closed, and cross-nesting is illegal. Empty

elements have either a closing </element> tag and no contents, or are written <element /> to

distinguish them from illegal unclosed elements.

For example, an HTML3 author can indicate that text is to be rendered in bold-face or italics

with and <i> tags, respectively. The following is legal in HTML (see Figure 4.1):

Normal text boldface <i>bold and italic italicized only</i>

boldfaceNormal text italicized onlyboldface and italic

 tag

<i> tag

Figure 4.1: The and <i> elements are cross-nested.

Note that the the elements are both mixed-case and cross-nested; the element begins outside

the <i> element, but ends inside it. This example could be turned into valid XML by rewriting it

(see Figure 4.2):

Normal text boldface <i>bold and italic </i> <i>italicized only</i>

<i> tag
 tag

<i> tag
Normal text italicized onlyboldface boldface and italic

Figure 4.2: The <i> element can nest properly if broken in two.

XML documents begin with a prolog and a single top-level element that contains the rest of
2For clarity, this thesis will indicate an element by placing its name in typewriter font inside angle brackets,

<element> but refer to the name of an element without the brackets, thus: element.
3HyperText Markup Language, an SGML language that is used for most Web pages. See [20] for details.

CHAPTER 4. XML AND XSLT 20

the document. The prolog identifies the file as an XML document, and optionally declares the set

of rules that the document follows in a Document Type Declaration. A typical file might look like

the following:

1 <?xml version="1.0"?>
2 <!DOCTYPE sonnet SYSTEM "sonnet.dtd" []>
3 <sonnet>
4 <!-- rest of document follows -->
5 </sonnet>

The first line identifies this as an XML file, version 1.0. The second is a Document Type

Declaration, which states what kind of XML document this is (in this case, a sonnet), and provides

a URL, or Uniform Resource Locator, at which the definition of a sonnet can be found (see the

next section for more on Document Type Definitions).

XML comments appear between the characters <!-- and --> and are usually ignored by process-

ing applications. XML is often indented to demonstrate visually that some elements are contained

in others. The indentation is not usually meaningful to a program, however.

Tags may also contain additional information called attributes. The attributes are placed in

the element’s opening tag, and are written in the form name="value". For example, a line of the

sonnet could have an attribute to indicate its role in the ABABCDCDEFEFGG rhyming scheme.

The first line would be written <line letter="A">Shall I compare ...</line>.

4.2.2 Document Type Definitions

Section 4.1 mentioned two types of constraints on an XML document. The first is the strict XML

syntax, and the second is the Document Type Definition, or DTD, which imposes constraints on

the file’s contents.4 Recall the DTD line from the sonnet file:

<!DOCTYPE sonnet SYSTEM "sonnet.dtd" []>

A DTD is assembled from up to two parts, an internal and an external subset, either of which

may be omitted. An external subset is usually contained in a file, and the internal subset is placed
4See Appendix F on page 81 for an introduction to XML Schema, an alternative to a DTD.

CHAPTER 4. XML AND XSLT 21

directly in the XML file between the [] characters. The internal subset can re-declare or extend

the external subset. The keyword SYSTEM means that the external DTD subset is in a file named

sonnet.dtd.

Using element declarations and attribute lists, the DTD specifies which elements can appear

in the document, what they can contain, what attributes they can have, and the attributes’ data

types. An element declaration in the DTD declares the element’s name and what the element

contains. For example, to declare an element named sonnet that contains a single author element,

a single title element, and one or more line elements, we would write the following: <!ELEMENT

sonnet (author,title,line+)>. The + indicates “one or more;” there are special characters to

indicate the number, order, and optionality of elements. To indicate that an element contains text,

we would write #PCDATA in place of the element list.

Attribute lists are created similarly. To specify that the <line> element contains an attribute

named letter, which may be one of the letters A through G, we would write <!ATTLIST line

letter (A|B|C|D|E|F|G) #REQUIRED>. The vertical bars | indicate a choice of the listed letters,

and the keyword at the end indicates that the attribute must be present in the element.

4.2.3 Well-Formed and Valid Documents

XML files must match both the XML syntax and the rules given in the DTD. There are two

different notions of correctness that correspond to these constraints. One is called well-formedness,

and means that the file is valid XML. The other constraint is validity, which can only be determined

by checking that the elements and attributes conform to the DTD. Validity is a stronger constraint

than well-formedness, because a valid file must also be well-formed. Not all well-formed files are

valid, however; a sonnet file without an <author> element is invalid even if it is well-formed.

Figure 4.3 shows this concept graphically.

Valid XML files

Well−formed XML files

All text files

Figure 4.3: A Venn diagram illustrating that a valid XML file must be well-formed.

CHAPTER 4. XML AND XSLT 22

4.2.4 The Complete Sonnet Example

The following example demonstrates all of the features discussed above. The prolog contains the

entire DTD; the optional external part is omitted. Some of the lines are omitted for brevity.

1 <?xml version="1.0"?>
2 <!DOCTYPE sonnet [
3 <!ELEMENT sonnet (author,title,line+)>
4 <!ELEMENT author (#PCDATA)>
5 <!ELEMENT title (#PCDATA)>
6 <!ELEMENT line (#PCDATA)>
7 <!ATTLIST line letter (A|B|C|D|E|F|G) #REQUIRED>
8]>
9 <sonnet>

10 <author>William Shakespeare</author>
11 <title>Sonnet XVIII</title>
12 <line letter="A">Shall I compare thee to a summer’s day?</line>
13 <line letter="B">Thou art more lovely and more temperate:</line>
14 <!-- Some lines omitted for brevity -->
15 <line letter="G">So long as men can breathe or eyes can see,</line>
16 <line letter="G">So long lives this, and this gives life to thee.</line>
17 </sonnet>

4.2.5 Document Structure

The XML specification does not define how to view an XML document’s structure, but a series

of related specifications define the Document Object Model, or DOM [9], which treats an XML

document as a tree of objects. The specification is too large to cover here fully, but it is important

to understand the tree view of a document because XSLT transformations use trees to represent

XML documents [24, Chap. 2].

Since all elements in a document must be nested properly, every element is contained inside

another element, except for the top-level element, which is contained in the document. Thus each

element has a parent, and possibly siblings and children. The DOM views this structure as a graph,

which is a set of vertices and edges G={V,E}. Each element becomes a vertex, or node, in the

graph; edges connect each element to its parent. If an element contains text, it has a special text

node as a child, whose value is the text itself. The top-level element in the document becomes the

only child of the root node, and all other elements become descendant nodes. Figure 4.4 shows the

CHAPTER 4. XML AND XSLT 23

sonnet file as a DOM tree; it is simplified for clarity. It should now be clear why the cross-nested

tags in Section 4.2.1 are a bad idea; they do not permit a tree view of the document.

All document trees in this thesis will show nodes as rounded boxes with shadows. Nodes are

connected with arrows, which point from the parent element to its children. Element nodes contain

the element’s name in angle brackets, but text nodes contain only the text. Attributes appear

as small, sharp-cornered boxes without shadows. For brevity, the root node is omitted and the

outermost element is shown as the root.

letter=’G’letter=’A’

<title>

Sonnet XVIII

<sonnet>

<author> <line> <line>

William Shakes... Shall I compare... So long live this...

. . .

. . .

Figure 4.4: The DOM tree for the sonnet file.

4.2.6 Manipulating XML Files

XML is not designed for brevity or for ease of hand-editing [11, §1.1]. Instead, XML files are

designed to be easy for computer programs to work with. There are two major ways of manipulating

XML files: DOM and SAX, the Simple API for XML.5

The DOM [9] provides an interface for manipulating the document structure through document

nodes’ properties and associated functions. For example, a DOM Node object has a property called

previousSibling that refers to its previous “sibling” object. Related specifications define bindings

to other programming languages, document traversal methods, and other ways to relate the DOM

to real-world applications.

The DOM’s principal advantage is familiarity and conceptual simplicity. Most programmers

find it easy to use a tree of objects with functions that can access and modify them. The principal

disadvantage is computational complexity. Creating a tree from the document requires reading the
5API stands for Application Programmer Interface and essentially means “Interface.”

CHAPTER 4. XML AND XSLT 24

file and building a structure in the computer’s memory to store it. This is unacceptable for large

files — and XML files can be enormous, sometimes occupying terabytes on disk. It is infeasible to

read terabytes of data into memory, call a function on a node of the resulting tree, and write the

entire structure back to disk, especially for minor changes to the file.

SAX [49] avoids this problem by making one pass through the file, triggering events along the

way as data is encountered. Imagine a person reading a long paper tape that is scrolling under a

small window. The person calls out when he sees something: “I see an opening <author> tag! Now

I see some text, and it says William Shakespeare! Now I see a closing </author> tag!” This is

analogous to how SAX works. The tape is the document, and the person is the SAX parser. SAX

allows programmers to define events, such as encountering a start tag, that will call a function to

handle the event.

SAX’s advantage is efficiency. It only changes the sections of the file that the program modifies.

SAX’s disadvantages are that it is sometimes not as intuitive or convenient as the DOM, and that

it is a once-through process that does not allow “rewinding.”

4.2.7 Advantages and Uses of XML

XML is flexible by design. It can encode nearly any type of information; some real examples are

mathematical markup language (MathML) (see Figure 4.5), scalable vector graphics (SVG) (see

Figure 4.6 on the next page), financial transaction data [41], file formats for word processing and

other office applications [40], and many text markup languages, such as XHTML [69], a replacement

for HTML.

<mrow>
 <mi>x</mi>
 <mo>=</mo>
 <mfrac>
 <mrow>
 <mrow>
 <mo>-</mo>
 <mi>b</mi>
 </mrow>
 <mo>±</mo>
 <msqrt>
 <mrow>
 <msup>
 <mi>b</mi>
 <mn>2</mn>
 </msup>
 <mo>-</mo>
 <mrow>
 <mn>4</mn>
 <mo>⁢</mo>
 <mi>a</mi>
 <mo>⁢</mo>
 <mi>c</mi>
 </mrow>
 </mrow>
 </msqrt>
 </mrow>
 <mrow>
 <mn>2</mn>
 <mo>⁢</mo>
 <mi>a</mi>
 </mrow>
 </mfrac>
</mrow>

x = −b±
√

b2 − 4ac
2a

Figure 4.5: A simple MathML example.

CHAPTER 4. XML AND XSLT 25

<?xml version="1.0" standalone="no"?>
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 20010904//EN"
 "http://www.w3.org/TR/2001/REC-SVG-20010904/DTD/svg10.dtd">
<svg width="12cm" height="4cm" viewBox="0 0 1200 400"
 xmlns="http://www.w3.org/2000/svg"
xmlns:xlink="http://www.w3.org/1999/xlink">
 <polygon fill="gray" stroke="black" stroke-width="10"
 points="350,75 379,161 469,161 397,215
 423,301 350,250 277,301 303,215
 231,161 321,161" />
 <polygon fill="gray" stroke="black" stroke-width="10"
 points="850,75 958,137.5 958,262.5
 850,325 742,262.6 742,137.5" />
</svg>

Figure 4.6: A simple SVG example.

Because of its simplified syntax, it is easy to write programs that use XML. Because of its basis

in computer science math, XML can in turn be used to write descriptions of programs, which are

often translated into a compilable representation such as C++ or Java code. In fact, it is possible

to write a programming language in XML syntax, which is the subject of the next section.

4.3 XSLT

XSLT [71] stands for eXtensible Stylesheet Language: Transformations. It is a functional program-

ming language, written in XML syntax. An XSLT processor accepts an XML document6 as one

input, an XSLT stylesheet as another input, and transforms the document tree as specified in the

XSLT. The result is another tree, which the processor usually writes back to disk.

To avoid confusion between XSLT stylesheets and the other type of stylesheet this thesis will

discuss, XSLT stylesheets will be called scripts from this point on.

4.3.1 Mathematical Properties

XSLT is a functional language [24, p. 609]. This means that instead of a sequence of instructions

and assignment statements, the programmer simply declares functions that map input data to

output data. A typical script specifies functions for a variety of elements; when a processor applies

it to an XML document, it transforms the data and outputs the result. These functions are called

templates.

It is important to understand that a template is a mapping from one set to another, which is

defined over a set of inputs (the domain). The template maps each element in the domain to an
6XML files are often referred to as documents, even though they may contain any type of data; the XSLT

specification views files as documents.

CHAPTER 4. XML AND XSLT 26

element in the co-domain, the set of outputs. A function in this sense is a relationship between

the domain and the co-domain. Given an element in the XML document (the domain), a template

simply outputs the corresponding element in the co-domain. Thus an XSLT script describes a

relationship between the XML document and the transformation’s output.

XSLT uses some special definitions. For example, sets are mathematically unordered, but they

are ordered in XSLT. This allows an XSLT script to know, for example, whether it is examining

the first <line> element in the document. Numbering begins at 1 in an XSLT set, unlike many

programming languages where the first number is 0.

4.3.2 Syntax and Language Constructs

An XSLT script contains a single top-level <xsl:stylesheet> element, which contains one or more

templates. A script usually contains a template declared to match the document’s root element.

When the XSLT processor encounters the root element — <sonnet> in the running example — it

applies this template to it. The top-level template usually applies other templates to the rest of

the document, either explicitly or by asking the processor to search for a matching template for

each element in the document.

XSLT provides a variety of constructs for controlling the behavior of the script, such as the

iterative <xsl:for-each>, which declares a mapping to apply to each element in a set. It also

provides functions (in the traditional C-programming sense of the word) to do useful things, such

as return the current element’s position.

XSLT is not compiled into an executable file like traditional programming languages. Instead,

like many scripting languages, another program (an XSLT processor) interprets it at runtime. This

means that one does not “run” an XSLT script; one executes the XSLT processor and provides the

XSLT file as one of the inputs.

Because XSLT is written in XML, XSLT scripts can be used to write XSLT scripts, another

simple but enormously powerful concept: “Programs that write programs are the happiest programs

of all.”7 This is possible because of the property of closure, which means that a transformation’s

output is also a valid input to a transformation.
7Quoted by Wall[65, p. 207]; widely attributed to Andrew Hume.

CHAPTER 4. XML AND XSLT 27

4.3.3 XPath

XSLT views an XML document as a tree, just like the DOM. In fact, it relies on an XML parser

to read the file and build a tree in memory before it starts to work on the transformation. It does

not matter whether the parser that builds the tree is a DOM or SAX parser, but the resulting tree

is manipulated in a DOM-like fashion.

XSLT relies on a related specification, XPath [70], to traverse the tree. The XPath view of a

document assigns a path from the root to each element. UNIX users will recognize the path model:

the root node is assigned a path of /. The path to a node is a list of the element names between

the root node and the node of interest, separated by slashes. Thus, the XPath expression to specify

a <line> node is /sonnet/line.

The context [24, p. 85] contains the set of elements within which the processor is working at

a given time, in this case the <sonnet> node. The context is analogous to the current working

directory. Many operations are defined in terms of the context. For instance, if the script specifies

that all elements of a given type should be selected, it means all elements of the specified type in

the current context. This is analogous to a command at the command line; for example ls *.xml

means “list all xml files in the current directory.” Similarly, when using the position() function

mentioned above, the script returns the position in the current context. If the script is working on

the 5th <line> element, the position() function will return the value 5.

4.3.4 Transformations

XSLT scripts always transform the tree representation of the document into a new tree by selecting

nodes, applying templates to them, and building an output tree, which is usually written to a file.

Figure 4.7 on the following page demonstrates the whole process graphically.

The following simple XSLT script transforms the sonnet example and formats it into lines:

1 <?xml version="1.0" encoding="UTF-8"?>
2 <xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
3 <xsl:output method=’text’ encoding=’UTF-8’ />
4

5 <!-- A template to match the document’s root element. -->
6 <xsl:template match="/">

CHAPTER 4. XML AND XSLT 28

letter=’G’letter=’A’

<title>

Sonnet XVIII

<sonnet>

<author> <line> <line>

William Shakes... Shall I compare... So long live this...

<node> <node> <node> <node>

<node>

<node>

<node>

Output Tree

<xsl:stylesheet...
 <xsl:output ...

 </xsl:template>
</xsl:stylesheet>

<?xml version...

 <xsl:appl...

XML Parser

XML File

 <author>William Shakespeare</author>
 <title>Sonnet XVIII</title>
 <line letter="A">Shall I compare...
 <line letter="B">Thou art more...

 <line letter="G">So long as men...

</sonnet>

 ...

XML Parser

Output FileOutput File

 William Shakespeare
 Sonnet XVIII

 ...

 Shall I compare thee...

 So long lives this...

 Thou art more lovely...

 William Shakespeare
 Sonnet XVIII

 ...

 Shall I compare thee...

 So long lives this...

 Thou art more lovely...

. . .

. . .

XML Document Tree

XSLT Script (Stylesheet)

XML Parser

 <line letter="G">So long lives...

<sonnet>

XSLT Processor

Figure 4.7: A graphical view of an XSLT transformation.

7 <xsl:apply-templates />
8 </xsl:template>
9

10 <xsl:template match="line">
11 <xsl:apply-templates />
12 </xsl:template>
13

14 </xsl:stylesheet>

Lines 1 and 2 are the standard XSLT prolog and the XSLT script’s root element.8 Line 3

is the XSLT <xsl:output> element, which defines the transformation’s output method; common

methods are text, HTML, and XML. This controls how the output tree is written to a file. Lines 6,

7, and 8 are the template that matches the root element, as specified by the match attribute. The

<xsl:apply-templates> element instructs the processor to process each node in the tree, using

either a matching template or the automatically provided default template, which simply writes

the node’s text value to the output tree. Lines 10, 11, and 12 define a template that the processor

will use whenever it finds a <line> element. Again, it simply tells the processor to find and apply

templates to its children.

When the XSLT processor applies the script to the sonnet file, it will first match the root

element, <sonnet>. It will then select all nodes in the current context and apply templates to them

in order. The first two, the <author> and <title> elements, have no matching templates, so the
8Notice that all XSLT element names are prefixed with xsl:. This is a namespace that distinguishes an XSLT

element from other elements in the script; for instance, if an author wanted to create an <output> element in the
output tree, the name would conflict with the XSLT <output> element. The namespace avoids these collisions.

CHAPTER 4. XML AND XSLT 29

default template will write the text value of these nodes to the output. The processor will then

apply the <line> template to each <line> element. This template will apply the default template

again to write the value to the output. The result is the following output:

1 William Shakespeare Sonnet XVIII
2 Shall I compare thee to a summer’s day?
3 Thou art more lovely and more temperate:
4 ...

The second template does nothing but output the node’s value. The following modification is

more interesting:

10 <xsl:template match="line">
11 <xsl:value-of select="@letter" /><xsl:text> </xsl:text>
12 <xsl:value-of select="." />
13 </xsl:template>

This introduces two new XSLT elements. The <xsl:value-of> element outputs the selected

node’s value (@ specifies an attribute node), and the <xsl:text> element outputs its own value,

which in this case is a single space. The modified template outputs the letter attribute, a space,

and the current node’s value (<line>).9 Here is the result:

1 William Shakespeare
2 Sonnet XVIII
3 A Shall I compare thee to a summer’s day?
4 B Thou art more lovely and more temperate:
5 ...
6 G So long as men can breathe or eyes can see,
7 G So long lives this, and this gives life to thee.

XSLT provides many more language constructs, such as the ability to write conditional state-

ments. For example, to output a <line> element if its letter attribute contains G, the template

could be written as follows:

9The XPath expression “.” means “the current element.”

CHAPTER 4. XML AND XSLT 30

1 <xsl:template match="line">
2 <xsl:if test="@letter=’G’">
3 <!-- perform processing here -->
4 </xsl:if>
5 </xsl:template>

This can be written much more simply by matching only <line> elements whose letter at-

tribute is G:

1 <xsl:template match="line[@letter=’G’]">
2 <!-- perform processing here -->
3 </xsl:template>

4.4 Chapter Summary

This chapter introduced XML and examined some of the rules for defining XML files, using a simple

file to encode a sonnet as an example. It explained the structure of an XML file and methods for

manipulating this structure from a computer program. It explained some of the theory and practice

of XSLT transformations, and showed a simple XSLT script (stylesheet) to transform the sonnet,

with a twist to demonstrate some features of XSLT. Since musical files are relatively complex, this

chapter used a sonnet as an example, but XML and XSLT are important to this thesis because the

MEI format is written in XML, and XSLT is used to transform these files into other formats — in

this case, into Mup, which can be transformed into printed music notation.

Chapter 5

The Music Encoding Initiative

Perry Roland, the MEI format’s author, is attempting to create a Music Encoding Initiative. The

goal is to replace current music encodings, which are not universally useful (see Chapter 2). The

MEI attempts to do this by emulating the Text Encoding Initiative (see below). The MEI project’s

stated goals [48] are to

• Create a framework for the encoding of music data

• Enable content-based searching, analysis, etc.

The MEI format attempts to meet some core requirements that Huron has identified for musical

encodings [22]. In addition, desirable characteristics such as extensibility are built into the DTD,

which is separated into modules and defined in terms of external entities that can be changed easily.

To accommodate authors, the DTD defines an “inheritance” and “propagation” model.

5.1 What is the MEI?

The MEI is both an effort to standardize computerized musical data, and a format to allow the

standardized encoding itself. The MEI approach to music encoding is partially based on the TEI

approach to textual encoding. From the TEI website [60],

The TEI is an international and interdisciplinary standard that helps libraries, museums,

publishers, and individual scholars represent all kinds of literary and linguistic texts for

31

CHAPTER 5. THE MUSIC ENCODING INITIATIVE 32

online research and teaching, using an encoding scheme that is maximally expressive

and minimally obsolescent.

The TEI provides “detailed recommendations for the encoding of all kinds of textual material

of all kinds in all languages from all times.” [60] Perry Roland believes that the TEI is successful

because it limits its scope to those expressions that can be written [48, 47]. Similarly, to limit the

project’s scope and prevent an overly-ambitious or too-general encoding, Mr. Roland limits MEI

to those aspects of music that can be notated in CMN [47].

MEI is partially inspired by the Mup [34] and Humdrum [23] file formats, uses international

standards from the Acoustical Society of America and others (Roland, [47]), and supports the

notational conventions established by well-known authorities such as Read [44].

5.2 Requirements

According to Roland [47], the MEI encoding should have the following characteristics:

Comprehensive Any non-comprehensive encoding is of limited use.

Declarative Knowledge that is declared can be analyzed; knowledge that is procedural is inac-

cessible.

Explicit All knowledge should be represented explicitly in the encoding.

Interpreted All encodings are interpretations of the thing encoded. This should be explicitly

built into the encoding.

Hierarchical A hierarchical data structure is object-oriented, but not unnecessarily complex or

restrictive.

Formal The encoding should be provably correct without reference to anything external. Incorrect

practices should not be accommodated.

Flexible Minor variations must be accommodated, but not at the risk of de-standardization.

Possibly irrelevant details should be made optional.

Extensible The encoding must allow for unforeseen needs.

CHAPTER 5. THE MUSIC ENCODING INITIATIVE 33

The MEI DTD is explicit because it uses elements to mark up structure, and attributes to

specify information about the structure. Attribute values are constrained, reducing the chance of

sloppy markup that is valid and well-formed, yet meaningless. The encoding is hierarchical, because

elements naturally result in a hierarchical document. The combination of the formal XML syntax

and an explicit encoding means that the MEI format is formal. Finally, the DTD is highly flexible

and extensible by design.

5.3 The MEI DTD

Because the DTD is built from primitive pieces, it contains very little redundancy and is highly

extensible and easy to maintain. These are important qualities, because a successful format must

be easily adaptable to changing needs and technologies. This section explains how the DTD is built

and organized.

5.3.1 DTD Structure

Parameter entities are named strings of characters that can be referred to elsewhere in the DTD.

For example, the string “hello” might be named greeting; the XML parser inserts “hello”

wherever the reference to greeting appears. A DTD author declares an entity with the ENTITY

keyword and refers to the name with the %entityname; syntax. One of the ways the MEI DTD

uses entities is to load external entities from other files and use them to assemble the DTD. The

DTD currently loads the following files:

Name Declarations This file uses entities to define names used in the DTD, such as element

names. For example, it defines the <note> element’s name as <!ENTITY % n.note "note">.

Attribute Value Lists Since many elements have common attributes, they are defined separately

to reduce redundancy and make them easier to change. All attribute values are kept in one

file and defined as entities; for example, possible values for a pitch name are defined as follows:

<!ENTITY % PITCHNAME ’(a|b|c|d|e|f|g)’>.

Shared Attribute and Content Models Just as attributes are shared across elements, combi-

nations of attributes and elements may be common to many elements. The following code

CHAPTER 5. THE MUSIC ENCODING INITIATIVE 34

declares the attributes for the logical domain of a note. Notice that it defines the pname

attribute in terms of the %PITCHNAME entity defined above.

1 <!ENTITY % a.log.note
2 "acci %ACCIDENTAL; #IMPLIED
3 artic %ARTICULATION; #IMPLIED
4 dots %AUGMENTDOT; #IMPLIED
5 oct %OCTAVES; %PROPAGATED;
6 pname %PITCHNAME; %PROPAGATED;
7 ptab CDATA #IMPLIED
8 pnum %PITCHNUMBER; #IMPLIED
9 tie %TIES; #IMPLIED">

Core Element Declarations This file assembles all other files into the DTD itself. Each element

is defined in terms of entities. For example, the note element and its attribute list are defined

as follows:

1 <!ENTITY % note ’INCLUDE’>
2 <![%note;[
3 <!ELEMENT %n.note; (%n.accid;|%n.artic;)*>
4 <!ATTLIST %n.note;
5 meiform CDATA #FIXED ’note’
6 %a.common;
7 %a.log.event;
8 %a.log.note;
9 %a.vis.note;

10 %a.ges.note;
11 %a.anl.note;>
12]]>

Notice that both the element’s name and attributes are entities, including %n.note and

%a.log.note. Only one attribute, meiform, is defined directly; this is typical of most MEI

elements.

Miscellaneous This includes character entities and notations.

The naming convention for the entities makes it easier to understand their purpose. For ex-

ample, %n.note means “name of note,” and %a.common means “attributes that are common to all

CHAPTER 5. THE MUSIC ENCODING INITIATIVE 35

elements.” The resulting DTD is not easily human-readable, because it requires a great deal of

cross-referencing, but is easy to maintain, because there is very little redundancy.

5.3.2 Inheritance and Propagation

The DTD defines some unconventional1 extensions to a MEI document’s semantic interpretation.

For instance, the code above defines the <note> element’s oct attribute to be %PROPAGATED, which

is defined as follows:

1 <!--These parameter entities are used as keywords to express rules or constraints
2 which cannot be fully expressed in attribute declarations; their expansions show
3 the nearest available equivalent.-->
4 <!ENTITY % INHERITED ’#IMPLIED’> <!-- if not supplied, value inherited from an
5 ancestor node -->
6 <!ENTITY % ISODATE ’CDATA’> <!-- ISO date format -->
7 <!ENTITY % NUMBER ’CDATA’> <!-- one or more digits -->
8 <!ENTITY % PERCENT ’CDATA’>
9 <!ENTITY % PROPAGATED ’#IMPLIED’><!-- if not supplied, value obtained from a

10 previous event in the same bar -->

Line 9 indicates that any attribute missing from an element, but defined as %PROPAGATED, should

be propagated from a previous element. Similarly, line 4 defines an inheritance model, in which a

missing attribute may be inherited from an ancestor. This code also defines data types that do not

exist in XML, such as NUMBER. To see how a document could use these features, suppose a file

contains the following fragment:

1 <bar n="4">
2 <staff def="s1">
3 <note pname="g" dur="4" />
4 <note pname="b" />
5 <note dur="2" />
6 </staff>
7 </bar>

After an XML parser reads this, the second and third <note> nodes have only one attribute

each,2 as shown in Figure 5.1A. Because the DTD defines the pname and dur attributes to be
1These extensions are unconventional for XML, but sometimes used in SGML.
2The “missing” attributes actually exist, but they have no value.

CHAPTER 5. THE MUSIC ENCODING INITIATIVE 36

%PROPAGATED, they are “brought forward” from the preceding note as shown in Figure 5.1B. These

attributes are then present on the nodes, even though they were omitted from the XML file. The

<note> element “inherits” the oct attribute, because it is defined on an ancestor node.

pname=’b’

<note>

<staff>

<bar>

<note> <note>

pname=’g’

dur=’4’

pname=’b’

<note>

<staff>

<bar>

<note> <note>

pname=’g’

dur=’4’

(ancestor node)(ancestor node)

dur=’2’

A: The tree as built by the XML parser B: The tree after propagation and inheritance

oct=’4’ oct=’4’

dur=’4’ pname=’b’

oct=’4’

oct=’4’

dur=’2’

def=’s1’

n=’4’

oct=’4’

n=’4’

def=’s1’

Figure 5.1: Attribute propagation and inheritance. Attributes that are not defined explicitly may
be inherited from an ancestor or propagated from a previous element. The tree on the right shows
inherited and propagated attributes with dotted borders. The diagram is simplified for clarity.

The inheritance and propagation features are intended to ease hand-editing of files, but a file

may always be written in “canonical form,”3 or pre-processed to bring it into canonical form if

desired [48].

5.3.3 Familiar Terminology

The MEI DTD uses familiar names for elements and attributes. For example, a note is named note.

Using common music notation terminology has the benefit of making MEI files clear. This is a

significant advantage over other encodings, such as SMDL, that define an entirely new terminology.

It also makes it clear that there is a correspondence between MEI-encoded data and music notation.
3“Canonical form” means that the file is written out fully, with all information expressed explicitly, and all allowed

variations transformed into their equivalent “official” format.

CHAPTER 5. THE MUSIC ENCODING INITIATIVE 37

5.3.4 Critical Apparatus

Critical editions of music and collections of works often contain extensive text as well as music

notation, and because the MEI’s goal is to be comprehensive, it must support encoding this in-

formation. For example, there might be images, a table of contents, an introduction, commentary

on the music, the composer’s biography, and an index. MEI defines elements to include all of this

information in a single file.

5.4 A Sample MEI File

The children’s song “Mary Had a Little Lamb” is the simplest example of encoded music this

project used. Portions of the file are shown below; the full file can be found in Appendix I on

page 112.

The file opens with a <mei> element, followed by a <meihead>. This element contains informa-

tion such as the author, revision history, and other meta-data about the music.

1 <meihead>
2 <meiid>MaryHadaLittleLamb</meiid>
3 <filedesc>
4 <pubstmt>
5 <agent>Perry Roland</agent>
6 <rights>Electronic edition copyright © 2002 Perry Roland.
7 All rights reserved.</rights>
8 </pubstmt>
9 </filedesc>

10 </meihead>

The <body> element contains the music itself. There may be one or more <mdiv> (musical

division) elements, each of which contains a sequential division of the work; this example has only

one <mdiv>. Next is the <score>, which contains a full view of the work. The element begins with

a <scoredef> (score definition), which records the key signature, timing, and other defaults for the

score. MEI uses the <staffdef> element to define the staffs for the piece.

1 <body>
2 <mdiv type="children’s song">

CHAPTER 5. THE MUSIC ENCODING INITIATIVE 38

3 <score>
4 <scoredef meter.count="4" meter.unit="4" key.tonic="Eb"
5 key.mode="major" key.sig="3f" beam.group="4,4,4,4">
6 <staffdef id="_s1" octave.default="4" />
7 </scoredef>

The rest of the file is a series of <bar> elements, each of which has a single <staff> element

that contains notes. Each note may have a variety of attributes. The notes in this example specify

the note’s pname (pitch name) and dur (duration). The dur attribute’s value is the reciprocal of

the note’s time value.4 For example, a quarter (1
4) note’s dur attribute has the value 4. After the

notes are encoded, the staff and bar elements elements are closed.

1 <bar n="1">
2 <staff def="_s1">
3 <note pname="g" dur="4" dots="1" />
4 <note pname="f" dur="8" />
5 <note pname="e" dur="4" />
6 <note pname="f" dur="4" />
7 </staff>
8 </bar>
9 <!-- The rest of the file is <bar> elements similar to the above -->

If the piece had more than one staff, the music for each staff would be encoded in the same bar,

but enclosed in separate <staff> elements. This demonstrates the design decision to first break

the music into bars, then encode all information in one bar together.5 Each <staff> element refers

to its corresponding staff definition with the def attribute, which matches the <staffdef>’s id.

Here is a sample bar for a piece with two staffs:

1 <bar n="2">
2 <staff def="_s1">
3 <note pname="g" dur="4" />
4 <note pname="g" dur="4" />
5 <note pname="g" dur="2" />
6 </staff>
7 <staff def="_s2">

4This definition of note duration emulates Mup’s way of defining durations.
5It is also possible to encode music staff-by-staff if it is encoded with <parts> instead of <score> elements.

CHAPTER 5. THE MUSIC ENCODING INITIATIVE 39

8 <note pname="g" dur="4" />
9 <note pname="g" dur="4" />

10 <note pname="g" dur="2" />
11 </staff>
12 </bar>

5.5 Chapter Summary

This chapter presented the MEI project and encoding format. The MEI project seeks to create a

standard framework for encoding musical data. The MEI format is defined in the MEI DTD. This

chapter explained the characteristics and design principles of Perry Roland’s MEI music encoding,

the DTD’s structure and organization, the inheritance and propagation features that the encoding

defines, and analyzed a simple MEI file. The following chapters will explain how these files may

be transformed from MEI format into Mup and then into printed music notation, establishing the

MEI format’s usefulness for encoding musical information.

Chapter 6

Project Research

This project’s central research activity was determining if it is possible to transform musical data

encoded in MEI format into printed musical notation. I also attempted to define a good separation

between musical content and presentation, but realized that separating content and presentation is

not a good approach for a musical markup language like MEI.

6.1 Transformations

The project’s ultimate goal was to create an XSLT stylesheet that can transform MEI-encoded files

into Mup-encoded files. Once the data is in Mup format, it is easy to run the Mup program on the

file and create printable PostScript. Though the MEI project’s goal is to create an encoding that

can be used for far more than music notation, focusing on only the notational aspect narrows the

thesis project’s scope. It is also easier to know when the work is done, because a human can tell

easily whether the resulting notation is “good enough” by comparing it with a published version.

Because the project’s goal was to show that MEI files represent the music itself, the transforma-

tion is a test of equivalency, which can be defined at several levels. To illustrate this, consider two

extremes: directly representing the shapes and colors of printed music notation, and representing a

label associated with the music. At the one extreme, a page description language can describe the

shapes the printer should draw on the page. At the other, a program can accept the label as input

and then display or print the music. Figure 6.1 on the following page shows these two extremes. In

each case, the system contains a certain amount of “knowledge;” the example demonstrates that

40

CHAPTER 6. PROJECT RESEARCH 41

this knowledge can be contained in the input or in the system that processes the input and produces

the output. In reality, the inputs and processing applications usually share the knowledge. For

example, a word processor “knows” what characters a document contains, but the font “knows”

how to draw those characters.

Page Description

% S_CLEFSIG
94.01 725.00 1.0 gclef
107.40 731.00 1.0 flat
112.74 740.00 1.0 flat
118.09 728.00 1.0 flat
/NewCenturySchlbk−Bold findfont
16 scalefont
setfont
123.76 731.00 moveto

514.29 1019.00 792.00 5 1.000 1.000 stf

XML Parser

XML Parser

Processing OutputInput

"Please print ’Mary Had a Little Lamb’"

Processor

Processor

Figure 6.1: Two extremes of equivalency. In the upper example, the input file describes completely
the notation (PostScript). In the lower, the input contains the instruction to produce the piece. In
both cases, the processing makes the input equivalent to the output.

The XSLT script that performs the MEI-to-Mup transformation only “knows” how to transform

MEI to Mup. It does not know anything about the final page layout, paper width, or the shape of

a quarter note, for example. Thus it makes no visual decisions at all; it defers these to the Mup

program, which “knows” these things and many more, such as what font to use for the 4
4 time

signature, for example. After processing with Mup, the resulting PostScript file contains almost

all information about the music notation’s appearance, explicitly encoded in the file. The printer

need only draw the shapes described in the file.1

It should be clear that this process is a “division of labor,” with some parts of the chain handling

things at a very low level, and others at a high level. The chain contains all the knowledge necessary

to transform between equivalent forms of the information.

Recall that XSLT is a functional programming language, and an XSLT script is a set of map-
1There is an exception: the fonts used in the file. Fonts themselves describe a set of shapes, so the printer has to

refer to the font to know how to draw any text included in the file.

CHAPTER 6. PROJECT RESEARCH 42

pings from the domain to the co-domain (see Section 4.3.1 on page 25). Thus an XSLT script

represents a relationship between its input and its output. In this case, the XSLT is a formally

defined relationship between an MEI file and a Mup file. The Mup source code and the PostScript

grammar define the relationship between Mup files and printed music notation. Therefore, there

is a relationship between MEI files and printed music notation. To understand why this is true,

consider the transitive property on a relation, which states that

If a is equivalent to b and b is equivalent to c, then a is equivalent to c.

In this context, if MEI notation is equivalent to Mup, and Mup is equivalent to printed music

notation, then MEI is equivalent to printed music notation (see Figure 6.2). It is not possible

to prove formally that the transitive relation holds on this set of transformations, because the

Mup syntax is not defined [35] formally, but it is useful to build some intuition about why the

transformations mean something about the MEI encoding.

XML Parser

PostScript File

% S_CLEFSIG
94.01 725.00 1.0 gclef
107.40 731.00 1.0 flat
112.74 740.00 1.0 flat
118.09 728.00 1.0 flat
/NewCenturySchlbk−Bold findfont
16 scalefont
setfont
123.76 731.00 moveto

514.29 1019.00 792.00 5 1.000 1.000 stf

XML Parser

XML Parser

XML File

<?xml version="1.0"?>

]>

<mei>
<meihead>
 <meiid>MaryHadaLittleLamb</meiid>
 <filedesc>
 <pubstmt>
 ...

<!DOCTYPE mei SYSTEM "http://dl. ...

<?xml−stylesheet type=’text/xsl’ ...

Mup File

score
 staffs=1
 key=3&
 time=4/4
 beamstyle=4,4,4,4
staff 1
 defoct = 4
 vscheme = 1
 clef = treble
music

Printed Music Notation

XSLT Program

PostScript
Printer

Mup

Figure 6.2: Because of transitivity, MEI-encoded files are equivalent to printed music notation.

6.1.1 A Sample Transformation

Let us examine how the XSLT script transforms “Mary Had a Little Lamb” into Mup notation.

Recall that the MEI file is divided into music and its accompanying meta-data, such as the author

CHAPTER 6. PROJECT RESEARCH 43

and copyright information. The XSLT does not transform this information, because Mup provides

only basic facilities for including text. This thesis is concerned only with the file’s musical content.

Mup files begin with a score definition similar to MEI files, so this part of the transformation is

fairly straightforward. Here is the MEI <scoredef> element and the corresponding Mup notation:

1 <scoredef meter.count="4" meter.unit="4" key.tonic="Eb"
2 key.mode="major" key.sig="3f" beam.group="4,4,4,4">
3 <staffdef id="_s1" octave.default="4" />
4 </scoredef>

1 score
2 staffs=1
3 key=3&
4 time=4/4
5 beamstyle=4,4,4,4
6 staff 1
7 defoct = 4
8 vscheme = 1
9 clef = treble

10 music

Briefly, this notation means that there is one staff in the key of 3
�
, the time signature is 4

4 , and

notes are to be beamed together in four time units of quarter notes by default.2 The staff is defined

next; it has a default octave of 4, one voice, and a treble clef. The keyword music marks the end

of the preamble and the beginning of the musical content.

The XSLT script then transforms each event in the MEI notation into the corresponding Mup

events. The first bar appears as follows in XML and Mup notation, respectively:

1 <bar n="1">
2 <staff def="_s1">
3 <!-- accidentals required by the key signature not encoded. -->
4 <note pname="g" dur="4" dots="1" />
5 <note pname="f" dur="8" />
6 <note pname="e" dur="4" />
7 <note pname="f" dur="4" />
8 </staff>
9 </bar>

2See Section A.3 on page 60 for more details.

CHAPTER 6. PROJECT RESEARCH 44

1 // begin bar 1
2 1 1: 4.g; 8f; 4e; 4f;
3 bar

The XML notation has already been explained in Section 5.4 on page 37; the Mup notation

begins with a comment on the bar number. The next line is the first bar, beginning with the staff

and voice number, followed by a colon. Each note is in the form [time][pitchname][octave];,

but the octave is omitted in this case because Mup handles the default octave itself. Once processed

with Mup, the file is ready for printing (see Figure 6.3).

Figure 6.3: The fully transformed “Mary Had a Little Lamb.”

6.1.2 Results

The thesis proposal did not define success criteria clearly, so it was difficult to say when the

transformations were complete. When I realized this, I spoke to Mr. Roland and Prof. Martin. We

agreed that it would be sufficient to transform the examples used in Selfridge-Field [51], because

they are fairly complex, well-known, contain many special cases and exceptions to rules, and are

used in Selfridge-Field to test music typesetting programs. Some of these examples cannot be

notated with Mup easily, but others can be transformed very satisfactorily. The examples can be

found in Appendix G on page 83.

After some experience with Mup, I realized that it can only represent a subset of what MEI

can encode. Figure 6.4 shows that Mup does not support some clefs, and Mup only supports three

voices, which is not sufficient for all music. In spite of this, the transformation is good enough to

demonstrate a reasonable equivalence between MEI and music notation.

CHAPTER 6. PROJECT RESEARCH 45

8

4
4

4
4

Figure 6.4: Mup does not support the archaic double-G clef shown at left. Instead, it is necessary
to display a standard G clef with a joined 8 beneath it, which according to Read is equivalent [44,
p. 55].

6.2 Content and Presentation

The project proposal stated that I would try to define a separation between musical content and

presentation. Musical content can be thought of as the abstract information — the essence of what

is encoded. Presentation, on the other hand, is the act of making that information accessible and

meaningful to a human in some way, such as generating notation or playing the information back

through speakers. Information about presentation inevitably needs to be encoded along with the

information about content; the issue is how best to do this. Many encoding languages that contain

some abstract information make special provisions for encoding presentation data as well, but some

separate the presentation data out into a different language.

Unfortunately, it is difficult to apply the concept of “separation of content and presentation” to

musical data, because it assumes that a clear separation between the two types of data exists. In

fact, I discovered that “one man’s content is another man’s presentation” [30]. Instead of defining

such a separation, I learned more about how and why the W3C [66] created CSS, or Cascading

Style Sheets, to augment HTML. I learned that separating content and presentation is a specific

application of a general technique in data representation.

6.2.1 HTML and CSS

Because “content and presentation” is not a very useful way to approach music, I began to re-

assess the problem. Why seek such a separation? My previous experience is with HTML [20] and

CSS [6]. HTML was originally a simple language, containing basic facilities for defining headings,

paragraphs, tables, and so forth. As the Internet became popular, HTML authors desired greater

control over page appearance, and browser vendors began extending HTML. As a result, web pages

became non-standardized, would not work in all browsers, and the markup itself filled up with

CHAPTER 6. PROJECT RESEARCH 46

messy, confusing formatting codes. CSS was the eventual answer, allowing authors a great deal

of control over appearance in an auxiliary language while keeping HTML simple. This is usually

called “separation of content and presentation,” so I followed suit in my thesis proposal.

One advantage of using CSS with HTML is that it enables an author to indicate the document’s

logical structure. For example, it is possible to format text in a large bold font, but it is better to

indicate that the text represents a heading, for example with an <H1> (heading level 1) element. A

CSS stylesheet can then be applied document-wide to control the appearance of all <H1> elements

uniformly. This can lead to very sparse markup, smaller file sizes, and the ability to extract meaning

programmatically, based on document structure.

CSS brings many benefits to HTML and related markup languages. Here are a few:

• it allows the markup to be maintained easily

• it reduces the document complexity

• it reduces file sizes

• it gives authors control over document appearance

• it gives end users a means to view the document differently from the author’s intention, if

desired

• it can be used to define defaults globally, which can be changed in one place

• it helps impaired surfers use the Internet

However, the WC3 did not create CSS to separate content and presentation, but to ensure that

authors could control the visual layout of their documents without changing the HTML standard.

By doing so, the WC3 eliminated the need to extend HTML’s capabilities. This helps ensure that

the HTML language is a stable standard that will be forward-compatible with new generations of

browsers and backward-compatible with older browsers. It was necessary to define the separation

between essential content and the visual presentation of Web pages during this process, but the

primary goal was extensibility. It has worked very well in practice. For example, CSS now allows

control over how “voice browsers” read web pages to blind surfers. Extending HTML itself to allow

this would be prohibitively difficult, and would require re-writing software that uses HTML.

CHAPTER 6. PROJECT RESEARCH 47

CSS can also have disadvantages, depending on its usage. For example, if the CSS is kept in a

separate file, it can become separated from the document or lost. On the other hand, by keeping

the stylesheet in a separate file it becomes possible to change many documents in a single place,

which could be beneficial (making it possible, for example, to change an entire website by changing

a global stylesheet). It is also possible to override the CSS on a file-by-file or element-by element

basis by redefining an externally defined CSS file, much as an externally defined DTD is overridden.

For example, suppose the external CSS file defines a margin of 1 centimeter for a <p> element:

p {margin:1cm}

An author can override this in a particular document, and on an individual element, as follows:

<!-- This tag goes in the document header -->
<style type=’text/css’>
p {margin:5cm}
</style>
<!-- This markup goes in the document body -->
<!-- this paragraph has a margin of 5cm -->
<p>Some text here</p>
<!-- this paragraph has a margin of 10cm -->
<p style="margin:10cm">Some text here</p>

One of the reasons CSS works well with HTML is that most HTML elements have similar

properties, such as margins and padding. This may not be the case with music, even with similar

types of data. For example, notes have stems, which have a position and direction relative to the

note, a length, and a thickness. Rests, which are also musical events, have no stems. This means

that setting defaults in the stylesheet and applying them to the entire document may not make

much sense for music notation. On the other hand, there are some properties that would fit into this

model, such as color. HTML elements are not all uniform either; it makes no sense, for example, to

choose a font family for an element, but it is possible to do so. Stylesheets are not perfect,

but they are often a good solution.

To summarize, CSS gives document authors a great deal of control over the document’s visual

formatting. Authors can keep the formatting information in the file, externally, or just apply it to

every element as desired. The benefits outweigh the disadvantages of separating information into

CHAPTER 6. PROJECT RESEARCH 48

another language.

6.2.2 Results

The most important insight I gained from my research into the history of CSS and HTML is

that rather than “content and presentation,” it is more useful to think in terms of a markup

language’s different uses or domains. Since HTML’s primary domain is visual, it makes sense to

define separately how to render documents visually. This is a specific application of what could be

termed separating domain knowledge. In practice, this means defining a language to encode data,

considering its uses, and then providing for these uses separately from the data itself.

The primary benefit of this approach is that an auxiliary language can be changed without

changing the markup language. In fact, the W3C is now working on CSS version 3, but HTML

has not changed significantly since CSS was created.3 This technique can also help to reduce the

DTD’s size; a DTD that contains information specific to all of the language’s possible uses will

probably be very unwieldy. A smaller DTD may be more attractive to users and designers, because

of its shorter learning curve.

Since I did not focus on tangible results for this part of the project, but sought only to learn, I

have little to present. I present my opinions and recommendations in the Appendices to this thesis.

6.3 Chapter Summary

This project’s research showed that MEI-encoded musical data can be transformed into music

notation, and investigated the motivation for separating structural data and domain-specific data

in a markup language. This chapter explained why transforming MEI to printed notation is an

indication of the MEI format’s feasibility, and presented a sample transformation step-by-step. The

second section of this chapter explained why separating “content and presentation” is not the most

important reason to define auxiliary languages; instead, extensibility, stability, and compatibility

are important reasons to define usage-specific information separately, and separating content and

presentation may be a step in that process.

3The HTML 4.01 standard was released about the same time CSS2 was finalized and remains the most current
version.

Chapter 7

Methods

This chapter describes how I solved the problems of transforming MEI files to printed music notation

and learned about separating domain knowledge. Chapter 6 describes both activities, but whereas

that chapter is about the project research’s what and why, this chapter is about how.

7.1 Activities

I studied XML and XSLT over the summer of 2002 while working on the thesis proposal. I used both

languages for a documentation project at work, for which I designed a custom markup language

with XML Schema. This experience prepared me to understand the MEI format. After school

began in fall 2002, I began writing the XSLT script to transform MEI into Mup. My advisor

approved my research as a 3-credit class, and I worked approximately 2 to 10 hours a week on the

project. By the end of the semester I had written a script that could handle the MEI format’s most

commonly used features. I spent most of this time learning about the languages and technologies

I was using.

I met with Worthy Martin and Perry Roland at irregular intervals to give progress reports, ask

questions, and receive guidance with the direction of the project. I wanted to ensure that the thesis

project contributed to the MEI project and met Mr. Roland’s and Prof. Martin’s expectations.

There were no formal requirements for the XSLT script. Instead, the finished product was

the guide: the script was correct if it produced correct Mup markup. The resulting XSLT is not

well-designed from a software engineering point of view, but it does not need to be. Since the MEI

49

CHAPTER 7. METHODS 50

format is speculative and likely to change, there is little to gain from perfecting the XSLT. The

script is essentially “hacked” together to prove that transforming MEI to music notation is possible.

The development process typically involved reading through a MEI file to check for features not

yet implemented in the XSLT, finding the corresponding feature in the Mup manual, determining

the desired output, changing the XSLT to implement that functionality, testing, and moving to the

next feature. Perry Roland agreed to encode test pieces, so there were several files to experiment

with.

7.2 Materials, Equipment, and Software

The project is almost entirely software-based, so I did not use any materials except for printing

something occasionally. However, I used a variety of equipment and software. My primary equip-

ment is my own computer; I use GNU/Linux [29] as my operating system. I sometimes used

computer labs at the University of Virginia when I was away from my computer.

I used the Computer Science department servers to store the project’s files, and accessed it

through the CVS version control system [7]. Version control is essential for a project like this; it

enables retrieval of every past version of every file, prevents overwritten files or other lost work,

and keeps multiple copies of the work synchronized.

I wrote the XSLT in a text editor called Kate, which is part of the K Desktop Environment

[25]. I ran XSLT transformations from the command line, so Kate’s built-in terminal window was

very helpful. After a while, I began using Vim [64] instead, because it enabled greater productivity.

I used Xalan-Java [1] as an XSLT processor initially. Xalan is a free Java implementation of

the XSLT standard. However, it took so long to start up that the faster C++ implementation of

the same software was more usable. I later discovered the libxml collection of XML tools (see [27]

for details), and began using xsltproc, the XSLT processor that is included with the collection.

It has some nice features, such as the ability to output the result tree, that made the work easier.

I use standard command-line tools to do my work. The GNU [13] text utilities are at the heart

of all necessary text manipulation; they enable searching, sorting, counting words, concatenating,

comparing, and many other tasks with files. Ghostscript [12] and the psutils packages enable

viewing and manipulating PostScript files, including transforming PostScript into PDF and EPS

CHAPTER 7. METHODS 51

files for the proposal and thesis.

Mup [34] was the only software I needed to buy. Mup sends PostScript to the standard output,

which can be saved to a file with the > operator and manipulated as desired.

Finally, I use LATEX [26] to typeset the documents, and XFig [68] to create drawings and figures.

I use MrProject [33]to create schedules and plan my work.

7.3 New Languages and Technologies

I needed to learn a variety of languages and technologies for this project. The most important

languages were MEI, Mup, and PostScript, along with XML and XSLT. Since my only experience

defining an XML format was with XML Schema, I had no experience with a DTD, and needed

to study how a DTD works as well, especially since Perry Roland uses entities extensively to

modularize the MEI DTD.

7.4 Stumbling Blocks

At several points I found that I did not know enough about markup languages to proceed, but I

was always able to learn quickly and continue the work. Because the MEI format’s semantics are

not defined formally, some of the sample MEI files were also invalid or unclear. Emailing with Mr.

Roland usually resolved these ambiguities.

The biggest stumbling block was a hard drive failure during the summer of 2002. I did not

lose any data, because the CVS repository is on the Computer Science department’s servers, but I

lost my work environment of choice. It was necessary to log into a Unix server and work remotely,

because the UVa lab computers run Windows, and do not have version-control software and other

utilities installed.

The Mup language also presented some problems. The language has many shortcuts to save

time, and learning the language by using the shortcuts kept me from understanding the full format

of many features. It was necessary to rewrite the XSLT several times to handle the unabbreviated

form of the commands, which the Mup manual does not always define clearly.

CHAPTER 7. METHODS 52

7.5 Valuable Resources

I found that my most valuable resources were people, books, and online references. Perry Roland

and Worthy Martin were invaluable; Perry was especially helpful in answering questions about

XML, DTDs, and XSLT. We met sometimes for entire afternoons to discuss MEI and related

technologies.

Several books were very valuable. Michael Kay’s book on XSLT [24] is the best such book I

have found; the XSLT book from O’Reilly [62] was less helpful. Priscilla Walmsley’s book Definitive

XML Schema [67] was also very helpful. I referred to both of these books frequently. I often find

good advice on books by browsing Amazon.com and reading the reviews.

The Internet contains many resources, of course. The specifications for XML, XSLT, and

other languages are online, and I referred to them constantly. There are also many tutorials and

introductions to various topics online. Table 7.1 lists some of the sites I have bookmarked for this

project. I used Google’s directory listings to find most of them.

Website Description
http://www.mdwconsulting.com/postscript/postscript-
operators/index.php

PostScript language reference

http://www.cs.indiana.edu/docproject/programming/
postscript/postscript.html

A first guide to PostScript

http://directory.google.com/ Links to tools, technologies, and more
http://www.w3.org/TR/xslt XSLT homepage
http://www.w3.org/XML/ XML homepage
http://www.w3.org/DOM/ DOM homepage
http://www.w3.org/XML/Schema XML Schema homepage
http://www.w3schools.com A variety of tutorials and references
http://www.saxproject.org/ SAX homepage
http://www.w3.org/Style/CSS/ Cascading Style Sheets homepage
http://www.w3.org/TR/CSS2/ CSS Level 2 specification

Table 7.1: Websites I referred to during this project.

Chapter 8

Conclusion

Perry Roland’s MEI project seeks to create a comprehensive means of encoding musical data in

XML. The MEI format is intended to be comprehensive, declarative, explicit, interpreted, hierar-

chical, formal, flexible, and extensible. The MEI project’s goal is to create a framework for the

storage and retrieval of musical data.

The MEI format is very complicated, defining not only a very complete XML encoding of music

notation, but facilities for advanced typesetting such as a book’s critical apparatus. It also extends

XML encoding to allow the propagation and inheritance features discussed in Section 5.3.2. The

DTD itself is defined as a set of character entities, which are used as building blocks to assemble

the DTD. The result is a complicated, yet manageable, DTD.

Because XML is a generic way to represent data, it is a good choice for MEI, enabling sim-

ple XSLT transformations into other formats. This thesis project demonstrated transformations

into printed music notation and showed that the MEI format can represent music adequately for

generating printed music notation.

The second question of “separation of content and presentation” misses the point with data

markup languages. The best reason to define an auxiliary language is to ensure that the primary

language can be extended without changing it. Thus I do not define a division of musical content

and presentation, but recognize that the idea does not apply to MEI as formulated.

53

CHAPTER 8. CONCLUSION 54

8.1 Interpretation

Since MEI files are written in XML, it is easy to transform. However, because the format is based

on the decision to treat music notation as the essential content, the format may be of limited use.

This is contrary to the goal of comprehensiveness. The DTD also contains some design decisions,

such as inheritance and propagation of attributes, that may violate other design principles, such

as formality and explicitness, and may make it difficult to implement. Defining the format entirely

in the DTD, instead of separating out domain-specific parts of the language, may also limit the

format’s extensibility and flexibility.

Transforming MEI into music notation, especially with the fidelity we were able to acheive, is a

strong indication that the MEI format encodes sufficient information about music to be useful for

many purposes. Most uses of music, such as analysis, only use a small subset of the information

required to encode notation, so the MEI format may indeed develop into a universal language to

encode musical information.

8.2 Recommendations

As a student of Computer Science, I have studied the value of good requirements gathering. Gather-

ing requirements acknowledges explicitly what Covey calls “the principle that all things are created

twice [5, p. 99]” by taking control of the first (intellectual) creation to help ensure that the second

(actual) creation is a success. I suggest creating high-level and detailed requirements documents

to help ensure the MEI project’s success.

Regarding music notation as the essential content may limit the format’s utility. I recommend

regarding musical information as the essential content of music, and approaching music notation

as one view upon that information. In particular, I suggest basing MEI on a very simplistic view

of music. Musical information should be regarded as a series of events with a pitch and duration.

Structural and other essential content, such as words associated with the notes a singer sings, should

also be included, but the visual and other domains should be separated as much as possible from

the music. Representing notation makes MEI two steps removed from reality and may limit the

ways the encoded information can be used (see Figure 8.1 on the following page). Because MEI

CHAPTER 8. CONCLUSION 55

files are XML, it is more flexible than other formats, but it would still be better to encode musical

data directly rather than indirectly.

Perform

Transmit

Search

Analyze Catalogue

Retrieve

Interpret

Musical Data

Music Notation

Figure 8.1: Compare this figure with Figure 1.1 on page 3. Representing music notation, rather
than musical information in the abstract, removes MEI files another step from the thing represented.
The arrows represent the fact that MEI data can be used for other purposes, but abstract musical
data must first be extracted from the MEI file.

Because notation is perhaps the most important use for musical data, I recommend developing

a comprehensive auxiliary language to give authors control over the appearance of a MEI document

when viewing it as notation. However, I first suggest defining and documenting a set of units, a

visual formatting model, and a standard means of extending MEI without rewriting the DTD. This

may avoid haphazard extension by authors who need something that is not directly supported.

Appendix C suggests ways to think about a structured, defined extension mechanism. The goal

is not only backward compatibility with previous versions, but with other extensions (sideways

compatibility) and future extensions (forward compatibility) as well. This goal cannot be realized

without careful planning and a defined standard by which auxiliary languages can be designed. To

help set a good precedent for future extension, domains could be defined by considering what the

data will be used for, though the auxiliary language need not be implemented immediately.

While I recommend making the MEI format more general in these ways, in another way I

recommend narrowing its scope significantly. I recommend restricting MEI to musical data and

meta-data. For the visual domain, I suggest defining MEI with the following uses in mind: embed-

ding a small fragment of notation into a Web page, inserting notation into a TEI text, mixing MEI

notation with arbitrary XML markup in another file, and including a MEI file in another file as is

currently done with images in HTML. I suggest removing textual markup facilities. If MEI files

can be included in another document, authors can use an existing format to encode the text. To

define this in MEI directly is to reinvent the wheel, and while it may be more convenient for some

purposes, this comes at a cost. It is important not to prioritize ease of use for document authors

CHAPTER 8. CONCLUSION 56

over ease of use for programmers and the programs they might write.

I recommend abandoning MEI’s terse element and attribute names in favor of explicit names.

Since XML files are supposed to be used by computers first and foremost, it makes sense not to

worry about long element names. More importantly, though, humans will have to work with the

format closely to write tools that can use it. The DTD should make this work as easy as possible.

I suggest discarding language features such as inheritance and propagation. These features

cannot be supported by XML, because after the DTD is parsed the client application cannot know

of their existence. These features also violate the requirement of explicitness. This is important,

because it means that the MEI file is passing some decision or knowledge about the file’s contents

to another part of the chain, as discussed in Section 6.1 on page 40. This is a good idea for visual

layout, where information should be defined by an auxiliary language and a visual formatting

model, but not for the musical data itself.

Similarly, I suggest replacing information currently encoded in an application-specific manner,

such as the use of #CDATA-typed attributes used to pass information to Mup in the example files,

with explicit encodings that are application-independent. Again, relinquishing decisions or informa-

tion to a processing application in an uncontrolled manner is likely to make MEI files less generally

useful.

If advanced features not supported by DTDs are necessary, then other technologies may be

appropriate. The XML Schema specification has matured significantly, and is now a stable, endorsed

standard. It offers some features, such as the idea of a data type and the ability to extend it, that

may serve as a replacement for the use of character entities in the MEI DTD.

I develop these and other recommendations more fully in the Appendices to this thesis.

Part II

Appendices

57

Appendix A

Suggestions for the MEI Project

The MEI DTD is well-built overall, but there may be room for improvement in future versions.

The following suggestions address key areas that I identified during my research.

A.1 Avoid Non-Standard Extensions

The DTD defines several extensions to the default declaration of some attributes. An attribute’s

default declaration specifies whether an attribute is required, whether it exists even if omitted from

the document, what its default value is, and whether the author can specify the value or not.

Because the DTD is built from externally defined entities, the XML parser sees the element

specification as a simple element specification, and has no information about these extensions.

For example, the following is the attribute list definition for the <note> element (portions of the

following definitions are omitted for clarity):

<!ATTLIST %n.note;
meiform CDATA #FIXED ’note’
%a.log.note;

Recall the definitions of the entities referred to above:

<!ENTITY % a.log.note
oct %OCTAVES; %PROPAGATED;>

58

APPENDIX A. SUGGESTIONS FOR THE MEI PROJECT 59

<!ENTITY % n.note ’note’>
<!ENTITY % PROPAGATED ’#IMPLIED’>
<!ENTITY % OCTAVES ’(0|1|2|3|4|5|6|7|8|9)’>

Once all the entity references are replaced with the entity values, the XML parser’s view of the

definition is as follows:

<!ATTLIST note
meiform CDATA #FIXED ’note’
oct (0|1|2|3|4|5|6|7|8|9) #IMPLIED>

The XML parser has no way of distinguishing an attribute whose default declaration is the

entity %PROPAGATED (the value of which is #IMPLIED) from one defined as #IMPLIED directly. Thus

neither the parser nor any other application has information about these extensions. They can only

serve as internal DTD documentation.

For two reasons, the MEI document format should not attempt to extend the XML syntax

in this way. First, expecting an attribute to be defined on one element because it is defined on

another violates the principle that a MEI document should be explicit, i.e. all information should

be stated explicitly. These extensions must be handled by client software, which means that some

information about the file is implicit in the client software.

Second, the document’s formality is compromised. It should be possible to verify a file as correct

formally without reference to anything external, but there is no way to verify that an attribute

defined as a DATE or NUMBER conforms to this expectation. If it is truly necessary to constrain data

further than is possible with a DTD, XML Schema may be a better technology to use.

A.2 Avoid Terse Attribute and Element Names

Since XML is designed for machines to manipulate, terseness is not important. Section 1.1 of

the XML specification, “Origin and Goals,” states that “terseness in XML markup is of minimal

importance” [11]. Using longer element and attribute names does increase file sizes, and requires

more keystrokes when hand-editing files, but these are minor issues because of compression and

client software. Files are usually compressed, and long names compress more than short ones, so

APPENDIX A. SUGGESTIONS FOR THE MEI PROJECT 60

a compressed XML file will probably be the same size no matter how long the names, because

redundant data compresses well. Additionally, just as a human does not hand-edit a Microsoft

Word file, a client application should usually use the MEI format as its native file format. Longer

element names also have the significant advantage of being meaningful to a human reader who is

working with the DTD directly.

A.3 Avoid Using #PCDATA for Attribute Values

There are many occasions where the MEI format encodes information as character data. Perry

Roland advised that this data was to be passed directly through to Mup; the intention is to let

authors use this data in a way that a particular program can understand. This has the undesirable

effect of tying any such file to a particular program, which defeats the purpose of creating a universal

encoding language.

An example of this type of character data is the beam.group attribute, which specifies how

notes are to be beamed together. “Mary Had a Little Lamb” uses 4,4,4,4 for this value, which

means that when possible, notes should be beamed together into four groups of notes, each having a

combined time value of a quarter-note (see Figure A.1 on the following page). The transformation

sends this data directly to Mup. Unfortunately, this file is now useful only with Mup because

another program may have an entirely different method of encoding beam stylings. It would be

better to define a structured XML representation of beam groups and their time values. An example

fragment to encode this might look like the following:

1 <staff-definition ... >
2 <beam-grouping>
3 <group time-value="1bt" />
4 <group time-value="1bt" />
5 <group time-value="1bt" />
6 <group time-value="1bt" />
7 </beam-grouping>
8 </staff-definition>

This code defines four groups of notes, each of which contains enough notes to fill one beat of

time. This example is essentially equivalent to the intuitive beamstyle="4,4,4,4" notation, but is

APPENDIX A. SUGGESTIONS FOR THE MEI PROJECT 61

more formal — it is easier to write a computer program that works with such an encoding, because

it takes advantage of the XML syntax. Note that the code does not use the unitless value “4.” For

more on a suggested system of units, see Appendix C on page 68.

I believe it would be even better to define beaming information in a stylesheet language than

to use the XML construction shown above (see Appendix C). However, the example demonstrates

how such information can be encoded in XML if desired.

4
4
� � � � � � ��� � �

Figure A.1: The results of the beamstyle=4,4,4,4 parameter to Mup: notes are beamed together
in four groups, each with a total time value of one quarter note.

Another example is the placement of phrase marks, as in this example, which is the second

staff from the last measure of the excerpt from the Mozart piano sonata in A Major, K. 331 (see

Figure A.2 on the following page):

1 <staff def="s2">
2 <note id="_g5" pname="e" oct="2" dur.vis="16" grace="unacc" />
3 <note pname="g" oct="2" dur.vis="16" grace="unacc" />
4 <note pname="b" dur.vis="16" grace="unacc" />
5 <beam>
6 <note id="_n5" pname="e" dur="8" />
7 <note pname="e" dur="8" />
8 <note pname="e" dur="8" />
9 <note pname="e" dur="8" />

10 </beam>
11 </staff>
12 <phrase staff="s2" end1="_g5.x,_g5.y+6" end2="_n5.x,_n5.y+2" bulge="2" />

Note the format of the <phrase> element’s attributes. Information about which notes the

phrase mark begins and ends on, as well as horizontal and vertical offsets, is packed into dense text

strings. The code means that the mark should be drawn on staff 2 beginning at the note named

g1 and ending at the note named n1. The (x, y) coordinates on the page for the respective ends

of the phrasing mark are to be (g1’s x position, g1’s y position plus an offset of 6) and (n1’s x

position, n2’s y position plus an offset of 2). The phrase mark should have a bulge value of 2.

APPENDIX A. SUGGESTIONS FOR THE MEI PROJECT 62

� � �

� � �
2
4

2
4

��� � ���

� � �
� � � �

(See enlarged version at right)

�
�

�

�

_g5

_n5

bulge value for phrase (2 units)

vertical offset from _n5 (2 units)

horizontal offset from _n5 (0 units)

horizontal offset from _g5 (0 units)

two ‘‘stepsizes’’ (units of measurement)

vertical offset from _g5 (6 units)

Figure A.2: The ends of the phrase mark are positioned relative to the two notes identified by g5
and n5. The bulge value for the phrase is the distance the phrase mark bulges from a straight line.
The unit is a “stepsize” (one-half the distance between two staff lines).

Instead of placing the information together in this way, the phrase mark’s beginning, end, bulge

value, and horizontal and vertical offsets should be defined separately. Any processing application

can then extract the information it needs and transform it into a suitable form.

This section may seem to conflict with other parts of this thesis, which suggest placing all

domain-specific information into a single #PCDATA attribute and passing it on to a processing ap-

plication. The difference is that the text is currently passed to a specific piece of software, whose

behavior may differ from others. The domain-specific information, however, should be valid markup

in an auxiliary language (see Appendix C), and the target application’s behavior should be defined

by a standard (see Appendix B), ensuring that any conforming processor could process the infor-

mation as expected.

A.4 Avoid Including Formatting Information in the DTD

The last section gave an example of visual formatting attributes that are defined by the DTD. In

fact, the essential musical information is very simple: the phrase starts on note g1 and extends

to n1. The visual placement of the curve that is drawn to represent the phrase should be left

to a style language, or a visual user agent could decide where to place the mark to keep it from

interfering with the rest of the notation. Again, the DTD should only include information about

musical content and structure.

APPENDIX A. SUGGESTIONS FOR THE MEI PROJECT 63

A.5 Discourage Authors From Modifying the DTD

The MEI DTD is designed explicitly to be modified by document authors. Perry Roland has said

[48] that it is important for authors to be able to redefine the DTD from within the document (by

first including the DTD and then overriding or adding to it). This allows flexibility, but it means

that the MEI format itself is being changed, perhaps on a document-by-document basis. If this

happens, there will be no single MEI format anymore. An XML processor will be able to verify

that the file validates against the modified DTD, but programs that are expecting “canonical”

MEI files will not know what to do with the modified files. For example, authors can change an

element’s name easily. Perry noted that this might allow authors to use a locale-specific version

of an element, for instance to use the German word for “bar.” If an author encoded a file with

German names for all the elements, other applications would be unable to use that file without

first translating the names into “canonical form.” In short, I believe that the DTD should ensure

that authors never need to modify it, but can instead extend it in a well-defined way, possibly with

auxiliary languages as explained in Appendix C. To do otherwise would be to encourage multiple

definitions of the MEI format, endangering its value as an interchange format.

A.6 Avoid Creating a Monolithic DTD

At present the MEI DTD itself appears relatively compact, but after a processor assembles it from

entities, it is very complex indeed, making MEI files complex as well. For example, the DTD defines

many attributes that appear in the document tree even if omitted from the original file. Here is an

XML file’s version of the <scoredef> element:

<scoredef meter.count="3" meter.unit="4" key.tonic="A" key.mode="major"
key.sig="3s">

Here is the full form after the processor adds all the elements that the DTD specifies:

<scoredef meiform="scoredef" tune.temper="equal" tune.Hz="440" tune.pname="a"
midi.track="1" midi.tempo="120" midi.port="1" midi.i nstr="1" midi.duty="80"

APPENDIX A. SUGGESTIONS FOR THE MEI PROJECT 64

midi.div="96" midi.channel="1" tie.rend="medium" text.size="12"
text.font="rom" text.fontfam="times" spacing.system ="12,20"
spacing.staff="2" spacing.packfact="1" spacing.packexp="0.8"
slur.rend="medium" pedal.rend="term" page.scale="1" page.panels="1"
page.rightmar=".5" page.leftmar=".5" page.botmar="1" page.topmar="1"
page.units="in" page.width="8.5" page.height="11" optimize="no"
multi.number="yes" meter.rend="norm" lyric.size="12" lyric.font="rom"
lyric.fontfam="times" lyric.align="0.25" key.sig.showchange="yes"
key.sig.show="yes" grid.show="no" ending.rend="top" enclose.reh="box"
dist.text="2" dist.harm="3" dist.dynam="2" clef.visible="yes"
beam.slope="1.0,2 5.0" barplace="norm" barnum.visible="no" trans.semi="0"
trans.diat="0" clef.line="2" clef.shape="G" bar.number="no" meter.count="3"
meter.unit="4" key.tonic="A" key.mode="major" key.sig="3s">

Most of this information is domain-specific. Again, if information to support all possible uses

of the musical data is encoded in the DTD directly, it will become very large. This could be a

significant disincentive for its adoption as a standard.

A.7 Use Configuration Management Tools

As a student of software engineering, I would like to see the revision process managed more carefully.

Perhaps using an open-source development model such as anonymous read-only CVS access would

be a good idea: it would allow tracking changes, it would help ensure that people always have the

most up-to-date versions of files, it would let people find out what changed between versions and

why, and most importantly, it would let multiple developers collaborate effectively.

Appendix B

Visual Rendering of Music Notation

Most languages that define visual data layout also define something often called a “display model”

or a “rendering model,” which describes how a hypothetical piece of software might decide how to

place the content, and gives context to the layout specification’s meaning. Display models such as

these appear in the Cascading Style Sheet, MathML, and SVG specifications, to name a few. They

usually describe layout in terms of analogies, to clarify the language’s semantics. For example, CSS

defines a “box” model, and SVG speaks of “painting” objects onto the “rendering canvas.”

Music notation’s layout is extremely complicated. Element placement cannot be determined by

simple rules; even an algorithm for determining where system breaks (a line of staff(s) across the

page is called a “system”) should occur is complicated. There are also many exceptions depending

on what other elements are nearby; for example, phrase marks should be placed out of the way of

the rest of the notation as much as possible.

I believe that a logical way of thinking about notational layout is necessary for a successful

standard. A documented layout model serves as clarification for the standard itself. It specifies

nothing about the way processing software must actually work, but specifies the expected results.

This helps keep implementations consistent; for example, web browsers that implement the CSS

standard render pages very uniformly, demonstrating that the CSS approach worked well in this

case. A layout model can also help clarify the layout language’s requirements during the design

stage.

As mentioned in Section 6.1 on page 40, this type of “knowledge” can be embedded anywhere in

65

APPENDIX B. VISUAL RENDERING OF MUSIC NOTATION 66

the chain of data and processing applications between the source document and the final output. It

is best to have this knowledge explicitly encoded in the system, rather than implicitly leaving it to

some step of the process, but that does not mean that it must be written into a source document.

For example, the way a browser lays out an HTML document is specified even if no CSS stylesheet

is attached — the CSS specification contains a “default” stylesheet, and browsers are supposed to

render documents as though this stylesheet were attached if no other style information is given. A

defined standard that a processor is expected to follow can be thought of as explicitly encoded in

the document, though it is in fact encoded in the processor. This is a much better way to control

document appearance than by placing formatting information into the DTD.

B.1 Nested Boxes

It is logical to define music notation as nested boxes. The outermost enclosing element could be

a single box, with nested boxes to enclose each system and perhaps each bar. These boxes could

form a framework within which to lay out the visual elements of the notation. This approach

makes it easy to imagine embedding a fragment of music notation inside another file, just as an

Encapsulated PostScript file can be embedded in this thesis document.

Each element itself might be thought of in terms of a containing box, with points defined as

references. For instance, these points could be used as “handles” to which other elements could be

attached, or as points from which to measure offsets. Figure B.1 demonstrates this graphically.

�

Figure B.1: An element box and its handles. The symbol represents a handle.

This model leaves it up to the author to ensure that no elements overlap or conflict; for example,

it would be possible to specify the absolute position of an element, and this could interfere with

another element. This approach has the benefit of letting authors have complete control over where

things are placed — if authors want elements to overlap, then they are free to make them do so.

APPENDIX B. VISUAL RENDERING OF MUSIC NOTATION 67

B.2 Self-Aware Elements

It might also be possible to make notational elements “aware” of their own surroundings. OpenType

fonts use a similar idea [42]. Thus a graphic element could actually reshape or move itself to avoid

conflicts. Programmers could create a standardized set of these symbols, perhaps as a font or in

a similar manner. This relieves authors of the burden to place everything correctly. It also makes

sense from an implementation standpoint; an entire class of decisions are handled at a low level,

eliminating the need to implement them in every piece of software built to work with the format

(again, just like fonts) and ensuring uniformity across implementations. On the other hand, it

might introduce issues with elements stubbornly refusing to display as the author wishes because

the elements themselves “know better.”

In either case, having a defined formatting model as an imaginary reference implementation

could help in creating and interpreting an auxiliary language.

Appendix C

Stylesheet Design Concerns

C.1 Why Have a Style Language?

The need to use a style language for visual control may not be obvious. One of the most often-cited

examples in this thesis and elsewhere is the tremendous benefit CSS offers to HTML authors. As

an HTML author, the two things I appreciate the most are the ability to specify style information

for an entire website globally in a single file, and the clean HTML markup that results from the

absence of style information in the markup itself. As a side benefit, the stylesheet, which is in a

separate file, can be cached by a browser, eliminating the need to download it more than once and

reducing file sizes.

These benefits might not apply to music notation in the same way, because it is not clear that

style information could be applied globally to music notation in a way that would benefit authors.

For instance, imagine defining the default vertical and horizontal offsets for a slur’s ends. Slurs

usually look best when they start and end near the centers of the notes they tie, and are offset

vertically by about one inter-staff distance from the notes’ centers (see Figure C.1 on the next

page). If the note stem or another element is in the way, the end must be moved to compensate.

Defining this type of information in an attached stylesheet would be almost useless. These

defaults serve very well for most cases, and in the instances when authors would need to override

the defaults, they would want to attach that information directly to the element itself. Having a

stylesheet with defaults either encoded in each document or as an external file would provide no

68

APPENDIX C. STYLESHEET DESIGN CONCERNS 69

4
4

�
�

�
�

�
� �

�

Figure C.1: Slurs are placed to avoid the note stems. Each end is offset horizontally a small
amount from the center of the note it is attached to, and vertically offset about one inter-staff
distance from the center of the note. The last pair of notes is a special case, because the slur
cannot extend through the stem of the C.

benefit. Instead, this information should be in the default stylesheet specified by the standard.

Thus style languages would not necessarily bring the benefits of smaller file sizes and cleaner

markup to a document (though having all style information in a single style attribute, as with

HTML and CSS, would significantly reduce the number of attributes on elements). Instead, style

languages would enable extensions to the format without changing it. I believe that this benefit

alone outweighs any inconveniences, such as needing to create a separate language for the style

information.

C.2 Categories of Style Information

It would sometimes be necessary to specify the appearance of some notational elements. For

example, when compiling several files together into a book of notated pieces, the pieces should all

look similar. Therefore, some user-level control over the notation is necessary, and should be very

easy to use: an axiom in Computer Science is to “make the common case fast” (or easy, in this

case). This suggests a divided approach:

• A rendering model as in Appendix B

• A set of rules on how elements are to be laid out

• A way to specify families of shapes to use for the notation

• Styling concerns

The distinction between the second and third items is subtle, but note that one has to do with

element placement, while the other deals with exactly what shapes are placed in the space reserved

by the layout software. In other words, part of the layout process is to allocate space on the page

APPENDIX C. STYLESHEET DESIGN CONCERNS 70

for each element’s “box,” and then choose a shape to insert into the allocated space. The second

type of default above deals with where these reserved spaces are placed; the third is similar to

selecting a font (and in the case of any text associated with the music, actually does select a font).

The final category of defaults deals with styling concerns, for example the decision to make bar

lines join staffs, whether to number the measures of a piece, and so on.

C.3 A Default Stylesheet

This re-introduces the concept of a default stylesheet. In the absence of explicit instructions on how

to lay music out, all processors conforming to the standard would be expected to render the music

notation as if there were a default stylesheet attached. This stylesheet would address the second

category of information; examples of defaults would be inter-staff spacing, line thickness, length of

a note stem, how much a ledger line projects on either side of a note, and so forth. For the vast

majority of music, authors would not need to use or even know about these defaults. However, in

the event someone needed to make a ledger line project out more than usual on one side of a note,

there would be a way to do so. Some common sets of these defaults, if applicable, could be grouped

together under the name of a “family.” An author could then set many defaults at once simply

by declaring the family. For instance, an author might wish to declare that this music should be

laid out in “tiny” mode, and the staff spacing, inter-note spacing, and other parameters would be

adjusted accordingly.

The default stylesheet would specify standard fonts and other shape families, but authors would

probably find these controls useful more frequently, so they could be grouped together and treated

with special shortcuts, not unlike the CSS specification’s shortcuts for common uses of styling

information. Setting a font family and size is an obvious application.

The default stylesheet would also include the last category of styling information. For example,

bar numbering would be turned off for most music. With these aspects of music notation specified

in the default stylesheet, the need to actually encode with the document all the information that

never changes, and is never needed by the author, is obviated. It is still explicitly there because it

is required by the standard, but it is usually redundant and can be eliminated.

APPENDIX C. STYLESHEET DESIGN CONCERNS 71

C.4 Stylesheets as an Extension Mechanism

Stylesheet languages could be defined for many different domains. As a starting point, at least the

visual, gestural, analytical, and performance domains could be considered. However, it is likely that

at some point a universal musical data format will need to handle some unforeseen domain or use,

and style languages may be able to meet this requirement without requiring changes to the DTD.

If a general style language specification is created, it should be possible to define some formal rules

that any new style language or extension to an existing one must follow. This could be expressed

as a grammar that any new language must comply with, just as XML is a grammar for defining

a markup language. The style languages might reap the same benefits as XML data enjoys just

by being encoded in XML: many applications could be written to work with it, standard libraries

might exist for parsing it, and so on.

A means of defining the semantics, or formal meaning, of such a language would also be nec-

essary. This seems like a formidable task, but perhaps it is possible. For example, text editors

often read a “syntax definition” file to know how to highlight the syntax of a particular computer

language, easing the programmer’s job. Most such editors provide a facility for installing new syn-

tax definitions, so the editor can support a language definition that may not have been part of the

standard installation. Perhaps it would be possible to describe the semantics of a domain-specific

style language in a similar way. These definitions could be kept as part of the standard MEI docu-

ments, and users could simply download and install a file to let their processing applications know

how to deal with the features of a new style language.

C.5 Stylesheet Namespaces

Note that all information in the default stylesheet is still essentially visual layout information, and

is only separated into categories to draw a distinction between different types of style information.

In fact, there is no reason not to define any document-level styles in the same place or stylesheet

file, regardless of the category it belongs to. Other categories of visual styling information might

be defined for guitar chords or other application-specific domains.

To separate out these categories, a concept similar to that of XML namespaces could be

APPENDIX C. STYLESHEET DESIGN CONCERNS 72

used. A namespace prefix might be affixed to style information. To deal with highly special-

ized means of control over styling, namespaces could even have sub-namespaces. These names-

paces would differ from XML namespaces in that they would be standardized, and a formal

definition of the meaning for each namespace would be available as mentioned above. As an

example of such a namespace, consider the “visual domain” of music notation styling. Perhaps

an author would want to specify that a note should be displayed one inch above its normal

position for some reason. The author could write the markup as <note ...(attributes)...

style="visual:x-offset=’1in’">. The namespace, in this case, is the part in front of the colon,

visual. Sub-namespaces could be defined by additional colon-separated words; for example, styling

information for a guitar chord chart’s appearance is clearly in the visual domain, but it only applies

to guitar chords, so perhaps it would appear as visual:chord:guitar:font-family=’Helvetica’".

Namespace aliases could be defined in stylesheets to reduce the burden of typing the full names-

pace each time it is needed; for example, a namespace alias g could be mapped to the full name,

visual:chord:guitar. A default namespace could also be declared, eliminating the need to use a

namespace on each element; this might be useful, for example, when notating organ music.

C.6 A System of Units

One of CSS’s most important features is its flexible system of units. CSS defines units for lengths

and colors. Authors can specify units of length both absolutely and relatively.1 Absolute units

include many different systems, such as English, Metric, and device-dependent (pixels). Relative

units include the em and the ex. Music adds the need for at least one more relative unit of length

(what Mup refers to as the “stepsize,” or half the distance between staff lines), units of time, and

units of pitch.

Both absolute and relative units should be defined for time, even though relative units are used

more commonly. In addition to the obvious unit, seconds, it may be necessary to consider samples

as an absolute unit (this assumes that the stylesheet defines a sampling rate as well). Relative

units could be expressed as beats, or again, because it is so convenient, as the denominator of the

fraction of a whole note, as with Mup. However, whereas Mup uses the denominator alone (a 4

1Position can also be absolute and relative — do not confuse position and units.

APPENDIX C. STYLESHEET DESIGN CONCERNS 73

indicates a quarter note, an 8 an eighth note), a unit suffix should be appended, for example the

letters th.

Pitch also needs to be specified in both ways. Absolute pitch is best expressed in cycles per

second. Relative pitch is usually expressed in terms of semitones, which are the interval between

adjacent keys on the keyboard. Since most musical scales repeat at one-octave intervals, and a

note at one octave vibrates at twice the frequency of the one below it, a semitone is defined in

the Western well-tempered scale to be relative: each note’s frequency is 12
√

2 higher than the last.

Semitones are further divided into 100 cents, or 1200
√

2 steps of pitch.

Most music conforms to the Western well-tempered scale, or can at least be notated on the

staff even if the tuning is different,2 but to be universal there must be a way to specify a different

interval between notes, different interval between octaves, and different numbers of notes per octave.

Perhaps one way to do this would be to create optional parameters for inter-octave spacing, an

indication of how many notes are in an octave, and whether the notes are spaced evenly. These

three pieces of information could be used to calculate the inter-note interval: for example, if each

octave’s frequency is 2.5 times the frequency of the previous, and there are 11 equally spaced notes

in an octave, each note’s frequency is 11
√

2.5 times higher than the previous. It should also be

possible to specify a pattern of notes and pitches that form a “scale” that repeats every octave,

regardless of the intervals.

Other common ways of thinking about intervals are in seconds, thirds, fourths, and so on, which

represent the tonal distance between the root of a scale and the second note, root and third note,

etc. Some intervals can be diminished or augmented by a semitone.

This is very complicated, but necessary for a universal encoding language. On the other hand,

it would be easy to make things too complicated, as SMDL did. The key is to remember that there

is a point of diminishing returns (make the common case fast), and that only the most necessary

features should be included in the basic definition. An easy way to extend the language should be

sufficient to support the less common cases.
2Just intonation is one common alternate tuning; notes are not separated by a uniform interval.

APPENDIX C. STYLESHEET DESIGN CONCERNS 74

C.7 Attaching Style to a Document

The HTML/CSS model of allowing authors to attach styling information in several different ways

seems to work very well. Stylesheets can be linked from external files in several ways, written

directly into the document via the <style> element, and attached directly to elements with a

style attribute. Authors can also specify families, or “classes,” of styles, and then declare that an

element “belongs” to that class with the class attribute, as in <p class="large">. Stylesheets

can even single out a particular element by its ID attribute. These ways of attaching styling to a

document are mature and well-accepted, so they may be good candidates for the MEI format.

Style information could also be defined to propagate or inherit. Since the stylesheet processing

application must conform to the implementation model, there is no reason not to add these features

into a stylesheet language, even though it appears to be a poor design decision for the XML schema

itself. CSS and other style languages commonly define such models — in fact, this is what it means

for a CSS attribute to “cascade.”

Appendix D

Mup: The Music Publisher

Mup is an easy-to-use, but quite capable, music publishing program. I chose it for this thesis

research at Perry Roland’s suggestion, partly because MEI is based upon some of its features and

partly because of its ease of use and standard Unix behavior: input goes into the standard input

and PostScript comes out of the standard output. While studying for this thesis research I have

learned to use it enough to create fairly complex music notation. This Appendix contains some

observations on the Mup file format and the way the program works.

Mup files are plain text files containing instructions in the Mup language. The language itself

is not defined [35] formally. Mup’s creators provide a manual that explains the language. The

language is defined by the manual and the program’s behavior.

Mup is designed to be very easy for humans to use. Since there is no graphical editing interface,

a person must edit the text, and a user-friendly language is important. The Mup language is

therefore very flexible, almost casual. Notes can be entered one at a time or in entire chords. The

pitch and time value of a note “propagate” from one to the next to ease editing. Every parameter

has a default value, so if it is left off the program inserts it automatically. Most of the time these

defaults are exactly what the average user needs. For example, paper size defaults to 8.5x11 inches.

Many of these features are included in MEI.

Mup does have some limitations. It can only handle three voices, and it does not handle some

archaic features such as uncommon clefs. Cross-bar beaming is difficult. Curves, such as phrase

marks, are sometimes difficult to get right, especially when they continue past a system break.

75

APPENDIX D. MUP: THE MUSIC PUBLISHER 76

Mup also requires each measure to have exactly the right amount of notes in it to match the time

signature, which requires awkward workarounds for common needs such as a “pick-up measure,”

which is usually incomplete — this requires placing “spaces” into the notation, which take up

time but are invisible. There are also “noncompressible spaces,” which seem to be inspired by

TEX. Displaying such notations as time signature changes as desired may require awkward uses of

invisible bars or other odd methods. It is also difficult to get Mup to typeset two pieces on the

same page. It is possible to add text to the page, but it is difficult to control this feature.

Because Mup is so informal, there are many ways to write the same thing, but the long, explicit

way can always be used. After my experiences transforming to the Mup format, I have gained

enough insight to realize that explicitness is desirable. If I were ever to transform from Mup, I

would start by writing a script to ensure that the Mup file is in the long, explicit format.

In short, Mup is centered around the notational aspect of music, with only basic facilities for

other tasks, but it is robust enough to be very useful for an average person’s notation needs, and

even do a good job on demanding markup, with some effort. It served well for this thesis project,

but my experiences so far with music notation markup languages have convinced me that formality

is a good thing!

Appendix E

Comparison of MEI and MusicXML

Of the XML musical data languages being developed currently, MusicXML [36] is the most widely

used. Several commercial tools can work with MusicXML via plug-ins, and programs exist to

transform MusicXML to and from other formats. Given this, why create MEI?

MusicXML and MEI have very different goals. For example, MEI seeks to provide a framework

for encoding, whereas MusicXML is focused on the immediate need for an interchange format.

Beyond the differences in purpose, however, there is an important difference in the formats. The

MusicXML format encodes nearly everything in elements, whereas MEI mixes elements and at-

tributes. Here is a sample measure encoded in MusicXML and MEI, respectively:

1 <measure number="1">
2 <attributes>
3 <divisions>24</divisions>
4 <key>
5 <fifths>-3</fifths>
6 <mode>major</mode>
7 </key>
8 <time>
9 <beats>3</beats>

10 <beat-type>4</beat-type>
11 </time>
12 <clef>
13 <sign>G</sign>
14 <line>2</line>
15 </clef>
16 </attributes>
17 <!-- some markup omitted -->

77

APPENDIX E. COMPARISON OF MEI AND MUSICXML 78

18 <note>
19 <pitch>
20 <step>B</step>
21 <alter>-1</alter>
22 <octave>4</octave>
23 </pitch>
24 <duration>24</duration>
25 <voice>1</voice>
26 <type>quarter</type>
27 <stem>down</stem>
28 <lyric number="1">
29 <syllabic>single</syllabic>
30 <text>Auf</text>
31 </lyric>
32 </note>
33 <!-- some markup omitted -->
34 </measure>

1 <bar n="1">
2 <staff id="s1">
3 <voice id="s1v1">
4 <note pname="b" acci="f" oct="4" dur="4" />
5 <!-- some markup omitted -->
6 </voice>
7 </staff>
8 </bar>

The most obvious difference is the MEI markup’s terseness. The MusicXML markup uses much

longer element names. This is good, but it also uses an all-element approach to encode the music.

The MusicXML FAQ includes a question about this [36, FAQ]:

Why do you use all these elements instead of attributes?
This is mainly a stylistic decision. Several XML books advise representing semantics
in elements rather than attributes where possible. One advantage of doing this is
that elements have structure, but attributes do not. If you find that what you are
representing really has more than one part, you can create a hierarchical structure with
an element. With attributes, you are limited to an unordered list. For information
retrieval applications, it can also be easier to search directly for elements rather than
for attribute/element combinations.

My experience with XML has been the reverse — it is a design decision, not a stylistic decision.

Attributes can be much less expensive to process, especially in a language like XSLT that relies on

XPath to locate elements. It may be necessary to use recursive processing and function calls, which

APPENDIX E. COMPARISON OF MEI AND MUSICXML 79

are very expensive, to retrieve deeply nested information. It may also be more difficult to retrieve

some information if the elements and attributes are not distinguished correctly; an all-element

approach may not preserve functional dependencies between data, and lossless joins of data sets

may be impossible because some information has been discarded (more on this). In other words, a

mixture of elements and attributes can encode semantic meaning that is discarded when using all

elements.

I believe that a firm grasp of the mathematics involved should inform decisions about attributes

and elements, rather than breaking anything up if it is composed of several parts. A database

designed in this manner would be difficult to use, and there is a strong relationship between XML

data and databases. If the XML schema is designed correctly, it is possible to store the data in a

relational database, but “in particular, nested elements and elements that recur (corresponding to

set valued attributes) complicate storage of XML data in relational format” [54, p. 382]. However,

a mapping to relations can be designed, in which XML elements whose schema is known are

mapped to relations and attributes. Another mapping involves creating a tree view of the data

and replicating this in relations and attributes in the database, but this may require many joins

to reassemble the data [54, p. 383]. The mapping from relational databases to XML may be

accomplished by several methods, but one way is to simply map rows to elements and columns to

attributes. Microsoft SQL server implements this method [54, p. 1004]. For more on XML and

databases, see [3].

The fundamental problems in database schema design and markup language design are related,

and should be approached with an eye toward eliminating redundancy, enabling flexible information

storage, and preserving functional dependencies between data. While I have not tested MusicXML,

I suspect that it might perform poorly with large data sets because of its all-element structure. The

common sense approach also suggests that information about something, such as a note’s pitch,

should be an attribute. The element named <attributes> indicates design confusion.

Using all elements may also limit the format’s flexibility. It may be easier to add an attribute

if necessary than to add an element. Adding an attribute is not likely to break compatibility with

existing files, and existing client software will probably have no problems with the new attribute.

Well-designed software looks explicitly for the attributes it needs, like well-designed SQL queries (it

APPENDIX E. COMPARISON OF MEI AND MUSICXML 80

is a bad idea to write INSERT INTO EMPLOYEE VALUES("BEN", ...); — this software will break as

soon as the database schema is changed), and the presence of an additional attribute is usually no

problem. Adding an element to a language changes file structures and may cause incompatibilities

with client applications. In short, MusicXML’s design might make evolution expensive and difficult,

and may represent a disincentive for its adoption.

Appendix F

DTDs and XML Schema

The MEI format is defined in a DTD, but there are several ways to design data markup languages.

DTD has the advantage of being supported broadly and simple. DTDs can also be extremely easy

to maintain and extend. However, the DTD method’s simplicity is also a disadvantage in some

applications. DTDs do not provide a means to specify many data types, and cannot constrain an

element’s data at all. DTDs are also difficult to use for more complicated markup. For example,

it is very difficult to specify that an element must occur between 4 and 99 times inside another

element. Choosing two out of three items is even difficult:1

<!ELEMENT happiness ((good,(fast|cheap))|(fast,cheap))>

Schemas are a much more powerful way to specify a markup language. They make it easy

to constrain data in any way desired, even supporting regular expressions for advanced pattern-

matching constraints. They make it easy to define structure; it is simple to solve the 4-to-99

problem in a schema language. Unfortunately, they are not yet as widely supported, and some are

still in development.

The major disadvantage in using a schema language for a project like MEI is the lack of support

for external entities. Recall that entities are used like Legos in the MEI DTD; they are defined

once and used many times, making the DTD maintainable and extensible. This is not possible with

a schema language, but it may be possible to use the concept of data typing to achieve the same

result. Data types can be defined as desired in XML Schema, the most important schema language.
1With thanks to Perry Roland.

81

APPENDIX F. DTDS AND XML SCHEMA 82

Simple and complex types can be defined, and then types can be derived from other types, much

as data types are designed in object-oriented software modeling and design. This technique may

allow a similar level of flexibility and extensibility, while giving much finer control over the contents

of a MEI document.

Appendix G

Transformation Test Cases

This chapter contains pieces used in Beyond Midi [51, p. 22–27] to test the capabilities of various

encoding formats. Most of the examples are rendered very similarly to the original. In most cases,

the XML files from which these pieces were produced are not specially “tweaked” to get the notation

to look the same as the examples in Beyond Midi, other than scaling the notation to fit correctly

onto the page. Exceptions are noted in the text.

For ease of comparison, a second figure follows each figure transformed from the Mup notation

that resulted from the XSLT transformations. These figures are used with the kind permission of

Eleanor Selfridge-Field and are taken from the Beyond Midi website [2]. These specific images are

from the MuseData section of the website, and were created from MuseData files.

I timed the transformations on a Toshiba Portege 2010 laptop with an 866MHz processor and

256MB of RAM. The laptop is running GNU/Linux RedHat 8.0, and uses xsltproc as the XLST

processor. The times, as reported by the time command, are as follows:

Example Time (real, user, sys)
The Mozart Trio .113 .096 .018
The Mozart Clarinet Quintet .162 .150 .012
The Saltarello .132 .113 .020
The Telemann Aria .216 .205 .010
The Unmeasured Chant .109 .096 .014
The Binchois Magnificat .134 .121 .012

83

APPENDIX G. TRANSFORMATION TEST CASES 84

G.1 The Mozart Trio

This example (see Figure G.1) is taken from the second trio section of Mozart’s Clarinet Quintet.1

The challenge in this piece is transposing the first staff, which is notated in C Major but, since it

is played on an A clarinet, is actually in A Major. It is very well rendered on the whole. There

is a phrase or tie that begins on the last note of the first staff, but since there is no note for it to

extend to, Mup ignores this. Mup also places some phrase marks oddly, such as the phrase mark

on the tuplet, and has trouble with phrases that cross system breaks.

clarinet in A

violino I

violino II

viola

violoncello

�

�

� � �

� � �

� � �

� � �

3
4

3
4

3
4

3
4

3
4

� �
p
�

�

�

�

� � � � �

� � �
p

�
� �
p

� � �
p � ���

p

� � � � �

� � �

� � �
� � �

� ���

� � � � � �

� � �
�
� �

� � �

� � �

�� � � �

� � �

�
� �
� � �

� ���

� � � � �

� � �

�
� �

� � �

� ���

�� � � �

� � � ��

�
� ��

� � �

� ���

�

� � � � ��

	 ��

	 �

�

�

�

� � �

� � �

� � �

� � �

� �
� � �

3

� � � �

	 �

	 �

�

� �
 �

�
 �
 �

�

�

�

�

� � � � � �

�

�

�

�

	 � �

� � � � � �

	 ��

	

�
 �
 �

� �

�
�

�
�

�
�

� �

�

� �

�

�

�

�

� � � � �

�� ��
�pizz.

p

�� �� �pizz.

p

� � �pizz.

p

�

� � � � �

�� ��
�

�� �� �

� � �

�

� � � � � �

�� �� ��

� � �

� � �

� � �

� � � � �

�� �� �

� � �

� � �

Figure G.1: Second trio from the Mozart Clarinet Quintet, K. 581 (“Mozart Trio”).
1The instruments appear to be incorrectly labeled, but this example attempts to duplicate the original notation

exactly.

APPENDIX G. TRANSFORMATION TEST CASES 85

Figure G.2: The original figure: Second trio from the Mozart Clarinet Quintet, K. 581 (“Mozart
Trio”).

G.2 The Mozart Clarinet Quintet

This example (see Figure G.3 on the next page) has mixed durations within chords, grace notes

preceding chords, and arpeggiated grace notes. The roll on staff 1 in the first measure also crosses

voices. In this case, Mup’s placement of the slurs on the left-hand grace notes is so bad that the

APPENDIX G. TRANSFORMATION TEST CASES 86

slurs are encoded with explicit endpoints and curve values. Mup cannot slur to an entire chord, as

in the right-hand part in measure 4, so those are also placed explicitly. The disadvantage of this is

that the logical structure of the XML can no longer indicate that there is something special about

those notes — instead, the XML just indicates that there is a curve on the page.

�

�
� � �
� � �

2
4

2
4

� ���

� � � � � � �

� � � � � � � � � � � �

� � � � � � �
���

� � � � � � �

	

 ��� 	

 ��� 	

 ��� 	

 ���

� � � � � � �
� � � ���

 � � � �

Figure G.3: Excerpt from the Mozart piano sonata in A Major, K. 331.

Figure G.4: The original figure

G.3 The Saltarello

This piece demonstrates multiple endings. The parts were originally numbered with a small number

above the staff in the first measure of each part, but this information is not encoded in the XML.

G.4 The Telemann Aria

This example (see Figure G.7 on page 88) demonstrates lyrics and multiple voices. Many of the

notes have small heads (“cue” size), and the voices are extremely complex. Mup’s default note

placement does not match the original in some places, but little can be done about this without

hand-editing the Mup code after it is transformed. It is necessary to remove the fourth voice from

the piece before Mup will process it (Mup is limited to three voices). The lyrics also use German

characters, and complex timing.

APPENDIX G. TRANSFORMATION TEST CASES 87

1.�
6
8 � � � � � � � � � � �

�
� �

2.�
� � � � � � ��� �� � � � � � � � � � � ��� �� � � � � �

�
� � � � � � � � � � �

�

� � � � �

�

1. 2.�
� ��� �� � � � � � � � � � � ���

Figure G.5: Anonymous saltarello.

Figure G.6: The original figure

APPENDIX G. TRANSFORMATION TEST CASES 88

�
�
�

� �
� �
� �

3
8

3
8

3
8

�
� � �� � �
�

�
��� � � �� �

�

�
� � � � �� � � �
	 	 	� � �

�
�
� � � �� � �
 ��

�
� � �� � �
�

�
��� � � �� �

�

�
��� � ��� � � ��
� � �

�
� �� � �� � �
� �

�
� �� ��� � � �

�

�
� �� � ��� � � ��
� � �

�
���� �� �
���

�
�
�

� �
� �
� �

Lie be!

� � �
�
�

�
� � �� � �
� � ��

�
��� � � ��� � �
� ��

Lie be!

��� � � � �
�
�

�
� � ��� �
� ��

�
��� � � ����

�

Was ist

� � � �
��� ��� �

� � �

scho ner

��� � � � �
�� �� �� �

� �

als die

� � � � � �
� � � � �� � ��
� �� � �

Lie be,

���� � �
��� � �! �
" " #� �

was schmeckt

� � �$��
� �%%
� �

su Ber,

� ��
� �� ��& &
� � �

�
�
�

� �
� �
� �

was schmeckt

� � � � �
�� �'
� �

su

���
� �� ���((
� � �

���
������ �� �� ��)) *
� �

���
������ �� �� ���+ + ,
� �

Ber

� � � � � �
�� �
- -- .
� � �

asl ein

� �� � ��
� �/0 �/ �
� �

KuB?1 2 1
���
������ 34�3 �
���

Was ist

� � � �
�� � �
�

scho ner,

��� � � � �
����
�

�
�� �� �� �� ��
5 6 5� � �

�
��� � � �� �
7 7 8���

was schmeckt

� � � �
�� � �
�

Figure G.7: The Telemann aria “Liebe! Liebe! Was ist schöner als die Liebe?”.

G.5 Unmeasured Chant

This example (see Figure G.9 on the next page) is difficult because there is no meter. Mup requires

each bar to have exactly the right number of notes, so it is necessary to change the time signature,

instruct Mup not to print the time signature, and print invisible bars. The original notation does

not use modern notes or a modern staff, but this is impossible to duplicate with Mup.

G.6 The Binchois Magnificat

This example (see Figure G.11 on page 90) demonstrates several tricky layout problems Mup does

not handle gracefully. In particular, there is no way in Mup to get a stem to point down on the

right-hand side of a note. It was necessary to use a small macro to get Mup to draw a line in the

appropriate place. This macro is embedded in the XSLT. Some of the other interesting features of

this piece are the absence of note stems in the first measure, the absence of a second staff in the

first measure (Mup displays the staff, but there is none in the original), and a number of editorial

APPENDIX G. TRANSFORMATION TEST CASES 89

Figure G.8: The original figure

Quem que ri tis in se pul chro,

� �
�

� � � � � � �
� �

� � �
�

� � �

o Chri sti co lae?

� � � �
�

�
� �

Figure G.9: The unmeasured chant “Quem queritis” written in modern notation.

Figure G.10: The original figure

APPENDIX G. TRANSFORMATION TEST CASES 90

elements, such as editorial accidentals.

�
�
�
� Magni fi cat

� � � � �

�
3
4

3
4

A

��� �

A

��� � nima me

�� � �� ��� �

ni ma me

� � � � � a do

� � � �

a do

� � � � � �
� � � � �
� � � 	 � �

� 	 � � � � �

�� � � � � mi

� � � � � �
 �� �

mi

� � � � �
num.

� �

num.

� �

�

�

�

�
Et

� � � � �

� � � �� � � �
ex ul ta

� � �

� � � �� � � �
vit

� �� �

� � � �
�

� �
�

spi ri

� � ���� �

� ���� �� �
tus

� � � ��� ��

� � � � � �
me

� ��� ��

� � � �� �

� � � � � �

� � � �� � � �
us

�� �

�
�

��
�

in

� ��� ��

� � � � � �

Figure G.11: The Binchois Magnificat.

Figure G.12: The original figure

G.7 Summary

Most of the examples match the original closely. Special processing was sometimes necessary, and

once it was necessary to remove a 4th voice from the Mup file by hand, but overall these examples

demonstrate convincingly that the MEI format can represent music notation acceptably.

Appendix H

Code Listing: XSLT Transformation

Program

This appendix contains a code listing of the XSLT stylesheet for transforming from MEI to Mup

formats. The XSLT program is designed to be minimally capable — in other words, just enough

to transform the examples used for this thesis. However, much of the framework is there for

transformations in general. The remaining musical data features of MEI are simply a matter of

handling special cases.

Designing this stylesheet in this manner means that it fails to exploit some of the tricks it could

use. For example, much of the Mup language is very logical, with many similar constructions. If I

had to design the XSLT again, I would take advantage of this and cut down on redundancy. I would

also separate the file into several files and use <xsl:include> elements to assemble the stylesheet,

a technique I have used in the past.

1 <?xml version="1.0" encoding="UTF-8"?>
2 <xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
3 <xsl:output method=’text’ encoding=’UTF-8’ />
4 <xsl:strip-space elements="*" />
5

6 <!--
7 XSLT stylesheet for transforming from Perry Roland’s MEI format into Mup
8 format for creating printed music output. The MEI DTD is available online at
9 http://dl.lib.virginia.edu/bin/dtd/mei/mei.dtd. Author: Baron Schwartz

10 $Revision: 1.5 $

91

APPENDIX H. CODE LISTING: XSLT TRANSFORMATION PROGRAM 92

11 -->
12

13 <!-- Global variables -->
14 <!-- A newline (carriage return) -->
15 <xsl:variable name="nl">
16 <xsl:text>
17 </xsl:text>
18 </xsl:variable>
19

20 <!-- Mup macros for making special stem types -->
21 <xsl:variable name="macros">
22 <xsl:text>
23 // macros for defining custom stems
24 define STEMDNRIGHT(NOTEID, LEN)
25 line (NOTEID.x+1.3, NOTEID.y) to (NOTEID.x+1.3, NOTEID.y-LEN)
26 @
27 define STEMDNLEFT(NOTEID, LEN)
28 line (NOTEID.x-1.3, NOTEID.y) to (NOTEID.x-1.3, NOTEID.y-LEN)
29 @
30 </xsl:text>
31 </xsl:variable>
32

33 <!-- Begin matching the document’s root element. -->
34 <xsl:template match="/">
35 <xsl:value-of select="$macros" />
36 <xsl:apply-templates />
37 <xsl:value-of select="$nl" />
38 </xsl:template>
39

40 <!-- Match the meihead, which is the first part of the document. -->
41 <xsl:template match="meihead">
42 <xsl:value-of select="$nl" />
43 <xsl:text>//meihead not yet implemented</xsl:text>
44 </xsl:template>
45

46 <!-- Match the front matter. This is not yet implemented. -->
47 <xsl:template match="front" >
48 <xsl:value-of select="$nl" />
49 <xsl:text>//front matter not yet implemented</xsl:text>
50 </xsl:template>
51

52 <!-- The body is the main content of the document. -->
53

54 <xsl:template match="body">
55 <xsl:apply-templates />
56 </xsl:template>
57

APPENDIX H. CODE LISTING: XSLT TRANSFORMATION PROGRAM 93

58 <!-- Each mdiv element is a movement, act, song, etc. Simple documents will
59 have just one mdiv, which contains the whole work. -->
60

61 <xsl:template match="mdiv">
62 <xsl:apply-templates />
63 </xsl:template>
64

65 <!-- The full view of the musical work. An alternate view(s) may be given in
66 the separate parts for each performer. -->
67

68 <xsl:template match="score">
69 <xsl:value-of select="$nl" />
70 <xsl:apply-templates />
71 </xsl:template>
72

73 <!-- The first element in the score, containing meta-information. -->
74 <xsl:template match="scoredef">
75 <xsl:value-of select="$nl" />
76 <xsl:text>score</xsl:text>
77

78 <!-- Extract the number of staves by recursively adding all staves -->
79 <xsl:value-of select="$nl" />
80 <xsl:text> staffs=</xsl:text>
81 <xsl:value-of select="count(//staffdef)" />
82

83 <xsl:call-template name="score-stuff" select="." />
84 <xsl:call-template name="beamstyle" select="." />
85

86 <!-- Extract the page scale -->
87 <xsl:if test="@page.scale">
88 <xsl:value-of select="$nl" />
89 <xsl:text> scale=</xsl:text>
90 <xsl:value-of select="@page.scale" />
91 </xsl:if>
92

93 <!-- Extract a staff definition for each staff -->
94 <xsl:apply-templates />
95

96 <xsl:value-of select="$nl" />
97 <xsl:value-of select="$nl" />
98 <xsl:text>music</xsl:text>
99 </xsl:template>

100

101 <xsl:template name="score-stuff">
102 <!-- Extract the key signature -->
103 <xsl:if test="@key.sig != ’0’ and (@key.sig)">
104 <xsl:value-of select="$nl" />

APPENDIX H. CODE LISTING: XSLT TRANSFORMATION PROGRAM 94

105 <xsl:text> key=</xsl:text>
106 <xsl:value-of
107 select="substring(@key.sig, 1, string-length(@key.sig) - 1)" />
108 <xsl:choose>
109 <xsl:when test="contains(@key.sig, ’f’)">
110 <xsl:text>&</xsl:text>
111 </xsl:when>
112 <xsl:otherwise>
113 <xsl:text>#</xsl:text>
114 </xsl:otherwise>
115 </xsl:choose>
116 </xsl:if>
117 <!-- Extract the time signature -->
118 <xsl:value-of select="$nl" />
119 <xsl:text> time=</xsl:text>
120 <xsl:value-of select="@meter.count" />
121 <xsl:text>/</xsl:text>
122 <xsl:value-of select="@meter.unit" />
123 <xsl:if test="@meter.rend=’invis’">
124 <xsl:text>n</xsl:text>
125 </xsl:if>
126 </xsl:template>
127

128 <xsl:template name="beamstyle">
129 <!-- Extract the beamstyle -->
130 <xsl:if test="@beam.group">
131 <xsl:value-of select="$nl" />
132 <xsl:text> beamstyle=</xsl:text>
133 <xsl:value-of select="@beam.group" />
134 </xsl:if>
135 </xsl:template>
136

137 <xsl:template match="sectiondef">
138 <!-- Extract the new score def -->
139 <xsl:value-of select="$nl" />
140 <xsl:value-of select="$nl" />
141 <xsl:text>score</xsl:text>
142 <xsl:call-template name="score-stuff" select="." />
143 <xsl:value-of select="$nl" />
144 <xsl:value-of select="$nl" />
145 <xsl:text>music</xsl:text>
146 </xsl:template>
147

148 <xsl:template match="staffgrp">
149 <xsl:if test="name(ancestor::node()[1]) = ’scoredef’">
150 <xsl:call-template name="extract-staff-symbols" select="." />
151 </xsl:if>

APPENDIX H. CODE LISTING: XSLT TRANSFORMATION PROGRAM 95

152 <xsl:apply-templates />
153 </xsl:template>
154

155 <xsl:template name="extract-staff-symbols">
156 <xsl:if test="@symbol and @symbol != ’line’">
157 <xsl:value-of select="$nl" />
158 <xsl:text> </xsl:text>
159 <xsl:value-of select="@symbol" />
160 <xsl:text>=</xsl:text>
161 <xsl:for-each select="staffdef[1]">
162 <xsl:value-of select="substring-after(@id, ’s’)" />
163 </xsl:for-each>
164 <xsl:text>-</xsl:text>
165 <xsl:for-each select="staffdef[position() = last()]">
166 <xsl:value-of select="substring-after(@id, ’s’)" />
167 </xsl:for-each>
168 </xsl:if>
169 <xsl:if test="@barthru=’yes’">
170 <xsl:value-of select="$nl" />
171 <xsl:text> barstyle=</xsl:text>
172 <xsl:for-each select="staffdef[1]">
173 <xsl:value-of select="substring-after(@id, ’s’)" />
174 </xsl:for-each>
175 <xsl:text>-</xsl:text>
176 <xsl:for-each select="staffdef[position() = last()]">
177 <xsl:value-of select="substring-after(@id, ’s’)" />
178 </xsl:for-each>
179 </xsl:if>
180 <xsl:for-each select="staffgrp">
181 <xsl:call-template name="extract-staff-symbols" select="." />
182 </xsl:for-each>
183 </xsl:template>
184

185 <!-- Template to specify stuff for each staff that is defined with a
186 <staffdef> -->
187

188 <xsl:template match="staffdef">
189 <xsl:value-of select="$nl" />
190 <xsl:value-of select="$nl" />
191 <xsl:text>staff </xsl:text>
192 <!-- As per email, the @id is expected to be ’s’ + the staff # -->
193 <xsl:value-of select="substring-after(@id, ’s’)" />
194 <xsl:if test="@octave.default" >
195 <xsl:value-of select="$nl" />
196 <xsl:text> defoct=</xsl:text>
197 <xsl:value-of select="@octave.default" />
198 </xsl:if>

APPENDIX H. CODE LISTING: XSLT TRANSFORMATION PROGRAM 96

199 <xsl:if test="@label.full">
200 <xsl:value-of select="$nl" />
201 <xsl:text> label = "</xsl:text>
202 <xsl:value-of select="@label.full" />
203 <xsl:text>"</xsl:text>
204 </xsl:if>
205 <xsl:call-template name="beamstyle" />
206 <xsl:if test="@trans.diat">
207 <xsl:call-template name="transpose">
208 <xsl:with-param name="steps" select="@trans.semi" />
209 <xsl:with-param name="interval" select="@trans.diat" />
210 </xsl:call-template>
211 </xsl:if>
212 <!-- The voice scheme; ’vscheme = 1’ by default -->
213 <xsl:value-of select="$nl" />
214 <xsl:text> vscheme = </xsl:text>
215 <xsl:choose>
216 <xsl:when test="voicedef">
217 <xsl:value-of select="count(voicedef)" />
218 <xsl:text>f</xsl:text>
219 </xsl:when>
220 <xsl:otherwise>
221 <xsl:text>1</xsl:text>
222 </xsl:otherwise>
223 </xsl:choose>
224 <xsl:value-of select="$nl" />
225 <xsl:call-template name="clef" />
226 <!-- Extract any voice definitions -->
227 <xsl:value-of select="$nl" />
228 <xsl:apply-templates select="voicedef" />
229 </xsl:template>
230

231 <!-- Extract out voice definitions. -->
232 <xsl:template match="voicedef">
233 <xsl:value-of select="$nl" />
234 <!-- The @id of the voicedef is expected to be ’s#v#’ -->
235 <xsl:text>voice </xsl:text>
236 <xsl:value-of select="substring(@id, 2, 1)" />
237 <xsl:text> </xsl:text>
238 <xsl:value-of select="substring(@id, 4, 1)" />
239 <xsl:if test="@octave.default" >
240 <xsl:value-of select="$nl" />
241 <xsl:text> defoct=</xsl:text>
242 <xsl:value-of select="@octave.default" />
243 </xsl:if>
244 <xsl:call-template name="beamstyle" />
245 </xsl:template>

APPENDIX H. CODE LISTING: XSLT TRANSFORMATION PROGRAM 97

246

247 <!-- Set a clef. MEI defines G|GG|F|C|perc and line numbers; Mup
248 names them all -->
249 <xsl:template name="clef">
250 <xsl:text> clef = </xsl:text>
251 <xsl:choose>
252 <xsl:when test="@clef.shape = ’G’">
253 <xsl:choose>
254 <xsl:when test="@clef.line = 1">
255 <xsl:text>frenchviolin</xsl:text>
256 </xsl:when>
257 <xsl:when test="@clef.line = 2">
258 <xsl:choose>
259 <xsl:when test="@clef.trans = ’8va’
260 and clef.octave = ’basso’">
261 <xsl:text>treble8</xsl:text>
262 </xsl:when>
263 <xsl:otherwise>
264 <xsl:text>treble</xsl:text>
265 </xsl:otherwise>
266 </xsl:choose>
267 </xsl:when>
268 <xsl:otherwise>
269 <xsl:text>treble</xsl:text>
270 </xsl:otherwise>
271 </xsl:choose>
272 </xsl:when>
273 <xsl:when test="@clef.shape = ’GG’">
274 <xsl:text>treble8</xsl:text>
275 </xsl:when>
276 <xsl:when test="@clef.shape = ’F’">
277 <xsl:text>bass</xsl:text>
278 </xsl:when>
279 <xsl:when test="@clef.shape = ’C’">
280 <xsl:choose>
281 <xsl:when test="@clef.line = 1">
282 <xsl:text>soprano</xsl:text>
283 </xsl:when>
284 <xsl:when test="@clef.line = 2">
285 <xsl:text>mezzosoprano</xsl:text>
286 </xsl:when>
287 <xsl:when test="@clef.line = 3">
288 <xsl:text>alto</xsl:text>
289 </xsl:when>
290 <xsl:when test="@clef.line = 4">
291 <xsl:text>tenor</xsl:text>
292 </xsl:when>

APPENDIX H. CODE LISTING: XSLT TRANSFORMATION PROGRAM 98

293 <xsl:when test="@clef.line = 5">
294 <xsl:text>baritone</xsl:text>
295 </xsl:when>
296 <xsl:otherwise>
297 <xsl:text>alto</xsl:text>
298 </xsl:otherwise>
299 </xsl:choose>
300 </xsl:when>
301 <xsl:when test="@clef.shape = ’perc’">
302 <xsl:text>drum</xsl:text>
303 </xsl:when>
304 <xsl:otherwise>
305 <xsl:text>treble</xsl:text>
306 </xsl:otherwise>
307 </xsl:choose>
308 </xsl:template>
309

310

311 <!-- Music is specified on a bar-by-bar level; there may be multiple staves
312 in a single bar. These should correspond to the <staffdef>’s id attribute.
313 -->
314

315 <!-- Template to extract out a bar -->
316 <xsl:template match="bar">
317 <xsl:if test="@n">
318 <xsl:value-of select="$nl" />
319 <xsl:value-of select="$nl" />
320 <xsl:text> // begin bar </xsl:text>
321 <xsl:value-of select="@n" />
322 </xsl:if>
323 <xsl:apply-templates />
324 <xsl:value-of select="$nl" />
325 <!-- Possible kinds of barlines: -->
326 <!-- dashed|dotted|dbl|dbldashed|dbldotted|end| -->
327 <!-- invis|rptstart|rptboth|rptend|single (default) -->
328 <xsl:choose>
329 <xsl:when test="@rrend = ’dashed’">
330 <xsl:text>dashedbar</xsl:text>
331 </xsl:when>
332 <xsl:when test="@rrend = ’dotted’">
333 <xsl:text>dottedbar</xsl:text>
334 </xsl:when>
335 <xsl:when test="@rrend = ’dbl’">
336 <xsl:text>dblbar</xsl:text>
337 </xsl:when>
338 <xsl:when test="@rrend = ’dbldashed’">
339 <xsl:text>dasheddblbar</xsl:text>

APPENDIX H. CODE LISTING: XSLT TRANSFORMATION PROGRAM 99

340 </xsl:when>
341 <xsl:when test="@rrend = ’dbldotted’">
342 <xsl:text>dotteddblbar</xsl:text>
343 </xsl:when>
344 <xsl:when test="@rrend = ’end’">
345 <xsl:text>endbar</xsl:text>
346 </xsl:when>
347 <xsl:when test="@rrend = ’invis’">
348 <xsl:text>invisbar</xsl:text>
349 </xsl:when>
350 <xsl:when test="@rrend = ’rptstart’">
351 <xsl:text>repeatstart</xsl:text>
352 </xsl:when>
353 <xsl:when test="@rrend = ’rptboth’">
354 <xsl:text>repeatboth</xsl:text>
355 </xsl:when>
356 <xsl:when test="@rrend = ’rptend’">
357 <xsl:text>repeatend</xsl:text>
358 </xsl:when>
359 <xsl:otherwise>
360 <xsl:text>bar</xsl:text>
361 </xsl:otherwise>
362 </xsl:choose>
363 </xsl:template>
364

365 <!-- Template to extract out a stave -->
366 <xsl:template match="staff">
367 <xsl:if test="not(voice)">
368 <xsl:value-of select="$nl" />
369 <!-- As per email, the @def is expected to be ’s’ + the staff # -->
370 <xsl:value-of select="substring-after(@def, ’s’)" />
371 <xsl:text> 1: </xsl:text>
372 </xsl:if>
373 <xsl:apply-templates />
374 </xsl:template>
375

376 <xsl:template match="lyrics">
377 <xsl:value-of select="$nl" />
378 <xsl:text>lyrics </xsl:text>
379 <xsl:if test="@place">
380 <xsl:value-of select="@place" />
381 <xsl:text> </xsl:text>
382 </xsl:if>
383 <xsl:value-of select="substring-after(@staff, ’s’)" />
384 <xsl:text>: </xsl:text>
385 <xsl:if test="@rhy">
386 <xsl:value-of select="@rhy" />

APPENDIX H. CODE LISTING: XSLT TRANSFORMATION PROGRAM 100

387 </xsl:if>
388 <xsl:text> "</xsl:text>
389 <xsl:apply-templates />
390 <xsl:text>";</xsl:text>
391 </xsl:template>
392

393 <xsl:template match="syl">
394 <xsl:value-of select="." />
395 <xsl:text> </xsl:text>
396 </xsl:template>
397

398 <!-- Template to extract out a voice -->
399 <xsl:template match="voice">
400 <xsl:value-of select="$nl" />
401 <!-- Get the def of the parent staff element -->
402 <xsl:value-of select="substring-after(ancestor::staff[1]/@def, ’s’)" />
403 <xsl:text> </xsl:text>
404 <!-- As per email, the @def is expected to be ’s#v’ + the voice # -->
405 <xsl:value-of select="substring-after(@def, ’v’)" />
406 <xsl:text>: </xsl:text>
407 <xsl:apply-templates />
408 </xsl:template>
409

410 <!-- Endings -->
411 <xsl:template match="ending">
412 <xsl:text> ending "</xsl:text>
413 <xsl:value-of select="@label" />
414 <xsl:text>"</xsl:text>
415 <xsl:apply-templates />
416 <!-- If there is no ending immediately after this one, outupt
417 ’endending’. If there is no next node, don’t output anything -->
418 <xsl:variable name="next-sibling" select="following-sibling::node()[1]" />
419 <xsl:if test="name($next-sibling) != ’ending’
420 and following-sibling::node()">
421 <xsl:text> endending</xsl:text>
422 </xsl:if>
423 </xsl:template>
424

425 <!-- Beams can contain note, chord, rest, pad, and tup elements. The first
426 and last elements are followed, in Mup, by bm and ebm as markers -->
427 <xsl:template match="beam">
428 <xsl:apply-templates>
429

430 <!-- Call the template with a parameter to indicate that it is
431 beamed. I do this rather than use a template with a mode because the
432 code would be very similar. -->
433 <xsl:with-param name="is-beamed" select="1" />

APPENDIX H. CODE LISTING: XSLT TRANSFORMATION PROGRAM 101

434 </xsl:apply-templates>
435 </xsl:template>
436

437 <xsl:template match="chord">
438 <xsl:param name="is-beamed" select="0" />
439 <xsl:call-template name="chord-attributes">
440 <xsl:with-param name="is-chord" select="1" />
441 </xsl:call-template>
442

443 <!-- Call the template with a parameter to indicate that the notes are
444 chorded. I do this rather than use a template with a mode because the
445 code would be very similar. -->
446

447 <xsl:apply-templates>
448 <xsl:with-param name="is-chorded" select="1" />
449 </xsl:apply-templates>
450 <xsl:if test="$is-beamed = 1">
451 <xsl:call-template name="beam-groups" />
452 </xsl:if>
453 <xsl:text>; </xsl:text>
454 </xsl:template>
455

456 <xsl:template match="note">
457 <xsl:param name="is-chorded" select="0" />
458 <xsl:param name="is-beamed" select="0" />
459 <!-- Print out the things that Mup wants before anything else. -->
460 <xsl:if test="$is-chorded = ’0’">
461 <xsl:call-template name="chord-attributes" />
462 </xsl:if>
463

464 <!-- The time value only goes on the first note of a chord. If there is
465 none, let Mup handle propagation or the default. -->
466

467 <xsl:choose>
468 <xsl:when test="$is-chorded = 0">
469 <xsl:choose>
470 <xsl:when test="@grace">
471 <xsl:value-of select="@dur.vis" />
472 </xsl:when>
473 <xsl:otherwise>
474 <xsl:value-of select="@dur" />
475 </xsl:otherwise>
476 </xsl:choose>
477 <xsl:if test="@dots">
478 <xsl:call-template name="augment-dots">
479 <xsl:with-param name="num" select="@dots" />
480 </xsl:call-template>

APPENDIX H. CODE LISTING: XSLT TRANSFORMATION PROGRAM 102

481 </xsl:if>
482 </xsl:when>
483 <xsl:otherwise>
484 <xsl:if test="position() = 1">
485 <xsl:value-of select="../@dur" />
486 <xsl:if test="../@dots">
487 <xsl:call-template name="augment-dots">
488 <xsl:with-param name="num" select="../@dots" />
489 </xsl:call-template>
490 </xsl:if>
491 </xsl:if>
492 </xsl:otherwise>
493 </xsl:choose>
494 <!-- The actual name of the note -->
495 <xsl:choose>
496 <xsl:when test="@pname">
497 <xsl:value-of select="@pname" />
498 </xsl:when>
499 <!-- If no note name, look for one to propagate -->
500 <xsl:otherwise>
501 <xsl:if test="preceding-sibling::note[@pname][1]/@pname">
502 <xsl:value-of
503 select="preceding-sibling::note[@pname][1]/@pname" />
504 </xsl:if>
505 </xsl:otherwise>
506 </xsl:choose>
507 <!-- Optional accidentals go next
508 MEI: s = sharp, f = flat, ss = dblsharp, ff = dblflat, n = natural
509 Mup: # = sharp, & = flat, x = dblsharp, && = dblflat, n = natural -->
510 <xsl:if test="@acci">
511 <xsl:choose>
512 <xsl:when test="@acci = ’s’">
513 <xsl:text>#</xsl:text>
514 </xsl:when>
515 <xsl:when test="@acci = ’f’">
516 <xsl:text>&</xsl:text>
517 </xsl:when>
518 <xsl:when test="@acci = ’ss’">
519 <xsl:text>x</xsl:text>
520 </xsl:when>
521 <xsl:when test="@acci = ’ff’">
522 <xsl:text>&&</xsl:text>
523 </xsl:when>
524 <xsl:when test="@acci = ’n’">
525 <xsl:text>n</xsl:text>
526 </xsl:when>
527 </xsl:choose>

APPENDIX H. CODE LISTING: XSLT TRANSFORMATION PROGRAM 103

528 </xsl:if>
529 <!-- Put the octave after the accidental -->
530 <xsl:choose>
531 <xsl:when test="@oct">
532 <xsl:value-of select="@oct" />
533 </xsl:when>
534 <!-- If no octave, look for one to propagate from preceding notes -->
535 <xsl:otherwise>
536 <xsl:if test="preceding-sibling::note[@oct][1]/@oct">
537 <xsl:value-of select="preceding-sibling::note[@oct][1]/@oct" />
538 </xsl:if>
539 </xsl:otherwise>
540 </xsl:choose>
541

542 <!-- Mup does not care what order the following are in -->
543

544 <!-- Mup recognizes a ~ as a tie; MEI uses the tie attribute with the
545 value being either i=initial, m=medial, and t=terminal. Only i|m need the
546 ~. -->
547

548 <xsl:if test="@tie = ’i’ or @tie = ’m’">
549 <xsl:text>~</xsl:text>
550 </xsl:if>
551

552 <!-- Mup’s way of specifying which notes to slur to is not easy to
553 implement Todo: this is not done yet... need to find a way to indicate
554 ending notes-->
555 <xsl:if test="@slur = ’i’">
556 <xsl:text><></xsl:text>
557 <!-- find the ending note -->
558 </xsl:if>
559 <!-- Add a Mup ’tag’ to a note if it has an id -->
560 <xsl:if test="@id and ($is-chorded=0 or position() = last())">
561 <xsl:text> =</xsl:text>
562 <xsl:call-template name="fix-id">
563 <xsl:with-param name="id" select="@id" />
564 </xsl:call-template>
565 </xsl:if>
566

567 <xsl:if test="$is-beamed = 1">
568 <xsl:call-template name="beam-groups" />
569 </xsl:if>
570

571 <!-- If this note is part of a chord, the chord template called this
572 template and will place the closing semi-colon. -->
573

574 <xsl:if test="$is-chorded = 0">

APPENDIX H. CODE LISTING: XSLT TRANSFORMATION PROGRAM 104

575 <xsl:text>; </xsl:text>
576 </xsl:if>
577

578 <!-- check for notes that have a special stem position -->
579 <xsl:if test="@stem.pos">
580 <xsl:choose>
581 <xsl:when test="@stem.pos=’dnright’">
582 <xsl:value-of select="$nl" />
583 <xsl:text>STEMDNRIGHT(</xsl:text>
584 <xsl:value-of select="@id" />
585 <xsl:text>,</xsl:text>
586 <xsl:value-of select="@stem.len" />
587 <xsl:text>)</xsl:text>
588 </xsl:when>
589 </xsl:choose>
590 </xsl:if>
591 </xsl:template>
592

593 <xsl:template name="fix-id">
594 <xsl:param name="id" />
595 <xsl:if test="not(starts-with($id, ’_’))">
596 <xsl:text>_</xsl:text>
597 </xsl:if>
598 <xsl:value-of select="$id" />
599 </xsl:template>
600

601 <xsl:template name="transpose">
602 <xsl:param name="steps" />
603 <xsl:param name="interval" />
604 <xsl:value-of select="$nl" />
605 <xsl:text> transpose =</xsl:text>
606 <xsl:choose>
607 <xsl:when test="starts-with($steps, ’-’)">
608 <xsl:text> down </xsl:text>
609 </xsl:when>
610 <xsl:otherwise>
611 <xsl:text> up </xsl:text>
612 </xsl:otherwise>
613 </xsl:choose>
614 <xsl:choose>
615 <xsl:when test="$steps=1">
616 <xsl:if test="$interval=0">
617 <xsl:text>perfect 1</xsl:text>
618 </xsl:if>
619 <xsl:if test="$interval=1">
620 <xsl:text>dim 2</xsl:text>
621 </xsl:if>

APPENDIX H. CODE LISTING: XSLT TRANSFORMATION PROGRAM 105

622 </xsl:when>
623 <xsl:when test="$steps=2">
624 <xsl:if test="$interval=0">
625 <xsl:text>aug 1</xsl:text>
626 </xsl:if>
627 <xsl:if test="$interval=1">
628 <xsl:text>min 2</xsl:text>
629 </xsl:if>
630 </xsl:when>
631 <xsl:when test="$steps=3">
632 <xsl:if test="$interval=1">
633 <xsl:text>aug 2</xsl:text>
634 </xsl:if>
635 <xsl:if test="$interval=2">
636 <xsl:text>min 3</xsl:text>
637 </xsl:if>
638 </xsl:when>
639 <xsl:when test="$steps=4">
640 <xsl:if test="$interval=1">
641 <xsl:text></xsl:text>
642 </xsl:if>
643 <xsl:if test="$interval=2">
644 <xsl:text></xsl:text>
645 </xsl:if>
646 </xsl:when>
647 <xsl:when test="$steps=5">
648 <xsl:if test="$interval=2">
649 <xsl:text></xsl:text>
650 </xsl:if>
651 <xsl:if test="$interval=3">
652 <xsl:text></xsl:text>
653 </xsl:if>
654 </xsl:when>
655 <xsl:when test="$steps=6">
656 <xsl:if test="$interval=2">
657 <xsl:text></xsl:text>
658 </xsl:if>
659 <xsl:if test="$interval=3">
660 <xsl:text></xsl:text>
661 </xsl:if>
662 </xsl:when>
663 <xsl:when test="$steps=7">
664 <xsl:if test="$interval=3">
665 <xsl:text></xsl:text>
666 </xsl:if>
667 <xsl:if test="$interval=4">
668 <xsl:text></xsl:text>

APPENDIX H. CODE LISTING: XSLT TRANSFORMATION PROGRAM 106

669 </xsl:if>
670 </xsl:when>
671 <xsl:when test="$steps=8">
672 <xsl:if test="$interval=3">
673 <xsl:text></xsl:text>
674 </xsl:if>
675 <xsl:if test="$interval=4">
676 <xsl:text></xsl:text>
677 </xsl:if>
678 </xsl:when>
679 <xsl:when test="$steps=9">
680 <xsl:if test="$interval=4">
681 <xsl:text></xsl:text>
682 </xsl:if>
683 <xsl:if test="$interval=5">
684 <xsl:text></xsl:text>
685 </xsl:if>
686 </xsl:when>
687 <xsl:when test="$steps=10">
688 <xsl:if test="$interval=4">
689 <xsl:text></xsl:text>
690 </xsl:if>
691 <xsl:if test="$interval=5">
692 <xsl:text></xsl:text>
693 </xsl:if>
694 </xsl:when>
695 <xsl:when test="$steps=11">
696 <xsl:if test="$interval=5">
697 <xsl:text></xsl:text>
698 </xsl:if>
699 <xsl:if test="$interval=6">
700 <xsl:text></xsl:text>
701 </xsl:if>
702 </xsl:when>
703 </xsl:choose>
704 </xsl:template>
705

706 <!-- This is a skeleton. Todo: make it do chord attributes correctly -->
707 <xsl:template name="chord-attributes">
708 <xsl:param name="is-chord" select="0" />
709 <!-- make a string to hold values I need to put into the [] list -->
710 <xsl:variable name="attributes">
711 <xsl:if test="@id and $is-chord=1">
712 <xsl:text>=</xsl:text>
713 <xsl:value-of select="@id" />
714 <xsl:text>;</xsl:text>
715 </xsl:if>

APPENDIX H. CODE LISTING: XSLT TRANSFORMATION PROGRAM 107

716 <xsl:if test="@artic = ’wedge’">
717 <xsl:text>with "\(wedge)";</xsl:text>
718 </xsl:if>
719 <xsl:if test="@artic = ’.’">
720 <xsl:text>with .;</xsl:text>
721 </xsl:if>
722 <xsl:if test="@grace">
723 <xsl:text>grace;</xsl:text>
724 </xsl:if>
725 <xsl:if test="@artic=’ferm’">
726 <xsl:text>with "\(ferm)";</xsl:text>
727 </xsl:if>
728 <xsl:if test="@stem.len">
729 <xsl:text>len </xsl:text>
730 <xsl:choose>
731 <xsl:when test="@stem.pos=’dnright’">
732 <xsl:text>0</xsl:text>
733 </xsl:when>
734 <xsl:otherwise>
735 <xsl:value-of select="@stem.len" />
736 </xsl:otherwise>
737 </xsl:choose>
738 <xsl:text>;</xsl:text>
739 </xsl:if>
740 <xsl:if test="@stem.dir">
741 <xsl:value-of select="@stem.dir" />
742 <xsl:text>;</xsl:text>
743 </xsl:if>
744 <xsl:if test="@size = ’cue’">
745 <xsl:text>cue;</xsl:text>
746 </xsl:if>
747 </xsl:variable>
748 <xsl:if test="$attributes != ’’">
749 <xsl:text>[</xsl:text>
750 <xsl:value-of
751 select="substring($attributes, 1, string-length($attributes) - 1)" />
752 <xsl:text>]</xsl:text>
753 </xsl:if>
754 </xsl:template>
755

756 <xsl:template match="rest">
757 <xsl:value-of select="@dur" />
758 <xsl:if test="@dots">
759 <xsl:call-template name="augment-dots">
760 <xsl:with-param name="num" select="@dots" />
761 </xsl:call-template>
762 </xsl:if>

APPENDIX H. CODE LISTING: XSLT TRANSFORMATION PROGRAM 108

763 <xsl:text>r; </xsl:text>
764 </xsl:template>
765

766 <xsl:template match="msrest">
767 <xsl:text>mr; </xsl:text>
768 </xsl:template>
769

770 <xsl:template match="space">
771 <xsl:value-of select="@dur" />
772 <xsl:text>s; </xsl:text>
773 </xsl:template>
774

775 <xsl:template match="tup">
776 <xsl:text>{</xsl:text>
777 <xsl:apply-templates />
778 <xsl:text>} </xsl:text>
779 <xsl:value-of select="@num.place" />
780 <xsl:text> </xsl:text>
781 <xsl:value-of select="count(note|chord|rest)" />
782 <xsl:text>;</xsl:text>
783 </xsl:template>
784

785 <!-- These similar constructs should be handled by the same code according
786 to p.80 of the Mup manual ("Tempo, Dynamic Marks, Ornaments, etc") -->
787

788 <xsl:template match="phrase">
789 <xsl:value-of select="$nl" />
790 <xsl:choose>
791 <xsl:when test="@tstamp">
792 <xsl:text>phrase </xsl:text>
793 <xsl:if test="@place">
794 <xsl:value-of select="@place" />
795 <xsl:text> </xsl:text>
796 </xsl:if>
797 <xsl:value-of select="substring-after(@staff, ’s’)" />
798 <xsl:text>:</xsl:text>
799 <xsl:value-of select="@tstamp" />
800 <xsl:text> til </xsl:text>
801 <xsl:value-of select="@dur" />
802 </xsl:when>
803 <xsl:when test="@end1">
804 <xsl:text>medium curve (</xsl:text>
805 <xsl:call-template name="fix-id">
806 <xsl:with-param name="id" select="@end1" />
807 </xsl:call-template>
808 <xsl:text>) to (</xsl:text>
809 <xsl:call-template name="fix-id">

APPENDIX H. CODE LISTING: XSLT TRANSFORMATION PROGRAM 109

810 <xsl:with-param name="id" select="@end2" />
811 </xsl:call-template>
812 <xsl:text>) bulge </xsl:text>
813 <xsl:value-of select="@bulge" />
814 </xsl:when>
815 </xsl:choose>
816 <xsl:text>;</xsl:text>
817 </xsl:template>
818

819 <xsl:template match="dyn">
820 <xsl:value-of select="$nl" />
821 <xsl:text>boldital </xsl:text>
822 <xsl:if test="@place">
823 <xsl:value-of select="@place" />
824 <xsl:text> </xsl:text>
825 </xsl:if>
826 <xsl:value-of
827 select="translate(substring-after(@staff, ’s’), ’s’, ’,’)" />
828 <xsl:text>:</xsl:text>
829 <xsl:value-of select="@tstamp" />
830 <xsl:text> "</xsl:text>
831 <xsl:value-of select="." />
832 <xsl:text>";</xsl:text>
833 </xsl:template>
834

835 <xsl:template match="arpeg">
836 <xsl:value-of select="$nl" />
837 <xsl:text>roll </xsl:text>
838 <xsl:choose>
839 <!-- select which staff and voice the roll covers -->
840 <xsl:when test="contains(@staff, ’ ’) or contains(@voice, ’ ’)">
841 <!-- It covers multiple staffs or voices -->
842 <!-- select the staff and voice it starts on -->
843 <xsl:value-of
844 select="substring-before(substring-after(@staff, ’s’), ’ ’)" />
845 <xsl:text> </xsl:text>
846 <xsl:value-of
847 select="substring-before(substring-after(@voice, ’v’), ’ ’)" />
848 <xsl:text> to </xsl:text>
849 <!-- select the staff and voice it ends on -->
850 <xsl:value-of select="substring-after(@staff, ’ s’)" />
851 <xsl:text> </xsl:text>
852 <xsl:value-of
853 select="substring-after(substring-after(@voice, ’ s’), ’v’)" />
854 <!-- select the staff and voice it ends on -->
855 </xsl:when>
856 <xsl:otherwise>

APPENDIX H. CODE LISTING: XSLT TRANSFORMATION PROGRAM 110

857 <xsl:value-of
858 select="substring-before(substring-after(@voice, ’s’), ’v’)" />
859 <xsl:text> </xsl:text>
860 <xsl:value-of select="substring-after(@staff, ’v’)" />
861 </xsl:otherwise>
862 </xsl:choose>
863 <xsl:text>: </xsl:text>
864 <xsl:value-of select="@tstamp" />
865 <xsl:text>;</xsl:text>
866 </xsl:template>
867

868 <xsl:template match="tempo">
869 <xsl:value-of select="$nl" />
870 <xsl:text>boldital </xsl:text>
871 <xsl:if test="@place">
872 <xsl:value-of select="@place" />
873 <xsl:text> </xsl:text>
874 </xsl:if>
875 <xsl:variable name="str">
876 <xsl:value-of select="substring-after(@staff, ’s’)" />
877 </xsl:variable>
878 <xsl:value-of select="translate($str, ’s’, ’,’)" />
879 <xsl:text>:</xsl:text>
880 <xsl:value-of select="@tstamp" />
881 <xsl:text> "</xsl:text>
882 <xsl:value-of select="." />
883 <xsl:text>";</xsl:text>
884 </xsl:template>
885

886 <!-- Templates to encapsulate common functionality -->
887

888 <!-- Print out augmentation dots, which can appear on notes, rests, etc -->
889 <xsl:template name="augment-dots">
890 <xsl:param name="num" />
891 <xsl:if test="$num != 0">
892 <xsl:text>.</xsl:text>
893 <xsl:call-template name="augment-dots">
894 <xsl:with-param name="num" select="$num - 1" />
895 </xsl:call-template>
896 </xsl:if>
897 </xsl:template>
898

899 <!-- Print out the beginning and end of a beam group. This entails placing a
900 space, followed by ’bm’ to start a beam and ’ebm’ to end it. -->
901

902 <xsl:template name="beam-groups">
903 <xsl:if test="position() = 1">

APPENDIX H. CODE LISTING: XSLT TRANSFORMATION PROGRAM 111

904 <xsl:text> bm</xsl:text>
905 </xsl:if>
906 <xsl:if test="position() = last()">
907 <xsl:text> ebm</xsl:text>
908 </xsl:if>
909 </xsl:template>
910

911 </xsl:stylesheet>

Appendix I

Code Listing: Mary Had a Little

Lamb

This appendix includes a code listing of “Mary Had a Little Lamb,” the simplest piece of music

encoded for this project. To see the resulting notation , refer to Figure 6.3 on page 44.

1 <?xml version="1.0"?>
2 <!DOCTYPE mei SYSTEM "http://dl.lib.virginia.edu/bin/dtd/mei/mei.dtd" [
3]>
4 <?xml-stylesheet type=’text/xsl’ href=’mei-mup.xslt’ ?>
5 <mei>
6 <meihead>
7 <meiid>MaryHadaLittleLamb</meiid>
8 <filedesc>
9 <pubstmt>

10 <agent>Perry Roland</agent>
11 <rights>Electronic edition copyright © 2002 Perry Roland.
12 All rights reserved.</rights>
13 </pubstmt>
14 </filedesc>
15 </meihead>
16 <body>
17 <mdiv type="children’s song">
18 <score>
19 <scoredef meter.count="4" meter.unit="4" key.tonic="Eb"
20 key.mode="major" key.sig="3f" beam.group="4,4,4,4">
21 <staffdef id="s1" octave.default="4" />
22 </scoredef>

112

APPENDIX I. CODE LISTING: MARY HAD A LITTLE LAMB 113

23 <bar n="1">
24 <staff def="s1">
25 <!-- accidentals required by the key signature not encoded. -->
26 <note pname="g" dur="4" dots="1" />
27 <note pname="f" dur="8" />
28 <note pname="e" dur="4" />
29 <note pname="f" dur="4" />
30 </staff>
31 </bar>
32 <bar n="2">
33 <staff def="s1">
34 <note pname="g" dur="4" />
35 <note pname="g" dur="4" />
36 <note pname="g" dur="2" />
37 </staff>
38 </bar>
39 <bar n="3">
40 <staff def="s1">
41 <note pname="f" dur="4" />
42 <note pname="f" dur="4" />
43 <note pname="f" dur="2" />
44 </staff>
45 </bar>
46 <bar n="4">
47 <staff def="s1">
48 <note pname="g" dur="4" />
49 <note pname="b" dur="4" />
50 <note pname="b" dur="2" />
51 </staff>
52 </bar>
53 <bar n="5">
54 <staff def="s1">
55 <note pname="g" dur="4" dots="1" />
56 <note pname="f" dur="8" />
57 <note pname="e" dur="4" />
58 <note pname="f" dur="4" />
59 </staff>
60 </bar>
61 <bar n="6">
62 <staff def="s1">
63 <note pname="g" dur="4" />
64 <note pname="g" dur="4" />
65 <note pname="g" dur="4" />
66 <note pname="g" dur="4" />
67 </staff>
68 </bar>
69 <bar n="7">

APPENDIX I. CODE LISTING: MARY HAD A LITTLE LAMB 114

70 <staff def="s1">
71 <note pname="f" dur="4" />
72 <note pname="f" dur="4" />
73 <note pname="g" dur="4" />
74 <note pname="f" dur="4" />
75 </staff>
76 </bar>
77 <bar n="8" rrend="dbl">
78 <staff def="s1">
79 <note pname="e" dur="2" dots="1" />
80 <rest dur="4" />
81 </staff>
82 </bar>
83 <!-- written-out repeat, double time -->
84 <bar n="9">
85 <staff def="s1">
86 <note pname="g" dur="8" dots="1" />
87 <note pname="f" dur="16" />
88 <note pname="e" dur="8" />
89 <note pname="f" dur="8" />
90 <note pname="g" dur="8" />
91 <note pname="g" dur="8" />
92 <note pname="g" dur="4" />
93 </staff>
94 </bar>
95 <bar n="10">
96 <staff def="s1">
97 <note pname="f" dur="8" />
98 <note pname="f" dur="8" />
99 <note pname="f" dur="4" />

100 <note pname="g" dur="8" />
101 <note pname="b" dur="8" />
102 <note pname="b" dur="4" />
103 </staff>
104 </bar>
105 <bar n="11">
106 <staff def="s1">
107 <note pname="g" dur="8" dots="1" />
108 <note pname="f" dur="16" />
109 <note pname="e" dur="8" />
110 <note pname="f" dur="8" />
111 <note pname="g" dur="8" />
112 <note pname="g" dur="8" />
113 <note pname="g" dur="8" />
114 <note pname="g" dur="8" />
115 </staff>
116 </bar>

APPENDIX I. CODE LISTING: MARY HAD A LITTLE LAMB 115

117 <bar n="12" rrend="end">
118 <staff def="s1">
119 <!-- explicit beam which overrides the beam.group attribute -->
120 <beam>
121 <note pname="f" dur="8" />
122 <note pname="f" dur="8" />
123 <note pname="g" dur="8" />
124 <note pname="f" dur="8" />
125 </beam>
126 <note pname="e" dur="4" tie="i" />
127 <note pname="e" dur="8" tie="t" />
128 <rest dur="8" />
129 </staff>
130 </bar>
131

132 </score>
133 </mdiv>
134 </body>
135 </mei>

References

[1] The Apache XML Project (n.d.). Retrieved March 10, 2003 from http://xml.apache.org.

[2] Website for Beyond Midi: The Handbook of Musical Codes. (n.d.). Retrieved April 7, 2003
from http://www.ccarh.org/publications/books/beyondmidi/.

[3] Bourret, Ronald. rpbourret.com – XML programming, writing, and research (n.d.). Retrieved
April 10, 2003 from http://www.rpbourret.com/.

[4] Brabec, Jeffrey and Todd Brabec. Music, Money, and Success. New York: Schirmer, 1994.

[5] Covey, Stephen R. The 7 Habits of Highly Effective People. New York: Simon & Schuster,
1989.

[6] Cascading Style Sheets (n.d.). Retrieved March 10, 2003 from
http://www.w3.org/Style/CSS/.

[7] CVS: Concurrent Versions System (n.d.). Retrieved March 10, 2003 from
http://cvshome.org.

[8] Roger B. Dannenberg: “The Canon Score Language,” Computer Music Journal, 12:1. Spring
1989. 47-56.

[9] The WC3 Document Object Model homepage (n.d.). Retrieved March 10, 2003 from
http://www.w3.org/DOM/.

[10] Downie, J. Stephen. 2003. “Music information retrieval,” Annual Review of Information
Science and Technology, 37: 295-340. Available from
http://music-ir.org/downie mir arist37.pdf

[11] Extensible Markup Language (XML) (n.d.). Retrieved March 10, 2003 from
http://www.w3.org/XML/.

[12] Ghostscript, Ghostview and GSview (n.d.) Retrieved March 10, 2003 from
http://www.cs.wisc.edu/ ghost/.

[13] GNU: GNU’s Not Unix (n.d.). Retrieved March 10, 2003 from http://www.gnu.org.

[14] Good, Michael. “MusicXML for Notation and Analysis.” The Virtual Score: Representation,
Retrieval, Restoration. Ed. Hewlett, Walter B., and Eleanor Selfridge-Field. Cambridge: MIT
Press, 2001. 113-124.

[15] Gourlay, John. “Spacing a Line of Music.” OSU-CISRC-10/87-TR35. Department of
Computer and Information Science. The Ohio State University. 1987.

116

REFERENCES 117

[16] Hegazy, Wael A. and John S. Gourlay. “Optimal Line Breaking in Music.”
OSU-CISRC-8/87-TR33. Department of Computer and Information Science, The Ohio State
University. 1987.

[17] Hewlett, Walter B. “MuseData: Multipurpose Representation.” Selfridge-Field, Eleanor, Ed.
Beyond MIDI: The Handbook of Musical Codes. Cambridge: MIT Press, 1997. 402-445.

[18] Hewlett, Walter B., Eleanor Selfridge-Field, et. al. “MIDI.” ibid. 41-72.

[19] Howard, John. “Plaine and Easie Code: A Code for Music Bibliography.” ibid. 362-371.

[20] HTML 4.01 Specification (n.d.). Retrieved March 10, 2003 from
http://www.w3.org/TR/html4/.

[21] Huron, David. “Humdrum and Kern: Selective Feature Encoding.” ibid. 375-398.

[22] Huron, David. “Design Principles in Computer-based Music Representation.” Computer
Representations and Models of Music. Alan Marsden and Anthony Pople, eds. New York:
Academic Press, 1992.

[23] The Humdrum Toolkit: Software for Music Research (n.d.). Retrieved March 10, 2003 from
http://www.music-cog.ohio-state.edu/Humdrum/.

[24] Kay, Michael. XSLT Programmer’s Reference, 2nd Edition. Birmingham, UK: Wrox Press,
2001.

[25] The K Desktop Environment (n.d.). Retrieved March 10, 2003 from http://www.kde.org.

[26] LATEX Typesetting system (n.d.). Retrieved March 10, 2003 from
http://www.latex-project.org/.

[27] Libxml: The XML C library for Gnome (n.d.). Retrieved March 10, 2003 from
http://xmlsoft.org/.

[28] GNU LilyPond (n.d.). Retrieved March 10, 2003 from http://www.lilypond.org/.

[29] Linux: Linux Is Not UniX (n.d.). Retrieved March 10, 2003 from http://www.linux.org.

[30] Martin, Worthy. Private communication. 2001-2003.

[31] Mosterd, Eric. Developing A New Way To Transfer Sheet Music Via The Internet. 1999.
Retrieved April 7, 2003 from University of South Dakota Web site:
http://www.usd.edu/csci/research/theses/graduate/sp2001/emosterd.pdf.

[32] The Music Encoding Initiative (n.d.). Retrieved April 7, 2003 from
http://dl.lib.virginia.edu/bin/dtd/mei/.

[33] MrProject (n.d.). Retrieved April 7, 2003 from http://mrproject.codefactory.se/.

[34] Mup: Music Publisher (n.d.). Retrieved April 7, 2003 from http://www.arkkra.com.

[35] Mup developers. Private communication. 2002-2003.

[36] MusicXML Definition (n.d.). Retrieved April 7, 2003 from
http://www.recordare.com/xml.html.

REFERENCES 118

[37] MusiXTEX (n.d.). Retrieved April 7, 2003 from
http://icking-music-archive.sunsite.dk/software/indexmt6.html

[38] National Music Publisher’s Association (NMPA). Tenth Annual International Survey of
Music Publishing Revenues. 1994. Retrieved April 7, 2003 from
http://www.nmpa.org/nmpa/survey10/base.html.

[39] NoteEdit: — Musical Score Editor (n.d.). Retrieved April 7, 2003 from
http://rnvs.informatik.tu-chemnitz.de/ jan/noteedit/noteedit.html.

[40] OASIS Open Office XML Format TC (n.d.). Retrieved April 7, 2003 from
http://www.oasis-open.org/committees/office/.

[41] OFX: Open Financial Exchange (n.d.). Retrieved April 7, 2003 from
http://www.ofx.net/ofx/default.asp.

[42] OpenType (n.d.). Retrieved April 7, 2003 from
http://www.adobe.com/type/opentype/main.html.

[43] Parish, Allen, Wael A. Hegazy, John S. Gourlay, Dean K. Roush, and F. Javier Sola.
“MusiCopy: An Automated Music Formatting System.” Department of Computer and
Information Science, The Ohio State University. 1987.

[44] Read, Gardner. Music Notation: A Manual of Modern Practice. New York: Taplinger
Publishing Company, 1979.

[45] Renz, Kai and Holger H. Hoos. GUIDO/MIR - an Experimental Musical Information
Retrieval System based on GUIDO Music Notation. Proceedings of the 2nd International
Symposium on Music Information Retrieval. 2001.

[46] Roland, Perry. “MDL and MusiCat: An XML Approach to Musical Data and Meta-Data.”
The Virtual Score: Representation, Retrieval, Restoration. Ed. Hewlett, Walter B., and
Eleanor Selfridge-Field. Cambridge: MIT Press, 2001. 125-134.

[47] Roland, Perry. The Music Encoding Initiative (MEI). Proceedings of the First International
Conference on Musical Applications Using XML. 2002.

[48] Roland, Perry. Private communications. 2002-2003.

[49] SAX: the Simple API for XML (n.d.). Retrieved April 7, 2003 from
http://www.saxproject.org/.

[50] Schottstaedt, Bill. “MuTEX, MusicTEX, and MusiXTEX.” Selfridge-Field, Eleanor, Ed.
Beyond MIDI: The Handbook of Musical Codes. Cambridge: MIT Press, 1997. 217-221.

[51] Selfridge-Field, Eleanor. “Introduction: Describing Musical Information.” ibid. 3-37.

[52] Selfridge-Field, Eleanor. “DARMS, Its Dialects, and Its Uses.” ibid. 163-172.

[53] Music Notation Software - Sibelius (n.d.). Retrieved April 7, 2003 from
http://www.sibelius.com/.

[54] Database System Concepts, Fourth Edition. Silberschatz, Abraham, Henry F. Korth, and S.
Sudarshan. Boston: McGraw-Hill, 2002.

REFERENCES 119

[55] Sloan, Donald and Steven R. Newcomb. “HyTime and Standard Music Description
Language: A Document-Description Approach.” ibid. 469-489.

[56] Sola, F. Javier and Dean K. Roush. “Design of Musical Beams.” OSU-CISRC-10/87-TR30.
Department of Computer and Information Science. The Ohio State University. 1987.

[57] Standard Music Description Language (SMDL). ISO/IEC DIS 10743 (n.d.). Retrieved April
7, 2003 from ftp://ftp.ornl.gov/pub/sgml/WG8/SMDL/10743.pdf.

[58] Clark, James. Comparison of SGML and XML. 1997. Retrieved April 7, 2003 from
http://www.w3.org/TR/NOTE-sgml-xml.html.

[59] Sunhawk.com - Digital sheet music on-line (n.d.). Retrieved April 7, 2003 from
http://www.sunhawk.com/.

[60] The Text Encoding Initiative (TEI) (n.d.). Retrieved April 7, 2003 from
http://www.tei-c.org/.

[61] Sperberg-McQueen, C.M.. and Burnard, L. (eds.) (2002). TEI P4: Guidelines for Electronic
Text Encoding and Interchange. Text Encoding Initiative Consortium. XML Version: Oxford,
Providence, Charlottesville, Bergen.

[62] Tidwell, Doug. XSLT: Mastering XML Transformations. Cambridge: O’Reilly, 2001.

[63] Scalable Vector Graphics (SVG) 1.0 Specification (n.d.). Retrieved April 7, 2003 from
http://www.w3.org/TR/SVG/.

[64] Vim: Vi IMproved (n.d.). Retrieved April 7, 2003 from http://www.vim.org.

[65] Wall, Larry et al. Programming Perl, Third Edition. Cambridge: O’Reilly, 2000.

[66] World Wide Web Consortium (n.d.). Retrieved April 7, 2003 from http://www.w3.org/.

[67] Walmsley, Priscilla. Definitive XML Schema. New Jersey: Prentice-Hall, 2002.

[68] XFIG Drawing Program for the X Window System (n.d.). Retrieved April 7, 2003 from
http://www.xfig.org.

[69] XHTML 1.0 The Extensible HyperText Markup Language (Second Edition) (n.d.). Retrieved
April 7, 2003 from http://www.w3.org/TR/xhtml1/.

[70] XML Path Language (XPath) Version 1.0 (n.d.). Retrieved April 7, 2003 from
http://www.w3.org/TR/xpath.

[71] XSL Transformations (XSLT) (n.d.). Retrieved April 7, 2003 from
http://www.w3.org/TR/xslt.

