Testing structural propertiesin textual data: beyond document
grammars

I ntroduction

This article describes reseach caried out in the projed "Sewndary information structuring
and comparative discourse analysis' (SEKIMO), which is part of the reseach group "Text-
technologicd modeling of information® and is funded by the German Reseach Council
(DFG). In our projed, we use XML document grammars, i.e. DTDs (Bray et a., 2000, XML
Schema (Thompson et al., 2007) and Relax NG (Clark and Murata, 2001) to formalize and
interrelate linguistic phenomena in typologicaly diverse languages. The document grammers
differ in what they describe, that is morphosyntadic structures, semantic relations and
discourse functions, and in the granularity of the description; i.e. there ae language or
dialogue type spedfic document grammars on the one hand and document grammars of a
more genera kind on the other hand. At the level of secondary information structuring, we
interrelate the document grammars, sometimes creding 'intermediate’ document grammars in
order to conned the spedfic and general levels of linguistic description. All document
grammars are developed on the basis of and applied to dialogue and text corpora in different
languages. (For more information about the projed, seewww.text-technology.de).

Schema languages usually define grammeticd constraints on document structures, i.e.
hierarchicd relations between elements in a treelike structure. Espedally but not only for the
linguistic phenomena we want to describe, it seans useful to complement the cncept of
hierarchicd validation with a methodology for defining and applying other structural
congtraints as there ae severa limitations in implementing appropriate document grammars.
The main benefits of this methodology are:

» Addition of constraints

which are hard to expressusing schema languages
* Independent formulation of constraints,

adding new constraints does not require dhanges to document schema
» Clasgficaion of information items,

assgning classes based on fulfillment of constraints.

We will exemplify this in reference to the document in Fig. 1, which is based on the English
part of the MULTEXT-EAST corpus (Ide and Véronis, 1998.

<COFpLUSE
<p=
<5
=namex=Ministry of Truth</mame:
r
hnamez=kinitrue=/namex
s in
<namexNewspeak</name:=
- was startlingly different from any other object in sight.
<f5e
=s=It was an enormous pyramidal structure of glittering white concrete, soaring up, terrace
after terrace, 300 metres into the air.</s>
<5=
From where
zhname=Winston=/name=
stood it was just possible to read, picked out on its white face in elegant lettering, the
three slogans of the
<name=Party</name:

<g=Waris peace</q>
zg=Freedom is slavery</q>
<qg=Ignorance is strength.</q>
e
</p=
< /corpuss

Fig. 1 Annotation of a paragraph from “1984'

Hierarchicd constraints for the nane element are for example that it has to occur
insde a sentence, here tagged as s. These nstraints can aso be described in terms of
contextual constraints for nane, i.e. its ancestor has to be an s element. The hierarchicd and
the mntextual constraints are visualized in Fig. 2.

Fig 2 Hierarchical and contextual constraints on €l ements

In the left-hand part of Fig. 2 there is the hierarchicd constraint for name elements, i.e.
they occur in the content model of sentences s. In the right-hand part the relation between
nane and s is described as a mntextual fegure of nane, visualized with arrows pointing from
name elements to s elements. This fedure is $ared by al nane elements. Other fedures are
shared only by some nane elements. For example, the first occurrence of nane is a the
beginning of a sentence s. The same is true for the fourth occurrence of nane, visualized by
the grey badkground of the two elements. They can be further clasgfied: the first nane is
insde asentence s which is at the beginning of a paragraph p, the fourth nanme is insde a
subsequent sentence In other words, the contextual fegures of elements can be organized in
terms of a dass s$ructure, with classes containing general properties and subclasses, which
define more spedfic properties respedively.

For tasks like visuaizing, modeling, querying and chedking consistency of text, it
might be very useful to describe the mntextual feaures of elements and arranging them in a

class sructure. A document containing such descriptions we cdl "context spedficaion
document” (CSD). In this article we will discussthe basic ideas of a CSD and describe how to
crege and use aCSD. We will then exemplify two applications for a CSD, namely modeling
co-reference in a language-spedfic or general fashion, and interrelating dfferent annotations
of text.

What isa CSD ?

Formal properties of a CSD

A CSD is an XML document that models a hierarchicd organized set of classes given by
context descriptions. In the terminology of a CSD, a @ntext is a set of element nodes within
an XML document that share some spedfic structural property. The hierarchy is constructed
by subsetting contexts. The hierarchy of context classes requires ead subclassto describe a
subcontext of the superclass i.e. the structura test performed has to be more spedfic.
Subclasses of the same superclass are not required to form a proper decomposition, so there
may be some subcontexts saring several nodes. In our example of the name elements in Fig.
2, the general context description is that their ancestor is an element s. The first occurrence of
nane and its fourth occurrence ca be described as a subclass because they are the first child
of an s element. The first occurrence of name forms another subclass becaise it is at the
beginning of an s element which is at the beginning of a paragraph p.

We have dhosen caterpillar expressons as described by Briiggemann-Klein and Wood
(2000 to formalize the structural properties which form the set of context-nodes. A caerpill ar
expresson is a regular expresson over an alphabet of symbols for moves (I ef t, ri ght, up,
firstChild, |astChild), names of elements and several symbols for positional tests
(isRoot, islLeaf, isFirst, isLast). Only element nodes are subjed to a cderpilar
expresson and its evaluation. For example in Fig. 2, the fourth occurrence of nane is the first
child of s, so it is matched by a caerpillar expresgon like i sFi rst. The textual data “from
where” (see Fig. 1) precaling the name element is not subjed to the evaluation of the
caerpillar expressons.

We will not give alengthy description of the exad semantics of those expressons but
will concentrate on their application to markup over textual data. The interpretation of eah
symbol can be grasped intuitively, when we imagine a céerpillar crawling in the dement tree
The symbol ri ght maps to true and a diange of the aurrent node of the cderpillar to the
right sibling, if there exists such a right sibling. Otherwise the move evaluates to f al se and
the current-node remains the same. Other moves, such asup or | ef t are defined analogoudly.
Element names and positional tests are Boolean predicaes (e.g. i sFirst) and chedk the
current-node for spedfic properties, e.g. i sFi rst evaluatesto t r ue, if the aurrent-node is the
first child of its parent. A caterpillar expresson evauates to true with resped to some
arbitrary initial node, i.e. the tested node belongs to the mntext, if there is a mapping of the
expresson to a sequence of succesful moves and tests in the dement tree

Related approaches

CSD might resemble Schematron (Jelliffe, 2007), as both can be used to partialy validate
documents via description of permissble paths for elements, but in fad CSD differs from this
approach in several aspeds. First, Schematron uses XPath (Clark and DeRose, 1999 to
spedfy the paths, which is more expressve than caerpillar expressons. Undoubtfully this
eases describing contexts. However, we ae not only interested in modeling contexts but also
in comparing and relating context-descriptions to document grammars in order to be ale to
compare their strengths and weaknesses for (linguistic) modeling. Hence, less expressve
languages sam to be better suited. Second, Schematron amost "only" deds with reporting
fall tests, whereas CSD is espedally designed for classfication of nodes, i.e., to assgn the set

of contexts the node belongs to. We can think of CSD as a means for week typing asit can be
found in severa query languages. Certainly, one can mimic this using Schematrons named
pattern , but a the expense of losing some level of abstradion. Nevertheless CSD and
Schematron share the cgability to describe and validate documents based on an open, node-
centric view instea of the top-down hierarchicd approacd forced by document grammers.
CSD can aso be mmpared to the dedaration of feaure structures in the TEIl (Sperberg-
McQueen and Burnard 1994. The basic idea is the same, namely to use an additional
document to spedfy properties of the basic data in form of constraints. Similar to Schematron,
the expressve power of the TEI fedure structures is much higher than that of caterpill ar
expressons. But, as mentioned before, for our theoreticd interests in the relation between
grammaticd and peth expressble constraints a restriction to a lessexpressve language seans
to be worthwhile.

How to writea CSD

The structure of the CSD and the output document of processng is formulated using the DTD
formalism. Aninstance of a CSD is fragmentary ill ustrated in Fig. 3:

=csd mode="query">
<namespacelist>
<namespace prefix="xxx" uri="http:/ /www.example.com/yourNamespace" /=

</namespacelist>
<superclass scope="element-namel element-name2 ...">
<class id="class-nol" sufficient="yes">
zcomment>=subtype of class number 1</comments
zcaterpillar=...</caterpillar=
z/classs
</superclass=
<superclasss...</superclass>
</osd»

Fig. 3 The general structure of a CSD given by example

A CSD is aware of namespaces, whose tuples of prefix and URI can be introduced in
the namespace element inside the namespaceList . The tests for elements then may use these
prefixes. As a CSD validates or queries partial document structures, we need to define only
those dements that we ansider relevant to the processof querying or validation (seebelow).
This is gedfied by the scope attribute, which is attadhed to the superclass element. The
value of scope can be asingle dement name or a white-space separated list of element
names. A CSD that defines contexts for the dement name (see Fig. 2) therefore mntains a
superclass €element with an attribute scope="name para ..

Next we construct caerpillar expressons. A possble start node of a cderpill ar is taken
from the scope attribute. For eat move or test of a cderpillar, we use the gpropriate CSD
glement, i.e. up, right , left |, first |, last ,isRoot ,isLeaf ,isFirst ,isLast . The name of
an element is tested by element name="some element name” . For example, to test whether
an element s is the ancestor of the name element, can be adieved by an expresson like *up,
s’ . The CSD element zeroOrMore represents the Kleene-star operator, e.g. known from
DTDs. The dements right and name as the @ntent of zeroOrMore means "zero or more
ocaurrences of the dement name to the right of the aurrent node". This caerpillar expresson
would match for all occurrences of the name element in Fig. 2.

Now we onstruct the hierarchy of caerpillar expressons. The dasses are aranged in
an inheritance structure, i.e. the tested properties of a cetain classn are common to all
subclasses nested in n. Figure 4 visualizes the dass $ructure we have described so far for the
name elements. With this CSD, we ae ale to classfy the first occurrence of name as a
member of the dass name-sub2, the fourth occurrence of name as a member of the dass

nane- subl, and the other occurrences as a member of nane- gener al . Note that the common
subsequences of the caterpillar expressions are omitted as they are implied by the class

hierarchy.

up, s

name-subl

isFirst

name-sub2

Fig. 4 The class structure of a CSD describing contextual properties of the nane element in Fig. 2

How can a CSD be used?

Two constructs in the CSD in Fig. 3 have not been explained so far, i.e. the node attribute on
the csd element and the sufficient attribute on some of the cl ass instances. These
attributes are important parameters as we apply the CSD to a document instance. One can
either test if a document instance is valid with respect to some context specifications, or one
can query for the set of classes matched by certain element nodes. The node attribute and its
permissible values val i dat e versus quer y determine the mode of processing.

Contexts (classes) can be stated to be necessary but not sufficient for validating or
guerying a node. The sufficient attribute is attached to a class if this class leads to a
positive result in the query or validation. For example, if we are interested in querying name
elements in our example document (see Fig. 1) which are at the beginning of a sentence, we
would attach the suffi ci ent attribute only to the name-subl class and set the mode to
query. If we simply want to assure that all names are inside sentences, we would attach the
suf fici ent attributeto the name- gener al class and set the modeto val i dat e.

In some cases it might be useful to set validity constraints for certain element nodes in
the document instance to ensure that a specific element matches a specific class. For this
purpose we introduced the csd:caterpillar attribute defined in the namespace
http://ww. coli.lili.uni-Dbielfeld.del/projects/CSD. This attribute can be attached
to elements in the document instance. The CSD-processor will generate an error for this
element if it is not in accordance with the class specified in the value of csd: caterpillar. In
our example, we could attach the csd: cat er pi | | ar attribute with the value nane- sub2 to the
first occurrence of the nane element, to assure that it is always in the first sentencess.

The following list summarizes how to create and use a CSD:

- Choose one or more XML-documents to be validated / queried

- Choose an element name or a group of element names

- Write caterpillar expressions to be matched by the elements

- Congtruct a class hierarchy for the caterpillar expressions

- Choose classes to be sufficient for validation or query

- WriteaCSD

- Optionally, attach the csd: cat er pi I | ar attribute to certain nodes in the document

instance(s)

- Choose a processing-mode for the CSD, i.e. val i dat e or query

Possible results of applying a CSD to a document instance
After processing a document instance in quer y mode, an output document is generated:

<nodelistss
<document url="http:/ /www.example.com/examplel4?.xml" />
<nodelist scope="element-namel element-name?2 ...">
<node path="«¢path-expression"=
<class name="subclass1-of-class-nol"=
zcomiment=This is subclass 1 of class number 1</comments
</olasss
</hodes
</nodelist=
</modelistss

Fig. 5 The output document of a query

The output document contains a collection of nodeli st elements, one for each
superclass defined in the CSD. The scope attribute of each nodel i st carries the same value
as in the CSD. The location of the document instance is contained in the ur1 attribute of the
docunent element. Each nodel i st consists of at least one node, specifying an absolute path
to the respective node in the document instance. The path is expressed in XPath-Syntax, so
the output document can be easlly processed, eg. with XSLT (Clark, 1999). For each
sufficient class matched by the node, there is acl ass element holding the name of that class
and an optional comment taken from the CSD.

The result of validating a document instance is either true or fal se. A document is
erroneous if any node in the instance named by the scope attribute does not match any class
regarded as sufficient, or if the class named by the csd: caterpil | ar attribute is not a
member of the set of matching classes. That is, the corresponding caterpillar expression of the
given class evauates to false for that specific node. Suppose we attach the
csd: cat erpi | | ar attribute with the value nane- sub2 to the second occurrence of nane, then
an error would occur because the expressionup s i sFi rst isnot true for this node.

Example applications for a CSD
Modeling of co-reference

In Sasaki et a. (2002), we present an approach towards a formal description of co-referencein
different languages, using the expressive power of document grammars. There we create
general and language-specific document grammars for language corpora. In this paper we will
not give a detailed description of this approach, but try to exemplify how the description of
element classes in contextualy specified document structures might contribute to a
classification of co-referentia relations, complementing the approach of document grammars.
Consider the example in Fig. 6, which is a dlightly modified version of the example in Fig. 1:

<COrpUss
<p>

s
zname=Ministry of Truth</name:x
r
znarme=kinitrue=/name=
rin
<name=Newspeak</name:
- was startlingly different from any other object in sight.

i

<5
<pronz=It</pron=
was an enormous pyramidal structure of glittering white concrete, soaring up, terrace
after terrace, 300 metres into the air.

e

<5
From where
zname>=Winston=/name=
stood
<pron=it</pronz
was just possible to read, picked out on its white face in elegant lettering, the three
slogans of the
<names>Party</narme:

<q=War is peace</q>
zg=Freedom is slavery</q>
zg=Ignorance is strength.</q>
e
</ p=
< /corpus=

Fig 6. Co-referential units

The noun phrase "Ministry of truth", tagged as nane, co-refers with the pronoun "it",
which is tagged as pron in the second sentence s. “Minitrue” aso co-refers with the noun
"minitrue”’ in the same sentence, which is tagged as nane. In the third sentence s, there is
another pronoun pr on which refers to the three quotations q. Fig. 7 visualizes the structural
properties of the three ©-referential units and a @rresponding CSD:

coref-general
{up*, left* right+*,
isFirst* name*, g*)

Fig. 7 Structural properties of co-referential unitsin Fig. 6 and a corresponding CSD

“Minitrue” can be related to “Ministry of Truth” with the cderpillar expresson | ef t
name. The first occurrence of the pronoun pron can by related to “Ministry of Truth” with
another caerpillar expresson up up isFirst* name. And the second pronoun pron can be
related to the three quotations q via the cderpillar expresson (ri ght * q) *. The visualization
of the CSD shows how these structural spedficaions can be dasgfied.

This example shows how one might use aCSD in the field of linguistics. It can be a
starting point to describe structural properties of certain co-referential phenomena and to

alow to test them with annotated textual data beyond the practical limitations of document
grammarsin ageneral and more or less (language) specific fashion.

Interrelating different annotations of text

There has been a long ongoing discussion on how to represent concurrent hierarchies in
document structures. One source of this discussion is the OHCO hypothesis that text is a
ordered hierarchy of content objects. There are many weak and strong versions of this
hypothesis. Some authors (Caton, 2002) even claim that the idea of text as a hierarchical
structure is just one plausible view among others.

We do not claim to be able to contribute new ideas for this discussion or a solution for
the problem. What we want to try is to interrelate different annotations with a CSD. We
represent one primary annotation in the ordinary XML document structure and another
annotation, in the same document, with anchor elements. A type can be assigned to these
anchors viathe csd: cat er pi | | ar attribute, and the respective classes in the CSD can specify
the structural constraints for the anchors. Fig. 8 shows an example of a primary annotation
from a linguistic perspective which marks sentences with tag s and a secondary annotation
which marks lineswith I i ne- begi n and | i ne- end:

- <corpus smins:ced="www.text-technology.de/projects/csd"=
<line-beqgin c=d: caterpillar="firstLine" /=
- <5>
The Ministry of Truth - Minitrue, in Newspeak* - was
<ling-end /=
<line-begin csd: caterpillar="normalLine" />
startlingly different from any other object in sight.
B
- 5>
It was
<line-end /=
<line-begin csd: caterpillar="normalLine" />
an enormous pyramidal structure of glittering white
<line-end /=
<line-begin csd:caterpillar="normalLine" />
concrete, soaring up, terrace after terrace, 300 metres into
zling-end /=
<line-begin csd: caterpillar="normalLine" />
the air.
B
- 5>
From where Winston stood it was just possible to
zline-end /=
<line-begin csd: caterpillar="normalLine" /=
read, picked out on its white face in elegant lettering, the
zline-end /=
<line-begin csd: caterpillar="normalLine" />
three slogans of the Party:
B
zline-end /=
<line-begin csd:caterpillar="identicalToSentence" /=
<s=WAR IS PEACE= /s>
<ling-end /=
<line-beqgin c=d: caterpillar="identicalToSentence" /=
<s=FREEDOM IS SLAYERY</s>
<ling-end /=
<line-beqin csd: caterpillar="identicalToSentence" /=
=5>IGNORANCE IS STRENGTH < /s>
<ling-end /=
</corpuss

Fig. 8 An annotation of lines and sentences

With the CSD, it is possible to specify different types of relations between the
annotation of sentences s and lines. We can define a class nor nal Li ne for general lines,

which follow immediately a1 i ne- end element. The respedive cderpillar expresson for this
class is left line-end. The subclass | ast-1ine-begin has the cderpillar expresson
right* line-end isLast up corpus. There is aso a dasswhich cannot be subsumed
under the normal Line class. This class is cdled identical ToSentence and has the
caerpillar expressoni sLast up s.

This methodology is closely related to solutions for the problem of overlapping
hierarchies, as proposed by the TEI. One of the TEI solutions is the anstruction of virtual
joints for fragmentary elements. A CSD can be used for this purpose & well, but also — as in
our example — to describe various classs for the instances of the ‘secondary’ annotation.
These then can be used to test hypothesis about the relations between two different
annotations of text.

Still our methodology has some drawbadks, espedally the fad that so far it is not yet
possble to generate the cderpillar expressons automeaticdly. Nevertheless it can be used to
validate ahypothesis about the relations between different annotations of the same textual
data.

Summary and future wor k

In this article, we have described the motivation for the mntextual spedficaion of elements
and their representation in a dass $ructure. We presented the main aspeds of CSD as a
framework and some examples. Two applicaions in the domain of co-reference and the
modeling of different annotations of text showed the potential of CSD.

A prototype of a CSD processor has been implemented in the Python programming
language. In the future we will continue research on several subjeds. As described, currently
we follow Bruggemann-Klein and Wood in restricting the operators to sequence, bradkets and
Kleene-star. However, we eped optionality ‘? to be highly valuable to impose locdity
congtraints (e.g. at most threenodes to theleft? left? |eft?) and therefore consider to
extend our notion of caterpillar expressons in that sense. Since CSD uses but does not depend
on a spedfic path language, it is easy to integrate for example XPath or other (path) languages
with minor modifications to the CSD-DTD, as path expressons may be given as attribute
values as well. Furthermore, we want to explore in more detail the relation between a CSD
based on caerpillar expresson and document grammars. And last but not least - we want to
use the CSD to model linguistic phenomena on large crpora & another approach to
seoondary information structuring.

Refer ences

Bray, T., J. Paoli, C. M. Sperberg-McQueen and Eve Maler (2000. Extensible Markup
Language (XML) 1.0 (Sewond Edition). W3C Reocommendation 6 October 2000 See
http://www.w3.0rg/TR/REC-xml

Briggemann-Klein, A and D. Wood (2000. Caterpillars: A Context Spedficaion Tednique,
Markup Languages: Theory & Pradice 2(1):81-106

Caton, P. (2002. Markup's Current Imbalance Markup Languages. Theory & Pradice
3(1):1-13.

Clark, J. (1999. XSL Transformations (XSLT). W3C Recommendations 16 November 1999
Seehttp://www.w3.org/TR/xdlt

Clark, J. and S. DeRose (1999. XML Path Language (XPath). W3C Recommendation 16
November 1999 Seehttp://www.w3.org/TR/xpath

Clark, J. and M. Murata (200]). Relax NG Spedficaion. OASIS Committee Speafication 3
Decamber 2001 Seehttp://www.oasis-open.org/committees/relax-ng/spec-2001120tml

Ide, N. and J. Véronis (1994. Multext (multilingual tools and corpora), Procealings of the
15th CoLing, Kyoto, 90-96.

Jelliffe, R. (200]). Schematron — an XML Structure Validation Language using Patterns in
Trees. Seehttp://www.ascc.net/xml/schematron/

Sasaki, F., C. Wegener, A. Witt, D. Metzing and J. Ponninghaus (2002. Co-reference
annotation and resources. a multilingual corpus of typologicdly diverse languages,
Procealings of the 3rd International Conference on Language Resources and Evaluation
(LREC-2002), Las Palmas, 12251231

Sperberg-McQueen, M. and L. Burnard (eds). Guidelines for Eledronic Text Encoding and
Interchange (TEI P3), ACH/ ACL / ALLC, Chicago / Oxford, 1994

Thompson, H., D. Beet, M. Maoney and N. Mendelsohn (2001). XML Schema Part 1:
Structures. W3C Recommendation 2 May 2001 Seehttp://www.w3.0rg/TR/xmlschema-1

' Experienced users may give path expressons as attribute values using concise notation.

