
Testing structural properties in textual data: beyond document
grammars

Introduction

This article describes research carried out in the project "Secondary information structuring
and comparative discourse analysis" (SEKIMO), which is part of the research group "Text-
technological modeling of information" and is funded by the German Research Council
(DFG). In our project, we use XML document grammars, i.e. DTDs (Bray et al., 2000), XML
Schema (Thompson et al., 2001) and Relax NG (Clark and Murata, 2001) to formalize and
interrelate linguistic phenomena in typologically diverse languages. The document grammars
differ in what they describe, that is morphosyntactic structures, semantic relations and
discourse functions, and in the granularity of the description; i.e. there are language or
dialogue type specific document grammars on the one hand and document grammars of a
more general kind on the other hand. At the level of secondary information structuring, we
interrelate the document grammars, sometimes creating 'intermediate' document grammars in
order to connect the specific and general levels of linguistic description. All document
grammars are developed on the basis of and applied to dialogue and text corpora in different
languages. (For more information about the project, see www.text-technology.de).

Schema languages usually define grammatical constraints on document structures, i.e.
hierarchical relations between elements in a tree-like structure. Especially but not only for the
linguistic phenomena we want to describe, it seems useful to complement the concept of
hierarchical validation with a methodology for defining and applying other structural
constraints as there are several limi tations in implementing appropriate document grammars.
The main benefits of this methodology are:

• Addition of constraints
which are hard to express using schema languages

• Independent formulation of constraints;
adding new constraints does not require changes to document schema

• Classification of information items;
assigning classes based on fulfillment of constraints.

We will exemplify this in reference to the document in Fig. 1, which is based on the English
part of the MULTEXT-EAST corpus (Ide and Véronis, 1998).

Fig. 1 Annotation of a paragraph from “1984”

Hierarchical constraints for the name element are for example that it has to occur
inside a sentence, here tagged as s. These constraints can also be described in terms of
contextual constraints for name, i.e. its ancestor has to be an s element. The hierarchical and
the contextual constraints are visualized in Fig. 2.

Fig 2. Hierarchical and contextual constraints on elements

In the left-hand part of Fig. 2 there is the hierarchical constraint for name elements, i.e.
they occur in the content model of sentences s. In the right-hand part the relation between
name and s is described as a contextual feature of name, visualized with arrows pointing from
name elements to s elements. This feature is shared by all name elements. Other features are
shared only by some name elements. For example, the first occurrence of name is at the
beginning of a sentence s. The same is true for the fourth occurrence of name, visualized by
the grey background of the two elements. They can be further classified: the first name is
inside a sentence s which is at the beginning of a paragraph p, the fourth name is inside a
subsequent sentence. In other words, the contextual features of elements can be organized in
terms of a class structure, with classes containing general properties and subclasses, which
define more specific properties respectively.

For tasks like visualizing, modeling, querying and checking consistency of text, it
might be very useful to describe the contextual features of elements and arranging them in a

class structure. A document containing such descriptions we call "context specification
document" (CSD). In this article we will discuss the basic ideas of a CSD and describe how to
create and use a CSD. We will then exemplify two applications for a CSD, namely modeling
co-reference in a language-specific or general fashion, and interrelating different annotations
of text.

What is a CSD ?

Formal properties of a CSD

A CSD is an XML document that models a hierarchical organized set of classes given by
context descriptions. In the terminology of a CSD, a context is a set of element nodes within
an XML document that share some specific structural property. The hierarchy is constructed
by subsetting contexts. The hierarchy of context classes requires each subclass to describe a
subcontext of the superclass, i.e. the structural test performed has to be more specific.
Subclasses of the same superclass are not required to form a proper decomposition, so there
may be some subcontexts sharing several nodes. In our example of the name elements in Fig.
2, the general context description is that their ancestor is an element s. The first occurrence of
name and its fourth occurrence can be described as a subclass, because they are the first child
of an s element. The first occurrence of name forms another subclass, because it is at the
beginning of an s element which is at the beginning of a paragraph p.

We have chosen caterpill ar expressions as described by Brüggemann-Klein and Wood
(2000) to formalize the structural properties which form the set of context-nodes. A caterpill ar
expression is a regular expression over an alphabet of symbols for moves (left, right, up,
firstChild, lastChild), names of elements and several symbols for positional tests
(isRoot, isLeaf, isFirst, isLast). Only element nodes are subject to a caterpill ar
expression and its evaluation. For example in Fig. 2, the fourth occurrence of name is the first
child of s, so it is matched by a caterpill ar expression like isFirst. The textual data “from
where” (see Fig. 1) preceding the name element is not subject to the evaluation of the
caterpill ar expressions.

We will not give a lengthy description of the exact semantics of those expressions but
will concentrate on their application to markup over textual data. The interpretation of each
symbol can be grasped intuitively, when we imagine a caterpill ar crawling in the element tree.
The symbol right maps to true and a change of the current node of the caterpill ar to the
right sibling, if there exists such a right sibling. Otherwise the move evaluates to false and
the current-node remains the same. Other moves, such as up or left are defined analogously.
Element names and positional tests are Boolean predicates (e.g. isFirst) and check the
current-node for specific properties, e.g. isFirst evaluates to true, if the current-node is the
first child of its parent. A caterpill ar expression evaluates to true with respect to some
arbitrary initial node, i.e. the tested node belongs to the context, if there is a mapping of the
expression to a sequence of successful moves and tests in the element tree.

Related approaches

CSD might resemble Schematron (Jelli ffe, 2001), as both can be used to partially validate
documents via description of permissible paths for elements, but in fact CSD differs from this
approach in several aspects. First, Schematron uses XPath (Clark and DeRose, 1999) to
specify the paths, which is more expressive than caterpill ar expressions. Undoubtfully this
eases describing contexts. However, we are not only interested in modeling contexts but also
in comparing and relating context-descriptions to document grammars in order to be able to
compare their strengths and weaknesses for (linguistic) modeling. Hence, less expressive
languages seem to be better suited. Second, Schematron almost "only" deals with reporting
fail tests, whereas CSD is especially designed for classification of nodes, i.e., to assign the set

of contexts the node belongs to. We can think of CSD as a means for weak typing as it can be
found in several query languages. Certainly, one can mimic this using Schematrons named
pattern , but at the expense of losing some level of abstraction. Nevertheless, CSD and
Schematron share the capabili ty to describe and validate documents based on an open, node-
centric view instead of the top-down hierarchical approach forced by document grammars.
CSD can also be compared to the declaration of feature structures in the TEI (Sperberg-
McQueen and Burnard 1994). The basic idea is the same, namely to use an additional
document to specify properties of the basic data in form of constraints. Similar to Schematron,
the expressive power of the TEI feature structures is much higher than that of caterpill ar
expressions. But, as mentioned before, for our theoretical interests in the relation between
grammatical and path expressible constraints a restriction to a less expressive language seems
to be worthwhile.

How to write a CSD

The structure of the CSD and the output document of processing is formulated using the DTD
formalism. An instance of a CSD is fragmentary ill ustrated in Fig. 3:

Fig. 3 The general structure of a CSD given by example

A CSD is aware of namespaces, whose tuples of prefix and URI can be introduced in
the namespace element inside the namespaceList . The tests for elements then may use these
prefixes. As a CSD validates or queries partial document structures, we need to define only
those elements that we consider relevant to the process of querying or validation (see below).
This is specified by the scope attribute, which is attached to the superclass element. The
value of scope can be a single element name or a white-space separated list of element
names. A CSD that defines contexts for the element name (see Fig. 2) therefore contains a
superclass element with an attribute scope=”name para ...” .

Next we construct caterpill ar expressions. A possible start node of a caterpill ar is taken
from the scope attribute. For each move or test of a caterpill ar, we use the appropriate CSD
element, i.e. up, right , left , first , last , isRoot , isLeaf , isFirst , isLast .i The name of
an element is tested by element name="some element name” . For example, to test whether
an element s is the ancestor of the name element, can be achieved by an expression like ‘up,

s’ . The CSD element zeroOrMore represents the Kleene-star operator, e.g. known from
DTDs. The elements right and name as the content of zeroOrMore means "zero or more
occurrences of the element name to the right of the current node". This caterpill ar expression
would match for all occurrences of the name element in Fig. 2.

Now we construct the hierarchy of caterpill ar expressions. The classes are arranged in
an inheritance structure, i.e. the tested properties of a certain class n are common to all
subclasses nested in n. Figure 4 visualizes the class structure we have described so far for the
name elements. With this CSD, we are able to classify the first occurrence of name as a
member of the class name- sub2 , the fourth occurrence of name as a member of the class

name-sub1, and the other occurrences as a member of name-general. Note that the common
subsequences of the caterpillar expressions are omitted as they are implied by the class
hierarchy.

Fig. 4 The class structure of a CSD describing contextual properties of the name element in Fig. 2

How can a CSD be used?

Two constructs in the CSD in Fig. 3 have not been explained so far, i.e. the mode attribute on
the csd element and the sufficient attribute on some of the class instances. These
attributes are important parameters as we apply the CSD to a document instance. One can
either test if a document instance is valid with respect to some context specifications, or one
can query for the set of classes matched by certain element nodes. The mode attribute and its
permissible values validate versus query determine the mode of processing.

Contexts (classes) can be stated to be necessary but not sufficient for validating or
querying a node. The sufficient attribute is attached to a class if this class leads to a
positive result in the query or validation. For example, if we are interested in querying name
elements in our example document (see Fig. 1) which are at the beginning of a sentence, we
would attach the sufficient attribute only to the name-sub1 class and set the mode to
query. If we simply want to assure that all names are inside sentences, we would attach the
sufficient attribute to the name-general class and set the mode to validate.

In some cases it might be useful to set validity constraints for certain element nodes in
the document instance to ensure that a specific element matches a specific class. For this
purpose we introduced the csd:caterpillar attribute defined in the namespace
http://www.coli.lili.uni-bielfeld.de/projects/CSD. This attribute can be attached
to elements in the document instance. The CSD-processor will generate an error for this
element if it is not in accordance with the class specified in the value of csd:caterpillar. In
our example, we could attach the csd:caterpillar attribute with the value name-sub2 to the
first occurrence of the name element, to assure that it is always in the first sentence s.

The following list summarizes how to create and use a CSD:
- Choose one or more XML-documents to be validated / queried
- Choose an element name or a group of element names
- Write caterpillar expressions to be matched by the elements
- Construct a class hierarchy for the caterpillar expressions
- Choose classes to be sufficient for validation or query
- Write a CSD
- Optionally, attach the csd:caterpillar attribute to certain nodes in the document

instance(s)
- Choose a processing-mode for the CSD, i.e. validate or query

Possible results of applying a CSD to a document instance

After processing a document instance in query mode, an output document is generated:

Fig. 5 The output document of a query

The output document contains a collection of nodelist elements, one for each
superclass defined in the CSD. The scope attribute of each nodelist carries the same value
as in the CSD. The location of the document instance is contained in the url attribute of the
document element. Each nodelist consists of at least one node, specifying an absolute path
to the respective node in the document instance. The path is expressed in XPath-Syntax, so
the output document can be easily processed, e.g. with XSLT (Clark, 1999). For each
sufficient class matched by the node, there is a class element holding the name of that class
and an optional comment taken from the CSD.

The result of validating a document instance is either true or false. A document is
erroneous if any node in the instance named by the scope attribute does not match any class
regarded as sufficient, or if the class named by the csd:caterpillar attribute is not a
member of the set of matching classes. That is, the corresponding caterpillar expression of the
given class evaluates to false for that specific node. Suppose we attach the
csd:caterpillar attribute with the value name-sub2 to the second occurrence of name, then
an error would occur because the expression up s isFirst is not true for this node.

Example applications for a CSD

Modeling of co-reference

In Sasaki et al. (2002), we present an approach towards a formal description of co-reference in
different languages, using the expressive power of document grammars. There we create
general and language-specific document grammars for language corpora. In this paper we will
not give a detailed description of this approach, but try to exemplify how the description of
element classes in contextually specified document structures might contribute to a
classification of co-referential relations, complementing the approach of document grammars.
Consider the example in Fig. 6, which is a slightly modified version of the example in Fig. 1:

Fig 6. Co-referential units

The noun phrase "Ministry of truth", tagged as name, co-refers with the pronoun "it",
which is tagged as pron in the second sentence s. “Minitrue” also co-refers with the noun
"minitrue" in the same sentence, which is tagged as name. In the third sentence s, there is
another pronoun pron which refers to the three quotations q. Fig. 7 visualizes the structural
properties of the three co-referential units and a corresponding CSD:

Fig. 7 Structural properties of co-referential units in Fig. 6 and a corresponding CSD

“Minitrue” can be related to “Ministry of Truth” with the caterpill ar expression left
name. The first occurrence of the pronoun pron can by related to “Ministry of Truth” with
another caterpill ar expression up up isFirst* name. And the second pronoun pron can be
related to the three quotations q via the caterpill ar expression (right* q)*. The visualization
of the CSD shows how these structural specifications can be classified.

This example shows how one might use a CSD in the field of linguistics. It can be a
starting point to describe structural properties of certain co-referential phenomena and to

allow to test them with annotated textual data beyond the practical limitations of document
grammars in a general and more or less (language) specific fashion.

Interrelating different annotations of text

There has been a long ongoing discussion on how to represent concurrent hierarchies in
document structures. One source of this discussion is the OHCO hypothesis that text is a
ordered hierarchy of content objects. There are many weak and strong versions of this
hypothesis. Some authors (Caton, 2002) even claim that the idea of text as a hierarchical
structure is just one plausible view among others.

We do not claim to be able to contribute new ideas for this discussion or a solution for
the problem. What we want to try is to interrelate different annotations with a CSD. We
represent one primary annotation in the ordinary XML document structure and another
annotation, in the same document, with anchor elements. A type can be assigned to these
anchors via the csd:caterpillar attribute, and the respective classes in the CSD can specify
the structural constraints for the anchors. Fig. 8 shows an example of a primary annotation
from a linguistic perspective which marks sentences with tag s and a secondary annotation
which marks lines with line-begin and line-end:

Fig. 8 An annotation of lines and sentences

With the CSD, it is possible to specify different types of relations between the
annotation of sentences s and lines. We can define a class normalLine for general lines,

which follow immediately a line-end element. The respective caterpill ar expression for this
class is left line-end. The subclass last-line-begin has the caterpill ar expression
right* line-end isLast up corpus. There is also a class which cannot be subsumed
under the normalLine class. This class is called identicalToSentence and has the
caterpill ar expression isLast up s.

This methodology is closely related to solutions for the problem of overlapping
hierarchies, as proposed by the TEI. One of the TEI solutions is the construction of virtual
joints for fragmentary elements. A CSD can be used for this purpose as well, but also – as in
our example – to describe various classes for the instances of the ‘secondary’ annotation.
These then can be used to test hypothesis about the relations between two different
annotations of text.

Still our methodology has some drawbacks, especially the fact that so far it is not yet
possible to generate the caterpill ar expressions automatically. Nevertheless, it can be used to
validate a hypothesis about the relations between different annotations of the same textual
data.

Summary and future work
In this article, we have described the motivation for the contextual specification of elements
and their representation in a class structure. We presented the main aspects of CSD as a
framework and some examples. Two applications in the domain of co-reference and the
modeling of different annotations of text showed the potential of CSD.

A prototype of a CSD processor has been implemented in the Python programming
language. In the future we will continue research on several subjects. As described, currently
we follow Brüggemann-Klein and Wood in restricting the operators to sequence, brackets and
Kleene-star. However, we expect optionality ‘?’ to be highly valuable to impose locality
constraints (e.g. at most three nodes to the left? left? left?) and therefore consider to
extend our notion of caterpill ar expressions in that sense. Since CSD uses but does not depend
on a specific path language, it is easy to integrate for example XPath or other (path) languages
with minor modifications to the CSD-DTD, as path expressions may be given as attribute
values as well. Furthermore, we want to explore in more detail the relation between a CSD
based on caterpill ar expression and document grammars. And last but not least - we want to
use the CSD to model linguistic phenomena on large corpora as another approach to
secondary information structuring.

References
Bray, T., J. Paoli, C. M. Sperberg-McQueen and Eve Maler (2000). Extensible Markup
Language (XML) 1.0 (Second Edition). W3C Recommendation 6 October 2000. See
http://www.w3.org/TR/REC-xml
Brüggemann-Klein, A and D. Wood (2000). Caterpill ars: A Context Specification Technique,
Markup Languages: Theory & Practice, 2(1):81-106.
Caton, P. (2002). Markup’s Current Imbalance Markup Languages: Theory & Practice,
3(1):1-13.
Clark, J. (1999). XSL Transformations (XSLT). W3C Recommendations 16 November 1999.
See http://www.w3.org/TR/xslt
Clark, J. and S. DeRose (1999). XML Path Language (XPath). W3C Recommendation 16
November 1999. See http://www.w3.org/TR/xpath
Clark, J. and M. Murata (2001). Relax NG Specification. OASIS Committee Specification 3
December 2001. See http://www.oasis-open.org/committees/relax-ng/spec-20011203.html
Ide, N. and J. Véronis (1994). Multext (multili ngual tools and corpora), Proceedings of the
15th CoLing, Kyoto, 90-96.

Jelli ffe, R. (2001). Schematron – an XML Structure Validation Language using Patterns in
Trees. See http://www.ascc.net/xml/schematron/
Sasaki, F., C. Wegener, A. Witt, D. Metzing and J. Pönninghaus (2002). Co-reference
annotation and resources: a multili ngual corpus of typologically diverse languages,
Proceedings of the 3rd International Conference on Language Resources and Evaluation
(LREC-2002), Las Palmas, 1225-1231.
Sperberg-McQueen, M. and L. Burnard (eds). Guidelines for Electronic Text Encoding and
Interchange (TEI P3), ACH / ACL / ALLC, Chicago / Oxford, 1994.
Thompson, H., D. Beech, M. Maloney and N. Mendelsohn (2001). XML Schema Part 1:
Structures. W3C Recommendation 2 May 2001. See http://www.w3.org/TR/xmlschema-1

i Experienced users may give path expressions as attribute values using concise notation.

