
SWIFTStandards XML for Implementors 
Page 1

Publication date : May 2002 Standards Tools and Repository

SWIFTStandards XML

for Implementors



SWIFTStandards XML for Implementors 
Page 2

Publication date : May 2002 Standards Tools and Repository

Table of contents

1 Introduction ............................................................................................4
1.1 Purpose of this document .......................................................................... 4
1.2 Intended audience...................................................................................... 4
1.3 Prerequisites .............................................................................................. 4
1.4 Terms and definitions................................................................................ 5

2 Overview of the methodology for SWIFTStandards Message
Development...........................................................................................8

3 Message Definition ................................................................................9
3.1 Example..................................................................................................... 9
3.2 Message Definition artefacts................................................................... 10

3.2.1 Message..................................................................................... 10
3.2.2 Message Construct .................................................................... 10
3.2.3 Message Component ................................................................. 10
3.2.4 Choice ....................................................................................... 10
3.2.5 Message Element ...................................................................... 11
3.2.6 Data Type.................................................................................. 11

3.3 Traceability from Message Definition artefacts to Business artefacts.... 14
3.3.1 Business Component................................................................. 14
3.3.2 Business Element ...................................................................... 15
Example................................................................................................... 16

4 SWIFTStandards XML Schema and XML Instance............................18
4.1 Introduction ............................................................................................. 18
4.2 Mapping rules.......................................................................................... 18

4.2.1 XML element name................................................................... 18
4.2.2 XML simpleType...................................................................... 18
4.2.3 XML complexType................................................................... 19
4.2.4 XML Attributes......................................................................... 19
4.2.5 Summary ................................................................................... 20

4.3 Traceability from XML Schema to its Message Definition Diagram..... 21



SWIFTStandards XML for Implementors 
Page 3

Publication date : May 2002 Standards Tools and Repository

5 UML representation .............................................................................22

6 SWIFTStandards Financial Dictionary artefacts................................23

7 XML schema features used in SWIFTStandards XML.......................24
7.1 Namespaces in XML schema and XML instances.................................. 24
7.2 XML facets on simpleTypes ................................................................... 24

7.2.1 pattern........................................................................................ 25
7.2.2 length, minLength, maxLength ................................................. 25
7.2.3 minInclusive, maxInclusive, minExclusive, maxExclusive...... 25
7.2.4 enumeration............................................................................... 25
7.2.5 totalDigits, fractionDigits.......................................................... 26

8 Other characteristics ...........................................................................27
8.1 Run-time Schema versus documentation information ............................ 27
8.2 Granularity of Schemas........................................................................... 27
8.3 Naming conventions................................................................................ 27

8.3.1 Message Components and Business Components .................... 27
8.3.2 Name scoping............................................................................ 27

8.4 Character set ............................................................................................ 28
8.5 Schema Versioning ................................................................................. 28

End of document ............................................................................................42



SWIFTStandards XML for Implementors 
Page 4

Publication date : May 2002 Standards Tools and Repository

1 Introduction

1.1 Purpose of this document
This document is the implementation manual for SWIFTStandards XML messages.

It is currently aligned with the SWIFTNet V4.0 product line, and it will be updated as such
when SWIFTNet will be enhanced.

It explains

� what the various XML components are

� how they relate to the SWIFTStandards Financial Dictionary

� how this SWIFStandards Financial Dictionary is organised to promote reusability

1.2 Intended audience
– Software engineers working on the implementation of the SWIFTStandards XML

messages in the financial user community
– Software engineers designing the user interface for SWIFTStandards XML

messages
– SWIFT Application vendors
– SWIFT Customers developing their own SWIFT applications

1.3 Prerequisites
Prior knowledge the reader must have, before reading this document:
1. basic knowledge of UML (http://www.omg.org/uml)

2. basic understanding of SWIFTStandards modeling methodology
(http://www.swift.com/index.cfm?item_id=7291)

3. in-depth knowledge of XML (http://www.w3c.org/TR/2000/REC-xml-20001006)

4. in-depth knowledge of XML Schema (http://www.w3c.org/TR/xmlschema-0/),
(http://www.w3c.org/TR/xmlschema-1/) and (http://www.w3c.org/TR/xmlschema-2/)

http://www.omg.org/uml
http://www.swift.com/index.cfm?item_id=7291
http://www.w3c.org/TR/2000/REC-xml-20001006
http://www.w3c.org/TR/xmlschema-0/
http://www.w3c.org/TR/xmlschema-1/
http://www.w3c.org/TR/xmlschema-2/


SWIFTStandards XML for Implementors 
Page 5

Publication date : May 2002 Standards Tools and Repository

1.4 Terms and definitions

Business Actor
A physical business user (i.e. person, organisation or infrastructure), playing one or more Business
Roles in a Business Process. A Business Actor is uniquely identified in the Financial Dictionary.

Example: Bank, Corporate

Business Area
A set of strongly related business activities, that provide a self-standing business value to a set of
Business Actors. A Business Area may be refined in other Business Areas (i.e. hierarchical
structure). At the lowest level it is defined by a set of Business Processes. A Business Area is
uniquely identified in the Financial Dictionary.

Example: Pre-Trade, Post-Trade/Pre-settlement

Business Association
A semantic relation between two Business Components. A Business Association is uniquely
identified in the Financial Dictionary. There can be several Business Associations between two
Business Components if the semantics of the relations are different.

Example: a Party services an Account

Business Component
A representation of a (part of a) key business notion and characterised by specific Business
Elements. Each Business Component may have one or more Associations with other Business
Components. A Business Component is uniquely identified in the Financial Dictionary.

Business Concept
Dictionary Item with a business semantic meaning, i.e. Business Actor, Business Component,
Business Element, Business Rule or Association.

Business Element
A characteristic of a Business Component. A Business Element is uniquely identified in its Business
Component.

Business Information
A generic name covering Business Components, Business Elements and Associations between
these.

Business Model
An abstract definition of a (part of a) business area showing the main Business Processes and
Business Concepts relevant to this (part of a) Business Area.

Business Process
A main business activity within a Business Area that allows the industry to achieve its business
objectives. A Business Process may be refined in other Business Processes (i.e. hierarchical
structure).



SWIFTStandards XML for Implementors 
Page 6

Publication date : May 2002 Standards Tools and Repository

Business Role
A functional role played by a Business Actor in a particular Business Process.

Business Rule
A business constraint attached to a Business Concept and defining specific conditions applicable to
that Business Concept or to its associated Business Concepts if any. A Business Rule is uniquely
identified in the scope of a Business Concept.

Data Type
A Data Type unambiguously specifies the set of valid values of a Business Element or of a
Message Element. The set of valid values may be defined via a format specification or via an
enumeration. A Data Type is uniquely identified in the Financial Dictionary.

Data Type Representation
A Data Type Representation complements the definition of a Data Type with the technical
information required for implementation and processing; “boolean”, “integer”, “string” are some
examples of Data Type representation.

Derived Message Element
A derived Message Element is a Message Element that has a different name than its corresponding
Business Element.

Dictionary Item
An item that is uniquely identified in the Data Dictionary.

Enumerated Code Value
One possible code value in a list of possible code values assigned to a Business or Message
Element. It must be defined as a code of 1 up to 4 uppercase alphanumeric characters.

Enumerated Code Value List
A list of all possible code values assigned to a Business or Message Element. An Enumerated
Code Value List is uniquely identified in the Data Dictionary.

Message
A set of structured information exchanged between Business Actors, in the scope of a Business
Process. A Message is uniquely identified.

Message Component
A reusable Dictionary Item that is a building block for assembling messages. It is normally linked to
a Business Component and characterised by specific Message Elements. A Message Component
is uniquely identified in the Financial Dictionary.

Message Concept
Dictionary Item used for Message Definition, i.e. Message Component, Message Element or
Message Rule.

Message Definition
The formal description of a Message. The Message Definition is built as a tree structure of reused
Message Components.



SWIFTStandards XML for Implementors 
Page 7

Publication date : May 2002 Standards Tools and Repository

Message Element
A characteristic of a Message Component. A Message Element is uniquely identified in its Message
Component.

Message Flow Diagram
A Message Flow Diagram addresses the dynamic view of a system. It depicts the ordered
sequence of messages that may be exchanged between Business Actors. A Message Flow
Diagram is uniquely identified.

Message Rule
A specific constraint that is specified at the level of a Message or of a Message Component. A
Message Rule is uniquely identified in the Message or in the Message Component.

Technical Message Element
A Technical Message Element is a Message Element that only makes sense in a specific message
context and hence only exists in that Message.



SWIFTStandards XML for Implementors 
Page 8

Publication date : May 2002 Standards Tools and Repository

2 Overview of the methodology for SWIFTStandards
Message Development

The methodology comprises 5 activities1:
•  The Business Analysis focuses on getting a good understanding of the business

objectives of the considered Business Area.

•  The Requirements Analysis focuses on discovering the communication and interaction
requirements related to the Business Processes that are part of the considered Business
Area.

•  The Logical Analysis and Logical Design specify the Message Standard that meets the
identified communication and interaction requirements. The Message Standard is defined
independently of any physical implementation and includes Message Flow Diagrams and
Message Definitions.

•  The Technical Design delivers the physical implementation of Message Definitions and
Message Rules in their corresponding SWIFTStandards XML Schema2.

These five activities are applied in an iterative and incremental way for the SWIFTStandards
Message Development.

Bearing the above in mind, this document aims at explaining bottom-up how in XML, all the various
artefacts fit in a more global picture of the Financial Dictionary.

                                                
1 For a more detailed explanation, see the SWIFTStandards Modeling Methodology document
(http://www.swift.com/index.cfm?item_id=7291)
2 Only XML Schema’s are generated, not XML DTD’s.



SWIFTStandards XML for Implementors 
Page 9

Publication date : May 2002 Standards Tools and Repository

3 Message Definition

3.1 Example
A Message Definition Diagram contains the formal representation of a Message. A
Message is composed of different kinds of components, which we call artefacts. It is
important to understand what these various artefacts can be. Below example tries to
visualise this.

SWIFTNet Payload
Application Header

Document

StatementHeader

StatementOfAccount
Page:Date:

Bank Identifier:

AccountIdentification

StatementIdentification

Date:

Account Number:

Statement Number:

Value
Date Amount D/C

Payment type
(a “choice” between…)

Transaction Details

Cheque / Cash /Credit Card

Card Id / Transaction Id

technical
element

message
element

datatype

Message
Component

Message
Construct

Choice
Component



SWIFTStandards XML for Implementors 
Page 10

Publication date : May 2002 Standards Tools and Repository

3.2 Message Definition artefacts

3.2.1 Message

A Message is composed of Message Constructs, Message Components, Choice Constructs,
Choice Components, Message Elements. A Message is uniquely identified within the
SWIFTStandards Business Domain.

In the above example, StatementOfAccount is the message name.

3.2.2 Message Construct

A Message Construct represents a structural element of a “document” (e.g. Statement
Header). A Message Construct has no business meaning. Its sole purpose is to better
structure a Message to simplify it or to have a better validation. A Message Construct
cannot be reused.

3.2.3 Message Component

A Message Component is composed of Message Elements and/or other Message
Components. All Message Components are derived from Business Components3. (See also
chapter Traceability from Message Definition Diagram to business artefacts)

Message Components form the reusable items with which the Messages must be built.
They can be different because of their specific subset of Message Elements or because of
specific constraints such as specific Message Rules or cardinality constraints. A Message
Component has a unique name within the SWIFTStandards Business Domain and a set of
Message Elements.

3.2.4 Choice

There are also cases where a choice has to be made between several Message Components.
This can be done by either using a Choice Component, whereby the Choice Component
itself does have a real business meaning and is as such reusable, or by using a Choice

                                                
3 Business Components cannot be used directly in Message Definition Diagrams.



SWIFTStandards XML for Implementors 
Page 11

Publication date : May 2002 Standards Tools and Repository

Construct, whereby the Choice Construct itself does not have a real business meaning and
is as such not reusable.

3.2.5 Message Element

Message Elements are derived from the Business Elements of the Business Component
corresponding to the Message Component.

Message Elements may contain some additional semantic than the Business Element from
which they are derived.

Since a Message Element is local to its Message Component in which it is decalred, the
name of a Message Element is unique within its Message Component. (See also chapter
Traceability from Message Definition artefacts to business artefacts).

A Message Element is typed with either a Message Component, or with a
SWIFTStandards-defined Data Type.

Beside the ‘Common’ Message Elements, there are two special cases of Message Elements:
1. A Technical Message Element.

A Technical Message Element is a Message Element that only makes sense in a
message context. A specific Datatype can be created, but it has no corresponding
Business Element.

2. A Derived Message Element.
A Derived Message Element is a Message Element that has a different name than its
corresponding Business Element. This can occur when its name has more meaning
or because it was derived from a Business Element of another Business Component

3.2.6 Data Type

To recapitulate, in a Message Definition Diagram all Message Elements have a type of
which some refer to Message Components and the rest refer to SWIFTStandards-defined
Data Types.



SWIFTStandards XML for Implementors 
Page 12

Publication date : May 2002 Standards Tools and Repository

3.2.6.1 SWIFTStandards-defined Data Types

� are grouped together into so-called Representation classes. A Representation Class has
a number of characteristics that are passed on (‘inherited by’) all Data Types that are
using that representation class (e.g. an XML attribute, the XML primitive4 type it is
using, etc). In this way, characteristics common to a number of Data Types are grouped
together.

� can be further constraint by XML facets (see also XML facets) and by Business Rules.

� are globally unique, across the SWIFTStandards Business Domain and across all
Messages.

Following table summarizes what these different Representations are:

Representation
Class name

Definition

Identifier A character string to identify and distinguish uniquely, one instance of an
object in an identification scheme together with relevant supplementary
information.

The Identifier allows to define an identification scheme and the
organization managing this scheme

Code A character string (letters, figures or symbols) that for brevity and/or
language independence may be used to represent or replace a definitive
value or text of an attribute together with relevant supplementary
information

Indicator A list of two values that indicate a condition such as credit/debit, true/false,
...

Text A character string that may be used to describe a concept

Quantity A number of non-monetary units where the unit of quantity is explicit or
implied.

Amount A number of monetary units specified in a currency where the unit of
currency is explicit or implied.

                                                
4 Primitive” as defined by W3C’s data type specification document http://www.w3.org/TR/2001/REC-
xmlschema-2-20010502/



SWIFTStandards XML for Implementors 
Page 13

Publication date : May 2002 Standards Tools and Repository

DateTime A measurement of time.

Rate A quantity or amount measured with respect to another measured quantity
or amount, or a fixed or appropriate charge, cost or value.

For a more detailed explanation on the different representations of Data Types, refer to
Appendix A Data Type Representations.

3.2.6.2 Primitive5 Data Types

SWIFTStandards Data Types are encoded as defined by W3C, defined at
http://www.w3.org/TR/xmlschema-2/#dt-encoding.

Following XML built-in primitive types are supported:

XML Name Description
string Set of finite sequences of UTF-8 characters
boolean Has the value space of  boolean constants “True” or “False”
integer Corresponds to 32 bits integer type
decimal Arbitrary precision decimal numbers
date Corresponds to a date. See ISO 8601.

Format CCYY-MM-DD
time Corresponds to a time. See ISO8601.

Format HH:MM:SS +- offset to UTC
dateTime Corresponds to a date and time. See ISO8601.

Format CCYY-MM-DDTHH:MM:SS +- offset to UTC
duration Corresponds to a period in time. See ISO8601.

Format PnYnMnDTnHnMnS
gDay It is a set of one-day long, annually periodic instances. The time zone

must be UTC.
Format: --MM-DD.

gMonth Represents a time period that starts at midnight on the first day of the
month and lasts until the midnight that ends the last day of the month.
Format: --MM--.

gYear Represents a time period that starts at the midnight that starts the first
day of the year and ends at the midnight that ends the last day of the

                                                
5 “Primitive” as defined by W3C’s data type specification document http://www.w3.org/TR/2001/REC-
xmlschema-2-20010502/

http://www.w3.org/TR/xmlschema-2/#dt-encoding


SWIFTStandards XML for Implementors 
Page 14

Publication date : May 2002 Standards Tools and Repository

year. It is a set of one-year long, non-periodic instances.
Format: CCYY

gMonthday Represents a set of one-day long, monthly periodic instances.
The time zone must be UTC.
Format: ---DD.

base64Binary Represents Base64-encoded arbitrary binary data

3.3 Traceability from Message Definition artefacts to Business
artefacts

One of the goals of this SWIFTStandards Financial Dictionary is to promote reusability and
to be able to do a better impact analysis in case of changes and updates to Messages. Hence
the need to have a link between the various Message artefacts and their underlying Business
Elements / Business Components.

Below describes how these Message artefacts are linked to their corresponding Business
Elements / Components, using what we call ‘traceability links’.

3.3.1 Business Component

Business Components are defined in the Business Information Model. They cannot be used
directly in Message Definition Diagrams.

3.3.1.1 Message Component derived from Business Component

Message Components are directly derived from – i.e. they are tracing to - the Business
Components and can be considered as “views” on Business Components used in Messages.
Several Message Components can be derived from – i.e. traced to – one single Business
Component.

In some cases, Message Components contain Message Elements coming from different
Business Components (these are called Derived Message Elements).

                                                
7 Or complexTypes with simpleContent



SWIFTStandards XML for Implementors 
Page 15

Publication date : May 2002 Standards Tools and Repository

3.3.2 Business Element

A Business Component is composed of Business Elements. The name of a Business
Element is unique within a given Business Component. A Business Element can never be
used directly in a Message Definition Diagram.

3.3.2.1 Message Element derived from a Business Element

All Message Elements trace to Business Elements (except for Technical Message Elements,
which have no trace).

There may also be situations where Message Elements in one Message Component come
from multiple related Business Components. These will all trace to their respective
Business Components.



SWIFTStandards XML for Implementors 
Page 16

Publication date : May 2002 Standards Tools and Repository

3.3.3 Example

Finan ci alInstrumentDetai ls
Finan cialInstrumentName [0 ..1] : Max35Text
FormOfRepresentation [0 ..1]  : FormOfRepresentationCode
Classi ficationTyp e [0..1] : Max6Text
CurrencyOfDenomin ation [0..1] : CurrencyCo de
FormOfSecurities [0..1] : FormOfSecurityCod e
IssueDate [0 ..1] : ISODate
Legal Restriction [0..1] : LegalRestrictionsCode
MinimumTradedNominalQu antity [0 ..1] : FinancialInstrumen tQuantity
Cou ntryOfIssue [0..1] : CountryCode
Place OfIssue [0..1] : Max35Text
PrimaryPlaceOfOfficialListin g [0..1] : MICIde ntif ier
Seconda ryP laceOfOfficialListing [0..5] : MICIdent ifie r
NoFinancial InstrumentId [0..1] : TrueFalseIndicator

Finan ci alInstrument
FinancialInstrumentName : Max35Text
FormOfRepresentation : FormOfRepresentationCode
ClassificationType : Max6Text
CurrencyOfDenomination : CurrencyCode
FormOfSecurities : FormOfSecurityCode
IssueDate : ISODate
LegalRestriction : LegalRestrictionsCode
MinimumTradedNominalQuantity : FinancialInstrumentQuantity
CountryOfIssue : CountryCode
PlaceOfIssue : Max35Text
PrimaryPlaceOfOfficialListing[0...1] : MICIdentifier
SecondaryPlaceOfOfficialListing[0...5] : MICIdentifier

<<BusinessComponent>>

Figure 3-1: Deriving a MessageComponent from a BusinessComponent



SWIFTStandards XML for Implementors 
Page 17

Publication date : May 2002 Standards Tools and Repository

Note
“NoFinancialInstrumentID” was created only for FinancialInstrumentDetails. It has no
traceability link. Its purpose is to indicate whether a FinancialInstrumentIdentification
Message Component is in the message, or not. But this information can also be derived
from the presence/absense of that Message Component.



SWIFTStandards XML for Implementors 
Page 18

Publication date : May 2002 Standards Tools and Repository

4 SWIFTStandards XML Schema and XML Instance

4.1 Introduction
This chapter explains how a generated SWIFTStandards XML Schema (and its
corresponding XML instance) is mapped to its corresponding Message Definition Diagram.

4.2 Mapping rules
In an XML Schema,  any SWIFTStandards XML element

– has a name
– is typed either by a simpleType or a complexType
– can have a number of XML attributes

4.2.1 XML element name

Where can the XML element name be found in the Message Definition Diagram?

For a SWIFTStandards XML element mapped from a Message:

� The name of the Message.

For a SWIFTStandards XML element mapped from a Message Element:

� The XML name of the Message Element or by default the name of the Message
Element.

4.2.2 XML simpleType
XML simpleTypes are mapped from SWIFTStandards-defined Data Types that are using
following Representation Classes:

� Identifier

� Code

� Indicator

� Text



SWIFTStandards XML for Implementors 
Page 19

Publication date : May 2002 Standards Tools and Repository

� DateTime

4.2.3 XML complexType

If an XML element has a complexType, then the complexType is mapped from Message
Component or Message Construct.

4.2.3.1 XML complexTypes with simpleContent

In this case the complexType is mapped from SWIFTStandards-defined Data Type that is
using one of following Representation Classes:

� Quantity

� Amount

� Rate

4.2.4 XML Attributes

4.2.4.1 xsi:type

When a Message Component inherits characteristics from another Message Component, the
xsi:type is present to indicate in the instance the Message Component that was inherited
from.

By using xsi:type in the instance, the schema does not need to define any additional
attribute on types since xsi:type implicitely refers to a type defined in the schema. The
attribute “xsi:type” is required to indicate the chosen type in the SWIFTStandards XML
instance.

4.2.4.2 Data Type Representation Attribute
SWIFTStandards-defined Data Types that have an XML attribute must use one of
following Representation Classes:

Representation Class XML Attribute

Quantity Unit

Amount Currency

Rate Unit



SWIFTStandards XML for Implementors 
Page 20

Publication date : May 2002 Standards Tools and Repository

4.2.5 Summary

Representation XML derived
type

XML
primitive type

XML attribute Supported XML Schema Facets

Identifier simpleType  string None None

Code simpleType string None Enumeration

Indicator simpleType boolean None None

Text simpleType string None Pattern, Length, MinLength, MaxLength

Quantity complexType
with
simpleContent

decimal Unit minInclusive, minExclusive, maxInclusive,
maxExclusive, totalDigits and
FractionDigits

Amount complexType
with
simpleContent

decimal Currency minInclusive, minExclusive, maxInclusive,
maxExclusive, totalDigits and
FractionDigits

DateTime simpleType * DateTime
* Date
* gYear
* gMonth
* gDay
* gMonthDay
* gYearMonth
* Time
* Duration

None minInclusive, minExclusive, maxInclusive,
maxExclusive

Rate complexType
with
simpleContent

decimal Unit minInclusive, minExclusive, maxInclusive,
maxExclusive totalDigits and
FractionDigits



SWIFTStandards XML for Implementors 
Page 21

Publication date : May 2002 Standards Tools and Repository

4.3 Traceability from XML Schema to its Message Definition
Diagram

Any SWIFTStandards XML artefact (e.g. XML element, simpleType, complexType,
attribute) has a corresponding Message Definition artefact (e.g. Message Element, Message
Component, Construct).
All Message Definition artefacts have a name (independent of the syntax) and an XML
name. Typically the (syntax-independent) name and the XML name are the same.

SWIFT Standards Message artefact XML representation

Message An XML document

MessageComponent complexType

MessageConstruct complexType

MessageElement Element in a complexType

ChoiceComponent An XML Choice model group

ChoiceConstruct An XML Choice model group

SWIFTStandards-defined Data Type See Appendix A for a detailed
mapping.



SWIFTStandards XML for Implementors 
Page 22

Publication date : May 2002 Standards Tools and Repository

5 UML representation
This chapter explains how the SWIFTStandards concepts are expressed in UML.

SWIFT Standards
Business Concepts

UML Modeling representation

BusinessComponent A class with stereotype BusinessComponent

BusinessElement � An attribute of a class, which type an be either a Datatype or a
BusinessComponent

� A relation and a role name linked to a BusinessComponent.

SWIFTStandards-defined
Data Type

The stereotype of the class indicates the type of representation.

SWIFT Standards Message
Concepts

UML Modeling representation

Message Class with stereotype <<Message>>

MessageComponent Class with stereotype <<MessageComponent>>

MessageElement � An attribute in the class with stereotype <<MessageComponent>> or
<<ChoiceComponent>>. The type of the attribute is necessarily a
MessageComponent, a ChoiceComponent or a Data Type.

� An aggregation link from the class <<MessageComponent>> or
<<ChoiceComponent>> to another  MessageComponent or
ChoiceComponent.

ChoiceComponent Class with stereotype <<ChoiceComponent>>

MessageConstruct Class with stereotype <<MessageConstruct>>

A MessageElement
references a
MessageComponent or a
Datatype

The referenced MessageComponent or Data Type is the type of the Attribute.



SWIFTStandards XML for Implementors 
Page 23

Publication date : May 2002 Standards Tools and Repository

6 SWIFTStandards Financial Dictionary artefacts
The Dictionary contains only reusable artefacts. Following artefacts will be accessable
through the Dictionary:

� Business Components

� Business Association within its Business Components

� Business Elements + Business Rule within their Business Component

� Message Components

� Message Elements within their Message Component

� SWIFTStandards-defined Data Types

Non-reusable artefacts can only be found in the SWIFTStandards Reference Guide. For the
sake of completeness, following are the non-reusable artefacts that have been discussed
previously:

� Business Processes, Information Flows

� Messages

� Message Constructs



SWIFTStandards XML for Implementors 
Page 24

Publication date : May 2002 Standards Tools and Repository

7 XML schema features used in SWIFTStandards XML

7.1 Namespaces in XML schema and XML instances
SWIFTStandards XML schema and XML instances use four namespaces:

� the default (non qualified) namespace. All schema have their own default
namespace generated according to the following regular expression:
“urn:swift:xsd:\$+”. Where the “+” must be replaced by the message name
optionally prefixed by the collaboration name separated by a ‘.’.

� xs: W3C XML schema namespace (not used in instances)

� xsi: W3C XML schema-instance namespace

� a target namespace (for schema only) which is the same as the default namespace
with a user selected prefix.

Schema snippet:
<schema

xmlns=”urn:swift:xsd:$NoticeOfExecution”
xmlns:xs=” http://www.w3.org/2001/XMLSchema”
targetNamespace=”urn:swift:xsd:$NoticeOfExecution”>

Instance snippet:
<Document

xmlns=”urn:swift:xsd:$NoticeOfExecution”
xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”>

<NoticeOfExecution>…

For further information on a complete SWIFTNet Message, refer to the SWIFTNet Headers
document.

7.2 XML facets on simpleTypes7

The following sections describe the facets that may be used in the XML schema.



SWIFTStandards XML for Implementors 
Page 25

Publication date : May 2002 Standards Tools and Repository

7.2.1 pattern

Pattern matching allows lexical validation on strings, which syntax can be described using
regular expressions, (commonly referred to as “Perl expressions”).

This facet only applies to Representation of type Text.

7.2.2 length, minLength, maxLength

XML schema allows restriction of the value space of any string value (i.e.: integer, date etc
are not affected) by using the following constraining facets:

� length

� minLength

� maxLength

Those facets only apply on strings, and their values must be positive integer values.

7.2.3 minInclusive, maxInclusive, minExclusive, maxExclusive

XML schema allows restriction of the value space of any numerical value by using the
following constraining facets:

� minInclusive

� minExclusive

� maxInclusive

� maxExclusive

Those facets only apply to numerical values (Integer, BigDecimal) and to time
measurement related values (Date, Time, DateTime, gDay, gMonth, gYear, gMonthday,
duration) and their value must be constants of the same type than the numeric value they
apply to.

7.2.4 enumeration

XML schema allows restriction of the value space of an enumeration by using the
enumeration constraining facet.

This facet only applies to enumerations, and their value must be part of the original
enumeration from which they restrict.

Enumerations can only apply to Data Types using representation <<Code>>.

http://www.perl.com/pub


SWIFTStandards XML for Implementors 
Page 26

Publication date : May 2002 Standards Tools and Repository

7.2.5 totalDigits, fractionDigits

Fixed-point decimal values need a totalDigits specification (i.e. the maximum number of
decimal digits in values of Data Types derived from decimal: totalDigits), as well as a
fractionDigits specification (i.e. the maximum number of decimal digits in the fractional
part of values of Data Types derived from decimal: fractionDigits).

The value of the totalDigits facet must be a positive integer.

The value of the fractionDigits facet must be a non-negative integer.



SWIFTStandards XML for Implementors 
Page 27

Publication date : May 2002 Standards Tools and Repository

8 Other characteristics

8.1 Run-time Schema versus documentation information
Run-time schemas only contain information required to validate XML instances.
Documentation or implementation information –information that is not used by the XML
parser - is not part of SWIFTStandards XML Schema’s.

8.2 Granularity of Schemas
There is one Schema per message.

8.3 Naming conventions

8.3.1 Message Components and Business Components

All Message Components, Business Components and Data Types must have a unique name
within the SWIFTStandards Business Domain.

8.3.2 Name scoping
One of the characteristics of Message Elements is that they are scoped within the Message
Component they are used in. This means that any Message Element ‘inherits’ the properties
(i.e. in this case the name) of the Message Component it is used in.

Example:
Suppose an Account with two properties: Id and Name:

Party
Name
Id

This could translate to following XML Instance snippet:



SWIFTStandards XML for Implementors 
Page 28

Publication date : May 2002 Standards Tools and Repository

<Account>
<Name>data</Name>
<Id>data</Id>

</Account>

Suppose within the same message, a Party with two properties: Id and Name. Id and Name
have a different meaning and properties than the ID and Name from Account, but have the
same name. Their meaning depends on the Message Component they’re in. In other words,
their name is scoped within the component they are used in.

Party
Name
Id

8.4 Character set
SWIFTStandards XML uses UTF-8 as the (default) character encoding mechanism, for the
following reasons:
•  It has the most efficient method of character representation:

•  It is the shortest method to represent the characters which are currently the most
commonly used in a financial environment (ASCII and EBCDIC characters)

•  It can still represent almost any known character
•  It is interoperable with many other encoding schemes through (automatable) conversion

algorithms.
Example:

<?xml version=”1.0” encoding=”UTF-8”?>

8.5 Schema Versioning
The version number is an integral part of the message name.



SWIFTStandards XML for Implementors 
Page 29

Publication date : May 2002 Standards Tools and Repository

A APPENDIX Data Type Representations

A.1 Data Type Metamodel

Quantity
<<XMLAttribute>> Unit [0..1] : UnitCode

<<stereotype>>

Rate
<<stereotype>>

DateTime
<<XMLType>> Format : DatesAndTimes

<<stereotype>>

Amount
<<XMLAttribute>> Currency [0..1] : CurrencyCode

<<stereotype>>

Text
<<stereotype>>

Indicator
<<Property>> MeaningWhenTrue : String
<<Property>> MeaningWhenFalse : String

<<stereotype>>

Identifier
<<Property>> IdentificationSchemeName : String

<<stereotype>>

BigDecimal

Boolean

StringCode
<<stereotype>>

DatesAndTimes
DateTime : String
Time : String
Duration : String
Date : String
gDay : String
gMonth : String
gYear : String
gMonthDay : String
gYearMonth

<<enumeration>>

Notes:

Each SWIFTStandards-defined Data Type is identified by a class and stereotyped by a
representation class name. A representation class has a number of characteristics that are



SWIFTStandards XML for Implementors 
Page 30

Publication date : May 2002 Standards Tools and Repository

passed on (‘inherited by’) all Data Types that are using that representation class. In this
way, characteristics common to a number of Data Types are grouped together.

Stereotype <<XMLAttribute>> indicates that the values the XML attribute of this
Representation are usable by the associated SWIFTStandards-defined Data Type. The Data
Type definition could supersede this definition, by not using the XML Attribute. One of
these values will appear in the XML instance in case of ambiguity8.
Conversely, if there is no ambiguity (i.e. the datatype has an XML attribute with only one
or no values), it must NOT appear in the instance and must not be declared in its XML
Schema.

Stereotype <<Property>> indicates that the values this characteristic has will NOT be
declared in the XML Schema. Instead this is a property inherent to this Data Type that will
only appear in Financial Dictionary, the Standards Reference Guide and other
implementation information, since their content/value is static across instances, so it must
not be validated.

Stereotype <<XMLType>> (only used in representation class DateTime) indicates actually
which XML built-in type (Date, Time, DateTime, gDay, gMonth, gYear, gMonthday or
duration) will be used by a specific Data Type.

Data Types are globally unique, across all business domains and across all messages.

A.2 Data Type using representation class <<Quantity>>

A
attr1 : Datatype1Quantity

<<Message>>
Datatype1Quantity

<<Quantity>>
SecurityType

SHS
RTS
WTS

<<Code>>

Properties:

•  Since the representation class Quantity (see metamodel) has an attribute that is
stereotyped as being a <<XMLAttribute>>, any Data Type that is stereotyped by
<<Quantity>> must also specify whether there is a list of possible values attached. In
this case there is (called “SecurityType”) hence the corresponding Schema defines for

                                                
8 Ambiguity occurs when this XML attribute can have more than one value. Then the XML attribute must be
present in the XML instance and it must be declared in its XML Schema.



SWIFTStandards XML for Implementors 
Page 31

Publication date : May 2002 Standards Tools and Repository

Message Element <attr1> an XML attribute named ‘UnitCode’ with a enumerated list
of values a specified in the Class ‘SecurityType’.

•  An enumerated value is constrained within a list of possible values.

•  The values for the enumerated items are taken from the UML initial value given to each
of the UML enumerated attributes.

Suppose this Data Type has an additional constraint (=XML facet) that the maximum
quantity may not exceed 20000 units.

Instance snippet:
<A xmlns=“urn:swift:xsd:$A” xmlns:xsi=“http://www.w3.org/2001/XMLSchema-
instance”>

<attr1 UnitCode=”SHS”>1000</attr1>
</A>

Schema snippet:
<!-- <<message>> A -->
<xs:element name="A" type="A"/>

<!-- class: A -->
<xs:complexType name="A">

<xs:sequence>
<xs:element name="attr1" type="xs:Datatype1Quantity"/>

</xs:sequence>
</xs:complexType>

<xs:complexType name="Datatype1Quantity">
<xs:simpleContent>
<xs:restriction base="xs:decimal">

<xs:maxInclusive value="20000">
<xs:attribute name="UnitCode" type="SecurityType"/>

</xs:restriction>
</xs:simpleContent>

</xs:complexType>

<xs:simpleType name="SecurityType">
<xs:restriction base="xs:string">

<xs:enumeration value="SHS"/>
<xs:enumeration value="RTS"/>
<xs:enumeration value="WTS"/>

</xs:restriction>
</xs:simpleType>



SWIFTStandards XML for Implementors 
Page 32

Publication date : May 2002 Standards Tools and Repository

A.3 Data Type using representation class <<Code>>

A
attr1 : Datatype2bCode

<<Message>>
Datatype2bCode

EnumeratedValue1
EnumeratedValue2
EnumeratedValue3

<<Code>>

Properties:
•  This Data Type is used when the values of the list have a meaningful (i.e.semantic)

value within the context of the message (e.g. the trade types). SWIFTStandards-defined
Data Types using <<Code>> reference an internal list (i.e. a list specified in the
schema). Datatype2bCode is an enumeration of which one of the Enumerated Values
has to be chosen in the instance.

•  An enumerated value is constrained within a list of possible values.
•  The values for the enumerated items are taken from the UML initial value given to each

of the UML enumerated attributes.

UML SWIFTStandards XML instance

Class contains an enumeration of possible
values

SWIFTStandards XML element contains the
chosen value

Instance snippet:
<A xmlns=“urn:swift:xsd:$A” xmlns:xsi=“http://www.w3.org/2001/XMLSchema-
instance”>

<attr2>EnumeratedValue2</attr2>
</A>

Schema snippet:



SWIFTStandards XML for Implementors 
Page 33

Publication date : May 2002 Standards Tools and Repository

<!-- <<message>> A -->
<xs:element name="A" type="A"/>

<!-- class: A -->
<xs:complexType name="A">

<xs:sequence>
<xs:element name="attr2" type="xs:Datatype2bCode"/>

</xs:sequence>
</xs:complexType>

<xs:simpleType name="Datatype2bCode">
<xs:restriction base="xs:string">

<xs:enumeration value="EnumeratedValue1"/>
<xs:enumeration value="EnumeratedValue2"/>
<xs:enumeration value="EnumeratedValue3"/>

</xs:restriction>
</xs:simpleType>



SWIFTStandards XML for Implementors 
Page 34

Publication date : May 2002 Standards Tools and Repository

A.4 Data Type using representation class <<Identifier>>

A
attr1 : Datatype3aIdentifier

<<Message>>
Datatype3aIdentifier

<<Algorithm>> ISINLookUp()

<<Identifier>>

Properties:
•  This Data Type is used when the values of the list have no meaningful (i.e.semantic)

value within the context of the message (e.g. BIC addresses). SWIFTStandards-defined
Data Types using <<Identifier>> have an external list (i.e. not specified in the schema).
The class has no attributes and an operation is added with stereotype <<algorithm>>
that refers to the ‘external’ list (in this case an ISIN database).

Instance snippet:
<A xmlns=“urn:swift:xsd:$A” xmlns:xsi=“http://www.w3.org/2001/XMLSchema-
instance”>

<attr1>AnythingGoesHere</attr1>
</A>

Schema snippet:
<!-- <<message>> A -->
<xs:element name="A" type="A"/>

<!-- class: A -->
<xs:complexType name="A">

<xs:sequence>
<xs:element name="attr1" type="xs:Datatype3aIdentifier"/>

</xs:sequence>
</xs:complexType>

<xs:simpleType name="Datatype3aIdentifier">
<xs:restriction base="xs:string">
</xs:restriction>

</xs:simpleType>



SWIFTStandards XML for Implementors 
Page 35

Publication date : May 2002 Standards Tools and Repository

A.5 Data Type using representation class <<Rate>>

A
attr1 : Datatype8Rate

<<Message>>

Datatype8Rate
<<Rate>>

Instance snippet:
<A xmlns=“urn:swift:xsd:$A” xmlns:xsi=“http://www.w3.org/2001/XMLSchema-
instance”>

<attr1>95.6</attr1>
</A>

Schema snippet:
<!-- <<message>> A -->
<xs:element name="A" type="A"/>

<!-- class: A -->
<xs:complexType name="A">

<xs:sequence>
<xs:element name="attr1" type="xs:Datatype8Rate"/>

</xs:sequence>
</xs:complexType>

<xs:simpleType name="Datatype8Rate">
<xs:restriction base="xs:string">
</xs:restriction>

</xs:simpleType>



SWIFTStandards XML for Implementors 
Page 36

Publication date : May 2002 Standards Tools and Repository

A.6 Data Type using representation class <<Amount>>

A
attr1 : Datatype4Amount

<<Message>>

Datatype4Amount
<<Amount>>

AllCurrencyCodes

<<Algorithm>> ISOCurrencyCodeLookUp()

<<Code>>

NoCurrencyCode
<<Code>>

CLSCurrencyCodes
USD
GBP
EUR
JPY
CHF
CAD
AUD

<<Code>>

Properties:

•  Since the representation class Amount (see metamodel) has an attribute with a type
named CurrencyCode which is stereotyped as being a <<XMLAttribute>>, any Data
Type that is stereotyped by <<Amount>> may also specify the values this attribute can
have.

•  There are two possible cases:
1. The attribute has more than one possible value. Then the corresponding Schema

defines for Message Element <attr1> an XML attribute named ‘CurrencyCode’ with
a list of possible values (here specified in the Classes ‘CLSCurrencyCodes’ or
‘AllCurrencyCodes’ (which is an external list)).

2. The attribute has one or no possible values. Then there is no ambiguity and the Data
Type has no XML attribute.

•  In the below case the datatype4Amount is referring to “AllCurrencyCodes”. However,
since this one is validated externally hence the corresponding Schema doesn’t contain
the list of valid values.

Instance snippet:
<A xmlns=“urn:swift:xsd:$A” xmlns:xsi=“http://www.w3.org/2001/XMLSchema-
instance”>

<attr1 CurrencyCode=”USD”>95.6</attr1>
</A>

Schema snippet:



SWIFTStandards XML for Implementors 
Page 37

Publication date : May 2002 Standards Tools and Repository

<!-- <<message>> A -->
<xs:element name="A" type="A"/>

<!-- class: A -->
<xs:complexType name="A">

<xs:sequence>
<xs:element name="attr1" type="xs:Datatype4Amount"/>

</xs:sequence>
</xs:complexType>

<xs:complexType name="Datatype4Amount">
<xs:simpleContent>
<xs:restriction base="xs:decimal">

<xs:attribute name="CurrencyCode" type="AllCurrencyCodes"/>
</xs:restriction>
</xs:simpleContent>

</xs:complexType>

<xs:simpleType name="AllCurrencyCodes">
<xs:restriction base="xs:string">
</xs:restriction>

</xs:simpleType>



SWIFTStandards XML for Implementors 
Page 38

Publication date : May 2002 Standards Tools and Repository

A.7 Data Type using representation class <<Indicator>>

Datatype5Indicator
<<Indicator>>A

att r1 : Datatype5Indicator

<<Message>>

Properties:

•  A Data Type stereotyped by representation class <<Indicator>> indicates that the
Message Element must have a Boolean value (true or false).

•  None of the attributes in the metamodel for <<Indicator>> appear in an XML instance.

Instance snippet:
<A xmlns=“urn:swift:xsd:$A” xmlns:xsi=“http://www.w3.org/2001/XMLSchema-
instance”>

<attr1>true</attr1>
</A>

Schema snippet:
<!-- <<message>> A -->
<xs:element name="A" type="A"/>

<!-- class: A -->
<xs:complexType name="A">

<xs:sequence>
<xs:element name="attr1" type="xs:Datatype5Indicator"/>

</xs:sequence>
</xs:complexType>

<xs:simpleType name="Datatype5Indicator">
<xs:restriction base="xs:boolean">
</xs:restriction>

</xs:simpleType>



SWIFTStandards XML for Implementors 
Page 39

Publication date : May 2002 Standards Tools and Repository

A.8 Data Type using representation class <<Text>>

Datatype7Text
<<Text>>A

attr1 : Datatype7Text

<<Message>>

Properties:

•  A Data Type stereotyped by representation class <<Text>> indicates that the Message
Element contains textual information.

Instance snippet:
<A xmlns=“urn:swift:xsd:$A” xmlns:xsi=“http://www.w3.org/2001/XMLSchema-
instance”>

<attr1>any narrative text</attr1>
</A>

Schema snippet:
<!-- <<message>> A -->
<xs:element name="A" type="A"/>

<!-- class: A -->
<xs:complexType name="A">

<xs:sequence>
<xs:element name="attr1" type="xs:Datatype7Text"/>

</xs:sequence>
</xs:complexType>

<xs:simpleType name="Datatype7Text">
<xs:restriction base="xs:string">
</xs:restriction>

</xs:simpleType>



SWIFTStandards XML for Implementors 
Page 40

Publication date : May 2002 Standards Tools and Repository

A.9 Data Type using representation class <<dateTime>>

A
attr1 : Datatype6DateTime

<<Message>>

Datatype6DateTime
<<DateTime>>

Properties:

•  Representation class ‘DateTime’ has a meta attribute Format which is stereotyped
<<XMLType>>. This means that any Data Type that is using representation class
<<DateTime>> has to indicate from which XML primitive Data Type it is restricting.

•  Suppose the primitive used for Datatype6DateTime is dateTime and an additional
constraint is added namely that the date should be equal or later than January first,
2002.

Instance snippet:
<A xmlns=“urn:swift:xsd:$A” xmlns:xsi=“http://www.w3.org/2001/XMLSchema-
instance”>

<attr1>2002-11-23</attr1>
</A>

Schema snippet:
<!-- <<message>> A -->
<xs:element name="A" type="A"/>

<!-- class: A -->
<xs:complexType name="A">

<xs:sequence>
<xs:element name="attr1" type="xs:Datatype6DateTime"/>

</xs:sequence>
</xs:complexType>

<xs:simpleType name="Datatype6DateTime">>
<xs:restriction base="xs:dateTime">

<xs:minInclusive value="2002-01-01T00:00:00"/>
</xs:restriction>

</xs:simpleType>



SWIFTStandards XML for Implementors 
Page 41

Publication date : May 2002 Standards Tools and Repository

B XML DTD limitations
XML DTD requires all element declarations (i.e. element names) to be unique within their
namespace. This means that two elements with the same name but a different content
model (i.e. a different structure) are not allowed within DTD.
In XML Schema, all XML elements are local, that is they are unique within their parent
element. All complexTypes are global, that is they are unique within the Financial
Dictionary.
XML Schema does not have that restriction. This means that following Message Definition
patterns are issues in DTD generation, but aren’t in Schema generation:
•  Two Message Component aggregation names are the same and have the same content

model:

This is not an issue for schemas, as those aggregation names will be defined in two
different complexTypes.

•  Two Message Component aggregation names or 2 Message Element names are the
same, and they have a different content model:

This is not an issue for schemas as long as the aggregations or Message Elements
belong to different Message Components.

•  A Message Component aggregation name and a Message Element name are the same:

This is not an issue for schemas as long as the aggregation and Message Element
belong to different Message Components.

•  Two Message Components have the same name:

As the name of the Message Component will be used for naming the associated
complexType in the schema, this is NOT allowed.



SWIFTStandards XML for Implementors 
Page 42

Publication date : May 2002 Standards Tools and Repository

End of document


	Introduction
	Purpose of this document
	Intended audience
	Prerequisites
	Terms and definitions

	Overview of the methodology for SWIFTStandards Message Development
	Message Definition
	Example
	Message Definition artefacts
	Message
	Message Construct
	Message Component
	Choice
	Message Element
	Data Type
	SWIFTStandards-defined Data Types
	Primitive� Data Types


	Traceability from Message Definition artefacts to Business artefacts
	Business Component
	Message Component derived from Business Component

	Business Element
	Message Element derived from a Business Element

	Example


	SWIFTStandards XML Schema and XML Instance
	Introduction
	Mapping rules
	XML element name
	XML simpleType
	XML complexType
	XML complexTypes with simpleContent

	XML Attributes
	xsi:type
	Data Type Representation Attribute

	Summary

	Traceability from XML Schema to its Message Definition Diagram

	UML representation
	SWIFTStandards Financial Dictionary artefacts
	XML schema features used in SWIFTStandards XML
	Namespaces in XML schema and XML instances
	XML facets on simpleTypes
	pattern
	length, minLength, maxLength
	minInclusive, maxInclusive, minExclusive, maxExclusive
	enumeration
	totalDigits, fractionDigits


	Other characteristics
	Run-time Schema versus documentation information
	Granularity of Schemas
	Naming conventions
	Message Components and Business Components
	Name scoping

	Character set
	Schema Versioning
	
	
	
	APPENDIX Data Type Representations
	Data Type Metamodel
	Data Type using representation class <<Quantity>>
	Data Type using representation class <<Code>>
	Data Type using representation class <<Identifier>>
	Data Type using representation class <<Rate>>
	Data Type using representation class <<Amount>>
	Data Type using representation class <<Indicator>>
	Data Type using representation class <<Text>>
	Data Type using representation class <<dateTime>>

	XML DTD limitations





	End of document

