
sstc-saml-core-1.1-cs-01 27 May 2003
Copyright © OASIS Open 2003. All Rights Reserved Page 1 of 53

 1

Assertions and Protocol for the OASIS 2

Security Assertion Markup Language 3

(SAML) V1.1 4

Committee Specification, 27 May 2003 5

Document identifier: 6
sstc-saml-core-1.1-cs-01 7

Location: 8
http://www.oasis-open.org/committees/documents.php?wg_abbrev=security 9

Editors: 10
Eve Maler, Sun Microsystems (eve.maler@sun.com) 11
Prateek Mishra, Netegrity (pmishra@netegrity.com) 12
Rob Philpott, RSA Security (rphilpott@rsasecurity.com) 13

Contributors: 14
Stephen Farrell, Baltimore Technologies 15
Irving Reid, Baltimore Technologies 16
Hal Lockhart, BEA Systems (formerly with Entegrity) 17
David Orchard, BEA Systems 18
Krishna Sankar, Cisco Systems 19
Simon Godik, Crosslogix 20
Carlisle Adams, Entrust Inc. 21
Tim Moses, Entrust Inc. 22
Nigel Edwards, Hewlett-Packard 23
Joe Pato, Hewlett-Packard 24
Marc Chanliau, Netegrity 25
Chris McLaren, Netegrity 26
Charles Knouse, Oblix 27
Scott Cantor, Ohio State University 28
Darren Platt, formerly with RSA Security 29
Jahan Moreh, Sigaba 30
Jeff Hodges, Sun Microsystems 31
Bob Blakley Tivoli 32
Marlena Erdos, Tivoli 33
RL “Bob” Morgan, University of Washington and Internet2 34
Phillip Hallam-Baker, VeriSign (former editor) 35

Abstract: 36
This specification defines the syntax and semantics for XML-encoded assertions about 37
authentication, attributes and authorization, and for the protocol that conveys this information. 38

sstc-saml-core-1.1-cs-01 27 May 2003
Copyright © OASIS Open 2003. All Rights Reserved Page 2 of 53

Status: 39
This document is a Committee Specification of the OASIS Security Services Technical 40
Committee. This document is updated periodically on no particular schedule. Send comments to 41
the editors. 42

Committee members should send comments on this specification to the security-43
services@lists.oasis-open.org list. Others should subscribe to and send comments to the 44
security-services-comment@lists.oasis-open.org list. To subscribe, send an email message to 45
security-services-comment-request@lists.oasis-open.org with the word "subscribe" as the body of 46
the message. 47
For information on whether any patents have been disclosed that may be essential to 48
implementing this specification, and any offers of patent licensing terms, please refer to the 49
Intellectual Property Rights section of the Security Services TC web page (http://www.oasis-50
open.org/committees/security/). 51
For information on errata discovered in this specification, please refer to the most recent errata 52
document which can be found in the document repository at the Security Services TC web page 53
(http://www.oasis-open.org/committees/security/). 54

sstc-saml-core-1.1-cs-01 27 May 2003
Copyright © OASIS Open 2003. All Rights Reserved Page 3 of 53

Table of Contents 55

1 Introduction...6 56
1.1 Notation...6 57
1.2 Schema Organization and Namespaces ..6 58

1.2.1 String and URI Values...7 59
1.2.2 Time Values...7 60
1.2.3 ID and ID Reference Values..7 61
1.2.4 Comparing SAML Values ..7 62

1.3 SAML Concepts (Non-Normative) ..8 63
1.3.1 Overview..8 64
1.3.2 SAML and URI-Based Identifiers ..9 65
1.3.3 SAML and Extensibility..10 66

2 SAML Assertions..11 67
2.1 Schema Header and Namespace Declarations ...11 68
2.2 Simple Types ..11 69

2.2.1 Simple Type DecisionType..12 70
2.3 Assertions ...12 71

2.3.1 Element <AssertionIDReference>...12 72
2.3.2 Element <Assertion> ...12 73

2.3.2.1 Element <Conditions>..14 74
2.3.2.1.1 Attributes NotBefore and NotOnOrAfter ...15 75
2.3.2.1.2 Element <Condition>..15 76
2.3.2.1.3 Elements <AudienceRestrictionCondition> and <Audience> ...15 77
2.3.2.1.4 Element <DoNotCacheCondition> ...16 78

2.3.2.2 Element <Advice>..16 79
2.4 Statements..17 80

2.4.1 Element <Statement>..17 81
2.4.2 Element <SubjectStatement>..17 82

2.4.2.1 Element <Subject>...17 83
2.4.2.2 Element <NameIdentifier> ...18 84
2.4.2.3 Elements <SubjectConfirmation>, <ConfirmationMethod>, and <SubjectConfirmationData>18 85

2.4.3 Element <AuthenticationStatement>...19 86
2.4.3.1 Element <SubjectLocality> ..20 87
2.4.3.2 Element <AuthorityBinding> ..20 88

2.4.4 Element <AttributeStatement> ..21 89
2.4.4.1 Elements <AttributeDesignator> and <Attribute>...21 90

2.4.4.1.1 Element <AttributeValue> ..22 91
2.4.5 Element <AuthorizationDecisionStatement>...22 92

2.4.5.1 Element <Action>...23 93
2.4.5.2 Element <Evidence>..24 94

3 SAML Protocol..25 95
3.1 Schema Header and Namespace Declarations ...25 96
3.2 Requests...26 97

sstc-saml-core-1.1-cs-01 27 May 2003
Copyright © OASIS Open 2003. All Rights Reserved Page 4 of 53

3.2.1 Complex Type RequestAbstractType ...26 98
3.2.1.1 Element <RespondWith> ...26 99

3.2.2 Element <Request>...27 100
3.2.2.1 Requests for Assertions by Reference...28 101
3.2.2.2 Element <AssertionArtifact> ..28 102

3.3 Queries ...28 103
3.3.1 Element <Query> ..28 104
3.3.2 Element <SubjectQuery> ..28 105
3.3.3 Element <AuthenticationQuery> ...29 106
3.3.4 Element <AttributeQuery>...29 107
3.3.5 Element <AuthorizationDecisionQuery> ...30 108

3.4 Responses..31 109
3.4.1 Complex Type ResponseAbstractType...31 110
3.4.2 Element <Response>..32 111
3.4.3 Element <Status>..32 112

3.4.3.1 Element <StatusCode>..33 113
3.4.3.2 Element <StatusMessage>..34 114
3.4.3.3 Element <StatusDetail> ...34 115

3.4.4 Responses to Queries...35 116
4 SAML Versioning..36 117

4.1 SAML Specification Set Version...36 118
4.1.1 Schema Version ..36 119
4.1.2 SAML Assertion Version ...36 120
4.1.3 SAML Protocol Version ...37 121

4.1.3.1 Request Version ..37 122
4.1.4 Response Version ...37 123
4.1.5 Permissible Version Combinations ...37 124

4.2 SAML Namespace Version...38 125
4.2.1 Schema Evolution ...38 126

5 SAML and XML Signature Syntax and Processing..39 127
5.1 Signing Assertions ..39 128
5.2 Request/Response Signing ..40 129
5.3 Signature Inheritance..40 130
5.4 XML Signature Profile...40 131

5.4.1 Signing Formats and Algorithms ...40 132
5.4.2 References ..40 133
5.4.3 Canonicalization Method ...40 134
5.4.4 Transforms ..41 135
5.4.5 KeyInfo ..41 136
5.4.6 Binding Between Statements in a Multi-Statement Assertion...41 137
5.4.7 Interoperability with SAML V1.0 ..41 138
5.4.8 Example...41 139

6 SAML Extensions ...44 140
6.1 Assertion Schema Extension..44 141
6.2 Protocol Schema Extension..44 142

sstc-saml-core-1.1-cs-01 27 May 2003
Copyright © OASIS Open 2003. All Rights Reserved Page 5 of 53

6.3 Use of Type Derivation and Substitution Groups ...45 143
7 SAML-Defined Identifiers ...46 144

7.1 Authentication Method Identifiers ...46 145
7.1.1 Password...46 146
7.1.2 Kerberos..46 147
7.1.3 Secure Remote Password (SRP)..46 148
7.1.4 Hardware Token..47 149
7.1.5 SSL/TLS Certificate Based Client Authentication: ..47 150
7.1.6 X.509 Public Key ...47 151
7.1.7 PGP Public Key...47 152
7.1.8 SPKI Public Key ..47 153
7.1.9 XKMS Public Key ..47 154
7.1.10 XML Digital Signature..47 155
7.1.11 Unspecified..47 156

7.2 Action Namespace Identifiers ...47 157
7.2.1 Read/Write/Execute/Delete/Control ..48 158
7.2.2 Read/Write/Execute/Delete/Control with Negation ...48 159
7.2.3 Get/Head/Put/Post ..48 160
7.2.4 UNIX File Permissions ..48 161

7.3 NameIdentifier Format Identifiers ...49 162
7.3.1 Unspecified..49 163
7.3.2 Email Address ...49 164
7.3.3 X.509 Subject Name ...49 165
7.3.4 Windows Domain Qualified Name...49 166

8 References ...50 167
Appendix A. Acknowledgments ..52 168
Appendix B. Notices..53 169

 170

sstc-saml-core-1.1-cs-01 27 May 2003
Copyright © OASIS Open 2003. All Rights Reserved Page 6 of 53

1 Introduction 171

This specification defines the syntax and semantics for XML-encoded Security Assertion Markup 172
Language (SAML) assertions, protocol requests, and protocol responses. These constructs are typically 173
embedded in other structures for transport, such as HTTP form POSTs and XML-encoded SOAP 174
messages. The SAML specification for bindings and profiles [SAMLBind] provides frameworks for this 175
embedding and transport. Files containing just the SAML assertion schema [SAML-XSD] and protocol 176
schema [SAMLP-XSD] are available. 177

The following sections describe how to understand the rest of this specification. 178

1.1 Notation 179

This specification uses schema documents conforming to W3C XML Schema [Schema1] and normative 180
text to describe the syntax and semantics of XML-encoded SAML assertions and protocol messages. 181
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD 182
NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this specification are to be interpreted as 183
described in IETF RFC 2119 [RFC 2119]: 184

…they MUST only be used where it is actually required for interoperation or to limit behavior 185
which has potential for causing harm (e.g., limiting retransmissions)… 186

These keywords are thus capitalized when used to unambiguously specify requirements over protocol 187
and application features and behavior that affect the interoperability and security of implementations. 188
When these words are not capitalized, they are meant in their natural-language sense. 189

Listings of SAML schemas appear like this. 190
 191

Example code listings appear like this. 192

In cases of disagreement between the SAML schema files [SAML-XSD] [SAMLP-XSD] and this 193
specification, the schema files take precedence. 194
Conventional XML namespace prefixes are used throughout the listings in this specification to stand for 195
their respective namespaces (see Section 1.2) as follows, whether or not a namespace declaration is 196
present in the example: 197

• The prefix saml: stands for the SAML assertion namespace. 198

• The prefix samlp: stands for the SAML request-response protocol namespace. 199

• The prefix ds: stands for the W3C XML Signature namespace [XMLSig-XSD]. 200

• The prefix xsd: stands for the W3C XML Schema namespace [Schema1] in example listings. In 201
schema listings, this is the default namespace and no prefix is shown. 202

This specification uses the following typographical conventions in text: <SAMLElement>, 203
<ns:ForeignElement>, Attribute, Datatype, OtherCode. 204

1.2 Schema Organization and Namespaces 205

The SAML assertion structures are defined in a schema [SAML-XSD] associated with the following XML 206
namespace: 207

urn:oasis:names:tc:SAML:1.0:assertion 208

The SAML request-response protocol structures are defined in a schema [SAMLP-XSD] associated with 209
the following XML namespace: 210

urn:oasis:names:tc:SAML:1.0:protocol 211

sstc-saml-core-1.1-cs-01 27 May 2003
Copyright © OASIS Open 2003. All Rights Reserved Page 7 of 53

The assertion schema is imported into the protocol schema. Also imported into both schemas is the 212
schema for XML Signature [XMLSig-XSD], which is associated with the following XML namespace: 213

http://www.w3.org/2000/09/xmldsig# 214

See Section 4.2 for information on SAML namespace versioning. 215

1.2.1 String and URI Values 216

All SAML string and URI reference values have the types xsd:string and xsd:anyURI respectively, which 217
are built in to the W3C XML Schema Datatypes specification [Schema2]. All strings in SAML messages 218
MUST consist of at least one non-whitespace character (whitespace is defined in the XML 219
Recommendation [XML] §2.3). Empty and whitespace-only values are disallowed. Also, unless otherwise 220
indicated in this specification, all URI reference values MUST consist of at least one non-whitespace 221
character, and are strongly RECOMMENDED to be absolute [RFC 2396]. 222

1.2.2 Time Values 223

All SAML time values have the type xsd:dateTime, which is built in to the W3C XML Schema Datatypes 224
specification [Schema2], and MUST be expressed in UTC form. 225

SAML system entities SHOULD NOT rely on other applications supporting time resolution finer than 226
milliseconds. Implementations MUST NOT generate time instants that specify leap seconds. 227

1.2.3 ID and ID Reference Values 228

The xsd:ID simple type is used to declare SAML identifiers for assertions, requests, and responses. 229
Values declared to be of type xsd:ID in this specification MUST satisfy the following properties: 230

• Any party that assigns an identifier MUST ensure that there is negligible probability that that party or 231
any other party will accidentally assign the same identifier to a different data object. 232

• Where a data object declares that it has a particular identifier, there MUST be exactly one such 233
declaration. 234

The mechanism by which a SAML system entity ensures that the identifier is unique is left to the 235
implementation. In the case that a pseudorandom technique is employed, the probability of two randomly 236
chosen identifiers being identical MUST be less than 2-128 and SHOULD be less than 2-160. This 237
requirement MAY be met by encoding a randomly chosen value between 128 and 160 bits in length. The 238
encoding must conform to the rules defining the xsd:ID datatype. 239
The xsd:NCName simple type is used in SAML to reference identifiers of type xsd:ID. Note that 240
xsd:IDREF can not be used for this purpose since, in SAML, the element referred to by a SAML 241
reference identifier might actually be defined in a document separate from that in which the identifier 242
reference is used. XML [XML] requires that names of type xsd:IDREF must match the value of an ID 243
attribute on some element in the same XML document. 244

1.2.4 Comparing SAML Values 245

Unless otherwise noted, all elements in SAML documents that have the XML Schema xsd:string type, or 246
a type derived from that, MUST be compared using an exact binary comparison. In particular, SAML 247
implementations and deployments MUST NOT depend on case-insensitive string comparisons, 248
normalization or trimming of white space, or conversion of locale-specific formats such as numbers or 249
currency. This requirement is intended to conform to the W3C Requirements for String Identity, Matching, 250
and String Indexing [W3C-CHAR]. 251
If an implementation is comparing values that are represented using different character encodings, the 252
implementation MUST use a comparison method that returns the same result as converting both values 253
to the Unicode character encoding, Normalization Form C [UNICODE-C], and then performing an exact 254
binary comparison. This requirement is intended to conform to the W3C Character Model for the World 255
Wide Web [W3C-CharMod], and in particular the rules for Unicode-normalized Text. 256

sstc-saml-core-1.1-cs-01 27 May 2003
Copyright © OASIS Open 2003. All Rights Reserved Page 8 of 53

Applications that compare data received in SAML documents to data from external sources MUST take 257
into account the normalization rules specified for XML. Text contained within elements is normalized so 258
that line endings are represented using linefeed characters (ASCII code 10Decimal), as described in the 259
XML Recommendation [XML] §2.11. Attribute values defined as strings (or types derived from strings) 260
are normalized as described in [XML] §3.3.3. All white space characters are replaced with blanks (ASCII 261
code 32Decimal). 262
The SAML specification does not define collation or sorting order for attribute or element values. SAML 263
implementations MUST NOT depend on specific sorting orders for values, because these may differ 264
depending on the locale settings of the hosts involved. 265

1.3 SAML Concepts (Non-Normative) 266

This section is informative only and is superseded by any contradicting information in the normative text 267
in Section 2 and following. A glossary of SAML terms and concepts [SAMLGloss] is available. 268

1.3.1 Overview 269

The Security Assertion Markup Language (SAML) is an XML-based framework for exchanging security 270
information. This security information is expressed in the form of assertions about subjects, where a 271
subject is an entity (either human or computer) that has an identity in some security domain. A typical 272
example of a subject is a person, identified by his or her email address in a particular Internet DNS 273
domain. 274

Assertions can convey information about authentication acts that were previously performed by subjects, 275
attributes of subjects, and authorization decisions about whether subjects are allowed to access certain 276
resources. Assertions are represented as XML constructs and have a nested structure, whereby a single 277
assertion might contain several different internal statements about authentication, authorization, and 278
attributes. 279
Assertions are issued by SAML authorities, namely, authentication authorities, attribute authorities, and 280
policy decision points. SAML defines a protocol by which clients can request assertions from SAML 281
authorities and get a response from them. This protocol, consisting of XML-based request and response 282
message formats, can be bound to many different underlying communications and transport protocols; 283
SAML currently defines one binding, to SOAP over HTTP. 284

SAML authorities can use various sources of information, such as external policy stores and assertions 285
that were received as input in requests, in creating their responses. Thus, while clients always consume 286
assertions, SAML authorities can be both producers and consumers of assertions. 287
The following model is conceptual only; for example, it does not account for real-world information flow or 288
the possibility of combining of authorities into a single system. 289

sstc-saml-core-1.1-cs-01 27 May 2003
Copyright © OASIS Open 2003. All Rights Reserved Page 9 of 53

SAML

Credentials
Collector

Authentication
Authority

Attribute
Authority

Policy Decision
Point

Policy

Policy Enforcement
PointSystem Entity

Authentication
Assertion Attribute Assertion Authorization

Decision Assertion

Policy Policy

Application
Request

 290
Figure 1 The SAML Domain Model 291

One major design goal for SAML is Single Sign-On (SSO), the ability of a user to authenticate in one 292
domain and use resources in other domains without re-authenticating. However, SAML can be used in 293
various configurations to support additional scenarios as well. Several profiles of SAML have been 294
defined that support different styles of SSO, as well as the securing of SOAP payloads. 295

The assertion and protocol data formats are defined in this specification. The bindings and profiles are 296
defined in a separate specification [SAMLBind]. A conformance program for SAML is defined in the 297
conformance specification [SAMLConform]. Security issues are discussed in a separate security and 298
privacy considerations specification [SAMLSecure]. 299

1.3.2 SAML and URI-Based Identifiers 300

SAML defines some identifiers to manage references to well-known concepts and sets of values. For 301
example, the SAML-defined identifier for the password authentication method is as follows: 302

urn:oasis:names:tc:SAML:1.0:am:password 303

For another example, the SAML-defined identifier for the set of possible actions on a resource consisting 304
of Read/Write/Execute/Delete/Control is as follows: 305

urn:oasis:names:tc:SAML:1.0:action:rwedc 306

These identifiers are defined as Uniform Resource Identifier (URI) references, but they are not 307
necessarily able to be resolved to some Web resource. At times, SAML authorities need to use identifier 308
strings of their own design, for example to define additional kinds of authentication methods not covered 309
by SAML-defined identifiers. In the case where a form is used that is compatible with interpretation as a 310
URI reference, it is not required to be resolvable to some Web resource. However, using URI references 311
– particularly URLs based on the http: scheme or URNs based on the urn: scheme – is likely to 312
mitigate problems with clashing identifiers to some extent. 313

sstc-saml-core-1.1-cs-01 27 May 2003
Copyright © OASIS Open 2003. All Rights Reserved Page 10 of 53

The Read/Write/Execute/Delete/Control identifier above is an example of a namespace (not in the sense 314
of an XML namespace). SAML uses this namespace mechanism to manage the universe of possible 315
types of actions and possible names of attributes. 316

See Section 7 for a list of SAML-defined identifiers. 317

1.3.3 SAML and Extensibility 318

The XML formats for SAML assertions and protocol messages have been designed to be extensible. 319
Section 6 describes SAML’s design for extensibility in more detail. 320
However, it is possible that the use of extensions will harm interoperability and therefore the use of 321
extensions should be carefully considered. 322

sstc-saml-core-1.1-cs-01 27 May 2003
Copyright © OASIS Open 2003. All Rights Reserved Page 11 of 53

2 SAML Assertions 323

An assertion is a package of information that supplies one or more statements made by a SAML 324
authority. While extensions are permitted, this SAML specification defines three different kinds of 325
assertion statement that can be created by a SAML authority: 326

• Authentication: The specified subject was authenticated by a particular means at a particular time. 327

• Attribute: The specified subject is associated with the supplied attributes. 328

• Authorization Decision: A request to allow the specified subject to access the specified resource 329
has been granted or denied. 330

Assertions have a nested structure. A series of inner elements representing authentication statements, 331
authorization decision statements, and attribute statements contain the specifics, while an outer generic 332
assertion element provides information that is common to all of the statements. 333

2.1 Schema Header and Namespace Declarations 334

The following schema fragment defines the XML namespaces and other header information for the 335
assertion schema: 336

<schema 337
 targetNamespace="urn:oasis:names:tc:SAML:1.0:assertion" 338
 xmlns="http://www.w3.org/2001/XMLSchema" 339
 xmlns:saml="urn:oasis:names:tc:SAML:1.0:assertion" 340
 xmlns:ds="http://www.w3.org/2000/09/xmldsig#" 341
 elementFormDefault="unqualified" 342
 attributeFormDefault="unqualified" 343
 version="1.1"> 344
 <import namespace="http://www.w3.org/2000/09/xmldsig#" 345
 schemaLocation="http://www.w3.org/TR/xmldsig-core/xmldsig-core-346
schema.xsd"/> 347
 <annotation> 348
 <documentation> 349
 Document identifier: sstc-saml-schema-assertion-1.1-draft-02 350
 Location: http://www.oasis-351
open.org/committees/documents.php?wg_abbrev=security 352
 Revision history: 353
 draft-01 (Eve Maler): 354
 Note that V1.1 of this schema has the same namespace 355
 as V1.0. 356
 Minor cosmetic updates. 357
 Changed IDType to restrict from xsd:ID. 358
 Changed IDReferenceType to restrict from xsd:IDREF. 359
 Set version attribute on schema element to 1.1. 360
 draft-02(Prateek Mishra, Rob Philpott): 361
 Added DoNotCacheCondition element and 362
 DoNotCacheConditionType 363
 draft-03 (Scott Cantor) 364
 Rebased ID content directly on XML Schema types 365
 </documentation> 366
 </annotation> 367
… 368
</schema> 369

2.2 Simple Types 370

The following section(s) define the SAML assertion-related simple types. 371

sstc-saml-core-1.1-cs-01 27 May 2003
Copyright © OASIS Open 2003. All Rights Reserved Page 12 of 53

2.2.1 Simple Type DecisionType 372

The DecisionType simple type defines the possible values to be reported as the status of an 373
authorization decision statement. 374
Permit 375

The specified action is permitted. 376
Deny 377

The specified action is denied. 378
Indeterminate 379

The SAML authority cannot determine whether the specified action is permitted or denied. 380

The Indeterminate decision value is used in situations where the SAML authority requires the ability to 381
provide an affirmative statement that it is not able to issue a decision. Additional information as to the 382
reason for the refusal or inability to provide a decision MAY be returned as <StatusDetail> elements. 383

The following schema fragment defines the DecisionType simple type: 384

<simpleType name="DecisionType"> 385
 <restriction base="string"> 386
 <enumeration value="Permit"/> 387
 <enumeration value="Deny"/> 388
 <enumeration value="Indeterminate"/> 389
 </restriction> 390
</simpleType> 391

2.3 Assertions 392

The following sections define the SAML constructs that contain assertion information. 393

2.3.1 Element <AssertionIDReference> 394

The <AssertionIDReference> element makes a reference to a SAML assertion. 395

The following schema fragment defines the <AssertionIDReference> element: 396

<element name="AssertionIDReference" type="NCName"/> 397

2.3.2 Element <Assertion> 398

The <Assertion> element is of AssertionType complex type. This type specifies the basic information 399
that is common to all assertions, including the following elements and attributes: 400

sstc-saml-core-1.1-cs-01 27 May 2003
Copyright © OASIS Open 2003. All Rights Reserved Page 13 of 53

MajorVersion [Required] 401

The major version of this assertion. The identifier for the version of SAML defined in this specification 402
is 1. SAML versioning is discussed in Section 4. 403

MinorVersion [Required] 404

The minor version of this assertion. The identifier for the version of SAML defined in this specification 405
is 1. SAML versioning is discussed in Section 4. 406

AssertionID [Required] 407

The identifier for this assertion. It is of type xsd:ID, and MUST follow the requirements specified in 408
Section 1.2.3 for identifier uniqueness. 409

Issuer [Required] 410

The SAML authority that created the assertion. The name of the issuer is provided as a string. The 411
issuer name SHOULD be unambiguous to the intended relying parties. SAML authorities may use an 412
identifier such as a URI reference that is designed to be unambiguous regardless of context. 413

IssueInstant [Required] 414

The time instant of issue in UTC, as described in Section 1.2.2. 415

<Conditions> [Optional] 416

Conditions that MUST be taken into account in assessing the validity of the assertion. 417

<Advice> [Optional] 418

Additional information related to the assertion that assists processing in certain situations but which 419
MAY be ignored by applications that do not support its use. 420

<ds:Signature> [Optional] 421

An XML Signature that authenticates the assertion, as described in Section 5. 422

One or more of the following statement elements: 423
<Statement> 424

A statement defined in an extension schema. 425
<SubjectStatement> 426

A subject statement defined in an extension schema. 427
<AuthenticationStatement> 428

An authentication statement. 429
<AuthorizationDecisionStatement> 430

An authorization decision statement. 431
<AttributeStatement> 432

An attribute statement. 433

The following schema fragment defines the <Assertion> element and its AssertionType complex type: 434

<element name="Assertion" type="saml:AssertionType"/> 435
<complexType name="AssertionType"> 436
 <sequence> 437
 <element ref="saml:Conditions" minOccurs="0"/> 438
 <element ref="saml:Advice" minOccurs="0"/> 439
 <choice maxOccurs="unbounded"> 440
 <element ref="saml:Statement"/> 441
 <element ref="saml:SubjectStatement"/> 442
 <element ref="saml:AuthenticationStatement"/> 443
 <element ref="saml:AuthorizationDecisionStatement"/> 444
 <element ref="saml:AttributeStatement"/> 445
 </choice> 446
 <element ref="ds:Signature" minOccurs="0"/> 447

sstc-saml-core-1.1-cs-01 27 May 2003
Copyright © OASIS Open 2003. All Rights Reserved Page 14 of 53

 </sequence> 448
 <attribute name="MajorVersion" type="integer" use="required"/> 449
 <attribute name="MinorVersion" type="integer" use="required"/> 450
 <attribute name="AssertionID" type="ID" use="required"/> 451
 <attribute name="Issuer" type="string" use="required"/> 452
 <attribute name="IssueInstant" type="dateTime" use="required"/> 453
</complexType> 454

2.3.2.1 Element <Conditions> 455

The <Conditions> element MAY contain the following elements and attributes: 456

NotBefore [Optional] 457

Specifies the earliest time instant at which the assertion is valid. The time value is encoded in UTC as 458
described in Section 1.2.2. 459

NotOnOrAfter [Optional] 460

Specifies the time instant at which the assertion has expired. The time value is encoded in UTC as 461
described in Section 1.2.2. 462

<Condition> [Any Number] 463

Provides an extension point allowing extension schemas to define new conditions. 464

<AudienceRestrictionCondition> [Any Number] 465

Specifies that the assertion is addressed to a particular audience. 466

<DoNotCacheCondition> [Any Number] 467

 Specifies that the assertion SHOULD be used immediately and MUST NOT be retained for future use. 468

The following schema fragment defines the <Conditions> element and its ConditionsType complex 469
type: 470

<element name="Conditions" type="saml:ConditionsType"/> 471
<complexType name="ConditionsType"> 472
 <choice minOccurs="0" maxOccurs="unbounded"> 473
 <element ref="saml:AudienceRestrictionCondition"/> 474
 <element ref=”saml:DoNotCacheCondition”> 475
 <element ref="saml:Condition"/> 476
 </choice> 477
 <attribute name="NotBefore" type="dateTime" use="optional"/> 478
 <attribute name="NotOnOrAfter" type="dateTime" use="optional"/> 479
</complexType> 480

If an assertion contains a <Conditions> element, the validity of the assertion is dependent on the sub-481
elements and attributes provided. When processing the sub-elements and attributes of a <Conditions> 482
element, the following rules MUST be used in the order shown to determine the overall validity of the 483
assertion: 484

1. If no sub-elements or attributes are supplied in the <Conditions> element, then the assertion is 485
considered to be Valid. 486

2. If any sub-element or attribute of the <Conditions> element is determined to be invalid, then the 487
assertion is Invalid. 488

3. If any sub-element or attribute of the <Conditions> element cannot be evaluated, then the validity 489
of the assertion cannot be determined and is deemed to be Indeterminate. 490

4. If all sub-elements and attributes of the <Conditions> element are determined to be Valid, then the 491
assertion is considered to be Valid. 492

The <Conditions> element MAY be extended to contain additional conditions. If an element contained 493
within a <Conditions> element is encountered that is not understood, the status of the condition cannot 494

sstc-saml-core-1.1-cs-01 27 May 2003
Copyright © OASIS Open 2003. All Rights Reserved Page 15 of 53

be evaluated and the validity status of the assertion MUST be deemed to be Indeterminate in 495
accordance with rule 3 above. 496
Note that an assertion that has validity status Valid may not be trustworthy for reasons such as not being 497
issued by a trustworthy SAML authority or not being authenticated by a trustworthy means. 498

2.3.2.1.1 Attributes NotBefore and NotOnOrAfter 499

The NotBefore and NotOnOrAfter attributes specify time limits on the validity of the assertion. 500

The NotBefore attribute specifies the time instant at which the validity interval begins. The 501
NotOnOrAfter attribute specifies the time instant at which the validity interval has ended. 502

If the value for either NotBefore or NotOnOrAfter is omitted it is considered unspecified. If the 503
NotBefore attribute is unspecified (and if any other conditions that are supplied evaluate to Valid), the 504
assertion is valid at any time before the time instant specified by the NotOnOrAfter attribute. If the 505
NotOnOrAfter attribute is unspecified (and if any other conditions that are supplied evaluate to Valid), 506
the assertion is valid from the time instant specified by the NotBefore attribute with no expiry. If neither 507
attribute is specified (and if any other conditions that are supplied evaluate to Valid), the assertion is valid 508
at any time. 509

The NotBefore and NotOnOrAfter attributes are defined to have the dateTime simple type that is built 510
in to the W3C XML Schema Datatypes specification [Schema2]. All time instants are specified in 511
Universal Coordinated Time (UTC) as described in Section 1.2.2. Implementations MUST NOT generate 512
time instants that specify leap seconds. 513

2.3.2.1.2 Element <Condition> 514

The <Condition> element serves as an extension point for new conditions. Its ConditionAbstractType 515
complex type is abstract and is thus usable only as the base of a derived type. 516

The following schema fragment defines the <Condition> element and its ConditionAbstractType 517
complex type: 518

<element name="Condition" type="saml:ConditionAbstractType"/> 519
<complexType name="ConditionAbstractType" abstract="true"/> 520

2.3.2.1.3 Elements <AudienceRestrictionCondition> and <Audience> 521

The <AudienceRestrictionCondition> element specifies that the assertion is addressed to one or 522
more specific audiences identified by <Audience> elements. Although a SAML relying party that is 523
outside the audiences specified is capable of drawing conclusions from an assertion, the SAML authority 524
explicitly makes no representation as to accuracy or trustworthiness to such a party. It contains the 525
following elements: 526
<Audience> 527

A URI reference that identifies an intended audience. The URI reference MAY identify a document 528
that describes the terms and conditions of audience membership. 529

The audience restriction condition evaluates to Valid if and only if the SAML relying party is a member of 530
one or more of the audiences specified. 531
The SAML authority cannot prevent a party to whom the assertion is disclosed from taking action on the 532
basis of the information provided. However, the <AudienceRestrictionCondition> element allows 533
the SAML authority to state explicitly that no warranty is provided to such a party in a machine- and 534
human-readable form. While there can be no guarantee that a court would uphold such a warranty 535
exclusion in every circumstance, the probability of upholding the warranty exclusion is considerably 536
improved. 537

The following schema fragment defines the <AudienceRestrictionCondition> element and its 538
AudienceRestrictionConditionType complex type: 539

sstc-saml-core-1.1-cs-01 27 May 2003
Copyright © OASIS Open 2003. All Rights Reserved Page 16 of 53

<element name="AudienceRestrictionCondition" 540
 type="saml:AudienceRestrictionConditionType"/> 541
<complexType name="AudienceRestrictionConditionType"> 542
 <complexContent> 543
 <extension base="saml:ConditionAbstractType"> 544
 <sequence> 545
 <element ref="saml:Audience" maxOccurs="unbounded"/> 546
 </sequence> 547
 </extension> 548
 </complexContent> 549
</complexType> 550
<element name="Audience" type="anyURI"/> 551

2.3.2.1.4 Element <DoNotCacheCondition> 552

Indicates that the assertion SHOULD be used immediately by the relying party and MUST NOT be 553
retained for future use. A SAML authority SHOULD NOT include more than one 554
<DoNotCacheCondition> element within a <Conditions> element of an assertion. Note that no 555
Relying Party implementation is required to perform caching. However, any that do so MUST observe this 556
condition. If multiple <DoNotCacheCondition> elements appear within a <Conditions> element, a 557
Relying Party MUST treat the multiple elements as though a single <DoNotCacheCondition> element 558
was specified. For the purposes of determining the validity of the <Conditions> element, the 559
<DoNotCacheCondition> (see Section 2.3.2.1) is considered to always be valid. 560

 561

<element name="DoNotCacheCondition" type="saml:DoNotCacheConditionType" /> 562
<complexType name="DoNotCacheConditionType"> 563
 <complexContent> 564
 <extension base="saml:ConditionAbstractType"/> 565
 </complexContent> 566
</complexType> 567

2.3.2.2 Element <Advice> 568

The <Advice> element contains any additional information that the SAML authority wishes to provide. 569
This information MAY be ignored by applications without affecting either the semantics or the validity of 570
the assertion. 571

The <Advice> element contains a mixture of zero or more <Assertion> elements, 572
<AssertionIDReference> elements, and elements in other namespaces, with lax schema validation 573
in effect for these other elements. 574

Following are some potential uses of the <Advice> element: 575

• Include evidence supporting the assertion claims to be cited, either directly (through incorporating the 576
claims) or indirectly (by reference to the supporting assertions). 577

• State a proof of the assertion claims. 578

• Specify the timing and distribution points for updates to the assertion. 579

The following schema fragment defines the <Advice> element and its AdviceType complex type: 580

<element name="Advice" type="saml:AdviceType"/> 581
<complexType name="AdviceType"> 582
 <choice minOccurs="0" maxOccurs="unbounded"> 583
 <element ref="saml:AssertionIDReference"/> 584
 <element ref="saml:Assertion"/> 585
 <any namespace="##other" processContents="lax"/> 586
 </choice> 587
</complexType> 588

sstc-saml-core-1.1-cs-01 27 May 2003
Copyright © OASIS Open 2003. All Rights Reserved Page 17 of 53

2.4 Statements 589

The following sections define the SAML constructs that contain statement information. 590

2.4.1 Element <Statement> 591

The <Statement> element is an extension point that allows other assertion-based applications to reuse 592
the SAML assertion framework. Its StatementAbstractType complex type is abstract and is thus usable 593
only as the base of a derived type. 594

The following schema fragment defines the <Statement> element and its StatementAbstractType 595
complex type: 596

<element name="Statement" type="saml:StatementAbstractType"/> 597
<complexType name="StatementAbstractType" abstract="true"/> 598

2.4.2 Element <SubjectStatement> 599

The <SubjectStatement> element is an extension point that allows other assertion-based applications 600
to reuse the SAML assertion framework. It contains a <Subject> element that allows a SAML authority 601
to describe a subject. Its SubjectStatementAbstractType complex type, which extends 602
StatementAbstractType, is abstract and is thus usable only as the base of a derived type. 603

The following schema fragment defines the <SubjectStatement> element and its 604
SubjectStatementAbstractType abstract type: 605

<element name="SubjectStatement" type="saml:SubjectStatementAbstractType"/> 606
<complexType name="SubjectStatementAbstractType" abstract="true"> 607
 <complexContent> 608
 <extension base="saml:StatementAbstractType"> 609
 <sequence> 610
 <element ref="saml:Subject"/> 611
 </sequence> 612
 </extension> 613
 </complexContent> 614
</complexType> 615

2.4.2.1 Element <Subject> 616

The <Subject> element specifies the principal that is the subject of the statement. It contains either or 617
both of the following elements: 618
<NameIdentifier> 619

An identification of a subject by its name and security domain. 620
<SubjectConfirmation> 621

Information that allows the subject to be authenticated. 622

If the <Subject> element contains both a <NameIdentifier> and a <SubjectConfirmation>, the 623
SAML authority is asserting that if the SAML relying party performs the specified 624
<SubjectConfirmation>, it can be confident that the entity presenting the assertion to the relying 625
party is the entity that the SAML authority associates with the <NameIdentifier>. A <Subject> 626
element SHOULD NOT identify more than one principal. 627

The following schema fragment defines the <Subject> element and its SubjectType complex type: 628

<element name="Subject" type="saml:SubjectType"/> 629
<complexType name="SubjectType"> 630
 <choice> 631
 <sequence> 632
 <element ref="saml:NameIdentifier"/> 633

sstc-saml-core-1.1-cs-01 27 May 2003
Copyright © OASIS Open 2003. All Rights Reserved Page 18 of 53

 <element ref="saml:SubjectConfirmation" minOccurs="0"/> 634
 </sequence> 635
 <element ref="saml:SubjectConfirmation"/> 636
 </choice> 637
</complexType> 638

2.4.2.2 Element <NameIdentifier> 639

The <NameIdentifier> element specifies a subject by a combination of a name qualifier, a name, 640
and a format. The name is provided as element content. The <NameIdentifier> element has the 641
following attributes: 642

NameQualifier [Optional] 643

The security or administrative domain that qualifies the name of the subject. This attribute provides a 644
means to federate names from disparate user stores without collision. 645

Format [Optional] 646

A URI reference representing the format in which the <NameIdentifier> information is provided. 647
See Section 7.3 for some URI references that MAY be used as the value of the Format attribute. If 648
the Format attribute is not included, the identifier urn:oasis:names:tc:SAML:1.0:nameid-649
format:unspecified (see Section 7.3.1) is in effect. Regardless of format, issues of anonymity, 650
pseudonymity, and the persistence of the identifier with respect to the asserting and relying parties 651
are implementation-specific. 652

The following schema fragment defines the <NameIdentifier> element and its NameIdentifierType 653
complex type: 654

<element name="NameIdentifier" type="saml:NameIdentifierType"/> 655
<complexType name="NameIdentifierType"> 656
 <simpleContent> 657
 <extension base="string"> 658
 <attribute name="NameQualifier" type="string" use="optional"/> 659
 <attribute name="Format" type="anyURI" use="optional"/> 660
 </extension> 661
 </simpleContent> 662
</complexType> 663

When a Format other than those specified in Section 7.3 is used, the NameQualifier attribute and the 664
<NameIdentifier> element’s content are to be interpreted according to the specification of that format 665
as defined outside of this specification. 666

2.4.2.3 Elements <SubjectConfirmation>, <ConfirmationMethod>, and 667
<SubjectConfirmationData> 668

The <SubjectConfirmation> element specifies a subject by supplying data that allows the subject to 669
be authenticated. It contains the following elements in order: 670

sstc-saml-core-1.1-cs-01 27 May 2003
Copyright © OASIS Open 2003. All Rights Reserved Page 19 of 53

<ConfirmationMethod> [One or more] 671

A URI reference that identifies a protocol to be used to authenticate the subject. URI references 672
identifying SAML-defined confirmation methods are currently defined with the SAML profiles in the 673
SAML bindings and profiles specification [SAMLBind]. Additional methods may be added by defining 674
new profiles or by private agreement. 675

<SubjectConfirmationData> [Optional] 676

Additional authentication information to be used by a specific authentication protocol. 677

<ds:KeyInfo> [Optional] 678

An XML Signature [XMLSig] element that provides access to a cryptographic key held by the subject. 679

The following schema fragment defines the <SubjectConfirmation> element and its 680
SubjectConfirmationType complex type, along with the <SubjectConfirmationData> element and 681
the <ConfirmationMethod> element: 682

<element name="SubjectConfirmation" type="saml:SubjectConfirmationType"/> 683
<complexType name="SubjectConfirmationType"> 684
 <sequence> 685
 <element ref="saml:ConfirmationMethod" maxOccurs="unbounded"/> 686
 <element ref="saml:SubjectConfirmationData" minOccurs="0"/> 687
 <element ref="ds:KeyInfo" minOccurs="0"/> 688
 </sequence> 689
</complexType> 690
<element name="SubjectConfirmationData" type="anyType"/> 691
<element name="ConfirmationMethod" type="anyURI"/> 692

2.4.3 Element <AuthenticationStatement> 693

The <AuthenticationStatement> element describes a statement by the SAML authority asserting 694
that the statement’s subject was authenticated by a particular means at a particular time. It is of type 695
AuthenticationStatementType, which extends SubjectStatementAbstractType with the addition of the 696
following elements and attributes: 697

AuthenticationMethod [Required] 698

A URI reference that specifies the type of authentication that took place. URI references identifying 699
common authentication protocols are listed in Section 7.1. 700

AuthenticationInstant [Required] 701

Specifies the time at which the authentication took place. The time value is encoded in UTC as 702
described in Section 1.2.2. 703

<SubjectLocality> [Optional] 704

Specifies the DNS domain name and IP address for the system entity from which the subject was 705
apparently authenticated. 706

<AuthorityBinding> [Any Number] 707

Indicates that additional information about the subject of the statement may be available. 708

The following schema fragment defines the <AuthenticationStatement> element and its 709
AuthenticationStatementType complex type: 710

<element name="AuthenticationStatement" 711
 type="saml:AuthenticationStatementType"/> 712
<complexType name="AuthenticationStatementType"> 713
 <complexContent> 714
 <extension base="saml:SubjectStatementAbstractType"> 715
 <sequence> 716
 <element ref="saml:SubjectLocality" minOccurs="0"/> 717

sstc-saml-core-1.1-cs-01 27 May 2003
Copyright © OASIS Open 2003. All Rights Reserved Page 20 of 53

 <element ref="saml:AuthorityBinding" 718
 minOccurs="0" maxOccurs="unbounded"/> 719
 </sequence> 720
 <attribute name="AuthenticationMethod" type="anyURI" 721
use=”required”/> 722
 <attribute name="AuthenticationInstant" type="dateTime" 723
use=”required”/> 724
 </extension> 725
 </complexContent> 726
</complexType> 727

2.4.3.1 Element <SubjectLocality> 728

The <SubjectLocality> element specifies the DNS domain name and IP address for the system 729
entity that was authenticated. It has the following attributes: 730

IPAddress [Optional] 731

The IP address of the system entity that was authenticated. 732

DNSAddress [Optional] 733

The DNS address of the system entity that was authenticated. 734

This element is entirely advisory, since both these fields are quite easily “spoofed,” but current practice 735
appears to require its inclusion. 736

The following schema fragment defines the <SubjectLocality> element and its SubjectLocalityType 737
complex type: 738

<element name="SubjectLocality" 739
 type="saml: SubjectLocalityType"/> 740
<complexType name="SubjectLocalityType"> 741
 <attribute name="IPAddress" type="string" use="optional"/> 742
 <attribute name="DNSAddress" type="string" use="optional"/> 743
</complexType> 744

2.4.3.2 Element <AuthorityBinding> 745

The <AuthorityBinding> element MAY be used to indicate to a SAML relying party processing an 746
AuthenticationStatement that a SAML authority may be available to provide additional information about 747
the subject of the statement. A single SAML authority may advertise its presence over multiple protocol 748
bindings, at multiple locations, and as more than one kind of authority by sending multiple elements as 749
needed. 750
NOTE: This element is deprecated; use of this element SHOULD be avoided because it is planned to be 751
removed in the next major version of SAML. 752

The <AuthorityBinding> element has the following attributes: 753

AuthorityKind [Required] 754

The type of SAML protocol queries to which the authority described by this element will respond. The 755
value is specified as an XML Schema QName. The AuthorityKind value is either the QName of the 756
desired SAML protocol query element or, in the case of an extension schema, the QName of the 757
SAML QueryAbstractType complex type or some extension type that was derived from it. In the 758
case of an extension schema, the authority will respond to all query elements of the specified type. 759
For example, an attribute authority would be identified by 760
AuthorityKind="samlp:AttributeQuery", where there is a namespace declaration in the 761
scope of this attribute that binds the samlp: prefix to the SAML protocol namespace. 762

Location [Required] 763

A URI reference describing how to locate and communicate with the authority, the exact syntax of 764

sstc-saml-core-1.1-cs-01 27 May 2003
Copyright © OASIS Open 2003. All Rights Reserved Page 21 of 53

which depends on the protocol binding in use. For example, a binding based on HTTP will be a web 765
URL, while a binding based on SMTP might use the mailto: scheme. 766

Binding [Required] 767

A URI reference identifying the SAML protocol binding to use in communicating with the authority. All 768
SAML protocol bindings will have an assigned URI reference. 769

The following schema fragment defines the <AuthorityBinding> element and its 770
AuthorityBindingType complex type: 771

<element name="AuthorityBinding" type="saml:AuthorityBindingType"/> 772
<complexType name="AuthorityBindingType"> 773
 <attribute name="AuthorityKind" type="QName" use="required"/> 774
 <attribute name="Location" type="anyURI" use="required"/> 775
 <attribute name="Binding" type="anyURI" use="required"/> 776
</complexType> 777

2.4.4 Element <AttributeStatement> 778

The <AttributeStatement> element describes a statement by the SAML authority asserting that the 779
statement’s subject is associated with the specified attributes. It is of type AttributeStatementType, 780
which extends SubjectStatementAbstractType with the addition of the following element: 781

<Attribute> [One or More] 782

The <Attribute> element specifies an attribute of the subject. 783

The following schema fragment defines the <AttributeStatement> element and its 784
AttributeStatementType complex type: 785

<element name="AttributeStatement" type="saml:AttributeStatementType"/> 786
<complexType name="AttributeStatementType"> 787
 <complexContent> 788
 <extension base="saml:SubjectStatementAbstractType"> 789
 <sequence> 790
 <element ref="saml:Attribute" maxOccurs="unbounded"/> 791
 </sequence> 792
 </extension> 793
 </complexContent> 794
</complexType> 795

2.4.4.1 Elements <AttributeDesignator> and <Attribute> 796

The <AttributeDesignator> element identifies an attribute name within an attribute namespace. It 797
has the AttributeDesignatorType complex type. It is used in an attribute query to request that attribute 798
values within a specific namespace be returned (see Section 3.3.4 for more information). The 799
<AttributeDesignator> element contains the following XML attributes: 800

AttributeNamespace [Required] 801

The namespace in which the AttributeName elements are interpreted. 802

AttributeName [Required] 803

The name of the attribute. 804

The following schema fragment defines the <AttributeDesignator> element and its 805
AttributeDesignatorType complex type: 806

<element name="AttributeDesignator" type="saml:AttributeDesignatorType"/> 807
<complexType name="AttributeDesignatorType"> 808
 <attribute name="AttributeName" type="string" use="required"/> 809
 <attribute name="AttributeNamespace" type="anyURI" use="required"/> 810
</complexType> 811

sstc-saml-core-1.1-cs-01 27 May 2003
Copyright © OASIS Open 2003. All Rights Reserved Page 22 of 53

The <Attribute> element supplies the value for an attribute of an assertion subject. It has the 812
AttributeType complex type, which extends AttributeDesignatorType with the addition of the following 813
element: 814

<AttributeValue> [Any Number] 815

The value of the attribute. 816

The following schema fragment defines the <Attribute> element and its AttributeType complex type: 817

<element name="Attribute" type="saml:AttributeType"/> 818
<complexType name="AttributeType"> 819
 <complexContent> 820
 <extension base="saml:AttributeDesignatorType"> 821
 <sequence> 822
 <element ref="saml:AttributeValue” 823
maxOccurs="unbounded"/> 824
 </sequence> 825
 </extension> 826
 </complexContent> 827
</complexType> 828

2.4.4.1.1 Element <AttributeValue> 829

The <AttributeValue> element supplies the value of a specified attribute. It is of the anyType simple 830
type, which allows any well-formed XML to appear as the content of the element. 831

If the data content of an AttributeValue element is of an XML Schema simple type (such as xsd:integer 832
or xsd:string), the data type MAY be declared explicitly by means of an xsi:type declaration in the 833
<AttributeValue> element. If the attribute value contains structured data, the necessary data 834
elements MAY be defined in an extension schema. 835

The following schema fragment defines the <AttributeValue> element: 836

<element name="AttributeValue" type="anyType"/> 837

2.4.5 Element <AuthorizationDecisionStatement> 838

The <AuthorizationDecisionStatement> element describes a statement by the SAML authority 839
asserting that a request for access by the statement’s subject to the specified resource has resulted in the 840
specified authorization decision on the basis of some optionally specified evidence. 841

The resource is identified by means of a URI reference. In order for the assertion to be interpreted 842
correctly and securely, the SAML authority and SAML relying party MUST interpret each URI reference in 843
a consistent manner. Failure to achieve a consistent URI reference interpretation can result in different 844
authorization decisions depending on the encoding of the resource URI reference. Rules for normalizing 845
URI references are to be found in IETF RFC 2396 [RFC 2396] §6: 846

In general, the rules for equivalence and definition of a normal form, if any, are scheme 847
dependent. When a scheme uses elements of the common syntax, it will also use the common 848
syntax equivalence rules, namely that the scheme and hostname are case insensitive and a URL 849
with an explicit ":port", where the port is the default for the scheme, is equivalent to one where 850
the port is elided. 851

To avoid ambiguity resulting from variations in URI encoding SAML system entities SHOULD employ the 852
URI normalized form wherever possible as follows: 853

• SAML authorities SHOULD encode all resource URI references in normalized form. 854

• Relying parties SHOULD convert resource URI references to normalized form prior to processing. 855

Inconsistent URI reference interpretation can also result from differences between the URI reference 856
syntax and the semantics of an underlying file system. Particular care is required if URI references are 857

sstc-saml-core-1.1-cs-01 27 May 2003
Copyright © OASIS Open 2003. All Rights Reserved Page 23 of 53

employed to specify an access control policy language. The following security conditions should be 858
satisfied by the system which employs SAML assertions: 859

• Parts of the URI reference syntax are case sensitive. If the underlying file system is case insensitive, 860
a requester SHOULD NOT be able to gain access to a denied resource by changing the case of a 861
part of the resource URI reference. 862

• Many file systems support mechanisms such as logical paths and symbolic links, which allow users to 863
establish logical equivalences between file system entries. A requester SHOULD NOT be able to gain 864
access to a denied resource by creating such an equivalence. 865

The <AuthorizationDecisionStatement> element is of type 866
AuthorizationDecisionStatementType, which extends SubjectStatementAbstractType with the 867
addition of the following elements (in order) and attributes: 868

Resource [Required] 869

A URI reference identifying the resource to which access authorization is sought. It is permitted for 870
this attribute to have the value of the empty URI reference (""), and the meaning is defined to be "the 871
start of the current document", as specified by IETF RFC 2396 [RFC 2396] §4.2. 872

Decision [Required] 873

The decision rendered by the SAML authority with respect to the specified resource. The value is of 874
the DecisionType simple type. 875

<Action> [One or more] 876

The set of actions authorized to be performed on the specified resource. 877

<Evidence> [Optional] 878

A set of assertions that the SAML authority relied on in making the decision. 879

The following schema fragment defines the <AuthorizationDecisionStatement> element and its 880
AuthorizationDecisionStatementType complex type: 881

<element name="AuthorizationDecisionStatement" 882
type="saml:AuthorizationDecisionStatementType"/> 883
<complexType name="AuthorizationDecisionStatementType"> 884
 <complexContent> 885
 <extension base="saml:SubjectStatementAbstractType"> 886
 <sequence> 887
 <element ref="saml:Action" maxOccurs="unbounded"/> 888
 <element ref="saml:Evidence" minOccurs="0"/> 889
 </sequence> 890
 <attribute name="Resource" type="anyURI" use="required"/> 891
 <attribute name="Decision" type="saml:DecisionType" 892
use="required"/> 893
 </extension> 894
 </complexContent> 895
</complexType> 896

2.4.5.1 Element <Action> 897

The <Action> element specifies an action on the specified resource for which permission is sought. It 898
has the following attribute and string-data content: 899

sstc-saml-core-1.1-cs-01 27 May 2003
Copyright © OASIS Open 2003. All Rights Reserved Page 24 of 53

Namespace [Optional] 900

A URI reference representing the namespace in which the name of the specified action is to be 901
interpreted. If this element is absent, the namespace urn:oasis:names:tc:SAML:1.0:action:rwedc-902
negation specified in Section 7.2.2 is in effect. 903

string data [Required] 904

An action sought to be performed on the specified resource. 905

The following schema fragment defines the <Action> element and its ActionType complex type: 906

<element name="Action" type="saml:ActionType"/> 907
<complexType name="ActionType"> 908
 <simpleContent> 909
 <extension base="string"> 910
 <attribute name="Namespace" type="anyURI"/> 911
 </extension> 912
 </simpleContent> 913
</complexType> 914

2.4.5.2 Element <Evidence> 915

The <Evidence> element contains an assertion or assertion reference that the SAML authority relied on 916
in issuing the authorization decision. It has the EvidenceType complex type. It contains one of the 917
following elements: 918
<AssertionIDReference> 919

Specifies an assertion by reference to the value of the assertion’s AssertionID attribute. 920
<Assertion> 921

Specifies an assertion by value. 922

Providing an assertion as evidence MAY affect the reliance agreement between the SAML relying party 923
and the SAML authority making the authorization decision. For example, in the case that the SAML 924
relying party presented an assertion to the SAML authority in a request, the SAML authority MAY use that 925
assertion as evidence in making its authorization decision without endorsing the <Evidence> element’s 926
assertion as valid either to the relying party or any other third party. 927

The following schema fragment defines the <Evidence> element and its EvidenceType complex type: 928

<element name="Evidence" type="saml:EvidenceType"/> 929
<complexType name="EvidenceType"> 930
 <choice maxOccurs="unbounded"> 931
 <element ref="saml:AssertionIDReference"/> 932
 <element ref="saml:Assertion"/> 933
 </choice> 934
</complexType> 935

sstc-saml-core-1.1-cs-01 27 May 2003
Copyright © OASIS Open 2003. All Rights Reserved Page 25 of 53

3 SAML Protocol 936

SAML assertions MAY be generated and exchanged using a variety of protocols. The bindings and 937
profiles specification for SAML [SAMLBind] describes specific means of transporting assertions using 938
existing widely deployed protocols. 939
SAML-aware requesters MAY in addition use the SAML request-response protocol defined by the 940
<Request> and <Response> elements. The requester sends a <Request> element to a SAML 941
responder, and the responder generates a <Response> element, as shown in Figure 2. 942

Process Request

SAMLRequest? SAMLResponse!

 943
Figure 2: SAML Request-Response Protocol 944

3.1 Schema Header and Namespace Declarations 945

The following schema fragment defines the XML namespaces and other header information for the 946
protocol schema: 947

<schema 948
 targetNamespace="urn:oasis:names:tc:SAML:1.0:protocol" 949
 xmlns="http://www.w3.org/2001/XMLSchema" 950
 xmlns:samlp="urn:oasis:names:tc:SAML:1.0:protocol" 951
 xmlns:saml="urn:oasis:names:tc:SAML:1.0:assertion" 952
 xmlns:ds="http://www.w3.org/2000/09/xmldsig#" 953
 elementFormDefault="unqualified" 954
 attributeFormDefault="unqualified" 955
 version="1.1"> 956
 <import namespace="urn:oasis:names:tc:SAML:1.0:assertion" 957
 schemaLocation=" sstc-saml-schema-assertion-1.1-draft-02.xsd"/> 958
 <import namespace="http://www.w3.org/2000/09/xmldsig#" 959
 schemaLocation=" http://www.w3.org/TR/xmldsig-core/xmldsig-core-960
schema.xsd "/> 961
 <annotation> 962
 <documentation> 963
 Document identifier: sstc-saml-schema-protocol-1.1-draft-03 964
 Location: http://www.oasis-965
open.org/committees/document.php?wg_abbrev=security 966
 Revision history: 967
 draft-01 (Eve Maler): 968
 Note that V1.1 of this schema has the same namespace 969
 as V1.0. 970
 Minor cosmetic updates. 971
 Set version attribute on schema element to 1.1. 972
 draft-02 (Eve Maler): 973
 Fix document Identifier. 974
 draft-03 (Prateek Mishra, Rob Philpott): 975
 Added DoNotCacheCondition and Do NotCacheConditionType. 976
 draft-04 (Scott Cantor) 977
 Rebased ID content directly on XML Schema types 978
 </documentation> 979
 </annotation> 980
… 981
</schema> 982

sstc-saml-core-1.1-cs-01 27 May 2003
Copyright © OASIS Open 2003. All Rights Reserved Page 26 of 53

3.2 Requests 983

The following sections define the SAML constructs that contain request information. 984

3.2.1 Complex Type RequestAbstractType 985

All SAML requests are of types that are derived from the abstract RequestAbstractType complex type. 986
This type defines common attributes and elements that are associated with all SAML requests: 987

RequestID [Required] 988

An identifier for the request. It is of type xsd:ID and MUST follow the requirements specified in 989
Section 1.2.3 for identifier uniqueness. The values of the RequestID attribute in a request and the 990
InResponseTo attribute in the corresponding response MUST match. 991

MajorVersion [Required] 992

The major version of this request. The identifier for the version of SAML defined in this specification is 993
1. SAML versioning is discussed in Section 4. 994

MinorVersion [Required] 995

The minor version of this request. The identifier for the version of SAML defined in this specification is 996
1. SAML versioning is discussed in Section 4. 997

IssueInstant [Required] 998

The time instant of issue of the request. The time value is encoded in UTC as described in Section 999
1.2.2. 1000

<RespondWith> [Any Number] 1001

Each <RespondWith> element specifies a type of response that is acceptable to the requester. 1002

<ds:Signature> [Optional] 1003

An XML Signature that authenticates the request, as described in Section 5. 1004

The following schema fragment defines the RequestAbstractType complex type: 1005

<complexType name="RequestAbstractType" abstract="true"> 1006
 <sequence> 1007
 <element ref="samlp:RespondWith" 1008
 minOccurs="0" maxOccurs="unbounded"/> 1009
 <element ref = "ds:Signature" minOccurs="0"/> 1010
 </sequence> 1011
 <attribute name="RequestID" type="ID" use="required"/> 1012
 <attribute name="MajorVersion" type="integer" use="required"/> 1013
 <attribute name="MinorVersion" type="integer" use="required"/> 1014
 <attribute name="IssueInstant" type="dateTime" use="required"/> 1015
</complexType> 1016

3.2.1.1 Element <RespondWith> 1017

The <RespondWith> element specifies the type of statement the SAML relying party wants from the 1018
SAML authority. Multiple <RespondWith> elements MAY be included to indicate that the relying party 1019
will accept assertions containing any of the specified types. If no <RespondWith> element is given, the 1020
SAML authority MAY return assertions containing statements of any type. 1021
NOTE: This element is deprecated; use of this element SHOULD be avoided because it is planned to be 1022
removed in the next major version of SAML. 1023

If the <Request> element contains one or more <RespondWith> elements, the SAML authority MUST 1024
NOT respond with assertions containing statements of any type not specified in one of the 1025
<RespondWith> elements. 1026

sstc-saml-core-1.1-cs-01 27 May 2003
Copyright © OASIS Open 2003. All Rights Reserved Page 27 of 53

Inability to find assertions that meet <RespondWith> criteria should be treated as identical to any other 1027
query for which no assertions are available. In both cases a status of success MUST be returned in the 1028
Response message, but no assertions will be included. 1029

The content of each <RespondWith> element is an XML QName. The <RespondWith> content is 1030
either the QName of the desired SAML statement element name or, in the case of an extension schema, 1031
it is the QName of the SAML StatementAbstractType complex type or some type that was derived from 1032
it. In the case of an extension schema, all statements of the specified type are requested. 1033
For example, a relying party that wishes to receive assertions containing only attribute statements would 1034
specify <RespondWith>saml:AttributeStatement</RespondWith>, where the prefix is bound to 1035
the SAML assertion namespace in a namespace declaration that is in the scope of this element. 1036

The following schema fragment defines the <RespondWith> element: 1037

<element name="RespondWith" type="QName"/> 1038

3.2.2 Element <Request> 1039

The <Request> element specifies a SAML request. It provides either a query or a request for a specific 1040
assertion identified by <AssertionIDReference> or <AssertionArtifact>. It has the complex 1041
type RequestType, which extends RequestAbstractType by adding a choice of one of the following 1042
elements: 1043
<Query> 1044

An extension point that allows extension schemas to define new types of query. 1045
<SubjectQuery> 1046

An extension point that allows extension schemas to define new types of query that specify a single 1047
SAML subject. 1048

<AuthenticationQuery> 1049

Makes a query for authentication information. 1050
<AttributeQuery> 1051

Makes a query for attribute information. 1052
<AuthorizationDecisionQuery> 1053

Makes a query for an authorization decision. 1054

<AssertionIDReference> [One or more] 1055

Requests an assertion by reference to the value of its AssertionID attribute. 1056

<AssertionArtifact> [One or more] 1057

Requests assertions by supplying an assertion artifact that represents it. 1058

The following schema fragment defines the <Request> element and its RequestType complex type: 1059

<element name="Request" type="samlp:RequestType"/> 1060
<complexType name="RequestType"> 1061
 <complexContent> 1062
 <extension base="samlp:RequestAbstractType"> 1063
 <choice> 1064
 <element ref="samlp:Query"/> 1065
 <element ref="samlp:SubjectQuery"/> 1066
 <element ref="samlp:AuthenticationQuery"/> 1067
 <element ref="samlp:AttributeQuery"/> 1068
 <element ref="samlp:AuthorizationDecisionQuery"/> 1069
 <element ref="saml:AssertionIDReference" 1070
maxOccurs="unbounded"/> 1071
 <element ref="samlp:AssertionArtifact" 1072
maxOccurs="unbounded"/> 1073

sstc-saml-core-1.1-cs-01 27 May 2003
Copyright © OASIS Open 2003. All Rights Reserved Page 28 of 53

 </choice> 1074
 </extension> 1075
 </complexContent> 1076
</complexType> 1077

3.2.2.1 Requests for Assertions by Reference 1078

In the context of a <Request> element, the <saml:AssertionIDReference> element is used to 1079
request an assertion by means of its ID. See Section 2.3.1 for more information on this element. 1080

3.2.2.2 Element <AssertionArtifact> 1081

The <AssertionArtifact> element is used to specify the assertion artifact that represents an 1082
assertion being requested. Its use is governed by the specific profile of SAML that is being used; see the 1083
SAML specification for bindings and profiles [SAMLBind] for more information on the use of assertion 1084
artifacts in profiles. 1085

The following schema fragment defines the <AssertionArtifact> element: 1086

<element name="AssertionArtifact" type="string"/> 1087

3.3 Queries 1088

The following sections define the SAML constructs that contain query information. 1089

3.3.1 Element <Query> 1090

The <Query> element is an extension point that allows new SAML queries to be defined. Its 1091
QueryAbstractType is abstract and is thus usable only as the base of a derived type. 1092
QueryAbstractType is the base type from which all SAML query elements are derived. 1093

The following schema fragment defines the <Query> element and its QueryAbstractType complex type: 1094

<element name="Query" type="samlp:QueryAbstractType"/> 1095
<complexType name="QueryAbstractType" abstract="true"/> 1096

3.3.2 Element <SubjectQuery> 1097

The <SubjectQuery> element is an extension point that allows new SAML queries that specify a single 1098
SAML subject. Its SubjectQueryAbstractType complex type is abstract and is thus usable only as the 1099
base of a derived type. SubjectQueryAbstractType adds the <Subject> element. 1100

The following schema fragment defines the <SubjectQuery> element and its 1101
SubjectQueryAbstractType complex type: 1102

<element name="SubjectQuery" type="samlp:SubjectQueryAbstractType"/> 1103
<complexType name="SubjectQueryAbstractType" abstract="true"> 1104
 <complexContent> 1105
 <extension base="samlp:QueryAbstractType"> 1106
 <sequence> 1107
 <element ref="saml:Subject"/> 1108
 </sequence> 1109
 </extension> 1110
 </complexContent> 1111
</complexType> 1112

sstc-saml-core-1.1-cs-01 27 May 2003
Copyright © OASIS Open 2003. All Rights Reserved Page 29 of 53

3.3.3 Element <AuthenticationQuery> 1113

The <AuthenticationQuery> element is used to make the query “What assertions containing 1114
authentication statements are available for this subject?” A successful response will be in the form of 1115
assertions containing authentication statements. 1116

The <AuthenticationQuery> element MUST NOT be used as a request for a new authentication 1117
using credentials provided in the request. <AuthenticationQuery> is a request for statements about 1118
authentication acts that have occurred in a previous interaction between the indicated subject and the 1119
Authentication Authority. 1120
This element is of type AuthenticationQueryType, which extends SubjectQueryAbstractType with the 1121
addition of the following attribute: 1122

AuthenticationMethod [Optional] 1123

If present, specifies a filter for possible responses. Such a query asks the question “What assertions 1124
containing authentication statements do you have for this subject with the supplied authentication 1125
method?” 1126

In response to an authentication query, a SAML authority returns assertions with authentication 1127
statements as follows: 1128

• Rules given in Section 3.4.4 for matching against the <Subject> element of the query identify the 1129
assertions that may be returned. 1130

• If the AuthenticationMethod attribute is present in the query, at least one 1131
<AuthenticationStatement> element in the set of returned assertions MUST contain an 1132
AuthenticationMethod attribute that matches the AuthenticationMethod attribute in 1133
the query. It is OPTIONAL for the complete set of all such matching assertions to be returned in 1134
the response. 1135

• If any <RespondWith> elements are present and none of them contain 1136
“saml:AuthenticationStatement”, then the SAML authority returns no assertions with 1137
authentication statements. (See Section 3.2.1.1 for more information.) 1138

The following schema fragment defines the <AuthenticationQuery> element and its 1139
AuthenticationQueryType complex type: 1140

<element name="AuthenticationQuery" type="samlp:AuthenticationQueryType"/> 1141
<complexType name="AuthenticationQueryType"> 1142
 <complexContent> 1143
 <extension base="samlp:SubjectQueryAbstractType"> 1144
 <attribute name="AuthenticationMethod" type="anyURI"/> 1145
 </extension> 1146
 </complexContent> 1147
</complexType> 1148

3.3.4 Element <AttributeQuery> 1149

The <AttributeQuery> element is used to make the query “Return the requested attributes for this 1150
subject.” A successful response will be in the form of assertions containing attribute statements. This 1151
element is of type AttributeQueryType, which extends SubjectQueryAbstractType with the addition of 1152
the following element and attribute: 1153

Resource [Optional] 1154

If present, specifies that the attribute query is being made in order to evaluate a specific access 1155
request relating to the resource. The SAML authority MAY use the resource attribute to establish the 1156
scope of the request. It is permitted for this attribute to have the value of the empty URI reference (""), 1157
and the meaning is defined to be "the start of the current document", as specified by [RFC 2396] 1158
§4.2. 1159
If the resource attribute is specified and the SAML authority does not wish to support resource-1160

sstc-saml-core-1.1-cs-01 27 May 2003
Copyright © OASIS Open 2003. All Rights Reserved Page 30 of 53

specific attribute queries, or if the resource value provided is invalid or unrecognized, then the 1161
Attribute Authority SHOULD respond with a top-level <StatusCode> value of Responder and a 1162
second-level <StatusCode> value of ResourceNotRecognized. 1163

<AttributeDesignator> [Any Number] (see Section 2.4.4.1) 1164

Each <AttributeDesignator> element specifies an attribute whose value is to be returned. If no 1165
attributes are specified, it indicates that all attributes allowed by policy are requested. 1166

In response to an attribute query, a SAML authority returns assertions with attribute statements as 1167
follows: 1168

• Rules given in Section 3.4.4 for matching against the <Subject> element of the query identify the 1169
assertions that may be returned. 1170

• If any <AttributeDesignator> elements are present in the query, they constrain the attribute 1171
values returned, as noted above. 1172

• The SAML authority MAY take the Resource attribute into account in further constraining the values 1173
returned, as noted above. 1174

• The attribute values returned MAY be constrained by application-specific policy considerations. 1175

• If any <RespondWith> elements are present and none of them contain 1176
“saml:AttributeStatement”, then the SAML authority returns no assertions with attribute 1177
statements. (See Section 3.2.1.1 for more information.) 1178
 1179

The following schema fragment defines the <AttributeQuery> element and its AttributeQueryType 1180
complex type: 1181

<element name="AttributeQuery" type="samlp:AttributeQueryType"/> 1182
<complexType name="AttributeQueryType"> 1183
 <complexContent> 1184
 <extension base="samlp:SubjectQueryAbstractType"> 1185
 <sequence> 1186
 <element ref="saml:AttributeDesignator" 1187
 minOccurs="0" maxOccurs="unbounded"/> 1188
 </sequence> 1189
 <attribute name="Resource" type="anyURI" use="optional"/> 1190
 </extension> 1191
 </complexContent> 1192
</complexType> 1193

3.3.5 Element <AuthorizationDecisionQuery> 1194

The <AuthorizationDecisionQuery> element is used to make the query “Should these actions on 1195
this resource be allowed for this subject, given this evidence?” A successful response will be in the form 1196
of assertions containing authorization decision statements. This element is of type 1197
AuthorizationDecisionQueryType, which extends SubjectQueryAbstractType with the addition of the 1198
following elements and attribute: 1199

Resource [Required] 1200

A URI reference indicating the resource for which authorization is requested. 1201

<Action> [One or More] 1202

The actions for which authorization is requested. 1203

<Evidence> [Optional] 1204

A set of assertions that the SAML authority MAY rely on in making its authorization decision. 1205
In response to an authorization decision query, a SAML authority returns assertions with authorization 1206
decision statements as follows: 1207

sstc-saml-core-1.1-cs-01 27 May 2003
Copyright © OASIS Open 2003. All Rights Reserved Page 31 of 53

• Rules given in Section 3.4.4 for matching against the <Subject> element of the query identify the 1208
assertions that may be returned. 1209

• If any <RespondWith> elements are present and none of them contain 1210
“saml:AuthorizationDecisionStatement”, then the SAML authority returns no assertions with 1211
authorization decision statements. (See Section 3.2.1.1 for more information.) 1212

The following schema fragment defines the <AuthorizationDecisionQuery> element and its 1213
AuthorizationDecisionQueryType complex type: 1214

<element name="AuthorizationDecisionQuery" 1215
type="samlp:AuthorizationDecisionQueryType"/> 1216
<complexType name="AuthorizationDecisionQueryType"> 1217
 <complexContent> 1218
 <extension base="samlp:SubjectQueryAbstractType"> 1219
 <sequence> 1220
 <element ref="saml:Action" maxOccurs="unbounded"/> 1221
 <element ref="saml:Evidence" minOccurs="0"/> 1222
 </sequence> 1223
 <attribute name="Resource" type="anyURI" use="required"/> 1224
 </extension> 1225
 </complexContent> 1226
</complexType> 1227

3.4 Responses 1228

The following sections define the SAML constructs that contain response information. 1229

3.4.1 Complex Type ResponseAbstractType 1230

All SAML responses are of types that are derived from the abstract ResponseAbstractType complex 1231
type. This type defines common attributes and elements that are associated with all SAML responses: 1232

ResponseID [Required] 1233

An identifier for the response. It is of type xsd:ID, and MUST follow the requirements specified in 1234
Section 1.2.3 for identifier uniqueness. 1235

InResponseTo [Optional] 1236

A reference to the identifier of the request to which the response corresponds, if any. If the response 1237
is not generated in response to a request, or if the RequestID attribute value of a request cannot be 1238
determined (because the request is malformed), then this attribute MUST NOT be present. 1239
Otherwise, it MUST be present and its value MUST match the value of the corresponding 1240
RequestID attribute value. 1241

MajorVersion [Required] 1242

The major version of this response. The identifier for the version of SAML defined in this specification 1243
is 1. SAML versioning is discussed in Section 4. 1244

MinorVersion [Required] 1245

The minor version of this response. The identifier for the version of SAML defined in this specification 1246
is 1. SAML versioning is discussed in Section 4. 1247

IssueInstant [Required] 1248

The time instant of issue of the response. The time value is encoded in UTC as described in Section 1249
1.2.2. 1250

Recipient [Optional] 1251

The intended recipient of this response. This is useful to prevent malicious forwarding of responses to 1252
unintended recipients, a protection that is required by some use profiles. It is set by the generator of 1253

sstc-saml-core-1.1-cs-01 27 May 2003
Copyright © OASIS Open 2003. All Rights Reserved Page 32 of 53

the response to a URI reference that identifies the intended recipient. If present, the actual recipient 1254
MUST check that the URI reference identifies the recipient or a resource managed by the recipient. If 1255
it does not, the response MUST be discarded. 1256

<ds:Signature> [Optional] 1257

An XML Signature that authenticates the response, as described in Section 5. 1258

The following schema fragment defines the ResponseAbstractType complex type: 1259

<complexType name="ResponseAbstractType" abstract="true"> 1260
 <sequence> 1261
 <element ref = "ds:Signature" minOccurs="0"/> 1262
 </sequence> 1263
 <attribute name="ResponseID" type="ID" use="required"/> 1264
 <attribute name="InResponseTo" type="NCName" use="optional"/> 1265
 <attribute name="MajorVersion" type="integer" use="required"/> 1266
 <attribute name="MinorVersion" type="integer" use="required"/> 1267
 <attribute name="IssueInstant" type="dateTime" use="required"/> 1268
 <attribute name="Recipient" type="anyURI" use="optional"/> 1269
</complexType> 1270

3.4.2 Element <Response> 1271

The <Response> element specifies the status of the corresponding SAML request and a list of zero or 1272
more assertions that answer the request. It has the complex type ResponseType, which extends 1273
ResponseAbstractType by adding the following elements in order: 1274

<Status> [Required] 1275

A code representing the status of the corresponding request. 1276

<Assertion> [Any Number] 1277

Specifies an assertion by value. (See Section 2.3.2 for more information.) 1278

The following schema fragment defines the <Response> element and its ResponseType complex type: 1279

<element name="Response" type="samlp:ResponseType"/> 1280
<complexType name="ResponseType"> 1281
 <complexContent> 1282
 <extension base="samlp:ResponseAbstractType"> 1283
 <sequence> 1284
 <element ref="samlp:Status"/> 1285
 <element ref="saml:Assertion" minOccurs="0" 1286
maxOccurs="unbounded"/> 1287
 </sequence> 1288
 </extension> 1289
 </complexContent> 1290
</complexType> 1291

3.4.3 Element <Status> 1292

The <Status> element contains the following elements: 1293

<StatusCode> [Required] 1294

A code representing the status of the corresponding request. 1295

<StatusMessage> [Optional] 1296

A message which MAY be returned to an operator. 1297

<StatusDetail> [Optional] 1298

Additional information concerning an error condition. 1299

The following schema fragment defines the <Status> element and its StatusType complex type: 1300

sstc-saml-core-1.1-cs-01 27 May 2003
Copyright © OASIS Open 2003. All Rights Reserved Page 33 of 53

<element name="Status" type="samlp:StatusType"/> 1301
<complexType name="StatusType"> 1302
 <sequence> 1303
 <element ref="samlp:StatusCode"/> 1304
 <element ref="samlp:StatusMessage" minOccurs="0"/> 1305
 <element ref="samlp:StatusDetail" minOccurs="0"/> 1306
 </sequence> 1307
</complexType> 1308

3.4.3.1 Element <StatusCode> 1309

The <StatusCode> element specifies one or more possibly nested, codes representing the status of the 1310
corresponding request. The <StatusCode> element has the following element and attribute: 1311

Value [Required] 1312

The status code value. This attribute contains an XML Schema QName; a namespace prefix MUST 1313
be provided. The value of the topmost <StatusCode> element MUST be from the top-level list 1314
provided in this section. 1315

<StatusCode> [Optional] 1316

A subordinate status code that provides more specific information on an error condition. 1317

The top-level <StatusCode> values are QNames associated with the SAML protocol namespace. The 1318
local parts of these QNames are as follows: 1319
Success 1320

The request succeeded. 1321
VersionMismatch 1322

The SAML responder could not process the request because the version of the request message was 1323
incorrect. 1324

Requester 1325

The request could not be performed due to an error on the part of the requester. 1326
Responder 1327

The request could not be performed due to an error on the part of the SAML responder or SAML 1328
authority. 1329

The following second-level status codes are referenced at various places in the specification. Additional 1330
second-level status codes MAY be defined in future versions of the SAML specification. 1331

sstc-saml-core-1.1-cs-01 27 May 2003
Copyright © OASIS Open 2003. All Rights Reserved Page 34 of 53

RequestVersionTooHigh 1332

The SAML responder cannot process the request because the protocol version specified in the 1333
request message is a major upgrade from the highest protocol version supported by the responder. 1334

RequestVersionTooLow 1335

The SAML responder cannot process the request because the protocol version specified in the 1336
request message is too low. 1337

RequestVersionDeprecated 1338

The SAML responder can not process any requests with the protocol version specified in the request. 1339
TooManyResponses 1340

The response message would contain more elements than the SAML responder will return. 1341
RequestDenied 1342

The SAML responder or SAML authority is able to process the request but has chosen not to 1343
respond. This status code MAY be used when there is concern about the security context of the 1344
request message or the sequence of request messages received from a particular requester. 1345

ResourceNotRecognized 1346

The SAML authority does not wish to support resource-specific attribute queries, or the resource 1347
value provided in the request message is invalid or unrecognized. 1348

SAML system entities are free to define more specific status codes in other namespaces, but MUST NOT 1349
define additional codes in the SAML assertion or protocol namespace. 1350

The QNames defined as status codes SHOULD be used only in the <StatusCode> element's Value 1351
attribute and have the above semantics only in that context. 1352

The following schema fragment defines the <StatusCode> element and its StatusCodeType complex 1353
type: 1354

<element name="StatusCode" type="samlp:StatusCodeType"/> 1355
<complexType name="StatusCodeType"> 1356
 <sequence> 1357
 <element ref="samlp:StatusCode" minOccurs="0"/> 1358
 </sequence> 1359
 <attribute name="Value" type="QName" use="required"/> 1360
</complexType> 1361

3.4.3.2 Element <StatusMessage> 1362

The <StatusMessage> element specifies a message that MAY be returned to an operator: 1363

The following schema fragment defines the <StatusMessage> element and its StatusMessageType 1364
complex type: 1365

<element name="StatusMessage" type="string"/> 1366

3.4.3.3 Element <StatusDetail> 1367

The <StatusDetail> element MAY be used to specify additional information concerning an error 1368
condition. 1369

The following schema fragment defines the <StatusDetail> element and its StatusDetailType 1370
complex type: 1371

<element name="StatusDetail" type="samlp:StatusDetailType"/> 1372
<complexType name="StatusDetailType"> 1373
 <sequence> 1374
 <any namespace="##any" processContents="lax" minOccurs="0" 1375
maxOccurs="unbounded"/> 1376

sstc-saml-core-1.1-cs-01 27 May 2003
Copyright © OASIS Open 2003. All Rights Reserved Page 35 of 53

 </sequence> 1377
</complexType> 1378

3.4.4 Responses to Queries 1379

In response to a query, every assertion returned by a SAML authority MUST contain at least one 1380
statement whose <saml:Subject> element strongly matches the <saml:Subject> element found in 1381
the query. 1382

A <saml:Subject> element S1 strongly matches S2 if and only if the following two conditions both 1383
apply: 1384

• If S2 includes a <saml:NameIdentifier> element, then S1 must include an identical 1385
<saml:NameIdentifier> element. 1386

• If S2 includes a <saml:SubjectConfirmation> element, then S1 must include an identical 1387
<saml:SubjectConfirmation> element. 1388

If the SAML authority cannot provide an assertion with any statements satisfying the constraints 1389
expressed by a query, the <Response> element MUST NOT contain an <Assertion> element and 1390
MUST include a <StatusCode> element with value Success. It MAY return a <StatusMessage> 1391
element with additional information. 1392

sstc-saml-core-1.1-cs-01 27 May 2003
Copyright © OASIS Open 2003. All Rights Reserved Page 36 of 53

4 SAML Versioning 1393

The SAML specification set is versioned in two independent ways. Each is discussed in the following 1394
sections, along with processing rules for detecting and handling version differences, when applicable. 1395
Also included are guidelines on when and why specific version information is expected to change in future 1396
revisions of the specification. 1397
When version information is expressed as both a Major and Minor version, it may be expressed 1398
discretely, or in the form Major.Minor. The version number MajorB.MinorB is higher than the version 1399
number MajorA.MinorA if and only if: 1400

MajorB > MajorA ∨ ((MajorB = MajorA) ∧ MinorB > MinorA) 1401

4.1 SAML Specification Set Version 1402

Each release of the SAML specification set will contain a major and minor version designation describing 1403
its relationship to earlier and later versions of the specification set. The version will be expressed in the 1404
content and filenames of published materials, including the specification set document(s), and XML 1405
schema instance(s). There are no normative processing rules surrounding specification set versioning, 1406
since it merely encompasses the collective release of normative specification documents which 1407
themselves contain processing rules. 1408
The overall size and scope of changes to the specification set document(s) will informally dictate whether 1409
a set of changes constitutes a major or minor revision. In general, if the specification set is backwards 1410
compatible with an earlier specification set (that is, valid older messages, protocols, and semantics 1411
remain valid), then the new version will be a minor revision. Otherwise, the changes will constitute a major 1412
revision. Note that SAML V1.1 has made one backwards-incompatible change to SAML V1.0, described 1413
in Section 5.4.7. 1414

4.1.1 Schema Version 1415

As a non-normative documentation mechanism, any XML schema instances published as part of the 1416
specification set will contain a schema "version" attribute in the form Major.Minor, reflecting the 1417
specification set version in which it has been published. Validating implementations MAY use the attribute 1418
as a means of distinguishing which version of a schema is being used to validate messages, or to support 1419
a multiplicity of versions of the same logical schema. 1420

4.1.2 SAML Assertion Version 1421

The SAML <Assertion> element contains attributes for expressing the major and minor version of the 1422
assertion using a pair of integers. Each version of the SAML specification set will be construed so as to 1423
document the syntax, semantics, and processing rules of the assertions of the same version. That is, 1424
specification set version 1.0 describes assertion version 1.0, and so on. 1425

There is explicitly NO relationship between the assertion version and the SAML assertion XML 1426
namespace that contains the schema definitions for that assertion version. 1427

The following processing rules apply: 1428

• A SAML authority MUST NOT issue any assertion with an assertion version number not supported by 1429
the authority. 1430

• A SAML relying party MUST NOT process any assertion with a major assertion version number not 1431
supported by the relying party. 1432

• A SAML relying party MAY process or MAY reject an assertion whose minor assertion version 1433
number is higher than the minor assertion version number supported by the relying party. However, 1434
all assertions that share a major assertion version number MUST share the same general processing 1435

sstc-saml-core-1.1-cs-01 27 May 2003
Copyright © OASIS Open 2003. All Rights Reserved Page 37 of 53

rules and semantics, and MAY be treated in a uniform way by an implementation. That is, if a V1.1 1436
assertion shares the syntax of a V1.0 assertion, an implementation MAY treat the assertion as a V1.0 1437
assertion without ill effect. 1438

4.1.3 SAML Protocol Version 1439

The SAML protocol <Request> and <Response> elements contain attributes for expressing the major 1440
and minor version of the request or response message using a pair of integers. Each version of the SAML 1441
specification set will be construed so as to document the syntax, semantics, and processing rules of the 1442
protocol messages of the same version. That is, specification set version 1.0 describes request and 1443
response version V1.0, and so on. 1444
There is explicitly NO relationship between the protocol version and the SAML protocol XML namespace 1445
that contains the schema definitions for protocol messages for that protocol version. 1446

The version numbers used in SAML protocol <Request> and <Response> elements will be the same 1447
for any particular revision of the SAML specification set. 1448

4.1.3.1 Request Version 1449

The following processing rules apply to requests: 1450

• A SAML requester SHOULD issue requests with the highest request version supported by both the 1451
SAML requester and the SAML responder. 1452

• If the SAML requester does not know the capabilities of the SAML responder, then it should assume 1453
that it supports requests with the highest request version supported by the requester. 1454

• A SAML requester MUST NOT issue a request message with a request version number matching a 1455
response version number that the requester does not support. 1456

• A SAML responder MUST reject any request with a major request version number not supported by 1457
the responder. 1458

• A SAML responder MAY process or MAY reject any request whose minor request version number is 1459
higher than the highest supported request version that it supports. However, all requests that share a 1460
major request version number MUST share the same general processing rules and semantics, and 1461
MAY be treated in a uniform way by an implementation. That is, if a V1.1 request shares the syntax of 1462
a V1.0 request, a responder MAY treat the request message as a V1.0 request without ill effect. 1463

4.1.4 Response Version 1464

The following processing rules apply to responses: 1465

• A SAML responder MUST NOT issue a response message with a response version number higher 1466
than the request version number of the corresponding request message. 1467

• A SAML responder MUST NOT issue a response message with a major response version number 1468
lower than the major request version number of the corresponding request message except to report 1469
the error RequestVersionTooHigh. 1470

An error response resulting from incompatible SAML protocol versions MUST result in reporting a top-1471
level <StatusCode> value of VersionMismatch, and MAY result in reporting one of the following 1472
second-level values: RequestVersionTooHigh, RequestVersionTooLow, or 1473
RequestVersionDeprecated. 1474

4.1.5 Permissible Version Combinations 1475

In general, assertions of a particular major version may appear in response messages of the same major 1476
version, as permitted by the importation of the SAML assertion namespace into the SAML protocol 1477
schema. Future versions of this specification are expected to explicitly describe the permitted 1478
combinations across major versions. 1479

sstc-saml-core-1.1-cs-01 27 May 2003
Copyright © OASIS Open 2003. All Rights Reserved Page 38 of 53

Specifically, this permits a V1.1 assertion to appear in a V1.0 response message and a V1.0 assertion to 1480
appear in a V1.1 response message. 1481

4.2 SAML Namespace Version 1482

XML schema instances and "qualified names" (QNames) published as part of the specification set contain 1483
one or more target namespaces into which the type, element, and attribute definitions are placed. Each 1484
namespace is distinct from the others, and represents, in shorthand, the structural and syntactical 1485
definitions that make up that part of the specification. 1486
The namespace URIs defined by the specification set will generally contain version information of the 1487
form Major.Minor somewhere in the URI. The major and minor version in the URI MUST correspond to 1488
the major and minor version of the specification set in which the namespace is first introduced and 1489
defined. This information is not typically consumed by an XML processor, which treats the namespace 1490
opaquely, but is intended to communicate the relationship between the specification set and the 1491
namespaces it defines. 1492
As a general rule, implementers can expect the namespaces (and the associated schema definitions) 1493
defined by a major revision of the specification set to remain valid and stable across minor revisions of 1494
the specification. New namespaces may be introduced, and when necessary, old namespaces replaced, 1495
but this is expected to be rare. In such cases, the older namespaces and their associated definitions 1496
should be expected to remain valid until a major specification set revision. 1497

4.2.1 Schema Evolution 1498

In general, maintaining namespace stability while adding or changing the content of a schema are 1499
competing goals. While certain design strategies can facilitate such changes, it is complex to predict how 1500
older implementations will react to any given change, making forward compatibility difficult to achieve. 1501
Nevertheless, the right to make such changes in minor revisions is reserved, in the interest of namespace 1502
stability. Except in special circumstances (for example to correct major deficiencies or fix errors), 1503
implementations should expect forward compatible schema changes in minor revisions, allowing new 1504
messages to validate against older schemas. 1505

Implementations SHOULD expect and be prepared to deal with new extensions and message types in 1506
accordance with the processing rules laid out for those types. Minor revisions MAY introduce new types 1507
that leverage the extension facilities described in Section 6. Older implementations SHOULD reject such 1508
extensions gracefully when they are encountered in contexts that dictate mandatory semantics. Examples 1509
include new query, statement, or condition types. 1510

sstc-saml-core-1.1-cs-01 27 May 2003
Copyright © OASIS Open 2003. All Rights Reserved Page 39 of 53

5 SAML and XML Signature Syntax and Processing 1511

SAML assertions and SAML protocol request and response messages may be signed, with the following 1512
benefits: 1513

• An assertion signed by the SAML authority supports: 1514

– Assertion integrity. 1515

– Authentication of the SAML authority to a SAML relying party. 1516
– If the signature is based on the SAML authority’s public-private key pair, then it also provides for 1517

non-repudiation of origin. 1518

• A SAML protocol request or response message signed by the message originator supports: 1519

– Message integrity. 1520

– Authentication of message origin to a destination. 1521
– If the signature is based on the originator's public-private key pair, then it also provides for non-1522

repudiation of origin. 1523
A digital signature is not always required in SAML. For example, it may not be required in the following 1524
situations: 1525

• In some circumstances signatures may be “inherited," such as when an unsigned assertion gains 1526
protection from a signature on the containing protocol response message. "Inherited" signatures 1527
should be used with care when the contained object (such as the assertion) is intended to have a 1528
non-transitory lifetime. The reason is that the entire context must be retained to allow validation, 1529
exposing the XML content and adding potentially unnecessary overhead. 1530

• The SAML relying party or SAML requester may have obtained an assertion or protocol message 1531
from the SAML authority or SAML responder directly (with no intermediaries) through a secure 1532
channel, with the SAML authority or SAML responder having authenticated to the relying party or 1533
SAML responder by some means other than a digital signature. 1534

Many different techniques are available for "direct" authentication and secure channel establishment 1535
between two parties. The list includes TLS/SSL, HMAC, password-based mechanisms, etc. In addition, 1536
the applicable security requirements depend on the communicating applications and the nature of the 1537
assertion or message transported. 1538
It is recommended that, in all other contexts, digital signatures be used for assertions and request and 1539
response messages. Specifically: 1540

• A SAML assertion obtained by a SAML relying party from an entity other than the SAML authority 1541
SHOULD be signed by the SAML authority. 1542

• A SAML protocol message arriving at a destination from an entity other than the originating site 1543
SHOULD be signed by the origin site. 1544

Profiles may specify alternative signature mechanisms such as S/MIME or signed Java objects that 1545
contain SAML documents. Caveats about retaining context and interoperability apply. XML Signatures 1546
are intended to be the primary SAML signature mechanism, but the specification attempts to ensure 1547
compatibility with profiles that may require other mechanisms. 1548
Unless a profile specifies an alternative signature mechanism, enveloped XML Digital Signatures MUST 1549
be used if signing. 1550

5.1 Signing Assertions 1551

All SAML assertions MAY be signed using the XML Signature. This is reflected in the assertion schema 1552
as described in Section 2.3. 1553

sstc-saml-core-1.1-cs-01 27 May 2003
Copyright © OASIS Open 2003. All Rights Reserved Page 40 of 53

5.2 Request/Response Signing 1554

All SAML protocol request and response messages MAY be signed using the XML Signature. This is 1555
reflected in the schema as described in Sections 3.2 and 3.4. 1556

5.3 Signature Inheritance 1557

A SAML assertion may be embedded within another SAML element, such as an enclosing <Assertion> 1558
or a <Request> or <Response>, which may be signed. When a SAML assertion does not contain a 1559
<ds:Signature> element, but is contained in an enclosing SAML element that contains a 1560
<ds:Signature> element, and the signature applies to the <Assertion> element and all its children, 1561
then the assertion can be considered to inherit the signature from the enclosing element. The resulting 1562
interpretation should be equivalent to the case where the assertion itself was signed with the same key 1563
and signature options. 1564

Many SAML use cases involve SAML XML data enclosed within other protected data structures such as 1565
signed SOAP messages, S/MIME packages, and authenticated SSL connections. SAML profiles may 1566
define additional rules for interpreting SAML elements as inheriting signatures or other authentication 1567
information from the surrounding context, but no such inheritance should be inferred unless specifically 1568
identified by the profile. 1569

5.4 XML Signature Profile 1570

The XML Signature specification [XMLSig] calls out a general XML syntax for signing data with flexibility 1571
and many choices. This section details the constraints on these facilities so that SAML processors do not 1572
have to deal with the full generality of XML Signature processing. This usage makes specific use of the 1573
xsd:ID-typed attributes optionally present on the root elements to which signatures can apply: the 1574
AssertionID attribute on <Assertion>, the RequestID attribute on <Request>, and the 1575
ResponseID attribute on <Response>. These three attributes are collectively referred to in this section 1576
as the identifier attributes. 1577

5.4.1 Signing Formats and Algorithms 1578

XML Signature has three ways of relating a signature to a document: enveloping, enveloped, and 1579
detached. 1580
SAML assertions and protocols MUST use enveloped signatures when signing assertions and protocol 1581
messages. SAML processors SHOULD support the use of RSA signing and verification for public key 1582
operations in accordance with the algorithm identified by http://www.w3.org/2000/09/xmldsig#rsa-sha1. 1583

5.4.2 References 1584

Signed SAML assertions and protocol messages MUST supply a value for the identifier attribute on the 1585
root element (<Assertion>, <Request>, or <Response>). The assertion’s or message's root element 1586
may or may not be the root element of the actual XML document containing the signed assertion or 1587
message. 1588

Signatures MUST contain a single <ds:Reference> containing a URI reference to the identifier attribute 1589
value of the root element of the message being signed. For example, if the attribute value is "foo", then 1590
the URI attribute in the <ds:Reference> element MUST be "#foo". 1591

5.4.3 Canonicalization Method 1592

SAML implementations SHOULD use Exclusive Canonicalization [Excl-C14N], with or without comments, 1593
both in the <ds:CanonicalizationMethod> element of <ds:SignedInfo>, and as a 1594
<ds:Transform> algorithm. Use of Exclusive Canonicalization ensures that signatures created over 1595
SAML messages embedded in an XML context can be verified independent of that context. 1596

sstc-saml-core-1.1-cs-01 27 May 2003
Copyright © OASIS Open 2003. All Rights Reserved Page 41 of 53

5.4.4 Transforms 1597

Signatures in SAML messages SHOULD NOT contain transforms other than the enveloped signature 1598
transform (with the identifier http://www.w3.org/2000/09/xmldsig#enveloped-signature) or the exclusive 1599
canonicalization transforms (with the identifier http://www.w3.org/2001/10/xml-exc-c14n# or 1600
http://www.w3.org/2001/10/xml-exc-c14n#WithComments). 1601
Verifiers of signatures MAY reject signatures that contain other transform algorithms as invalid. If they do 1602
not, verifiers MUST ensure that no content of the SAML message is excluded from the signature. This 1603
can be accomplished by establishing out-of-band agreement as to what transforms are acceptable, or by 1604
applying the transforms manually to the content and reverifying the result as consisting of the same 1605
SAML message. 1606

5.4.5 KeyInfo 1607

XML Signature [XMLSig] defines usage of the <ds:KeyInfo> element. SAML does not require the 1608
use of <ds:KeyInfo> nor does it impose any restrictions on its use. Therefore, <ds:KeyInfo> MAY 1609
be absent. 1610

5.4.6 Binding Between Statements in a Multi-Statement Assertion 1611

Use of signing does not affect semantics of statements within assertions in any way, as stated in Section 1612
2. 1613

5.4.7 Interoperability with SAML V1.0 1614

The use of XML Signature [XMLSig] described above is incompatible with the usage described in the 1615
SAML V1.0 specification [SAMLCore1.0]. The original profile was underspecified and was insufficient to 1616
ensure interoperability. It was constrained by the inability to use URI references to identify the SAML 1617
content to be signed. With this limitation removed by the addition of SAML identifier attributes, a decision 1618
has been made to forgo backwards compatibility with the older specification in this respect. 1619

5.4.8 Example 1620

Following is an example of a signed response containing a signed assertion. Line breaks have been 1621
added for readability; the signatures are not valid and cannot be successfully verified. 1622

<Response 1623
 IssueInstant="2003-04-17T00:46:02Z" 1624
 MajorVersion="1" 1625
 MinorVersion="1" 1626
 Recipient="www.opensaml.org" 1627
 ResponseID="_c7055387-af61-4fce-8b98-e2927324b306" 1628
 xmlns="urn:oasis:names:tc:SAML:1.0:protocol" 1629
 xmlns:samlp="urn:oasis:names:tc:SAML:1.0:protocol" 1630
 xmlns:xsd="http://www.w3.org/2001/XMLSchema" 1631
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"> 1632
<ds:Signature 1633
 xmlns:ds="http://www.w3.org/2000/09/xmldsig#"> 1634
<ds:SignedInfo> 1635
<ds:CanonicalizationMethod 1636
 Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#"/> 1637
<ds:SignatureMethod 1638
 Algorithm="http://www.w3.org/2000/09/xmldsig#rsa-sha1"/> 1639
<ds:Reference 1640
 URI="#_c7055387-af61-4fce-8b98-e2927324b306"> 1641
<ds:Transforms> 1642
<ds:Transform 1643
 Algorithm="http://www.w3.org/2000/09/xmldsig#enveloped-signature"/> 1644
<ds:Transform 1645

sstc-saml-core-1.1-cs-01 27 May 2003
Copyright © OASIS Open 2003. All Rights Reserved Page 42 of 53

 Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#"> 1646
<InclusiveNamespaces 1647
 PrefixList="#default saml samlp ds xsd xsi" 1648
 xmlns="http://www.w3.org/2001/10/xml-exc-c14n#"/> 1649
</ds:Transform> 1650
</ds:Transforms> 1651
<ds:DigestMethod 1652
 Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/> 1653
<ds:DigestValue>TCDVSuG6grhyHbzhQFWFzGrxIPE=</ds:DigestValue> 1654
</ds:Reference> 1655
</ds:SignedInfo> 1656
<ds:SignatureValue> 1657
x/GyPbzmFEe85pGD3c1aXG4Vspb9V9jGCjwcRCKrtwPS6vdVNCcY5rHaFPYWkf+5 1658
EIYcPzx+pX1h43SmwviCqXRjRtMANWbHLhWAptaK1ywS7gFgsD01qjyen3CP+m3D 1659
w6vKhaqledl0BYyrIzb4KkHO4ahNyBVXbJwqv5pUaE4=</ds:SignatureValue> 1660
<ds:KeyInfo> 1661
<ds:X509Data> 1662
<ds:X509Certificate> 1663
MIICyjCCAjOgAwIBAgICAnUwDQYJKoZIhvcNAQEEBQAwgakxCzAJBgNVBAYTAlVT 1664
MRIwEAYDVQQIEwlXaXNjb25zaW4xEDAOBgNVBAcTB01hZGlzb24xIDAeBgNVBAoT 1665
F1VuaXZlcnNpdHkgb2YgV2lzY29uc2luMSswKQYDVQQLEyJEaXZpc2lvbiBvZiBJ 1666
bmZvcm1hdGlvbiBUZWNobm9sb2d5MSUwIwYDVQQDExxIRVBLSSBTZXJ2ZXIgQ0Eg 1667
LS0gMjAwMjA3MDFBMB4XDTAyMDcyNjA3Mjc1MVoXDTA2MDkwNDA3Mjc1MVowgYsx 1668
CzAJBgNVBAYTAlVTMREwDwYDVQQIEwhNaWNoaWdhbjESMBAGA1UEBxMJQW5uIEFy 1669
Ym9yMQ4wDAYDVQQKEwVVQ0FJRDEcMBoGA1UEAxMTc2hpYjEuaW50ZXJuZXQyLmVk 1670
dTEnMCUGCSqGSIb3DQEJARYYcm9vdEBzaGliMS5pbnRlcm5ldDIuZWR1MIGfMA0G 1671
CSqGSIb3DQEBAQUAA4GNADCBiQKBgQDZSAb2sxvhAXnXVIVTx8vuRay+x50z7GJj 1672
IHRYQgIv6IqaGG04eTcyVMhoekE0b45QgvBIaOAPSZBl13R6+KYiE7x4XAWIrCP+ 1673
c2MZVeXeTgV3Yz+USLg2Y1on+Jh4HxwkPFmZBctyXiUr6DxF8rvoP9W7O27rhRjE 1674
pmqOIfGTWQIDAQABox0wGzAMBgNVHRMBAf8EAjAAMAsGA1UdDwQEAwIFoDANBgkq 1675
hkiG9w0BAQQFAAOBgQBfDqEW+OI3jqBQHIBzhujN/PizdN7s/z4D5d3pptWDJf2n 1676
qgi7lFV6MDkhmTvTqBtjmNk3No7v/dnP6Hr7wHxvCCRwubnmIfZ6QZAv2FU78pLX 1677
8I3bsbmRAUg4UP9hH6ABVq4KQKMknxu1xQxLhpR1ylGPdiowMNTrEG8cCx3w/w== 1678
</ds:X509Certificate> 1679
</ds:X509Data> 1680
</ds:KeyInfo> 1681
</ds:Signature> 1682
<Status><StatusCode Value="samlp:Success"/></Status> 1683
<Assertion 1684
 AssertionID="_a75adf55-01d7-40cc-929f-dbd8372ebdfc" 1685
 IssueInstant="2003-04-17T00:46:02Z" 1686
 Issuer="www.opensaml.org" 1687
 MajorVersion="1" 1688
 MinorVersion="1" 1689
 xmlns="urn:oasis:names:tc:SAML:1.0:assertion" 1690
 xmlns:xsd="http://www.w3.org/2001/XMLSchema" 1691
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"> 1692
<Conditions 1693
 NotBefore="2003-04-17T00:46:02Z" 1694
 NotOnOrAfter="2003-04-17T00:51:02Z"> 1695
<AudienceRestrictionCondition><Audience>http://www.opensaml.org</Audience> 1696
</AudienceRestrictionCondition></Conditions> 1697
<AuthenticationStatement 1698
 AuthenticationInstant="2003-04-17T00:46:00Z" 1699
 AuthenticationMethod="urn:oasis:names:tc:SAML:1.0:am:password"> 1700
<Subject> 1701
<NameIdentifier 1702
 Format="urn:oasis:names:tc:SAML:1.1:nameid-format:emailAddress"> 1703
scott@example.org</NameIdentifier> 1704
<SubjectConfirmation> 1705
<ConfirmationMethod>urn:oasis:names:tc:SAML:1.0:cm:bearer</ConfirmationMethod> 1706
</SubjectConfirmation></Subject> 1707
<SubjectLocality 1708

sstc-saml-core-1.1-cs-01 27 May 2003
Copyright © OASIS Open 2003. All Rights Reserved Page 43 of 53

 IPAddress="127.0.0.1"/> 1709
</AuthenticationStatement> 1710
<ds:Signature 1711
 xmlns:ds="http://www.w3.org/2000/09/xmldsig#"> 1712
<ds:SignedInfo> 1713
<ds:CanonicalizationMethod 1714
 Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#"/> 1715
<ds:SignatureMethod 1716
 Algorithm="http://www.w3.org/2000/09/xmldsig#rsa-sha1"/> 1717
<ds:Reference 1718
 URI="#_a75adf55-01d7-40cc-929f-dbd8372ebdfc"> 1719
<ds:Transforms> 1720
<ds:Transform 1721
 Algorithm="http://www.w3.org/2000/09/xmldsig#enveloped-signature"/> 1722
<ds:Transform 1723
 Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#"> 1724
<InclusiveNamespaces 1725
 PrefixList="#default saml samlp ds xsd xsi" 1726
 xmlns="http://www.w3.org/2001/10/xml-exc-c14n#"/> 1727
</ds:Transform> 1728
</ds:Transforms> 1729
<ds:DigestMethod 1730
 Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/> 1731
<ds:DigestValue>Kclet6XcaOgOWXM4gty6/UNdviI=</ds:DigestValue> 1732
</ds:Reference> 1733
</ds:SignedInfo> 1734
<ds:SignatureValue> 1735
hq4zk+ZknjggCQgZm7ea8fI79gJEsRy3E8LHDpYXWQIgZpkJN9CMLG8ENR4Nrw+n 1736
7iyzixBvKXX8P53BTCT4VghPBWhFYSt9tHWu/AtJfOTh6qaAsNdeCyG86jmtp3TD 1737
MWuL/cBUj2OtBZOQMFn7jQ9YB7klIz3RqVL+wNmeWI4=</ds:SignatureValue> 1738
<ds:KeyInfo> 1739
<ds:X509Data> 1740
<ds:X509Certificate> 1741
MIICyjCCAjOgAwIBAgICAnUwDQYJKoZIhvcNAQEEBQAwgakxCzAJBgNVBAYTAlVT 1742
MRIwEAYDVQQIEwlXaXNjb25zaW4xEDAOBgNVBAcTB01hZGlzb24xIDAeBgNVBAoT 1743
F1VuaXZlcnNpdHkgb2YgV2lzY29uc2luMSswKQYDVQQLEyJEaXZpc2lvbiBvZiBJ 1744
bmZvcm1hdGlvbiBUZWNobm9sb2d5MSUwIwYDVQQDExxIRVBLSSBTZXJ2ZXIgQ0Eg 1745
LS0gMjAwMjA3MDFBMB4XDTAyMDcyNjA3Mjc1MVoXDTA2MDkwNDA3Mjc1MVowgYsx 1746
CzAJBgNVBAYTAlVTMREwDwYDVQQIEwhNaWNoaWdhbjESMBAGA1UEBxMJQW5uIEFy 1747
Ym9yMQ4wDAYDVQQKEwVVQ0FJRDEcMBoGA1UEAxMTc2hpYjEuaW50ZXJuZXQyLmVk 1748
dTEnMCUGCSqGSIb3DQEJARYYcm9vdEBzaGliMS5pbnRlcm5ldDIuZWR1MIGfMA0G 1749
CSqGSIb3DQEBAQUAA4GNADCBiQKBgQDZSAb2sxvhAXnXVIVTx8vuRay+x50z7GJj 1750
IHRYQgIv6IqaGG04eTcyVMhoekE0b45QgvBIaOAPSZBl13R6+KYiE7x4XAWIrCP+ 1751
c2MZVeXeTgV3Yz+USLg2Y1on+Jh4HxwkPFmZBctyXiUr6DxF8rvoP9W7O27rhRjE 1752
pmqOIfGTWQIDAQABox0wGzAMBgNVHRMBAf8EAjAAMAsGA1UdDwQEAwIFoDANBgkq 1753
hkiG9w0BAQQFAAOBgQBfDqEW+OI3jqBQHIBzhujN/PizdN7s/z4D5d3pptWDJf2n 1754
qgi7lFV6MDkhmTvTqBtjmNk3No7v/dnP6Hr7wHxvCCRwubnmIfZ6QZAv2FU78pLX 1755
8I3bsbmRAUg4UP9hH6ABVq4KQKMknxu1xQxLhpR1ylGPdiowMNTrEG8cCx3w/w== 1756
</ds:X509Certificate> 1757
</ds:X509Data> 1758
</ds:KeyInfo> 1759
</ds:Signature></Assertion></Response> 1760

sstc-saml-core-1.1-cs-01 27 May 2003
Copyright © OASIS Open 2003. All Rights Reserved Page 44 of 53

6 SAML Extensions 1761

The SAML schemas support extensibility. An example of an application that extends SAML assertions is 1762
the Liberty Protocols and Schema Specification [LibertyProt]. The following sections explain how to use 1763
the extensibility features in SAML to create extension schemas. 1764
Note that elements in the SAML schemas are not blocked from substitution, so that all SAML elements 1765
MAY serve as the head element of a substitution group. Also, types are not defined as final, so that all 1766
SAML types MAY be extended and restricted. The following sections discuss only elements that have 1767
been specifically designed to support extensibility. 1768

6.1 Assertion Schema Extension 1769

The SAML assertion schema is designed to permit separate processing of the assertion package and the 1770
statements it contains, if the extension mechanism is used for either part. 1771
The following elements are intended specifically for use as extension points in an extension schema; their 1772
types are set to abstract, and are thus usable only as the base of a derived type: 1773

• <Condition> 1774

• <Statement> 1775

• <SubjectStatement> 1776

The following elements that are directly usable as part of SAML MAY be extended: 1777

• <AuthenticationStatement> 1778

• <AuthorizationDecisionStatement> 1779

• <AttributeStatement> 1780

• <AudienceRestrictionCondition> 1781

The following elements are defined to allow elements from arbitrary namespaces within them, which 1782
serves as a built-in extension point without requiring an extension schema: 1783

• <AttributeValue> 1784

• <Advice> 1785

6.2 Protocol Schema Extension 1786

The following SAML protocol elements are intended specifically for use as extension points in an 1787
extension schema; their types are set to abstract, and are thus usable only as the base of a derived 1788
type: 1789

• <Query> 1790

• <SubjectQuery> 1791

The following elements that are directly usable as part of SAML MAY be extended: 1792

• <Request> 1793

• <AuthenticationQuery> 1794

• <AuthorizationDecisionQuery> 1795

• <AttributeQuery> 1796

• <Response> 1797

sstc-saml-core-1.1-cs-01 27 May 2003
Copyright © OASIS Open 2003. All Rights Reserved Page 45 of 53

6.3 Use of Type Derivation and Substitution Groups 1798

W3C XML Schema [Schema1] provides two principal mechanisms for specifying an element of an 1799
extended type: type derivation and substitution groups. 1800

For example, a <Statement> element can be assigned the type NewStatementType by means of the 1801
xsi:type attribute. For such an element to be schema-valid, NewStatementType needs to be derived 1802
from StatementType. The following example of a SAML assertion assumes that the extension schema 1803
(represented by the new: prefix) has defined this new type: 1804

<saml:Assertion …> 1805
 <saml:Statement xsi:type="new:NewStatementType"> 1806
 … 1807
 </saml:Statement> 1808
</saml:Assertion> 1809

Alternatively, the extension schema can define a <NewStatement> element that is a member of a 1810
substitution group that has <Statement> as a head element. For the substituted element to be schema-1811
valid, it needs to have a type that matches or is derived from the head element’s type. The following is an 1812
example of an extension schema fragment that defines this new element: 1813

<xsd:element "NewStatement" type="new:NewStatementType" 1814
 substitutionGroup="saml:Statement"/> 1815

The substitution group declaration allows the <NewStatement> element to be used anywhere the SAML 1816
<Statement> element can be used. The following is an example of a SAML assertion that uses the 1817
extension element: 1818

<saml:Assertion …> 1819
 <new:NewStatement> 1820
 … 1821
 </new:NewStatement> 1822
</saml:Assertion> 1823

The choice of extension method has no effect on the semantics of the XML document but does have 1824
implications for interoperability. 1825

The advantages of type derivation are as follows: 1826

• A document can be more fully interpreted by a parser that does not have access to the extension 1827
schema because a “native” SAML element is available. 1828

• At the time of this writing, some W3C XML Schema validators do not support substitution groups, 1829
whereas the xsi:type attribute is widely supported. 1830

The advantage of substitution groups is that a document can be explained without the need to explain the 1831
functioning of the xsi:type attribute. 1832

sstc-saml-core-1.1-cs-01 27 May 2003
Copyright © OASIS Open 2003. All Rights Reserved Page 46 of 53

7 SAML-Defined Identifiers 1833

The following sections define URI-based identifiers for common authentication methods, resource access 1834
actions, and subject name identifier formats. 1835
Where possible an existing URN is used to specify a protocol. In the case of IETF protocols the URN of 1836
the most current RFC that specifies the protocol is used. URI references created specifically for SAML 1837
have one of the following stems: 1838

urn:oasis:names:tc:SAML:1.0: 1839
urn:oasis:names:tc:SAML:1.1: 1840

7.1 Authentication Method Identifiers 1841

The AuthenticationMethod attribute of an <AuthenticationStatement> and the 1842
<SubjectConfirmationMethod> element of a SAML subject perform different functions, although 1843
both can refer to the same underlying mechanisms. An authentication statement with an 1844
AuthenticationMethod attribute describes an authentication act that occurred in the past. The 1845
AuthenticationMethod attribute indicates how that authentication was done. Note that the 1846
authentication statement does not provide the means to perform that authentication, such as a password, 1847
key, or certificate. 1848

In contrast, <SubjectConfirmationMethod> is a part of the <SubjectConfirmation> element, 1849
which is an optional part of a SAML subject. <SubjectConfirmation> is used to allow the SAML 1850
relying party to confirm that the request or message came from a system entity that corresponds to the 1851
subject in the statement or query. The <SubjectConfirmationMethod> element indicates the method 1852
that the relying party can use to do this in the future. This may or may not have any relationship to an 1853
authentication that was performed previously. Unlike the authentication method, the subject confirmation 1854
method may be accompanied by some piece of information, such as a certificate or key, that will allow the 1855
relying party to perform the necessary check. 1856
Subject confirmation methods are defined in the SAML profiles in which they are used; see the SAML 1857
bindings and profiles specification [SAMLBind] for more information. Additional methods may be added 1858
by defining new profiles or by private agreement. 1859

The following identifiers refer to SAML-specified authentication methods. 1860

7.1.1 Password 1861

URI: urn:oasis:names:tc:SAML:1.0:am:password 1862

The authentication was performed by means of a password. 1863

7.1.2 Kerberos 1864

URI: urn:ietf:rfc:1510 1865
The authentication was performed by means of the Kerberos protocol [RFC 1510], an instantiation of the 1866
Needham-Schroeder symmetric key authentication mechanism [Needham78]. 1867

7.1.3 Secure Remote Password (SRP) 1868

URI: urn:ietf:rfc:2945 1869
The authentication was performed by means of Secure Remote Password protocol as specified in [RFC 1870
2945]. 1871

sstc-saml-core-1.1-cs-01 27 May 2003
Copyright © OASIS Open 2003. All Rights Reserved Page 47 of 53

7.1.4 Hardware Token 1872

URI: urn:oasis:names:tc:SAML:1.0:am:HardwareToken 1873

The authentication was performed using some (unspecified) hardware token. 1874

7.1.5 SSL/TLS Certificate Based Client Authentication: 1875

URI: urn:ietf:rfc:2246 1876
The authentication was performed using either the SSL or TLS protocol with certificate-based client 1877
authentication. TLS is described in [RFC 2246]. 1878

7.1.6 X.509 Public Key 1879

URI: urn:oasis:names:tc:SAML:1.0:am:X509-PKI 1880
The authentication was performed by some (unspecified) mechanism on a key authenticated by means of 1881
an X.509 PKI [X.500][PKIX]. It may have been one of the mechanisms for which a more specific identifier 1882
has been defined below. 1883

7.1.7 PGP Public Key 1884

URI: urn:oasis:names:tc:SAML:1.0:am:PGP 1885
The authentication was performed by some (unspecified) mechanism on a key authenticated by means of 1886
a PGP web of trust [PGP]. It may have been one of the mechanisms for which a more specific identifier 1887
has been defined below. 1888

7.1.8 SPKI Public Key 1889

URI: urn:oasis:names:tc:SAML:1.0:am:SPKI 1890
The authentication was performed by some (unspecified) mechanism on a key authenticated by means of 1891
a SPKI PKI [SPKI]. It may have been one of the mechanisms for which a more specific identifier has 1892
been defined below. 1893

7.1.9 XKMS Public Key 1894

URI: urn:oasis:names:tc:SAML:1.0:am:XKMS 1895
The authentication was performed by some (unspecified) mechanism on a key authenticated by means of 1896
a XKMS trust service [XKMS]. It may have been one of the mechanisms for which a more specific 1897
identifier has been defined below. 1898

7.1.10 XML Digital Signature 1899

URI: urn:ietf:rfc:3075 1900
The authentication was performed by means of an XML digital signature [RFC 3075]. 1901

7.1.11 Unspecified 1902

URI: urn:oasis:names:tc:SAML:1.0:am:unspecified 1903

The authentication was performed by an unspecified means. 1904

7.2 Action Namespace Identifiers 1905

The following identifiers MAY be used in the Namespace attribute of the <Action> element (see Section 1906
2.4.5.1) to refer to common sets of actions to perform on resources. 1907

sstc-saml-core-1.1-cs-01 27 May 2003
Copyright © OASIS Open 2003. All Rights Reserved Page 48 of 53

7.2.1 Read/Write/Execute/Delete/Control 1908

URI: urn:oasis:names:tc:SAML:1.0:action:rwedc 1909

Defined actions: 1910
Read Write Execute Delete Control 1911

These actions are interpreted as follows: 1912
Read 1913

The subject may read the resource. 1914
Write 1915

The subject may modify the resource. 1916
Execute 1917

The subject may execute the resource. 1918
Delete 1919

The subject may delete the resource. 1920
Control 1921

The subject may specify the access control policy for the resource. 1922

7.2.2 Read/Write/Execute/Delete/Control with Negation 1923

URI: urn:oasis:names:tc:SAML:1.0:action:rwedc-negation 1924

Defined actions: 1925
Read Write Execute Delete Control ~Read ~Write ~Execute ~Delete ~Control 1926

The actions specified in Section 7.2.1 are interpreted in the same manner described there. Actions 1927
prefixed with a tilde (~) are negated permissions and are used to affirmatively specify that the stated 1928
permission is denied. Thus a subject described as being authorized to perform the action ~Read is 1929
affirmatively denied read permission. 1930

A SAML authority MUST NOT authorize both an action and its negated form. 1931

7.2.3 Get/Head/Put/Post 1932

URI: urn:oasis:names:tc:SAML:1.0:action:ghpp 1933

Defined actions: 1934
GET HEAD PUT POST 1935

These actions bind to the corresponding HTTP operations. For example a subject authorized to perform 1936
the GET action on a resource is authorized to retrieve it. 1937

The GET and HEAD actions loosely correspond to the conventional read permission and the PUT and 1938
POST actions to the write permission. The correspondence is not exact however since an HTTP GET 1939
operation may cause data to be modified and a POST operation may cause modification to a resource 1940
other than the one specified in the request. For this reason a separate Action URI reference specifier is 1941
provided. 1942

7.2.4 UNIX File Permissions 1943

URI: urn:oasis:names:tc:SAML:1.0:action:unix 1944

The defined actions are the set of UNIX file access permissions expressed in the numeric (octal) notation. 1945

The action string is a four-digit numeric code: 1946

extended user group world 1947

Where the extended access permission has the value 1948

sstc-saml-core-1.1-cs-01 27 May 2003
Copyright © OASIS Open 2003. All Rights Reserved Page 49 of 53

+2 if sgid is set 1949

+4 if suid is set 1950

The user group and world access permissions have the value 1951

+1 if execute permission is granted 1952

+2 if write permission is granted 1953

+4 if read permission is granted 1954

For example, 0754 denotes the UNIX file access permission: user read, write and execute; group read 1955
and execute; and world read. 1956

7.3 NameIdentifier Format Identifiers 1957

The following identifiers MAY be used in the Format attribute of the <NameIdentifier> element (see 1958
Section 2.4.2.2) to refer to common formats for the content of the <NameIdentifier> element. The 1959
recommended identifiers shown below SHOULD be used in preference to the deprecated identifiers, 1960
which are planned to be removed in the next major version of the SAML assertion specification. 1961

7.3.1 Unspecified 1962

URI: urn:oasis:names:tc:SAML:1.1:nameid-format:unspecified 1963

The interpretation of the content of the <NameQualifier> element is left to individual implementations. 1964

7.3.2 Email Address 1965

Recommended URI: urn:oasis:names:tc:SAML:1.1:nameid-format:emailAddress 1966

Deprecated URI: urn:oasis:names:tc:SAML:1.0:assertion#emailAddress 1967

Indicates that the content of the <NameIdentifier> element is in the form of an email address, 1968
specifically "addr-spec" as defined in IETF RFC 2822 [RFC 2822] §3.4.1. An addr-spec has the form 1969
local-part@domain. Note that an addr-spec has no phrase (such as a common name) before it, has no 1970
comment (text surrounded in parentheses) after it, and is not surrounded by "<" and ">". 1971

7.3.3 X.509 Subject Name 1972

Recommended URI: urn:oasis:names:tc:SAML:1.1:nameid-format:X509SubjectName 1973

Deprecated URI: urn:oasis:names:tc:SAML:1.0:assertion#X509SubjectName 1974

Indicates that the content of the <NameIdentifier> element is in the form specified for the contents of 1975
the <ds:X509SubjectName> element in the XML Signature Recommendation [XMLSig]. Implementors 1976
should note that the XML Signature specification specifies encoding rules for X.509 subject names that 1977
differ from the rules given in IETF RFC 2253 [RFC 2253]. 1978

7.3.4 Windows Domain Qualified Name 1979

Recommended URI: urn:oasis:names:tc:SAML:1.1:nameid-format:WindowsDomainQualifiedName 1980

Deprecated URI: urn:oasis:names:tc:SAML:1.0:assertion#WindowsDomainQualifiedName 1981

Indicates that the content of the <NameIdentifier> element is a Windows domain qualified name. A 1982
Windows domain qualified user name is a string of the form "DomainName\UserName". The domain 1983
name and "\" separator MAY be omitted. 1984

sstc-saml-core-1.1-cs-01 27 May 2003
Copyright © OASIS Open 2003. All Rights Reserved Page 50 of 53

8 References 1985

[Excl-C14N] J. Boyer et al. Exclusive XML Canonicalization Version 1.0. World Wide Web 1986
Consortium, July 2002. http://www.w3.org/TR/xml-exc-c14n/. 1987

[LibertyProt] J. Beatty et al., Liberty Protocols and Schema Specification Version 1.1, Liberty 1988
Alliance Project, January 2003, 1989
http://www.projectliberty.org/specs/archive/v1_1/liberty-architecture-protocols-1990
schema-v1.1.pdf. 1991

[Needham78] R. Needham et al. Using Encryption for Authentication in Large Networks of 1992
Computers. Communications of the ACM, Vol. 21 (12), pp. 993-999. December 1993
1978. 1994

[PGP] Atkins, D., Stallings, W. and P. Zimmermann..PGP Message Exchange Formats. 1995
IETF RFC 1991, August 1996. http://www.ietf.org/rfc/rfc1991.txt. 1996

[PKIX] R. Housley, W. Ford, W. Polk, D. Solo. Internet X.509 Public Key Infrastructure 1997
Certificate and CRL Profile. IETF RFC 2459, January 1999. 1998
http://www.ietf.org/rfc/rfc2459.txt. 1999

[RFC 1510] J. Kohl, C. Neuman. The Kerberos Network Authentication Requestor (V5). IETF 2000
RFC 1510, September 1993. http://www.ietf.org/rfc/rfc1510.txt. 2001

[RFC 2119] S. Bradner. Key words for use in RFCs to Indicate Requirement Levels. IETF 2002
RFC 2119, March 1997. http://www.ietf.org/rfc/rfc2119.txt. 2003

[RFC 2246] T. Dierks, C. Allen. The TLS Protocol Version 1.0. IETF RFC 2246, January 2004
1999. http://www.ietf.org/rfc/rfc2246.txt. 2005

[RFC 2253] M. Wahl et al. Lightweight Directory Access Protocol (v3): UTF-8 String 2006
Representation of Distinguished Names. IETF RFC 2253, December 1997. 2007
http://www.ietf.org/rfc/rfc2253.txt. 2008

[RFC 2396] T. Berners-Lee et al. Uniform Resource Identifiers (URI): Generic Syntax. IETF 2009
RFC 2396, August, 1998. http://www.ietf.org/rfc/rfc2396.txt. 2010

[RFC 2630] R. Housley. Cryptographic Message Syntax. IETF RFC 2630, June 1999. 2011
http://www.ietf.org/rfc/rfc2630.txt. 2012

[RFC 2822] P. Resnick. Internet Message Format. IETF RFC 2822, April 2001. 2013
http://www.ietf.org/rfc/rfc2822.txt. 2014

[RFC 2945] T. Wu. The SRP Authentication and Key Exchange System. IETF RFC 2945, 2015
September 2000. http://www.ietf.org/rfc/rfc2945.txt. 2016

[RFC 3075] D. Eastlake, J. Reagle, D. Solo. XML-Signature Syntax and Processing. IETF 2017
3075, March 2001. http://www.ietf.org/rfc/rfc3075.txt. 2018

[SAMLBind] E. Maler et al. Bindings and Profiles for the OASIS Security Assertion Markup 2019
Language (SAML). OASIS, May 2003. http://www.oasis-2020
open.org/committees/security/. 2021

[SAMLConform] E. Maler et al. Conformance Program Specification for the OASIS Security 2022
Assertion Markup Language (SAML). OASIS, May 2003. http://www.oasis-2023
open.org/committees/security/. 2024

[SAMLCore1.0] E. Maler et al. Assertions and Protocol for the OASIS Security Assertion Markup 2025
Language (SAML). OASIS, November 2002. http://www.oasis-2026
open.org/committees/download.php/1371/oasis-sstc-saml-core-1.0.pdf. 2027

[SAMLGloss] E. Maler et al. Glossary for the OASIS Security Assertion Markup Language 2028
(SAML). OASIS, May 2003. http://www.oasis-open.org/committees/security/. 2029

[SAMLP-XSD] E. Maler et al. SAML protocol schema. OASIS, May 2003. http://www.oasis-2030
open.org/committees/security/. 2031

sstc-saml-core-1.1-cs-01 27 May 2003
Copyright © OASIS Open 2003. All Rights Reserved Page 51 of 53

[SAMLSecure] E. Maler et al. Security and Privacy Considerations for the OASIS Security 2032
Assertion Markup Language (SAML). OASIS, May 2003. http://www.oasis-2033
open.org/committees/security/. 2034

[SAML-XSD] E. Maler et al. SAML assertion schema. OASIS, May 2003. http://www.oasis-2035
open.org/committees/security/. 2036

[Schema1] H. S. Thompson et al. XML Schema Part 1: Structures. World Wide Web 2037
Consortium Recommendation, May 2001. http://www.w3.org/TR/xmlschema-1/. 2038

[Schema2] P. V. Biron et al. XML Schema Part 2: Datatypes. World Wide Web Consortium 2039
Recommendation, May 2001. http://www.w3.org/TR/xmlschema-2/. 2040

[SPKI] C. Ellison, B. Frantz, B. Lampson, R. Rivest, B. Thomas, T. Ylonen. SPKI 2041
Certificate Theory. IETF RFC 2693, September 1999. 2042
http://www.ietf.org/rfc/rfc2693.txt. 2043

[UNICODE-C] ��������	�M. J. Dürst. Unicode Normalization Forms. UNICODE Consortium, 2044
March 2001. http://www.unicode.org/unicode/reports/tr15/tr15-21.html. 2045

[W3C-CHAR] M. J. Dürst. Requirements for String Identity Matching and String Indexing. World 2046
Wide Web Consortium, July 1998. http://www.w3.org/TR/WD-charreq. 2047

[W3C-CharMod] M. J. Dürst. Character Model for the World Wide Web 1.0.�World Wide Web 2048
Consortium, April, 2002. http://www.w3.org/TR/charmod/. 2049

[X.500] ITU-T Recommendation X.501: Information Technology - Open Systems 2050
Interconnection - The Directory: Models. 1993. 2051

[XKMS] W. Ford, P. Hallam-Baker, B. Fox, B. Dillaway, B. LaMacchia, J. Epstein, J. 2052
Lapp. XML Key Management Specification (XKMS). W3C Note 30 March 2001. 2053
http://www.w3.org/TR/xkms/. 2054

[XML] T. Bray, et al. Extensible Markup Language (XML) 1.0 (Second Edition). World 2055
Wide Web Consortium, October 2000. http://www.w3.org/TR/REC-xml. 2056

[XMLSig] D. Eastlake et al., XML-Signature Syntax and Processing, World Wide Web 2057
Consortium, February 2002. http://www.w3.org/TR/xmldsig-core/. 2058

[XMLSig-XSD] XML Signature Schema. World Wide Web Consortium. 2059
http://www.w3.org/TR/2000/CR-xmldsig-core-20001031/xmldsig-core-2060
schema.xsd. 2061

sstc-saml-core-1.1-cs-01 27 May 2003
Copyright © OASIS Open 2003. All Rights Reserved Page 52 of 53

Appendix A. Acknowledgments 2062

The editors would like to acknowledge the contributions of the OASIS Security Services Technical 2063
Committee, whose voting members at the time of publication were: 2064

• Frank Siebenlist, Argonne National Laboratory 2065

• Irving Reid, Baltimore Technologies 2066

• Hal Lockhart, BEA Systems 2067

• Steven Lewis, Booz Allen Hamilton 2068

• John Hughes, Entegrity Solutions 2069

• Carlisle Adams, Entrust 2070

• Jason Rouault, HP 2071

• Maryann Hondo, IBM 2072

• Anthony Nadalin, IBM 2073

• Scott Cantor, Individual 2074

• Bob Morgan, Individual 2075

• Trevor Perrin, Individual 2076

• Padraig Moloney, NASA 2077

• Prateek Mishra, Netegrity (co-chair) 2078

• Frederick Hirsch, Nokia 2079

• Senthil Sengodan, Nokia 2080

• Timo Skytta, Nokia 2081

• Charles Knouse, Oblix 2082

• Steve Anderson, OpenNetwork 2083

• Simon Godik, OverXeer 2084

• Rob Philpott, RSA Security (co-chair) 2085

• Dipak Chopra, SAP 2086

• Jahan Moreh, Sigaba 2087

• Bhavna Bhatnagar, Sun Microsystems 2088

• Jeff Hodges, Sun Microsystems 2089

• Eve Maler, Sun Microsystems (coordinating editor) 2090

• Emily Xu, Sun Microsystems 2091

• Phillip Hallam-Baker, VeriSign 2092

sstc-saml-core-1.1-cs-01 27 May 2003
Copyright © OASIS Open 2003. All Rights Reserved Page 53 of 53

Appendix B. Notices 2093

OASIS takes no position regarding the validity or scope of any intellectual property or other rights that 2094
might be claimed to pertain to the implementation or use of the technology described in this document or 2095
the extent to which any license under such rights might or might not be available; neither does it 2096
represent that it has made any effort to identify any such rights. Information on OASIS's procedures with 2097
respect to rights in OASIS specifications can be found at the OASIS website. Copies of claims of rights 2098
made available for publication and any assurances of licenses to be made available, or the result of an 2099
attempt made to obtain a general license or permission for the use of such proprietary rights by 2100
implementors or users of this specification, can be obtained from the OASIS Executive Director. 2101

OASIS invites any interested party to bring to its attention any copyrights, patents or patent applications, 2102
or other proprietary rights which may cover technology that may be required to implement this 2103
specification. Please address the information to the OASIS Executive Director. 2104

Copyright © OASIS Open 2003. All Rights Reserved. 2105

This document and translations of it may be copied and furnished to others, and derivative works that 2106
comment on or otherwise explain it or assist in its implementation may be prepared, copied, published 2107
and distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice 2108
and this paragraph are included on all such copies and derivative works. However, this document itself 2109
may not be modified in any way, such as by removing the copyright notice or references to OASIS, 2110
except as needed for the purpose of developing OASIS specifications, in which case the procedures for 2111
copyrights defined in the OASIS Intellectual Property Rights document must be followed, or as required to 2112
translate it into languages other than English. 2113
The limited permissions granted above are perpetual and will not be revoked by OASIS or its successors 2114
or assigns. 2115
This document and the information contained herein is provided on an “AS IS” basis and OASIS 2116
DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY 2117
WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR 2118
ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. 2119

