

Bindings for the OASIS Security
Assertion Markup Language (SAML)
V2.0
Committee Draft 01, 18 August 2004

Document identifier:
sstc-saml-bindings-2.0-cd-01

Location:
http://www.oasis-open.org/committees/documents.php?wg_abbrev=security

Editors:
Scott Cantor, Internet2
Frederick Hirsch, Nokia
John Kemp, Nokia
Rob Philpott, RSA Security
Eve Maler, Sun Microsystems

SAML V2.0 Contributors:
Conor P. Cahill, AOL
Hal Lockhart, BEA Systems
Michael Beach, Boeing
Rick Randall, Booze, Allen, Hamilton
Tim Alsop, Cybersafe
Nick Ragouzis, Enosis
John Hughes, Entegrity Solutions
Paul Madsen, Entrust
Irving Reid, Hewlett-Packard
Paula Austel, IBM
Maryann Hondo, IBM
Michael McIntosh, IBM
Tony Nadalin, IBM
Scott Cantor, Internet2
RL 'Bob' Morgan, Internet2
Rebekah Metz, NASA
Prateek Mishra, Netegrity
Peter C Davis, Neustar
Frederick Hirsch, Nokia
John Kemp, Nokia
Charles Knouse, Oblix
Steve Anderson, OpenNetwork
John Linn, RSA Security
Rob Philpott, RSA Security
Jahan Moreh, Sigaba
Anne Anderson, Sun Microsystems
Jeff Hodges, Sun Microsystems
Eve Maler, Sun Microsystems

sstc-saml-bindings-2.0-cd-01 18 August 2004
Copyright © OASIS Open 2004. All Rights Reserved. Page 1 of 42

1

2

3

4

5

6
7

8
9

10
11
12
13
14
15

16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44

Ron Monzillo, Sun Microsystems
Greg Whitehead, Trustgenix

Abstract:
This specification defines protocol bindings for the use of SAML assertions and request-response
messages in communications protocols and frameworks.

Status:
This is a Committee Draft approved by the Security Services Technical Committee on 17 August
2004.
Committee members should submit comments and potential errata to the security-
services@lists.oasis-open.org list. Others should submit them by filling out the web form located
at http://www.oasis-open.org/committees/comments/form.php?wg_abbrev=security. The
committee will publish on its web page (http://www.oasis-open.org/committees/security) a catalog
of any changes made to this document as a result of comments.
For information on whether any patents have been disclosed that may be essential to
implementing this specification, and any offers of patent licensing terms, please refer to the
Intellectual Property Rights web page for the Security Services TC (http://www.oasis-
open.org/committees/security/ipr.php).

sstc-saml-bindings-2.0-cd-01 18 August 2004
Copyright © OASIS Open 2004. All Rights Reserved. Page 2 of 42

45
46

47
48
49

50
51
52

53
54
55
56
57

58
59
60
61

Table of Contents
1 Introduction..5

1.1 Protocol Binding Concepts...5
1.2 Notation..5

2 Guidelines for Specifying Additional Protocol Bindings...7
3 Protocol Bindings...8

3.1 General Considerations...8
3.1.1 Use of RelayState...8
3.1.2 Security...8

3.1.2.1 Use of SSL 3.0 or TLS 1.0..8
3.1.2.2 Data Origin Authentication..8
3.1.2.3 Message Integrity..9
3.1.2.4 Message Confidentiality..9
3.1.2.5 Security Considerations..9

3.2 SAML SOAP Binding...9
3.2.1 Required Information..10
3.2.2 Protocol-Independent Aspects of the SAML SOAP Binding.. 10

3.2.2.1 Basic Operation...10
3.2.2.2 SOAP Headers..10

3.2.3 Use of SOAP over HTTP...11
3.2.3.1 HTTP Headers..11
3.2.3.2 Caching...11
3.2.3.3 Error Reporting..12
3.2.3.4 Metadata Considerations..12
3.2.3.5 Example SAML Message Exchange Using SOAP over HTTP...12

3.3 Reverse SOAP (PAOS) Binding..13
3.3.1 Required Information..13
3.3.2 Overview...13
3.3.3 Message Exchange..13

3.3.3.1 HTTP Request, SAML Request in SOAP Response..15
3.3.3.2 SAML Response in SOAP Request, HTTP Response...15

3.3.4 Caching...15
3.3.5 Security Considerations..15

3.3.5.1 Error Reporting..15
3.3.5.2 Metadata Considerations..15

3.4 HTTP Redirect Binding..16
3.4.1 Required Information..16
3.4.2 Overview...16
3.4.3 RelayState..16
3.4.4 Message Encoding...16

3.4.4.1 DEFLATE Encoding..17
3.4.5 Message Exchange..18

3.4.5.1 HTTP and Caching Considerations...19
3.4.5.2 Security Considerations..19

3.4.6 Error Reporting...19
3.4.7 Metadata Considerations..19
3.4.8 Example SAML Message Exchange Using HTTP Redirect...20

sstc-saml-bindings-2.0-cd-01 18 August 2004
Copyright © OASIS Open 2004. All Rights Reserved. Page 3 of 42

62

63

64

65

66

67

68

69
70
71
72
73
74
75

76

77
78
79
80
81
82
83
84
85
86

87

88
89
90
91
92
93
94
95
96

97

98
99

100
101
102
103
104
105
106
107
108

3.5 HTTP POST Binding..21
3.5.1 Required Information..21
3.5.2 Overview...21
3.5.3 RelayState..21
3.5.4 Message Encoding...22
3.5.5 Message Exchange..22

3.5.5.1 HTTP and Caching Considerations...23
3.5.5.2 Security Considerations..24

3.5.6 Error Reporting...24
3.5.7 Metadata Considerations..24
3.5.8 Example SAML Message Exchange Using HTTP POST.. 24

3.6 HTTP Artifact Binding..26
3.6.1 Required Information..26
3.6.2 Overview...27
3.6.3 Message Encoding...27

3.6.3.1 RelayState...27
3.6.3.2 URL Encoding...27
3.6.3.3 Form Encoding..27

3.6.4 Artifact Format..28
3.6.4.1 Required Information...28
3.6.4.2 Format Details...28

3.6.5 Message Exchange..29
3.6.5.1 HTTP and Caching Considerations...31
3.6.5.2 Security Considerations..31

3.6.6 Error Reporting...32
3.6.7 Metadata Considerations..32
3.6.8 Example SAML Message Exchange Using HTTP Artifact...32

3.7 SAML URI Binding...35
3.7.1 Required Information..35
3.7.2 Protocol-Independent Aspects of the SAML URI Binding..35

3.7.2.1 Basic Operation...35
3.7.3 Security Considerations..35
3.7.4 MIME Encapsulation...36
3.7.5 Use of HTTP URIs...36

3.7.5.1 URI Syntax..36
3.7.5.2 HTTP and Caching Considerations...36
3.7.5.3 Security Considerations..36
3.7.5.4 Error Reporting..36
3.7.5.5 Metadata Considerations..37
3.7.5.6 Example SAML Message Exchange Using an HTTP URI..37

4 References..38

sstc-saml-bindings-2.0-cd-01 18 August 2004
Copyright © OASIS Open 2004. All Rights Reserved. Page 4 of 42

109

110
111
112
113
114
115
116
117
118
119

120

121
122
123
124
125
126
127
128
129
130
131
132
133
134
135

136

137
138
139
140
141
142
143
144
145
146
147
148

149

1 Introduction
This document specifies SAML protocol bindings for the use of SAML assertions and request-response
messages in communications protocols and frameworks.

[SAMLCore] defines the SAML assertions and request-response messages themselves, and
[SAMLProfile] defines specific usage patterns that reference both [SAMLCore] and bindings defined in this
specification or elsewhere.

1.1 Protocol Binding Concepts
Mappings of SAML request-response message exchanges onto standard messaging or communication
protocols are called SAML protocol bindings (or just bindings). An instance of mapping SAML request-
response message exchanges into a specific communication protocol <FOO> is termed a <FOO> binding
for SAML or a SAML <FOO> binding.

For example, a SAML SOAP binding describes how SAML request and response message exchanges
are mapped into SOAP message exchanges.

The intent of this specification is to specify a selected set of bindings in sufficient detail to ensure that
independently implemented SAML-conforming software can interoperate when using standard messaging
or communication protocols.

Unless otherwise specified, a binding should be understood to support the transmission of any SAML
protocol message derived from the samlp:RequestAbstractType and samlp:StatusResponseType
types. Further, when a binding refers to "SAML requests and responses", it should be understood to mean
any protocol messages derived from those types.

For other terms and concepts that are specific to SAML, refer to the SAML glossary [SAMLGloss].

1.2 Notation
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD
NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this specification are to be interpreted as
described in IETF RFC 2119 [RFC2119].

Listings of productions or other normative code appear like this.

Example code listings appear like this.
Note: Non-normative notes and explanations appear like this.

Conventional XML namespace prefixes are used throughout this specification to stand for their respective
namespaces as follows, whether or not a namespace declaration is present in the example:

Prefix XML Namespace Comments

saml: urn:oasis:names:tc:SAML:2.0:assertion This is the SAML V2.0 assertion namespace
[SAMLCore].

samlp: urn:oasis:names:tc:SAML:2.0:protocol This is the SAML V2.0 protocol namespace
[SAMLCore].

ds: http://www.w3.org/2000/09/xmldsig# This namespace is defined in the XML Signature
Syntax and Processing specification [XMLSig] and
its governing schema.

sstc-saml-bindings-2.0-cd-01 18 August 2004
Copyright © OASIS Open 2004. All Rights Reserved. Page 5 of 42

150

151
152

153
154
155

156

157
158
159
160

161
162

163
164
165

166
167
168
169

170

171

172
173
174

175

176

177

178
179

Prefix XML Namespace Comments

SOAP-ENV: http://schemas.xmlsoap.org/soap/envelope This namespace is defined in SOAP V1.1
[SOAP1.1].

This specification uses the following typographical conventions in text: <ns:Element>, XMLAttribute,
Datatype, OtherKeyword. In some cases, angle brackets are used to indicate non-terminals, rather than
XML elements; the intent will be clear from the context.

sstc-saml-bindings-2.0-cd-01 18 August 2004
Copyright © OASIS Open 2004. All Rights Reserved. Page 6 of 42

180
181
182

2 Guidelines for Specifying Additional Protocol
Bindings

This specification defines a selected set of protocol bindings, but others will possibly be developed in the
future. It is not possible for the OASIS Security Services Technical Committee (SSTC) to standardize all of
these additional bindings for two reasons: it has limited resources and it does not own the standardization
process for all of the technologies used. This section offers guidelines for third parties who wish to specify
additional bindings.

The SSTC welcomes submission of proposals from OASIS members for new protocol bindings. OASIS
members may wish to submit these proposals for consideration by the SSTC in a future version of this
specification. Other members may simply wish to inform the committee of their work related to SAML.
Please refer to the SSTC web site for further details on how to submit such proposals to the SSTC.

Following is a checklist of issues that MUST be addressed by each protocol binding:
1. Specify three pieces of identifying information: a URI that uniquely identifies the protocol binding,

postal or electronic contact information for the author, and a reference to previously defined
bindings or profiles that the new binding updates or obsoletes.

2. Describe the set of interactions between parties involved in the binding. Any restrictions on
applications used by each party and the protocols involved in each interaction must be explicitly
called out.

3. Identify the parties involved in each interaction, including how many parties are involved and
whether intermediaries may be involved.

4. Specify the method of authentication of parties involved in each interaction, including whether
authentication is required and acceptable authentication types.

5. Identify the level of support for message integrity, including the mechanisms used to ensure
message integrity.

6. Identify the level of support for confidentiality, including whether a third party may view the contents
of SAML messages and assertions, whether the binding requires confidentiality, and the
mechanisms recommended for achieving confidentiality.

7. Identify the error states, including the error states at each participant, especially those that receive
and process SAML assertions or messages.

8. Identify security considerations, including analysis of threats and description of countermeasures.

9. Identify metadata considerations, such that support for a binding involving a particular
communications protocol or used in a particular profile can be advertised in an efficient and
interoperable way.

sstc-saml-bindings-2.0-cd-01 18 August 2004
Copyright © OASIS Open 2004. All Rights Reserved. Page 7 of 42

183

184

185
186
187
188
189

190
191
192
193

194

195
196
197

198
199
200

201
202

203
204

205
206

207
208
209

210
211

212

213
214
215

3 Protocol Bindings
The following sections define the protocol bindings that are specified as part of the SAML standard.

3.1 General Considerations
The following sections describe normative characteristics of all protocol bindings defined for SAML.

3.1.1 Use of RelayState
Some bindings define a "RelayState" mechanism for preserving and conveying state information. When
such a mechanism is used in conveying a request message as the initial step of a SAML protocol, it
places requirements on the selection and use of the binding subsequently used to convey the response.
Namely, if a SAML request message is accompanied by RelayState data, then the SAML responder
MUST return its SAML protocol response using a binding that also supports a RelayState mechanism, and
it MUST place the exact RelayState data it received with the request into the corresponding RelayState
parameter in the response.

3.1.2 Security
Unless stated otherwise, these security statements about apply to all bindings. Bindings may also make
additional statements about these security features.

3.1.2.1 Use of SSL 3.0 or TLS 1.0

Unless otherwise specified, in any SAML binding's use of SSL 3.0 [SSL3] or TLS 1.0 [RFC2246], servers
MUST authenticate to clients using a X.509 v3 certificate. The client MUST establish server identity based
on contents of the certificate (typically through examination of the certificate’s subject DN field).
TLS-capable implementations MUST implement the TLS_RSA_WITH_3DES_EDE_CBC_SHA cipher
suite and MAY implement the TLS_RSA_WITH_AES_128_CBC_SHA cipher suite [AES].

FIPS TLS-capable implementations MUST implement the coresponding
TLS_RSA_FIPS_WITH_3DES_EDE_CBC_SHA cipher suite and MAY implement the corresponding
TLS_RSA_FIPS_AES_128_CBC_SHA cipher suite [AES] [FIPS].

SSL-capable implementations MUST implement the SSL_RSA_WITH_3DES_EDE_CBC_SHA cipher
suite.

FIPS SSL-capable implementations MUST implement the FIPS cipher suite corresponding to the SSL
SSL_RSA_WITH_3DES_EDE_CBC_SHA cipher suite [FIPS].

3.1.2.2 Data Origin Authentication

Authentication of both the SAML requester and the SAML responder associated with a message is
OPTIONAL and depends on the environment of use. Authentication mechanisms available at the SOAP
message exchange layer or from the underlying substrate protocol (for example in many bindings the
SSL/TLS or HTTP protocol) MAY be utilized to provide data origin authentication.

Transport authentication will not meet end-end origin-authentication requirements in bindings where the
SAML protocol message passes through an intermediary – in this case message authentication is
recommended.

sstc-saml-bindings-2.0-cd-01 18 August 2004
Copyright © OASIS Open 2004. All Rights Reserved. Page 8 of 42

216

217

218

219

220

221
222
223
224
225
226
227

228

229
230

231

232
233
234

235
236

237
238
239

240
241

242
243

244

245
246
247
248

249
250
251

Note that SAML itself offers mechanisms for parties to authenticate to one another, but in addition SAML
may use other authentication mechanisms to provide security for SAML itself.

3.1.2.3 Message Integrity

Message integrity of both SAML requests and SAML responses is OPTIONAL and depends on the
environment of use. The security layer in the underlying substrate protocol or a mechanism at the SOAP
message exchange layer MAY be used to ensure message integrity.

Transport integrity will not meet end-end integrity requirements in bindings where the SAML protocol
message passes through an intermediary – in this case message integrity is recommended.

3.1.2.4 Message Confidentiality

Message confidentiality of both SAML requests and SAML responses is OPTIONAL and depends on the
environment of use. The security layer in the underlying substrate protocol or a mechanism at the SOAP
message exchange layer MAY be used to ensure message confidentiality.

Transport confidentiality will not meet end-end confidentiality requirements in bindings where the SAML
protocol message passes through an intermediary.

3.1.2.5 Security Considerations

Before deployment, each combination of authentication, message integrity, and confidentiality
mechanisms SHOULD be analyzed for vulnerability in the context of the specific protocol exchange and
the deployment environment. See specific protocol processing rules in [SAMLCore] and the SAML security
considerations document [SAMLSecure] for a detailed discussion.

[RFC2617] describes possible attacks in the HTTP environment when basic or message-digest
authentication schemes are used.

Special care should be given to the impact of possible caching on security.

3.2 SAML SOAP Binding
SOAP is a lightweight protocol intended for exchanging structured information in a decentralized,
distributed environment [SOAP1.1]. It uses XML technologies to define an extensible messaging
framework providing a message construct that can be exchanged over a variety of underlying protocols.
The framework has been designed to be independent of any particular programming model and other
implementation specific semantics. Two major design goals for SOAP are simplicity and extensibility.
SOAP attempts to meet these goals by omitting, from the messaging framework, features that are often
found in distributed systems. Such features include but are not limited to "reliability", "security",
"correlation", "routing", and "Message Exchange Patterns" (MEPs).

A SOAP message is fundamentally a one-way transmission between SOAP nodes from a SOAP sender
to a SOAP receiver, possibly routed through one or more SOAP intermediaries. SOAP messages are
expected to be combined by applications to implement more complex interaction patterns ranging from
request/response to multiple, back-and-forth "conversational" exchanges [SOAP-PRIMER].

SOAP defines an XML message envelope that includes header and body sections, allowing data and
control information to be transmitted. SOAP also defines processing rules associated with this envelope
and an HTTP binding for SOAP message transmission.

The SAML SOAP binding defines how to use SOAP to send and receive SAML requests and responses.

Like SAML, SOAP can be used over multiple underlying transports. This binding has protocol-independent
aspects, but also calls out the use of SOAP over HTTP as REQUIRED (mandatory to implement).

sstc-saml-bindings-2.0-cd-01 18 August 2004
Copyright © OASIS Open 2004. All Rights Reserved. Page 9 of 42

252
253

254

255
256
257

258
259

260

261
262
263

264
265

266

267
268
269
270

271
272

273

274

275
276
277
278
279
280
281
282

283
284
285
286

287
288
289

290

291
292

3.2.1 Required Information
Identification: urn:oasis:names:tc:SAML:2.0:bindings:SOAP

Contact information: security-services-comment@lists.oasis-open.org

Description: Given below.

Updates: urn:oasis:names:tc:SAML:1.0:bindings:SOAP-binding

3.2.2 Protocol-Independent Aspects of the SAML SOAP Binding
The following sections define aspects of the SAML SOAP binding that are independent of the underlying
protocol, such as HTTP, on which the SOAP messages are transported. Note this binding only supports
the use of SOAP 1.1.

3.2.2.1 Basic Operation

SOAP 1.1 messages consist of three elements: an envelope, header data, and a message body. SAML
request-response protocol elements MUST be enclosed within the SOAP message body.

SOAP 1.1 also defines an optional data encoding system. This system is not used within the SAML SOAP
binding. This means that SAML messages can be transported using SOAP without re-encoding from the
"standard" SAML schema to one based on the SOAP encoding.

The system model used for SAML conversations over SOAP is a simple request-response model.
1. A system entity acting as a SAML requester transmits a SAML request element within the body of

a SOAP message to a system entity acting as a SAML responder. The SAML requester MUST
NOT include more than one SAML request per SOAP message or include any additional XML
elements in the SOAP body.

2. The SAML responder MUST return either a SAML response element within the body of another
SOAP message or generate a SOAP fault. The SAML responder MUST NOT include more than
one SAML response per SOAP message or include any additional XML elements in the SOAP
body. If a SAML responder cannot, for some reason, process a SAML request, it MUST generate a
SOAP fault. SOAP fault codes MUST NOT be sent for errors within the SAML problem domain, for
example, inability to find an extension schema or as a signal that the subject is not authorized to
access a resource in an authorization query. (SOAP 1.1 faults and fault codes are discussed in
[SOAP1.1] §4.1.)

On receiving a SAML response in a SOAP message, the SAML requester MUST NOT send a fault code
or other error messages to the SAML responder. Since the format for the message interchange is a
simple request-response pattern, adding additional items such as error conditions would needlessly
complicate the protocol.

[SOAP1.1] references an early draft of the XML Schema specification including an obsolete namespace.
SAML requesters SHOULD generate SOAP documents referencing only the final XML schema
namespace. SAML responders MUST be able to process both the XML schema namespace used in
[SOAP1.1] as well as the final XML schema namespace.

3.2.2.2 SOAP Headers

A SAML requester in a SAML conversation over SOAP MAY add arbitrary headers to the SOAP message.
This binding does not define any additional SOAP headers.

Note: The reason other headers need to be allowed is that some SOAP software and
libraries might add headers to a SOAP message that are out of the control of the SAML-
aware process. Also, some headers might be needed for underlying protocols that require

sstc-saml-bindings-2.0-cd-01 18 August 2004
Copyright © OASIS Open 2004. All Rights Reserved. Page 10 of 42

293

294

295

296

297

298

299
300
301

302

303
304

305
306
307

308

309
310
311
312

313
314
315
316
317
318
319
320

321
322
323
324

325
326
327
328

329

330
331

332
333
334

routing of messages or by message security mechanisms.

A SAML responder MUST NOT require any headers in the SOAP message in order to process the SAML
message correctly itself, but MAY require additional headers that address underlying routing or message
security requirements.

Note: The rationale is that requiring extra headers will cause fragmentation of the SAML
standard and will hurt interoperability.

3.2.3 Use of SOAP over HTTP
A SAML processor that claims conformance to the SAML SOAP binding MUST implement SAML over
SOAP over HTTP. This section describes certain specifics of using SOAP over HTTP, including HTTP
headers, caching, and error reporting.

The HTTP binding for SOAP is described in [SOAP1.1] §6.0. It requires the use of a SOAPAction header
as part of a SOAP HTTP request. A SAML responder MUST NOT depend on the value of this header. A
SAML requester MAY set the value of SOAPAction header as follows:

http://www.oasis-open.org/committees/security

3.2.3.1 HTTP Headers

A SAML requester in a SAML conversation over SOAP over HTTP MAY add arbitrary headers to the
HTTP request. This binding does not define any additional HTTP headers.

Note: The reason other headers need to be allowed is that some HTTP software and
libraries might add headers to an HTTP message that are out of the control of the SAML-
aware process. Also, some headers might be needed for underlying protocols that require
routing of messages or by message security mechanisms.

A SAML responder MUST NOT require any headers in the HTTP request to correctly process the SAML
message itself, but MAY require additional headers that address underlying routing or message security
requirements.

Note: The rationale is that requiring extra headers will cause fragmentation of the SAML
standard and will hurt interoperability.

3.2.3.2 Caching

HTTP proxies should not cache SAML protocol messages. To insure this, the following rules SHOULD be
followed.

When using HTTP 1.1, requesters SHOULD:
• Include a Cache-Control header field set to "no-cache, no-store".

• Include a Pragma header field set to "no-cache".

When using HTTP 1.1, responders SHOULD:
• Include a Cache-Control header field set to "no-cache, no-store, must-revalidate,
private".

• Include a Pragma header field set to "no-cache".

• NOT include a Validator, such as a Last-Modified or ETag header.

sstc-saml-bindings-2.0-cd-01 18 August 2004
Copyright © OASIS Open 2004. All Rights Reserved. Page 11 of 42

335

336
337
338

339
340

341

342
343
344

345
346
347

348

349

350
351

352
353
354
355

356
357
358

359
360

361

362
363

364

365

366

367

368
369

370

371

3.2.3.3 Error Reporting

A SAML responder that refuses to perform a message exchange with the SAML requester SHOULD
return a "403 Forbidden" response. In this case, the content of the HTTP body is not significant.

As described in [SOAP1.1] § 6.2, in the case of a SOAP error while processing a SOAP request, the
SOAP HTTP server MUST return a "500 Internal Server Error" response and include a SOAP
message in the response with a SOAP <SOAP-ENV:fault> element. This type of error SHOULD be
returned for SOAP-related errors detected before control is passed to the SAML processor, or when the
SOAP processor reports an internal error (for example, the SOAP XML namespace is incorrect, the SAML
schema cannot be located, the SAML processor throws an exception, and so on).

In the case of a SAML processing error, the SOAP HTTP server MUST respond with "200 OK" and
include a SAML-specified <samlp:Status> element in the SAML response within the SOAP body. Note
that the <samlp:Status> element does not appear by itself in the SOAP body, but only within a SAML
response of some sort.

For more information about the use of SAML status codes, see the SAML assertions and protocols
specification [SAMLCore].

3.2.3.4 Metadata Considerations

Support for the SOAP binding SHOULD be reflected by indicating either a URL endpoint at which requests
contained in SOAP messages for a particular protocol or profile are to be sent, or alternatively with a
WSDL port/endpoint definition.

3.2.3.5 Example SAML Message Exchange Using SOAP over HTTP

Following is an example of a query that asks for an assertion containing an attribute statement from a
SAML attribute authority.

POST /SamlService HTTP/1.1
Host: www.example.com
Content-Type: text/xml
Content-Length: nnn
SOAPAction: http://www.oasis-open.org/committees/security
<SOAP-ENV:Envelope
 xmlns:SOAP-ENV=”http://schemas.xmlsoap.org/soap/envelope/”>
 <SOAP-ENV:Body>
 <samlp:AttributeQuery xmlns:samlp:=”…”
xmlns:saml=”…” xmlns:ds=”…” ID=”_6c3a4f8b9c2d” Version=”2.0”
IssueInstant=”2004-03-27T08:41:00Z”
 <ds:Signature> … </ds:Signature>
 <saml:Subject>
 …
 </saml:Subject>
 </samlp:AttributeQuery>
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

Following is an example of the corresponding response, which supplies an assertion containing the
attribute statement as requested.

HTTP/1.1 200 OK
Content-Type: text/xml
Content-Length: nnnn

<SOAP-ENV:Envelope
 xmlns:SOAP-ENV=”http://schemas.xmlsoap.org/soap/envelope/”>
 <SOAP-ENV:Body>
 <samlp:Response xmlns:samlp=”…” xmlns:saml=”…” xmlns:ds=”…”
ID=”_6c3a4f8b9c2d” Version=”2.0” IssueInstant=”2004-03-27T08:42:00Z”>
 <saml:Issuer>https://www.example.com/SAML</saml:Issuer>

sstc-saml-bindings-2.0-cd-01 18 August 2004
Copyright © OASIS Open 2004. All Rights Reserved. Page 12 of 42

372

373
374

375
376
377
378
379
380

381
382
383
384

385
386

387

388
389
390

391

392
393

394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411

412
413
414
415
416

417
418
419
420
421
422

 <ds:Signature> … </ds:Signature>
 <Status>
 <StatusCode Value=”…”/>
 </Status>

 <saml:Assertion>
 <saml:Subject>
 …
 </saml:Subject>
 <saml:AttributeStatement>
 …
 </saml:AttributeStatement>
 </saml:Assertion>
 </samlp:Response>
 </SOAP-Env:Body>
</SOAP-ENV:Envelope>

3.3 Reverse SOAP (PAOS) Binding
This binding leverages the Reverse HTTP Binding for SOAP specification [PAOS]. Implementers MUST
comply with the general processing rules specified in [PAOS] in addition to those specified in this
document. In case of conflict, [PAOS] is normative.

3.3.1 Required Information
Identification: urn:oasis:names:tc:SAML:2.0:bindings:PAOS

Contact information: security-services-comment@lists.oasis-open.org

Description: Given below.

Updates: None.

3.3.2 Overview
The reverse SOAP binding is a mechanism by which an HTTP requester can advertise the ability to act as
a SOAP responder or a SOAP intermediary to a SAML requester. The HTTP requester is able to support
a pattern where a SAML request is sent to it in a SOAP envelope in an HTTP response from the SAML
requester, and the HTTP requester responds with a SAML response in a SOAP envelope in a subsequent
HTTP request. This message exchange pattern supports the use case defined in the ECP SSO profile
(described in the SAML profiles specification [SAMLProfile]), in which the HTTP requester is an
intermediary in an authentication exchange.

3.3.3 Message Exchange
The PAOS binding includes two component message exchange patterns:

1. The HTTP requester sends an HTTP request to a SAML requester. The SAML requester responds
with an HTTP response containing a SOAP envelope containing a SAML request message.

2. Subsequently, the HTTP requester sends an HTTP request to the original SAML requester
containing a SOAP envelope containing a SAML response message. The SAML requester
responds with an HTTP response, possibly in response to the original service request in step 1.

The ECP profile uses the PAOS binding to provide authentication of the client to the service provider
before the service is provided. This occurs in the following steps, illustrated in Figure A:

1. Client requests service using HTTP request.

2. Service Provider responds with a SAML authentication request. This is sent using a SOAP request,
carried in the HTTP response.

sstc-saml-bindings-2.0-cd-01 18 August 2004
Copyright © OASIS Open 2004. All Rights Reserved. Page 13 of 42

423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438

439

440
441
442

443

444

445

446

447

448

449
450
451
452
453
454
455

456

457

458
459

460
461
462

463
464

465

466
467

3. The Client returns a SOAP response carrying a SAML authentication response. This is sent using a
new HTTP request.

4. Assuming service provider authentication and authorization is successful the service provider may
respond to the original service request in the HTTP response.

Figure 1: PAOS Binding Message Exchanges

The HTTP requester advertises the ability to handle this reverse SOAP binding in its HTTP requests using
the HTTP headers defined by the PAOS specification. Specifically:

• The HTTP Accept Header field MUST indicate an ability to accept the
“application/vnd.paos+xml” content type.

• The HTTP PAOS Header field MUST be present and specify the PAOS version with
"urn:liberty:paos:2003-08" at a minimum.

Additional PAOS headers such as the service value MAY be specified by profiles that use the PAOS
binding. The HTTP requester MAY add arbitrary headers to the HTTP request.

Note that this binding does not define a RelayState mechanism. Specific profiles that make use of this
binding must therefore define such a mechanism, if needed. The use of a SOAP header is suggested for
this purpose.

The following sections provide more detail on the two steps of the message exchange.

sstc-saml-bindings-2.0-cd-01 18 August 2004
Copyright © OASIS Open 2004. All Rights Reserved. Page 14 of 42

Service
Provider

HTTP Request (Service A request)

HTTP Response

SOAP Envelope containing SAML
Request (e.g. authentication request)

...

HTTP Request

HTTP Response (Service A response)

SOAP Envelope containing SAML
Response (e.g. authentication response)

Service
Provider

Service
Provider

Service
ProviderClient

Client

Client

Client

468
469

470
471

472
473

474
475

476
477

478
479

480
481
482

483

3.3.3.1 HTTP Request, SAML Request in SOAP Response

In response to an arbitrary HTTP request, the HTTP responder MAY return a SAML request message
using this binding by returning a SOAP 1.1 envelope in the HTTP response containing a single SAML
request message in the SOAP body, with no additional body content. The SOAP envelope MAY contain
arbitrary SOAP headers defined by PAOS, SAML profiles, or additional specifications.

Note that while the SAML request message is delivered to the HTTP requester, the actual intended
recipient MAY be another system entity, with the HTTP requester acting as an intermediary, as defined by
specific profiles.

3.3.3.2 SAML Response in SOAP Request, HTTP Response

When the HTTP requester delivers a SAML response message to the intended recipient using the PAOS
binding, it places it as the only element in the SOAP body in a SOAP envelope in an HTTP request. The
HTTP requester may or may not be the originator of the SAML response. The SOAP envelope MAY
contain arbitrary SOAP headers defined by PAOS, SAML profiles, or additional specifications. The SAML
exchange is considered complete and the HTTP response is unspecified by this binding.

Profiles MAY define additional constraints on the HTTP content of non-SOAP responses during the
exchanges covered by this binding.

3.3.4 Caching
HTTP proxies should not cache SAML protocol messages. To insure this, the following rules SHOULD be
followed.

When using HTTP 1.1, requesters sending SAML protocol messages SHOULD:
• Include a Cache-Control header field set to "no-cache, no-store".

• Include a Pragma header field set to "no-cache".

When using HTTP 1.1, responders returning SAML protocol messages SHOULD:
• Include a Cache-Control header field set to "no-cache, no-store, must-revalidate,
private".

• Include a Pragma header field set to "no-cache".

• NOT include a Validator, such as a Last-Modified or ETag header.

3.3.5 Security Considerations
The HTTP requester in the PAOS binding may act as a SOAP intermediary and when it does, transport
layer security for origin authentication, integrity and confidentiality may not meet end-end security
requirements. In this case security at the SOAP message layer is recommended.

3.3.5.1 Error Reporting

Standard HTTP and SOAP error conventions MUST be observed. Errors that occur during SAML
processing MUST NOT be signaled at the HTTP or SOAP layer and MUST be handled using SAML
response messages with an error <samlp:Status> element.

3.3.5.2 Metadata Considerations

Support for the PAOS binding SHOULD be reflected by indicating a URL endpoint at which HTTP
requests and/or SAML protocol messages contained in SOAP envelopes for a particular protocol or profile

sstc-saml-bindings-2.0-cd-01 18 August 2004
Copyright © OASIS Open 2004. All Rights Reserved. Page 15 of 42

484

485
486
487
488

489
490
491

492

493
494
495
496
497

498
499

500

501
502

503

504

505

506

507
508

509

510

511

512
513
514

515

516
517
518

519

520
521

are to be sent. Either a single endpoint or distinct request and response endpoints MAY be supplied.

3.4 HTTP Redirect Binding
The HTTP Redirect binding defines a mechanism by which SAML protocol messages can be transmitted
within URL parameters. Permissible URL length is theoretically infinite, but unpredictably limited in
practice. Therefore, specialized encodings are needed to carry XML messages on a URL, and larger or
more complex message content can be sent using the HTTP POST or Artifact bindings.

This binding MAY be composed with the HTTP POST binding (see Section 3.5) and the HTTP Artifact
binding (see Section 3.6) to transmit request and response messages in a single protocol exchange using
two different bindings.

This binding involves the use of a message encoding. While the definition of this binding includes the
definition of one particular message encoding, others MAY be defined and used.

3.4.1 Required Information
Identification: urn:oasis:names:tc:SAML:2.0:bindings:HTTP-Redirect

Contact information: security-services-comment@lists.oasis-open.org

Description: Given below.

Updates: None.

3.4.2 Overview
The HTTP Redirect binding is intended for cases in which the SAML requester and responder need to
communicate using an HTTP user agent (as defined in HTTP 1.1 [RFC2616]) as an intermediary. This
may be necessary, for example, if the communicating parties do not share a direct path of communication.
It may also be needed if the responder requires an interaction with the user agent in order to fulfill the
request, such as when the user agent must authenticate to it.

Note that some HTTP user agents may have the capacity to play a more active role in the protocol
exchange and may support other bindings that use HTTP, such as the SOAP and Reverse SOAP
bindings. This binding assumes nothing apart from the capabilities of a common web browser.

3.4.3 RelayState
RelayState data MAY be included with a SAML protocol message transmitted with this binding. The value
MUST NOT exceed 80 bytes in length and SHOULD be integrity protected by the entity creating the
message independent of any other protections that may or may not exist during message transmission.

If a SAML request message is accompanied by RelayState data, then the SAML responder MUST return
its SAML protocol response using a binding that also supports a RelayState mechanism, and it MUST
place the exact data it received with the request into the corresponding RelayState parameter in the
response.

If no such value is included with a SAML request message, or if the SAML response message is being
generated without a corresponding request, then the SAML responder MAY include RelayState data to be
interpreted by the recipient based on the use of a profile or prior agreement between the parties.

3.4.4 Message Encoding
Messages are encoded for use with this binding using a URL encoding technique, and transmitted using
the HTTP GET method. There are many possible ways to encode XML into a URL, depending on the

sstc-saml-bindings-2.0-cd-01 18 August 2004
Copyright © OASIS Open 2004. All Rights Reserved. Page 16 of 42

522

523

524
525
526
527

528
529
530

531
532

533

534

535

536

537

538

539
540
541
542
543

544
545
546

547

548
549
550

551
552
553
554

555
556
557

558

559
560

constraints in effect. This specification defines one such method without precluding others. Binding
endpoints SHOULD indicate which encodings they support using metadata, when appropriate. Particular
encodings MUST be uniquely identified with a URI when defined. It is not a requirement that all possible
SAML messages be encodable with a particular set of rules, but the rules MUST clearly indicate which
messages or content can or cannot be so encoded.

A URL encoding MUST place the message entirely within the URL query string, and MUST reserve the
rest of the URL for the endpoint of the message recipient.

A query string parameter named SAMLEncoding is reserved to identify the encoding mechanism used. If
this parameter is omitted, then the value is assumed to be
urn:oasis:names:tc:SAML:2.0:bindings:URL-Encoding:DEFLATE.

3.4.4.1 DEFLATE Encoding

Identification: urn:oasis:names:tc:SAML:2.0:bindings:URL-Encoding:DEFLATE

SAML protocol messages can be encoded into a URL via the DEFLATE compression method (see
[RFC1951]). In such an encoding, the following procedure should be applied to the original SAML protocol
message's XML serialization:

1. Any signature on the SAML protocol message, including the <ds:Signature> XML element itself,
MUST be removed. Note that if the content of the message includes another signature, such as a
signed SAML assertion, this embedded signature is not removed. However, the length of such a
message after encoding essentially precludes using this mechanism. Thus SAML protocol
messages that contain signed content SHOULD NOT be encoded using this mechanism.

2. The DEFLATE compression mechanism, as specified in [RFC1951] is then applied to the entire
remaining XML content of the original SAML protocol message.

3. The compressed data is subsequently base64-encoded according to the rules specified in
[RFC2045]. Linefeeds or other whitespace MUST be removed from the result.

4. The base-64 encoded data is then URL-encoded, and added to the URL as a query string
parameter which MUST be named SAMLRequest (if the message is a SAML request) or
SAMLResponse (if the message is a SAML response).

5. If the original SAML protocol message was signed using an XML digital signature, a new signature
covering the encoded data as specified above MUST be attached using the rules stated below.

6. If RelayState data is to accompany the SAML protocol message, it MUST be URL-encoded and
placed in an additional query string parameter named RelayState.

XML digital signatures are not directly URL-encoded according to the above rules, due to space concerns.
If the underlying SAML protocol message is signed with an XML signature [XMLSig], the URL-encoded
form of the message MUST be signed as follows:

1. The signature algorithm identifier MUST be included as an additional query string parameter,
named SigAlg. The value of this parameter MUST be a URI that identifies the algorithm used to
sign the URL-encoded SAML protocol message, specified according to [XMLSig] or whatever
specification governs the algorithm.

2. To construct the signature, a string consisting of the concatenation of the RelayState (if present),
SigAlg, and SAMLRequest (or SAMLResponse) query string parameters is constructed in one of
the following ways:

SAMLRequest=value&RelayState=value&SigAlg=value
SAMLResponse=value&RelayState=value&SigAlg=value

3. The resulting string of bytes is the octet string to be fed into the signature algorithm. Any other
content in the original query string is not included and not signed.

4. The signature value MUST be encoded using the base64 encoding [RFC2045] with any whitespace
removed, and included as a query string parameter named Signature. Note that some characters

sstc-saml-bindings-2.0-cd-01 18 August 2004
Copyright © OASIS Open 2004. All Rights Reserved. Page 17 of 42

561
562
563
564
565

566
567

568
569
570

571

572

573
574
575

576
577
578
579
580

581
582

583
584

585
586
587

588
589

590
591

592
593
594

595
596
597
598

599
600
601

602
603

604
605

606
607

in the base64-encoded signature value may themselves require URL-encoding before being added.

5. The following signature algorithms (see [XMLSig]) and their URI representations MUST be
supported with this encoding mechanism:

• DSAwithSHA1 – http://www.w3.org/200/09/xmldsig#dsa-sha1
• RSAwithSHA1 – http://www.w3.org/200/09/xmldsig#rsa-sha1

3.4.5 Message Exchange
The system model used for SAML conversations via this binding is a request-response model, but these
messages are sent to the user agent in an HTTP response and delivered to the message recipient in an
HTTP request. The HTTP interactions before, between, and after these exchanges take place is
unspecified. Both the SAML requester and the SAML responder are assumed to be HTTP responders.
See the following sequence diagram illustrating the messages exchanged.

1. Initially, the user agent makes an arbitrary HTTP request to a system entity. In the course of
processing the request, the system entity decides to initiate a SAML protocol exchange.

2. The system entity acting as a SAML requester responds to the HTTP request from the user agent in
step 1 by returning a SAML request. The SAML request is returned encoded into the HTTP
response's Location header, and the HTTP status MUST be either 303 or 302. The SAML requester
MAY include additional presentation and content in the HTTP response to facilitate the user agent's
transmission of the message, as defined in HTTP 1.1 [RFC2616]. The user agent delivers the
SAML request by issuing an HTTP GET request to the SAML responder.

3. In general, the SAML responder MAY respond to the SAML request by immediately returning a
SAML response or MAY return arbitrary content to facilitate subsequent interaction with the user
agent necessary to fulfill the request. Specific protocols and profiles may include mechanisms to
indicate the requester's level of willingness to permit this kind of interaction (for example, the
IsPassive attribute in <samlp:AuthnRequest>) .

4. Eventually the responder SHOULD return a SAML response to the user agent to be returned to the

sstc-saml-bindings-2.0-cd-01 18 August 2004
Copyright © OASIS Open 2004. All Rights Reserved. Page 18 of 42

User Agent SAML ResponderSAML Requester

1. User Agent accesses some
resource at the SAML Requester using
an HTTP request

2. SAML request returned in HTTP Redirect
URL to SAML responder, encoded into
Location header

3. SAML responder interacts with User Agent, subject to constraints in the SAML request

4. SAML response returned in HTTP Redirect URL to SAML requester, encoded into Location header

5. HTTP response sent to user agent from
SAML requester upon completion of SAML
exchange

I need to initiate a SAML protocol exchange.

608

609
610

611
612

613

614
615
616
617
618

619
620

621
622
623
624
625
626

627
628
629
630
631

632

SAML requester. The SAML response is returned in the same fashion as described for the SAML
request in step 2.

5. Upon receiving the SAML response, the SAML requester returns an arbitrary HTTP response to the
user agent.

3.4.5.1 HTTP and Caching Considerations

HTTP proxies and the user agent intermediary should not cache SAML protocol messages. To insure this,
the following rules SHOULD be followed.

When returning SAML protocol messages using HTTP 1.1, HTTP responders SHOULD:
• Include a Cache-Control header field set to "no-cache, no-store".

• Include a Pragma header field set to "no-cache".

There are no other restrictions on the use of HTTP headers.

3.4.5.2 Security Considerations

The presence of the user agent intermediary means that the requester and responder cannot rely on the
transport layer for end-end authentication, integrity and confidentiality. URL-encoded messages MAY be
signed to provide origin authentication and integrity if the encoding method specifies a means for signing.

This binding SHOULD NOT be used if the content of the request or response should not be exposed to
the user agent intermediary. Otherwise, confidentiality of both SAML requests and SAML responses is
OPTIONAL and depends on the environment of use. If confidentiality is necessary, SSL 3.0 or TLS 1.0
SHOULD be used to protect the message in transit between the user agent and the SAML requester and
responder.

Note also that URL-encoded messages may be exposed in a variety of HTTP logs as well as the HTTP
"Referer" header.

Before deployment, each combination of authentication, message integrity, and confidentiality
mechanisms SHOULD be analyzed for vulnerability in the context of the specific protocol exchange, and
the deployment environment. See specific protocol processing rules in [SAMLCore], and the SAML
security considerations document [SAMLSecure] for a detailed discussion.

In general, this binding relies on message-level authentication and integrity protection via signing and
does not support confidentiality of messages from the user agent intermediary.

3.4.6 Error Reporting
A SAML responder that refuses to perform a message exchange with the SAML requester SHOULD
return a SAML response message with a second-level <samlp:StatusCode> value of
urn:oasis:names:tc:SAML:2.0:status:RequestDenied.

HTTP interactions during the message exchange MUST NOT use HTTP error status codes to indicate
failures in SAML processing, since the user agent is not a full party to the SAML protocol exchange.

For more information about SAML status codes, see the SAML assertions and protocols specification
[SAMLCore].

3.4.7 Metadata Considerations
Support for the HTTP Redirect binding SHOULD be reflected by indicating URL endpoints at which
requests and responses for a particular protocol or profile should be sent. Either a single endpoint or
distinct request and response endpoints MAY be supplied.

sstc-saml-bindings-2.0-cd-01 18 August 2004
Copyright © OASIS Open 2004. All Rights Reserved. Page 19 of 42

633
634

635
636

637

638
639

640

641

642

643

644

645
646
647

648
649
650
651
652

653
654

655
656
657
658

659
660

661

662
663
664

665
666

667
668

669

670
671
672

3.4.8 Example SAML Message Exchange Using HTTP Redirect
In this example, a <LogoutRequest> and <LogoutResponse> message pair are exchanged using the
HTTP Redirect binding.

First, here are the actual SAML protocol messages being exchanged:
<samlp:LogoutRequest xmlns:samlp="urn:oasis:names:tc:SAML:2.0:protocol"
xmlns="urn:oasis:names:tc:SAML:2.0:assertion"
 ID="d2b7c388cec36fa7c39c28fd298644a8" IssueInstant="2004-01-
21T19:00:49Z" Version="2.0">
 <Issuer>https://IdentityProvider.com/SAML</Issuer>
 <NameID Format="urn:oasis:names:tc:SAML:2.0:nameid-
format:persistent">005a06e0-ad82-110d-a556-004005b13a2b</NameID>
 <samlp:SessionIndex>1</samlp:SessionIndex>
</samlp:LogoutRequest>

<samlp:LogoutResponse xmlns:samlp="urn:oasis:names:tc:SAML:2.0:protocol"
xmlns="urn:oasis:names:tc:SAML:2.0:assertion"
 ID="b0730d21b628110d8b7e004005b13a2b"
InResponseTo="d2b7c388cec36fa7c39c28fd298644a8"
 IssueInstant="2004-01-21T19:00:49Z" Version="2.0">
 <Issuer>https://ServiceProvider.com/SAML</Issuer>
 <samlp:Status>
 <samlp:StatusCode
Value="urn:oasis:names:tc:SAML:2.0:status:Success"/>
 </samlp:Status>
</samlp:LogoutResponse>

The initial HTTP request from the user agent in step 1 is not defined by this binding. To initiate the logout
protocol exchange, the SAML requester returns the following HTTP response, containing a signed SAML
request message. The SAMLRequest parameter value is actually derived from the request message
above. The signature portion is only illustrative and not the result of an actual computation. Note that the
line feeds in the HTTP Location header below are an artifact of the document, and there are no line
feeds in the actual header value.

HTTP/1.1 302 Object Moved
Date: 21 Jan 2004 07:00:49 GMT
Location:
https://ServiceProvider.com/SAML/SLO/Browser?SAMLRequest=H4sIAOCuDUEAA32R
UUvDMBSF3wf9DyXvWZOsq23oCsIQCpuIGz74liWZVtqk5qYy%2F73puoGCLE%2Fhu%2Bfecw%
2B3BNG1Pd%2FYNzv4Z%
2F05aPDxqWsN8HNlhQZnuBXQADei08C95Lv77YazOeG9s95K26Kp5bZYAGjnG2tQNIvDq9crp
NjhTi7yXGq5yI4i%
2FAvJ8qNiRZ6lqchRXAMMujbghfErxAhJMaGY0T0tOCE8LV5RvBUf1r1oB2F40ATQmF%
2BAoGpyLM%2FDXPXufQ88SWqljW%
2F895OzX43Sbi5tl4z7lslFeel7DGHqdfxgXSf87ZQjaRQ%
2BnqW8H3cAH2xQRchSkEwTLFTOMKVEYbFcZjhECqUDXQh2KJPJ6mo8XWenYUxSG6VPFS2Tf2g
0u%2BI%2Fpww8mv0ALfRRUOQBAAA%
3D&RelayState=0043bfc1bc45110dae17004005b13a2b&SigAlg=http%3A%2F%
2Fwww.w3.org%2F200%2F09%2Fxmldsig%23rsa-
sha1&Signature=NOTAREALSIGNATUREBUTTHEREALONEWOULDGOHERE
Content-Type: text/html; charset=iso-8859-1

After any unspecified interactions may have taken place, the SAML responder returns the HTTP response
below containing the signed SAML response message. Again, the SAMLResponse parameter value is
actually derived from the response message above. The signature portion is only illustrative and not the
result of an actual computation.

HTTP/1.1 302 Object Moved
Date: 21 Jan 2004 07:00:49 GMT

sstc-saml-bindings-2.0-cd-01 18 August 2004
Copyright © OASIS Open 2004. All Rights Reserved. Page 20 of 42

673

674
675

676
677
678
679
680
681
682
683
684
685

686
687
688
689
690
691
692
693
694
695
696

697
698
699
700
701
702

703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719

720
721
722
723

724
725

Location:
https://IdentityProvider.com/SAML/SLO/Response?SAMLResponse=H4sIAKO3DUEAA
31RTWvDMAy991cE39vYTtY6pimM7VJoYSylh94cR90yEitYTtnPX5a0sDKoTtLT09PXmkzbdH
qHH9iHd6AOHUH03TaO9JjKWe%
2BdRkM1aWdaIB2sLp73Oy0XXHceA1ps2FTymGyIwIcaHZtFg21fc1byVcIrKcqlVELwSpUr4D
zl%
2FKkUiZEli7buNtUBc1bJcmUTpSzYZHk2g59Zqc6VzNQyTY26KhP1sHUUjAs5k4PgnIu5FAeR
ac51mp1YtDdf6I%2FgaZhn4AxA7f4AnG1GqfWo5TefIXSk47gAf6ktvHm81BX4hcU2%
2Fl1wHV%2BJU9V01SKY0NME%2FYNfsILoaJoeHl%2BNRrYuemuBiMXXDvF9i1t8%
2F8jN7AcCxjwc4AEAAA%3D%
3D&RelayState=0043bfc1bc45110dae17004005b13a2b&SigAlg=http%3A%2F%
2Fwww.w3.org%2F200%2F09%2Fxmldsig%23rsa-
sha1&Signature=NOTAREALSIGNATUREBUTTHEREALONEWOULDGOHERE
Content-Type: text/html; charset=iso-8859-1

3.5 HTTP POST Binding
The HTTP POST binding defines a mechanism by which SAML protocol messages may be transmitted
within the base64-encoded content of an HTML form control.

This binding MAY be composed with the HTTP Redirect binding (see Section 3.4) and the HTTP Artifact
binding (see Section 3.6) to transmit request and response messages in a single protocol exchange using
two different bindings.

3.5.1 Required Information
Identification: urn:oasis:names:tc:SAML:2.0:bindings:HTTP-POST

Contact information: security-services-comment@lists.oasis-open.org

Description: Given below.

Updates: Effectively replaces the binding aspects of the Browser/POST profile in [SAML 1.1].

3.5.2 Overview
The HTTP POST binding is intended for cases in which the SAML requester and responder need to
communicate using an HTTP user agent (as defined in HTTP 1.1 [RFC2616]) as an intermediary. This
may be necessary, for example, if the communicating parties do not share a direct path of communication.
It may also be needed if the responder requires an interaction with the user agent in order to fulfill the
request, such as when the user agent must authenticate to it.

Note that some HTTP user agents may have the capacity to play a more active role in the protocol
exchange and may support other bindings that use HTTP, such as the SOAP and Reverse SOAP
bindings. This binding assumes nothing apart from the capabilities of a common web browser.

3.5.3 RelayState
RelayState data MAY be included with a SAML protocol message transmitted with this binding. The value
MUST NOT exceed 80 bytes in length and SHOULD be integrity protected by the entity creating the
message independent of any other protections that may or may not exist during message transmission.

If a SAML request message is accompanied by RelayState data, then the SAML responder MUST return
its SAML protocol response using a binding that also supports a RelayState mechanism, and it MUST
place the exact data it received with the request into the corresponding RelayState parameter in the
response.

If no such value is included with a SAML request message, or if the SAML response message is being
generated without a corresponding request, then the SAML responder MAY include RelayStatedata to be
interpreted by the recipient based on the use of a profile or prior agreement between the parties.

sstc-saml-bindings-2.0-cd-01 18 August 2004
Copyright © OASIS Open 2004. All Rights Reserved. Page 21 of 42

726
727
728
729
730
731
732
733
734
735
736
737
738
739

740

741
742

743
744
745

746

747

748

749

750

751

752
753
754
755
756

757
758
759

760

761
762
763

764
765
766
767

768
769
770

3.5.4 Message Encoding
Messages are encoded for use with this binding by encoding the XML into an HTML form control and are
transmitted using the HTTP POST method. A SAML protocol message is form-encoded by applying the
base-64 encoding rules to the XML representation of the message and placing the result in a hidden form
control within a form as defined by [HTML401] §17. The HTML document MUST adhere to the XHTML
specification, [XHTML] . The base64-encoded value MAY be line-wrapped at a reasonable length in
accordance with common practice.

If the message is a SAML request, then the form control MUST be named SAMLRequest. If the message
is a SAML response, then the form control MUST be named SAMLResponse. Any additional form controls
or presentation MAY be included but MUST NOT be required in order for the recipient to process the
message.

If a “RelayState” value is to accompany the SAML protocol message, it MUST be placed in an additional
hidden form control named RelayState within the same form with the SAML message.

The action attribute of the form MUST be the recipient's HTTP endpoint for the protocol or profile using
this binding to which the SAML message is to be delivered. The method attribute MUST be "POST".

Any technique supported by the user agent MAY be used to cause the submission of the form, and any
form content necessary to support this MAY be included, such as submit controls and client-side scripting
commands. However, the recipient MUST be able to process the message without regard for the
mechanism by which the form submission is initiated.

3.5.5 Message Exchange
The system model used for SAML conversations via this binding is a request-response model, but these
messages are sent to the user agent in an HTTP response and delivered to the message recipient in an
HTTP request. The HTTP interactions before, between, and after these exchanges take place is
unspecified. Both the SAML requester and responder are assumed to be HTTP responders. See the
following diagram illustrating the messages exchanged.

sstc-saml-bindings-2.0-cd-01 18 August 2004
Copyright © OASIS Open 2004. All Rights Reserved. Page 22 of 42

771

772
773
774
775
776
777

778
779
780
781

782
783

784
785

786
787
788
789

790

791
792
793
794
795

1. Initially, the user agent makes an arbitrary HTTP request to a system entity. In the course of
processing the request, the system entity decides to initiate a SAML protocol exchange.

2. The system entity acting as a SAML requester responds to an HTTP request from the user agent by
returning a SAML request. The request is returned in an [XHTML] document containing the form
and content defined in section 3.5.4. The user agent delivers the SAML request by issuing an HTTP
POST request to the SAML responder.

3. In general, the SAML responder MAY respond to the SAML request by immediately returning a
SAML response or MAY return arbitrary content to facilitate subsequent interaction with the user
agent necessary to fulfill the request. Specific protocols and profiles may include mechanisms to
indicate the requester's level of willingness to permit this kind of interaction (for example, the
IsPassive attribute in <samlp:AuthnRequest>).

4. Eventually the responder SHOULD return a SAML response to the user agent to be returned to the
SAML requester. The SAML response is returned in the same fashion as described for the SAML
request in step 2.

5. Upon receiving the SAML response, the SAML requester returns an arbitrary HTTP response to the
user agent.

3.5.5.1 HTTP and Caching Considerations

HTTP proxies and the user agent intermediary should not cache SAML protocol messages. To insure this,
the following rules SHOULD be followed.

When returning SAML protocol messages using HTTP 1.1, HTTP responders SHOULD:
• Include a Cache-Control header field set to "no-cache, no-store".

sstc-saml-bindings-2.0-cd-01 18 August 2004
Copyright © OASIS Open 2004. All Rights Reserved. Page 23 of 42

User Agent SAML ResponderSAML Requester

1. User Agent accesses some
resource at the SAML Requester using
an HTTP request

2. SAML request returned in XHTML form
targeted at SAML Responder, encoded into
base64. User Agent submits form in HTTP
POST to SAML Responser

3. SAML responder interacts with User Agent, subject to constraints in the SAML request

4. SAML response returned in XHTML form targeted at SAML Requester, encoded into base64. User
Agent submits form in HTTP POST to SAML Requester

5. HTTP response sent to user agent from
SAMLRrequester upon completion of SAML
exchange

I need to initiate a SAML protocol exchange.

796
797

798
799
800
801

802
803
804
805
806

807
808
809

810
811

812

813
814

815

816

• Include a Pragma header field set to "no-cache".

There are no other restrictions on the use of HTTP headers.

3.5.5.2 Security Considerations

The presence of the user agent intermediary means that the requester and responder cannot rely on the
transport layer for end-end authentication, integrity or confidentiality protection. and must authenticate the
messages received instead. SAML provides for a signature on protocol messages for authentication and
integrity for such cases. Form-encoded messages MAY be signed before the base64 encoding is applied.

This binding SHOULD NOT be used if the content of the request or response should not be exposed to
the user agent intermediary. Otherwise, confidentiality of both SAML requests and SAML responses is
OPTIONAL and depends on the environment of use. If confidentiality is necessary, SSL 3.0 or TLS 1.0
SHOULD be used to protect the message in transit between the user agent and the SAML requester and
responder.

In general, this binding relies on message-level authentication and integrity protection via signing and
does not support confidentiality of messages from the user agent intermediary.

Note also that there is no mechanism defined to protect the integrity of the relationship between the SAML
protocol message and the "RelayState" value, if any. That is, an attacker can potentially recombine a pair
of valid HTTP responses by switching the "RelayState" values associated with each SAML protocol
message. The individual "RelayState" and SAML message values can be integrity protected, but not the
combination. As a result, the producer and consumer of "RelayState" information MUST take care not to
associate sensitive state information with the "RelayState" value without taking additional precautions
(such as based on the information in the SAML message).

3.5.6 Error Reporting
A SAML responder that refuses to perform a message exchange with the SAML requester SHOULD
return a response message with a second-level <samlp:StatusCode> value of
urn:oasis:names:tc:SAML:2.0:status:RequestDenied.

HTTP interactions during the message exchange MUST NOT use HTTP error status codes to indicate
failures in SAML processing, since the user agent is not a full party to the SAML protocol exchange.

For more information about SAML status codes, see the SAML assertions and protocols specification
[SAMLCore].

3.5.7 Metadata Considerations
Support for the HTTP POST binding SHOULD be reflected by indicating URL endpoints at which requests
and responses for a particular protocol or profile should be sent. Either a single endpoint or distinct
request and response endpoints MAY be supplied.

3.5.8 Example SAML Message Exchange Using HTTP POST
In this example, a <LogoutRequest> and <LogoutResponse> message pair are exchanged using the
HTTP POST binding.

First, here are the actual SAML protocol messages being exchanged:
<samlp:LogoutRequest xmlns:samlp="urn:oasis:names:tc:SAML:2.0:protocol"
xmlns="urn:oasis:names:tc:SAML:2.0:assertion"
 ID="d2b7c388cec36fa7c39c28fd298644a8" IssueInstant="2004-01-
21T19:00:49Z" Version="2.0">
 <Issuer>https://IdentityProvider.com/SAML</Issuer>

sstc-saml-bindings-2.0-cd-01 18 August 2004
Copyright © OASIS Open 2004. All Rights Reserved. Page 24 of 42

817

818

819

820
821
822
823

824
825
826
827
828

829
830

831
832
833
834
835
836
837

838

839
840
841

842
843

844
845

846

847
848
849

850

851
852

853
854
855
856
857
858

 <NameID Format="urn:oasis:names:tc:SAML:2.0:nameid-
format:persistent">005a06e0-ad82-110d-a556-004005b13a2b</NameID>
 <samlp:SessionIndex>1</samlp:SessionIndex>
</samlp:LogoutRequest>

<samlp:LogoutResponse xmlns:samlp="urn:oasis:names:tc:SAML:2.0:protocol"
xmlns="urn:oasis:names:tc:SAML:2.0:assertion"
 ID="b0730d21b628110d8b7e004005b13a2b"
InResponseTo="d2b7c388cec36fa7c39c28fd298644a8"
 IssueInstant="2004-01-21T19:00:49Z" Version="2.0">
 <Issuer>https://ServiceProvider.com/SAML</Issuer>
 <samlp:Status>
 <samlp:StatusCode
Value="urn:oasis:names:tc:SAML:2.0:status:Success"/>
 </samlp:Status>
</samlp:LogoutResponse>

The initial HTTP request from the user agent in step 1 is not defined by this binding. To initiate the logout
protocol exchange, the SAML requester returns the following HTTP response, containing a SAML request
message. The SAMLRequest parameter value is actually derived from the request message above.

HTTP/1.1 200 OK
Date: 21 Jan 2004 07:00:49 GMT
Content-Type: text/html; charset=iso-8859-1

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN"
"http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en">
<body onload="document.forms[0].submit()">

<noscript>
<p>
Note: Since your browser does not support JavaScript,
you must press the Continue button once to proceed.
</p>
</noscript>

<form action="https://ServiceProvider.com/SAML/SLO/Browser"
method="post">
<div>
<input type="hidden" name="RelayState"
value="0043bfc1bc45110dae17004005b13a2b"/>
<input type="hidden" name="SAMLRequest"
value="PHNhbWxwOkxvZ291dFJlcXVlc3QgeG1sbnM6c2FtbHA9InVybjpvYXNpczpuYW1l
czp0YzpTQU1MOjIuMDpwcm90b2NvbCIgeG1sbnM9InVybjpvYXNpczpuYW1lczp0
YzpTQU1MOjIuMDphc3NlcnRpb24iDQogICAgSUQ9ImQyYjdjMzg4Y2VjMzZmYTdj
MzljMjhmZDI5ODY0NGE4IiBJc3N1ZUluc3RhbnQ9IjIwMDQtMDEtMjFUMTk6MDA6
NDlaIiBNYWpvclZlcnNpb249IjIiIE1pbm9yVmVyc2lvbj0iMCI+DQogICAgPElz
c3Vlcj5odHRwczovL0lkZW50aXR5UHJvdmlkZXIuY29tL1NBTUw8L0lzc3Vlcj4N
CiAgICA8TmFtZUlEIEZvcm1hdD0idXJuOm9hc2lzOm5hbWVzOnRjOlNBTUw6Mi4w
Om5hbWVpZC1mb3JtYXQ6cGVyc2lzdGVudCI+MDA1YTA2ZTAtYWQ4Mi0xMTBkLWE1
NTYtMDA0MDA1YjEzYTJiPC9OYW1lSUQ+DQogICAgPHNhbWxwOlNlc3Npb25JbmRl
eD4xPC9zYW1scDpTZXNzaW9uSW5kZXg+DQo8L3NhbWxwOkxvZ291dFJlcXVlc3Q+
DQoNCg=="/>
</div>
<noscript>
<div>
<input type="submit" value="Continue"/>
</div>
</noscript>
</form>
</body>
</html>

After any unspecified interactions may have taken place, the SAML responder returns the HTTP response
below containing the SAML response message. Again, the SAMLResponse parameter value is actually

sstc-saml-bindings-2.0-cd-01 18 August 2004
Copyright © OASIS Open 2004. All Rights Reserved. Page 25 of 42

859
860
861
862

863
864
865
866
867
868
869
870
871
872
873

874
875
876

877
878
879

880
881
882
883
884

885
886
887
888
889
890

891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916

917
918

derived from the response message above.
HTTP/1.1 200 OK
Date: 21 Jan 2004 07:00:49 GMT
Content-Type: text/html; charset=iso-8859-1

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN"
"http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en">
<body onload="document.forms[0].submit()">

<noscript>
<p>
Note: Since your browser does not support JavaScript,
you must press the Continue button once to proceed.
</p>
</noscript>

<form action="https://IdentityProvider.com/SAML/SLO/Response"
method="post">
<div>
<input type="hidden" name="RelayState"
value="0043bfc1bc45110dae17004005b13a2b"/>
<input type="hidden" name="SAMLResponse"
value="PHNhbWxwOkxvZ291dFJlc3BvbnNlIHhtbG5zOnNhbWxwPSJ1cm46b2FzaXM6bmFt
ZXM6dGM6U0FNTDoyLjA6cHJvdG9jb2wiIHhtbG5zPSJ1cm46b2FzaXM6bmFtZXM6
dGM6U0FNTDoyLjA6YXNzZXJ0aW9uIgogICAgSUQ9ImIwNzMwZDIxYjYyODExMGQ4
YjdlMDA0MDA1YjEzYTJiIiBJblJlc3BvbnNlVG89ImQyYjdjMzg4Y2VjMzZmYTdj
MzljMjhmZDI5ODY0NGE4IgogICAgSXNzdWVJbnN0YW50PSIyMDA0LTAxLTIxVDE5
OjAwOjQ5WiIgTWFqb3JWZXJzaW9uPSIyIiBNaW5vclZlcnNpb249IjAiPgogICAg
PElzc3Vlcj5odHRwczovL1NlcnZpY2VQcm92aWRlci5jb20vU0FNTDwvSXNzdWVy
PgogICAgPHNhbWxwOlN0YXR1cz4KICAgICAgICA8c2FtbHA6U3RhdHVzQ29kZSBW
YWx1ZT0idXJuOm9hc2lzOm5hbWVzOnRjOlNBTUw6Mi4wOnN0YXR1czpTdWNjZXNz
Ii8+CiAgICA8L3NhbWxwOlN0YXR1cz4KPC9zYW1scDpMb2dvdXRSZXNwb25zZT4K"/>
</div>
<noscript>
<div>
<input type="submit" value="Continue"/>
</div>
</noscript>
</form>
</body>
</html>

3.6 HTTP Artifact Binding
In the HTTP Artifact binding, the SAML request, the SAML response, or both are transmitted by reference
using a small stand-in called an artifact. A separate, synchronous binding, such as the SAML SOAP
binding, is used to exchange the artifact for the actual protocol message using the artifact resolution
protocol defined in the SAML assertions and protocols specification [SAMLCore].

This binding MAY be composed with the HTTP Redirect binding (see Section 3.4) and the HTTP POST
binding (see Section 3.5) to transmit request and response messages in a single protocol exchange using
two different bindings.

3.6.1 Required Information
Identification: urn:oasis:names:tc:SAML:2.0:bindings:HTTP-Artifact

Contact information: security-services-comment@lists.oasis-open.org

Description: Given below.

sstc-saml-bindings-2.0-cd-01 18 August 2004
Copyright © OASIS Open 2004. All Rights Reserved. Page 26 of 42

919

920
921
922

923
924
925
926
927

928
929
930
931
932
933

934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958

959

960
961
962
963

964
965
966

967

968

969

970

Updates: Effectively replaces the binding aspects of the Browser/Artifact profile in [SAML 1.1].

3.6.2 Overview
The HTTP Artifact binding is intended for cases in which the SAML requester and responder need to
communicate using an HTTP user agent as an intermediary, but the intermediary's limitations preclude or
discourage the transmission of an entire message (or message exchange) through it. This may be for
technical reasons or because of a reluctance to expose the message content to the intermediary (and if
the use of encryption is not practical).

Note that because of the need to subsequently resolve the artifact using another synchronous binding,
such as SOAP, a direct communication path must exist between the SAML message sender and recipient
in the reverse direction of the artifact's transmission (the receiver of the message and artifact must be
able to send a <samlp:ArtifactResolve> request back to the artifact issuer). The artifact issuer must
also maintain state while the artifact is pending, which has implications for load-balanced environments.

3.6.3 Message Encoding
There are two methods of encoding an artifact for use with this binding. One is to encode the artifact into a
URL parameter and the other is to place the artifact in an HTML form control. When URL encoding is
used, the HTTP GET method is used to deliver the message, while POST is used with form encoding. All
endpoints that support this binding MUST support both techniques.

3.6.3.1 RelayState

RelayState data MAY be included with a SAML artifact transmitted with this binding. The value MUST
NOT exceed 80 bytes in length and SHOULD be integrity protected by the entity creating the message
independent of any other protections that may or may not exist during message transmission.

If an artifact that represents a SAML request is accompanied by RelayState data, then the SAML
responder MUST return its SAML protocol response using a binding that also supports a RelayState
mechanism, and it MUST place the exact data it received with the artifact into the corresponding
RelayState parameter in the response.

If no such value is included with an artifact representing a SAML request, or if the SAML response
message is being generated without a corresponding request, then the SAML responder MAY include
RelayState data to be interpreted by the recipient based on the use of a profile or prior agreement
between the parties.

3.6.3.2 URL Encoding

To encode an artifact into a URL, the artifact value is URL-encoded and placed in a query string
parameter named SAMLart.

If a “RelayState” value is to accompany the SAML artifact, it MUST be URL-encoded and placed in an
additional query string parameter named RelayState.

3.6.3.3 Form Encoding

A SAML artifact is form-encoded by placing it in a hidden form control within a form as defined by
[HTML401], chapter 17. The HTML document MUST adhere to the XHTML specification, [XHTML] . The
form control MUST be named SAMLart. Any additional form controls or presentation MAY be included but
MUST NOT be required in order for the recipient to process the artifact.

If a “RelayState” value is to accompany the SAML artifact, it MUST be placed in an additional hidden form
control named RelayState, within the same form with the SAML message.

sstc-saml-bindings-2.0-cd-01 18 August 2004
Copyright © OASIS Open 2004. All Rights Reserved. Page 27 of 42

971

972

973
974
975
976
977

978
979
980
981
982

983

984
985
986
987

988

989
990
991

992
993
994
995

996
997
998
999

1000

1001
1002

1003
1004

1005

1006
1007
1008
1009

1010
1011

The action attribute of the form MUST be the recipient's HTTP endpoint for the protocol or profile using
this binding to which the artifact is to be delivered. The method attribute MUST be set to "POST".

Any technique supported by the user agent MAY be used to cause the submission of the form, and any
form content necessary to support this MAY be included, such as submit controls and client-side scripting
commands. However, the recipient MUST be able to process the artifact without regard for the
mechanism by which the form submission is initiated.

3.6.4 Artifact Format
With respect to this binding, an artifact is a short, opaque string. Different types can be defined and used
without affecting the binding. The important characteristics are the ability of an artifact receiver to identify
the issuer of the artifact, resistance to tampering and forgery, uniqueness, and compactness.

The general format of any artifact includes a mandatory two-byte artifact type code and a two-byte index
value identifying a specific endpoint of the artifact resolution service of the issuer, as follows:

SAML_artifact := B64(TypeCode EndpointIndex RemainingArtifact)
TypeCode := Byte1Byte2
EndpointIndex := Byte1Byte2

The notation B64(TypeCode EndpointIndex RemainingArtifact) stands for the application of
the base64 [RFC2045] transformation to the catenation of the TypeCode, EndpointIndex, and
RemainingArtifact.

The following practices are RECOMMENDED for the creation of SAML artifacts:
• Each issuer is assigned an identifying URI, also known as the issuer's entity (or provider) ID. See

section 8.3.6 of [SAMLCore] for a discussion of this kind of identifier.

• The issuer constructs the SourceID component of the artifact by taking the SHA-1 hash of the
identification URL. The hash value is NOT encoded into hexadecimal.

• The MessageHandle value is constructed from a cryptographically strong random or
pseudorandom number sequence [RFC1750] generated by the issuer. The sequence consists of
values of at least 16 bytes in size. These values should be padded as needed to a total length of 20
bytes.

The following describes the single artifact type defined by SAML 2.0.

3.6.4.1 Required Information

Identification: urn:oasis:names:tc:SAML:2.0:artifact-04

Contact information: security-services-comment@lists.oasis-open.org

Description: Given below.

Updates: None.

3.6.4.2 Format Details

SAML 2.0 defines an artifact type of type code 0x0004. This artifact type is defined as follows:
TypeCode := 0x0004
RemainingArtifact := SourceID MessageHandle
SourceID := 20-byte_sequence
MessageHandle := 20-byte_sequence

sstc-saml-bindings-2.0-cd-01 18 August 2004
Copyright © OASIS Open 2004. All Rights Reserved. Page 28 of 42

1012
1013

1014
1015
1016
1017

1018

1019
1020
1021

1022
1023

1024

1025

1026

1027
1028
1029

1030

1031
1032

1033
1034

1035
1036
1037
1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

SourceID is a 20-byte sequence used by the artifact receiver to determine artifact issuer identity and the
set of possible resolution endpoints.

It is assumed that the destination site will maintain a table of SourceID values as well as one or more
indexed URL endpoints (or addresses) for the corresponding SAML responder. The SAML metadata
specification [SAMLMeta] MAY be used for this purpose. On receiving the SAML artifact, the receiver
determines if the SourceID belongs to a known artifact issuer and obtains the location of the SAML
responder using the EndpointIndex before sending a SAML <samlp:ArtifactResolve> message
to it.

Any two artifact issuers with a common receiver MUST use distinct SourceID values. Construction of
MessageHandle values is governed by the principle that they SHOULD have no predictable relationship
to the contents of the referenced message at the issuing site and it MUST be infeasible to construct or
guess the value of a valid, outstanding message handle.

3.6.5 Message Exchange
The system model used for SAML conversations by means of this binding is a request-response model in
which an artifact reference takes the place of the actual message content, and the artifact reference is
sent to the user agent in an HTTP response and delivered to the message recipient in an HTTP request.
The HTTP interactions before, between, and after these exchanges take place is unspecified. Both the
SAML requester and responder are assumed to be HTTP responders.

Additonally, it is assumed that on receipt of an artifact by way of the user agent, the recipient invokes a
separate, direct exchange with the artifact issuer using the Artifact Resolution Protocol defined in
[SAMLCore]. This exchange MUST use a binding that does not use the HTTP user agent as an
intermediary, such as the SOAP binding. On the successful acquisition of a SAML protocol message, the
artifact is discarded and the processing of the primary SAML protocol exchange resumes (or ends, if the
message is a response).

Issuing and delivering an artifact, along with the subsequent resolution step, constitutes half of the overall
SAML protocol exchange. This binding can be used to deliver either or both halves of a SAML protocol
exchange. A binding composable with it, such as the HTTP Redirect (see Section 3.4) or POST (see
Section 3.5) binding, MAY be used to carry the other half of the exchange. The following sequence
assumes that the artifact binding is used for both halves. See the diagram below illustrating the messages
exchanged.

sstc-saml-bindings-2.0-cd-01 18 August 2004
Copyright © OASIS Open 2004. All Rights Reserved. Page 29 of 42

1051
1052

1053
1054
1055
1056
1057
1058

1059
1060
1061
1062

1063

1064
1065
1066
1067
1068

1069
1070
1071
1072
1073
1074

1075
1076
1077
1078
1079
1080

 1. Initially, the user agent makes an arbitrary HTTP request to a system entity. In the course of
processing the request, the system entity decides to initiate a SAML protocol exchange.

 2. The system entity acting as a SAML requester responds to an HTTP request from the user agent by
returning an artifact representing a SAML request.

• If URL-encoded, the artifact is returned encoded into the HTTP response's Location
header, and the HTTP status MUST be either 303 or 302. The SAML requester MAY
include additional presentation and content in the HTTP response to facilitate the user
agent's transmission of the message, as defined in HTTP 1.1 [RFC2616]. The user

sstc-saml-bindings-2.0-cd-01 18 August 2004
Copyright © OASIS Open 2004. All Rights Reserved. Page 30 of 42

User Agent SAML ResponderSAML Requester

1. User Agent accesses some
resource at the SAML Requester using
an HTTP request

2. SAML artifact returned in HTTP Redirect
URL encoded into Location header or XHTML
form control targeted at SAML Responder

5. SAML Responder interacts with User Agent, subject to constraints in the SAML request

6. SAML artifact returned in HTTP Redirect URL encoded into Location header or XHTML form control
targeted at SAML Requester

9. HTTP response sent to user agent from
SAML requester upon completion of SAML
exchange

I need to initiate a SAML protocol exchange.

3. <ArtifactResolve> message
sent by SAML Responder directly to SAML
Requester

4. <ArtifactResponse> message
returned by SAML Requester containing
original SAML request message inside

7. <ArtifactResolve> message
sent by SAML Requester directly to SAML
Responder

8. <ArtifactResponse> message
returned by SAML Responder containing
original SAML response message inside

1081
1082

1083
1084

1085
1086
1087
1088

agent delivers the artifact by issuing an HTTP GET request to the SAML responder.

• If form-encoded, then the artifact is returned in an XHTML document containing the
form and content defined in Section 3.6.3.3. The user agent delivers the artifact by
issuing an HTTP POST request to the SAML responder.

 3. The SAML responder determines the SAML requester by examining the artifact (the exact process
depends on the type of artifact), and issues a <samlp:ArtifactResolve> request containing
the artifact to the SAML requester using a direct SAML binding, temporarily reversing roles.

 4. Assuming the necessary conditions are met, the SAML requester returns a
<samlp:ArtifactResponse> containing the original SAML request message it wishes the
SAML responder to process.

 5. In general, the SAML responder MAY respond to the SAML request by immediately returning a
SAML artifact or MAY return arbitrary content to facilitate subsequent interaction with the user agent
necessary to fulfill the request. Specific protocols and profiles may include mechanisms to indicate
the requester's level of willingness to permit this kind of interaction (for example, the IsPassive
attribute in <samlp:AuthnRequest>).

 6. Eventually the responder SHOULD return a SAML artifact to the user agent to be returned to the
SAML requester. The SAML response artifact is returned in the same fashion as described for the
SAML request artifact in step 2.The SAML requester determines the SAML responder by examining
the artifact, and issues a <samlp:ArtifactResolve> request containing the artifact to the SAML
responder using a direct SAML binding, as in step 3.

 7. Assuming the necessary conditions are met, the SAML responder returns a
<samlp:ArtifactResponse> containing the SAML response message it wishes the requester to
process, as in step 4.

 8. Upon receiving the SAML response, the SAML requester returns an arbitrary HTTP response to the
user agent.

3.6.5.1 HTTP and Caching Considerations

HTTP proxies and the user agent intermediary should not cache SAML artifacts. To insure this, the
following rules SHOULD be followed.

When returning SAML artifacts using HTTP 1.1, HTTP responders SHOULD:
• Include a Cache-Control header field set to "no-cache, no-store".

• Include a Pragma header field set to "no-cache".

There are no other restrictions on the use of HTTP headers.

3.6.5.2 Security Considerations

This binding uses a combination of indirect transmission of a message reference followed by a direct
exchange to return the actual message. As a result, the message reference (artifact) need not itself be
authenticated or integrity protected, but the callback request/response exchange that returns the actual
message MAY be mutually authenticated and integrity protected, depending on the environment of use.

If the actual SAML protocol message is intended for a specific recipient, then the artifact's issuer MUST
authenticate the sender of the subsequent <samlp:ArtifactResolve> message before returning the
actual message.

The transmission of an artifact to and from the user agent SHOULD be protected with confidentiality; SSL
3.0 or TLS 1.0 SHOULD be used. The callback request/response exchange that returns the actual
message MAY be protected, depending on the environment of use.

sstc-saml-bindings-2.0-cd-01 18 August 2004
Copyright © OASIS Open 2004. All Rights Reserved. Page 31 of 42

1089

1090
1091
1092

1093
1094
1095

1096
1097
1098

1099
1100
1101
1102
1103

1104
1105
1106
1107
1108

1109
1110
1111

1112
1113

1114

1115
1116

1117

1118

1119

1120

1121

1122
1123
1124
1125

1126
1127
1128

1129
1130
1131

In general, this binding relies on the artifact as a hard-to-forge short-term reference and applies other
security measures to the callback request/response that returns the actual message. All artifacts MUST
have a single-use semantic enforced by the artifact issuer. Furthermore, it is RECOMMENDED that
artifact receivers also enforce a single-use semantic on the artifact values they receive, to prevent an
attacker from interfering with the resolution of an artifact by a user agent and then resubmitting it to the
artifact receiver.

Note also that there is no mechanism defined to protect the integrity of the relationship between the
artifact and the "RelayState" value, if any. That is, an attacker can potentially recombine a pair of valid
HTTP responses by switching the "RelayState" values associated with each artifact. As a result, the
producer/consumer of "RelayState" information MUST take care not to associate sensitive state
information with the "RelayState" value without taking additional precautions (such as based on the
information in the SAML protocol message retrieved via artifact).

3.6.6 Error Reporting
A SAML responder that refuses to perform a message exchange with the SAML requester SHOULD
return a response message with a second-level <samlp:StatusCode> value of
urn:oasis:names:tc:SAML:2.0:status:RequestDenied.

HTTP interactions during the message exchange MUST NOT use HTTP error status codes to indicate
failures in SAML processing, since the user agent is not a full party to the SAML protocol exchange.

If the issuer of an artifact receives a <samlp:ArtifactResolve> message that it can understand, it
MUST return a <samlp:ArtifactResponse> with a <samlp:StatusCode> value of
urn:oasis:names:tc:SAML:2.0:status:Success, even if it does not return the corresponding
message (for example because the artifact requester is not authorized to receive the message or the
artifact is no longer valid).

For more information about SAML status codes, see the SAML assertions and protocols specification
[SAMLCore].

3.6.7 Metadata Considerations
Support for the HTTP Artifact binding SHOULD be reflected by indicating URL endpoints at which
requests and responses for a particular protocol or profile should be sent. Either a single endpoint or
distinct request and response endpoints MAY be supplied. One or more indexed endpoints for processing
<samlp:ArtifactResolve> messages SHOULD also be described.

3.6.8 Example SAML Message Exchange Using HTTP Artifact
In this example, a <LogoutRequest> and <LogoutResponse> message pair are exchanged using the
HTTP Artifact binding, with the artifact resolution taking place using the SOAP binding bound to HTTP.

First, here are the actual SAML protocol messages being exchanged:
<samlp:LogoutRequest xmlns:samlp="urn:oasis:names:tc:SAML:2.0:protocol"
xmlns="urn:oasis:names:tc:SAML:2.0:assertion"
 ID="d2b7c388cec36fa7c39c28fd298644a8" IssueInstant="2004-01-
21T19:00:49Z" Version="2.0">
 <Issuer>https://IdentityProvider.com/SAML</Issuer>
 <NameID Format="urn:oasis:names:tc:SAML:2.0:nameid-
format:persistent">005a06e0-ad82-110d-a556-004005b13a2b</NameID>
 <samlp:SessionIndex>1</samlp:SessionIndex>
</samlp:LogoutRequest>

<samlp:LogoutResponse xmlns:samlp="urn:oasis:names:tc:SAML:2.0:protocol"
xmlns="urn:oasis:names:tc:SAML:2.0:assertion"
 ID="b0730d21b628110d8b7e004005b13a2b"
InResponseTo="d2b7c388cec36fa7c39c28fd298644a8"

sstc-saml-bindings-2.0-cd-01 18 August 2004
Copyright © OASIS Open 2004. All Rights Reserved. Page 32 of 42

1132
1133
1134
1135
1136
1137

1138
1139
1140
1141
1142
1143

1144

1145
1146
1147

1148
1149

1150
1151
1152
1153
1154

1155
1156

1157

1158
1159
1160
1161

1162

1163
1164

1165
1166
1167
1168
1169
1170
1171
1172
1173
1174

1175
1176
1177
1178

 IssueInstant="2004-01-21T19:00:49Z" Version="2.0">
 <Issuer>https://ServiceProvider.com/SAML</Issuer>
 <samlp:Status>
 <samlp:StatusCode
Value="urn:oasis:names:tc:SAML:2.0:status:Success"/>
 </samlp:Status>
</samlp:LogoutResponse>

The initial HTTP request from the user agent in step 1 is not defined by this binding. To initiate the logout
protocol exchange, the SAML requester returns the following HTTP response, containing a SAML artifact.
Note that the line feeds in the HTTP Location header below are a result of document formatting, and
there are no line feeds in the actual header value.

HTTP/1.1 302 Object Moved
Date: 21 Jan 2004 07:00:49 GMT
Location:
https://ServiceProvider.com/SAML/SLO/Browser?SAMLart=AAQAADWNEw5VT47wcO4z
X%2FiEzMmFQvGknDfws2ZtqSGdkNSbsW1cmVR0bzU%
3D&RelayState=0043bfc1bc45110dae17004005b13a2b
Content-Type: text/html; charset=iso-8859-1

The SAML responder then resolves the artifact it received into the actual SAML request using the Artifact
Resolution protocol and the SOAP binding in steps 3 and 4, as follows:
Step 3:

POST /SAML/Artifact/Resolve HTTP/1.1
Host: IdentityProvider.com
Content-Type: text/xml
Content-Length: nnn
SOAPAction: http://www.oasis-open.org/committees/security
<SOAP-ENV:Envelope
 xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">
 <SOAP-ENV:Body>
 <samlp:ArtifactResolve

xmlns:samlp="urn:oasis:names:tc:SAML:2.0:protocol"
xmlns="urn:oasis:names:tc:SAML:2.0:assertion"
ID="_6c3a4f8b9c2d" Version="2.0"
IssueInstant="2004-01-21T19:00:49Z">
<Issuer>https://ServiceProvider.com/SAML</Issuer>
<Artifact>
AAQAADWNEw5VT47wcO4zX/iEzMmFQvGknDfws2ZtqSGdkNSbsW1cmVR0bzU=
</Artifact>

 </samlp:ArtifactResolve>
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

Step 4:
HTTP/1.1 200 OK
Date: 21 Jan 2004 07:00:49 GMT
Content-Type: text/xml
Content-Length: nnnn

<SOAP-ENV:Envelope
 xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">
 <SOAP-ENV:Body>
 <samlp:ArtifactResponse

xmlns:samlp="urn:oasis:names:tc:SAML:2.0:protocol"
xmlns="urn:oasis:names:tc:SAML:2.0:assertion"
ID="_FQvGknDfws2Z" Version="2.0"
InResponseTo="_6c3a4f8b9c2d"

 IssueInstant="2004-01-21T19:00:49Z">
<Issuer>https://IdentityProvider.com/SAML</Issuer>

 <samlp:Status>
<samlp:StatusCode

Value="urn:oasis:names:tc:SAML:2.0:status:Success"/>
</samlp:Status>

sstc-saml-bindings-2.0-cd-01 18 August 2004
Copyright © OASIS Open 2004. All Rights Reserved. Page 33 of 42

1179
1180
1181
1182
1183
1184
1185

1186
1187
1188
1189

1190
1191
1192
1193
1194
1195
1196

1197
1198

1199

1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219

1220
1221
1222
1223
1224

1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238

<samlp:LogoutRequest ID="d2b7c388cec36fa7c39c28fd298644a8"
IssueInstant="2004-01-21T19:00:49Z"
Version="2.0">

 <Issuer>https://IdentityProvider.com/SAML</Issuer>
 <NameID Format="urn:oasis:names:tc:SAML:2.0:nameid-
format:persistent">005a06e0-ad82-110d-a556-004005b13a2b</NameID>
 <samlp:SessionIndex>1</samlp:SessionIndex>

</samlp:LogoutRequest>
 </samlp:ArtifactResponse>
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

After any unspecified interactions may have taken place, the SAML responder returns a second SAML
artifact in its HTTP response in step 6:

HTTP/1.1 302 Object Moved
Date: 21 Jan 2004 07:05:49 GMT
Location:
https://IdentityProvider.com/SAML/SLO/Response?SAMLart=AAQAAFGIZXv5%
2BQaBaE5qYurHWJO1nAgLAsqfnyiDHIggbFU0mlSGFTyQiPc%
3D&RelayState=0043bfc1bc45110dae17004005b13a2b
Content-Type: text/html; charset=iso-8859-1

The SAML responder then resolves the artifact it received into the actual SAML request using the Artifact
Resolution protocol and the SOAP binding in steps 7 and 8, as follows:
Step 7:

POST /SAML/Artifact/Resolve HTTP/1.1
Host: ServiceProvider.com
Content-Type: text/xml
Content-Length: nnn
SOAPAction: http://www.oasis-open.org/committees/security
<SOAP-ENV:Envelope
 xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">
 <SOAP-ENV:Body>
 <samlp:ArtifactResolve

xmlns:samlp="urn:oasis:names:tc:SAML:2.0:protocol"
xmlns="urn:oasis:names:tc:SAML:2.0:assertion"
ID="_ec36fa7c39" Version="2.0"
IssueInstant="2004-01-21T19:05:49Z">
<Issuer>https://IdentityProvider.com/SAML</Issuer>
<Artifact>
AAQAAFGIZXv5+QaBaE5qYurHWJO1nAgLAsqfnyiDHIggbFU0mlSGFTyQiPc=
</Artifact>

 </samlp:ArtifactResolve>
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

Step 8:
HTTP/1.1 200 OK
Date: 21 Jan 2004 07:05:49 GMT
Content-Type: text/xml
Content-Length: nnnn

<SOAP-ENV:Envelope
 xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">
 <SOAP-ENV:Body>
 <samlp:ArtifactResponse

xmlns:samlp="urn:oasis:names:tc:SAML:2.0:protocol"
xmlns="urn:oasis:names:tc:SAML:2.0:assertion"
ID="_FQvGknDfws2Z" Version="2.0"
InResponseTo="_ec36fa7c39"

 IssueInstant="2004-01-21T19:05:49Z">
<Issuer>https://ServiceProvider.com/SAML</Issuer>

 <samlp:Status>
<samlp:StatusCode

sstc-saml-bindings-2.0-cd-01 18 August 2004
Copyright © OASIS Open 2004. All Rights Reserved. Page 34 of 42

1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249

1250
1251

1252
1253
1254
1255
1256
1257
1258

1259
1260

1261

1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281

1282
1283
1284
1285
1286

1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298

Value="urn:oasis:names:tc:SAML:2.0:status:Success"/>
</samlp:Status>
<samlp:LogoutResponse ID="_b0730d21b628110d8b7e004005b13a2b"

InResponseTo="_d2b7c388cec36fa7c39c28fd298644a8"
IssueInstant="2004-01-21T19:05:49Z"
Version="2.0">

 <Issuer>https://ServiceProvider.com/SAML</Issuer>
<samlp:Status>

<samlp:StatusCode
Value="urn:oasis:names:tc:SAML:2.0:status:Success"/>

</samlp:Status>
</samlp:LogoutResponse>

 </samlp:ArtifactResponse>
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

3.7 SAML URI Binding
URIs are a protocol-independent means of referring to a resource. This binding is not a general SAML
request/response binding, but rather supports the encapsulation of a <samlp:AssertionIDRequest>
message with a single <saml:AssertionIDRef> into the resolution of a URI. The result of a successful
request is a SAML <saml:Assertion> element (but not a complete SAML response).

Like SOAP, URI resolution can occur over multiple underlying transports. This binding has transport-
independent aspects, but also calls out the use of HTTP with SSL 3.0 or TLS 1.0 as REQUIRED
(mandatory to implement).

3.7.1 Required Information
Identification: urn:oasis:names:tc:SAML:2.0:bindings:URI

Contact information: security-services-comment@lists.oasis-open.org

Description: Given below.

Updates: None

3.7.2 Protocol-Independent Aspects of the SAML URI Binding
The following sections define aspects of the SAML URI binding that are independent of the underlying
transport protocol of the URI resolution process.

3.7.2.1 Basic Operation

A SAML URI reference identifies a specific SAML assertion. The result of resolving the URI MUST be a
message containing the assertion, or a transport-specific error. The specific format of the message
depends on the underlying transport protocol. If the transport protocol permits the returned content to be
described, such as HTTP 1.1 [RFC2616], then the assertion MAY be encoded in whatever format is
permitted. If not, the assertion MUST be returned in a form which can be unambiguously interpreted as or
transformed into an XML serialization of the assertion.

It MUST be the case that if the same URI reference is resolved in the future, then either the same SAML
assertion, or an error, is returned. That is, the reference MAY be persistent but MUST consistently
reference the same assertion, if any.

3.7.3 Security Considerations
Indirect use of a SAML assertion presents dangers if the binding of the reference to the result is not
secure. The particular threats and their severity depend on the use to which the assertion is being put. In

sstc-saml-bindings-2.0-cd-01 18 August 2004
Copyright © OASIS Open 2004. All Rights Reserved. Page 35 of 42

1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313

1314

1315
1316
1317
1318

1319
1320
1321

1322

1323

1324

1325

1326

1327

1328
1329

1330

1331
1332
1333
1334
1335
1336

1337
1338
1339

1340

1341
1342

general, the result of resolving a URI reference to a SAML assertion SHOULD only be trusted if the
requester can be certain of the identity of the responder and that the contents have not been modified in
transit.

It is often not sufficient that the assertion itself be signed, because URI references are by their nature
somewhat opaque to the requester. The requester SHOULD have independent means to insure that the
assertion returned is actually the one that is represented by the URI; this is accomplished by both
authenticating the responder and relying on the integrity of the response.

3.7.4 MIME Encapsulation
For resolution protocols that support MIME as a content description and packaging mechanism, the
resulting assertion SHOULD be returned as a MIME entity of type application/samlassertion+xml,
as defined by [SAMLmime].

3.7.5 Use of HTTP URIs
A SAML authority that claims conformance to the SAML URI binding MUST implement support for HTTP.
This section describes certain specifics of using HTTP URIs, including URI syntax, HTTP headers, and
error reporting.

3.7.5.1 URI Syntax

In general, there are no restrictions on the permissible syntax of a SAML URI reference as long as the
SAML authority responsible for the reference creates the message containing it. However, authorities
MUST support a URL endpoint at which an HTTP request can be sent with a single query string
parameter named ID. There MUST be no query string in the endpoint URL itself independent of this
parameter.

For example, if the documented endpoint at an authority is "https://saml.example.edu/assertions", a
request for an assertion with an ID of abcde can be sent to:

https://saml.example.edu/assertions?ID=abcde
Note that the use of wildcards is not allowed for such ID queries.

3.7.5.2 HTTP and Caching Considerations

HTTP proxies MUST NOT cache SAML assertions. To insure this, the following rules SHOULD be
followed.

When returning SAML assertions using HTTP 1.1, HTTP responders SHOULD:
• Include a Cache-Control header field set to "no-cache, no-store".

• Include a Pragma header field set to "no-cache".

3.7.5.3 Security Considerations

[RFC2617] describes possible attacks in the HTTP environment when basic or message-digest
authentication schemes are used.

Use of SSL 3.0 or TLS 1.0 is STRONGLY RECOMMENDED as a means of authentication, integrity
protection, and confidentiality.

3.7.5.4 Error Reporting

As an HTTP protocol exchange, the appropriate HTTP status code SHOULD be used to indicate the result

sstc-saml-bindings-2.0-cd-01 18 August 2004
Copyright © OASIS Open 2004. All Rights Reserved. Page 36 of 42

1343
1344
1345

1346
1347
1348
1349

1350

1351
1352
1353

1354

1355
1356
1357

1358

1359
1360
1361
1362
1363

1364
1365

1366

1367

1368

1369
1370

1371

1372

1373

1374

1375
1376

1377
1378

1379

1380

of a request. For example, a SAML responder that refuses to perform a message exchange with the
SAML requester SHOULD return a "403 Forbidden" response. If the assertion specified is unknown to
the responder, then a "404 Not Found" response SHOULD be returned. In these cases, the content of
the HTTP body is not significant.

3.7.5.5 Metadata Considerations

Support for the URI binding over HTTP SHOULD be reflected by indicating a URL endpoint at which
requests for arbitrary assertions are to be sent.

3.7.5.6 Example SAML Message Exchange Using an HTTP URI

Following is an example of a request for an assertion.
GET /SamlService?ID=abcde HTTP/1.1
Host: www.example.com

Following is an example of the corresponding response, which supplies the requested assertion.
HTTP/1.1 200 OK
Content-Type: application/samlassertion+xml
Cache-Control: no-cache, no-store
Pragma: no-cache
Content-Length: nnnn

<saml:Assertion ID="abcde" ...>
...
</saml:Assertion>

sstc-saml-bindings-2.0-cd-01 18 August 2004
Copyright © OASIS Open 2004. All Rights Reserved. Page 37 of 42

1381
1382
1383
1384

1385

1386
1387

1388

1389
1390
1391

1392
1393
1394
1395
1396
1397

1398
1399
1400

4 References
[AES] FIPS-197, Advanced Encryption Standard (AES), available from

http://www.nist.gov/.
[Anders] A suggestion on how to implement SAML browser bindings without using

“Artifacts”, http://www.x-obi.com/OBI400/andersr-browser-artifact.ppt.
[CoreAssnEx] Core Assertions Architecture, Examples and Explanations, http://www.oasis-

open.org/committees/security/docs/draft-sstc-core-phill-07.pdf.
[HTML401] HTML 4.01 Specification, W3C Recommendation 24 December 1999,

http://www.w3.org/TR/html4.
[XHTML] XHTML 1.0 The Extensible HyperText Markup Language (Second Edition),

http://www.w3.org/TR/xhtml1/.
[Liberty] The Liberty Alliance Project, http://www.projectliberty.org.
[MSURL] Microsoft technical support article,

http://support.microsoft.com/support/kb/articles/Q208/4/27.ASP.
[PAOS] Aarts, R., “Liberty Reverse HTTP Binding for SOAP Specification”, Version: 1.0,

https://www.projectliberty.org/specs/liberty-paos-v1.0.pdf
[Rescorla-Sec] E. Rescorla et al., Guidelines for Writing RFC Text on Security Considerations,

http://www.ietf.org/internet-drafts/draft-iab-sec-cons-03.txt.
[RFC1952] GZIP file format specification version 4.3, http://www.ietf.org/rfc/rfc1952.txt
[RFC1738] Uniform Resource Locators (URL), http://www.ietf.org/rfc/rfc1738.txt
[RFC1750] Randomness Recommendations for Security. http://www.ietf.org/rfc/rfc1750.txt
[RFC1945] Hypertext Transfer Protocol -- HTTP/1.0, http://www.ietf.org/rfc/rfc1945.txt.
[RFC2045] Multipurpose Internet Mail Extensions (MIME) Part One: Format of Internet

Message Bodies, http://www.ietf.org/rfc/rfc2045.txt
[RFC2119] S. Bradner, Key words for use in RFCs to Indicate Requirement Levels, IETF

RFC 2119, March 1997, http://www.ietf.org/rfc/rfc2119.txt.
[RFC2246] The TLS Protocol Version 1.0, http://www.ietf.org/rfc/rfc2246.txt.
[RFC2279] UTF-8, a transformation format of ISO 10646, http://www.ietf.org/rfc/rfc2279.txt.
[RFC2616] Hypertext Transfer Protocol -- HTTP/1.1, http://www.ietf.org/rfc/rfc2616.txt.
[RFC2617] HTTP Authentication: Basic and Digest Access Authentication, IETF RFC 2617,

http://www.ietf.org/rfc/rfc2617.txt.
[SAMLCore] S. Cantor et al., Assertions and Protocols for the OASIS Security Assertion

Markup Language (SAML) V2.0. OASIS SSTC, August 2004. Document ID sstc-
saml-core-2.0-cd-01. See http://www.oasis-open.org/committees/security/.

[SAMLGloss] J. Hodges et al., Glossary for the OASIS Security Assertion Markup Language
(SAML) V2.0. OASIS SSTC, August 2004. Document ID sstc-saml-glossary-2.0-
cd-01. See http://www.oasis-open.org/committees/security/.

[SAMLProfile] S. Cantor et al., Profiles for the OASIS Security Assertion Markup Language
(SAML) V2.0. OASIS SSTC, August 2004. Document ID sstc-saml-profiles-2.0-
cd-01. See http://www.oasis-open.org/committees/security/.

[SAMLMeta] S. Cantor et al., Metadata for the OASIS Security Assertion Markup Language
(SAML) V2.0. OASIS SSTC, August 2004. Document ID sstc-saml-metadata-2.0-
cd-01. See http://www.oasis-open.org/committees/security/.

[SAMLmime] http://www.ietf.org/internet-drafts/draft-hodges-saml-mediatype-01.txt.

sstc-saml-bindings-2.0-cd-01 18 August 2004
Copyright © OASIS Open 2004. All Rights Reserved. Page 38 of 42

1401

1402
1403

1404
1405

1406
1407

1408
1409

1410
1411

1412

1413
1414

1415
1416

1417
1418

1419

1420

1421

1422

1423
1424

1425
1426

1427

1428

1429

1430
1431

1432
1433
1434

1435
1436
1437

1438
1439
1440

1441
1442
1443

1444

[SAMLSecure] F. Hirsch et al., Security and Privacy Considerations for the OASIS Security
Assertion Markup Language (SAML) V2.0. OASIS SSTC, August 2004.
Document ID sstc-saml-sec-consider-2.0-cd-01. See http://www.oasis-
open.org/committees/security/.

[SAMLReqs] Darren Platt et al., SAML Requirements and Use Cases, OASIS, April 2002,
http://www.oasis-open.org/committees/security/.

[SAMLWeb] OASIS Security Services Technical Committee website, http://www.oasis-
open.org/committees/security.

[SESSION] RL “Bob” Morgan, Support of target web server sessions in Shibboleth,
http://middleware.internet2.edu/shibboleth/docs/draft-morgan-shibboleth-session-
00.txt

[ShibMarlena] Marlena Erdos, Shibboleth Architecture DRAFT v1.1,
 http://shibboleth.internet2.edu/draft-internet2-shibboleth-arch-v05.html .

[SOAP1.1] D. Box et al., Simple Object Access Protocol (SOAP) 1.1, World Wide Web
Consortium Note, May 2000, http://www.w3.org/TR/SOAP.

[SOAP-PRIMER] N. Mitra, SOAP Version 1.2 Part 0: Primer, W3C Recommendation 24 June
2003, http://www.w3.org/TR/soap12-part0/

[SSL3] A. Frier et al., The SSL 3.0 Protocol, Netscape Communications Corp, November
1996.

[WEBSSO] RL “Bob” Morgan, Interactions between Shibboleth and local-site web sign-on
services, http://middleware.internet2.edu/shibboleth/docs/draft-morgan-
shibboleth-websso-00.txt

[WSS-SAML] P. Hallam-Baker et al., Web Services Security: SAML Token Profile, OASIS,
March 2003, http://www.oasis-open.org/committees/wss.

[WSS-Sec] A. Nadalin et al., Web Services Security: SOAP Message Security 1.0 (WS-
Security 2004), OASIS Standard 200401, March 2004, http://docs.oasis-
open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0.pdf

[XMLSig] D. Eastlake et al., XML-Signature Syntax and Processing, World Wide Web
Consortium, http://www.w3.org/TR/xmldsig-core/.

sstc-saml-bindings-2.0-cd-01 18 August 2004
Copyright © OASIS Open 2004. All Rights Reserved. Page 39 of 42

1445
1446
1447
1448

1449
1450

1451
1452

1453
1454
1455

1456
1457

1458
1459

1460
1461

1462
1463

1464
1465
1466

1467
1468

1469
1470
1471

1472
1473

Appendix A. Acknowledgments
The editors would like to acknowledge the contributions of the OASIS Security Services Technical
Committee, whose voting members at the time of publication were:

 Conor Cahill, AOL
 Hal Lockhart, BEA Systems
 Rick Randall, Booz Allen Hamilton
 Ronald Jacobson, Computer Associates
 Gavenraj Sodhi, Computer Associates
 Tim Alsop, CyberSafe Limited
 Paul Madsen, Entrust
 Carolina Canales-Valenzuela, Ericsson
 Dana Kaufman, Forum Systems
 Irving Reid, Hewlett-Packard
 Paula Austel, IBM
 Maryann Hondo, IBM
 Michael McIntosh, IBM
 Anthony Nadalin, IBM
 Nick Ragouzis, Individual
 Scott Cantor, Internet2
 Bob Morgan, Internet2
 Prateek Mishra, Netegrity
 Forest Yin, Netegrity
 Peter Davis, Neustar
 Frederick Hirsch, Nokia
 John Kemp, Nokia
 Senthil Sengodan, Nokia
 Scott Kiester, Novell
 Steve Anderson, OpenNetwork
 Ari Kermaier, Oracle
 Vamsi Motukuru, Oracle
 Darren Platt, Ping Identity
 Jim Lien, RSA Security
 John Linn, RSA Security
 Rob Philpott, RSA Security
 Dipak Chopra, SAP
 Jahan Moreh, Sigaba
 Bhavna Bhatnagar, Sun Microsystems
 Jeff Hodges, Sun Microsystems
 Eve Maler, Sun Microsystems
 Ronald Monzillo, Sun Microsystems
 Emily Xu, Sun Microsystems
 Mike Beach, Boeing

sstc-saml-bindings-2.0-cd-01 18 August 2004
Copyright © OASIS Open 2004. All Rights Reserved. Page 40 of 42

1474

1475
1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

1509

1510

1511

1512

1513

1514

1515

 Greg Whitehead, Trustgenix
 James Vanderbeek, Vodafone

The editors also would like to acknowledge the following people for their contributions to previous versions
of the OASIS Security Assertions Markup Language Standard:

 Stephen Farrell, Baltimore Technologies
 David Orchard, BEA Systems
 Krishna Sankar, Cisco Systems
 Zahid Ahmed, CommerceOne
 Carlisle Adams, Entrust
 Tim Moses, Entrust
 Nigel Edwards, Hewlett-Packard
 Joe Pato, Hewlett-Packard
 Bob Blakley, IBM
 Marlena Erdos, IBM
 Marc Chanliau, Netegrity
 Chris McLaren, Netegrity
 Lynne Rosenthal, NIST
 Mark Skall, NIST
 Simon Godik, Overxeer
 Charles Norwood, SAIC
 Evan Prodromou, Securant
 Robert Griffin, RSA Security (former editor)
 Sai Allarvarpu, Sun Microsystems
 Chris Ferris, Sun Microsystems
 Emily Xu, Sun Microsystems
 Mike Myers, Traceroute Security
 Phillip Hallam-Baker, VeriSign (former editor)
 James Vanderbeek, Vodafone
 Mark O’Neill, Vordel
 Tony Palmer, Vordel

Finally, the editors wish to acknowledge the following people for their contributions of material used as
input to the OASIS Security Assertions Markup Language specifications:

 Thomas Gross, IBM
 Birgit Pfitzmann, IBM

sstc-saml-bindings-2.0-cd-01 18 August 2004
Copyright © OASIS Open 2004. All Rights Reserved. Page 41 of 42

1516

1517

1518
1519

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

1541

1542

1543

1544

1545

1546
1547

1548

1549

Appendix B. Notices
OASIS takes no position regarding the validity or scope of any intellectual property or other rights that
might be claimed to pertain to the implementation or use of the technology described in this document or
the extent to which any license under such rights might or might not be available; neither does it represent
that it has made any effort to identify any such rights. Information on OASIS's procedures with respect to
rights in OASIS specifications can be found at the OASIS website. Copies of claims of rights made
available for publication and any assurances of licenses to be made available, or the result of an attempt
made to obtain a general license or permission for the use of such proprietary rights by implementors or
users of this specification, can be obtained from the OASIS Executive Director.

OASIS invites any interested party to bring to its attention any copyrights, patents or patent applications, or
other proprietary rights which may cover technology that may be required to implement this specification.
Please address the information to the OASIS Executive Director.

Copyright © OASIS Open 2004. All Rights Reserved.

This document and translations of it may be copied and furnished to others, and derivative works that
comment on or otherwise explain it or assist in its implementation may be prepared, copied, published and
distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice and
this paragraph are included on all such copies and derivative works. However, this document itself may
not be modified in any way, such as by removing the copyright notice or references to OASIS, except as
needed for the purpose of developing OASIS specifications, in which case the procedures for copyrights
defined in the OASIS Intellectual Property Rights document must be followed, or as required to translate it
into languages other than English.

The limited permissions granted above are perpetual and will not be revoked by OASIS or its successors
or assigns.

This document and the information contained herein is provided on an “AS IS” basis and OASIS
DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY
WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR
ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

sstc-saml-bindings-2.0-cd-01 18 August 2004
Copyright © OASIS Open 2004. All Rights Reserved. Page 42 of 42

1550

1551
1552
1553
1554
1555
1556
1557
1558

1559
1560
1561

1562

1563
1564
1565
1566
1567
1568
1569
1570

1571
1572

1573
1574
1575
1576

