

White Paper

www.roguewave.com

Project Persian
 Creation and Consumption of

High-Performance Web Services in C++

Table of Contents

Abstract 1

Introduction 1

Project Persian Overview 2

Persian Components 2

Comparing Persian with CORBA, J2EE and Hand Coding 3

Consuming Web Services in C++ 4

Code Examples 6

Creating Servers from WSDL 11

Code Example 11

Conclusion 14

Download and Participate 15

Rogue Wave Software 1 Project Persian

Abstract

This paper briefly describes Project Persian, Rogue Wave Software’s new technology for
creating and consuming Web Services in C++. We’ll take a look at existing technologies
for implementing Web services in C++, compare them with Perisan, and also examine the
steps necessary to create, deploy, and consume Web services with Persian.

Introduction

In recent years, many organizations have begun to examine implementing Web services
as an interoperability solution for both internal and external integration problems. By
using a service-based architecture such as Web services provide, IT departments can
more easily create systems that interoperate well and that are maintainable in the future.

There are many tools oriented towards Web services. In nearly every language, libraries
or components exist to allow a program to invoke or consume a Web service.
Additionally, implementations of enterprise architectures such as .NET, J2EE, and some
implementations of CORBA, offer facilities for creating Web services. However,
components for Web services in C++ tend to be fairly hard to use. To create Web services
from existing C++, these tools often require that C++ be wrapped with another
heavyweight middleware product, such as a CORBA ORB (object request broker)
implementation.

Project Persian, a key piece of Rogue Wave Software’s Web services architecture, enables
easy creation and consumption of high-performance Web services in C++, without the
overhead of heavyweight middleware. With Persian, developers can quickly take
existing C++ code and turn it into a set of Web services without adding additional layers
such as a CORBA or JNI (Java Native Interface)wrapper. These Web services are fully
interoperable, and can interoperate with code written in any architecture or language.
For example, a .NET, J2EE or C++ client could invoke a Persian-based Web Service
implemented in C++.

Rogue Wave® Project Persian also enables C++ code to consume other Web services,
written in any language, without writing a single line of SOAP or HTTP code. For
example, WSDL for a J2EE-based Web service can be given to Persian, and Persian will
create a lightweight, cross-platform C++ proxy for that Web service. Persian’s code
generation technology produces easy-to-use, interoperable code for both the client and
server that completely decouples your client and server code from SOAP or HTTP,
meaning you don’t have to maintain complicated protocol handling code.

Persian provides the most straightforward and direct way to create Web services from
C++ code. Instead of needing to wrap existing C++ code in a heavyweight technology
such as CORBA or JNI, existing code can be directly turned into a Web service without
modification. Additionally, Persian is a great fit in heterogeneous environments because
it generates totally interoperable Web services code that can be easily combined with new
or existing C++ logic to create high-performance Web services.

Rogue Wave Software 2 Project Persian

Project Persian Overview

Persian enables C++ Web services by combining best-of-breed C++ components with
code generation technology. Using a WSDL file as input, Persian creates both client and
server components for consuming and creating a Web service that conforms to the given
WSDL (Figure 1). These components handle all of the SOAP, WSDL, XML and HTTP
details associated with the Web service. By exposing an interface that is free from any of
these implementation details, the Persian components make code much more readable
and maintainable than with other solutions. Additionally, these components can be
regenerated at any time if the Web service changes.

Figure 1- Persian generates Web services components from WSDL

Persian Components

Project Persian is comprised of a set of related technologies to enable Web services in
C++. Persian includes:

• SourcePro™ Net, a set of libraries built for low-level handling of Internet and Web
services protocols, such as HTTP and SOAP. Code generated by Persian uses
SourcePro Net internally, but no knowledge of SourcePro Net, or these protocols, is
necessary in order to use Persian.

• Project Bobcat, the Rogue Wave C++ servlet technology. Persian-generated server
components are servlets designed for deployment in Bobcat. Bobcat allows
developers to deploy C++ server code in a high-performance, manageable way, in
either a standalone configuration or inside nearly any popular web server.

Persian Code
Generator

WSDL
file

Server
Components

(.cpp, .h)

Client
Components(

.cpp, .h)

Bobcat
Servlet

Container

Rogue Wave Software 3 Project Persian

• Project Ratchet, the Rogue Wave XML-C++ binding technology. Persian uses
Ratchet to generate C++ classes corresponding to complex types that are part of a
Web service interface, freeing code from writing and parsing XML directly. The
client and server code works with familiar C++ objects and types, and internally are
marshaled to and from XML by Ratchet-generated code.

• Persian Client Generator, which generates an easy-to-use client proxy from WSDL.
Given a WSDL file that defines a Web service, the Persian Client Generator creates a
cross-platform proxy class that has straightforward C++ methods corresponding to
operations in the Web service. This client proxy may be used in any C++ application
as the interface to the Web service and requires no knowledge of SOAP or HTTP.

• Persian Server Generator, which generates an easy-to-use servlet base class from
WSDL. Given a WSDL file, the Persian Server Generator creates a cross-platform
Bobcat servlet that has virtual methods for each operation defined in the WSDL. The
developer can then add logic to the Web service simply by subclassing the base class
and overriding the virtual methods. Along with the base class, Persian generates a
Bobcat deployment descriptor, a sample subclass, and a complete makefile, making it
easy to get started creating Web services.

Comparing Persian with CORBA, J2EE and Hand Coding

With these technologies, a solution built with Persian that creates Web services from C++
is far superior to one built with other technologies, such as CORBA and J2EE. Since
Persian is a pure C++ technology for implementing Web services, it is far more
lightweight and high-performance than other technologies. Also, Persian is built on
Rogue Wave’s SourcePro libraries, meaning that it generates powerful, easy-to-use
classes that are both high-performance and cross-platform.Table 1 shows a comparison of
Persian to other industry-standard technologies for creating Web services from C++:

Rogue Wave Software 4 Project Persian

Table 1 - Comparing Persian with Other C++ Web Services Options

Persian CORBA J2EE Hand-Coded

Easy to learn

Yes
No, requires
learning a large
middleware
product

No, requires
learning a
middleware
product and new
programming
language

No, requires
learning and
implementing
myriad new
technologies and
protocols

Lightweight

Yes
No, requires
introducing an
ORB (object request
broker) into your
system

No, requires
wrapping C++ in a
JNI layer, and then
utilizing a J2EE
application server
for deployment

Yes, if
implemented
correctly

High-performance

Yes
Yes No, JNI is

notoriously slow
Yes, if
implemented
correctly

Cross-platform

Yes
Yes Yes Not until ported

everywhere

Requires no SOAP
or HTTP
knowledge Yes

Yes Yes No

Maintainable

Yes
Yes Yes No

Interoperable

Yes
Yes Yes Not until fully

tested

Consuming Web Services in C++

With Persian, you can create easy-to-use proxy classes for existing Web services. As
mentioned earlier, given a WSDL file for an existing Web service, Persian generates a
C++ proxy class that has a straightforward, intuitive interface for accessing that Web
service. Using the proxy class requires no knowledge of SOAP, HTTP, or even Web
services – simply invoking a method on the proxy calls the Web service, marshals and
sends the request, and receives and unmarshals the response.

Rogue Wave Software 5 Project Persian

 To illustrate the use of Persian on the client, this paper will show how to consume
existing Web services. Included in the Persian technology preview is a WSDL file for the
BabelFish service, a third-party Web service hosted by XMethods (www.xmethods.net).
The BabelFish service translates text between languages, for example, from English to
Spanish. The WSDL included describes the exact format of SOAP messages expected
used for requests and responses with this service.

Hand-coding access to this service is very difficult. First, a programmer must interpret
the WSDL, and then write code to properly format a SOAP message corresponding to
the message element in the WSDL. Next, the programmer must find or develop HTTP
protocol code that sends the created SOAP to the service. The response must be received
and parsed with a general-purpose XML parser. Then the developer must write custom
code to interpret the response message defined in the WSDL and extract the returned
text. Making the system robust would require the development of an error model; and if
the WSDL for the service changes, all of the code written would need to be inspected and
tested to make sure it still conforms to the interface defined in the WSDL.

With Persian, all of these steps are removed. Since Persian automatically generates C++
classes from WSDL, no hand-coding is necessary. The WSDL file is input to Persian, and
the Web service can be immediately used in any C++ program.

<definitions
name="BabelFishService"
xmlns:tns="http://www.xmethods.ne
t/sd/BabelFishService.wsdl"
targetNamespace="http://www.xmeth
ods.net/sd/BabelFishService.wsdl"
xmlns:xsd="http://www.w3.org/2001
/XMLSchema"
xmlns:soap="http://schemas.xmlsoa
p.org/wsdl/soap/"
xmlns="http://schemas.xmlsoap.org
/wsdl/">
<message name="BabelFishRequest">
<part name="translationmode"
type="xsd:string"/>
<part name="sourcedata"
type="xsd:string"/></message>
<message
name="BabelFishResponse">
...

WSDL Input

class BabelFishPortClientProxy {
public:
 ...
 RWCString babelFish(
 const RWCString&,
 const RWCString&);
 ...
};

Client Proxy

Figure 2 - Persian turns WSDL into C++ Classes

http://www.xmethods.net

Rogue Wave Software 6 Project Persian

Code Examples

In just a few easy steps, a client proxy can be created and used. To create the proxy for
the BabelFish service, Persian’s code generator is used, invoked as “wsdl2cpp.” In the
example, it is invoked with the “-noserver” option, so a server will not be generated for
this service (see the next section for more information on creating a server). The
following output is from a Windows command prompt:

C:\persian\examples\persian\BabelFish>wsdl2cpp -noserver BabelFishService.wsdl

Persian C++ Code Generator

Rogue Wave Software

Generating client...

Generating makefile...

Generating samples...

C:\persian\examples\persian\BabelFish>dir

 Volume in drive C has no label.

 Volume Serial Number is 07D1-080F

 Directory of C:\persian\examples\persian\BabelFish

03/26/2002 04:24p <DIR> .

03/26/2002 04:24p <DIR> ..

03/26/2002 04:13p 1,657 BabelFishService.wsdl

04/19/2002 02:39p 685 BabelFishPortClientProxy.h

04/19/2002 02:39p 2,096 BabelFishPortClientProxy.cpp

04/19/2002 02:39p 2,172 makefile_BabelFishPort

04/19/2002 02:39p 1,027 BabelFishPortClient.cpp.sample

 5 File(s) 7,637 bytes

 2 Dir(s) 11,567,939,584 bytes free

After running wsdl2cpp, Persian produces a client proxy (BabelFishPortClientProxy.h
and .cpp) and makefile (makefile_BabelFishPort), along with a sample usage of the Web
service(BabelFishPortClient.cpp.sample). The generated client proxy is an easy-to-use
encapsulation of the Web service, and its generated implementation handles all of the
details of creating the SOAP request, and interpreting the SOAP response. Here is the
interface for the generated BabelFishPortClientProxy class:

/**

 * Declaration for Web Service client proxy class BabelFishPortClientProxy

Rogue Wave Software 7 Project Persian

 * Translates text of up to 5k in length, between a variety of languages.

 * (Proxy Generated by Persian, Rogue Wave Software)

 */

class BabelFishPortClientProxy : public RWWebServiceClient {

public:

 BabelFishPortClientProxy(const RWCString&
location="http://services.xmethods.net:80/perl/soaplite.cgi");

 RWCString babelFish(const RWCString& translationmode_in, const RWCString&
sourcedata_in);

};

In this class, the one operation defined in the given WSDL file maps to the babelFish
method. To use the Web Service, simply create an instance of BabelFishPortClientProxy,
and call the desired operation, in this case babelFish:

#include “BabelFishPortClientProxy.h”

#include <iostream>

using namespace std;

int main()

{

 try {

 BabelFishPortClientProxy b;

 cout << b.babelFish(“en_es”, “Hi there, friend!”) << endl;

 } catch (RWxmsg &x) {

 cout << “Error: “ << x.why() << endl;

 }

 return 0;

}

As the previous example shows, in just a few lines of code, one can connect to and invoke
the Web service.As seen, the code is completely separate from the HTTP, SOAP and
WSDL logic necessary to use the Web service. Errors in invocation of the Web Service are
thrown as exceptions deriving from the Rogue Wave base exception class, RWxmsg.

While this Web service is totally functional, average Web services are typically much
more complex. Many Web services use data types other than the primitives defined in

Rogue Wave Software 8 Project Persian

XML Schema – they define their own types inside WSDL. Persian supports this because
it is based on Project Ratchet, the Rogue Wave XML to C++ binding technology. With
Ratchet, Persian is able to generate classes from complex types defined in WSDL.

The following WSDL snippets show an operation that returns a complex type,
WeatherSummary (taken from the AirportWeather service at capescience.capeclear.com),
and the XML Schema definition for this complex type:

<types>

<xsd:schema targetNamespace="http://www.capeclear.com/AirportWeather.xsd"

xmlns:SOAP-
ENC="http://schemas.xmlsoap.org/soap/encoding/"

xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"

xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<xsd:complexType name="WeatherSummary">

<xsd:sequence>

<xsd:element maxOccurs="1" minOccurs="1" name="location" nillable="true"
type="xsd:string"/>

<xsd:element maxOccurs="1" minOccurs="1" name="wind" nillable="true"
="xsd:string"/>

<xsd:element maxOccurs="1" minOccurs="1" name="sky" nillable="true"
type="xsd:string"/>

<xsd:element maxOccurs="1" minOccurs="1" name="temp" nillable="true"
type="xsd:string"/>

<xsd:element maxOccurs="1" minOccurs="1" name="humidity" nillable="true"
type="xsd:string"/>

<xsd:element maxOccurs="1" minOccurs="1" name="pressure" nillable="true"

type="xsd:string"/>

<xsd:element maxOccurs="1" minOccurs="1" name="visibility"
nillable="true" type="xsd:string"/>

</xsd:sequence>

</xsd:complexType>

</xsd:schema>

</types>

...

<message name="getSummaryResponse">

<part name="return" type="xsd1:WeatherSummary"/>

</message>

...

http://www.roguewave.com/developer/tac/ratchet
http://www.capeclear.com/

Rogue Wave Software 9 Project Persian

<operation name="getSummary">

<input message="tns:getSummary"/>

<output message="tns:getSummaryResponse"/>

</operation>

For this service, hand-coding a client would not only require intricate knowledge of
SOAP and HTTP to invoke and get useful results from this Web service, but it would
additionally require writing generic XML parsing logic to parse the WeatherSummary
complex type present in the return message. With Persian, all of these details are
handled inside of the generated code, meaning that your code doesn’t need to directly
work with the complex WeatherSummary type.

Given the AirportWeather WSDL, Persian generates not only a client proxy for the Web
service, but uses Ratchet to generate a C++ class for the WeatherSummary type, and uses
this class in the applicable method of client proxy. Let’s take a look at the declaration for
the StationClientProxy class generated by Persian for this Web service:

/**

 * Declaration for Web Service client proxy class StationClientProxy

 * AirportWeather

 * (Proxy Generated by Persian, Rogue Wave Software)

 */

class StationClientProxy : public RWWebServiceClient {

public:

 StationClientProxy(const RWCString&
location="http://live.capescience.com:80/ccx/AirportWeather");

...

 WeatherSummary getSummary(const RWCString& arg0_in);

...

};

Note that the getSummary() method returns a WeatherSummary instance.
WeatherSummary is the class automatically generated, corresponding to the
WeatherSummary complex type defined in the WSDL. The generated class contains get
and set methods corresponding to each of the subelements defined in the WSDL. So for
WeatherSummary, which has location, wind, sky, temp, humidity , pressure, and
visibility subelements, the generated class is:

class RW_RATCHET_DECLSPEC WeatherSummary {

Rogue Wave Software 10 Project Persian

public:

...

 RWCString getLocation() const;

 void setLocation(const RWCString& Location);

 RWCString getWind() const;

 void setWind(const RWCString& Wind);

 RWCString getSky() const;

 void setSky(const RWCString& Sky);

 RWCString getTemp() const;

 void setTemp(const RWCString& Temp);

 RWCString getHumidity() const;

 void setHumidity(const RWCString& Humidity);

 RWCString getPressure() const;

 void setPressure(const RWCString& Pressure);

 RWCString getVisibility() const;

 void setVisibility(const RWCString& Visibility);

 ...

};

Note how each of the sub-elements corresponds to a get and set method in the
generated class. This straightforward interface makes it easy to use Web services that
include complex type definitions, such as this one. Here’s some example code that uses
the Persian-generated client proxy to obtain a weather summary for KLAX, Los Angeles
International Airport, and prints out the summary:

StationClientProxy proxy;

WeatherSummary s = proxy.getSummary(“KLAX”); // exception thrown on
error.

std::cout << “Weather Summary for “ << s.getLocation()

 << “\nTemperature: “ << s.getTemp()

 << “\n Wind: “ << s.getWind()

 << “\n Sky: “ << s.getSky()

 << “\n Humidity: “ << s.getHumidity()

Rogue Wave Software 11 Project Persian

 << “\n Pressure: “ << s.getPressure()

 << “\n Visibility: “ << s.getVisibility() << std::endl;

Creating Servers from WSDL

In addition to creating client components, Persian can also create server components for
implementing Web services in C++. Using WSDL as input, Persian creates a servlet base
class that can be derived from, implemented, and deployed in the Bobcat C++ servlet
container, also part of Persian.

Persian offers the best choice for creating C++ Web services. Before Persian, the choices
were limited. One option was to wrap C++ code in CORBA by purchasing, installing and
administering a CORBA ORB that supports Web service, along with writing IDL for the
code. Another option was using a J2EE application server by wrapping C++ code in a
JNI layer, and exposing it through the Java application server. Both of these options
produce working systems, but at the cost of purchasing and learning and using
heavyweight systems that aren’t really needed to solve the problem. With Persian,
creating a Web service in C++ is as simple as writing the WSDL for the service, writing
the pure C++ implementation of those services, and then deploying it to the Bobcat C++
servlet container.

Code Example

The first step in creating a Web service is to define its interface by writing WSDL for the
Web service. In the below example, a WSDL file is used that is included with the Persian
technology download, DayOfWeek.wsdl. The WSDL defines a single service port,
DayOfWeekPort, which has a single operation, GetDayOfWeek, which takes a date and
returns a string describing which day of the week that date falls on. When we run this
WSDL through wsdl2cpp, the following files are generated:

C:\persian\examples\persian\DayOfWeek>wsdl2cpp DayOfWeek.wsdl

Persian C++ Code Generator

Rogue Wave Software

Generating client...

Generating server...

Generating makefile...

Generating samples...

C:\persian\examples\persian\DayOfWeek>dir

 Volume in drive C has no label.

Rogue Wave Software 12 Project Persian

 Volume Serial Number is 07D1-080F

 Directory of C:\persian\examples\persian\DayOfWeek

04/19/2002 03:55p <DIR> .

04/19/2002 03:55p <DIR> ..

04/19/2002 03:55p 1,788 DayOfWeek.wsdl

04/19/2002 03:55p 609 DayOfWeekPortClientProxy.h

04/19/2002 03:55p 1,354 DayOfWeekPortClientProxy.cpp

04/19/2002 03:55p 857 DayOfWeekPortServletBase.h

04/19/2002 03:55p 1,565 DayOfWeekPortServletBase.cpp

04/19/2002 03:55p 2,458 makefile_DayOfWeekPort

04/19/2002 03:55p 1,027 DayOfWeekPortClient.cpp.sample

04/19/2002 03:55p 535 DayOfWeekPortServlet.h.sample

04/19/2002 03:55p 548 DayOfWeekPortServlet.cpp.sample

04/19/2002 03:55p 377 DayOfWeekPortServlet_web.xml

 10 File(s) 11,118 bytes

 2 Dir(s) 11,562,663,936 bytes free

As noted earlier, a client proxy (DayOfWeekPortClientProxy.h, .cpp) and client sample
(DayOfWeekPortClient.cpp.sample) are generated along with a makefile.
Additionally, Persian generates a base class for a servlet that implements this Web
service (DayOfWeekServletBase.h, .cpp), along with a sample subclass of this servlet to
help developers get started. Once the sample subclass is renamed by removing the
“.sample” extension, simply edit the existing subclass to easily create the Web service.
Here’s the relevant portion of the sample subclass’s implementation (in
DayOfWeekPortServlet.cpp.sample):

RWCString DayOfWeekPortServlet::getDayOfWeek(const RWDate& date_in)

{

 throw ServerFault("Sorry: the requested operation \"getDayOfWeek\" is not
implemented");

 return RWCString(); // (never executed)

}

When the Web service’s GetDayOfWeek operation is invoked, this method will be
automatically called by the generated code that is responsible for marshalling,
unmarshalling, and dispatching SOAP messages. To implement the Web service, only fill
in the implementation of this method, and then build and deploy the service. Below, the

Rogue Wave Software 13 Project Persian

Web services is implemented with this method and using the weekDayName()method of
RWDate:

RWCString DayOfWeekPortServlet::getDayOfWeek(const RWDate& date_in)

{

 return date_in.weekDayName();

}

We’ll also rename the client sample similarly, and edit it to invoke the new Web Service.
Here is the code that was generated for the client sample:

int main()

{

 // Instantiate DayOfWeekPortClientProxy.

 // If you need to override the URL given in the WSDL file for

 // the service, pass it in the constructor like this:

 // DayOfWeekPortClientProxy proxy("http://www.somehost.net/xyz");

 DayOfWeekPortClientProxy proxy;

 // Use a C++ try block to handle errors that can occur when invoking

 // Web services:

 try {

 // TODO: invoke a method on "proxy"

 }

 catch (RWxmsg &x) {

 std::cerr << "Error invoking web service: "

 << x.why() << std::endl;

 }

 return 0;

}

To use the Web service, simply change the line marked //TODO: ... to invoke the desired
operation (today’s name:)

Rogue Wave Software 14 Project Persian

 std::cout << proxy.getDayOfWeek(RWDate()) << std::endl;

Now, using the included makefile, we can build our servlet and deploy it in one step:

C:\persian\examples\persian\DayOfWeek>nmake -f makefile_DayOfWeekPort deploy

The “deploy” target of the generated makefile automatically builds the sample client and
servlet, and then deploys the servlet to the Bobcat servlet container included with the
Persian distribution. Now, we’ll start the container in stand-alone mode in one window,
and try our client out in another:

C:\persian\examples\persian\DayOfWeek>DayOfWeekPortClient

Friday

That’s it! In those few easy steps, WSDL has been used and turned into a fully-
functional, high-performance Web Service, and generated an easy-to-use C++ client for
that service.

Conclusion

Web services are an exciting new way to create a service-based architecture for
interoperable applications. Using Web services, it is possible to integrate applications
and components across language and platform boundaries, using components and
systems available today, and without the overhead of large middleware products.

Using the right components and libraries for implementing Web services is key to their
success in any project, because the tools chosen will directly impact performance,
robustness, and maintainability of the resultant Web services. In C++, a few ways exist
for creating Web services, including using CORBA and J2EE wrappers. However, Rogue
Wave Project Persian allows existing or new C++ code to be taken easily and directly to
the Web in the highest-performance manner, without sacrificing robustness or
maintainability. By using Persian’s pure C++ solution, developers will not only get C++
code to the Web quicker, but the resultant architecture will be faster, cleaner, more
maintainable and more robust than it would be with other technologies. Additionally,
using Persian doesn’t require the additional learning curve of a new piece of middleware
because it is designed from the ground up to enable Web services in C++.

Persian also offers the best way to enable C++ code to work with Web services in any
language, making it invaluable for use in mixed-language environments. Because
Persian is tested to work with clients and servers in other languages, and fully conforms
to XML, HTTP, SOAP and WSDL standards, Persian offers the most direct route to
creating truly interoperable systems that work with today’s technologies such as .NET
and J2EE, and whatever the future may bring.

Rogue Wave Software 15 Project Persian

Download and Participate

Rogue Wave is offering you the opportunity to work with our developers on this exciting
new technology. To gain first-hand access to this emerging technology and take part in its
development, we encourage you to participate in the Persian evaluation program.

To participate, visit the Technology Access Center at:
http://www.roguewave.com/developer/tac/persian.

Your feedback and evaluation of Persian will help guide its development and
implementation.

(C) 2002 Copyright Rogue Wave Software, Inc. All Rights Reserved. Rogue Wave, the wave design, Rogue Wave
Software and SourcePro are trademarks or registered trademarks of Rogue Wave Software, Inc. All other trademarks are
the property of their respective owners.

http://www.roguewave.com/developer/tac/persian

Rogue Wave Software 16 Project Persi

Corporate Headquarters
Toll-free: (800) 487-3217
E-mail: sales@roguewave.com

The Netherlands
Rogue Wave Software B.V.
Telephone: +31 20 301 26 26
sales@roguewave.nl

Germany
Rogue Wave Software GmbH
Telephone: +49 6103-59 34-0
sales@roguewave.de

France
Rogue Wave Software S.A.R.L.
Telephone: +33 1 41 96 26 26
sales@roguewave.fr

United Kingdom
Rogue Wave Software U.K. Ltd.
Telephone: +44 118 9358600
sales@roguewave.co.uk

Italy
Rogue Wave Software S.R.L.
Telephone: +39 02 4125.081
sales@roguewave.it

Japan
Rogue Wave Software Japan K.K.
Telephone: +81 3 3512-5012
jpinfo@roguewave.com

Asia Pacific
Telephone: +61 2 8923 2515
www.roguewave.com
an

mailto:sales@roguewave.nl
mailto:sales@roguewave.de
mailto:sales@roguewave.fr
mailto:sales@roguewave.co.uk
mailto:sales@roguewave.it
mailto:jpinfo@roguewave.com

Rogue Wave Software 17 Project Persian

sales@roguewave.com Printed in USA
1-PSWP-5/02

mailto:sales@roguewave.com

	Abstract
	Introduction
	Project Persian Overview
	Persian Components
	Comparing Persian with CORBA, J2EE and Hand Coding

	Consuming Web Services in C++
	Code Examples

	Creating Servers from WSDL
	Code Example

	Conclusion
	Download and Participate

