cess control policies and a related processing model.
to add delegation to XACML in order to express the right to adstrate
XACML policies within XACML itself. The delegation profile raft ex-
plains how to validate the right to issue a policy, but theeere provisions
for removing a policy. This paper proposes a revocation riotdeelegated
XACML. A novel feature of this model is that whether a revaoatis valid
or not, depends not only on who issued the revocation, botaishe context

Context Dependent Revocation in Delegated XACML

Erik Rissaneh, Ludwig SeitZ

1 Axiomatics AB
Electrum 223, 164 40 Kista, Sweden
eri k@xi omati cs. com

2 Swedish Institute of Computer Science, SICS AB
Box 1263, Kista 16429, Sweden
| udwi g@i cs. se
June 2008

SICS Technical Report T2008:10
ISSN 1100-3154

Abstract

The XACML standard defines an XML based language for definimg a

in which an attempt to use the revoked policy is done.

Keywords: XACML, Access Control, Revocation

Revark aims

1 INTRODUCTION 1

1 Introduction

XACML [10], eXtensible Access Control Markup Language, is an XMasbkd
standard language for defining access control policies. Recently tdvXAech-
nical committee has been working on adding delegation to XACML in order to ex-
press the right to administrate XACML policies within XACML itself. The work is
at the time of writing still in progress, but there is a fairly developed drafilalle,
[7]. The delegation profile draft explains how to validate the right to isqualiay,
but there is no support to validate the right to remove, or revoke, a polikis
paper proposes a revocation model for delegated XACML.

The properties of delegated XACML lead to a model in which the validity of a
revocation depends, not only on who issued the revocation, but albe @ontext
in which the policy that was revoked is used. For instance, a single poliggdss
by a single issuer could grant the right to use both a printer and a web Phige
single policy could in delegated XACML be supported by two different aitiles:
a different authority for the printer than for the web page. In case égpiuthority
revokes the joint policy, then revocation would have effect only whempttey is
used to access the printer, not when it is used to access the web page.

2 Introduction to XACML

Due to space constraints we can only give a brief overview of XACMleh&he
XACML committee website [10] contains a good introduction to the basic prin-
ciples of XACML [9], the specification of the XACML language and pragiag
model [6] and a draft for the upcoming delegation model [7].

XACML is based on attributes of subjects, resources, actions and tiverenv
ment, which are used to describe an accegsgest. The box labelled “Request 1”
in figure 1 is an illustration of a request. In this case the request asks"&cttess
allowed where the subject is Bob and the resource is Printer 147?”.

Additional attributes to those in the request can be provided by extennaleso
The complete set of attributes used in the processing of a request is lasoive
request context. There is a table of such additional attributes in figure 1.

Note that in this paper we do not consider the source of attributes or how at-
tributes are administered. We simply assume that the attributes are available and
are trustedPolicies can then be used to express rights in terms of the attributes.

XACML policies are functional expressions that pull their input from the r
guest context. When a request context is evaluated against a seliciégoa
response is calculated as specified by the semantics of the policy form#teand
processing model. The response can eithdpdomit, Deny, NotApplicable or In-
deter minate.

3 REVOCATION 2

2.1 Delegation

The right to issue policies is sometimes called delegation. The word delegasion ha
various meanings in the access control literature. For our purposeasaitedethe
act of creating rights.

Delegated XACML differentiates between trusted policies and policies with
untrusted issuers. The trusted policies need no special validation andttier
roots of trust (analogous to the self signed certificates of root CAs in. Ak
policies with untrusted issuers have to be validated against the trusted policies
The validation process is calleeduction and is performed when an access request
is evaluated.

Reduction is performed by means of a search in a directed graph. The abd
the graph are the policies in the policy set where reduction is performededdes
of the graph represent that one policy is authorised by another aruhlardated
with administrative requests which contain the attributes of the issuers of policies.
The issuer attributes are contained in a category calebebate. Figure 2 shows an
example of an administrative request. The meaning of the administrativestégjue
“May John issue a policy which grants Bob access to Printer14?” Suefuest
can establish an edge between a policy issued by John, and a policy waith g
the authority. Policies 1 to 4 in figure 1 are examples of swfrhinistrative policies
which grant the right to issue other policies.

Delegated XACML introduces an issue concerning the timing of attributes.
When the right to issue a policy is validated, the attributes of the issuer are com-
pared against conditions in the administrative policies. Some attributes mayechan
over time, so the question is for which point in time the attributes of an issuer
should be resolved. The XACML delegation draft mentions two possibilitiss: u
the attributes of issuers as they are at the time of the access requestay asté
at the time the policy being reduced was issued.

In this paper the second option is used since in this case a policy remains valid
when an administrator leaves and loses his administrator attributes, whichdwe fin
desirable.

An example of a reduction graph, can be seen in figure 1.

3 Revocation

The XACML administrative policy draft [7] does not in any way addressifisue
of how policies can be revoked.

Please note that we do not address distribution of revocations in this [Faper
the sake of this paper, we assume that the revocations have been didtzibditare
available. Our work is then about who may revoke which policy, which trexso
more complex in the case of delegated XACML, than for instance in the case of
Public Key Infrastructure, PKI.

We define a revocation as a statement made by an issuer which contains:

3 REVOCATION 3

1. Anidentifying attribute of the issuer.

2. The identifier of the policy which is being revoked.

The semantics of the revocation is that the issuer asserts that the redikgd p
must not be in effect. Our goal here is to define the authority of a givelelis¥ a
revocation with respect to a given revoked policy.

We base our revocation model on a use case where there is an administrator
group in an organisation. The tasks of the administrators include providoesa
control policies for resources. The administrator group is expressad attribute.

The same group should also be able to remove the policies they can create.

Using the delegation model we can allow a some group to issue policies within
specified constraints. For instance, policy 1 in figures 1 and 4 implies tegtae
in the PrinterAdmins group has the right to issue policies about the resources in
the group Printers, since policy 1 will support policies which match requests
those resources.

For our revocation model we have the following requirements based arseur
case:

1. A current administrator can revoke policies which he could issue himself,
regardless of whether it was himself who issued the policy.

2. Aformer administrator cannot revoke a policy, even if it was he himsetf wh
issued it.

3. (Optionally) a current administrator should also be able to revoke policies
that are indirectly supported by policies he could issue.

Note that the simple and common revocation model where the issuer of a policy
(or a certificate) may revoke it, is not appropriate for these requirements.

Also note that we do not want to let the issuer of the policy to decide who has
authority to revoke. For instance, embedding an URL of a revocation listein th
policy is not acceptable (see for instance section 4.2.1.14 in [5]), sinte/thed
leave revocation in the control of the issuer.

As we will show, the third requirement makes the reduction process NPietanp
so this requirement would likely be sacrificed in an implementation. In the interest
of research, we keep it in this paper and the examples shown.

3.1 Model description

We now present our revocation model. The model consists of a modification to
the processing of delegation in XACML. Initially, the reduction graph is fame
as specified in the XACML administrative policy draft [7]. However, tharsé of

the graph is modified by our revocation model.

3 REVOCATION 4

Consider the search process, during which we are about to expleedgmn
from policy P, to policy P,. (For simplicity, we ignore the different types of edges
present in the full reduction model.)

Let Pathp, denote the reduction path that was used to rdachro form the
edge fromP, to P,, an administrative requesd,Req, was used.

1. For each revocatioR; of a policy on the reduction path path includify,
Pathp, U{P,}, generate &evocation Authorisation Request, RAR;. The
revocation authorisation requests are used to validate the authority of the
revocations. A RAR has the same form as an XACML administrative request
and its content is based ohReq.

2. RAR; is generated from the edge generating reqddstq by replacing the
Delegate category ol Req with the issuer of the revocatioR;.

3. Evaluate eacl® AR; against the policy’;.

4. If any RAR; evaluates to Permit, then the search does not make the jump
from policy P, to policy P.

Informally, we stop the graph search if we find an administrative policy which
supports a revocation of a policy on the current reduction path duringethieh,
since the revocation breaks the path. Note that we stop the search Wwefogach
a trusted policy. This means that the administrative polgythat authorises the
revocationR?; might be unauthorised. However, this is not an issue since the end
result is the same regardless the poligyis authorised or not: in either cagg is
not authorised through,. There are two possibilities.

If P, is not authorised, we would not be able to reduce to the trusted issuer
throughP,, meaningP, would not be authorised throudgh, even though the revo-
cationR; would be unauthorised.

If the policy P, is authorised, then the revocati®) is also authorised ang,
is not authorised through, because of the revocation on the path.

3.2 Example

Figure 1 shows an example.

Consider when policy 5 is reduced by means of a search of the reducsiph,g
and we have reached policy 3, and are about to jump the edge to policyel. Th
reduction path consists of policy 5. The edge between policy 3 and polisgd,
generated by an administrative reque$fzeq. In this caseA Req was the one
shown in Figure 2. (In terms of the model description above, we FavePolicy
3 andP, = Policy 1.)

1. In the example revocation 1 is a revocation on policy 5, which is on the
reduction path. We need to test whether this revocation is valid. We do so by
generating the Revocation Authorisation Requist,R.

REVOCATION

Policy 1

Policylssuer: trusted

Subject: user_group: Employees
Resource: resource_group: Printers
Delegate: user_group: Printer_ Admins

Policy 2
Policylssuer: trusted

Subject: user_group: Employees
Resource: resource_group: Internal_Web
Delegate: user_group: Web_Admins

A

Policy 3

PolicyIssuer: subject—id: John

Subject: user_group: Eng_Department
Resource: resource_group: Printers
Delegate: user_group: EngDep_Admins

Policy 4
Policylssuer: subject—id: Alice

Subject: user_group: Eng_Department
Resource: resource_group: Internal_Web
Delegate: user_group: EngDep_Admins

Revocation 1

Policy 5

PolicylIssuer: subject—id: Eve

Subject: user_group: Eng_Department
Resource: resource_group: Eng_Resources

Request 1

Subject: subject—id: Bob
Resource: resource—id: Printer14

Issuer: subject—id: Carol
Revokes Policy 5

Dynamic Attributes

Holder Attribute id
John user_group
Carol user_group
Alice user_group
Eve user_group
Printer14 resource_group
Printer14 resource_group

http://../p15.html
http://../p15.html
Bob

resource_group
resource_group
user_group

Attribute value
Printer_ Admins
Printer_Admins
Web_Admins
EngDep_Admins
Printers
Eng_Resources
Internal_Web
Eng_Resources
Eng_Department

Bob user_group Employees

Figure 1: Dependencies between policies and the revocation. Policy Sressmb-
sources from different authorities so its revocation status dependfomnewoked

it. Revocation 1 is issued by a printer administrator, so when the accesstésgju
about access to a printer, revocation 1 gets support from the samesplhatheaecess
request, invalidating the path to the trusted policy. The request is not permitted

2. TheRAR is generated from the administrative requésteq and the revo-
cation by replacing the Delegate dfReq with the issuer of the revocation.
In this case the result is theA R shown in Figure 3.

3. We evaluate th&® A R against policy 1. In this case, since Carol is a member
of the PrinterAdmins group, theR AR will evaluate to Permit.

4. Since theRAR evaluates to Permit with policy 1, the search is stopped here
and we do not follow the edge from policy 3 to policy 1.

5. In this case there is no other path to backtrack to, so policy 5 will not be
authorised.

3 REVOCATION 6

<Request >
<Attributes Category="&Del egate;">
<Attribute Attributeld="&subject-id;">
<Attri buteVal ue Dat aType="&string;">John</Attri buteVal ue>
</ Attribute>
</ Attributes>
<Attributes Category="&Subject;">
<Attribute Attributeld="&subject-id;">
<Attri buteVal ue Dat aType="&string;">Bob</Attri buteVal ue>
</Attribute>
</ Attributes>
<Attributes Category="&Resource;">
<Attribute Attributeld="& esource-id;">
<AttributeVal ue Dat aType="&string;">Printer14</AttributeVal ue>
</Attribute>
</Attributes>
</ Request >

Figure 2: The administrative request which is used to reduce policy 3.

In delegated XACML it is possible that a delegated policy receives stippor
from different policies depending on the access situation. This refleatseh
sources with different authorities have been composed into a single poldy.
possibility is handled by our revocation model.

For instance, if we instead have the request in figure 4, the revocation will
not have any effect. First, policy 5 will match Request 2 since the web igage
in the EngDepresources group. For this request the resource does not match the
conditions in policies 1 and 3, so the search does not reach them. Insteaddp
will support policy 5 and policy 2 will in turn support policy 4. Revocationdsh
no effect on this path since it is not supported by either policy 4 or by pélicy

This is as desired since Carol, being a printer administrator should noahgve
authority over web pages. With this revocation model, a policy which combines
resources from different authorities may be either revoked or nokesl/depend-
ing on which authority revoked the policy and which resource the aceesest
concerns. If a printer administrator revoked the policy, it is revoked irctmaext
of an access request to a printer, but not in the context of a web page.

3.3 Computational complexity

If indirect revocation, that is revocation along the full reduction path is allowed, the
revocation model makes the reduction search of XACML delegation NP-etep

If indirect revocation is not allowed, it is not necessary to search theefu
duction path for revoked policies, so the graph search is no longer ppndent
and the search is not NP-complete and the complexity of the XACML delegation
model is not affected.

Here we present an informal sketch of a proof showing that indirgotegion

3 REVOCATION 7

<Request >
<Attributes Category="&Del egate;">
<Attribute Attributeld="&subject-id;">
<AttributeVal ue Dat aType="&string;">Carol </ Attri buteVal ue>
</ Attribute>
</ Attributes>
<Attributes Category="&Subject;">
<Attribute Attributeld="&subject-id;">
<Attri buteVal ue Dat aType="&string;">Bob</Attri buteVal ue>
</Attribute>
</ Attributes>
<Attributes Category="&Resource;">
<Attribute Attributeld="& esource-id;">
<AttributeVal ue Dat aType="&string;">Printer14</AttributeVal ue>
</Attribute>
</Attributes>
</ Request >

Figure 3: The revocation authorisation request which is used to cheelitherity
of Carol to revoke policy 5 when policy 3 is being reduced.

makes the reduction search NP-complete. We reduce to 3-SAT, whichvgikoo
be NP-complete.
Consider the following instance of 3-SAT:

(«Tl,l OR €12 OR x173) AND
($271 OR €22 OR $273) AND

(ZL‘NJ OR TN,2 OR wN’g)

where eaclr is a variable or a negation of a variable.

Based on this 3-SAT instance we can generate an XACML policy set, which
together with indirect revocations will solve the 3-SAT instance.

We create a policy set which contains the following policies:

e Forzy 1, x12 andx; 3, we create policie$; 1, P; 2 andP; 3. The policies
have unique issuel 1, I1 » and/; 3. These policies are access policies for
a dummy resource callellesource.

¢ For the remaining;, we create policies which allow delegation to the issuers
of the policies corresponding to the preceding disjunction in the 3-SAT in-
stance. That is, policies;, 1, 12 andxy 3 have issuerg;, |, I;, o and I}, 3.
Each of these policies allow a disjunction of three deleghtes, I, 2 or
I._1 3. Again, the resource allowed by the policies is the dummy resource.

e There is one root policy which allows a disjunction of the three delegates
Inq, Ing2 or Iy 3 (and the dummy resource).

3 REVOCATION

Policy 1

Policylssuer: trusted

Subject: user_group: Employees
Resource: resource_group: Printers
Delegate: user_group: Printer_Admins

Policy 2

Policylssuer: trusted

Subject: user_group: Employees
Resource: resource_group: Internal_Web
Delegate: user_group: Web_Admins

Policy 3

Policylssuer: subject—id: John

Subject: user_group: Eng_Department
Resource: resource_group: Printers
Delegate: user_group: EngDep_Admins

Policy 4

Policylssuer: subject—id: Alice

Subject: user_group: Eng_Department
Resource: resource_group: Internal_Web
Delegate: user_group: EngDep_Admins

Revocation 1 T
Issuer: subject—id: Carol
Revokes Policy 5 Policy 5

"M\ Policylssuer: subject—id: Eve

Subject: user_group: Eng_Department
Resource: resource_group: Eng_Resources

Dynamic Attributes

Holder Attributeid Attribute value

John user_group Printer_Admins

Carol user_group Printer_Admins

Alice user_group Web_Admins Request 2

Eve user_group EngDep_Admins | gypiect: subject—id: Bob

Printerl4 resource_group Printers Resource: resource—id: http://.../p15.html
Printer14 resource_group Eng Resources

http://../p15.html resource_group Internal_Web
http://../p15.html resource_group Eng_Resources
Bob user_group Eng_Department
Bob user_group Employees

Figure 4: Dependencies between policies and the revocation. Revotdsas-
sued by a printer administrator, so when the access request is for aageptpe
revocation does not get any support from the path that supports¢hesaequest.
The revocation has no effect in the context of this access requethaiadcess is
permitted.

See figure 5 for an illustration of the resulting reduction graph.

In addition to the policies, we create revocations. For each (paif,),
where: < k andz;; andxy; cannot be satisfied simultaneously, we create a
revocation for policyP; ; issued by issuef ;.

When we evaluate an access request to the dummy resource in this policy set,
the 3-SAT instance is satisfiable iff we can find a reduction path to the trusbéd r
policy.

First, assume that the 3-SAT instance is satisfiable. In this case we cai selec
a path corresponding to the variable assignment which satisfies the 3FBiAT.
path will not contain any revocations since we create revocations onlyrd the

3 REVOCATION

Root
Resource
Delegate:
Issuer N,1 or
Issuer N,2 or
Issuer N,3

T

P N,1

Issuer N,1
Resource
Delegate:
Issuer N-1,1 or
Issuer N-1,2 or
Issuer N-1,3

PN,

Issuer N, 2
Resource
Delegate:
Issuer N-1,1 or
Issuer N-1,2 or
Issuer N-1,3

P N,1

Issuer N, 3
Resource
Delegate:
Issuer N-1,1 or
Issuer N-1,2 or
Issuer N-1,3

g L] Lt

P21 P21 P21

Issuer 2,1 Issuer 2, 2 Issuer 2, 3
Resource Resource Resource
Delegate: Delegate: Delegate:
Issuer 1,1 or Issuer 1,1 or Issuer 1,1 or
Issuer 1,2 or Issuer 1,2 or Issuer 1,2 or
Issuer 1,3 Issuer 1,3 Issuer 1,3
P11 P1,2 P1,3

Issuer 1,1 Issuer 1,2 Issuer 1,3
Resource Resource Resource

Figure 5: The reduction graph in the policy set used to solve the 3-SAThiresta
The structure corresponds to the clauses in the 3-SAT instance. Tharétégion

is such that if we find a reduction path to the trusted root policy, we havdisdtis
the 3-SAT in the way we selected the policies on the reduction path. Revaeation
(not shown) are used to block paths which correspond to conflicts in-B®&T3
assignment.

conflict in the variable assignments.

Second, assume that there is a valid, non-revoked reduction path inlitye po
set. In this case we can satisfy the 3-SAT by setting the correspondingrue.
There cannot be any conflict in the assignment since we assumed tleatvigeno
revocation on the path.

It is easily seen that the time needed to construct the policy set and tha+tevoc
tions is polynomial, so indirect revocation reduces to 3-SAT and is NP-coenple

3 REVOCATION 10

3.4 Propertiesof the model and related work

Informally, in our model someone with the authority to support a policy, either
directly or indirectly, can also revoke it. The motivation for choosing this rhode
is that in many cases it is natural for the right to issue and revoke to go &rgeth
Also, being able to indirectly support a policy implies authority over the policy,
so it is not far fetched to allow for revocation of indirectly supported padicien
alternative would be to only allow to revoke policies which are directly supegor
which has the benefit that such a model is not NP-complete. Note hovileser,
since our revocations cascade, revoking a directly supported polynaididates
indirectly supported policies.

Hagstbm et.al. [4] classify revocation schemes based on three characteristics:
resilience, propagation anddominance.

Resilience refers to whether a permission stays revoked if it would be reissued.
In other words, resilience differentiates between negative permissioich wver-
ride a positive permission and removal of a permission. In our model régnsa
are not resilient since they refer to specific instances of policies.

Propagation refers to whether revocation of a permission which has been used
for delegation will cause a cascading removal of dependent permissions
model is cascading since a revocation blocks the reduction procesantalis
dating everything that was supported by the revoked policy. Other moliiels a
for both cascading and noncascading revocation, such as thoseegkghiabase
research [2] and in RBAC [8]. Note that the effect of noncascadigaation can
be achieved in our model by not revoking a policy, but instead revokiragtaibute.

Finally, dominance refers to what happens to a permission if it is revoked but
the permission is also granted by other grantors. The revocation is saidtaortie
nating, or strong, if the permission goes away despite this other suppoetrvixh
it is known as weak. Note that Hagstn et.al. only consider the cases where the
other grant is not independent of the one being revoked, that is tharesisimon
supporting permission for both grants. Our model is weak since if thersvare
policies granting the same permission, a revocation will affect only eithenicsta
leaving the other.

E. Barka and R. Sandhu [1] introduce another characteristics whighctie
grant-dependency. In what they call ayrant-independent delegation, any member
of the delegator role can revoke the membership of a delegatee. If oamiises
this to an attribute based approach such as used in XACML, this cormspmaur
you can revoke what you could grant approach. Our model igrant-independent
since not only the original issuer can revoke a policy.

Sadighi et.al. [3] present a feature rich revocation model for theirl&ge
Calculus delegation model, which is somewhat similar to the XACML delegation
model. In contrast to the XACML delegation model, the privilege calculus takes
time into account in administrative actions, which permits both cascading ard non
cascading revocations by setting different timestamps for when a revosatold
take effect.

4 FUTURE WORK 11

The central novel feature of our model, which is not captured by arthef
characteristics described above, is that the effect of a revocati@mden which
access request is being processed. We call this charactecisitest dependency.
A revocation which is context independent will have the same effect @mrraip-
sion regardless for what the permission is used. We are not awarey aitlaer
access control model which has context dependent revocation.

4 Futurework

One issue with our model is that a revocation does not remove a policyr eathe
revocation means more information to be considered during access treqgoes
cessing. This leads to two concerns.

Firstly, there is the concern that the database with access control infonmatio
grows over time. However, in a setting with digital signatures policies would likely
expire regardless the revocation model, but the issue warrants fuedearch.

The second concern is that context dependent revocation couldrdefdna
human administrators to comprehend. We plan to explore this issue in the context
of our ongoing research on support tools for policy administration.

References

[1] BARKA, E.,AND SANDHU, R. Framework for Role-Based Delegation Mod-
els. InProceedings of the 16th Annual Computer Security Applications Con-
ference (New Orleans, Louisiana, USA, December 2000).

[2] BERTINO, E., SAMARATI, P., AND JAJODIA, S. An Extended Authoriza-
tion Model for Relational Database3ransactions on Knowledge and Data
Engineering 9, 1 (1997), 1-17.

[3] FIROzABADI, B. S.,AND SERGOT, M. Revocation Schemes for Delegated
Authorities. InProceedings of the Third International Workshop on Policies
for Distributed Systems and Networks (June 2002).

[4] HAGSTROM, A., JAJODIA, S., RRISI-PRESICCE F., AND WIJESEKERA
D. Revocations - a Classification. Rroceedings of the 14th | EEE Workshop
on Computer Security Foundations (Cape Breton, Nova Scotia, Canada, June
2001).

[5] HousLEY, R., PoLk, W., FORD, W., AND SoLO, D. Internet X.509 Public
Key Infrastructure Certificate and Certificate Revocation List (CRLJiRro
Request For Comments (RFC) 3280, Internet Engineering Task R&TE)(
April 2002.
http://www.ietf.org/rfc/rfc3280.txt.

REFERENCES 12

[6]

[7]

[8]

[9]

Moses T. eXtensible Access Control Markup Language (XACML)
Version 2.0. Standard, Organization for the Advancement of Struc-
tured Information Standards (OASIS), February 2005. http://docs-o0asis
open.org/xacml/2.0/accessntrol-xacml-2.0-core-spec-os.pdf.

RISSANEN, E., LOCKHART, H., AND Moses T. XACML v3.0 ad-
ministrative policy. Standard, Organization for the Advancement of
Structured Information Standards (OASIS), May 2007. http://www.oasis-
open.org/committees/download.php/23951/xacml-3.0-admininstration-v1-
wd-17.zip.

SANDHU, R., BHAMIDIPATI, V., AND MUNAWER, Q. The ARBACY97
Model for Role-Based Administration of RoleSransactions on Informa-
tion and System Security (TISSEC) 2, 1 (1999), 105-135.

XACML, 2003. http://www.oasis-open.org/committees/download.php
/2713/BriefIntroductionto_XACML.html.

[10] XACML, 2004. http://www.o0asis-open.org/committees/xacml.

