- Weh Servié
WSIA & WSk

SIA and WSRP are new Web

T ey

services standards that enable

businesses to create user-fac-
ing, visual, and interactive Web services that
organizations can easily plug-and-play into their
applications and portals. This article will famil-
iarize you with these technologies and illustrate
how they can help your businesses.

One of the main promises of Web servic-
es is to enable the assembly of Web applica-
tions from functional components distrib-
uted across multiple locations. However,
until now the assembly of visual, rich, inter-

active Web applications with a cohesive flow
and look-and-feel has been a challenge.

AUTHOR BIO:

Written by Eilon Reshef

nteractive

Custom programming is required to create a
user interface tier for each new Web service,
resulting in set-up and maintenance efforts
that render business initiatives cost prohibi-
tive as the number of components increases.

Web Services for Interactive Applications
(WSIA) and Web Services for Remote Portals
(WSRP) are standards for user-facing, pres-
entation-oriented, interactive Web services
intended to simplify the creation of distrib-
uted interactive applications.

With WSIA and WSRP, Web services in-
clude presentation and multi-page, multi-
step user interaction. This lets service users
plug them into sites and portals without
custom development and to leverage new
functionality available in future versions of
the service without the need for additional
custom development (see Figure 1).

History

WSIA and WSRP stem from parallel
efforts initiated in the middle of 2001. Portal
vendor Epicentric spearheaded the Web
Services User Interface (WSUI) initiative to
address the lack of a standard user-interface
layer as part of the Web services stack. IBM
initiated its own effort: Web Service eX-
perience Language (WSXL). WebCollage, a
software vendor providing a platform for
integrating interactive Web applications,
wanted to standardize its customer imple-

,J\\

mentations based on an initiative called
Interactive Web Services. In parallel, many
portal vendors recognized the need to
address the same problem in the context of
portal toolkits: how to quickly plug remote
interactive services (called "portlets") into a
portal without custom programming for
each remote service.

The efforts were consolidated into two
working groups under the umbrella of
OASIS, the organization behind ebXML and
other XML-related standards. WSIA focuses
on the framework for creating interactive
Web services, and WSRP defines the inter-
faces to include portal-specific features.
Today the working groups include more
than 30 industry-leading vendors from dif-
ferent industry segments: application server
vendors (BEA, IBM, Oracle, Novell, Sun),
pure-play portals (Epicentric, Plumtree),
interactive application integration vendors
(WebCollage, Kinzan, Citrix) and enterprise
application providers (Peoplesoft, SAP).

Version 1.0 of the specifications includes
the interfaces common to the two groups,
and is currently in a review process.

WSIA/WSRP and the Web Services Stack
WSIA and WSRP define a set of APIs that

allow applications to leverage remote interac-
tive services. The APIs are built on top of the
existing standard Web services technologies:

wsj2.com

P R D W El-a et e B A

[———— [ITE————
v | e 4
e |
(> TTFT
¥ ik

Data vs. presentation-oriented
Web services

WSl WERP | |

wWs- Wi
v Gecurity | Prlicy

WSO

S0AF

KL HTTP®

WSIA/WSRP and related
technologies

* SOAP for the service invocations
e WSDL for formally describing the WSIA
and WSRP service interfaces

wsj2.com

e UDDI for publishing, finding, and bind-
ing the WSIA and WSRP services

WSIA and WSRP will leverage emerging
Web services security and policy standards
as they become available (see Figure 2).

WSIA and WSRP can be used in a variety
of business scenarios. Described below are
three scenarios considered in the working
groups.

The “Indirect Customer” Gap
One of the common gaps in e-commerce

today is between manufacturers and their
indirect customers. For example, a con-
sumer who researches electronic products
at a retailer site online cannot find the infor-
mation and tools needed for the process
because the retailer sites usually lack the
advisor and configuration tools typically
used for this kind of task. The consumer is
forced to go to the manufacturer site to find
these online applications, and then go back
to the retailer site to complete the purchase.

In the ideal scenario, online distributors
and resellers would be able to offer manu-
facturer tools and content as part of their e-
commerce offering. However, the technical
challenge is that many of the tools devel-
oped by manufacturers — online advisors,

product configurators, product capsules —
are sophisticated in nature. Thus, they can-
not be easily described using XML APlIs. In
addition, XML APIs don’t provide the sim-
plicity needed to scale integration to thou-
sands of channel partners because they
require each reseller to develop custom
code for each of the manufacturers APIs.

WSIA allows companies who sell indi-
rectly to package their online sales and serv-
ice effectiveness tools as WSIA/WSRP serv-
ices. This makes it possible for their channel
partners to easily plug the tools into their
own e-commerce sites and offer them to
their customers. It allows manufacturers to
make it easier to buy their products while
maintaining their traditional role in the dis-
tribution chain.

The “Corporate Employee” Gap
One of the common goals for business-

to-business service providers (e.g., pro-
viders of 401(K) programs) is to transition as
many processes into self-service tasks over
the Web as possible to reduce operating
costs. The main challenge is that the target
audience for these online services is mainly
corporate employees who interact primarily
with their employer’s intranet. To locate and
use an external service, the employees must
leave their familiar environment and locate
the remote service. This extra effort reduces

9

Cwrn S

FIGURE 3 | Assembly with XML APIs

FIGURE4 | Plug and play with WSIA/WSRP

the adoption rate for the online services
offered.

In the ideal scenario, employers would
be able to integrate such external services
into their intranets and their corporate por-
tals, and make them easily available to em-

10 December 2002

ployees. However, the current cost of inte-
gration makes it cost-prohibitive to all but
the largest organizations. With WSIA and
WSRP, providers of service applications can
package their financial services applications
as WSIA/WSRP services, making it easy for

corporate customers to integrate into their
intranets. It allows business-to-business
service providers to develop a closer rela-
tionship with their corporate customers and
with its employees.

The “Build Once Deploy Anywhere”

Problem
Fortune 500 companies provide a variety

of online services to their employees, cus-
tomers, and business partners. To do so,
they often create multiple portals — one for
each target audience.

One of the main challenges such com-
panies face is the need to make a single
application selectively available through
each of those portals. With WSRP, compa-
nies can package their applications as
“portlets” and make them available to
portal administrations for integration.
Portal administration can plug those
portlets and make them available to the
portals’ end users without custom inte-
gration, while the application would still
be centrally hosted and managed.

Technical Motivation

In many of the scenarios described
above, WSIA and WSRP provide an alter-
native to data-centric Web services and
simple XML APIs. When exposing only an

application’s business logic with XML

APIs, APl users incur the effort of integrat-

ing the application into their sites. The

approach falls short for complex interac-
tive applications whose flow spans several

Web pages because (see Figures 3 and 4):

« Application providers need to decom-
pose the interactive application into the
underlying atomic functions, which
requires a significant effort.

« APl users need to recompose the under-
lying APIs with the workflow and the
presentation into a coherent interactive
application, resulting in high setup
costs for the API user.

« Asthe APIs evolve, APl users need to up-
grade their application to comply with
the latest interface to incorporate new
functionality. This results in high main-
tenance costs for the API user.

e It's hard to ensure that the quality of the
re-assembled application meets the
application provider’s quality stan-
dards. The quality of the implementa-
tion depends heavily on the technical

WWwWowsj2.com

Cansumer Producer
{Customer) {(Vendor)
Wi QatErkup(]
i - Generate
-+ Markup
periomminterachond |
Chcks Action
= grathdariup(]
(Generate
Markup
| WSIA/WSRP Data Flow

expertise of the API users, and the func-
tions may not be assembled in the right
way in each instance.

These problems stem from a single
fact: instead of sending ready-to-use (cus-
tomized) HTML markup fragments that
the API user can embed without any fur-
ther processing into their Web site, data-
oriented Web services require further
work, often quite complex, to transform
the XML into HTML, and manage the
multi-step interaction. Such an approach
results in code duplication, because each
APl user has to re-implement the same
composition logic of the application.

Initial vendor “hype” in the Web servic-
es space suggested that new assembly
tools would solve this problem by provid-
ing “assembly platforms” that automate
the creation of interactive applications. In
reality, companies realized that using XML
APls and SOAP is no easier than using APls
available today in local code libraries. To
create a composite application, develop-
ers must understand the application-spe-
cific semantics of the different functions
offered, and invest time and resources to
compose the different functions into a
usable interactive application.

Many high-value business scenarios
involve complex, interactive services that
require a user interaction and a presenta-
tion model. By setting an industry stan-
dard to share this user interaction and

12

presentation, WSIA and WSRP pave

the way for providing richer and more
compelling Web services for businesses
and users alike.

WSIA and WSRP define a set of APIs
that allow developers to produce and con-
sume remote interactive Web services.
They define three types of actors:

e Producer: Represents the service
provider hosting the remote interactive
Web service (for example, weather.com
as a weather service provider).

* Consumer: Represents the entity inte-
grating the remote service into its Web
application, oftentimes using a portal
toolkit (for example, Yahoo Weather or a
corporate portal).

e End User: Represents the person that
comes to the Consumer Web site to use
the Producer’s application in the
Consumer’s context.

In a nutshell, WSIA and WSRP fulfill the
following roles:

« Define the notion of valid markup frag-
ments based on the existing markup
languages such as HTML, XHTML,
VoiceXML, cHTML, etc.

« Provide a set of standard calls to enable
a Consumer to request these markup
fragments from a Producer based on the
existing state.

e Supply a set of calls that support the

concept of multi-step user interaction
and preservation of state across those
calls.

There are four central parts to the WSIA

and WSRP APIs:

e Retrieving markup fragments (encapsu-
lated in the getMarkup() call).

e Managing state

e Handling user interaction (encapsulat-
ed in the performIinteraction() call).

e Supporting customization and configu-
ration.

Generating Markup Fragments
The getMarkup() call requests a

markup fragment based on the state of the
Web service.

When the end user views a page that
includes a remote interactive service, the
Consumer invokes the getMarkup() call.
The operation receives state information
(see below) and returns a fragment of
standard HTML code. The Consumer em-
beds this markup into the page, and
returns the completed page to the user. In
the case of WSIA, the container page can
be part of any Web application. In the case
of WSRP, the container page is generated
by a portal toolkit.

There are certain guidelines governing
the markup returned by the getMarkup()
call. The most important one relates to
user interaction. When the markup con-
tains links and forms, they point back to
the Consumer application, with the Web
service’s new state. This process, which is
called URL rewriting, ensures that any fur-
ther user interaction with the interactive
service is routed through the Consumer
application (see below). It also ensures
that the next getMarkup() is invoked with
the new state.

Managing State
State is critical because WSIA and WSRP

services are typically interactive (for exam-
ple, a three-step checkout process in an
online store), requiring several calls from
the Consumer to the Producer, each
dependent on previous configurations, data
entry, and actions.

Because WSIA and WSRP are connec-
tionless protocols, the Producer must be
able to return information to the Consumer,
with the understanding that this informa-
tion will be sent back by the Consumer. Two

wsj2.com

@ sy Feature

types of state information exist:

« Navigational state: Allows the current
page to be correctly generated, includ-
ing on a page refresh or through a book-
mark. This type of state is sent from the
Producer back to the Consumer, which
typically stores it in the URL. It is trans-
ferred in a parameter called navi-
gationalState.

e Transient state: While navigational
state defines the current “page” of the
Web service, transient state is stored on
the Producer and usually related to a
sequence of operations. The Consumer
is sent only a “handle” to this state,
much like HTTP sessions. If the Pro-
ducer decides to use a transient state,
the Producer returns the handle to it.
The Consumer is then responsible for
attaching it to any subsequent calls.

Handling User Interaction
To support user interaction, all the URLs

embedded in the markup fragment re-
turned by the remote Producer service point
back to the Consumer application. To do so,
the Consumer sends a URL template as part
of the invocation of the getMarkup() call.
For example, the consumer may send the
following URL template:

http://ww. consuner. conm pat h?ns={navig

ationSt at e} &i ={sessi onl D}

The Producer is responsible for gener-
ating a markup fragment in which all the
interaction URLs point back to the
Consumer. For example, the Producer
may generate a link that points to the fol-
lowing URL:

http://ww. consuner. con pat h?ns=page2&
si =4ABB33A

WSIA and WSRP also provide an alter-
native mechanism that allows the
Producer to create URLs that conform to a
predetermined pattern. The specification
allows Consumers to parse the markup
and to rewrite such URLs to point back to
their application.

Consequently, when the user clicks on

14

a link or submits form data, the Consumer
application gains control, and has access
to the action carried out by the user. The
Consumer application then invokes the
performinteraction() call. Upon receiving
the call, the Producer handles the action
and returns an updated state. To redraw
the complete page, the Consumer then
invokes the getMarkup() call to receive a
markup fragment. Because the state of the
Producer has changed since the previous
getMarkup() call, the markup fragment
returned is typically different from the
one previously returned. The end user can
then perform another action, which starts
a new interaction cycle (see Figure 5).

Supporting Customization and

Configuration
To support a situation where a single

centrally hosted service can be used
across multiple Consumer applications
and across multiple individual users,
WSIA and WSRP support multiple config-
urations of a single service. For example, a
remote interactive product catalog may be
configured to display different prices
depending on the Consumer application.

WSIA and WSRP provide a set of func-
tion calls allowing Producers to expose
multiple pre-configured versions of the
same service. It also allows Consumers to
create and manage additional configura-
tions of the same service, as well as allow-
ing end users to create such configura-
tions. In the context of WSRP, such config-
urations are static (that is: defined in
advance), whereas WSIA plans to add sup-
port for dynamically configured remote
services.

WSIA and WSRP are important tech-
nologies that help bring the promise of
Web services to end users, by providing a
standard to manage user interaction and
application display. They enable business
partners to integrate each other’s online
applications seamlessly, offering a more
compelling experience to their customers.

These technologies are complex under

the hood and can only thrive if vendors
deliver on the promise of building tools to
manage the complexity. Given the breadth
of the specification, it is not expected that
companies will develop WSIA and WSRP
solutions in-house. It is likely that they
will instead rely on tools from vendors,
keeping their focus on creating the appli-
cation functionality.

Although the WSIA and WSRP stan-
dards are still evolving, several vendors
are already providing practical solutions
in this space. Such solutions will likely
migrate to the standards as they mature.
You may expect advances to be made in
the following directions:

e Epicentric (www.epicentric.com) and
portal vendors are focusing on aggre-
gating existing remote Web services into
portals.

e IBM (www.ibm.com) and J2EE applica-
tion server vendors are building tools to
make it possible to create Web services
from scratch that can harness the power
of WSIA and WSRP.
WebCollage (www.webcollage.com) and
interactive application integration ven-
dors are focusing on helping companies
package their existing Web applications,
so that they can be used remotely by
customers and business partners alike.

As the Gartner Group pointed out in a
recent analysis of the Web services space,
“Successful software vendors and Web
services providers will find innovations in
usability and user interface to be a source
of competitive advantage. Better-than-
average usability is one reason why Yahoo,
Amazon, AOL, Google, and Palm came to
dominate their respective markets.”

The vision of intertwined Web services
with rich user interfaces, providing a com-
plete package to the end-user, can be real-
ized only if the presentation and user
interaction problem is solved. WSIA and
WSRP are a step in the right direction and
go a long way towards making Web servic-
es what it was designed to be: pluggable
application components that can be
assembled into visually rich composite Web
applications. @

wsj2.com

