
� ��

 
An Analysis of Physical Object Information Flow  

within Auto-ID Infrastructure 
 
 

by 
 
 

Tatsuya Inaba 
 

Submitted to the Engineering Systems Division on May 7, 2004 in Partial Fulfillment of the Requirements 

for the Degree of 

 

MASTER OF ENGINEERING IN LOGISTICS 
 
ABSTRACT 
 

The application of Radio Frequency Identification (RFID) has been studied for decades, and 
many field trials have been executed to evaluate the usability of RFID systems, the business case 
of RFID applications and so forth. One of the trial fields is its application to supply chain 
management (SCM) because the RFID technologies are thought to improve visibility of physical 
objects dramatically. Through this trial phase, benefits and feasibility of RFID have been 
confirmed, and as a result, major retailers, such as Wal-Mart, Target, and Metro, have decided 
to implement RFID. At the same time, these trials reveal the necessity of RFID standards. 
Among these newly developed RFID standards, Auto-ID standard, which was originally 
developed by Auto-ID Center, is a strong candidate to be a de-facto standard.  

Auto-ID technologies consist of data standards and software architecture components. Data 
standards also consist of two components: Electronic Product Code (EPC) and Physical Markup 
Language (PML). On the other hand, software architecture components consist of four 
components: readers, Savant, EPC Information Server (EPC-IS), and Object Name Service 
(ONS). EPC-IS, which defines the interface of the servers that store physical object information, 
plays a key role in realizing business processes that the RFID technologies are expected to 
realize. In this thesis, we propose architecture of EPC-IS by defining the requirements for 
EPC-IS through generic business processes executed in Auto-ID infrastructure. The architecture 
we propose is not a monolithic message schema but three simple message schemas with 
vocabulary sets that are separately defined in dictionaries. By taking this structure, we achieve 
robust and scalable interface. We also evaluate our proposal by applying it to the problems 
found in the RFID trials and possible future business processes. 
 
 
 
 
 



� ��

1. Introduction 
The history of Radio Frequency Identification 

(RFID) is long, and studies and implementations of 
RFID go back to the mid-20th century [1]. Although 
the technology was categorized as RFID, the 
technological element behind RFID applications at 
that time was different from that of today. Currently 
RFID technology premises the use of the IC tag, 
which stores information about the object to which 
the IC tag is attached. This IC tag-based RFID 
technology has been studied for decades, and based 
on these studies field trials have been executed to 
evaluate wide range of applications.  

One of the trial areas of RFID has been its 
application to supply chain management because 
this technology is thought to dramatically improve 
the visibility of physical objects and this increased 
visibility will bring companies in the supply chain 
many benefits, such as the reduction of inventory, 
reduction of inventory management costs, and 
realization of value added service. 

Through trial phase, benefits and feasibility of 
RFID infrastructure has been confirmed, and as a 
result, major retailers, such as Wal-Mart, Target, and 
Metro, have decided to deploy RFID 
implementation. At the same time these trials reveal 
the necessity for RFID standards. RFID standards 
are beneficial for many reasons. Major benefits are: 
1) guarantee of interoperability, 2) acceleration of 
implementation, 3) reduction in cost of RFID 
components.  

Among the RFID standards, the Auto-ID 
standard is a strong candidate to be a de-facto 
standard. This standard was originally developed by 
Auto-ID Center, a federation of research universities 
that was originally founded in 1999 and is now 
Auto-ID Lab. Auto-ID technologies consist of data 
standards and software architecture components. 
Data standards consist of two components: 
Electronic Product Code (EPC) and Physical 
Markup Language (PML), and software architecture 
components consist of four components: readers, 
Savant, EPC Information Server (EPC-IS), and 
Object Name Service (ONS).  

In order to fulfill the benefits of Auto-ID 
technologies, information about physical objects 
needs to be exchanged effectively within the 
Auto-ID infrastructure. A key component to realize 
this information exchange is EPC-IS, an interface 
for servers that store physical object information. 
However, specifications of EPC-IS have not been 
published yet. This is the current situation, and there 
is a gap between fundamental expectations towards 
Auto-ID infrastructure and the current publication of 
standards. In this thesis, we would like to fill the gap 

by proposing a solution: architecture that exchanges 
information with EPC-IS. 

 
2. Background 

The necessity of EPC-IS has been mentioned 
from the initial stage of the Auto-ID technology 
development because one of the primary concepts 
of Auto-ID technologies was to store minimal data 
in the IC tag and to store other related data in the 
servers of the physical object network. In order to 
realize this concept, PML was developed as a 
common language to describe information about 
physical objects, and a database to store the related 
information of physical object has been proposed 
[2].  

Research of EPC-IS is difficult by nature 
because it is affected by industries to which EPC-IS 
are applied but defining the common use cases 
among different industries is not easy. However, 
several studies have been done by Cambridge 
University, one of the universities in the Auto-ID 
Lab. Approaches taken in the research are to 
analyze characteristics of the data stored in the 
server of physical object network and also to define 
how to use the data [3].  

From the studies, data type is categorized into 
two: historical data and property data. The property 
data is also divided into product-level property data 
and instance-level property data. This data type 
definition helps the researchers to categorize use 
cases of each data type, and from this categorization 
they analyze efficient methods to retrieve data 
stored in the servers. One fundamental assumption 
they make is that the use of EPC-IS is different in 
each industry. Based on this assumption, their focus 
is to provide technology components and to assess 
how they are compatible with existing industry 
standards. 

In this thesis, we take a different approach from 
those studies. We use the same data type category 
that they define and assume business processes 
based on the different types of data. The difference 
is how to achieve compatibility with the existing 
industry standards. Our approach is to propose 
information flow architecture with compatibility at 
the component level, which is defined in dictionary 
as explained in Chapter 3.  

The methodology we follow in this thesis has 
three steps: 1) requirement analysis, 2) modeling, 
and 3) evaluation. In the requirement analysis step, 
we define generic business processes. One of the 
reasons why EPC-IS specifications have not been 
published is the lack of business processes with 
EPC-IS, and we define generic business processes 
by investigating current trials and expected business 



� ��

processes for RFID. After we specify these business 
processes, we identify the requirements for EPC-IS.  

In the modeling step, we model architecture of 
EPC-IS. Since the requirements are not 
comprehensive, we do not assume that this model is 
used as a standard. However, this architecture of 
EPC-IS and the ways in which it is used will be 
applicable to a new standard. 

In the evaluation step, we evaluate the model 
we propose in the previous step with problems 
identified in the trials and the further possible 
business processes. With this evaluation step, we 
will modify the model and improve the robustness 

of the architecture, if necessary. 
 

3. Requirement Analysis 
3.1. Introduction of Generic Business Process 

We choose four generic business processes to 
better capture the requirements for EPC-IS. They 
are: 1) query product-level data business process, 2) 
query instance-level data business process, 3) query 
location data business process, and 4) query path 
data business process. 

Regarding system layout, we premise the 
structure in Figure 1

Enterprise
Application 1

EPC-IS 1

Savant 1

Savant 1-1 Savant 1-2 Savant 1-3

Reader 1-1 Reader 1-2 Reader 1-3

Enterprise
Application 2

EPC-IS 2

Savant 2

Savant 2-1 Savant 2-2 Savant 2-3

Reader 2-1 Reader 2-2 Reader 2-3

ONS

Company 1 Company 2

A A A A A A

 
Figure 1: System layout 

 
Query product-level data business process is 

the business process that is executed when 
company2 queries product-level data of a product to 
Company1’s server (with EPC-IS) which stores data 
of the product. 

Query instance-level data business process is 
the business process that is executed when 
company2 queries instance-level data of a product 
to Company1’s server (with EPC-IS) which stores 
instance-level property data.  

Query location data business process is the 
business process that is executed when Company2 
queries current location data of the individual item 
to a server (with EPC-IS) which stores location 
data. 

Query path data business process is the 
business process that is executed when Company2 
queries path data that individual item takes by using 
EPC sent by Company1. Event data is stored in 
servers (with EPC-IS) of Company1, Company2 or 
the parties that handle the item and store the data. 

For each generic business process, we develop 
message flow diagram and identify necessary 
message types, necessary data to be sent in each 
message, and other mechanisms that are required to 

EPC-IS. 
 

3.2. Requirement Definition 
From the generic business processes we define 

in the previous section, we distill requirements for 
EPC-IS.  

 
3.2.1. Message Types 

From the generic business processes, we find 
that three types of messages are necessary for 
EPC-IS: Notify message, Query/Response message, 
and Acknowledge message. Notify message is used 
when Enterprise Application, Savant, EPC-IS or 
other Auto-ID compliant components create or 
notify the data that is supposed to be stored in the 
server with EPC-IS. It is used for both property data 
and historical data, and has a capability to send data 
of multiple products and instances. 

Query message is used when Enterprise 
Application, EPC-IS or other Auto-ID compliant 
components query data to the server with EPC-IS, 
and Response message is the response to the query. 
Key for the query may EPC, property data, date 
time stamp of historical data, and any other data 
defined in the message exchange. 



� ��

Acknowledge message is used to notify the 
result of Notify message. In order for a sending 
system component to make sure the notify message 
is arrived at the receiving component, this 
Acknowledge message is necessary.  

 
3.2.2. Scalability of the Message 

Although four generic business processes are 
based on the RFID trials and expected business 
processes of RFID, they do not cover all the 
business processes with EPC-IS. Therefore, the 
model needs to have scalability to accommodate 
other business processes and future business 
processes.  

 
3.2.3. Data type 

From the generic business processes, we find 
that EPC-IS needs to have a capability to deal both 
property data and historical data. For the property 
data, required actions are create, update and query, 
but it is conceivable that this data is deleted as well. 
Historical data is stored when an event occurs to 
each individual item. Attributes which need to be 
stored are event type, EPC of subjected item, date 
time stamp, and relevant data, such as reader EPC.  

 
4. Modeling 
4.1. Modeling Direction 

From the requirement analysis, one key 
requirement for the modeling is scalability. There 
are two reasons for it: one is that functions of 
EPC-IS has not determined and the other is that 
Auto-ID technologies are applied to many industries, 
which may have different requirements from we 
assume. In order to guarantee the scalability, we 
adopt two-layer structure for EPC-IS interface: 1) 
Message structure and 2) Dictionary structure. For 
Dictionary structure, we also adopt Action class, 
which describes event of historical data and action 
to property data, and Value class, which is the 
attribute of Action class. 

 
4.1.1. Separation of Message structure from 

Dictionary structure 
In order to guarantee the scalability, we take 

into account maintenance cycle of the message 
structure and components embedded in it. Generally 
the need for changing component requirement is 
more frequent than need for message. If property of 
physical object is embedded in message as XML 
tags, for example, if we assume to send a box shape 
product and model tags like <height>, <depth>, and 
<width> in the message, every time new shape item 
needs to be sent, entire message needs to be 
modified, even if fundamental message structure 

may not need to be modified. Therefore, we model 
message structure and components separately, and 
propose the way to maintain components with the 
dictionary. 

 
4.1.2. Meaning of Adopting Dictionary 

If components in the messages are separately 
defined in a dictionary, the dictionary is a 
vocabulary set used to describe physical object, 
which is equivalent to PML Extension. By 
separating components from message, we propose 
architecture of both EPC-IS and the PML 
Extension. 

 
4.1.3. Dictionary Structure 

We define schema of the dictionary by 
analyzing the data that needs to be stored in the 
dictionary. Table1 shows the data structure for 
property data. There are two types of actions for 
property data: One is for operating data stored in the 
servers, and the other is for asking data transmission 
to other servers. Actions for data operation are 
“create”, “update”, and” delete”, and the data dealt 
with these actions includes EPC of subjected item 
and relevant data, such as size, expiration date, and 
related business document of the item. Unit of 
measure and format of the value are also necessary 
for property data. 

On the other hand, Action for data transmission 
is “notify”, and the data includes shipment identifier, 
purchase order identifier, shipped item EPC, and 
company profile. 

Considering the consistency of the data 
structure, we assume using EPC for document 
identifier, such as shipment identifier and purchase 
order identifier. There is no impact of this 
assumption for the dictionary schema.  

 
Table 1: Structure of Property Data 

Action Key Relevant data 
Create, 
Update, 
Delete 

EPC of instance, 
EPC of product 

Size, expiration date, 
business document 

Notify Shipment 
identifier (EPC) 

Purchase order 
identifier, EPC of 
shipped items, 
company profile 

 
The same structure is applied to historical data. 

Action for historical data is event, such as “detect”. 
Key for the historical data is EPC of the subjected 
individual item, and in addition to that, relevant data, 
such as date time stamp and Reader EPC needs to 
be collected. (Table2) 
 



� ��

Table 2: Structure of Historical Data 
Action Key Relevant data 
Detect EPC of instance Date time stamp, 

reader EPC 
 

From this observation, we propose the same 
dictionary schema structure for the property data 
and the historical data. 

 
4.2. Dictionary 

From what observed, we propose the same 
dictionary schema for both property data and 
historical data. We use UML Class Diagram for 
dictionary schema design [4].  

Based on the data structure, we see that each 
action takes more than one relevant data but that the 
number of relevant data is different in each case. 
Therefore, we develop Value class separate from 
Action class and link them with identifiers.  

We also understand the need to aggregate 
Value class when a set of values have some special 
business meanings. For example street, city, state, 
zip, and country are separate values, but usually 
they are for specific business entities, such as 
manufacturer address and retailer address. 
Therefore, we develop ValueSet class and link it 
with Action class and Value class. We also 
understand that, in some cases, aggregation goes 
multiple layers, so we add recursive structure in 
ValueSet class.  

There are several ways to exchange unit of 
measure among Auto-ID components, but to reduce 
the data size and conversion load of each 
component, we propose to define unit of measure in 
the dictionary, which is defined as Format class and 
UOM class associated with Value class. 

 
5. Message 
5.1. Notify Message 
Figure3 shows the message structure of Notify 
message. The relation between Notify class and 
PhysicalObject class is one to many in order for 
Savant to send data of multiple physical objects. 
Properties of Action class, dicRef and ver, come 
from dictionaries. By using identifier in the 
dictionary, the sender and the receiver can identify 
the action of the data. The relation between the 
PhysicalObject class and the Action class is one to 
many. With this structure, Savant can send multiple 
events of a physical object. 

Action class has two associated classes, 
ElementSet class and Element class. ElementSet 
class and Element class correspond for ValueSet 
class and Value class in dictionaries respectively. 
This is because some instances of Actions take 

instances of Value directly and others take instances 
of ValueSets first and then instances of ValueSets 
take instances of Value. The reason why ElementSet 
class takes recursive structure comes from 
dictionary structure. 

Element class takes Value class for its 
associated class. Value class is for actual historical 
data and property data. Since instance of each class 
in dictionary takes one data, the relation between 
Element class and Value class is one to one. 

 
5.2. Query/Response message 

Figure5 shows the message structure of 
Query/Response message. The structure of 
Response class is identical to Notify class. Since 
Query class describes the attributes that a query 
sender wants to get, Query class does not take 
PhysicalObject class. If a sender wants to retrieve 
all the data related to one EPC, it can use Value 
class. Each instance of Action in the dictionaries is 
designed to have EPC as an attribute of it.  

There are several ways to develop instances of 
Query Message. Since our proposal uses XML, 
XML Query (XQuery) proposed at World Wide 
Web Consortium (W3C) may be applied [5], [6]. 
However, XQuery is more compatible to the XML 
instances with solid tag names than those with 
generic tag names like our model. Therefore, we 
propose different query model in this thesis. 

Simple query is constructed by sending tags 
with dictionary reference in the Query message. For 
example, when a retailer wants to retrieve Reader 
EPC of a product, the company sends a Query 
message indicating the required data with tags. In 
the sample below, we assume that a company wants 
to know the EPC of readers that scan a product of 
which the company knows the EPC 
(urn:epc:1.10.100.2). When a trading company 
receives the query, it retrieves servers which store 
historical data and sends back the response. In this 
example, two readers (urn:epc.1.10.110.1 and 
urn:epc:1.10.110.2) scan the product. 
 
Sample Query Message 
… 
<Action dicQuery=”EA001-01” name=”detect”> 

<Element dicQuery=”EV001-01” name=”EPC”> 
<Value> urn:epc:1.10.100.2</Value> 

</Element> 
<Element dicQuery=”EV003-01” name=”ReaderEPC”> 
<Value></Value> 

</Element> 
</Action> 
… 
 
Sample Response Message 
… 



� ��

<PhysicalObject EPC=”urn:epc:1.10.100.2”> 
<Action dicQuery=”EA001-01” name=”detect”> 
<Element dicQuery=”EV001-01” name=”EPC”> 

<Value> urn:epc:1.10.100.2</Value> 
</Element> 
<Element dicQuery=”EV003-01” name=”ReaderEPC”> 

<Value>urn:epc:1.10.110.1</Value> 
</Element> 

</Action> 
<Action dicQuery=”EA001-01” name=”detect”> 
<Element dicQuery=”EV001-01” name=”EPC”> 

<Value> urn:epc:1.10.100.2</Value> 
</Element> 
<Element dicQuery=”EV003-01” name=”ReaderEPC”> 

<Value>urn:epc:1.10.110.2</Value> 
</Element> 

</Action> 
</PhysicalObject> 
… 

Figure 4: Sample instance of simple query 
 
More complex queries are also developed in 

the same manner. If a retailer wants know the data 
scanned in a specific time range, it fills the time 
range for the Value tag instance, and if the company 
wants to know the data scanned by several readers, 
it enumerates EPC of the readers for the Value tag 
instance.  

Regarding sending result in Response message, 
we propose simple method although there are 
several ways to send results in hierarchical structure. 
We design a property, category, which has a list of 
values: success, fail, and partly success. If all the 
results of that level are the same, either success or 
fail is selected. When parts of the results of that 
level success, partly success is selected.  

 
5.3. Acknowledge message 

Figure6 shows the message structure of 
Acknowledge message. Since result of the Notify 
message may be sent either message level, 
PhysicalObject class level, or Action class level, 
Result class is associated with Acknowledge class, 
PhysicalObject class and Action class. Results are 
sent in the same way as Response message. 

 
6. Evaluation 

In the previous two chapters, we define 
requirements for EPC-IS and, based on the 
requirements, we model messages used for EPC-IS 
as well as PML Extension as Property Dictionary 
and Event Dictionary. In this chapter, we evaluate 
the proposed model from other perspectives, such as 
issues raised in RFID trials and expectation towards 
RFID. The points we deal with are as follows: 1) 
Imperfection tag detection and 2) Further business 
processes. 

 

6.1. Imperfection tag detection 
Although RFID obviates the need for contact 

and error rate is lower than bar code, the read 
efficiency is not 100%. From the field trial 
conducted by Auto-ID Lab, read rate is about 97% 
[7]. This rate becomes worse when items are packed 
in cases or cases are loaded on pallets.  

In order to increase read rate, companies start 
to think about using EPC of a case as a representing 
EPC of entire items in it and EPC of a pallet as a 
representing EPC of cases on it and so forth. 
Suppose cases loaded on a pallet are sent from 
location A to location B, the relation between EPC 
of each case and EPC of a pallet can be linked at 
location A. If the relation is successfully linked and 
operators at location B can use the data, they deem 
all the cases are arrived when they scan EPC of the 
pallet. This technique is called aggregation, 
association or inferred reading [8]. 

In order to realize inferred reading, there are 
three things that need to be done: the event of 
aggregation and disaggregation need to be defined, 
the historical data needs to be stored, and the data 
needs to be effectively retrieved by Query/Response 
message from a receiving company. 

Table3 shows the event data for aggregation 
and disaggregation. Attributes of the events are 
similar to detect event previously defined in 
requirement analysis. This means that these events 
are accommodated with Event Dictionary and that 
messages modeled in Chapter 5 handle historical 
data of these events. 

Table3: Structure of aggregation/disaggregation 
Action Key Relevant information 
Aggregate EPC of 

instance 
Date time stamp, Reader 
EPC, Aggregated EPCs, 
Aggregation direction 

Disaggreg
ate 

EPC of 
instance 

Date time stamp, Reader 
EPC, disaggregated EPC 

 
To accommodate inferred reading, we add new 

class, InferredReading class, as an association class 
of PhysicalObject of Notify message and Response 
message. 

 
6.2. Further Business Processes 

To evaluate the robustness of the model, we 
define three more business processes, which would 
be realized by Auto-ID technologies: 1) Handling 
trace business process, which is useful in such cases 
as international shipment which requires handling 
by many different companies and pharmaceutical 
tracing which may be legislated in some of the 
states [9], 2) Assembly trace business process, 



� ��

which is useful in such cases as tracing hazardous 
materials in electronic appliances, which is useful 
under the environment where the use of hazardous 
substances is strictly prohibited [10], and 3) Order 
track business process, which is useful in such cases 
as tracking the status of products which have long 
manufacturing process time and doing quality error 
management. [11].  

In each case, we confirm that our model 
accommodate information that needs to be 
exchanged between servers and software 
components within Auto-ID infrastructure. 

 
7. Summary and Suggestions 
7.1. Summary 
7.1.1. EPC Information Service Architecture 

A key objective of this thesis is to propose 
EPC-IS architecture. We start with generic business 
process definition which includes the servers with 
EPC-IS. By defining business processes, we make 
sure that EPC-IS we model has the capability to 
support these business processes.  

Then we define requirements derived from 
generic business processes, and propose architecture 
which consists of messages and dictionaries. This 
separation makes it possible to maintain each of the 
schemas independently and reduce the impact of 
business process change by modifying dictionary 
instances. 

Message and dictionary schemas are evaluated 
with further requirements which are raised in RFID 
field trials and expected for RFID future 
applications. Through this evaluation, we modify 
message schema and increase dictionary instances 
and make them more robust. 

 
7.1.2. Message 

One of the proposals we make is message 
schema. In order to realize generic business 
processes, we develop three messages: Notify 
message, Query/Response message, and 

Acknowledge message. Notify message is used for 
registering and updating the physical object 
information, Query/Response message is used for 
retrieving information stored in the server with 
EPC-IS, and Acknowledge message is used for 
notifying acknowledgement and exception of Notify 
message. 

 
7.1.3. Dictionary 

Another proposal we make is dictionary 
schema and instances.  We develop one dictionary 
schema and two sets of instances as dictionary. One 
dictionary is Event Dictionary which maintains 
events and attributes of them, and the other is 
Property Dictionary which maintain attributes of 
both product-level and instance-level property. 

Since attributes defined in the dictionaries are 
used to describe physical object information within 
Auto-ID infrastructure, these dictionaries are also 
used as the PML Extension. 

 
7.2. Suggestions for Further Study 

In this thesis we show the architecture of 
EPC-IS. Since starting from generic business 
process, we assume this architecture is developed to 
actual EPC-IS standard. Therefore, one future study 
area is to develop EPC-IS standard with real 
business requirements. 

Another study area is the application of 
EPC-IS to EDI/B2Bi standards. In this thesis, we 
discuss the possibility of sending data via EDI/B2Bi 
connection and conclude that there is little 
difference between using EDI/B2Bi connection and 
connection with EPC-IS. However, we do not 
discuss the impact of using EPC-IS connection to 
exchange other messages defined in EDI/B2B 
standards, such as quote, purchase order, and 
invoice. Since it is envisaged that companies will 
maintain fewer connections within their systems 
and between their trading partners, this study is 
necessary to further deploy Auto-ID infrastructure. 

 

 



� 	�

Figure 2: Class diagram for Dictionary 
 
 

 
Figure 3: Class diagram of Notify message 

 
 

 
Figure 5: Class diagram of Query/Response message 

 



� 
�

 

Figure 6: Class diagram of Acknowledge message 
 
Reference 
[1] The Association for Automatic Identification 

and Data Capture Technologies. Shrouds of 
time, The history of RFID 

[2] Sanjay Sarma, David L. Brock & Kevin Ashton. 
The Networked Physical World Proposals for 
Engineering the Next Generation of Computing, 
Commerce & Automatic-Identification 

[3] Mark Harrison, Humberto Moran, James Brusey, 
Duncan McFarlane. PML Server Developments 

[4] RosettaNet. PIP2A9 Technical Product 
Information Exchange Protocol 

[5] World Wide Web Consortium.  
[6] W3C. XQuery 1.0: An XML Query Language 
[7] Auto-ID Lab Silvio Albano, Daniel W. Engels. 

Technical Report Auto-ID Center Field Trial: 
Phase I Summary 

[8] Auto-ID Lab Silvio Albano. Auto-ID Field Test 
Lessons Learned in the Real World 

[9] U.S. Food and Drug Administration. 
COMBATING COUNTERFEIT DRUGS A 
Report of the Food and Drug Administration 

[10] European Union. DIRECTIVE 2002/95/EC OF 
THE EUROPEAN PARLIAMENT AND OF 
THE COUNCIL of 27 January 2003 on the 
restriction of the use of certain hazardous 
substances in electrical and electronic 
equipment 

[11] Duncan McFarlane, Sanjay Sarma, Jin Lung 
Chirn, C Y Wong, Kevin Ashton. Submitted to 
Journal of EAIA, July 2002 THE 
INTELLIGENT PRODUCT IN 
MANUFACTURING CONTROL 

 


