

OASIS ebXML Registry 1

Proposal: ebXML Registry as a Web Service 2

Category: New functionality to draft specifications 3

Date: August 15, 2001 4

Author: ebXML Registry RAWS Sub-team 5

Status of this Document 6

This document is a draft proposal whose purpose is to solicit additional input. 7

1 Abstract 8

This document proposes focused enhancements to the ebXML Registry Services specification 9
that will allow the ebXML Registry services to be accessible as a set of abstract web services with 10
concrete normative bindings specified for ebXML Messaging Service and SOAP. 11

Currently the only normative access to the ebXML Registry is over the ebXML Messaging 12
Service. What is lacking is a clean separation between an abstract service interface specification 13
and multiple concrete technology specific bindings (e.g. ebXML Messaging Service) . 14

The proposal allows more flexibility and ease of access to clients by defining a second normative 15
interface to the ebXML Registry that is based on the widely adopted SOAP protocol. 16

2 Motivation 17
The primary motivation behind this proposal is to further ebXML Registry adoption. It is our 18
assertion that adoption is furthered by: 19
 20

1. Building registry clients with limited infrastructure 21
2. Enabling additional technology bindings for accessing the registry service 22
3. Aligning with emerging and de facto standards 23

ebXML Registry adoption may be measured in the number of operational public ebXML 24
Registries. Currently this number is one. We would like it to higher. 25

2.1 Building Clients with Limited Infrastructure 26

Currently, an ebXML Registry client must use an ebXML Messaging service to interact with an 27
ebXML Registry. This requires that the client have access to ebXML Messaging Service 28
infrastructure. This may become a barrier to ebXML Registry adoption. 29

Making ebXML Registry available as an abstract web service with additional technology bindings 30
(e.g. SOAP) gives clients more options to interact with an ebXML Registry. 31

ebXML Registry

 Page 2

A normative SOAP binding (SOAP 1.1 and SOAP with Attachments with http) is proposed since 32
SOAP has considerable mind share and adoption and has in fact been adopted by the ebXML 33
Messaging Service itself. Numerous tools exist that make it very simple for clients to access any 34
SOAP based web service. 35

2.2 Aligning With Emerging and De Facto Standards 36

Much has happened in the industry and standards space since ebXML Registry V 1.0 was 37
developed: 38

1. XML Schema is now a W3C recommendation 39

2. SOAP Version 1.2 and XML Protocol Abstract Model Working Drafts have been 40
published within W3C 41

3. WSDL has been submitted as a W3C note 42

4. Varieties of tools are available that support WSDL and SOAP 43

The proposal will align ebXML Registry with all of the above standards and trends in the industry 44
and thus further adoption. 45

3 Proposed Deliverables 46

The following concrete deliverables are proposed: 47

1. XML Schema definition for [ebRIM] and [ebRS] with full support for XML namespaces, 48
data types, constraints etc. This schema would replace Registry.dtd 49

2. Abstract service definition of Registry Services 50

3. WSDL description of the abstract Registry Services and related concrete SOAP binding 51

4 Use Cases 52

4.1 SOAP Based Access of ebXML Registry 53

An IT shop wants to write a client program to use the ebXML Registry. They do not have the 54
knowledge or infrastructure for using an ebXML Messaging service to access the registry. 55
However, they have the knowledge to use raw SOAP to access ebXML Registry over SOAP. 56
They use the SOAP binding to ebXML Registry to write a custom SOAP client for the ebXML 57
Registry. The client calls are synchronous. 58

4.2 Automatic Client Stub Generation 59

The same IT shop now has access to a WSDL compiler that can automatically generated stubs 60
for accessing the SOAP based ebXML Registry services. The stubs provide simplified access to 61
the ebXML Registry in C++ or Java. The client programmer does not even need to know SOAP. 62
All SOAP specific details are hidden in the bindings generated by the WSDL compiler. The client 63
calls are synchronous. 64

ebXML Registry

 Page 3

4.3 Support for Other Technology Bindings 65

The ebXML Registry team may define additional technology bindings for the abstract services 66
defined by this proposal beyond ebXML Registry and SOAP. For example, an IIOP binding may 67
be defined. These bindings could be layered easily on top of the abstract service definitions in 68
WSDL. 69

5 Changes to [ebRS] 70

The following sections provide initial text changes to the [ebRS]. These section will need to be 71
edited into the main spec upon approval. Note, that the [ebRS] will likely have systemic impact of 72
this proposal that is not captured in this section. 73

Note that cross-references are not absolute and will change when merged into main specification. 74
For example, Appendix A in this document may become Appendix E in main specification. 75

5.1 Removal of Dependency on CPP/CPA 76

Section 6.1 and other places define linkages between [ebRS] and CPP/CPA. This needs to be 77
replaced with concepts that will work with WSDL also. CPP/CPA should be mentioned as 78
providing an alternate protocol to bootstrap with registry. 79

5.2 Add Section in Chapter 6: Web Service Based Architecture 80

This section should be near the beginning of chapter 6. Initial text proposal follows: 81

The ebXML Registry will expose an abstract registry service that may be implemented using 82
WSDL or ebXML CPP/CPA. Here is a description of the abstract interface … 83

5.3 Abstract Registry Service 84

The architecture defines an abstract registry service as shown in Figure 1. The figure shows how 85
an abstract ebXML Registry must provide two key functional interfaces called QueryManager1 86
(QM) and LifeCycleManager2 (LM). When mapping to WSDL,these interfaces are 87
represented as port types within the WSDL description in A.2. 88

QM
LM

Registry Service 89
Figure 1: The Abstract ebXML Registry Service 90

[Note]Remove Fig 2 in [ebRS]91

1 Known as ObjectQueryManager in V1.0
2 Known as ObjectManager in V1.0

ebXML Registry

 Page 4

5.4 Concrete Registry Services 92

The architecture further defines how concrete implementations of the abstract registry may be 93
realized as a web service. This is defined in appendix A.3 using binding and service 94
definitions within the WSDL description, where the abstract port types are mapped to ports 95
bound to specific protocols. 96

 97

QM/SOAP
LM/SOAP

QM/ebXML
LM/ebXML

Registry Service

RC/SOAP
SOAP-Based
Registry Client

RC/ebXML
EbXML-Based
Registry Client

SOAP

EbXML TRP/SOAP

 98
Figure 2: A Concrete ebXML Registry Service 99

Figure 2 shows a concrete implementation of the abstract ebXML Registry as a web service 100
(name RegistryService) on the left side. The RegistryService provides the QueryManager and 101
LifeCycleManager interfaces available with multiple protocol bindings (SOAP and ebXML TRP). 102
Each interface/protocol combination is defined as a port definition in the WSDL in appendix A.3. 103

Figure 2 also shows two different clients of the ebXML Registry on the right side. The top client 104
uses SOAP protocol to access the registry while the lower client uses ebXML TRP. Each client 105
uses the appropriate port within the RegistryService service based upon their protocol 106
preference. 107

5.5 Interoperability Requirements 108

The architecture requires that any ebXML compliant registry client can access any ebXML 109
compliant registry service in an interoperable manner. This is done by requiring that all ebXML 110
Registry services, at minimum, support the normative SOAP interface. An ebXML Registry may 111
implement any number of additional protocol bindings in addition to the SOAP protocol. The 112
support of additional protocol bindings is optional. 113

[Note]Need to remove first assumption in section 4.2114
(Caveats and Assumptions) since TRP is no115
longer required. Add requirement that at least116
one of the normative interfaces must be117
supported.118

5.6 Section 6.2 Changes (Communication Bootstrapping) 119

This section needs to be re-written to state the following: 120

Each ebXML Registry must provide a WSDL description for its RegistryService as defined by 121
appendix A.3. A client uses the WSDL description to determine the address information of the 122
RegistryService in a protocol specific manner. For example the SOAP/HTTP based ports of the 123
RegistryService may be accessed via a URL specified in the WSDL for the registry. 124

ebXML Registry

 Page 5

The use of WSDL enables the client to use automated tools such as a WSDL compiler to 125
generate stubs that provide access to the registry in a language specific manner. 126

At minimum, any client may access the registry over SOAP/HTTP using the address information 127
within the WSDL, with minimal infrastructure requirements other than the ability to make 128
synchronous SOAP call to the SOAP based ports on the RegistryService. 129

5.7 Issues 130

1. Need to use URNs for namespace specification 131

2. Terminology for abstract service description of the registry 132

3. Should a non-normative Registry.dtd be maintained by someone 133
outside the specification. 134

5.8 Add Reference To WSDL W3C Note 135
[WSDL] W3C Note. Web Services Description Language (WSDL) 1.1 136

http://www.w3.org/TR/wsdl 137

[SOAP11]W3C Note. Simple Object Access Protocol, May 2000, http://www.w3.org/TR/SOAP/ 138

[SOAPAt]W3C Note: SOAP with Attachments, Dec 2000, http://www.w3.org/TR/SOAP-139
attachments 140

Appendix A Web Service Architecture 141

A.1 WSDL Terminology Primer 142

WSDL provides the ability to describe a web service in abstract as well as with concrete bindings 143
to specific protocols. 144

In WSDL an abstract service consists of one or more port types or end-points. Each port 145
type consists of a collection of operations. Each operation is defined in terms of messages 146
that define what data is exchanged as part of that operation. Each message is typically defined in 147
terms of elements within an XML Schema definition. 148

An abstract service is not bound to any specific protocol (e.g. SOAP). In WSDL, an abstract 149
service is bound to a specific protocol by providing a binding definition for each abstract port 150
type that defines additional protocols specific details. 151

Finally, a concrete service definition is defined as a collection of ports, where each port is 152
simply adds address information such as a URL for each concrete port. 153

A.2 Registry Service Abstract Specification 154

Registry.wsdl file goes here 155

A.3 Registry Service SOAP Binding 156

RegistrySOAPBinding.wsdl file goes here 157

http://www.w3.org/TR/wsdl

	Status of this Document
	Abstract
	Motivation
	Building Clients with Limited Infrastructure
	Aligning With Emerging and De Facto Standards

	Proposed Deliverables
	Use Cases
	SOAP Based Access of ebXML Registry
	Automatic Client Stub Generation
	Support for Other Technology Bindings

	Changes to [ebRS]
	Removal of Dependency on CPP/CPA
	Add Section in Chapter 6: Web Service Based Architecture
	Abstract Registry Service
	Concrete Registry Services
	Interoperability Requirements
	Section 6.2 Changes (Communication Bootstrapping)
	Issues
	Add Reference To WSDL W3C Note

