
 UDDI.org

Copyright © 2001 by
Accenture, Ariba, Inc., Commerce One, Inc., Compaq Computer Corporation, Equifax, Inc., Fujitsu Limited, Hewlett-Packard
Company, i2 Technologies, Inc., Intel Corporation, International Business Machines Corporation, Microsoft Corporation, Oracle
Corporation, SAP AG, Sun Microsystems, Inc., and Verisign, Inc.
All Rights Reserved.

UDDI Version 2.0 API Specification
UDDI Open Draft Specification 8 June 2001

This version:
http://groups.yahoo.com/group/uddi-wg/files/UDDI V2/ProgrammersAPI-V2.00-Open-
20010608.doc

Latest version:
http://groups.yahoo.com/group/uddi-wg/files/UDDI V2/ProgrammersAPI-V2.00-Open-
20010608.doc

Editors (alphabetically):

Barbara McKee, IBM
Dave Ehnebuske, IBM
Dan Rogers, Microsoft

Contributors (alphabetically):
Tom Bellwood, IBM
Douglas Bryan, Accenture
Jeff Burinda, Wand
Tom Clement, Avinon
Vadim Draluk, BEA
Brian Eisenberg, Datachannel
Tom Glover, IBM
Andy Harris, i2 Technologies
Andrew Hately, IBM
Denise Ho, Ariba
Yin-Leng Husband, Compaq
Alan Karp, HP
Keisuke Kibakura, Fujitsu
Chris Kurt, Microsoft
Jeff Lancelle, Verisign
Sam Lee, Oracle
Sean MacRoibeaird, Sun
Anne Thomas Manes, Sun
Joel Munter, Intel
Tammy Nordan, Compaq
Chuck Reeves, Microsoft
Jared Rodriguez
Christine Tomlinson, Sun
Cafer Tosun, SAP
Claus von Riegen, SAP
Prasad Yendluri, WebMethods

http://groups.yahoo.com/group/uddi-wg/files/UDDI V2/ProgrammersAPI-V2.00-Open-20010608.doc
http://groups.yahoo.com/group/uddi-wg/files/UDDI V2/ProgrammersAPI-V2.00-Open-20010608.doc
http://groups.yahoo.com/group/uddi-wg/files/UDDI V2/ProgrammersAPI-V2.00-Open-20010608.doc
http://groups.yahoo.com/group/uddi-wg/files/UDDI V2/ProgrammersAPI-V2.00-Open-20010608.doc

UDDI Version 2 Programmers API Specification UDDI.org

Copyright © 2001 by
Accenture, Ariba, Inc., Commerce One, Inc., Compaq Computer Corporation, Equifax, Inc., Fujitsu Limited, Hewlett-Packard
Company, i2 Technologies, Inc., Intel Corporation, International Business Machines Corporation, Microsoft Corporation, Oracle
Corporation, SAP AG, Sun Microsystems, Inc., and Verisign, Inc.
All Rights Reserved.

2

Copyright © 2001 by Accenture, Ariba, Inc., Commerce One, Inc., Compaq Computer Corporation, Equifax,
Inc., Fujitsu Limited, Hewlett-Packard Company, i2 Technologies, Inc., Intel Corporation, International Business
Machines Corporation, Microsoft Corporation, Oracle Corporation, SAP AG, Sun Microsystems, Inc., and
VeriSign, Inc. All Rights Reserved.

These documents are provided by the companies named above ("Licensors") under the following license. By
using and/or copying this document, or the document from which this statement is linked, you (the licensee)
agree that you have read, understood, and will comply with the following terms and conditions:

Permission to use, copy, and distribute the contents of this document, or the document from which this
statement is linked, in any medium for any purpose and without fee or royalty under copyrights is hereby
granted, provided that you include the following on ALL copies of the document, or portions thereof, that you
use:

1. A link to the original document.
2. An attribution statement: “Copyright © 2001 by Accenture, Ariba, Inc., Commerce One, Inc., Compaq

Computer Corporation, Equifax, Inc., Fujitsu Limited, Hewlett-Packard Company, i2 Technologies, Inc.,
Intel Corporation, International Business Machines Corporation, Microsoft Corporation, Oracle
Corporation, SAP AG, Sun Microsystems, Inc., and VeriSign, Inc. All Rights Reserved.” If the
Licensors own any patents or patent applications which that may be required for implementing and
using the specifications contained in the document in products that comply with the specifications, upon
written request, a non-exclusive license under such patents shall be granted on reasonable and non-
discriminatory terms.

THIS DOCUMENT IS PROVIDED "AS IS," AND LICENSORS MAKE NO REPRESENTATIONS OR
WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, NON-INFRINGEMENT, OR TITLE; THAT
THE CONTENTS OF THE DOCUMENT ARE SUITABLE FOR ANY PURPOSE; NOR THAT THE
IMPLEMENTATION OF SUCH CONTENTS WILL NOT INFRINGE ANY THIRD PARTY PATENTS,
COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS.

LICENSORS WILL NOT BE LIABLE FOR ANY DIRECT, INDIRECT, SPECIAL OR CONSEQUENTIAL
DAMAGES ARISING OUT OF ANY USE OF THE DOCUMENT OR THE PERFORMANCE OR
IMPLEMENTATION OF THE CONTENTS THEREOF.

UDDI Version 2 Programmers API Specification UDDI.org

Copyright © 2001 by
Accenture, Ariba, Inc., Commerce One, Inc., Compaq Computer Corporation, Equifax, Inc., Fujitsu Limited, Hewlett-Packard
Company, i2 Technologies, Inc., Intel Corporation, International Business Machines Corporation, Microsoft Corporation, Oracle
Corporation, SAP AG, Sun Microsystems, Inc., and Verisign, Inc.
All Rights Reserved.

3

Contents

1 TERMINOLOGY ..5

2 INTRODUCTION..5
2.1 DOCUMENT OVERVIEW..5

2.1.1 What is UDDI?..5
2.2 COMPATIBLE REGISTRIES ...6
2.3 WHAT ARE TMODELS? ...6

2.3.1 An example: ...6
2.4 CLASSIFICATION AND IDENTIFICATION INFORMATION..7

3 DESIGN & ARCHITECTURE ...8
3.1 DESIGN PRINCIPLES ..8

3.1.1 Security...8
3.1.2 Versioning..8
3.1.3 SOAP Messaging...9
3.1.4 XML conventions...9
3.1.5 Error Handling..9
3.1.6 White Space ...9
3.1.7 XML Encoding...9

4 API REFERENCE ...11
4.1 THREE QUERY PATTERNS..12

4.1.1 The browse pattern..12
4.1.2 The drill-down pattern...13
4.1.3 The invocation pattern...13

4.2 INQUIRY API FUNCTIONS ...15
4.2.1 find_binding...16
4.2.2 find_business..17
4.2.3 find_relatedBusinesses..19
4.2.4 find_service..20
4.2.5 find_tModel..22
4.2.6 get_bindingDetail..23
4.2.7 get_businessDetail...24
4.2.8 get_businessDetailExt ...25
4.2.9 get_serviceDetail...26
4.2.10 get_tModelDetail...27

4.3 ABOUT UDDI PUBLISHING API FUNCTIONS...28
4.3.1 New in UDDI version 2.0..28
4.3.2 Features to help the registry become more useful ...28
4.3.3 Publisher API summary ..28
4.3.4 Special considerations for validated namespaces ...29
4.3.5 Third party opportunities ..30

4.4 PUBLISHING API FUNCTION REFERENCE ..31
4.4.1 add_publisherAssertions...31
4.4.2 delete_binding..32
4.4.3 delete_business ..33
4.4.4 delete_publisherAssertions ...35
4.4.5 delete_service...36
4.4.6 delete_tModel ..37
4.4.7 discard_authToken..38
4.4.8 get_assertionStatusReport ..39
4.4.9 get_authToken ...40
4.4.10 get_publisherAssertions ..41
4.4.11 get_registeredInfo..42

UDDI Version 2 Programmers API Specification UDDI.org

Copyright © 2001 by
Accenture, Ariba, Inc., Commerce One, Inc., Compaq Computer Corporation, Equifax, Inc., Fujitsu Limited, Hewlett-Packard
Company, i2 Technologies, Inc., Intel Corporation, International Business Machines Corporation, Microsoft Corporation, Oracle
Corporation, SAP AG, Sun Microsystems, Inc., and Verisign, Inc.
All Rights Reserved.

4

4.4.12 save_binding..43
4.4.13 save_business...45
4.4.14 save_service...48
4.4.15 save_tModel...50
4.4.16 set_publisherAssertions...52

5 APPENDIX A: ERROR CODE REFERENCE..54
5.1 ERROR CODES...54

5.1.1 Success reporting with the dispositionReport element:...55
5.1.2 Error reporting with the dispositionReport element: ..56

6 APPENDIX B: SOAP USAGE DETAILS ..57
6.1 SUPPORT FOR SOAPACTION..57

6.1.1 Example ...57
6.2 SUPPORT FOR SOAP ACTOR..57
6.3 SUPPORT FOR SOAP ENCODING ..57
6.4 SUPPORT FOR SOAP FAULT...58
6.5 SUPPORT FOR SOAP HEADERS..58
6.6 XML PREFIX CONVENTIONS – DEFAULT NAMESPACE SUPPORT...58
6.7 SUPPORT FOR UNICODE: SOAP LISTENER BEHAVIOR...58

7 APPENDIX C: XML USAGE DETAILS ..60
7.1 SUPPORT FOR MULTIPLE LANGUAGES..60

7.1.1 Valid Language Codes..60
7.1.2 Default Language Codes...60

7.2 XML ENCODING REQUIREMENTS..60
8 APPENDIX D: SECURITY MODEL IN THE PUBLISHERS API ...61

8.1 AUTHENTICATION OF PUBLISHER API CALLS..61
8.1.1 Authentication..61
8.1.2 Establishing credentials ..61
8.1.3 Authentication tokens are not portable ..61
8.1.4 Generating Authentication Tokens ...61

8.2 PER-ACCOUNT SPACE LIMITS..62
9 APPENDIX E: SEARCH QUALIFIERS...63

9.1 GENERAL FORM OF SEARCH QUALIFIERS ...63
9.1.1 Search Qualifiers enumerated ..63
9.1.2 Search Qualifier Precedence..64
9.1.3 Sorting Details...65

10 APPENDIX F: RESPONSE MESSAGE REFERENCE...66

11 APPENDIX G: REDIRECTION VIA HOSTINGREDIRECTOR ELEMENT ..68
11.1 SPECIAL SITUATIONS REQUIRING THE HOSTINGREDIRECTOR ...68
11.2 USING THE HOSTINGREDIRECTOR DATA..68

11.2.1 Stepwise overview..69
12 APPENDIX H: CHECKING EXTERNAL VALUE-SETS ...70

12.1 VALIDATE_VALUES...70
13 APPENDIX I: UTILITY TMODELS AND CONVENTIONS..72

13.1 CANONICAL TMODEL ENTITIES..72
13.1.1 UDDI Registry tModels ..72
13.1.2 UDDI Core tModels - built-in taxonomies, identifier systems, and relationships ...73
13.1.3 UDDI Core tModels – Other ..75

13.2 REGISTERING TMODELS WITHIN THE TYPE TAXONOMY ..76

UDDI Version 2 Programmers API Specification UDDI.org

Copyright © 2001 by
Accenture, Ariba, Inc., Commerce One, Inc., Compaq Computer Corporation, Equifax, Inc., Fujitsu Limited, Hewlett-Packard
Company, i2 Technologies, Inc., Intel Corporation, International Business Machines Corporation, Microsoft Corporation, Oracle
Corporation, SAP AG, Sun Microsystems, Inc., and Verisign, Inc.
All Rights Reserved.

5

14 APPENDIX J: RELATIONSHIPS AND PUBLISHER ASSERTIONS ...78
14.1.1 Example ...78
14.1.2 Managing relationship visibility...79

15 REFERENCES...80

16 CHANGE HISTORY ..81

1 Terminology

The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”, “SHOULD
NOT”, “RECOMMENDED”, “MAY”, and “OPTIONAL” in this document are to be interpreted as
described in RFC 2119.

2 Introduction

2.1 Document Overview
This document describes the programming interface and expected behaviors of all instances of the
Universal Description, Discovery & Integration (UDDI) registry. The primary audience for this document
is programmers who want to write software that will directly interact with a UDDI Operator Site1. Private
implementations of the UDDI specification should provide support for the interface described here as
well as the behaviors defined.

2.1.1 What is UDDI?

Universal Description, Discovery & Integration, or UDDI, is the name of a group of web-based
registries that expose information about a business or other entity2 and its technical interfaces (or
API’s). These registries are run by multiple Operator Sites, and can be used by anyone who wants to
make information available about one or more businesses or entities, as well as anyone that wants to
find that information. There is no charge for using the basic services of these operator sites.3

By accessing any of the public Operator Sites, anyone can search for information about web services4
that are made available by or on behalf of a business. The benefit of having access to this information
is to provide a mechanism that allows others to discover what technical programming interfaces are
provided for interacting with a business for such purposes as electronic commerce, etc. The benefit to
the individual business is increased exposure in an electronic commerce enabled world.

The information that a business can register includes several kinds of simple data that help others
determine the answers to the questions “who, what, where and how”. Simple information about a
business – information such as name, business identifiers (D&B D-U-N-S Number®, etc.), and contact
information answers the question “Who?” “What?” involves classification information that includes
industry codes and product classifications, as well as descriptive information about the services that the

1 Operator Site is a term used to describe an implementation of this specification that participates in the public network of UDDI
sites that together operate under special contract.
2 The term business is used in a general sense to refer to an operating concern or any other type of organization throughout this
document. This use is not intended to preclude other organizational forms.
3 Operator Sites are required to adhere to this specification as a minimal set of service behaviors. Operator Sites are permitted to
exceed the capabilities described in this specification.
4 Web Service is a term used to describe technical services that are exposed for either private or general use. Examples include
purchasing services, catalog services, search services, shipping or postal services exposed over transports like HTTP or electronic
mail.

UDDI Version 2 Programmers API Specification UDDI.org

Copyright © 2001 by
Accenture, Ariba, Inc., Commerce One, Inc., Compaq Computer Corporation, Equifax, Inc., Fujitsu Limited, Hewlett-Packard
Company, i2 Technologies, Inc., Intel Corporation, International Business Machines Corporation, Microsoft Corporation, Oracle
Corporation, SAP AG, Sun Microsystems, Inc., and Verisign, Inc.
All Rights Reserved.

6

business makes available. Answering the question “Where?” involves registering information about the
URL or email address (or other address) through which each type of service is accessed5. Finally, the
question “How?” is answered by registering references to information about interfaces and other
properties of a given service. These service properties describe how a particular software package or
technical interface functions. These references are called tModels in the documentation.

2.2 Compatible registries
This specification, coupled with the API schema (uddiAPI2.xsd) and the information in the UDDI
Version 2.0 Data Structure Reference, defines a programming interface that is available according to
the licensing terms defined in the beginning of this document. Software developers, businesses and
others are encouraged to define products and tools that make use of both public and private UDDI
registries. Developers who license this specification are further encouraged to build registries that are
compatible with the UDDI specifications.

2.3 What are tModels?
In order for two or more pieces of software to be compatible with each other – that is, compatible
enough to be able to exchange data for the purpose of achieving a desirable result – they must share
some design goals and specifications in common. The registry information model that each site
supports is based on this notion of shared specifications.

In the past, to build compatible software, two companies only had to agree to use the same
specification, and then test their software. However, within a UDDI registry, businesses need a way to
publish information about the specifications and versions of specifications that were used to design
their advertised services. To accommodate the need to distinctly identify public specifications (or even
private specifications shared only with select partners), information about the specifications themselves
needs to be discoverable. This information about specifications – a classic metadata construct – is
called a tModel within UDDI.

The tModel mechanism serves a useful purpose in discovering information about interfaces and other
technical foundation concepts that are exposed for broad use by an individual service or registration
instance. To get a clearer understanding, let’s consider an example.

2.3.1 An example:

Suppose your business bought a software package that let you automatically accept electronic
orders via your Internet connection. Using one of the public UDDI operator sites, you could
“advertise” the availability of this electronic commerce capability so that your partners and
customers could find out that you can accept orders electronically.

One of the reasons you chose this particular software package was its widespread popularity.
In fact the salesperson that sold you the software made a point of highlighting a feature that
gives your new software its broad appeal – the use and support of a widely used electronic
commerce interface that accommodates automatic business data interchange.

As you installed and configured your new software, this software automatically consulted one
of the public UDDI sites and identified compatible business partners. It did this by looking up
each business you identified, and located those that had already advertised support for
electronic commerce services that are compatible with your own.

The configuration software accomplishes this by taking advantage of the fact that a tModel has
been registered within UDDI and a corresponding tModel key (called a tModelKey) gets
assigned at the time of registration. This tModel represents the interface or specification for

5 The information about the service point or address at which a service is exposed is sometimes referred to using the technical term
binding information. These design specs refer to this using the term bindingTemplate.

UDDI Version 2 Programmers API Specification UDDI.org

Copyright © 2001 by
Accenture, Ariba, Inc., Commerce One, Inc., Compaq Computer Corporation, Equifax, Inc., Fujitsu Limited, Hewlett-Packard
Company, i2 Technologies, Inc., Intel Corporation, International Business Machines Corporation, Microsoft Corporation, Oracle
Corporation, SAP AG, Sun Microsystems, Inc., and Verisign, Inc.
All Rights Reserved.

7

the electronic commerce capability. Individual partner capabilities are stored within UDDI as
information about service bindings6 – and each of these bindings references the tModel that
represents the specific interface that your software understands.

In general, it’s pretty safe to think of the tModel keys within a services binding description as a
fingerprint that can be used to trace the compatibility origins of a given service. Since many such
services will be constructed or pre-programmed to be compatible with a given, well-known interface,
references to the tModel serve to identify the properties associated with a given service binding.

For software companies and programmers, tModels provide a common point of reference that allows a
technical interface to be registered, and compatible implementations of those interfaces to be easily
identified. For businesses that use software, the benefit is greatly reduced work in determining which
particular bindings exposed by a business partner are compatible with the software used in-house.
Finally, for standards organizations, the ability to register information about a specification and then find
implementations of web services that are compatible with a standard helps customers immediately
realize the benefits of a widely used design.

2.4 Classification and Identification information
One of the immediate benefits of registering business information at one of the UDDI Operator Sites is
the ability to specify one or more classifications, or category codes for your business. Many such
codes exist – NAICS, UN/SPC, SIC Codes, etc. – and are widely used to classify businesses,
industries, and product categories. Other (and there are many) classifications designate geographic
information, or membership in a given organization.

The UDDI programming interface (API) defines a consistent way for businesses to add any number of
classifications to their business registrations. This information, in turn, allows simple searching to be
done on the information contained in the public registries. More importantly, registering information
such as industry codes, product codes, geography codes and business identification codes (such as
D&B D-U-N-S Numbers®) allows other search services to use this core classification information as a
starting point to provide added-value indexing and classification while still referencing your information.

The UDDI version 2 specifications add the ability to accommodate validated classification and
identification taxonomies. This new capability allows any company to extend the support that all UDDI
operators use to manage validated taxonomies. In UDDI version 2, two types of taxonomies are
supported that were not possible in UDDI version 1. These are unchecked and checked categorization
and identification taxonomies.

Unchecked taxonomies are used for categorization and identification without the need for UDDI to
perform a specific call-out to a validation service. Organizations that choose to make a particular
taxonomy available for categorization or identification can register a taxonomy and use that taxonomy
as unchecked. Unchecked taxonomies are registered by simply registering a new tModel, and
classifying that tModel as either an identifier or as a categorization taxonomy.

Checked taxonomies are used when the publisher of a taxonomy wishes to make sure that the
categorization code values or identifiers registered represent accurate and validated information. UDDI
version 2 supports third parties that wish to create new checked taxonomies of identifiers and
categorizations.

6 The term “Service Binding” refers to technical descriptions that are used by programs to identify and eventually make a call to a
specific web service.

UDDI Version 2 Programmers API Specification UDDI.org

Copyright © 2001 by
Accenture, Ariba, Inc., Commerce One, Inc., Compaq Computer Corporation, Equifax, Inc., Fujitsu Limited, Hewlett-Packard
Company, i2 Technologies, Inc., Intel Corporation, International Business Machines Corporation, Microsoft Corporation, Oracle
Corporation, SAP AG, Sun Microsystems, Inc., and Verisign, Inc.
All Rights Reserved.

8

3 Design & Architecture

The UDDI programmer’s API is designed to provide a simple request/response mechanism that allows
discovery of businesses, services and technical service binding information.

3.1 Design Principles
The primary principle guiding the design of this programmers API was simplicity. Care has been taken
to avoid complexity, overlap, and also to provide direct access to the appropriate levels of registered
information with a minimum of programming overhead and round tripping.

3.1.1 Security

Accessing UDDI programmatically is accomplished via API calls defined in this programmer’s
reference. Two types of APIs are defined. A publishers API is provided for interactions between
programs and the registry for the purpose of storing or changing data in the registry. An inquiry API is
provided for programs that want to access the registry to read information from the registry.

Authenticated access is required to use the publishers API. Each Operator Site is responsible for
selecting and implementing an authentication protocol that is compatible with the publishers API, as
well as providing a new user sign-up mechanism. Before using any of the publisher API functions, the
caller is responsible for signing up with one or more Operator Sites or compatible registries and
establishing user credentials.

The Inquiry and Publishers API functions are exposed as SOAP messages over HTTP. HTTPS
(specifically SSL 3.0) is used for all publisher API calls in order to assure wire privacy. No
authentication is required to make use of the Inquiry API functions.

3.1.2 Versioning

In any programmers API, as well as any message set, versioning issues arise as time passes.
Changes to an API over time can result in requests being misunderstood or processed incorrectly
unless one can determine whether the version of the API being provided matches the version of the
API used by a requesting party.

In order to facilitate a proper and controlled version match, the entire API defined by this programmer’s
reference is version stamped. Since the API itself is based on XML messages transmitted in SOAP
envelopes over HTTP7, this version stamp takes the form of an XML attribute.

All of the messages defined in this API must be transmitted with an accompanying application version
attribute. This attribute is named “generic8” and is present on all messages. Each time this
specification is modified, an ensuing requirement is placed on all Operator Sites to support generic 1,
the current generic and at least the previous generic, if any. Compatible registries are encouraged to
support at a minimum the generic 1 version of the UDDI API.

The use of generic value 1.0 with the UDDI version 2.0 namespace, or generic value 2.0 with the UDDI
version 1 namespace is not considered to be a normal use of the versioning mechanism. Individual
operators are permitted to interpret mixed versioning information as an error condition.

7 HTTP is used as a general term here. HTTPS is used exclusively for all of the calls defined in the publishers API.
8 Versioning of application behavior is accommodated via the generic attribute independently from the structures defined in the
accompanying schema. In general, this form of versioning is preferable because it is easier to specify a new behavior against the
same structures than to try and get data structure definitions to reflect business rules. Versioning the actual schema structures
would present considerable technical difficulties after more than a small number of deployed applications existed.

UDDI Version 2 Programmers API Specification UDDI.org

Copyright © 2001 by
Accenture, Ariba, Inc., Commerce One, Inc., Compaq Computer Corporation, Equifax, Inc., Fujitsu Limited, Hewlett-Packard
Company, i2 Technologies, Inc., Intel Corporation, International Business Machines Corporation, Microsoft Corporation, Oracle
Corporation, SAP AG, Sun Microsystems, Inc., and Verisign, Inc.
All Rights Reserved.

9

3.1.3 SOAP Messaging

SOAP is a method for using Extensible Markup Language (XML) in message and remote procedure
call (RPC) based protocols. SOAP has been jointly defined and submitted to the World Wide Web
consortium (W3C) as a note.

UDDI uses SOAP in conjunction with HTTP to provide a simple mechanism for passing XML
messages to Operator Sites using a standard HTTP-POST protocol. Unless specified, all responses
will be returned in the normal HTTP response document. As of version 2, there are still no interactions
that deviate from this general rule.

See the appendix on SOAP-specific implementations for more information on the way that Operator
Sites use the SOAP schema as an envelope mechanism for passing XML messages.

3.1.4 XML conventions

The programming interface for UDDI is based on Extensible Markup Language (XML). See the
appendix (XML usage details) for more information on specific XML constructs and limitations used in
the specification of the programmers interface.

3.1.5 Error Handling

The first line of error reporting is governed by the SOAP specification. SOAP fault reporting and fault
codes will be returned for most invalid requests or any request where the intent of the caller cannot be
determined.

If any application level error occurs in processing a request message, a dispositionReport structure will
be returned to the caller inside of a SOAP fault report. Faults that contain disposition reports contain
error information that includes descriptions and typed keys that can be used to determine the cause of
the error. Refer to the appendix “Error Codes” for a general understanding of error codes. API-specific
interpretations of error codes are described following each API reference page.

Many of the API constructs defined in this document allow one or more of a given type of information to
be passed. These API calls each conceptually represent a request on the part of the caller. The
general error handling treatment recommended for UDDI operators is to detect errors in a request prior
to processing the request. Any errors in the request detected will invalidate the entire request, and
cause a dispositionReport to be generated within a SOAP Fault structure (see appendix A).

In the case of an API call that involves passing multiples of a given structure, the dispositionReport will
call out only the first detected error, and is not responsible for reporting multiple errors or reflecting
intermediate “good” data. In situations where a specific reference within a request causes an error to
be generated, the corresponding disposition/fault report will contain a clear indication of the key value
that caused the rejection of the rejected request.

 In general, UDDI Operators may return any UDDI error code needed to describe an error. The error
codes specified within each API call description are characteristic of the API call, but other UDDI error
codes may be returned in unusual circumstances or when doing so adds additional descriptive
information.

3.1.6 White Space

Operator Sites and compatible implementations will store all data exactly as provided with two
exceptions. The first is that in many cases, the request does not contain a key (see save_business). In
this case, the resulting data will contain keys assigned by the UDDI operator. The second involves the
treatment of white space. Any leading or trailing white space characters will be removed from each
field, element or attribute. White space characters include carriage returns, line feeds, spaces, and
tabs. UDDI Operators will not allow “name” fields (where entities are named) to be empty.

3.1.7 XML Encoding

For the purpose of this specification and all Operator Sites, consistency in handling of data is essential.

UDDI Version 2 Programmers API Specification UDDI.org

Copyright © 2001 by
Accenture, Ariba, Inc., Commerce One, Inc., Compaq Computer Corporation, Equifax, Inc., Fujitsu Limited, Hewlett-Packard
Company, i2 Technologies, Inc., Intel Corporation, International Business Machines Corporation, Microsoft Corporation, Oracle
Corporation, SAP AG, Sun Microsystems, Inc., and Verisign, Inc.
All Rights Reserved.

10

For this reason, the default collation order for data registered within an Operator Site is binary even
though this choice is meaningless for some languages, and effectively favors alphabetic languages.
Similarly, XML allows for a large number of character set encoding choices. UDDI Operators are
required to only support a single XML encoding – UTF-8, and will support all compatibility characters
defined for UTF-8. See appendix B for more information related to the use of byte order marks and
UTF-8 and the way the UDDI SOAP implementations convert all requests to Unicode prior to
processing.

UDDI Version 2 Programmers API Specification UDDI.org

Copyright © 2001 by
Accenture, Ariba, Inc., Commerce One, Inc., Compaq Computer Corporation, Equifax, Inc., Fujitsu Limited, Hewlett-Packard
Company, i2 Technologies, Inc., Intel Corporation, International Business Machines Corporation, Microsoft Corporation, Oracle
Corporation, SAP AG, Sun Microsystems, Inc., and Verisign, Inc.
All Rights Reserved.

11

4 API Reference

This API reference is divided into 3 logical sections, each addressing a particular programming focus.
These sections each cover the inquiry API, the publishing API, and appendices that describe specific
concepts, technical details, UDDI extensions or added background information.

The special values within API syntax examples are shown in italics. In most cases, the following
reference applies to these values:

�� uuid_key: Access keys within all defined data elements are represented as universal
unique identifiers (these are sometimes called a GUID). The name of the element or
attribute designates the particular key type that is required. These keys are always
formatted according to an algorithm that is agreed upon by the UDDI Operator Council
with the one exception being tModelKey values, which are prefixed with a URN qualifier in
the format "uuid:" followed by the UUID value.

�� generic: This special attribute is a required metadata element for all messages. It is used
to designate the specification version used to format the SOAP message. In the 1.0
version of the specification, this value is required to be “1.0". In the 2.0 version of the
specification, this value is required to be “2.0”. As of the date this specification, any other
value (e.g. not “1.0” and not “2.0”) passed will result in an E_unsupported error.

�� xmlns: This special attribute is a required metadata element for all messages.
Technically, it isn’t an attribute, but is formally called a namespace qualifier. It is used to
designate a universal resource name (URN) value that is reserved for all references to the
schema. In the 1.0 version of the specification, this value is required to be “urn:uddi-
org:api". In the 2.0 version of the specification, this value is required to be “urn:uddi-
org:api_v2”.

�� findQualifiers: This special element is found in the inquiry API functions that are used to
search (e.g. the messages named find_binding, find_business, find_service, find_tModel,
and find_relatedBusinesses). This passed argument is used to signal special behaviors to
be used with searching. See the Search Qualifiers appendix and the documentation for
the individual find API messages for more information.

�� maxRows: This special qualifier is found in the inquiry API functions that are used to
search (e.g. find_binding, find_business, find_service, and find_tModel). This argument is
used to limit the number of results returned from a request. When an Operator Site or
compatible instance returns data in response to a request that contains this caller-supplied
limiting argument, the number of main result elements will not exceed the integer value
passed. If a result set is truncated as a result of applying this limit, or if a result set is
truncated because the search would otherwise exceed an operator-specific limit, the result
will include the truncated attribute with a value of true.

�� truncated: The truncated attribute indicates that the results returned do not represent the
entire query result set. The actual limit set for applying this treatment is Operator Site
policy specific, but in general should be a sufficiently large number so as to not normally
be an issue. No behaviors such as paging mechanisms are defined for retrieving more
data after a truncated limit. The intent is to support the average query, while at the same
time allowing Operator Sites the leeway required to be able to manage adequate
performance. UDDI is not designed to support large data sets required by some research
uses.

�� categoryBag: Searches can be performed based on a cross section of categories.
Several categories are broadly supported by all Operator Sites and provide three
categorization dimensions. These are industry type, product or service type, and
geography. Searches involving category information can be combined to cross multiple

UDDI Version 2 Programmers API Specification UDDI.org

Copyright © 2001 by
Accenture, Ariba, Inc., Commerce One, Inc., Compaq Computer Corporation, Equifax, Inc., Fujitsu Limited, Hewlett-Packard
Company, i2 Technologies, Inc., Intel Corporation, International Business Machines Corporation, Microsoft Corporation, Oracle
Corporation, SAP AG, Sun Microsystems, Inc., and Verisign, Inc.
All Rights Reserved.

12

dimensions9. For this reason, these searches are performed by default matching on ALL
of the categories supplied (e.g. logical AND). In general, the embedded category
information serves as voluntary hints that depend on how the registering party has
categorized themselves, but not to provide a full third party categorization facility.

�� identifierBag: Searches involving identifiers are performed matching on any supplied
identifier (e.g. D&B D-U-N-S Number®, etc) for any of the primary elements that have
identifierBag elements. These searches allow broad identity matching by returning a
match when any keyedReference set used to search identifiers matches a registered
identifier. Version 2 provides for the definition of checked identifiers. This enhancement
makes it possible to distinguish copycat information within UDDI from the registrations of
the authentic business registration based on validated identifiers.

�� tModelBag: This element is found in the inquiry messages named find_business,
find_service, and find_binding. Searches that match a particular technical fingerprint use
UUID values to search for bindingTemplates with matching tModelKey value sets. When
used to search for web services (e.g. the data described by a bindingTemplate structure),
the concept of tModel fingerprints allows for highly selective searches for specific
combinations of keys. For instance, the existence of a web service that implements all of
the parts of the UDDI specifications can be accomplished by searching for a combination
of tModel key values that correspond to the full set of specifications (the UDDI
specification, for instance, is divided into at least 3 different, separately deployable
tModels). At the same time, limiting the number of tModelKey values passed in a search
can perform broader searches that look for any web service that implements a specific
sub-part of the full specification. All tModelKey values are always expressed using a
Universal Resource Name (URN) format that starts with the characters "uuid:" followed by
a formatted Universally Unique Identifier (UUID) consisting of Hexadecimal digits arranged
in the common 8-4-4-4-12 format pattern.

In all cases, the XML structures, attributes and element names shown in the API examples are derived
from the Message API schema. For a full understanding of structure contents, refer to this schema as
well as the UDDI data structure reference. It is suggested that tools that understand schemas be used
to generate logic that populates the structures used to make the API calls against UDDI.

4.1 Three query patterns
The Inquiry API provides three forms of query that follow broadly used conventions which match the
needs of software traditionally used with registries.

4.1.1 The browse pattern

Software that allows people to explore and examine data – especially hierarchical data – requires
browse capabilities. The browse pattern characteristically involves starting with some broad
information, performing a search, finding general result sets and then selecting more specific
information for drill-down.

The UDDI API specifications accommodate the browse pattern by way of the find_xx API calls. These
calls form the search capabilities provided by the API and are matched with summary return messages
that return overview information about the registered information that is associated with the inquiry
message type and the search criteria specified in the inquiry.

A typical browse sequence might involve finding whether a particular business you know about has any
information registered. This sequence would start with a call to find_business, perhaps passing the first
few characters of a business name that you already know. This returns a businessList result. This

9 In version (generic) 2.0, categorization has been extended to provide for limited forms of AND and OR treatment within a
categoryBag, as well as providing a mechanism to support more than three conceptual dimensions. This additional behavior is
afforded via new findQualifier values.

UDDI Version 2 Programmers API Specification UDDI.org

Copyright © 2001 by
Accenture, Ariba, Inc., Commerce One, Inc., Compaq Computer Corporation, Equifax, Inc., Fujitsu Limited, Hewlett-Packard
Company, i2 Technologies, Inc., Intel Corporation, International Business Machines Corporation, Microsoft Corporation, Oracle
Corporation, SAP AG, Sun Microsystems, Inc., and Verisign, Inc.
All Rights Reserved.

13

result is overview information (keys, names and descriptions) derived from the registered
businessEntity information, matching on the name fragment that you provided.

If you spot the business you are looking for within this list, you can drill down into the corresponding
businessService information, looking for particular service types (e.g. purchasing, shipping, etc) using
the find_service API call. Similarly, if you know the technical fingerprint (tModel signature) of a
particular software interface and want to see if the business you’ve chosen provides a web service that
supports that interface, you can use the find_binding inquiry message.

4.1.2 The drill-down pattern

Once you have a key for one of the four main data types managed by a UDDI or compatible registry10,
you can use that key to access the full registered details for a specific data instance. The current UDDI
data types are businessEntity, businessService, bindingTemplate and tModel. You can access the full
registered information for any of these structures by passing a relevant key type to one of the get_xx
API calls.

Continuing the example from the previous section on browsing, one of the data items returned by all of
the find_xx return sets is key information. In the case of the business we were interested in, the
businessKey value returned within the contents of a businessList structure can be passed as an
argument to get_businessDetail. The successful return to this message is a businessDetail message
containing the full registered information for the entity whose key value was passed. This will be a full
businessEntity structure.

4.1.3 The invocation pattern

In order to prepare an application to take advantage of a remote web service that is registered within
the UDDI registry by other businesses or entities, you need to prepare that application to use the
information found in the registry for the specific service being invoked. This type of inter-business
service call has traditionally been a task that is undertaken at development time. This will not
necessarily change completely as a result of UDDI registry entries, but one significant problem can be
managed if a particular invocation pattern is employed.

The bindingTemplate data obtained from the UDDI registry represents the specific details about an
instance of a given interface type, including the location at which a program starts interacting with the
service. The calling application or program should cache this information and use it to contact the
service at the registered address whenever the calling application needs to communicate with the
service instance. Tools have automated the tasks associated with caching (or hard coding) location
information in previously popular remote procedure technologies. Problems arise however when a
remote service is moved without any knowledge on the part of the callers. Moves occur for a variety of
reasons, including server upgrades, disaster recovery, and service acquisition and business name
changes.

When a call fails using cached information previously obtained from a UDDI registry, the proper
behavior is to query the UDDI registry for fresh bindingTemplate information. The proper call is
get_bindingDetails passing the original bindingKey value. If the data returned is different from the
cached information, the service invocation should automatically retry the invocation using the fresh
information. If the result of this retry is successful, the new information should replace the cached
information.

By using this pattern with web services, a business using a UDDI Operator Site can automate the
recovery of a large number of partners without undue communication and coordination costs. For
example, if a business has activated a disaster recovery site, most of the calls from partners will fail
when they try to invoke services at the failed site. By updating the UDDI information with the new

10 Keys within UDDI compatible registries that are not Operator SiteOperator Sites are not synchronized with keys generated by
Operator SiteOperator Sites. There is no key portability mechanism presently defined for crossing from a replicated operator site to
a compatible registry that is not part of the replicated Operator Cloud. Private implementations that wish to interoperate with or
store information that is also found in the public Operator sites should use the same keys that are used within the operator sites
where appropriate.

UDDI Version 2 Programmers API Specification UDDI.org

Copyright © 2001 by
Accenture, Ariba, Inc., Commerce One, Inc., Compaq Computer Corporation, Equifax, Inc., Fujitsu Limited, Hewlett-Packard
Company, i2 Technologies, Inc., Intel Corporation, International Business Machines Corporation, Microsoft Corporation, Oracle
Corporation, SAP AG, Sun Microsystems, Inc., and Verisign, Inc.
All Rights Reserved.

14

address for the service, partners who use the invocation pattern will automatically locate the new
service information and recover without further administrative action.

UDDI Version 2 Programmers API Specification UDDI.org

Copyright © 2001 by
Accenture, Ariba, Inc., Commerce One, Inc., Compaq Computer Corporation, Equifax, Inc., Fujitsu Limited, Hewlett-Packard
Company, i2 Technologies, Inc., Intel Corporation, International Business Machines Corporation, Microsoft Corporation, Oracle
Corporation, SAP AG, Sun Microsystems, Inc., and Verisign, Inc.
All Rights Reserved.

15

4.2 Inquiry API functions
The messages in this section represent inquiries that anyone can make of any Operator Site at any
time. These messages all behave synchronously and are required to be exposed via HTTP-POST
only. Other synchronous or asynchronous mechanisms may be provided at the discretion of the
individual UDDI Operator Site or UDDI compatible registry.

The publicly accessible queries are:

�� find_binding: Used to locate specific bindings within a registered businessService. Returns a
bindingDetail message.

�� find_business: Used to locate information about one or more businesses. Returns a
businessList message.

�� find_relatedBusinesses: Used to locate information about businessEntity registrations that
are related to a specific business entity whose key is passed in the inquiry. The Related
Businesses feature is used to manage registration of business units and subsequently relate
them based on organizational hierarchies or business partner relationships. Returns a
relatedBusinessesList message.

�� find_service: Used to locate specific services within a registered businessEntity. Returns a
serviceList message.

�� find_tModel: Used to locate one or more tModel information structures. Returns a tModelList
structure.

�� get_bindingDetail: Used to get full bindingTemplate information suitable for making one or
more service requests. Returns a bindingDetail message.

�� get_businessDetail: Used to get the full businessEntity information for one or more
businesses or organizations. Returns a businessDetail message.

�� get_businessDetailExt: Used to get extended businessEntity information. Returns a
businessDetailExt message.

�� get_serviceDetail: Used to get full details for a given set of registered businessService data.
Returns a serviceDetail message.

�� get_tModelDetail: Used to get full details for a given set of registered tModel data. Returns a
tModelDetail message.

UDDI Version 2 Programmers API Specification UDDI.org

Copyright © 2001 by
Accenture, Ariba, Inc., Commerce One, Inc., Compaq Computer Corporation, Equifax, Inc., Fujitsu Limited, Hewlett-Packard
Company, i2 Technologies, Inc., Intel Corporation, International Business Machines Corporation, Microsoft Corporation, Oracle
Corporation, SAP AG, Sun Microsystems, Inc., and Verisign, Inc.
All Rights Reserved.

16

4.2.1 find_binding

The find_binding API call returns a bindingDetail message that contains zero or more bindingTemplate
structures matching the criteria specified in the argument list.

4.2.1.1 Syntax:

<find_binding serviceKey="uuid_key" [maxRows="nn"] generic="2.0"
 xmlns="urn:uddi-org:api_v2" >
 [<findQualifiers/>]
 <tModelBag/>
</find_binding>

4.2.1.2 Arguments:

�� serviceKey: This uuid_key is used to specify a particular instance of a businessService
element in the registered data. Only bindings in the specific businessService data identified by
the serviceKey passed will be searched.

�� maxRows: This optional integer value allows the requesting program to limit the number of
results returned.

�� findQualifiers: This optional collection of findQualifier elements can be used to alter the
default behavior of search functionality. See the Search Qualifiers appendix for more
information.

�� tModelBag: This is a list of tModel uuid_key values that represents the technical fingerprint of
a bindingTemplate structure contained within the businessService specified by the serviceKey
value. Only bindingTemplates that contain all of the tModel keys specified will be returned
(logical AND). The order of the keys in the tModel bag is not relevant.

4.2.1.3 Returns:

This API call returns a bindingDetail message upon success. In the event that no matches were
located for the specified criteria, the bindingDetail structure returned will be empty (e.g. contain no
bindingTemplate data.) This signifies a zero match result. If no arguments are passed, a zero-match
result set will be returned.

In the event of an overly large number of matches (as determined by each Operator Site), or if the
number of matches exceeds the value of the maxRows attribute, the Operator site will truncate the
result set.. If this occurs, the response message will contain the truncated attribute with the value
“true”.

4.2.1.4 Caveats:

If any error occurs in processing this API call, a dispositionReport element will be returned to the caller
within a SOAP Fault. The following error number information will be relevant:

�� E_invalidKeyPassed: signifies that the uuid_key value passed did not match with any known
serviceKey or tModelKey values. The error structure will signify which condition occurred first,
and the invalid key will be indicated clearly in text.

�� E_unsupported: signifies that one of the findQualifier values passed was invalid. The invalid
qualifier will be indicated clearly in text.

UDDI Version 2 Programmers API Specification UDDI.org

Copyright © 2001 by
Accenture, Ariba, Inc., Commerce One, Inc., Compaq Computer Corporation, Equifax, Inc., Fujitsu Limited, Hewlett-Packard
Company, i2 Technologies, Inc., Intel Corporation, International Business Machines Corporation, Microsoft Corporation, Oracle
Corporation, SAP AG, Sun Microsystems, Inc., and Verisign, Inc.
All Rights Reserved.

17

4.2.2 find_business

The find_business API call returns a businessList message that matches the conditions specified in the
arguments.

4.2.2.1 Syntax:

<find_business [maxRows="nn"] generic="2.0" xmlns="urn:uddi-org:api_v2" >
 [<findQualifiers/>]
 [<name/> [<name/>]…11]

[<discoveryURLs/>]
[<identifierBag/>]
[<categoryBag/>]
[<tModelBag/>]

</find_business>

4.2.2.2 Arguments:

�� maxRows: This optional integer value allows the requesting program to limit the number of
results returned.

�� findQualifiers: This collection of findQualifier elements can be used to alter the default
behavior of search functionality. See the Search Qualifiers appendix for more information.

�� name: This string value is a partial or full business name. Wildcard searching12 can be
accomplished using the % character. The businessList returned contains businessInfo
structures for businesses whose name matches the value(s) passed (lexical-order match – i.e.,
leftmost in left-to-right languages – if no wild cards are present). Up to 5 name values may be
specified. If multiple name values are passed, the match occurs on a logical OR basis.

�� identifierBag: This is a list of business identifier references. The returned businessList
contains businessInfo structures matching any of the identifiers passed (logical OR by default).

�� categoryBag: This is a list of category references. The returned businessList contains
businessInfo elements matching all of the categories passed (logical AND by default). UDDI
Version 2.0 defines special findQualifiers that affect categoryBag treatment.

�� tModelBag: The registered businessEntity data contains a bindingTemplates element that in
turn contains bindingTemplate elements that contain specific tModel references. The
tModelBag argument lets you search for businesses that have bindings that expose a specific
fingerprint within the tModelInstanceDetails collection. The returned businessList contains
businessInfo structures that provide a summarized view of registered businessEntity data that
contains bindingTemplate structures that match all of the tModel keys passed (logical AND by
default)

�� discoveryURLs: This is a list of URLs to be matched against the discoveryURL data
associated with any registered businessEntity information. To search for URL without regard
to useType attribute values, pass the useType component of the discoveryURL elements as
empty attributes. If useType values are included, then the match will be made only on

11 In UDDI Version 2, find_business supports up to five different name values. Multiple names are provided for supporting
transliteration (e.g. romanized names) and are provided primarily for multiple language search support, although UDDI will not limit
other uses of multiple names. If more than one name is provided in a find_xx, each name may be marked with an xml:lang
adornment. Unlike description, this adornment doesn't need to be unique within the message. If a language markup is specified,
the search results will report a match only on those entries that match both the name value and language criteria. This match on
language is leftmost comparison of the characters supplied. This allows one to find all businesses whose name begins with an "A"
and are expressed in any dialect of French, for example. No restrictions are placed on the values that can be passed in the
language criteria adornment in a find_xx message.
12 Wildcard searching can be disabled by specifying the ExactNameMatch find qualifier value.

UDDI Version 2 Programmers API Specification UDDI.org

Copyright © 2001 by
Accenture, Ariba, Inc., Commerce One, Inc., Compaq Computer Corporation, Equifax, Inc., Fujitsu Limited, Hewlett-Packard
Company, i2 Technologies, Inc., Intel Corporation, International Business Machines Corporation, Microsoft Corporation, Oracle
Corporation, SAP AG, Sun Microsystems, Inc., and Verisign, Inc.
All Rights Reserved.

18

registered information that matches both the useType and URL value. The returned
businessList contains businessInfo structures matching any of the URL's passed (logical OR).

4.2.2.3 Returns:

This API call returns a businessList on success. This structure contains information about each
matching business, and summaries of the businessServices exposed by the individual businesses. If a
tModelBag was used in the search, the resulting serviceInfos structure will only reflect data for the
businessServices that actually contained a matching bindingTemplate. In the event that no matches
were located for the specified criteria, a businessList structure with zero businessInfo structures is
returned. If no arguments are passed, a zero-match result set will be returned.

In the event of a large number of matches, (as determined by each Operator Site), or if the number of
matches exceeds the value of the maxRows attribute, the Operator site will truncate the result set. If
this occurs, the businessList will contain the truncated attribute with the value “true”.

UDDI version 2.0 formalizes the ability for operators to support this inquiry with more than one named
argument. The named arguments are all optional and, with the exception of name, may appear at
most once. The name argument may appear at most five times. When more than one distinct named
argument is passed, matching businesses are those which match on all of the criteria. All of the UDDI
version 1.0 implementations behaved this way, but the UDDI 1.0 specification said that with the
exception of findQualifiers, the remaining arguments were mutually exclusive. This resulted in an
overly restrictive find_business capability.

4.2.2.4 Caveats:

If any error occurs in processing this API call, a dispositionReport structure will be returned to the caller
in a SOAP Fault. The following error number information will be relevant:

�� E_nameTooLong: signifies that the partial name value passed exceeds the maximum name
length of the name field as specified in the UDDI data structure reference.

�� E_unsupported: signifies that one of the findQualifier values passed was invalid. The
findQualifier value that was not recognized will be clearly indicated in the error text.

�� E_tooManyOptions: signifies that the limit of 5 name arguments was exceeded.

UDDI Version 2 Programmers API Specification UDDI.org

Copyright © 2001 by
Accenture, Ariba, Inc., Commerce One, Inc., Compaq Computer Corporation, Equifax, Inc., Fujitsu Limited, Hewlett-Packard
Company, i2 Technologies, Inc., Intel Corporation, International Business Machines Corporation, Microsoft Corporation, Oracle
Corporation, SAP AG, Sun Microsystems, Inc., and Verisign, Inc.
All Rights Reserved.

19

4.2.3 find_relatedBusinesses

The find_relatedBusinesses API call returns a relatedBusinessesList message containing results that
match the conditions specified in the arguments.

4.2.3.1 Syntax:

<find_relatedBusinesses generic="2.0" xmlns="urn:uddi-org:api_v2" >
 [<findQualifiers/>]
 <businessKey/>

[<keyedReference/>]
</find_relatedBusinesses>

4.2.3.2 Arguments:

�� findQualifiers: This collection of findQualifier elements can be used to alter the default
behavior of search functionality. See the Search Qualifiers appendix for more information.

�� businessKey: This uuid_key is used to specify a particular businessEntity instance to use as
the focal point of the search. This argument is required and must be used to specify an
existing businessEntity in the registry. The result set will report businesses that are related in
some way to the businessEntity whose key is specified.

�� keyedReference: This is a single, optional keyedReference element that is used to specify
that only businesses that are related to the focal point in a specific way should be included in
the results. See the uddi-org:relationships canonical tModel for more information on specifying
relationships.

4.2.3.3 Returns:

This API call returns a relatedBusinessesList on success. In the event that no matches were located
for the specified criteria, the relatedBusinessesList message returned will contain an empty
relatedBusinessInfos element. This signifies zero matches. If no arguments are passed, a zero-match
result set will be returned.

In the even of a large number of matches (as determined by each Operator Site), or if the number of
matches exceeds the value of the maxRows attribute, the Operator site will truncate the result set. If
this occurs, the relatedBusinessesList will contain the truncated attribute with the value of this attribute
set to true.

4.2.3.4 Caveats:

If any error occurs in processing this API call, a dispositionReport structure will be returned to the caller
in a SOAP Fault. The following error number information will be relevant:

�� E_invalidKeyPassed: signifies that a uuid_key or tModel key value passed did not match with
any known businessKey key or tModel key values. The error structure will signify which
condition occurred and the key that caused the question will be clearly indicated in the error
text.

�� E_unsupported: signifies that one of the findQualifier values passed was invalid. The invalid
qualifier will be clearly indicated in the error text.

UDDI Version 2 Programmers API Specification UDDI.org

Copyright © 2001 by
Accenture, Ariba, Inc., Commerce One, Inc., Compaq Computer Corporation, Equifax, Inc., Fujitsu Limited, Hewlett-Packard
Company, i2 Technologies, Inc., Intel Corporation, International Business Machines Corporation, Microsoft Corporation, Oracle
Corporation, SAP AG, Sun Microsystems, Inc., and Verisign, Inc.
All Rights Reserved.

20

4.2.4 find_service

The find_service API call returns a serviceList message that matches the conditions specified in the
arguments.

4.2.4.1 Syntax:

<find_service businessKey="uuid_key" " [maxRows="nn"] generic="2.0
 xmlns="urn:uddi-org:api_v2" >
 [<findQualifiers/>]
 [<name/> [<name/>]…13]

[<categoryBag/>]
[<tModelBag/>]

</find_service>

4.2.4.2 Arguments:

�� businessKey: This required uuid_key is used to specify a particular businessEntity instance
to search. This argument is required and must be used to specify an existing businessEntity in
the registry.

�� maxRows: This optional integer value allows the requesting program to limit the number of
results returned.

�� findQualifiers: This optional collection of findQualifier elements can be used to alter the
default behavior of search functionality. See the Search Qualifiers appendix for more
information.

�� name: This optional collection of string values represents one or more partial names qualified
with xml:lang attributes. Any businessService data contained in the specified businessEntity
with a matching partial name value gets returned. A wildcard character % may be used to
signify any number of any characters. Up to 5 name values may be specified. If multiple
name values are passed, the match occurs on a logical OR basis within any names supplied
(e.g. any match on name/language pairs will cause a registered service to be included in the
final result set).

�� categoryBag: This is a list of category references. The returned serviceList contains
businessInfo structures matching all of the categories passed (logical AND by default). UDDI
Version 2.0 defines special findQualifiers that affect categoryBag treatment.

�� tModelBag: This is a list of tModel uuid_key values that represent the technical fingerprint of a
bindingTemplate structure to find. Version 2.0 defines a way to associate businessService
structures with more than one businessEntity. All bindingTemplate structures within any
businessService associated with the businessEntity specified by the businessKey argument
will be searched. If more than one tModel key is specified in this structure, only
businessService structures that contain bindingTemplate structures with fingerprint information
that matches all of the tModel keys specified will be returned (logical AND only).

4.2.4.3 Returns:

This API call returns a serviceList on success. In the event that no matches were located for the
specified criteria, the serviceList message returned will contain an empty businessServices element.
This signifies zero matches. If no arguments are passed, a zero-match result set will be returned. The
named arguments are all optional and, with the exception of name, may appear at most once. The
name argument may appear at most five times. When more than one distinct named argument is
passed, matching services are those which match on all of the criteria.

13 In UDDI Version 2, find_service supports up to five different name values. This feature is described in the footnote found in the
find_business description.

UDDI Version 2 Programmers API Specification UDDI.org

Copyright © 2001 by
Accenture, Ariba, Inc., Commerce One, Inc., Compaq Computer Corporation, Equifax, Inc., Fujitsu Limited, Hewlett-Packard
Company, i2 Technologies, Inc., Intel Corporation, International Business Machines Corporation, Microsoft Corporation, Oracle
Corporation, SAP AG, Sun Microsystems, Inc., and Verisign, Inc.
All Rights Reserved.

21

In the event of a large number of matches (as determined by each Operator Site), or if the number of
matches exceeds the value of the maxRows attribute, the Operator site will truncate the result set. If
this occurs, the serviceList will contain the truncated attribute with the value of this attribute set to true.

4.2.4.4 Caveats:

If any error occurs in processing this API call, a dispositionReport structure will be returned to the
caller in a SOAP Fault. The following error number information will be relevant:

�� E_invalidKeyPassed: signifies that the uuid_key value passed did not match with any known
businessKey key or tModel key values. The error structure will signify which condition
occurred first and the key that caused the question will be clearly indicated in the error text.

�� E_nameTooLong: signifies that the partial name value passed exceeds the maximum name
length of the name field as specified in the UDDI data structure reference.

�� E_unsupported: signifies that one of several problems have occurred. The error text will
make the problem clear. Possible problems include:

o the findQualifier values passed was invalid. The invalid qualifier will be clearly
indicated in the error text.

o This error will be returned if a blank name value is passed.

UDDI Version 2 Programmers API Specification UDDI.org

Copyright © 2001 by
Accenture, Ariba, Inc., Commerce One, Inc., Compaq Computer Corporation, Equifax, Inc., Fujitsu Limited, Hewlett-Packard
Company, i2 Technologies, Inc., Intel Corporation, International Business Machines Corporation, Microsoft Corporation, Oracle
Corporation, SAP AG, Sun Microsystems, Inc., and Verisign, Inc.
All Rights Reserved.

22

4.2.5 find_tModel

This find_tModel API call is for locating a list of tModel entries that match a set of specific criteria. The
response will be a list of abbreviated information about registered tModel data that matches the criteria
specified. This result will be returned in a tModelList message.

4.2.5.1 Syntax:

<find_tModel [maxRows="nn"] generic="2.0" xmlns="urn:uddi-org:api_v2" >
 [<findQualifiers/>]
 [<name/>]

[<identifierBag/>]
[<categoryBag/>]

</find_tModel>

4.2.5.2 Arguments:

�� maxRows: This optional integer value allows the requesting program to limit the number of
results returned.

�� findQualifiers: This collection of findQualifier elements can be used to alter the default
behavior of search functionality. See the Search Qualifiers appendix for more information.

�� name: This string value represents a partial name. Since tModel data only has a single
name, only a single name may be passed. A wildcard character % may be used to signify any
number of any characters. The returned tModelList contains tModelInfo elements for tModels
whose name matches the value passed (via lexical-order – i.e., leftmost in left-to-right
languages – partial match or wild card treatment).

�� IdentifierBag: This is a list of business identifier references. The returned tModelList contains
tModelInfo elements matching any of the identifiers passed (logical OR by default).
FindQualifiers can be used to alter this logical OR behavior.

�� categoryBag: This is a list of category references. The returned tModelList contains
tModelInfo elements matching all of the categories passed (logical AND by default).
FindQualifiers can be used to alter this logical AND behavior.

4.2.5.3 Returns:

This API call returns a tModelList message on success. In the event that no matches were located for
the specified criteria, an empty tModelInfos element will be returned (e.g. containing zero tModelInfo
elements). This signifies zero matches.

In the event of a large number of matches (as determined by each Operator Site), or if the number of
matches exceeds the value of the maxRows attribute, the Operator site will truncate the result set. If
this occurs, the tModelList will contain the truncated attribute with the value true.

4.2.5.4 Caveats:

If any error occurs in processing this API call, a dispositionReport element will be returned to the caller
within a SOAP Fault. The following error number information will be relevant:

�� E_nameTooLong: signifies that the partial name value passed exceeds the maximum name
length of the name field as specified in the UDDI data structure reference.

�� E_unsupported: signifies that one of the findQualifier values passed was invalid. The invalid
qualifier will be clearly indicated in the error text.

UDDI Version 2 Programmers API Specification UDDI.org

Copyright © 2001 by
Accenture, Ariba, Inc., Commerce One, Inc., Compaq Computer Corporation, Equifax, Inc., Fujitsu Limited, Hewlett-Packard
Company, i2 Technologies, Inc., Intel Corporation, International Business Machines Corporation, Microsoft Corporation, Oracle
Corporation, SAP AG, Sun Microsystems, Inc., and Verisign, Inc.
All Rights Reserved.

23

4.2.6 get_bindingDetail

The get_bindingDetail API call is for requesting the run-time bindingTemplate information for the
purpose of invoking a registered business API.

4.2.6.1 Syntax:

<get_bindingDetail generic="2.0" xmlns="urn:uddi-org:api_v2" >
 <bindingKey/> [<bindingKey/> …]
</get_bindingDetail>

4.2.6.2 Arguments:

�� bindingKey: one or more uuid_key values that represent the UDDI assigned keys for specific
instances of registered bindingTemplate data.

4.2.6.3 Behavior:

UDDI recommends that bindingTemplate information be cached locally by applications so that
repeated calls to a service described by a bindingTemplate can be made without having to make
repeated round trips to an UDDI registry. In the event that a call made with cached data fails, the
get_bindingDetail message can be used to get fresh bindingTemplate data. This is useful in cases
such as a service you are using relocating to another server or being restored in a disaster recovery
site.

4.2.6.4 Returns:

This API call returns a bindingDetail message on successful match of one or more bindingKey values.
If multiple bindingKey values were passed, the results will be returned in the same order as the keys
passed.

If a large number of keys are passed, an Operator Site may truncate the result set. If this occurs, the
bindingDetail result will contain the truncated attribute with the value true.

4.2.6.5 Caveats:

If any error occurs in processing this API call, a dispositionReport structure will be returned to the caller
in a SOAP Fault. The following error number information will be relevant:

�� E_invalidKeyPassed: signifies that one of the uuid_key values passed did not match with any
known bindingKey key values. No partial results will be returned – if any bindingKey values
passed are not valid bindingKey values, this error will be returned. The key value that caused
the error condition will be clearly indicated in the error text.

UDDI Version 2 Programmers API Specification UDDI.org

Copyright © 2001 by
Accenture, Ariba, Inc., Commerce One, Inc., Compaq Computer Corporation, Equifax, Inc., Fujitsu Limited, Hewlett-Packard
Company, i2 Technologies, Inc., Intel Corporation, International Business Machines Corporation, Microsoft Corporation, Oracle
Corporation, SAP AG, Sun Microsystems, Inc., and Verisign, Inc.
All Rights Reserved.

24

4.2.7 get_businessDetail

The get_businessDetail API call returns complete businessEntity information for one or more specified
businessEntity registrations matching on the businessKey values specified.

4.2.7.1 Syntax:

<get_businessDetail generic="2.0" xmlns="urn:uddi-org:api_v2" >
 <businessKey/> [<businessKey/> …]
</get_businessDetail>

4.2.7.2 Arguments:

�� businessKey: one or more uuid_key values that represent specific instances of known
businessEntity data.

4.2.7.3 Returns:

This API call returns a businessDetail message on successful match of one or more businessKey
values. If multiple businessKey values were passed, the results will be returned in the same order as
the keys passed.

If a large number of keys are passed, an Operator Site may truncate the result set. If this occurs, the
businessDetail response message will contain the truncated attribute with the value true.

4.2.7.4 Caveats:

If any error occurs in processing this API call, a dispositionReport element will be returned to the caller
within a SOAP Fault. The following error number information will be relevant:

�� E_invalidKeyPassed: signifies that one of the uuid_key values passed did not match with any
known businessKey values. No partial results will be returned – if any businessKey values
passed are not valid, this error will be returned. The key value that caused the error will be
clearly indicated in the error text.

UDDI Version 2 Programmers API Specification UDDI.org

Copyright © 2001 by
Accenture, Ariba, Inc., Commerce One, Inc., Compaq Computer Corporation, Equifax, Inc., Fujitsu Limited, Hewlett-Packard
Company, i2 Technologies, Inc., Intel Corporation, International Business Machines Corporation, Microsoft Corporation, Oracle
Corporation, SAP AG, Sun Microsystems, Inc., and Verisign, Inc.
All Rights Reserved.

25

4.2.8 get_businessDetailExt

The get_businessDetailExt API call returns extended businessEntity information for one or more
specified businessEntity registrations. This message returns exactly the same information as the
get_businessDetail message, but may contain additional attributes if the source is an external registry
(e.g. not an Operator Site) that is compatible with this API specification.

4.2.8.1 Syntax:

<get_businessDetailExt generic="2.0" xmlns="urn:uddi-org:api_v2" >
 <businessKey/> [<businessKey/> …]
</get_businessDetailExt>

4.2.8.2 Arguments:

�� businessKey: one or more uuid_key values that represent UDDI assigned businessKey
values for specific instances of known businessEntity data.

4.2.8.3 Returns:

This API call returns a businessDetailExt message on successful match of one or more businessKey
values. If multiple businessKey values were passed, the results will be returned in the same order as
the keys passed.

If a large number of keys are passed, an Operator Site may truncate the result set. If this occurs, the
businessDetailExt response message will contain the truncated attribute with the value true.

4.2.8.4 Caveats:

If any error occurs in processing this API call, a dispositionReport element will be returned to the caller
within a SOAP Fault. The following error number information will be relevant:

�� E_invalidKeyPassed: signifies that one of the uuid_key values passed did not match with any
known businessKey values. No partial results will be returned – if any businessKey values
passed are not valid, this error will be returned. The key value that caused the error condition
will be clearly indicated in the error text.

�� E_unsupported: signifies that the UDDI implementation queried does not support the
extended detail function. If this occurs, businessDetail information should be queried via the
get_businessDetail API. Operator Sites will not return this code, but will instead return a
businessDetailExt result with full businessDetail information embedded.

UDDI Version 2 Programmers API Specification UDDI.org

Copyright © 2001 by
Accenture, Ariba, Inc., Commerce One, Inc., Compaq Computer Corporation, Equifax, Inc., Fujitsu Limited, Hewlett-Packard
Company, i2 Technologies, Inc., Intel Corporation, International Business Machines Corporation, Microsoft Corporation, Oracle
Corporation, SAP AG, Sun Microsystems, Inc., and Verisign, Inc.
All Rights Reserved.

26

4.2.9 get_serviceDetail

The get_serviceDetail API call is used to request full information about a known businessService
structure.

4.2.9.1 Syntax:

<get_serviceDetail generic="2.0" xmlns="urn:uddi-org:api_v2" >
 <serviceKey/> [<serviceKey/> …]
</get_serviceDetail>

4.2.9.2 Arguments:

�� serviceKey: one or more uuid_key values that represent UDDI assigned serviceKey values of
specific instances of known businessService data.

4.2.9.3 Returns:

This API call returns a serviceDetail message on successful match of one or more serviceKey values.
If multiple serviceKey values were passed, the results will be returned in the same order as the keys
passed.

If a large number of keys are passed, an Operator Site may truncate the result set. If this occurs, the
response will contain a truncated attribute with the value true.

4.2.9.4 Caveats:

If any error occurs in processing this API call, a dispositionReport element will be returned to the caller
within a SOAP Fault. The following error number information will be relevant:

�� E_invalidKeyPassed: signifies that one of the uuid_key values passed did not match with any
known serviceKey values. No partial results will be returned – if any serviceKey values passed
are not valid, this error will be returned. The key value that caused the error condition will be
clearly indicated in the error text.

UDDI Version 2 Programmers API Specification UDDI.org

Copyright © 2001 by
Accenture, Ariba, Inc., Commerce One, Inc., Compaq Computer Corporation, Equifax, Inc., Fujitsu Limited, Hewlett-Packard
Company, i2 Technologies, Inc., Intel Corporation, International Business Machines Corporation, Microsoft Corporation, Oracle
Corporation, SAP AG, Sun Microsystems, Inc., and Verisign, Inc.
All Rights Reserved.

27

4.2.10 get_tModelDetail

The get_tModelDetail API call is used to request full information about /known tModel data by key.

4.2.10.1 Syntax:

<get_tModelDetail generic="2.0" xmlns="urn:uddi-org:api_v2" >
 <tModelKey/>
 [<tModelKey/> …]
</get_tModelDetail>

4.2.10.2 Arguments:

�� tModelKey: one or more URN qualified uuid_key values that represent UDDI assigned
tModelKey values of specific instances of known tModel data. All tModelKey values begin with
a uuid URN qualifier (e.g. "uuid:" followed by a known tModel key.)

4.2.10.3 Returns:

This API call returns a tModelDetail message on successful match of one or more tModelKey values. If
multiple tModelKey values were passed, the results will be returned in the same order as the keys
passed.

If a large number of keys are passed, an Operator Site may truncate the result set. If this occurs, the
response will contain a truncated attribute with the value of true.

4.2.10.4 Caveats:

If any error occurs in processing this API call, a dispositionReport structure will be returned to the caller
in a SOAP Fault. The following error number information will be relevant:

�� E_invalidKeyPassed: signifies that one of the URN qualified uuid_key values passed did not
match with any known tModelKey values. No partial results will be returned – if any tModelKey
values passed are not valid, this error will be returned. Any tModelKey values passed without
a “uuid:” URN qualifier will be considered invalid. The key value that caused the error
condition will be clearly indicated in the error text.

UDDI Version 2 Programmers API Specification UDDI.org

Copyright © 2001 by
Accenture, Ariba, Inc., Commerce One, Inc., Compaq Computer Corporation, Equifax, Inc., Fujitsu Limited, Hewlett-Packard
Company, i2 Technologies, Inc., Intel Corporation, International Business Machines Corporation, Microsoft Corporation, Oracle
Corporation, SAP AG, Sun Microsystems, Inc., and Verisign, Inc.
All Rights Reserved.

28

4.3 About UDDI Publishing API functions
The messages in this section represent commands that require authenticated14 access to an Operator
Site, and are used to publish and update information contained in a UDDI compatible registry. Each
business should initially select one Operator Site to host their information. Once chosen, information
can only be updated at the site originally selected. UDDI provides no automated means to reconcile
multiple or duplicate registrations.

The messages defined in this section all behave synchronously and are callable via HTTP-POST only.
HTTPS is used exclusively for all of the calls defined in this publishers API.

4.3.1 New in UDDI version 2.0

Many larger corporations and virtual businesses such as marketplaces and trade blocks had
commented that UDDI Version 1 was not adequate for registration of complex business information.
Additionally, feedback gathered from the Version 1 implementations made it clear that duplicating
service and binding information for individual business units was effective, but not optimal. Others
provided the view that it was essential to be able to distinguish a business registration made by the
legitimate business from one merely named in a way so as to confuse the reader.

4.3.2 Features to help the registry become more useful

These requirements, as well as the need to fine-tune the UDDI design in this second release of the
specifications have resulted in new publishing features. Five new publishers API messages are
defined in UDDI version 2.0 for managing the ability to describe jointly managed business relationships
between individual UDDI businessEntity registrations. Additionally, the existing save_business
message has a new behavior that allows businessService references, called “service projections”, to be
shared by more than one registered business, while maintaining the one-account content control for
services affected in this way.

One new message is defined in the inquiry API for version 2.0 in order to make the relationship data
that is confirmed visible to the public. Relationships that are not mutually confirmed – that is, not
proven to be made by the parties controlling both businesses on either side of a relationship assertions
– are not visible to the public, ever.

A jointly managed relationship occurs when the person associated with a publisher account that
controls a specific set of business registrations expresses a relationship assertion that coincides with
assertions made by the person who manages another business registration. UDDI provides some
assurances to the general reader that the relationships represented in UDDI are mutually agreed upon
relationships. This approach prevents parties from claiming a relationship that cannot be confirmed.

4.3.3 Publisher API summary

The publishing API calls defined that UDDI operators support are:

�� add_publisherAssertions: Used to add relationship assertions to the existing set of
assertions. See the appendix J describing relationship and publisher assertions.

�� delete_binding: Used to remove an existing bindingTemplate from the bindingTemplates
collection that is part of a specified businessService structure.

�� delete_business: Used to delete registered businessEntity information from the registry.

�� delete_publisherAssertions: Used to delete specific publisher assertions from the assertion
collection controlled by a particular publisher account. Deleting assertions from the assertion

14 Authentication is not regulated by this API specification. Individual Operator Sites will designate their own procedures for getting
a userID and password credentials

UDDI Version 2 Programmers API Specification UDDI.org

Copyright © 2001 by
Accenture, Ariba, Inc., Commerce One, Inc., Compaq Computer Corporation, Equifax, Inc., Fujitsu Limited, Hewlett-Packard
Company, i2 Technologies, Inc., Intel Corporation, International Business Machines Corporation, Microsoft Corporation, Oracle
Corporation, SAP AG, Sun Microsystems, Inc., and Verisign, Inc.
All Rights Reserved.

29

collection will affect the visibility of business relationships. Deleting an assertion will cause any
relationships based on that assertion to be invalidated.

�� delete_service: Used to delete an existing businessService from the businessServices
collection that is part of a specified businessEntity.

�� delete_tModel: Used to hide registered information about a tModel. Any tModel hidden in this
way is still usable for reference purposes and accessible via the get_tModelDetail message,
but is simply hidden from find_tModel result sets. There is no way to actually cause a tModel
to be deleted, except by administrative petition.

�� discard_authToken: Used to inform an Operator Site that a previously provided
authentication token is no longer valid and should be considered invalid if used after this
message is received and until such time as an authToken value is recycled or reactivated at
an operator's discretion. See get_authToken.

�� get_assertionStatusReport: Used to get a status report containing publisher assertions and
status information. This report is useful to help an administrator manage active and tentative
publisher assertions. Publisher assertions are used in UDDI to manage publicly visible
relationships between businessEntity structures. Relationships are a feature introduced in
generic 2.0 that help manage complex business structures that require more than one
businessEntity or more than one publisher account to manage parts of a businessEntity.
Returns an assertionStatusReport that includes the status of all assertions made involving any
businessEntity controlled by the requesting publisher account.

�� get_authToken: Used to request an authentication token from an Operator Site.
Authentication tokens are required when using all other API’s defined in the publishers API.
This function serves as the program's equivalent of a login request.

�� get_publisherAssertions: Used to get a list of active publisher assertions that are controlled
by an individual publisher account. Returns a publisherAssertions message all publisher
assertions associated with a specific publisher account. Publisher assertions are used to
control publicly visible business relationships.

�� get_registeredInfo: Used to request an abbreviated synopsis of all information currently
managed by a given individual.

�� save_binding: Used to register new bindingTemplate information or update existing
bindingTemplate information. Use this to control information about technical capabilities
exposed by a registered business.

�� save_business: Used to register new businessEntity information or update existing
businessEntity information. Use this to control the overall information about the entire
business. Of the save_xx API’s this one has the broadest effect. In UDDI V2, a feature is
introduced where save_business can be used to reference a businessService that is parented
by another businessEntity.

�� save_service: Used to register or update complete information about a businessService
exposed by a specified businessEntity.

�� save_tModel: Used to register or update complete information about a tModel.

�� set_publisherAssertions: (UDDI V2 and later) – used to save the complete set of publisher
assertions for an individual publisher account. Replaces any existing assertions, and causes
any old assertions that are not reasserted to be removed from the registry. Publisher
assertions are used to control publicly visible business relationships.

4.3.4 Special considerations for validated namespaces

Several of the API’s defined in this section allow you to save categorization and identification
information that is used to support searches that use taxonomy references. These are currently the
save_business, save_service and save_tModel APIs. Categorization is specified using the element
named categoryBag, which contains namespace-qualified references to taxonomy keys and

UDDI Version 2 Programmers API Specification UDDI.org

Copyright © 2001 by
Accenture, Ariba, Inc., Commerce One, Inc., Compaq Computer Corporation, Equifax, Inc., Fujitsu Limited, Hewlett-Packard
Company, i2 Technologies, Inc., Intel Corporation, International Business Machines Corporation, Microsoft Corporation, Oracle
Corporation, SAP AG, Sun Microsystems, Inc., and Verisign, Inc.
All Rights Reserved.

30

descriptions. Identification is specified using the IdentifierBag element, which contains namespace-
qualified references to identifiers and descriptions.

UDDI Version 2.0 introduces the notion of external checked namespaces. The facilities provided allow
third party providers to extend UDDI operator behavior to allow new categorization and identification
schemes to be incorporated into the data in a UDDI registry. This new functionality provides a way to
do innovative things with the data in a UDDI registry by making it possible to constrain the
classifications and identifiers that can be attributed to one or more businesses.

This Version 2.0 feature makes it possible for a third party, who perhaps specializes in identity
verification or provides a specialized classification that is restricted in use to either specific value sets or
as applicable to specific members of a group or affiliation with an organization. The result is that UDDI
data becomes “trustable” at such time as these trusted third parities use these new features to enhance
the data found within UDDI registrations.

For built-in taxonomies (e.g. NAICS, UN/SPSC, and geography), data contained in the keyValue
attribute of each keyedReference is validated against the taxonomy referenced by the associated
tModelKey. Only valid keyValue data will be stored as entered unless the taxonomy specified by the
tModelKey reference represents an unchecked (e.g. non-validated) namespace. The keyName
attribute that accompanies each reference is optional and solely used for descriptive purposes on the
part of the party that saves the categorization information. A good practice is to store the description of
the code set as defined by the categorization taxonomy.

For externally validated taxonomies introduced as a result of Version 2.0 changes, there is no set
behavior for determing what specific information is validated relative to the use of a checked
namespace. The reason for this is that the external validation service is free to check any set of
conditions that are deemed appropriate relative to the use of a given taxonomy or identifier scheme.
The only behavior that is predictable, is that the UDDI Operator will pass the information being
registered (as a result of a save_xx message) to the service that performs validation on a checked
namespace. If that service returns no error, the save will be permitted. Otherwise the error information
returned by the validation service will be returned to the caller unchanged and the save operation will
fail.

Operator Sites must reject any save request that contains (in either the identifierBag or categoryBag) a
reference to a “checked” namespace where the validation service is either unavailable (due to outage
or other conditions) or returns an error indication during the validation step. Unchecked namespaces
do not require any validation, although the namespaces must still be registered as tModels.

4.3.5 Third party opportunities

Many opportunities exist for third parties who wish to provide value-added services as adjuncts to the
core behaviors of UDDI Operator Sites. These opportunities include such options as becoming an
external taxonomy or namespace validation authority, or providing richer search facilities that go
beyond what the base UDDI API provides. In all cases, third parties are encouraged to work directly
with individual UDDI Operators in order to set up the appropriate contractual business relationships.

UDDI Version 2 Programmers API Specification UDDI.org

Copyright © 2001 by
Accenture, Ariba, Inc., Commerce One, Inc., Compaq Computer Corporation, Equifax, Inc., Fujitsu Limited, Hewlett-Packard
Company, i2 Technologies, Inc., Intel Corporation, International Business Machines Corporation, Microsoft Corporation, Oracle
Corporation, SAP AG, Sun Microsystems, Inc., and Verisign, Inc.
All Rights Reserved.

31

4.4 Publishing API Function Reference
4.4.1 add_publisherAssertions

The add_publisherAssertions API call causes one or more publisherAssertion to be added to an
individual publisher’s assertion collection. See the appendix describing relationships and the message
named get_publisherAssertions for more information on this collection.

4.4.1.1 Syntax:

 <add_publisherAssertions generic="2.0" xmlns="urn:uddi-org:api_v2" >
 <authInfo/>

<publisherAssertion>
<fromKey/>
<toKey/>
<keyedReference/>

</publisherAssertion>
 [<publisherAssertion/> …]
</add_publisherAssertions>

4.4.1.2 Arguments:

�� authInfo: this required argument is an element that contains an authentication token.
Authentication tokens are obtained using the get_authToken API call.

�� publisherAssertion: one or more relationship assertions. Relationship assertions consist of a
reference to two businessEntity key values as designated by the fromKey and toKey elements,
as well as a required expression of directional relationship within the contained
keyedReference element15. See the appendix on managing relationships.

4.4.1.3 Returns:

Upon successful completion, a dispositionReport message is returned with a single success indicator.

4.4.1.4 Caveats:

If any error occurs in processing this API call, a dispositionReport structure will be returned to the caller
in a SOAP Fault. The following error number information will be relevant:

�� E_invalidKeyPassed: signifies that one of the uuid_key values passed did not match with any
known businessKey or tModelKey values. The key and element or attribute that caused the
problem will be clearly indicated in the error text.

�� E_authTokenExpired: signifies that the authentication token value passed in the authInfo
argument is no longer valid because the token has expired.

�� E_authTokenRequired: signifies that the authentication token value passed in the authInfo
argument is either missing or is not valid.

�� E_userMismatch: signifies that neither of the businessKey values passed in the embedded
fromKey and toKey elements is controlled by the publisher account associated with the
authentication token. The error text will clearly indicate which assertion caused the error.

15 Note: The keyName, keyValue and tModelKey attributes associated with a keyedReference child of a publisherAssertion are all
required to be present. An error will be thrown (E_unsupported) if any of the required components of the relationship expression
are omitted.

UDDI Version 2 Programmers API Specification UDDI.org

Copyright © 2001 by
Accenture, Ariba, Inc., Commerce One, Inc., Compaq Computer Corporation, Equifax, Inc., Fujitsu Limited, Hewlett-Packard
Company, i2 Technologies, Inc., Intel Corporation, International Business Machines Corporation, Microsoft Corporation, Oracle
Corporation, SAP AG, Sun Microsystems, Inc., and Verisign, Inc.
All Rights Reserved.

32

4.4.2 delete_binding

The delete_binding API call causes one or more instances of bindingTemplate data to be deleted from
the UDDI registry.

4.4.2.1 Syntax:

<delete_binding generic="2.0" xmlns="urn:uddi-org:api_v2" >
 <authInfo/>
 <bindingKey/> [<bindingKey/> …]
</delete_binding>

4.4.2.2 Arguments:

�� authInfo: this required argument is an element that contains an authentication token.
Authentication tokens are obtained using the get_authToken API call.

�� bindingKey: one or more uuid_key values that represent specific instances of known
bindingTemplate data.

4.4.2.3 Returns:

Upon successful completion, a dispositionReport is returned with a single success indicator.

4.4.2.4 Caveats:

If any error occurs in processing this API call, a dispositionReport structure will be returned to the caller
in a SOAP Fault. The following error number information will be relevant:

�� E_invalidKeyPassed: signifies that one of the uuid_key values passed did not match with any
known bindingKey values. No partial results will be returned – if any bindingKey values
passed are not valid, this error will be returned. The key that caused the problem will be
clearly indicated in the error text.

�� E_authTokenExpired: signifies that the authentication token value passed in the authInfo
argument is no longer valid because the token has expired.

�� E_authTokenRequired: signifies that the authentication token value passed in the authInfo
argument is either missing or is not valid.

�� E_userMismatch: signifies that one or more of the bindingKey values passed refers to a
bindingTemplate that is not controlled by the individual associated with the authentication
token.

UDDI Version 2 Programmers API Specification UDDI.org

Copyright © 2001 by
Accenture, Ariba, Inc., Commerce One, Inc., Compaq Computer Corporation, Equifax, Inc., Fujitsu Limited, Hewlett-Packard
Company, i2 Technologies, Inc., Intel Corporation, International Business Machines Corporation, Microsoft Corporation, Oracle
Corporation, SAP AG, Sun Microsystems, Inc., and Verisign, Inc.
All Rights Reserved.

33

4.4.3 delete_business

The delete_business API call is used to remove one or more business registrations (e.g. registered
businessEntity data) and all direct contents from a UDDI registry.

4.4.3.1 Syntax:

<delete_business generic="2.0" xmlns="urn:uddi-org:api_v2" >
 <authInfo/>
 <businessKey/>
 [<businessKey/> …]
</delete_business>

4.4.3.2 Arguments:

�� authInfo: this required argument is an element that contains an authentication token.
Authentication tokens are obtained using the get_authToken API call.

�� businessKey: one or more uuid_key values that represent specific instances of known
businessEntity data.

4.4.3.3 Returns:

Upon successful completion, a dispositionReport message is returned with a single success indicator.

4.4.3.4 Results:

All of the natural contents 16of a businessEntity, including any currently nested businessService and
bindingTemplate data will be permanently removed from the UDDI registry.

Any projected references17 to businessServices deleted in this way are deactivated automatically.
References to bindingTemplates that are deleted as a result of this call, such as those referenced by
other bindingTemplates (in hostingRedirector elements) are not affected.

If the businessEntity deleted via this API call is involved in any publisher assertion, the assertions that
referenced the business registration that is deleted will be automatically deleted.

If a businessEntity is deleted via this API call, and the businessKey of the business being deleted is part
of any relationship assertions, the effected assertions will be deleted automatically, and the deleted
business will no longer be visible or referenced via the find_relatedBusinesses message.

4.4.3.5 Caveats:

If any error occurs in processing this API call, a dispositionReport element will be returned to the caller
within a SOAP Fault. The following error number information will be relevant:

�� E_invalidKeyPassed: signifies that one of the uuid_key values passed did not match with any
known businessKey values. No partial results will be returned – if any businessKey values
passed are not valid, this error will be returned. The key that caused the error will be clearly
indicated in the error text.

16 When a business registration is first saved, all of the contained data found in the registered businessEntity element is referred to
as the natural contents. UDDI defines several types of referencing mechanisms – and referenced elements are not considered to
be natural contents of registered businessEntity data. Natural contents can be recognized by matching businessKey values
between businessService and businessEntity data, or matching serviceKey values between businessService elements and
bindingTemplate elements.
17 UDDI version 2.0 allows save_business messages to be processed that contain businessService data references that are the
natural children of a different business registration. Doing this creates a businessService reference that results in the data
associated with the referenced businessService to be projected as though it were contained in the referencing businessEntity.
These are called projected references.

UDDI Version 2 Programmers API Specification UDDI.org

Copyright © 2001 by
Accenture, Ariba, Inc., Commerce One, Inc., Compaq Computer Corporation, Equifax, Inc., Fujitsu Limited, Hewlett-Packard
Company, i2 Technologies, Inc., Intel Corporation, International Business Machines Corporation, Microsoft Corporation, Oracle
Corporation, SAP AG, Sun Microsystems, Inc., and Verisign, Inc.
All Rights Reserved.

34

�� E_authTokenExpired: signifies that the authentication token value passed in the authInfo
argument is no longer valid because the token has expired.

�� E_authTokenRequired: signifies that the authentication token value passed in the authInfo
argument is either missing or is not valid.

�� E_userMismatch: signifies that one or more of the businessKey values passed refers to data
that is not controlled by the individual who is represented by the authentication token.

UDDI Version 2 Programmers API Specification UDDI.org

Copyright © 2001 by
Accenture, Ariba, Inc., Commerce One, Inc., Compaq Computer Corporation, Equifax, Inc., Fujitsu Limited, Hewlett-Packard
Company, i2 Technologies, Inc., Intel Corporation, International Business Machines Corporation, Microsoft Corporation, Oracle
Corporation, SAP AG, Sun Microsystems, Inc., and Verisign, Inc.
All Rights Reserved.

35

4.4.4 delete_publisherAssertions

The delete_publisherAssertions API call causes one or more publisherAssertion elements to be
removed from a publisher’s assertion collection. See the appendix describing relationships and the
message named get_publisherAssertions for more information on this collection.

4.4.4.1 Syntax:

 <delete_publisherAssertions generic="2.0" xmlns="urn:uddi-org:api_v2" >
 <authInfo/>

<publisherAssertion>
<fromKey/>
<toKey/>
<keyedReference/>

</publisherAssertion>
 [<publisherAssertion/> …]
</delete_publisherAssertions>

4.4.4.2 Arguments:

�� authInfo: this required argument is an element that contains an authentication token.
Authentication tokens are obtained using the get_authToken API call.

�� publisherAssertion: one or publisher assertion structures exactly matching an existing
assertion that can be found in the publisher’s assertion collection.

4.4.4.3 Returns:

Upon successful completion, a dispositionReport message is returned with a single success indicator.

4.4.4.4 Results:

The UDDI registry scans the assertion collection associated with the publisher account, and removes
any assertions that exactly match all parts of each publisherAssertion passed. Any assertions
described but that cannot be located will cause an error. Assertions removed in this way will also affect
the visibility of relationships that are visible via the find_relatedBusinesses message.

4.4.4.5 Caveats:

If any error occurs in processing this API call, a dispositionReport structure will be returned to the caller
in a SOAP Fault. The following error number information will be relevant:

�� E_assertionNotFound: signifies that one of the assertion structures passed does not have
any corresponding match in the publisher’s assertion collection. The assertion that caused the
problem will be clearly indicated in the error text.

�� E_authTokenExpired: signifies that the authentication token value passed in the authInfo
argument is no longer valid because the token has expired.

�� E_authTokenRequired: signifies that the authentication token value passed in the authInfo
argument is either missing or is not valid.

��

UDDI Version 2 Programmers API Specification UDDI.org

Copyright © 2001 by
Accenture, Ariba, Inc., Commerce One, Inc., Compaq Computer Corporation, Equifax, Inc., Fujitsu Limited, Hewlett-Packard
Company, i2 Technologies, Inc., Intel Corporation, International Business Machines Corporation, Microsoft Corporation, Oracle
Corporation, SAP AG, Sun Microsystems, Inc., and Verisign, Inc.
All Rights Reserved.

36

4.4.5 delete_service

The delete_service API call is used to remove one or more previously businessService elements from
the UDDI registry and from its containing businessEntity parent.

4.4.5.1 Syntax:

<delete_service generic="2.0" xmlns="urn:uddi-org:api_v2" >
 <authInfo/>
 <serviceKey/>
 [<serviceKey/> …]
</delete_service>

4.4.5.2 Arguments:

�� authInfo: this required argument is an element that contains an authentication token.
Authentication tokens are obtained using the get_authToken API call.

�� serviceKey: one or more uuid_key values that represent specific instances of known
businessService data.

4.4.5.3 Returns:

Upon successful completion, a dispositionReport is returned with a single success indicator.

If a business service being deleted is the target of a business service projection associated with
another businessEntity, that reference relationship will be automatically eliminated as a result of this
call. All contained bindingTemplate data will also be removed from the registry as a result of this call.
Any references to bindingTemplates so removed (such as within other hostingRedirector elements will
not be affected.)

4.4.5.4 Caveats:

If any error occurs in processing this API call, a dispositionReport structure will be returned to the caller
in a SOAP Fault. The following error number information will be relevant:

�� E_invalidKeyPassed: signifies that one of the uuid_key values passed did not match with any
known serviceKey values. No partial results will be returned – if any serviceKey values passed
are not valid, this error will be returned. The key causing the error will be clearly indicated in
the error text.

�� E_authTokenExpired: signifies that the authentication token value passed in the authInfo
argument is no longer valid because the token has expired.

�� E_authTokenRequired: signifies that the authentication token value passed in the authInfo
argument is either missing or is not valid.

�� E_userMismatch: signifies that one or more of the serviceKey values passed refers to data
that is not controlled by the individual who is represented by the authentication token.

UDDI Version 2 Programmers API Specification UDDI.org

Copyright © 2001 by
Accenture, Ariba, Inc., Commerce One, Inc., Compaq Computer Corporation, Equifax, Inc., Fujitsu Limited, Hewlett-Packard
Company, i2 Technologies, Inc., Intel Corporation, International Business Machines Corporation, Microsoft Corporation, Oracle
Corporation, SAP AG, Sun Microsystems, Inc., and Verisign, Inc.
All Rights Reserved.

37

4.4.6 delete_tModel

The delete_tModel API call is used to logically delete one or more tModel structures. Logical deletion
hides the deleted tModels from find_tModel result sets but does not physically delete it.

4.4.6.1 Syntax:

<delete_tModel generic="2.0" xmlns="urn:uddi-org:api_v2" >
 <authInfo/>
 <tModelKey/> [<tModelKey/> …]
</delete_tModel>

4.4.6.2 Arguments:

�� authInfo: this required argument is an element that contains an authentication token.
Authentication tokens are obtained using the get_authToken API call.

�� tModelKey : one or more URN qualified uuid_key values that represent specific instances of
known tModel data. All tModelKey values begin with a uuid URN qualifier (e.g. "uuid:" followed
by a known tModel UUID value.)

4.4.6.3 Returns:

Upon successful completion, a dispositionReport message is returned with a single success indicator.

If a tModel is hidden in this way it will not be physically deleted as a result of this call. Instead it will be
marked as hidden. Any tModels hidden in this way are still accessible, via the get_registeredInfo and
get_tModelDetail messages, but will be omitted from any results returned by calls to find_tModel. The
purpose of the delete_tModel behavior is ensure that the details associated with a hidden tModel are
still available to anyone currently using the tModel. A hidden tModel can be restored and made visible
to search results by invoking the save_tModel API at a later time, passing the original data and the
tModelKey value of the hidden tModel.

4.4.6.4 Caveats:

If any error occurs in processing this API call, a dispositionReport element will be returned to the caller
within a SOAP Fault. The following error number information will be relevant:

�� E_invalidKeyPassed: signifies that one of the URN qualified uuid_key values passed did not
match with any known tModelKey values. No partial results will be returned – if any tModelKey
values passed are not valid, this error will be returned. Any tModelKey values passed without
a UUID: URN qualifier will be considered invalid. The invalid key references will be clearly
indicated in the error text.

�� E_authTokenExpired: signifies that the authentication token value passed in the authInfo
argument is no longer valid because the token has expired.

�� E_authTokenRequired: signifies that the authentication token value passed in the authInfo
argument is either missing or is not valid.

�� E_userMismatch: signifies that one or more of the tModelKey values passed refers to data
that is not controlled by the individual who is represented by the authentication token.

UDDI Version 2 Programmers API Specification UDDI.org

Copyright © 2001 by
Accenture, Ariba, Inc., Commerce One, Inc., Compaq Computer Corporation, Equifax, Inc., Fujitsu Limited, Hewlett-Packard
Company, i2 Technologies, Inc., Intel Corporation, International Business Machines Corporation, Microsoft Corporation, Oracle
Corporation, SAP AG, Sun Microsystems, Inc., and Verisign, Inc.
All Rights Reserved.

38

4.4.7 discard_authToken

The discard_authToken API call is used to inform an Operator Site that the authentication token is to be
discarded, effectively ending the session. Subsequent calls that use the same authToken will be
rejected. This message is optional for Operator Sites that do not manage session state or that do not
support the get_authToken message.

4.4.7.1 Syntax:

<discard_authToken generic="2.0" xmlns="urn:uddi-org:api_v2" >
 <authInfo/>
</discard_authToken>

4.4.7.2 Arguments:

�� authInfo: this required argument is an element that contains an authentication token.
Authentication tokens are obtained using the get_authToken API call.

4.4.7.3 Returns:

Upon successful completion, a dispositionReport is returned with a single success indicator.
Discarding an expired authToken will be processed and reported as a success condition.

4.4.7.4 Caveats:

If any error occurs in processing this API call, a dispositionReport structure will be returned to the caller
in a SOAP Fault. The following error number information will be relevant:

�� E_authTokenRequired: signifies that the authentication token value passed in the authInfo
argument is either missing or is not valid.

UDDI Version 2 Programmers API Specification UDDI.org

Copyright © 2001 by
Accenture, Ariba, Inc., Commerce One, Inc., Compaq Computer Corporation, Equifax, Inc., Fujitsu Limited, Hewlett-Packard
Company, i2 Technologies, Inc., Intel Corporation, International Business Machines Corporation, Microsoft Corporation, Oracle
Corporation, SAP AG, Sun Microsystems, Inc., and Verisign, Inc.
All Rights Reserved.

39

4.4.8 get_assertionStatusReport

The get_assertionStatusReport API call provides administrative support for determining the status of
current and outstanding publisher assertions that involve any of the business registrations managed by
the individual publisher account. Using this message, a publisher can see the status of assertions that
they have made, as well as see assertions that others have made that involve businessEntity structures
controlled by the calling publisher account. See Appendix J on relationships and publisher assertions
for more information.

4.4.8.1 Syntax:

 <get_assertionStatusReport generic="2.0" xmlns="urn:uddi-org:api_v2" >
 <authInfo/>

[<completionStatus/>]
</get_assertionStatusReport>

4.4.8.2 Arguments:

�� authInfo: this required argument is an element that contains an authentication token.
Authentication tokens are obtained using the get_authToken API call.

�� completionStatus: one of the following values

o status:complete: passing this value will cause only the publisher assertions that are
complete to be returned. Each businessEntity listed in assertions that are complete
has a visible relationship that directly reflects the data in a complete assertion (as per
the find_relatedBusinesses message).

o status:toKey_incomplete: passing this value will cause only those publisher
assertions where the party who controls the businessEntity referenced by the toKey
value in an assertion has not made a matching assertion to be listed.

o status:fromKey_incomplete: passing this value will cause only those publisher
assertions where the party who controls the businessEntity referenced by the fromKey
value in an assertion has not made a matching assertion to be listed.

This optional argument lets the publisher restrict the result set to only those relationships that
have the status value specified. Assertion status is a calculated result based on the sum total
of assertions made by the individuals that control specific business registrations.

4.4.8.3 Returns:

Upon successful completion, an assertionStatusReport message is returned containing assertion
status information.

4.4.8.4 Caveats:

If any error occurs in processing this API call, a dispositionReport element will be returned to the caller
within a SOAP Fault. The following error number information will be relevant:

�� E_invalidCompletionStatus: signifies that the completionStatus value passed is
unrecognized. The completion status that caused the problem will be clearly indicated in the
error text.

�� E_authTokenExpired: signifies that the authentication token value passed in the authInfo
argument is no longer valid because the token has expired.

�� E_authTokenRequired: signifies that the authentication token value passed in the authInfo
argument is either missing or is not valid

UDDI Version 2 Programmers API Specification UDDI.org

Copyright © 2001 by
Accenture, Ariba, Inc., Commerce One, Inc., Compaq Computer Corporation, Equifax, Inc., Fujitsu Limited, Hewlett-Packard
Company, i2 Technologies, Inc., Intel Corporation, International Business Machines Corporation, Microsoft Corporation, Oracle
Corporation, SAP AG, Sun Microsystems, Inc., and Verisign, Inc.
All Rights Reserved.

40

4.4.9 get_authToken

The get_authToken API call is used to obtain an authentication token. Authentication tokens are
opaque values that are required for all other publisher API calls. This message is not required for
Operator Sites that have an external mechanism defined for users to get an authentication token.
This API is provided for implementations that do not have some other method of obtaining an
authentication token or certificate, or that choose to use user ID and password based
authentication.

4.4.9.1 Syntax:

<get_authToken generic="2.0" xmlns="urn:uddi-org:api_v2"
 userID="someLoginName"
 cred="someCredential" />

4.4.9.2 Arguments:

�� userID: this required attribute argument is the user identifier that an individual authorized user
was assigned by an Operator Site. Operator Sites will each provide a way for individuals to
obtain a userID and password credentials that will be valid only at the given Operator Site.

�� cred: this required attribute argument is the password or credential that is associated with the
user.

4.4.9.3 Returns:

This function returns an authToken message that contains a valid authInfo element that can be used in
subsequent calls to publisher API calls that require an authInfo value.

4.4.9.4 Caveats:

If any error occurs in processing this API call, a dispositionReport element will be returned to the caller
within a SOAP Fault. The following error number information will be relevant:

�� E_unknownUser: signifies that the Operator Site that received the request does not recognize
the userID and/or cred argument values passed as valid credentials.

UDDI Version 2 Programmers API Specification UDDI.org

Copyright © 2001 by
Accenture, Ariba, Inc., Commerce One, Inc., Compaq Computer Corporation, Equifax, Inc., Fujitsu Limited, Hewlett-Packard
Company, i2 Technologies, Inc., Intel Corporation, International Business Machines Corporation, Microsoft Corporation, Oracle
Corporation, SAP AG, Sun Microsystems, Inc., and Verisign, Inc.
All Rights Reserved.

41

4.4.10 get_publisherAssertions

The get_publisherAssertions API call is used to obtain the full set of publisher assertions that is
associated with an individual publisher account.

4.4.10.1 Syntax:

<get_publisherAssertions generic="2.0" xmlns="urn:uddi-org:api_v2" >
 <authInfo/>
</get_publisherAssertions>

4.4.10.2 Arguments:

�� authInfo: this required argument is an element that contains an authentication token.
Authentication tokens are obtained using the get_authToken API call.

4.4.10.3 Returns:

This API call returns a publisherAssertions message that contains a publisherAssertion element for
each publisher assertion registered by the publisher account associated with the authentication
information. Only assertions made by the individual publisher are returned. See
get_assertionStatusReport and the appendix explaining publisher assertions for more details.

4.4.10.4 Caveats:

If any error occurs in processing this API call, a dispositionReport element will be returned to the caller
within a SOAP Fault. The following error number information will be relevant:

�� E_authTokenExpired: signifies that the authentication token value passed in the authInfo
argument is no longer valid because the token has expired.

�� E_authTokenRequired: signifies that the authentication token value passed in the authInfo
argument is either missing or is not valid.

UDDI Version 2 Programmers API Specification UDDI.org

Copyright © 2001 by
Accenture, Ariba, Inc., Commerce One, Inc., Compaq Computer Corporation, Equifax, Inc., Fujitsu Limited, Hewlett-Packard
Company, i2 Technologies, Inc., Intel Corporation, International Business Machines Corporation, Microsoft Corporation, Oracle
Corporation, SAP AG, Sun Microsystems, Inc., and Verisign, Inc.
All Rights Reserved.

42

4.4.11 get_registeredInfo

The get_registeredInfo API call is used to get an abbreviated list of all businessEntity and tModel data
that are controlled by the individual associated with the credentials passed.

4.4.11.1 Syntax:

<get_registeredInfo generic="2.0" xmlns="urn:uddi-org:api_v2" >
 <authInfo/>
</get_registeredInfo>

4.4.11.2 Arguments:

�� authInfo: this required argument is an element that contains an authentication token.
Authentication tokens are obtained using the get_authToken API call.

4.4.11.3 Returns:

Upon successful completion, a registeredInfo message will be returned, listing abbreviated business
information in one or more businessInfo elements, and tModel information in one or more tModelInfo
elements. This API is useful for determining the full extent of registered business and tModel
information controlled by a single user in a single call. This message complements the
get_publisherAssertions message, which returns information about assertions managed by an
individual publisher account.

4.4.11.4 Caveats:

If any error occurs in processing this API call, a dispositionReport element will be returned to the caller
within a SOAP Fault. The following error number information will be relevant:

�� E_authTokenExpired: signifies that the authentication token value passed in the authInfo
argument is no longer valid because the token has expired.

�� E_authTokenRequired: signifies that the authentication token value passed in the authInfo
argument is either missing or is not valid.

UDDI Version 2 Programmers API Specification UDDI.org

Copyright © 2001 by
Accenture, Ariba, Inc., Commerce One, Inc., Compaq Computer Corporation, Equifax, Inc., Fujitsu Limited, Hewlett-Packard
Company, i2 Technologies, Inc., Intel Corporation, International Business Machines Corporation, Microsoft Corporation, Oracle
Corporation, SAP AG, Sun Microsystems, Inc., and Verisign, Inc.
All Rights Reserved.

43

4.4.12 save_binding

The save_binding API call is used to save or update a complete bindingTemplate element. This
message can be used to add or update one or more bindingTemplate elements as well as the
container/contained relationship that each bindingTemplate has with one or more existing
businessService elements.

4.4.12.1 Syntax:

<save_binding generic="2.0" xmlns="urn:uddi-org:api_v2" >
 <authInfo/>
 <bindingTemplate/> [<bindingTemplate/>…]
</save_binding>

4.4.12.2 Arguments:

�� authInfo: this required argument is an element that contains an authentication token.
Authentication tokens are obtained using the get_authToken API call.

�� bindingTemplate: one or more complete bindingTemplate elements. The order in which
these are processed is not defined. To save a new bindingTemplate, pass a bindingTemplate
element with an empty bindingKey attribute value. Any bindingTemplate data saved in this
way must provide a serviceKey value that references a businessService that is controlled by
the same publisher.

Each bindingTemplate element passed must contain a serviceKey value that corresponds to a
registered businessService controlled by the same publisher account. The net effect of this call is to
determine the containing parent businessService for each bindingTemplate affected by this call. If the
same bindingTemplate (determined by matching bindingKey value) is listed more than once, any
relationship to the containing businessService will be determined by processing order, which is
determined by the position of the bindingTemplate data in first to last order.

Using this message it is possible to move an existing bindingTemplate element from one
businessService element to another by simply specifying a different parent businessService
relationship along with the complete bindingTemplate. Changing a parent relationship in this way will
cause two businessService elements to be affected. The net result of such a move is that the
bindingTemplate will still reside within one, and only one businessService element based on the value
of the serviceKey passed.

If a bindingTemplate being saved contains a hostingRedirector element, and that element references a
bindingTemplate that itself contains a hostingRedirector element, an error condition
(E_invalidKeyPassed) will be generated.

4.4.12.3 Returns:

This API returns a bindingDetail message containing the final results of the call that reflects the newly
registered information for the effected bindingTemplate elements. If more than one bindingTemplate is
saved in a single save_binding message, the resulting bindingDetail message will return results in the
same order that they appeared in the save_binding message. If the same bindingTemplate data was
passed multiply in the request, it will be listed multiple times in the result, but will always reflect the final
values.

4.4.12.4 Caveats:

If any error occurs in processing this API call, a dispositionReport element will be returned to the caller
in a SOAP Fault. The following error number information will be relevant:

�� E_authTokenExpired: signifies that the authentication token value passed in the authInfo
argument is no longer valid because the token has expired.

UDDI Version 2 Programmers API Specification UDDI.org

Copyright © 2001 by
Accenture, Ariba, Inc., Commerce One, Inc., Compaq Computer Corporation, Equifax, Inc., Fujitsu Limited, Hewlett-Packard
Company, i2 Technologies, Inc., Intel Corporation, International Business Machines Corporation, Microsoft Corporation, Oracle
Corporation, SAP AG, Sun Microsystems, Inc., and Verisign, Inc.
All Rights Reserved.

44

�� E_authTokenRequired: signifies that the authentication token value passed in the authInfo
argument is either missing or is not valid.

�� E_invalidKeyPassed: signifies that the request cannot be satisfied because one or more
uuid_key values specified is not a valid key value, or that a hostingRedirector value references
a bindingTemplate that itself contains a hostingRedirector value.

�� E_userMismatch: signifies that one or more of the uuid_key values passed refers to data that
is not controlled by the individual who is represented by the authentication token.

�� E_accountLimitExceeded: signifies that user account limits have been exceeded. Account
limits are established based on the relationship between an individual publisher and an
individual operator. No operators may place other restrictions on publishing limits established
by custodial operators.

UDDI Version 2 Programmers API Specification UDDI.org

Copyright © 2001 by
Accenture, Ariba, Inc., Commerce One, Inc., Compaq Computer Corporation, Equifax, Inc., Fujitsu Limited, Hewlett-Packard
Company, i2 Technologies, Inc., Intel Corporation, International Business Machines Corporation, Microsoft Corporation, Oracle
Corporation, SAP AG, Sun Microsystems, Inc., and Verisign, Inc.
All Rights Reserved.

45

4.4.13 save_business

The save_business API call is used to save or update information about a complete businessEntity
element. This API has the broadest scope of all of the save_xx API calls in the publisher API, and can
be used to make sweeping changes to the published information for one or more businessEntity
elements controlled by an individual.

UDDI version 2 introduces the ability to use this API message to establish a reference relationship to
businessService elements that are managed as the contents of another businessEntity. In this way, a
businessService that is a natural part of one businessEntity can appear as a projected part of any other
businessEntity. Any businessService data projected in this way (by way of a reference established by
this API) are not managed as a part of the referencing entity.

4.4.13.1 Syntax:

<save_business generic="2.0" xmlns="urn:uddi-org:api_v2" >
 <authInfo/>
 <businessEntity/> [<businessEntity/>…]
</save_business>

4.4.13.2 Arguments:

�� authInfo: this required argument is an element that contains an authentication token.
Authentication tokens are obtained using the get_authToken API call.

�� businessEntity: one or more complete businessEntity elements can be passed. These
elements can be obtained in advance by using the get_businessDetail API call or by any other
means.

4.4.13.3 Behavior:

If any of the uuid_key values within in a businessEntity element (e.g. any data with a key value
regulated by a businessKey, serviceKey, bindingKey, or tModelKey) is passed with a blank value, this
is a signal that the data that is so keyed is brand new, and being inserted for the first time.18 If this case
occurs, a new key value will be automatically generated for the data passed without an associated key.

To make this API call perform an update to existing registered data, the keyed entities (businessEntity,
businessService, bindingTemplate or tModel) should have uuid_key values that correspond to the
registered data.

Data can be deleted with this API call when registered information is different than the new information
provided. One or more businessService and bindingTemplate elements that are found in the
controlling Operator Site but are missing from the businessEntity information provided in or referenced
by this call will be deleted from the registry after processing this call.

Data that is contained within one or more businessEntity can be rearranged with this API call when
data passed to this function redefines parent container relationships for other registered information.
For instance, if a new businessEntity is saved with information about a businessService that is
registered already as part of a separate businessEntity, this will result in the businessService being
moved from its current container to the new businessEntity. This condition occurs when the
businessKey attribute contained in the businessService elemement being saved matches the
businessKey attribute value associated with the businessEntity being saved. This only applies if the
same party controls the data referenced. Any attempt to delete or move a businessService in this
manner by a party who is not the publisher of the businessService will be rejected as an error.

18 This does not apply to structures that reference other keyed data, such as tModelKey references within bindingTemplate or
keyedReference structures, since these are references.

UDDI Version 2 Programmers API Specification UDDI.org

Copyright © 2001 by
Accenture, Ariba, Inc., Commerce One, Inc., Compaq Computer Corporation, Equifax, Inc., Fujitsu Limited, Hewlett-Packard
Company, i2 Technologies, Inc., Intel Corporation, International Business Machines Corporation, Microsoft Corporation, Oracle
Corporation, SAP AG, Sun Microsystems, Inc., and Verisign, Inc.
All Rights Reserved.

46

If a the businessEntity being saved contains a businessService element that has a businessKey value
that does not equal the businessKey value matching the businessEntity element being saved, then the
UDDI registry will note a reference, called a “service projection”, to the existing businessService.
Subsequent calls to the get_businessDetail API, passing either the businessKey of the businessEntity
that contains the referenced businessService or the businessKey of the businessEntity that is
associated with the referenced businessService will result in the same businessService data being
included.

No changes to the referenced businessService will be effected by the act of establishing a service
projection. Subsequent calls to save_business that do not contain any service references will cause
any existing service references associated with the businessEntity being saved to be deleted
automatically. This automatic reference deletion will not cause any changes to the referenced
businessService. If the referenced businessService gets deleted by any means by its publisher, any
references associated with any other businessEntity will be automatically deleted. For this reason, it is
a best practice to coordinate references to businessService data published under another
businessEntity with the party who manages that data.

When saving a businessEntity containing a service reference, the content of the businessService
provided in the save_business must either match the content of the referenced businessService or
contain only the name of the businessService being referenced. If the businessService provides does
not meet these requirements the save will fail with the error

For each businessEntity saved with this API, the Operator Site will create a URL that is specific to the
Operator Site that can be used to get (via HTTP-GET) the businessEntity element being registered.
This information will be added (if not present already) to the discoveryURLs collection associated with
each businessEntity. The discoveryURL values generated in this way will have a useType value of
“businessEntity".

4.4.13.4 Returns:

This API returns a businessDetail message containing the final results of the call that reflects the new
registered information for the businessEntity information provided. These results will include any
businessServices that are contained by reference.

4.4.13.5 Caveats:

If any error occurs in processing this API call, a dispositionReport element will be returned to the caller
in a SOAP Fault. The following error number information will be relevant:

�� E_authTokenExpired: signifies that the authentication token value passed in the authInfo
argument is no longer valid because the token has expired.

�� E_authTokenRequired: signifies that the authentication token value passed in the authInfo
argument is either missing or is not valid.

�� E_invalidKeyPassed: signifies that the request cannot be satisfied because one or more
uuid_key values specified is not a valid key value. This includes any tModelKey references, as
well as references to serviceKey or bindingKey values that either do not exist. The key
causing the error will be clearly indicated in the error text.

�� E_userMismatch: signifies that one or more of the uuid_key values passed refers to data that
is not controlled by the individual who is represented by the authentication token. The key
causing the error will be clearly indicated in the error text.

�� E_invalidValue: signifies that the given keyValue did not correspond to a category within the
taxonomy identified by a tModelKey value within one of the categoryBag elements provided.

�� E_valueNotAllowed: Restrictions have been placed by the taxonomy provider on the types of
information that should be included at that location within a specific taxonomy. The validation
routine chosen by the Operator Site has rejected this businessEntity for at least one specified
category.

UDDI Version 2 Programmers API Specification UDDI.org

Copyright © 2001 by
Accenture, Ariba, Inc., Commerce One, Inc., Compaq Computer Corporation, Equifax, Inc., Fujitsu Limited, Hewlett-Packard
Company, i2 Technologies, Inc., Intel Corporation, International Business Machines Corporation, Microsoft Corporation, Oracle
Corporation, SAP AG, Sun Microsystems, Inc., and Verisign, Inc.
All Rights Reserved.

47

�� E_accountLimitExceeded: signifies that user account limits have been exceeded.

UDDI Version 2 Programmers API Specification UDDI.org

Copyright © 2001 by
Accenture, Ariba, Inc., Commerce One, Inc., Compaq Computer Corporation, Equifax, Inc., Fujitsu Limited, Hewlett-Packard
Company, i2 Technologies, Inc., Intel Corporation, International Business Machines Corporation, Microsoft Corporation, Oracle
Corporation, SAP AG, Sun Microsystems, Inc., and Verisign, Inc.
All Rights Reserved.

48

4.4.14 save_service

The save_service API call adds or updates one or more businessService elements.

4.4.14.1 Syntax:

<save_service generic="2.0" xmlns="urn:uddi-org:api_v2" >
 <authInfo/>
 <businessService/> [<businessService/>…]
</save_service>

4.4.14.2 Arguments:

�� authInfo: this required argument is an element that contains an authentication token.
Authentication tokens are obtained using the get_authToken API call.

�� businessService: one or more complete businessService elements can be passed. For the
purpose of performing round trip updates, this data can be obtained in advance by using the
get_serviceDetail API call or by any other means.

4.4.14.3 Behavior:

Each businessService element passed must contain a businessKey value that corresponds to a
registered businessEntity controlled by the same publisher who is making the save_service request.

If the same businessService, or within these, bindingTemplate (determined by matching
businessService or bindingKey value) is contained in more than one businessService argument, any
relationship to the containing businessEntity will be determined by processing order – which is
determined by first to last order of the information passed in the request.

Using this API call it is possible to move an existing bindingTemplate element from one
businessService element to another, or move an existing businessService element from one
businessEntity to another by simply specifying a different parent businessEntity relationship. Changing
a parent relationship in this way will cause two businessEntity elements to be affected.

4.4.14.4 Returns:

This API call returns a serviceDetail message containing the final results of the call that reflects the
newly registered information for the effected businessService elements. In cases where multiple
businessService elements are passed in the request, the result will contain the final results for each
businessService passed and these will occur in the same order as found in the request.

4.4.14.5 Caveats:

If any error occurs in processing this API call, a dispositionReport element will be returned to the caller
within a SOAP Fault. The following error number information will be relevant:

�� E_authTokenExpired: signifies that the authentication token value passed in the authInfo
argument is no longer valid because the token has expired.

�� E_authTokenRequired: signifies that the authentication token value passed in the authInfo
argument is either missing or is not valid.

�� E_invalidKeyPassed: signifies that the request cannot be satisfied because one or more
uuid_key values specified is not a valid key value. This includes any tModelKey references to
non-existent tModel data. The key causing the error will be clearly indicated in the error text.

�� E_userMismatch: signifies that one or more of the uuid_key values passed refers to data that
is not controlled by the individual who is represented by the authentication token.

�� E_invalidValue: signifies that a keyValue did not correspond to a category within the

UDDI Version 2 Programmers API Specification UDDI.org

Copyright © 2001 by
Accenture, Ariba, Inc., Commerce One, Inc., Compaq Computer Corporation, Equifax, Inc., Fujitsu Limited, Hewlett-Packard
Company, i2 Technologies, Inc., Intel Corporation, International Business Machines Corporation, Microsoft Corporation, Oracle
Corporation, SAP AG, Sun Microsystems, Inc., and Verisign, Inc.
All Rights Reserved.

49

taxonomy identified by the tModelKey in the categoryBag data provided.

�� E_valueNotAllowed: The taxonomy validation routine chosen by the Operator Site has
rejected the businessService data provided.

�� E_accountLimitExceeded: signifies that user account limits have been exceeded.

UDDI Version 2 Programmers API Specification UDDI.org

Copyright © 2001 by
Accenture, Ariba, Inc., Commerce One, Inc., Compaq Computer Corporation, Equifax, Inc., Fujitsu Limited, Hewlett-Packard
Company, i2 Technologies, Inc., Intel Corporation, International Business Machines Corporation, Microsoft Corporation, Oracle
Corporation, SAP AG, Sun Microsystems, Inc., and Verisign, Inc.
All Rights Reserved.

50

4.4.15 save_tModel

The save_tModel API call adds or updates one or more registered tModel elements.

4.4.15.1 Syntax:

<save_tModel generic="2.0" xmlns="urn:uddi-org:api_v2" >
 <authInfo/>
 <tModel/> [<tModel/>…]
</save_tModel>

4.4.15.2 Arguments:

�� authInfo: this required argument is an element that contains an authentication token.
Authentication tokens are obtained using the get_authToken API call.

�� tModel: one or more complete tModel elements can be passed. If adding a new tModel, the
tModelKey value should be passed as an empty element.

4.4.15.3 Behavior:

If any of the uuid_key values within in a tModel element (e.g. tModelKey) is passed with a blank value,
this is a signal that a new tModel is being inserted and that the UDDI registry should assign a new
tModelKey identifier to this data. The new key value will be returned in the tModelDetail response.

To make this API call perform an update to existing registered data, the tModelKey values should have
uuid_key values that correspond to the registered data. All tModelKey values that are non-blank are
formatted as urn values (e.g. the characters "uuid:" precede all UUID values for tModelKey values)

If a tModelKey value is passed that corresponds to a tModel that was previously hidden via the
delete_tModel message, the result will be the restoration of the tModel to full visibility , making it
available for return in find_tModel results.

4.4.15.4 Returns:

This API returns a tModelDetail message containing the final results of the call that reflects the new
registered information for the effected tModel elements. If multiple tModel elements were passed in the
save_tModel request, the order of the response will exactly match the order the elements appeared in
the save.

4.4.15.5 Caveats:

If any error occurs in processing this API call, a dispositionReport element will be returned to the caller
in a SOAP Fault. The following error number information will be relevant:

�� E_authTokenExpired: signifies that the authentication token value passed in the authInfo
argument is no longer valid because the token has expired.

�� E_authTokenRequired: signifies that the authentication token value passed in the authInfo
argument is either missing or is not valid.

�� E_invalidKeyPassed: signifies that the request cannot be satisfied because one or more
uuid_key values specified is not a valid key value. This will occur if a uuid_key value is passed
in a tModel that does not match with any known tModel key. The key value that causes an
error will be indicated clearly in the error text.

�� E_userMismatch: signifies that one or more of the uuid_key values passed refers to data that
is not controlled by the individual who is represented by the authentication token.

�� E_invalidValue: (Retired) signifies that the given keyValue did not correspond to a category
within the taxonomy identified by a tModelKey value within one of the categoryBag elements

UDDI Version 2 Programmers API Specification UDDI.org

Copyright © 2001 by
Accenture, Ariba, Inc., Commerce One, Inc., Compaq Computer Corporation, Equifax, Inc., Fujitsu Limited, Hewlett-Packard
Company, i2 Technologies, Inc., Intel Corporation, International Business Machines Corporation, Microsoft Corporation, Oracle
Corporation, SAP AG, Sun Microsystems, Inc., and Verisign, Inc.
All Rights Reserved.

51

provided.

�� E_valueNotAllowed: Restrictions have been placed by the taxonomy provider on the types of
information that should be included at that location within a specific taxonomy. The validation
routine chosen by the Operator Site has rejected this tModel for at least one specified
category.

�� E_accountLimitExceeded: signifies that user account limits have been exceeded.

UDDI Version 2 Programmers API Specification UDDI.org

Copyright © 2001 by
Accenture, Ariba, Inc., Commerce One, Inc., Compaq Computer Corporation, Equifax, Inc., Fujitsu Limited, Hewlett-Packard
Company, i2 Technologies, Inc., Intel Corporation, International Business Machines Corporation, Microsoft Corporation, Oracle
Corporation, SAP AG, Sun Microsystems, Inc., and Verisign, Inc.
All Rights Reserved.

52

4.4.16 set_publisherAssertions

The set_publisherAssertions API call is used to manage all of the tracked relationship assertions
associated with an individual publisher account. See the appendix on relationship assertions for more
information.

4.4.16.1 Syntax:

 <set_publisherAssertions generic="2.0" xmlns="urn:uddi-org:api_v2" >
 <authInfo/>

<publisherAssertion>
<fromKey/>
<toKey/>
<keyedReference/>
</publisherAssertion> [<publisherAssertion>…]

</set_publisherAssertions>

4.4.16.2 Arguments:

�� authInfo: this required argument is an element that contains an authentication token.
Authentication tokens are obtained using the get_authToken API call.

�� publisherAssertion: one or more relationship assertions. Relationship assertions consist of a
reference to two businessEntity key values as designated by the fromKey and toKey elements,
as well as a required expression of directional relationship within the contained
keyedReference element. See the appendix on managing relationships.

4.4.16.3 Returns:

Upon successful completion, a publisherAssertions message is returned containing all of the
relationship assertions currently attributed to the publisher account that is associated with the authInfo
data passed.

4.4.16.4 Results:

The full set of assertions associated with a publisher is effectively replaced whenever this message is
used. When this message is processed, the publisher assertions that are active prior to this API call for
a given publisher account are examined by the UDDI registry. Any new assertions not present prior to
the call are added to the assertions attributed to the publisher. As a result, new relationships may be
activated (e.g. determined to have a completed status), and existing relationships may be deactivated.

Any relationships attributed to assertions previously present but not present in the data provided in this
call are deactivated. For the sake of determining a unique row within an assertion set, all values within
the publisherAssertion element are used as part of the unique row determination. Any differences in
any of the individual publisherAssertion element contents constitute a new unique assertion for
purposes of detecting new assertions. The direction of the relationship, as indicated by the two
businessKey values in the fromKey and toKey elements, is relevant in determining assertion
uniqueness..

The publisher must not reference any businessKey values within the fromKey or toKey elements if
these businessKey values are not controlled by the publisher. If both of the businessKey values
passed within an assertion are controlled by the publisher, then the assertion is automatically complete
and the relationship described in the assertion will be visible via the find_relatedBusinesses API. If the
publisher only controls one of the two keys passed, then the assertion must be matched exactly by an
assertion made by the publisher who controls the other business referenced.

4.4.16.5 Caveats:

If any error occurs in processing this API call, a dispositionReport element will be returned to the caller

UDDI Version 2 Programmers API Specification UDDI.org

Copyright © 2001 by
Accenture, Ariba, Inc., Commerce One, Inc., Compaq Computer Corporation, Equifax, Inc., Fujitsu Limited, Hewlett-Packard
Company, i2 Technologies, Inc., Intel Corporation, International Business Machines Corporation, Microsoft Corporation, Oracle
Corporation, SAP AG, Sun Microsystems, Inc., and Verisign, Inc.
All Rights Reserved.

53

in a SOAP Fault. The following error number information will be relevant:

�� E_invalidKeyPassed: signifies that one of the uuid_key values passed did not match with any
known businessKey or tModelKey values. The assertion element and the key that caused the
problem will be clearly indicated in the error text.

�� E_authTokenExpired: signifies that the authentication token value passed in the authInfo
argument is no longer valid because the token has expired.

�� E_authTokenRequired: signifies that the authentication token value passed in the authInfo
argument is either missing or is not valid.

�� E_userMismatch: signifies that neither of the businessKey values passed in the embedded
fromKey and toKey elements is controlled by the publisher account associated with the
authentication token. The error text will clearly indicate which assertion caused the error.

UDDI Version 2 Programmers API Specification UDDI.org

Copyright © 2001 by
Accenture, Ariba, Inc., Commerce One, Inc., Compaq Computer Corporation, Equifax, Inc., Fujitsu Limited, Hewlett-Packard
Company, i2 Technologies, Inc., Intel Corporation, International Business Machines Corporation, Microsoft Corporation, Oracle
Corporation, SAP AG, Sun Microsystems, Inc., and Verisign, Inc.
All Rights Reserved.

54

5 Appendix A: Error code reference

5.1 Error Codes
The following list of error codes can be returned in the error code and error number (errCode and errno
attributes) within a dispositionReport response to the API calls defined in this programmer’s
reference19. The descriptions in this section are general and when used with the specific return
information defined in the individual API call descriptions are useful for determining the reason for
failures or other reasons. A list of the valid UDDI errCode (errno) values follows:

�� E_assertionNotFound: (30000) Signifies that a particular publisher assertion (consisting of
two businessKey values, and a keyed reference with three components) cannot be identified in
a save or delete operation.

�� E_authTokenExpired: (10110) Signifies that the authentication token information has timed
out.

�� E_authTokenRequired: (10120) Signifies that an invalid authentication token was passed to
an API call that requires authentication.

�� E_accountLimitExceeded: (10160) Signifies that a save request exceeded the quantity limits
for a given data type. See "Structure Limits" in Appendix D for details.

�� E_busy: (10400) Signifies that the request cannot be processed at the current time.

�� E_categorizationNotAllowed: (20100) RETIRED. Used for UDDI Version 1.0 compatibility.
Replaced by E_valueNotAllowed in 2 and higher. Restrictions have been placed by the on the
types of information that can categorized within a specific taxonomy. The data provided does
not conform to the restrictions placed on the category used. Used with categorization only.

�� E_fatalError: (10500) Signifies that a serious technical error has occurred while processing
the request.

�� E_invalidKeyPassed: (10210) Signifies that the uuid_key value passed did not match with
any known key values. The details on the invalid key will be included in the dispositionReport
element.

�� E_invalidProjection: (20230) Signifies that an attempt was made to save a businessEntity
containing a service projection that does not match the businessService being projected. The
serviceKey of at least one such businessService will be included in the dispositionReport.

�� E_invalidCategory (20000): RETIRED. Used for UDDI Version 1.0 compatibility only.
Replaced by E_invalidValue in version 2 and higher. Signifies that the given keyValue did not
correspond to a category within the taxonomy identified by the tModelKey. Used with
categorization only.

�� E_invalidCompletionStatus: (30100) signifies that one of assertion status values passed is
unrecognized. The completion status that caused the problem will be clearly indicated in the
error text.

�� E_invalidURLPassed: (10220) DO NOT USE. Signifies that an error occurred during
processing of a save function involving accessing data from a remote URL. The details of the
HTTP Get report will be included in the dispositionReport element. Not used in V1 or V2.

19 Certain error codes specified in UDDI version 1 were determined to be problematic and were not used in either UDDI version 1
or version 2. Other error codes used in version 1 have been superceded in UDDI version 2. Error codes listed here that are
marked "DO NOT USE" are not to be used by UDDI operators. Error codes listed here that are marked "RETIRED" are still used
for version 1 compatibility, but in version 2 and higher, these retired codes are superceded.

UDDI Version 2 Programmers API Specification UDDI.org

Copyright © 2001 by
Accenture, Ariba, Inc., Commerce One, Inc., Compaq Computer Corporation, Equifax, Inc., Fujitsu Limited, Hewlett-Packard
Company, i2 Technologies, Inc., Intel Corporation, International Business Machines Corporation, Microsoft Corporation, Oracle
Corporation, SAP AG, Sun Microsystems, Inc., and Verisign, Inc.
All Rights Reserved.

55

�� E_invalidValue: (20200) A value that was passed in a keyValue attribute did not pass
validation. This applies to checked categorizations, identifiers and other validated code lists.
The error text will clearly indicate the key and value combination that failed validation.

�� E_keyRetired: (10310) DO NOT USE. Signifies that a uuid_key value passed has been
removed from the registry. While the key was once valid as an accessor, and is still possibly
valid, the publisher has removed the information referenced by the uuid_key passed. V1
errata – not used. Included here for historical code-set completion.

�� E_languageError: (10060) Signifies that an error was detected while processing elements
that were annotated with xml:lang qualifiers. Presently, only the description and name
elements support xml:lang qualifications.

�� E_messageTooLarge: (30100) Signifies that the message it too large. The upper limit will be
clearly indicated in the error text.

�� E_nameTooLong: (10020) Signifies that the partial name value passed exceeds the
maximum name length designated by the policy of an implementation or Operator Site.

�� E_operatorMismatch: (10130) DO NOT USE. Signifies that an attempt was made to use the
publishing API to change data that is mastered at another Operator Site. This error is only
relevant to the public Operator Sites and does not apply to other compatible registries. V1
defined this in error – caused precedence problems with E_unknownUser. Included here for
historical code set completeness. Retired.

�� E_publisherCancelled: (30220) The target publisher cancelled the custody transfer
operation.

�� E_requestDenied: (30210) A custody transfer request has been refused.

�� E_secretUnknown: (30230) The target publisher was unable to match the shared secret and
the five (5) attempt limit was exhausted. The target operator automatically cancelled the
transfer operation.

�� E_success: (0) Signifies no failure occurred. This return code is used with the
dispositionReport for reporting results from requests with no natural response document.

�� E_tooManyOptions: (10030) Signifies that too many or incompatible arguments were passed.
The error text will clearly indicate the nature of the problem.

�� E_transferAborted: (30200) Signifies that a custody transfer request will not succeed.

�� E_unrecognizedVersion: (10040) Signifies that the value of the generic attribute passed is
unsupported by the Operator Instance being queried.

�� E_unknownUser: (10150) Signifies that the user ID and password pair passed in a
get_authToken message is not known to the Operator Site or is not valid.

�� E_unsupported: (10050) Signifies that the implementer does not support a feature or API.

�� E_userMismatch: (10140) Signifies that an attempt was made to use the publishing API to
change data that is controlled by another party.

�� E_valueNotAllowed: (20210) Signifies that a value did not pass validation because of
contextual issues. The value may be valid in some contexts, but not in the context used. The
error text may contain information about the contextual problem.

Non-error conditions are not reported by way of SOAP Faults but are instead reported using the
dispositionReport element.

5.1.1 Success reporting with the dispositionReport element:

The general form of a success report is:

UDDI Version 2 Programmers API Specification UDDI.org

Copyright © 2001 by
Accenture, Ariba, Inc., Commerce One, Inc., Compaq Computer Corporation, Equifax, Inc., Fujitsu Limited, Hewlett-Packard
Company, i2 Technologies, Inc., Intel Corporation, International Business Machines Corporation, Microsoft Corporation, Oracle
Corporation, SAP AG, Sun Microsystems, Inc., and Verisign, Inc.
All Rights Reserved.

56

<?xml version="1.0" encoding="UTF-8" ?>
<Envelope xmlns="http://schemas.xmlsoaporg.org/soap/envelope/">
<Body>

<dispositionReport generic="2.0" operator="OperatorURI"
xmlns="urn:uddi-org:api_v2" >

 <result errno="0" >
 <errInfo errCode=“E_success" />
 </result>

</dispositionReport>
</Body>
</Envelope>

In the case of success messages, the dispositionReport element is used as a normal SOAP message
with the dispositionReport returned directly within the SOAP Body element.

5.1.2 Error reporting with the dispositionReport element:

All application errors are communicated via the use of the SOAP FAULT element. The general form of
an error report is:

<?xml version="1.0" encoding="UTF-8" ?>
<Envelope xmlns="http://schemas.xmlsoaporg.org/soap/envelope/">
<Body>
 <Fault>
 <faultcode>Client</faultcode>

<faultstring>Client Error</faultstring>
<detail>

<dispositionReport generic="2.0" operator="OperatorURI"
 xmlns="urn:uddi-org:api_v2" >

 <result errno="10050" >
 <errInfo errCode=“E_fatalError">
 The findQualifier value passed is unrecognized: XYZ
 </errInfo>
 </result>

</dispositionReport>
 </detail>
 </Fault>
</Body>
</Envelope>

Multiple result elements may be present within the dispositionReport element, and can be used to
provide very detailed error reports for multiple error conditions. The number of result elements returned
within a disposition report is implementation specific. In general it is permissible to return an error
response as soon as the first error in a request is detected. References within the API reference
sections that describe error text content rules pertain to the content of the errInfo element.

UDDI Version 2 Programmers API Specification UDDI.org

Copyright © 2001 by
Accenture, Ariba, Inc., Commerce One, Inc., Compaq Computer Corporation, Equifax, Inc., Fujitsu Limited, Hewlett-Packard
Company, i2 Technologies, Inc., Intel Corporation, International Business Machines Corporation, Microsoft Corporation, Oracle
Corporation, SAP AG, Sun Microsystems, Inc., and Verisign, Inc.
All Rights Reserved.

57

6 Appendix B: SOAP usage details

This appendix covers the SOAP specific conventions and requirements for Operator Sites.

6.1 Support for SOAPAction
SOAP 1.1 requires the presence of the HTTP header field named SOAPAction when an HTTP binding
is specified. UDDI requires the presence of this HTTP Header field to be SOAP 1.1 compliant.
Different SOAP toolkits treat this HTTP header field differently. UDDI version 1.0 required that this
value be an empty string bounded by quotes. For maximum tool compatibility, UDDI version 2.0 allows
either the 1.0 treatment (for compatibility) or for this field to contain the name of the API message
contained within the SOAP Body element found within the request.

6.1.1 Example

Both of the following message styles are permitted in UDDI version 2.0.
POST /someVerbHere HTTP/1.1
Host: www.someoperator.org
Content-Type: text/xml; charset="utf-8"
Content-Length: nnnn
SOAPAction: ""

<?xml version="1.0" encoding="UTF-8" ?>
<Envelope xmlns="http://schemas.xmlsoap.org/soap/envelope/">
 <Body>
 <get_bindingDetail generic="2.0"
 xmlns="urn:uddi-org:api_v2">
…

and
POST /someVerbHere HTTP/1.1
Host: www.someoperator.org
Content-Type: text/xml; charset="utf-8"
Content-Length: nnnn
SOAPAction: "get_bindingDetail"

<?xml version="1.0" encoding="UTF-8" ?>
<Envelope xmlns="http://schemas.xmlsoap.org/soap/envelope/">
 <Body>
 <get_bindingDetail generic="2.0"
 xmlns="urn:uddi-org:api_v2">

…

6.2 Support for SOAP Actor
In version 1 and version 2 of the UDDI specification, the SOAP Actor feature is not supported.
Operator Sites will reject any request that arrives with a SOAP Actor attribute in the SOAP Header
element with an error code of E_unsupported. The errInfo text will clearly indicate the problem.

6.3 Support for SOAP encoding
In UDDI version 1.0 and version 2.0, the SOAP encoding feature (e.g. SOAP 1.1. section 5) is not

http://schemas.xmlsoap.org/soap/envelope/
http://schemas.xmlsoap.org/soap/envelope/

UDDI Version 2 Programmers API Specification UDDI.org

Copyright © 2001 by
Accenture, Ariba, Inc., Commerce One, Inc., Compaq Computer Corporation, Equifax, Inc., Fujitsu Limited, Hewlett-Packard
Company, i2 Technologies, Inc., Intel Corporation, International Business Machines Corporation, Microsoft Corporation, Oracle
Corporation, SAP AG, Sun Microsystems, Inc., and Verisign, Inc.
All Rights Reserved.

58

supported. Operator Sites will reject any request that arrives with a SOAP encoding attribute with an
error code of E_unsupported. The errInfo text will clearly indicate the problem.

6.4 Support for SOAP Fault
UDDI registries signal a generic SOAP Fault20 when unknown API references are invoked, validation
failures occur, etc. UDDI specific errors will be handled via a SOAP Fault element containing a UDDI
dispositionReport element (see appendix A). The following SOAP fault codes are used:

�� VersionMismatch: An invalid namespace reference for the SOAP envelope element was
passed. The valid namespace value is “http://www.xmlsoap.org/soap/envelope/".

�� MustUnderstand: A SOAP header element was passed to an Operator Site. Operator Sites
do not support any SOAP headers, and will return this error whenever a SOAP request is
received that contains any Headers element.

�� Client: A message was incorrectly formed or did not contain enough information to perform
more exhaustive error reporting.

6.5 Support for SOAP Headers
In UDDI version 1.0 and 2.0, SOAP Headers are not supported. Operator Sites are permitted to
ignore most extension headers received. SOAP headers that have the must_understand attribute
set to true will be rejected with a SOAP fault - MustUnderstand.

6.6 XML prefix conventions – default namespace support
UDDI Operator Sites are required to support the use of the default namespaces (i.e. no XML prefix) in
SOAP request and response documents as shown in the following HTTP example:

POST /someVerbHere HTTP/1.1
Host: www.someoperator.com
Content-Type: text/xml; charset="utf-8"
Content-Length: nnnn
SOAPAction: ""

<?xml version="1.0" encoding="UTF-8" ?>
<Envelope xmlns="http://schemas.xmlsoap.org/soap/envelope/">
 <Body>
 <get_bindingDetail generic="2.0"
 xmlns="urn:uddi-org:api_v2">

6.7 Support for Unicode: SOAP listener behavior
The decision to use the UTF-8 encoding in all requests simplified the number of encoding variations
that need to be handled within the XML interchanges used in this API specification. This section
describes the behavior of the SOAP listeners that run at Operator Sites in regards to the support of
Unicode in XML.

Unicode UTF-8 allows data to be transmitted with an optional three-byte signature, also known as Byte
Order Mark (BOM), preceding the XML data. This signature does not contain information that is useful

20 See section 4.4.1, "SOAP Fault Codes," in SOAP 1.1 specification for descriptive information.

http://schemas.xmlsoap.org/soap/envelope/

UDDI Version 2 Programmers API Specification UDDI.org

Copyright © 2001 by
Accenture, Ariba, Inc., Commerce One, Inc., Compaq Computer Corporation, Equifax, Inc., Fujitsu Limited, Hewlett-Packard
Company, i2 Technologies, Inc., Intel Corporation, International Business Machines Corporation, Microsoft Corporation, Oracle
Corporation, SAP AG, Sun Microsystems, Inc., and Verisign, Inc.
All Rights Reserved.

59

for decoding the contents; but, in the case of UTF-8, tells the receiving program that the rest of the text
is in UTF-8. Its presence makes no difference to the endianness of the byte stream as UTF-8 always
has the same byte order. The BOM is not part of the textual content, and it is safe for Operator Sites to
remove the BOM prior to processing messages received.

Operator Sites must be prepared to accept messages that contain Byte Order Marks, but the BOM is
not required to process SOAP messages successfully.

Operator Sites will not return a BOM with any of the response messages defined in this specification.
All such responses will be encoded in UTF-8.

All UDDI Operator Sites must support all of the Unicode characters, including all compatibility
characters. This is to support transmission and processing of legacy data in certain languages.
Operator Sites are not required to understand the nature of compatibility characters for substitutability
or equivalence purposes, but must preserve the data as sent by a publisher.

UDDI Version 2 Programmers API Specification UDDI.org

Copyright © 2001 by
Accenture, Ariba, Inc., Commerce One, Inc., Compaq Computer Corporation, Equifax, Inc., Fujitsu Limited, Hewlett-Packard
Company, i2 Technologies, Inc., Intel Corporation, International Business Machines Corporation, Microsoft Corporation, Oracle
Corporation, SAP AG, Sun Microsystems, Inc., and Verisign, Inc.
All Rights Reserved.

60

7 Appendix C: XML Usage Details

This appendix explains the specifics of XML conventions employed across all UDDI Operator Sites.
Implementations that desire to remain compliant with the behaviors of Operator Sites should follow
these same conventions.

7.1 Support for multiple languages
Many of the messages defined in this specification contain elements named name and description.
Multiple descriptions are allowed in order to accommodate descriptions in multiple languages. These
description elements are also permitted to be sent without an xml:lang attribute qualifier. This same
treatment is allowed in UDDI version 2.0 on the name elements found in the businessEntity and
businessService entities as well.

Only one description or name element is allowed to be passed to a save_xx API call without an
xml:lang attribute qualifier. If multiple names or descriptions are passed, the untagged value must be
the first occurrence. Elements passed in this way will be assigned the default language code of the
registering party. This default language code is established at the time that publishing credentials are
established with an individual Operator Site. If no default language is provisioned at the time a
publisher signs up, the operator can adopt an appropriate default language code.

If more than one name or description element is sent in a document being stored, only the first such
element in a particular structure may be sent without a xml:lang attribute qualifier. All subsequent such
elements must contain an xml:lang qualifier, and this qualifier must be unique across the related
elements and valid according to the XML standard.

7.1.1 Valid Language Codes

 The XML specification defines the valid values for the xml:lang markup. At the time of this specification,
XML references the IETF standard known as RFC 1766. The value of the xml:lang attribute can consist
of 1 or more parts: a primary language tag and a (possibly empty) series of sub-tags for country or
dialect identification. Further information can be found at:

http://www.ietf.org/rfc/rfc1766.txt

Only one description or name element is allowed for each language code used at any container level.

7.1.2 Default Language Codes

A default language code will be determined for a publisher at the time that a party establishes
permissions to publish at a given Operator Site or implementation. This default language code will be
applied to any description values that are provided with no language code.

All descriptions and names returned in messages returned via the SOAP interface will contain xml:lang
markup where appropriate. This does not apply to the single name found on a registered tModel.

7.2 XML Encoding requirements
All messages sent to and received from the Operator Site shall be encoded as UTF-8, and all such
messages shall have the 'encoding="UTF-8"' markup in the XML-DECL that appears on the initial line.
Other encoding name variants, such as UTF8, UTF_8, etc. shall not be used. Therefore, to be explicit,
the initial line shall be:
 <?xml version="1.0" encoding="UTF-8" ?>

This data is case sensitive and should be expressed exactly as shown here.

http://www.ietf.org/rfc/rfc1766.txt

UDDI Version 2 Programmers API Specification UDDI.org

Copyright © 2001 by
Accenture, Ariba, Inc., Commerce One, Inc., Compaq Computer Corporation, Equifax, Inc., Fujitsu Limited, Hewlett-Packard
Company, i2 Technologies, Inc., Intel Corporation, International Business Machines Corporation, Microsoft Corporation, Oracle
Corporation, SAP AG, Sun Microsystems, Inc., and Verisign, Inc.
All Rights Reserved.

61

8 Appendix D: Security model in the publishers API

The Publishers API describes the messages that are used to control the content contained within an
Operator Site, and can be used by compliant non-operator implementations that adhere to the
behaviors described in this programmers reference specification.

8.1 Authentication of publisher API calls
All UDDI publisher API messages are secured via SSL 3.0. All calls made to Operator Sites that use
the messages defined in the publishers API will be transported using SSL encryption. Operator Sites
will each provide a service description that exposes a bindingTemplate that makes use of HTTPS and
SSL to secure the transmission of data.

8.1.1 Authentication

Each of the calls in the publishers API that change information at a given Operator Site requires the use
of an opaque authentication token. These tokens are generated by or provided by each Operator Site
independently, and are passed from the caller to the Operator Site in the element named authInfo.

These tokens are meaningful only to the Operator Site that provided them and are to be used
according to the published policies of a given Operator Site.

Each party who has been granted publication access to a given Operator Site will be provided a token
by the site. Obtaining this token is Operator Site specific.

8.1.2 Establishing credentials

Before any party can publish data within an Operator Site, credentials and permission to publish must
be established with the individual operator. Establishing publishing credentials involves providing some
verifiable identification information, contact information and establishing security credentials with the
individual Operator Site. The specifics of these establishing credentials is Operator Site dependant,
and all valid Operator Sites will provide a Web-based user interface via which to establish an identity
and secure permissions to publish data.

8.1.3 Authentication tokens are not portable

Every registry implementation that adheres to these specifications will establish their own mechanism
for token generation and authentication. The only requirement placed on token generation for use with
the publishers API is that the tokens themselves must be valid string text that can be placed within the
authInfo XML element. Given that binary to string translations are well understood and in common use,
this requirement will not introduce hardships.

Authentication tokens are not required to be valid except at the Operator Site or implementation from
which they originated. These tokens need only have meaning at a single Operator Site or
implementation, and will not be expected to work across sites.

8.1.4 Generating Authentication Tokens

Many implementations are expected to require a login step. The get_authToken message is provided
to accommodate those implementations that desire a login step. Security schemes that are based on
the convention of exchanging User ID and password credentials fall into this category. For
implementations that desire this kind of security, the get_authToken API is provided as an optional
means for generating a temporary authentication token.

Certificate based authentication and similar security mechanisms do not require this additional step of
“logging in” and can directly pass compatible authentication token information (such as a certificate
value) within the authInfo element provided on each of the publishers API messages. If certificate

UDDI Version 2 Programmers API Specification UDDI.org

Copyright © 2001 by
Accenture, Ariba, Inc., Commerce One, Inc., Compaq Computer Corporation, Equifax, Inc., Fujitsu Limited, Hewlett-Packard
Company, i2 Technologies, Inc., Intel Corporation, International Business Machines Corporation, Microsoft Corporation, Oracle
Corporation, SAP AG, Sun Microsystems, Inc., and Verisign, Inc.
All Rights Reserved.

62

based authentication or similar security is employed by the choice of a given Operator Site, the use of
the get_authToken and discard_authToken messages is optional.

8.2 Per-account space limits
Operator Sites may impose limits on the amount of data that can be published by a given user. The
initial limits for a new user are:

�� businessEntity: 1 per user account

�� businessService: 4 per businessEntity

�� bindingTemplate: 2 per businessService

�� tModel: 100 per user account

�� publisherAssertion: 10 per user account

�� Maximum message size - 2MB (megabytes)

Individual user accounts can negotiate per-account limits with the Operator Site. UDDI version 2.0
addressed the need to treat tModel data differently. To establish publisher limits that are higher than
the amounts shown here, publishers should work directly with a UDDI operator site using the contact
information found on each operator site.

UDDI Version 2 Programmers API Specification UDDI.org

Copyright © 2001 by
Accenture, Ariba, Inc., Commerce One, Inc., Compaq Computer Corporation, Equifax, Inc., Fujitsu Limited, Hewlett-Packard
Company, i2 Technologies, Inc., Intel Corporation, International Business Machines Corporation, Microsoft Corporation, Oracle
Corporation, SAP AG, Sun Microsystems, Inc., and Verisign, Inc.
All Rights Reserved.

63

9 Appendix E: Search Qualifiers

The Inquiry API functions find_binding, find_business, find_service, and find_tModel each will accept
an optional element named findQualifiers. This element argument is provided as a means to allow the
caller to override default search behaviors.

UDDI Version 2 introduces six new findQualifier values. These are:

�� OrLikeKeys

�� OrAllKeys

�� CombineCategoryBags

�� ServiceSubset

�� AndAllKeys

�� Soundex.

9.1 General form of search qualifiers
Search qualifiers are expressed by passing a findQualifiers element where appropriate. The general
form of the findQualifiers element is:

<findQualifiers>
 <findQualifier>searchQualifierValue</findQualifier>
 [<findQualifier>searchQualifierValue</findQualifier> …]
</findQualifiers>

9.1.1 Search Qualifiers enumerated

The value passed in each findQualifier element represents the behavior change desired by the caller.
These values must come from the following list of qualifiers:

�� exactNameMatch: signifies that lexical-order – i.e., leftmost in left-to-right languages – name
match behavior should be overridden. When this behavior is specified, only entries that
exactly match the entry passed in the name argument will be returned.

�� caseSensitiveMatch: signifies that the default case-insensitive behavior of a name match
should be overridden. When this behavior is specified, case is relevant in the search results
and only entries that match the case of the value passed in the name argument will be
returned.

�� sortByNameAsc: signifies that the result returned by a find_xx or get_xx inquiry call should
be sorted on the name field in ascending alphabetic sort order. This sort is applied prior to any
truncation of result sets. Only applicable on queries that return a name element in the topmost
detail level of the result set. If no conflicting sort qualifier is specified, this is the default sort
order for inquiries that return name values at this topmost detail level.

�� sortByNameDesc: signifies that the result returned by a find_xx or get_xx inquiry call should
be sorted on the name field in descending alphabetic sort order. This sort is applied prior to
any truncation of result sets. Only applicable on queries that return a name element in the
topmost detail level of the result set. This is the reverse of the default sort order for this kind of
result.

�� sortByDateAsc: signifies that the result returned by a find_xx or get_xx inquiry call should be
sorted based on the date last updated in ascending chronologic sort order (earliest returns
first). If no conflicting sort qualifier is specified, this is the default sort order for all result sets.

UDDI Version 2 Programmers API Specification UDDI.org

Copyright © 2001 by
Accenture, Ariba, Inc., Commerce One, Inc., Compaq Computer Corporation, Equifax, Inc., Fujitsu Limited, Hewlett-Packard
Company, i2 Technologies, Inc., Intel Corporation, International Business Machines Corporation, Microsoft Corporation, Oracle
Corporation, SAP AG, Sun Microsystems, Inc., and Verisign, Inc.
All Rights Reserved.

64

Sort qualifiers involving date are secondary in precedence to the sortByName qualifiers. This
causes sortByName elements to be sorted within name by date, oldest to newest.

�� sortByDateDesc: signifies that the result returned by a find_xx or get_xx inquiry call should be
sorted based on the date last updated in descending chronological sort order (most recent
change returns first). Sort qualifiers involving date are secondary in precedence to the
sortByName qualifiers. This causes sortByName elements to be sorted within name by date,
newest to oldest.

�� orLikeKeys: when a bag container (e.g. categoryBag or identifierBag) contains multiple
keyedReference elements, any keyedReference filters that come from the same namespace
(e.g. have the same tModelKey value) are OR’d together rather than AND’d. This allows one
to say “any of these four values from this namespace, and any of these two values from this
namespace”.

�� orAllKeys: this reverses the default behaviors that involve a logical AND of all keys. This
qualifier negates any AND treatment as well as the effect of orLikeKeys.

�� combineCategoryBags: this is only used in the find_business message. This qualifier makes
the categoryBag entries for the full businessEntity element behave as though all categoryBag
elements found at the businessEntity level and in all contained or referenced businessService
elements were combined. Searching for a category will yield a positive match on a registered
business if any of the categoryBag elements contained within the full businessEntity element
(including the categoryBag elements within contained or referenced businessService
elements) contains the filter criteria.

�� serviceSubset: this is used only in the find_business message. This qualifier is used in only
in conjunction with a passed categoryBag argument and causes the component of the search
that involves categorization to use only the categoryBag elements from contained or
referenced businessService elements within the registered data, and ignores any entries found
in the categoryBag direct descendent element of registered businessEntity elements. The
resulting businessList message will return those businesses that matched based on this
modified behavior, in conjunction with any other search arguments provided. Additionally, the
contained serviceInfos elements will only reflect summary data (in a serviceInfo element) for
those services (contained or referenced) that matched on one of the supplied categoryBag
arguments.

�� andAllKeys: this is the default behavior, but specified here for completeness.

�� soundex: this is used to do a sound-alike search on the name values found within the
businessEntity and businessService entities managed by UDDI. Only used with the
find_business, find_service and find_tModel inquiry API messages. When specified, the UDDI
registry will perform a soundex search on the registered names of the entities being searched,
and return matches where the soundex value any of the name parameter(s) passed is equal to
the soundex value of the registered names for the searched entities.

At this time, these are the only qualifiers defined. Operator Sites may define more search qualifier
values than these – but all Operator Sites and fully compatible software must support these qualifiers
and behaviors.

9.1.2 Search Qualifier Precedence

Precedence of search qualifiers, when combined is as follows:

1.The following find-qualifiers occur at the same level of precedence. They are listed as two bullets for
clarity:

�� exactNameMatch, caseSensitiveMatch: These can be combined or used separately.

�� orAllKeys, orLikeKeys, andAllKeys: These are mutually exclusive.

2. sortByNameAsc, sortByNameDesc: These are mutually exclusive.

UDDI Version 2 Programmers API Specification UDDI.org

Copyright © 2001 by
Accenture, Ariba, Inc., Commerce One, Inc., Compaq Computer Corporation, Equifax, Inc., Fujitsu Limited, Hewlett-Packard
Company, i2 Technologies, Inc., Intel Corporation, International Business Machines Corporation, Microsoft Corporation, Oracle
Corporation, SAP AG, Sun Microsystems, Inc., and Verisign, Inc.
All Rights Reserved.

65

3. sortByDateAsc, sortByDateDesc: These are mutually exclusive.

4. serviceSubset, combineCategoryBags: these conditions are orthagonal to the existence of the
other search qualifiers.

The precedence order is used to determine the proper ordering of results when multiple search
qualifiers are combined in a given find_xx message.

9.1.3 Sorting Details

Comparison and sorting is performed based on binary sort orders. This applies to sortByNameAsc,
sortByNameDesc, exactNameMatch. By default, case insensitive sorting is performed unless
caseSensitiveMatch is specified as a find qualifier value.

UDDI Version 2 Programmers API Specification UDDI.org

Copyright © 2001 by
Accenture, Ariba, Inc., Commerce One, Inc., Compaq Computer Corporation, Equifax, Inc., Fujitsu Limited, Hewlett-Packard
Company, i2 Technologies, Inc., Intel Corporation, International Business Machines Corporation, Microsoft Corporation, Oracle
Corporation, SAP AG, Sun Microsystems, Inc., and Verisign, Inc.
All Rights Reserved.

66

10 Appendix F: Response message reference

Here we list each of the response messages. These are technically defined in the UDDI API schema
as well as the UDDI data structure reference.

�� assertionStatusReport: This element is returned by the get_assertionStatusReport and is
used by a publisher to determine the status of assertions made by either the publisher or by
other parties. Assertions are used to manage the visibility of relationship information related to
specific pairs of businessEntity data.

�� authToken: This element is returned by the optional get_authToken message to return
authentication information. The value returned is used in subsequent calls that require an
authInfo value.

�� bindingDetail: This element is the technical information required to make a method call to an
advertised web service. It is returned in response to the get_bindingDetail message.

�� businessDetail: This element contains full details for zero or more businessEntity elements. It
is returned in response to a get_businessDetail message, and optionally in response to the
save_business message.

�� businessDetailExt: This element allows compatible registries to define and share extended
information about a businessEntity. Operator Sites support this message but return no
additional data. This element contains zero or more businessEntityExt elements. It is returned
in response to a get_businessDetailExt message.

�� businessList: This element contains abbreviated information about registered businessEntity
information. This message contains zero or more businessInfo elements. It is returned in
response to a find_business message.

�� dispositionReport: This element is used to report the outcome of message processing and to
report errors discovered during processing. This message contains one or more result
elements. A special case – success – contains only one result element with the special errno
attribute value of E_success (0).

�� publisherAssertions: This element is returned in response to a get_publisherAssertions
message. It contains all of the assertions (that are controlled by an individual publisher. This
full set is called the publisher's assertion collection. Assertions are used to manage the visibility
of relationship information related to specific pairs of businessEntity data

�� registeredInfo: This element contains abbreviated information about all registered
businessEntity and tModel information that are controlled by the party specified in the request.
This message contains one or more businessInfo elements and zero or more tModelInfo
elements. It is returned in response to a get_registeredInfo message.

�� RelatedBusinessesList: This element reports publicly visible business relationships. It is
returned in response to a find_relatedBusinesses message. Business relationships are visible
between two businessEntity registrations when there are complete publisher assertions that
verify that the publishers who control each of the businessEntity elements involved in a
relationship agree that both businesses are involved.

�� serviceDetail: This element contains full details for zero or more businessService elements. It
is returned in response to a get_serviceDetail message, and optionally in response to the
save_binding and save_service messages.

�� serviceList: This element contains abbreviated information about registered businessService
information. This message contains zero or more serviceInfo elements. It is returned in
response to a find_service message.

�� tModelDetail: This element contains full details for zero or more tModel elements. It is
returned in response to a get_tModelDetail message, and optionally in response to the

UDDI Version 2 Programmers API Specification UDDI.org

Copyright © 2001 by
Accenture, Ariba, Inc., Commerce One, Inc., Compaq Computer Corporation, Equifax, Inc., Fujitsu Limited, Hewlett-Packard
Company, i2 Technologies, Inc., Intel Corporation, International Business Machines Corporation, Microsoft Corporation, Oracle
Corporation, SAP AG, Sun Microsystems, Inc., and Verisign, Inc.
All Rights Reserved.

67

save_tModel message.

�� tModelList: This element contains abbreviated information about registered tModel
information. This message contains zero or more tModelInfo elements. It is returned in
response to a find_tModel message.

UDDI Version 2 Programmers API Specification UDDI.org

Copyright © 2001 by
Accenture, Ariba, Inc., Commerce One, Inc., Compaq Computer Corporation, Equifax, Inc., Fujitsu Limited, Hewlett-Packard
Company, i2 Technologies, Inc., Intel Corporation, International Business Machines Corporation, Microsoft Corporation, Oracle
Corporation, SAP AG, Sun Microsystems, Inc., and Verisign, Inc.
All Rights Reserved.

68

11 Appendix G: redirection via hostingRedirector element

One of the main benefits of using a public Operator Site instance of a UDDI registry is to provide a
single point of reference for determining the correct location to send a business service request to a
remote web service. In general, the controller of a particular instance of bindingTemplate element can
be assured that by keeping the registered copy pointing to the proper server or invocation address,
special conditions such as disaster recovery to a secondary site can be handled with a minimum of
service disruption for customers or partners. The same holds true for those who choose to use a
registry that is compatible with the API, but to a lesser degree.

In many cases, the API specified in the get_bindingDetail message is straightforward. Once a business
or application knows of a service that needs to be invoked, the UDDI bindingTemplate information that
represents this service can be cached until needed. In the event that the cached information fails at the
time the partner web service is actually invoked (e.g. the accessPoint information in the cached
bindingTemplate element is used to invoke a remote partner service), the application can use the
bindingKey in the cached information to get a fresh copy of the bindingTemplate information. This
cached approach serves to prevent needless round trips to the registry.

11.1 Special situations requiring the hostingRedirector
Two special needs arise that cannot be directly supported by the accessPoint information in a
bindingTemplate. These are:

�� Third Party Hosting of Technical Web Services: A business chooses to expose a service
that is actually hosted at a remote or third party site. Application Service Providers (ASP) and
Network Market Makers are common examples of this situation. In this situation, it is the
actual third party that needs to control the actual value of the binding information.

�� Use specific access control to binding location: In other situations, such as situation
specific redirection based on the identity of the caller, or even time-of-day routing, it is
necessary to provide the actual contact point information for the remote service in a more
dynamic way than the cached accessPoint data would support.

For these cases, the bindingTemplate elements contain an alternative data element called
hostingRedirector. The presence of a hostingRedirector element specifies that the caller that wants to
invoke a web service represented by a specific bindingTemplate must take an additional step to get the
accessPoint information (e.g. the invocation address). There are two possible actions required to
resolve a hostingRedirector reference.

11.2 Using the hostingRedirector data
When a bindingTemplate that represents a service entry (called the service binding) contains a
hostingRedirector element, the programmer uses this information to locate the actual bindingTemplate
that contains the accessPoint for the "hosted" service. The content of the hostingRedirector element is
a bindingKey reference that refers to another bindingTemplate. This bindingKey is resolvable in the
same UDDI registry where the hostingRedirector is found via the get_bindingDetail message.

After accessing this second binding (called the indirect binding), the caller looks at the fingerprint21 of
the indirect binding. If the fingerprint in the indirect binding is the same as the fingerprint found in the
service binding, then the accessPoint on the indirect binding should be used to contact the web service.
This use of hostingRedirector is called simple indirection. If however, the fingerprint of the indirect

21 The term fingerprint refers to the set of tModelKey values found in the tModelInstanceInfos collection of the bindingTemplate.
Fingerprints of two bindings are equivalent when both of the sets of tModelKey values are the same.

UDDI Version 2 Programmers API Specification UDDI.org

Copyright © 2001 by
Accenture, Ariba, Inc., Commerce One, Inc., Compaq Computer Corporation, Equifax, Inc., Fujitsu Limited, Hewlett-Packard
Company, i2 Technologies, Inc., Intel Corporation, International Business Machines Corporation, Microsoft Corporation, Oracle
Corporation, SAP AG, Sun Microsystems, Inc., and Verisign, Inc.
All Rights Reserved.

69

binding signifies that the indirect binding implements a hostingRedirector Service22, then a second call
to get_bindingDetail, sent to the accessPoint address found in the indirect binding will be required to get
the true service binding. This use of hostingRedirector is called redirection.

11.2.1 Stepwise overview

In the simple case of simple indirection, the hosted bindingTemplate is simply referenced by the original
service binding. For this case, there is no complex logic.

For the redirection case, the following scenario walkthrough describes the steps.

1. A business registers a bindingTemplate A for a remotely hosted or redirected business service
S. This bindingTemplate contains a bindingKey value Q that references a second
bindingTemplate B. The bindingTemplate B is typically controlled by the organization that hosts
the redirection service. This bindingTemplate B contains an accessPoint element that points to
the actual hostingRedirector service R.

2. A program that wants to call the service S that is registered in step one gets the binding
information for the advertised service. This bindingTemplate information contains a
hostingRedirector element with the bindingKey K for the bindingTemplate B.

3. The programmer takes the bindingKey K for and issues a get_bindingDetail message against
the registry that the original bindingTemplate A came from. This returns the data for
bindingTemplate B. The programmer now has the address of the service that implements the
redirection. This information is in the accessPoint element found in bindingTemplate B. This
service, to be compliant, knows how to respond to a get_bindingDetail message.

4. Using the original binding key Q and issues a get_bindingDetail request to the redirector service
R. This service is responsible for returning the actual binding information for the redirected
business service S or returning an error. The programmer has the choice of caching this
bindingTemplate if desired.

Using this algorithm, an organization that hosts services for other businesses to use can control the
information that is used to actually access the hosted service. This not only provides this hosting
organization with the ability to manage situations such as disaster recovery locations, but also lets them
specify the actual URL that is used to make a call to the actual business service. This URL can be
keyed specifically to the caller, or can be a general location for the hosted or redirected service.

In any case, the original caller is able to find the technical web service (bindingTemplate) advertised
within the actual business partner’s data without having to know that any redirection occurred.

22 A hosting redirector service is an interface defined by UDDI. This is a service that implements only the UDDI get_bindingDetail
message. When successfully invoked, using the original service binding key, the actual service binding containing the service
accessPoint address will be returned.

UDDI Version 2 Programmers API Specification UDDI.org

Copyright © 2001 by
Accenture, Ariba, Inc., Commerce One, Inc., Compaq Computer Corporation, Equifax, Inc., Fujitsu Limited, Hewlett-Packard
Company, i2 Technologies, Inc., Intel Corporation, International Business Machines Corporation, Microsoft Corporation, Oracle
Corporation, SAP AG, Sun Microsystems, Inc., and Verisign, Inc.
All Rights Reserved.

70

12 Appendix H: Checking external value-sets

Whenever save_business, save_service or save_tModel are called, the contents of any included
categoryBag or identifierBag element may be checked to see that it contains valid values. Checking is
performed for taxonomies and identifier schemes that are classified as "checked". UDDI version 2
provides the ability for third parties to register new taxonomies and identifier schemes, and then control
the validation process used by UDDI to perform such checks.

Third parties that want to provision such a capability must implement a web service in the same
manner that UDDI does (e.g. using SOAP 1.1 over HTTP for message passing) that exposes a single
method named validate_values. The interface for validate_values is described here.

12.1 validate_values
A UDDI operator sends the validate_values message to the appropriate external service, of which there
is exactly one, whenever a publisher saves data that uses a categorization value or identifier whose
use is regulated by the external party who controls that service. For purposes of discussion, these
identifiers and classifications are called checked value sets. The normal use is to verify that specific
categories or identifiers (checking the keyValue attribute values supplied) exist within the given
taxonomy or identifier system. For certain categorizations and identifiers, the party providing the
validation service may further restrict the use of a value to certain parties based on the identifiers
passed in the message or any other type of contextual check that is possible using the passed data.

12.1.1.1 Syntax:

<validate_values generic="2.0" xmlns=" urn:uddi-org:api_v2">
 <businessEntity/>... | <businessService/>... | <tModel/>...
<validate_values>

12.1.1.2 Arguments:

The Operator that is calling validate_values will pass a businessEntity, a businessService, or a tModel
element as the sole argument to this call-out. This is the same data that is being passed within a
save_business, save_service, or save_tModel API call. Multiple elements of the same type may be
passed together.

12.1.1.3 Behavior

The called service will perform any validation steps desired by the validator. This can involve merely
checking that the keyValue values supplied are good for the given value set (as signified by the
embedded keyedReference tModelKey values). Other types of validation as desired can be performed,
including context sensitive checks that utilize the businessKey or other values passed in the call-out.

If no error is found, the proper response is a dispositionReport message as specified in Appendix A.
The errorCode value returned should be "E_success" and the errno value in the result should be "0".

12.1.1.4 Caveats:

If any error is found, or the called service needs to signal that the information being saved is not valid
based on the validation algorithm chosen by the external service provider, then the service should raise
a SOAP Fault as specified in Appendix A.

When an error is signaled in this fashion, UDDI will reject the pending change and return to the original
caller the same SOAP fault data returned by the validation Web Service. The error codes should
indicate one of the following reasons, and the error text should clearly indicate the keyedReference
data that is being rejected and the reason it is being rejected.

UDDI Version 2 Programmers API Specification UDDI.org

Copyright © 2001 by
Accenture, Ariba, Inc., Commerce One, Inc., Compaq Computer Corporation, Equifax, Inc., Fujitsu Limited, Hewlett-Packard
Company, i2 Technologies, Inc., Intel Corporation, International Business Machines Corporation, Microsoft Corporation, Oracle
Corporation, SAP AG, Sun Microsystems, Inc., and Verisign, Inc.
All Rights Reserved.

71

�� E_invalidValue: One or more of the keyValue values supplied failed validation. Only the first
error need be reported.

�� E_valueNotAllowed: The values may be valid, but are not allowed contextually.

UDDI Version 2 Programmers API Specification UDDI.org

Copyright © 2001 by
Accenture, Ariba, Inc., Commerce One, Inc., Compaq Computer Corporation, Equifax, Inc., Fujitsu Limited, Hewlett-Packard
Company, i2 Technologies, Inc., Intel Corporation, International Business Machines Corporation, Microsoft Corporation, Oracle
Corporation, SAP AG, Sun Microsystems, Inc., and Verisign, Inc.
All Rights Reserved.

72

13 Appendix I: Utility tModels and Conventions

In order to facilitate consistency in Service Description (tModel) registration, and provide a framework
for their basic organization within the UDDI registry, a set of conventions was established in UDDI
version 1.0. Version 2.0 continues this by defining further conventions. This section describes these
canonical conventions, as well as a set of canonical tModels that facilitate registration of common
information and the services provided by the UDDI registry itself.

13.1 Canonical tModel entities
13.1.1 UDDI Registry tModels

The UDDI registry defines a number of tModels to define its core services. Each of the core tModels
are listed in this section.

13.1.1.1 uddi-org:inquiry

tModel Description: UDDI Inquiry API - Core Specification
tModel UUID: uuid:4CD7E4BC-648B-426D-9936-443EAAC8AE23
Categorization: specification, xmlSpec, soapSpec

This tModel defines the inquiry API calls for interacting with the UDDI registry.

13.1.1.2 uddi-org:inquiry_v2

tModel Description: UDDI Inquiry API V 2.0- Core Specification
tModel UUID: uuid:AC104DCC-D623-452F-88A7-F8ACD94D9B2B
Categorization: specification, xmlSpec, soapSpec

This tModel defines the inquiry API calls for interacting with the UDDI registry.

13.1.1.3 uddi-org:publication

tModel Description: UDDI Publication API - Core Specification
tModel UUID: uuid:64C756D1-3374-4E00-AE83-EE12E38FAE63
Categorization: specification, xmlSpec, soapSpec

This tModel defines the publication API calls for interacting with the UDDI registry.

13.1.1.4 uddi-org:publication_v2

tModel Description: UDDI Publication API V2.0 - Core Specification
tModel UUID: uuid:A2F36B65-2D66-4088-ABC7-914D0E05EB9E
Categorization: specification, xmlSpec, soapSpec

This tModel defines the inquiry API calls for interacting with the UDDI registry.

13.1.1.5 uddi-org:taxonomy

tModel Description: UDDI Taxonomy API
tModel UUID: uuid:3FB66FB7-5FC3-462F-A351-C140D9BD8304
Categorization: specification, xmlSpec, soapSpec

This tModel defines the taxonomy maintenance API calls for interacting with the UDDI registry.

13.1.1.6 uddi-org:taxonomy_v2

tModel Description: UDDI validate_values API
tModel UUID: uuid:1E3E9CBC-F8CE-41AB-8F99-88326BAD324A
Categorization: specification, xmlSpec, soapSpec

UDDI Version 2 Programmers API Specification UDDI.org

Copyright © 2001 by
Accenture, Ariba, Inc., Commerce One, Inc., Compaq Computer Corporation, Equifax, Inc., Fujitsu Limited, Hewlett-Packard
Company, i2 Technologies, Inc., Intel Corporation, International Business Machines Corporation, Microsoft Corporation, Oracle
Corporation, SAP AG, Sun Microsystems, Inc., and Verisign, Inc.
All Rights Reserved.

73

This tModel defines the taxonomy maintenance API calls for interacting with the UDDI registry.

13.1.2 UDDI Core tModels - built-in taxonomies, identifier systems, and relationships

An additional set of tModels has been established to assist in identification and categorization, for
example within industry taxonomies. Their tModels are described below.

13.1.2.1 uddi-org:types

The UDDI specifications provide a great deal of flexibility in terms of the types of information that may
be registered. To help in getting started, a taxonomy named uddi-org:types has been established to
assist in general categorization of the tModels themselves.

The approach to categorization of tModels within the UDDI Type Taxonomy is consistent with that used
for each of the other taxonomies. The categorization information for each tModel is added to the
<categoryBag> elements in a save_tModel message. A <keyedReference> element is added to
the category bag to indicate the type of tModel that is being registered.

The values used for keyed references are defined in the UDDI Type Taxonomy shown in the tModel
description table below.

tModel Description: UDDI Type Taxonomy
tModel UUID: uuid:C1ACF26D-9672-4404-9D70-39B756E62AB4
Categorization: categorization
Checked: Yes

13.1.2.1.1 Taxonomy Values

The following list of values are defined in the UDDI:types taxonomy. These values are useful for
classifying tModels and are helpful to others who want to find tModel data of a particular type.

tModel: The UDDI type taxonomy is structured to allow for categorization of registry entries other than
tModels. This key is the root of the branch of the taxonomy that is intended for use in categorization of
tModels within the UDDI registry. Categorization is not allowed with this key.

identifier: An identifier tModel represents a specific set of values used to uniquely identify information.
For example, a Dun & Bradstreet D-U-N-S® Number uniquely identifies companies globally. The D-U-
N-S® Number taxonomy is an identifier taxonomy.

namespace: A namespace tModel represents a scoping constraint or domain for a set of information.
In contrast to an identifier, a namespace does not have a predefined set of values within the domain,
but acts to avoid collisions. It is similar to the namespace functionality used for XML.

categorization: A categorization tModel is used for information taxonomies within the UDDI registry.
NAICS and UNSPSC are examples of categorization tModels.

postalAddress: A postalAddress tModel is used to identify different forms of postal address within the
UDDI registry. postalAddress tModels may be used with the address element to distinguish different
forms of postal address.
relationship: A relationship tModel is used for relationship categorizations within the UDDI registry.
relationship tModels are typically used in connection with publisher relationship assertions.

specification: A specification tModel is used for tModels that define interactions with a Web Service.
These interactions typically include the definition of the set of requests and responses, or other types of
interaction, that are prescribed by the service. tModels describing XML, COM, Corba, or any other
services are specification tModels.

xmlSpec: An xmlSpec tModel is a refinement of the specification tModel type. It is used to indicate
that the interaction with the service is via XML. The UDDI API tModels are xmlSpec tModels.

soapSpec: Further refining the xmlSpec tModel type, a soapSpec is used to indicate that the
interaction with the service is via SOAP. The UDDI API tModels are soapSpec tModels, in addition to

UDDI Version 2 Programmers API Specification UDDI.org

Copyright © 2001 by
Accenture, Ariba, Inc., Commerce One, Inc., Compaq Computer Corporation, Equifax, Inc., Fujitsu Limited, Hewlett-Packard
Company, i2 Technologies, Inc., Intel Corporation, International Business Machines Corporation, Microsoft Corporation, Oracle
Corporation, SAP AG, Sun Microsystems, Inc., and Verisign, Inc.
All Rights Reserved.

74

xmlSpec tModels.

wsdlSpec: A tModel for a Web Service described using WSDL is categorized as a wsdlSpec.

protocol: A tModel describing a protocol of any sort.

transport: A transport tModel is a specific type of protocol. HTTP, FTP, and SMTP are types of
transport tModels.

signatureComponent: A signature component is used to for cases where a single tModel can not
represent a complete specification for a Web Service. This is the case for specifications like
RosettaNet, where implementation requires the composition of three tModels to be complete - a
general tModel indicating RNIF, one for the specific PIP, and one for the error handling services. Each
of these tModels would be of type signature component, in addition to any others as appropriate.

unvalidatable: Marking a tModel with this classification prevents references to that tModel in any
keyedReference contained within an identifierBag or categoryBag element. Used as part of the
process required to establish a new checked value set and to retire a checked value set.

checked: Marking a tModel with this classification asserts that it represents a categorization, identifier,
or namespace tModel that has a properly registered validation service per the UDDI Version 2.0
Operators Specification Appendix A.

unchecked: Marking a tModel with this classification asserts that it represents a categorization,
identifier, or namespace tModel that does not have a validation service.

13.1.2.2 ntis-gov:naics:1997

tModel Description: Business Taxonomy: NAICS (1997 Release)
tModel UUID: uuid:C0B9FE13-179F-413D-8A5B-5004DB8E5BB2
Categorization: categorization
Checked: Yes

This tModel defines the NAICS industry taxonomy.

13.1.2.3 unspsc-org:unspsc:3-1

tModel Description: Product Taxonomy: UNSPSC (Version 3.1)
tModel UUID: uuid:DB77450D-9FA8-45D4-A7BC-04411D14E384
Categorization: categorization
Checked: Yes

This tModel defines the UNSPSC product taxonomy.

13.1.2.4 uddi-org:iso-ch:3166:1999

tModel Description: UDDI GeographicTaxonomy
tModel UUID: uuid:61668105-B6B6-425C-914B-409FB252C36D
Categorization: categorization
Checked: Yes

This tModel defines the ISO 3166 geographic classification taxonomy namespace.

13.1.2.5 uddi-org:general_keywords

tModel Description: Other Taxonomy
tModel UUID: uuid:A035A07C-F362-44dd-8F95-E2B134BF43B4
Categorization: categorization
Checked: No

This tModel defines an unidentified taxonomy.

13.1.2.6 uddi-org:owningBusiness

tModel Description: A pointer to a businessEntity that owns the categorized data.

UDDI Version 2 Programmers API Specification UDDI.org

Copyright © 2001 by
Accenture, Ariba, Inc., Commerce One, Inc., Compaq Computer Corporation, Equifax, Inc., Fujitsu Limited, Hewlett-Packard
Company, i2 Technologies, Inc., Intel Corporation, International Business Machines Corporation, Microsoft Corporation, Oracle
Corporation, SAP AG, Sun Microsystems, Inc., and Verisign, Inc.
All Rights Reserved.

75

tModel UUID: uuid:4064C064-6D14-4F35-8953-9652106476A9
Categorization: identifier
Checked: Yes

This tModel identifies the businessEntity that published or owns the tagged information. Used with
tModels to establish an “owned” relationship with a registered businessEntity.

13.1.2.7 uddi-org:relationships

tModel Description: UDDI businessEntity relationship descriptions
tModel UUID: uuid:807A2C6A-EE22-470D-ADC7-E0424A337C03
Categorization: relationship
Checked: No

This tModel is used to describe business relationships. Used in the publisher assertion messages.

13.1.2.7.1 Relationship values

parent-child Used to indicate that the businessEntity referred to by an assertion fromKey is the
parent (e.g., holding company) of the businessEntity referred to by the toKey (e.g, subsidiary).

peer-peer Used to indicate that the businessEntity referred to by an assertion fromKey is a peer of
the businessEntity referred to by the toKey.

identity Used to indicate that the businessEntity referred to by an assertion fromKey represents
the same organization as the businessEntity referred to by the toKey.

13.1.2.8 uddi-org:operators

tModel Description: Identifier system for identifying operators of a registry
tModel UUID: uuid:327A56F0-3299-4461-BC23-5CD513E95C55
Categorization: identifier
Checked: Yes

This checked value set is used to identify UDDI operators.

13.1.2.9 dnb-com:D-U-N-S

tModel Description: Dun & Bradstreet D-U-N-S® Number
tModel UUID: uuid:8609C81E-EE1F-4D5A-B202-3EB13AD01823
Categorization: identifier
Checked: No

This tModel is used for the Dun & Bradstreet D-U-N-S® Number identifier. Note that this tModel is
initially registered as part of the UDDI core tModels. Once the registry is in production, management of
this tModel is expected to be transferred to the Dun & Bradstreet publisher account. For more
information, see http://www.dnb.com.

13.1.2.10 thomasregister-com:supplierID

tModel Description: Thomas Registry Suppliers
tModel UUID: uuid:B1B1BAF5-2329-43E6-AE13-BA8E97195039
Categorization: identifier
Checked: No

This tModel is used for the Thomas Register supplier identifier codes. Note that this tModel is initially
registered as part of the UDDI core tModels. Once the registry is in production, custody of this tModel
is expected to be transferred to the Thomas Register publisher account. For more information, see
http://www.thomasregister.com.

13.1.3 UDDI Core tModels – Other

Additional tModels are defined to help register within leading industry encoding schemes and standard

http://www.dnb.com/
http://www.thomasregister.com/

UDDI Version 2 Programmers API Specification UDDI.org

Copyright © 2001 by
Accenture, Ariba, Inc., Commerce One, Inc., Compaq Computer Corporation, Equifax, Inc., Fujitsu Limited, Hewlett-Packard
Company, i2 Technologies, Inc., Intel Corporation, International Business Machines Corporation, Microsoft Corporation, Oracle
Corporation, SAP AG, Sun Microsystems, Inc., and Verisign, Inc.
All Rights Reserved.

76

protocols. This list is expected to be expanded as appropriate as the UDDI business registry expands.

13.1.3.1 uddi-org:smtp

tModel Description: E-mail based web service
tModel UUID: uuid:93335D49-3EFB-48A0-ACEA-EA102B60DDC6
Categorization: transport

This tModel is used to describe a web service that is invoked through SMTP email transmissions.
These transmissions may be either between people or applications.

13.1.3.2 uddi-org:fax

tModel Description: Fax based web service
tModel UUID: uuid:1A2B00BE-6E2C-42F5-875B-56F32686E0E7
Categorization: protocol

This tModel is used to describe a web service that is invoked through fax transmissions. These
transmissions may be either between people or applications.

13.1.3.3 uddi-org:ftp

tModel Description: File transfer protocol (ftp) based web service
tModel UUID: uuid:5FCF5CD0-629A-4C50-8B16-F94E9CF2A674
Categorization: transport

This tModel is used to describe a web service that is invoked through file transfers via the ftp protocol.

13.1.3.4 uddi-org:telephone

tModel Description: Telephone based web service
tModel UUID: uuid:38E12427-5536-4260-A6F9-B5B530E63A07
Categorization: specification

This tModel is used to describe a web service that is invoked through a telephone call and interaction
by voice and/or touch-tone.

13.1.3.5 uddi-org:http

tModel Description: An http or web browser based web service
tModel UUID: uuid:68DE9E80-AD09-469D-8A37-088422BFBC36
Categorization: transport

This tModel is used to describe a web service that is invoked through a web browser and/or the http
protocol.

13.1.3.6 uddi-org:homepage

tModel Description: HTTP Web Home Page URL
tModel UUID: uuid:4CEC1CEF-1F68-4B23-8CB7-8BAA763AEB89
Categorization: specification

This tModel is used as the bindingTemplate fingerprint for a web home page reference.

13.2 Registering tModels within the Type Taxonomy
When a new tModel is registered within UDDI, its type can be classified within the framework of the
UDDI Type Taxonomy. This classification provides additional hints to applications for what type of
tModel is being registered. For each appropriate classification, and keyed reference is added to the
category bag element for the tModel.

UDDI Version 2 Programmers API Specification UDDI.org

Copyright © 2001 by
Accenture, Ariba, Inc., Commerce One, Inc., Compaq Computer Corporation, Equifax, Inc., Fujitsu Limited, Hewlett-Packard
Company, i2 Technologies, Inc., Intel Corporation, International Business Machines Corporation, Microsoft Corporation, Oracle
Corporation, SAP AG, Sun Microsystems, Inc., and Verisign, Inc.
All Rights Reserved.

77

As an example, the Dun & Bradstreet D-U-N-S® Number is a type of identifier for an organization.
Within the UDDI type taxonomy, the dnb-com:D-U-N-S tModel is classified as type identifier.

The categoryBag element of the tModel registered would be as follows:

<categoryBag>
 <keyedReference
 tModelKey = "uuid:C1ACF26D-9672-4404-9D70-39B756E62AB4"
 keyValue = "identifier"
 keyName = "tModel is a unique identifier" />
</categoryBag>

�� tModelKey: This is the GUID for the UDDI Types taxonomy. It is required.

�� keyValue: This is the identifier for the categorization within the UDDI Types taxonomy. It is
required.

�� keyName: This is the description of the identifier within the UDDI Types taxonomy. It is not
required as a part of the registration, but simply provides additional information about the key
selected.

UDDI Version 2 Programmers API Specification UDDI.org

Copyright © 2001 by
Accenture, Ariba, Inc., Commerce One, Inc., Compaq Computer Corporation, Equifax, Inc., Fujitsu Limited, Hewlett-Packard
Company, i2 Technologies, Inc., Intel Corporation, International Business Machines Corporation, Microsoft Corporation, Oracle
Corporation, SAP AG, Sun Microsystems, Inc., and Verisign, Inc.
All Rights Reserved.

78

14 Appendix J: Relationships and publisher assertions

UDDI version 2.0 introduces an assertion feature based on “publisher assertions”. Publisher
assertions are the basis for a mechanism to allow more than one registered businessEntity elements to
be linked in a manner that conveys a specific type of relationship. This is why the feature is sometimes
called the relationship feature. Publisher assertions are used to establish visible relationships between
registered data in a way that once completed, a set of assertions can be seen by the general inquiry
message named “find_relatedBusinesses”.

The design goals around allowing businesses to describe relationship between different parts involved
accommodating the needs of larger businesses to express their UDDI data in more than one part.
After all, large companies are composed of many smaller parts, and within those individual business
units there are various web services that need describing. Prior to UDDI version 2.0, businesses that
wanted to model a very complex business were not able to do so.

In order to make it possible for either party in a relationship to have some control over the visibility of the
relationship, another design goal was to make sure that visible relationships were only visible if both
parties involved in a potential relationship expression actually agreed to the fact that such a relationship
exists at a given point in time. The problematic scenario that was addressed was one where a party
falsely claims that the businessEntity data that it registered were part of a large company, resulting in
damages to the non-consenting company. Damages could possibly also be suffered by readers of the
data because they were falsely led to believe that a business registration was part of another company.

The design adopted involves a requirement for the publishers that control the businesses that are
related to assert in a symmetric fashion that the relationship exists. In the case where a different
individual controls each businessEntity involved in such an expression, both parties would need to
assert the same fact about a specific relationship before UDDI will surface any information about such
a relationship. In cases where two parties are involved and both parties do not agree as to the details
of a given assertion, there is no requirement for either party to complete an assertion. No relationship
will be exposed via the Inquiry API in this case.

14.1.1 Example

The following picture shows the start of an assertion process.:

Joe and Xina each manage a businessEntity within UDDI. As we start our scenario, both Joe and Xina
have registered a businessEntity at their favorite UDDI operator site. Joe and Xina wish to make it
possible for users of UDDI to find out that the two businesses are in fact part of the same business, with
business1 being the parent-business.

To make the relationship visible for anyone who calls find_relatedBusinesses passing either
businessKey as a starting point, Joe and Xina must both make a publisher assertion. As the name of
the operation suggests, a publisher assertion is an assertion made by a publisher who is expressing a
particular fact about a business registration and its relationships to other business data within UDDI.

The process, Joe uses a program that helps him manage his UDDI data and makes a new publisher
assertion about business1 and business2, expressing the fact that business 1 is the corporate holding
company. This fact is expressed by Joes software which sends a add_publisherAssertions message to
UDDI. This message looks like:

Business 1 Business 2

UDDI Version 2 Programmers API Specification UDDI.org

Copyright © 2001 by
Accenture, Ariba, Inc., Commerce One, Inc., Compaq Computer Corporation, Equifax, Inc., Fujitsu Limited, Hewlett-Packard
Company, i2 Technologies, Inc., Intel Corporation, International Business Machines Corporation, Microsoft Corporation, Oracle
Corporation, SAP AG, Sun Microsystems, Inc., and Verisign, Inc.
All Rights Reserved.

79

<add_publisherAssertions generic="2.0" xmlns="urn:uddi-org:api_v2" >
<authInfo>FFFFF</authInfo>
<publisherAssertion>

<fromKey>BK1</fromKey>
<toKey>BK2</toKey>
<keyedReference

tModelKey=”uuid:tbd” keyName=”Holding Company” keyValue=”parent-child” />
</publisherAssertion>

</add_publisherAssertions>

In this example, we see that Joe asserts that the businessEntity with the businessKey value of BK1 is
the parent holding company of the businessEntity with the businessKey value of BK2.

Because only Joe has asserted this fact, the information about the relationship is not yet visible via the
inquiry API call, find_relatedBusinesses. Joe knows that for this assertion to become visible, the
publisher of businessEntity BK2 must also express the same assertion. Joe calls Xina to let her know
he wants her to make the assertion.

In order to see the data that she must express, Xina sends a get_assertionStatusReport to her UDDI
operator site. From the resulting assertionStatusReport, Xina sees that there is indeed an unmatched
assertion listed against her businessEntity B2. Since Joe has contacted her and she agrees that the
relationship should be visible within UDDI, Xina sends the exact same assertion (with a different
authInfo credential) to her UDDI operator site.

The UDDI operator sites now see the assertions made by the two publishers, each of whom control
one of the two businesses involved. After checking that the requesting parties each control half of the
relationship, UDDI matches the assertions together and the status of the relationship becomes
complete.

After this is done, anyone who calls the Inquiry API call, find_relatedBusinesses, and passes either
BK1 or BK2 as the businessKey value will see the relationship. Prior to both publishers asserting this
same fact, the data about the relationship would not be visible via the Inquiry API.

14.1.2 Managing relationship visibility

The publishers API defines several messages to allow assertions to be managed by UDDI publishers.
These messages fall into two general categories: administrative helpers and maintenance functions.
The administrative helpers allow the publisher to see assertions that their businesses are involved in.
In particular, the get_assertionStatusReport is the most useful for determining whether any assertions
involving your business registrations are incomplete. This allows you to not only see work that may
need to be done, but it also allows you to find out if others are trying to make assertions about your
business that you may not either know about or agree with.

The maintenance functions let you either deal with all assertions as a single group (e.g.
get_publisherAssetions / set_publisherAssertions) or individually (e.g. add_publisherAssertions /
delete_publisherAssertions). The latter are handy if you want to add one at a time without having to
keep track of all assertions you have made in the past.

One word of caution: set_publisherAssertions can be used to invalidate all assertions by removing all
asseritions in a single call.

UDDI Version 2 Programmers API Specification UDDI.org

Copyright © 2001 by
Accenture, Ariba, Inc., Commerce One, Inc., Compaq Computer Corporation, Equifax, Inc., Fujitsu Limited, Hewlett-Packard
Company, i2 Technologies, Inc., Intel Corporation, International Business Machines Corporation, Microsoft Corporation, Oracle
Corporation, SAP AG, Sun Microsystems, Inc., and Verisign, Inc.
All Rights Reserved.

80

15 References

This section contains URL pointers to various specifications and other documents that are pertinent in
understanding this specification.

15.1.1.1 W3C specifications, notes and drafts

�� XML 1.0

�� XML Schema

�� XML namespaces

�� SOAP 1.1

15.1.1.2 UDDI specifications, white-papers and schemas

�� UDDI Version 2.0 API schema

�� UDDI Version 2.0 overview

�� UDDI Version 2.0 technical overview

�� UDDI Version 2.0 Operators specification

�� UDDI.org

�� UDDI 2.0 XML structure reference

UDDI Version 2 Programmers API Specification UDDI.org

Copyright © 2001 by
Accenture, Ariba, Inc., Commerce One, Inc., Compaq Computer Corporation, Equifax, Inc., Fujitsu Limited, Hewlett-Packard
Company, i2 Technologies, Inc., Intel Corporation, International Business Machines Corporation, Microsoft Corporation, Oracle
Corporation, SAP AG, Sun Microsystems, Inc., and Verisign, Inc.
All Rights Reserved.

81

16 Change History

17 April 2001: Dan Rogers: apply feedback/edits from team. Published Rev 3 review draft as release
candidate 1

20 March 2001: Dan Rogers: set document to change tracking for round 1 review cycle changes.

26 February, 2001: Dan Rogers, Dave Ehnebuske. Review, incorporate comments, complete
appendices (first cut) during the authors meeting held in Redmond in building 118.

23 February, 2001: Dan Rogers initial pass at updating this for V2. Many of the appendices are not
updated yet. For working group review. During this pass, corrected many of the overlooked V1 errata
– as discussed and observable in the common operator implementations. Still have to fold in an
appendix on internationalization, and update the schema to reflect the final face to face agreements
around address, value validation, and ??? other stuff ??? I’ll be working on this through the weekend
as well.

31 May 2001: David Ehnebuske. Incorporate changes based on input from Advisors Group review
cycle. As discussed on the http://groups.yahoo.com/group/uddi-v2api-review mailing list. Changes are:
Clarification of which search arguments may be passed in the find_business and find_service
messages, addition of “checked” and “unchecked” categories to uddi-org:types, miscellaneous wording
changes for clarification and to correct ovesights, and typo fix-ups.

http://groups.yahoo.com/group/uddi-v2api-review mailing list

	1	TERMINOLOGY	5
	Introduction
	Document Overview
	What is UDDI?

	Compatible registries
	What are tModels?
	An example:

	Classification and Identification information

	Design & Architecture
	Design Principles
	Security
	Versioning
	SOAP Messaging
	XML conventions
	Error Handling
	White Space
	XML Encoding

	API Reference
	Three query patterns
	The browse pattern
	The drill-down pattern
	The invocation pattern

	Inquiry API functions
	find_binding
	Syntax:
	Arguments:
	Returns:
	Caveats:

	find_business
	Syntax:
	Arguments:
	Returns:
	Caveats:

	find_relatedBusinesses
	Syntax:
	Arguments:
	Returns:
	Caveats:

	find_service
	Syntax:
	Arguments:
	Returns:
	Caveats:

	find_tModel
	Syntax:
	Arguments:
	Returns:
	Caveats:

	get_bindingDetail
	Syntax:
	Arguments:
	Behavior:
	Returns:
	Caveats:

	get_businessDetail
	Syntax:
	Arguments:
	Returns:
	Caveats:

	get_businessDetailExt
	Syntax:
	Arguments:
	Returns:
	Caveats:

	get_serviceDetail
	Syntax:
	Arguments:
	Returns:
	Caveats:

	get_tModelDetail
	Syntax:
	Arguments:
	Returns:
	Caveats:

	About UDDI Publishing API functions
	New in UDDI version 2.0
	Features to help the registry become more useful
	Publisher API summary
	Special considerations for validated namespaces
	Third party opportunities

	Publishing API Function Reference
	add_publisherAssertions
	Syntax:
	Arguments:
	Returns:
	Caveats:

	delete_binding
	Syntax:
	Arguments:
	Returns:
	Caveats:

	delete_business
	Syntax:
	Arguments:
	Returns:
	Results:
	Caveats:

	delete_publisherAssertions
	Syntax:
	Arguments:
	Returns:
	Results:
	Caveats:

	delete_service
	Syntax:
	Arguments:
	Returns:
	Caveats:

	delete_tModel
	Syntax:
	Arguments:
	Returns:
	Caveats:

	discard_authToken
	Syntax:
	Arguments:
	Returns:
	Caveats:

	get_assertionStatusReport
	Syntax:
	Arguments:
	Returns:
	Caveats:

	get_authToken
	Syntax:
	Arguments:
	Returns:
	Caveats:

	get_publisherAssertions
	Syntax:
	Arguments:
	Returns:
	Caveats:

	get_registeredInfo
	Syntax:
	Arguments:
	Returns:
	Caveats:

	save_binding
	Syntax:
	Arguments:
	Returns:
	Caveats:

	save_business
	Syntax:
	Arguments:
	Behavior:
	Returns:
	Caveats:

	save_service
	Syntax:
	Arguments:
	Behavior:
	Returns:
	Caveats:

	save_tModel
	Syntax:
	Arguments:
	Behavior:
	Returns:
	Caveats:

	set_publisherAssertions
	Syntax:
	Arguments:
	Returns:
	Results:
	Caveats:

	Appendix A: Error code reference
	Error Codes
	Success reporting with the dispositionReport element:
	Error reporting with the dispositionReport element:

	Appendix B: SOAP usage details
	Support for SOAPAction
	Example

	Support for SOAP Actor
	Support for SOAP encoding
	Support for SOAP Fault
	Support for SOAP Headers
	XML prefix conventions – default namespace support
	Support for Unicode: SOAP listener behavior

	Appendix C: XML Usage Details
	Support for multiple languages
	Valid Language Codes
	Default Language Codes

	XML Encoding requirements

	Appendix D: Security model in the publishers API
	Authentication of publisher API calls
	Authentication
	Establishing credentials
	Authentication tokens are not portable
	Generating Authentication Tokens

	Per-account space limits

	Appendix E: Search Qualifiers
	General form of search qualifiers
	Search Qualifiers enumerated
	Search Qualifier Precedence
	Sorting Details

	Appendix F: Response message reference
	Appendix G: redirection via hostingRedirector element
	Special situations requiring the hostingRedirector
	Using the hostingRedirector data
	Stepwise overview

	Appendix H: Checking external value-sets
	validate_values
	
	Syntax:
	Arguments:
	Behavior
	Caveats:

	Appendix I: Utility tModels and Conventions
	Canonical tModel entities
	UDDI Registry tModels
	uddi-org:inquiry
	uddi-org:inquiry_v2
	uddi-org:publication
	uddi-org:publication_v2
	uddi-org:taxonomy
	uddi-org:taxonomy_v2

	UDDI Core tModels - built-in taxonomies, identifier systems, and relationships
	uddi-org:types
	Taxonomy Values

	ntis-gov:naics:1997
	unspsc-org:unspsc:3-1
	uddi-org:iso-ch:3166:1999
	uddi-org:general_keywords
	uddi-org:owningBusiness
	uddi-org:relationships
	Relationship values

	uddi-org:operators
	dnb-com:D-U-N-S
	thomasregister-com:supplierID

	UDDI Core tModels – Other
	uddi-org:smtp
	uddi-org:fax
	uddi-org:ftp
	uddi-org:telephone
	uddi-org:http
	uddi-org:homepage

	Registering tModels within the Type Taxonomy

	Appendix J: Relationships and publisher assertions
	
	Example
	Managing relationship visibility

	References
	
	
	W3C specifications, notes and drafts
	UDDI specifications, white-papers and schemas

	Change History

