

Scenario-Based and Model-Driven Information
Development with XML DITA

 Michael Priestley
IBM Toronto Lab

8200 Warden Ave.
Markham, Ontario, Canada

mpriestl@ca.ibm.com

ABSTRACT
In this paper, I describe how I followed an end-to-end
development process in the development of the
user’s guide and help information for XML DITA, using
scenarios to define my information needs and maps to describe my
information model. By using technology driven by maps and
scenarios, I was able to keep the information focused on user
goals and requirements from its inception through to its final
form. The paper will also look at how an integrated end-to-end
process can help keep information on track through staged
delivery of content to ensure early and ongoing feedback, and will
look at some future opportunities for further integration in the
stages of the information development process.

Categories and Subject Descriptors
I.7.2 [Document Preparation]

General Terms: Documentation

Keywords
Model-driven development, DITA, XML, scenarios, maps,
information development process, scenario-driven development.

1. BACKGROUND
The Darwin Information Typing Architecture (DITA) is an XML
architecture for creating and publishing information, especially
technical information. It is based on several key principles:

• Topic-based information

• Information types and domains

• The separation of content (topics) from context (maps)

• Extensibility and customizability

• Reuse
DITA was created based on best practices in technical authoring
such as task orientation, chunking, information typing, and

minimalism. It was also shaped by developments in software
architecture, including object-oriented and component-oriented
software. Because software and technical information share
similar challenges, it is not surprising that similar approaches
have emerged in both arenas. However, the similarities are not
based on simple application of existing techniques to new areas:
the similarities run deep, but are not equivalencies.

1.1 Topic-based information
The topic is the smallest independently maintainable unit of
content. Topics must be able to stand alone so that they can be
understood when they are encountered out-of-context, for
example when a user finds the topic through search, an index, or
by following a link. Even books can benefit from being written as
collections of topics, since a book’s logical organization should
not preclude its use by people who scan it, flip through it, or use
its index.

1.2 Information types and domains
Information types are kinds of topics: for example, tasks, or
concepts, or reference information for a particular product or
subject element. Industry best practices have identified a large
number of different information types, which DITA reduces to
three (concept, task, and reference), all derived from a common
base type, the generic topic. This simple hierarchy can be
extended as required to cover various possible specialized kinds
of information type.

Domains are kinds of content within topics: for example, one task
might be concerned with user interfaces, and include content like
window names and menu choices; another might be concerned
with programming, and include content like method names and
code examples; a third task (for generating code based on GUI
selections, for example) might include both kinds of content.
Domains, like information types, are organized into a hierarchy,
with more specific domains specializing more generic domains.
For example, a menu choice could be a specialization of the more
general class of user interface controls, which in turn could be a
specialization of the most general class, keywords.

1.3 Content and context
Because topics are written to be read in a variety of different
contexts, they are most useful if we can factor out any context-
specific elements (such as links to other topics) that might not be
appropriate for all contexts. This separation lets us quickly update
elements such as links and navigation without having to edit the
topics involved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and
that copies bear this notice and the full citation on the first page. To
copy otherwise, or republish, to post on servers or to redistribute to
lists, requires prior specific permission and/or a fee.
SIGDOC’03, October 12–15, 2003, San Francisco, California, USA.
Copyright 2003 ACM 1-58113-696-X/03/0010…$5.00.

45

The separation of content from context becomes particularly
important in a component-oriented environment, where different
products share common components and the component’s
information needs to be integrated into each new product set
without interfering with the other product sets.

Context may vary depending not only on the product (for
component-oriented information), but also on delivery format
(PDF versus Web versus embedded help), audience (programmer
versus administrator versus tester), or learning activity
(background learning versus task failure recovery versus
troubleshooting). As a result, our context format needs to be
flexible enough to cover a variety of organizational, navigational,
and metadata elements, which may need to vary based on these
different dimensions of context.

1.4 Extensibility and customizability
DITA can be extended through the definition of new information
types, domains, or kinds of maps, as well as through the addition
of new output processes or extensions to processes. When you
add new information types or domains, through a process called
specialization, you do so by extending existing ones, and adding
to a hierarchy of types or domains that allows inheritance of
design of elements and inheritance of processing rules. For
example a new type of task might have most of the same elements
as a regular task, so you can use the existing elements without
redeclaring them. And because the new type of task inherits from
the regular task, output transforms that work for tasks will
automatically work with the new type of task as well. This means
that you can design new kinds of content, and immediately start
producing output that includes a mix of new and old designs.
Specialization mechanisms are discussed in more detail in [1].

1.5 Reuse
DITA is in many ways an architecture of reuse: the XML Cover
Pages called it the “Holy Grail of content reuse” [2]. Some of
these ways are covered in [3]. The capabilities include maps for
managing collections of topics, conditional processing (filtering
and flagging) for managing differences within a document (either
a topic or a map), and content referencing for any valid reuse of
information between topics or between maps. The important thing
to remember is that reuse is not an end in itself: it is the enabler
for creating user-focused content consistently, quickly, and
accurately.

2. THE END-TO-END PROCESS
DITA is based on best practices in information development and
was developed to support those best practices both in the
authoring and in the delivery of technical information.
In the following sections, I will describe how I developed the
content for the DITA user’s guide and help set, following what I
perceive as the best practices in the industry, and for the most part
helped and supported by the DITA architecture. This experience
validated some important features of the architecture and also
pointed to some opportunities for further enhancements.
I started with the basic assumptions that my information needed to
be:

• Audience-focused

• Scenario-driven

• Task-oriented

• Accountable to the user
In order to achieve this, I developed the content through a number
of key stages leading up to the full internal release of the
information and through follow-on education.
The key stages were:

1. Identifying the audience and defining roles
2. Identifying scenarios: descriptions of situations that

exemplify the problems our users are trying to solve,
and how we expect them to use the product to solve
them

3. Developing scenario materials, including tutorials and
samples, that leverage the background work done in the
scenario documentation

4. Identifying and organizing tasks into a task flow,
starting with the scenarios as a resource for identifying
potential tasks and sequences

5. Identifying and organizing concepts into a concept
hierarchy

6. Writing tasks and concepts
7. Relating tasks, concepts, and reference information to

each other
8. Developing an integrated reading hierarchy
9. Indexing
10. Producing PDFs, help sets, and Web organizations of

the information
At each stage, I reviewed my progress with other members of the
development team, usability experts, and, most importantly, early
users of DITA within IBM.

2.1 Identifying audience and roles
We used surveys to establish the general level of skill and
educational requirements for new DITA users within IBM. This
helped us identify three main audiences:

• Experienced SGML authors, who were familiar with
tag-based authoring and the separation of content from
presentation, but would need some general education
on DITA tags and might require help in changing over
to a topic-oriented architecture

• Intermediate SGML authors, who would need
reinforcement on the XML mindset (separation of
content from presentation), as well as education on the
specific tag set and, potentially, education on topic-
oriented architectures

• HTML authors, who would need education on XML
and on the specific DITA tag set, but typically needed
less education on topic-oriented authoring

We also identified several roles related to DITA, as described in
[4]:

•••• Type architect. Analyzes topic types needed to
accommodate content being produced and defines new
topic types if needed.

46

•••• Information architect. Analyzes the overall structure
of the content, groups it into topic collections, and
defines maps that describe the relationship of topics to
each other.

•••• Information developer. Writes and edits topics,
according to the topic-type standards established for the
project by the type architect.

•••• Build developer. Processes the DITA source topics
into various formats, as needed for product
deliverables.

•••• Information designer. Establishes the "look and feel"
of the output presentation.

The DITA information needed to initially support the information
architect and information developer roles, both of which would be
necessary in every team. The information architect role would be
new to many SGML authors and to some HTML authors, and
would be using unfamiliar methodologies (DITA mapping), so it
would require special support.

2.2 Identifying scenarios
Scenarios are descriptions of how a product might be used in the
context of solving a particular problem or achieving a particular
user goal. In the context of product development processes such
as the Rational Unified Process [5], these would be something
like use case instances. Typically these are used to identify
requirements for the product being developed. Scenarios are also
used for the design of human-computer interaction, including
interaction with information systems [6].

In this paper, however, scenario-based information development
goes beyond just describing ways in which users might access the
information (although that is certainly useful in its own right).
Rather than focusing on information interaction scenarios, this
paper is instead focusing on the use of product scenarios for the
design of an information model. In other words, stories about how
the product should be used can form the basis for descriptions of
how the product should be used. While this point may seem
obvious, it is important to distinguish between the two possible
applications of scenario-based information development: on the
one hand, using information interaction scenarios to inform
information system design, and on the other hand, using product
interaction scenarios to inform information system content. Both
applications are appropriate and useful, but this paper
concentrates on the second case, building on connections between
product and information development processes already described
in some detail elsewhere [7].

I looked at the list of scenarios that had been identified during
development planning for the internal DITA toolkit. These
included scenarios like “Creating navigation”, “Creating tasks”,
and so on. However, several of the scenarios needed to be updated
to focus on the user perspective rather than just capturing
development requirements, and an overall end-to-end perspective
was missing. In the end I identified several key scenarios that I
wanted to specifically support, with an overall flow as follows:

1. Creating information models

a. Creating task hierarchies

b. Creating concept hierarchies

c. Creating reference hierarchies

d. Creating cross-type mappings

e. Creating reading-oriented hierarchies

2. Creating content

a. Creating topics

b. Creating tasks

c. Creating concepts

d. Creating reference topics

3. Conditionally processing content

4. Reusing content

5. Producing output

2.3 Developing scenario materials
I prioritized the scenarios and developed samples and tutorials for
the first main scenario: creating information models.

I gave the tutorials and samples to early users for review and
testing, and modified my content based on their feedback.

Next I developed tutorials and samples for the second main
scenario: creating content. These also went through a cycle of
review and testing with early users.

I did not have time to develop scenarios for the more advanced
processes (conditional processing and reuse), nor for the
(relatively) straightforward output activities. However, I now had
tutorials and samples for the main user tasks for information
architects (creating an information model) and for information
developers (creating content).

By the end I had eleven tutorials, taking up approximately 70
printed pages, as well as accompanying samples.

2.4 Identifying and organizing tasks
Based on the scenarios and tutorials, I developed a list of tasks
and organized them into a hierarchy. Where possible, I followed
the same order and organization as the scenarios, including tasks
for linking, conditional processing, content reuse, and generating
output, which were not directly covered by the tutorials.

I authored the hierarchy initially in a plain text document, using
indenting to indicate hierarchy, and I reviewed it with other
developers and architects, as well as with users and a usability
expert.

I then re-created the hierarchy as a DITA map, using attributes to
indicate which parts of the hierarchy were sequences:

• Creating maps

1. Adding topic references

2. Defining collections

o Defining sequences

o Defining families

3. Defining hierarchies

o Defining basic hierarchies

47

o Defining task hierarchies

o Defining concept hierarchies

o Defining reference hierarchies

o Defining reading hierarchies

4. Creating relationship tables

The resulting map was used as a starting point for authoring tasks,
as a definition for online navigation, and as a model of
relationships I could derive links from, including parent/child
links for all topics and next/previous links for topics in a
sequence.

2.5 Identifying and organizing concepts
Based on the scenarios and tutorials, as well as the audience
requirements, I developed a list of concepts. The concepts
addressed not only support for specific tasks, but also support for
DITA authoring in general, including descriptions of DITA roles
and development processes, comparisons to other markup
languages such as IBMIDDoc (our existing internal SGML
language) and HTML, and answers to “why” questions such as
“Why use maps” and “Why use topics”.
For example:

• Introducing DITA
o Topics and information types
o Maps and relationships
o DITA and IBMIDDoc
o DITA and HTML
o DITA and minimalism

• The information development process
o Design phase
o Development phase
o Delivery phase

• Roles in the writing process
o Type architect
o Information architect
o Information developer
o Build developer
o Information designer

• Topic-based information
o Why use topics?
o …

• Maps
o Why use maps?
o …

• Information types
o Scenarios
o Tutorials
o Samples

o Examples
o Task topics
o Concept topics
o Reference topics
o ….

Within the concept hierarchy, I tried to introduce new concepts in
a spiral pattern, first with an overview (like “Maps and
relationships” in the introduction) and then with more substantial
treatment (an entire branch of concepts under “Maps”).
As with the task hierarchy, I reviewed the concept hierarchy with
developers, architects, users, and usability experts.
Again, the map was used as a starting point for authoring, and
also for generating navigation and links.

2.6 Identifying and organizing reference
information
The reference content was developed by another writer, using a
set of transforms that extracted information from the DTDs and a
specialized XML reference DTD to manage descriptions of
elements and attributes. Maps were used to provide two separate
organizations of the content (alphabetical and by semantic
category), and the scenarios helped prioritize which elements
would require the most focus and support. However, the scenarios
did not tell us what reference subjects needed documentation: the
actual structure of the subject (in this case a set of DTDs) defined
what needed documentation. The language reference information
went through its own review cycle, administered by its author.

2.7 Writing concepts and tasks
Because I wanted to validate my understanding of roles and
development processes and test my justifications for using maps,
topics, and DITA with their intended audience, I started by
developing the concepts, and I sent them out for review even
before the tasks were developed. I also had a number of existing
concepts from a previous version of the DITA User’s Guide
(which was more concept-oriented and less task-oriented), that I
wanted to reuse and revalidate as early as possible.

After the concepts were written, I developed a minimal set of
tasks. Although normally tasks would be the focus of the
information, since this was a first release of something very new
to our users, I felt that tutorials and concepts needed a high
priority, although not at the cost of task orientation.

2.8 Relating tasks, concepts, and reference
information
After the concept, task, and reference content was defined, at least
to the extent of having shell topic files that each had a title and
short description, I mapped the information types together using a
DITA relationship table.

For example:

Maps Creating maps <map> element

48

This row in the table asserts a relationship between a concept,
task, and reference topic, which will result in links being added
among the three.

I combined topics in a single table cell when they shared the same
relationship to other cells, and I used a linking attribute to
customize how the links would be generated.

For example, I wanted the introductory maps topic (“Introducing
maps”) to have the same set of supporting links as the main map
topic (“Maps”). I also wanted the introductory topic to link to the
main topic. But I didn’t want any other topics linking to the
introductory one, since it was not the main topic on maps and was
intended to be read only once as part of an introduction, not
referred to repeatedly as a point of reference.

To accomplish this pattern (an introductory and main concept
linking to each other, sharing the same pattern of links to other
topics, but without anything linking to the introductory topic), I
modified the row as follows:

[Maps and relationships

Maps]

Creating maps <map> element

The square brackets [] indicate that “Maps and relationships” (the
introductory topic) and “Maps” are part of a family grouping,
which means they link to each other. But the italics means that
“Maps and relationships” is a “source-only” participant in its
relationships in terms of linking. So “Maps and relationships” will
get links to other topics in the relationship (“Maps” because it is
in the same family, and “Creating maps” and “<map> element”
because they are in the same row) but not vice versa. The other
participants in the relationship behave normally but ignore “Maps
and relationships” – so the task and reference topic will link to the
main concept (“Maps”) and to each other, but not to the
introductory concept (“Maps and relationships”).

Maps and
relationships

Maps Creating maps <map>
elements

A single row in the table expresses a fairly complex linking
pattern, with four topics and nine hyperlinks, clearly and
compactly.

2.9 A note on maps and linking
As you’ve seen, you can use maps to describe different kinds of
relationships among your topics. Hierarchical relationships, like
parent and child, can be drawn from the same map you use to
generate navigation (like an Eclipse help or Microsoft HTML
Help table of contents). You can supplement these with sequences
and families within the hierarchy. And you can go beyond the

hierarchy, using tables to organize your linking dependencies and
creating additional families and sequences outside the hierarchy.
There are several advantages to maintaining links in your map,
rather than in the topics:

• You can change links more efficiently. Editing groups,
hierarchies, and tables is more efficient than managing all the
individual links they imply.

• You can review consistency and usability in one place. You
can see patterns and identify holes in your Web more easily
looking at a map than you can by reviewing each topic
individually.

• You can apply different links for different contexts. If you
reuse information in another Web, where it needs different
links, you can just apply a different map, without editing the
topic content.

• You can continue editing links even after the topic content
has shipped to translation. If you add or delete a set of topics
at the last minute, you can incorporate links to them
throughout your Web without editing the topic content.

2.10 Developing an integrated reading
hierarchy
Although the concept, task, and reference hierarchies were
suitable for producing online navigation, they were less suitable
for an end-to-end reading flow through all the information, such
as a user’s guide would typically provide. After developing all the
content and mappings, I created an additional map specifically
geared to provide a readable sequence of concepts and tasks. I
followed a few basic guidelines to assemble the map and was
producing a publishable PDF within a day.

The guidelines were:

1. Create a DITA map file.

2. Copy in the task hierarchy.

3. Add concepts as children of high-level tasks, as siblings of
tasks, or as parents of low-level tasks. Make sure the concept
precedes the actual instructions to the user that the concept
supports.

4. Adjust the nesting level to make sure nothing is nested more
than three levels deep.

2.11 Indexing
Indexing was almost the last step. I could have added index terms
to either the map or the individual topics to create either context-
specific indexes (for help vs. PDF) or general-purpose indexes. In
this case, because I was integrating the online tasks and concepts
with the language reference, which had been indexed at the topic
level, I followed suit and defined a single set of index entries for
use both in help and in PDFs.

2.12 Producing output
I used the concept, task, and reference maps, along with tutorial
and sample maps that organized the scenario background
materials, to create the HTML Help deliverable that shipped with
the internal DITA toolkit. The help file included all the
information discussed above, including the language reference

49

material developed by the other writer. Each page included a
feedback link.

I used the reading hierarchy to produce a PDF available from the
toolkit’s documentation intranet site. This PDF did not include
the language reference, which was made available in a separate
PDF. The PDF included a feedback email address in the
introduction.

I used an additional map that integrated all of the other maps to
create a multiple-view navigation for use with an Eclipse help
plug-in version of the complete information set. This additional
step, including defining the integrating map and producing and
testing output in the additional format, took half a day for
approximately 500 printed pages.

3. INFORMATION ACCOUNTABILITY
There were several features of the process described here that
helped to validate the information and keep its development on
track:

• Scenarios, which informed the rest of the information
architecture, were directly validated with users through
the review and testing of tutorials and samples before
any other information was developed.

• The information model based on the scenarios,
specifically task and concept hierarchies, were reviewed
before content was developed.

• Roles, which described expected usage patterns and
responsibilities, were directly exposed to users as
concepts and reviewed early in the information
development cycle.

• The information output included pervasive feedback
mechanisms.

The information was based on scenarios throughout, and was
task-oriented from beginning to end. The same scenarios that
shaped tutorials and samples at the start helped shape the separate
help and PDF tables of contents at the end. When scenarios
changed, the change could be tracked throughout the information,
and the output could be quickly updated as the information model
evolved.

The information went through many stages of review, from initial
tutorials and samples through to the final help and PDF. Because
content was developed in the order that users required it, each
stage received a thorough review by users who actually needed
the information, instead of a more artificial reading-oriented
review by technically proficient but differently motivated
developers.

4. PROCESS INTEGRATION
Looking at the stages in the process described, there are some
points of integration that can help keep the content synchronized
with the requirements expressed by the original scenarios. Other
tools [9] have also explored the integration opportunities between
tasks and scenarios, and have also explored automation
possibilities. The DITA architecture to some degree may provide
not only the basis for some simple integration points as shown
here, but may also serve as an interchange point for any tool
collecting information that would feed into this process at any

point, allowing different tools targeting the same information
lifecycle to work together.

In our own existing process, the following integration points are
supported:

• Roles and information model. Within DITA maps, you
can use an audience attribute to identify branches that
apply to a particular audience or role. For example, the
“Maps” branch of the concept hierarchy, and the
“Creating maps” branch of the task hierarchy, applied
specifically to the “information architect” role.

• Roles and concepts. You can create concepts for each
of the roles to directly expose the role analysis to your
users.

• Scenarios and concepts. Concepts explored in initial
tutorials were migrated into the concept hierarchy and
then reused in the tutorials. This meant that key
concepts were reviewed as part of tutorial testing, and
although also available in the concept hierarchy, they
were maintained in only one place.

• Information model and links. As the information
model evolved, it applied different links among topics
on output. This meant that when task flows changed,
new next and previous links were automatically applied;
and when branches were split up or combined, the
parent topics automatically received the appropriate
child links.

In future, additional integration points can be considered, both
within the process and across processes.

4.1 Integration within the process
Future integration points within the process could include:

• Automatic generation of task flows from scenarios, or
automatic tracking of the effect of scenario changes on
task flows.

• Mapping of audiences and roles to a hierarchy of role
definitions, to allow easier analysis of roles across
information sets.

• Integration of scenarios with tasks, to allow scenario-
specific versions of tasks to be single-sourced with the
generic versions in the task hierarchy.

• Integration of the information model with topic
metadata, allowing an evolving information model to
apply different metadata as needed for new situations
without having to directly edit the content. This
integration of model and metadata would also allow
more flexibility in the reuse of topics across scenarios
and across information models.

• Integration of the information model with topic titles
and short descriptions to allow these text elements to be
adjusted as needed for different contexts without direct
editing of shared topics.

50

4.2 Integration across processes
Other processes could also benefit from integration. While some
possibilities were discussed in [7], these opportunities are much
more realizable within an XML framework that accommodates
multiple dimensions of reuse, transformation, and specialization.
In brief, these opportunities could include:

• Integration with development use cases. When
created with information requirements in mind as well
as software requirements, a single set of use cases could
inform both software and its documentation and user
assistance.

• Integration with testcases. Tutorials based on these
scenarios could be automatically executed to create
their accompanying samples, which simultaneously
tests the tutorials, tests any concepts and tasks they
include, and makes sure that the samples are current
with the version of the toolkit being tested.

• Integration with the user interface. Translatable
strings for user interface elements such as button names
and window titles could be authored as DITA resources
and then reused by DITA content as well as
transformed to software resource files. This would
mean that references to user interface labels are always
accurate and up-to-date. Hover help could be single-
sourced with the short descriptions of help topics,
providing progressive disclosure from the user interface
label to its hover help, to its F1 help, to complete
reference documentation.

• Integration with user feedback. As discussed to some
degree in [8], a flexible XML framework could allow
the validated incorporation of user feedback through
the form of self-directed FAQs or through more formal
channels from a technical support database of problem
reports and solutions.

• Integration with education. Educational materials
could be sourced from the same scenarios and tutorials
as the documentation and help, automatically
abstracting tasks into exercises and concepts into
bulleted summaries with speaker notes.

5. GOING FORWARD
DITA is an exercise in using technology to support best practices.
It is also an opportunity to promote these best practices as part of
the education and documentation efforts associated with the
architecture’s internal release. First we used best practices to
define the technology we wanted. Now we are using the
technology to help drive adoption of the best practices.

Going forward, there are even more opportunities presenting
themselves, both for a more completely supportive process within
the development of an information set, and across all the

information processes associated with software development and
education.

Ultimately, DITA can be a tool for capturing and driving best
practices, not just within information development but across the
entire information lifecycle.

The challenge will be to realize these opportunities while keeping
the architecture flexible enough to allow evolution in the best
practices it supports, and open enough to keep the architecture
accountable to its users.

6. REFERENCES
[1] Priestley, M., Schell, D. Specialization in DITA: technology,

process, and policy. ACM SIGDOC 2002 Conference
Proceedings

[2] http://xml.coverpages.org/ni2003-04-25-a.html

[3] Priestley, M. DITA XML: a reuse by reference architecture
for technical documentation. ACM SIGDOC 2001
Conference Proceedings

[4] Day, D., Hennum, E., Hunt, J., Priestley, M., Schell, D. An
XML Architecture for Technical Documentation: The
Darwin Information Typing Architecture. STC 2003
Conference Proceedings

[5] Rational Unified Process.
http://www.rational.com/products/rup/index.jsp

[6] Rosson, M. B., Carroll, J. M. Usability Engineering:
Scenario-based development of human-computer interaction.
Academic Press 2002

[7] Priestley, M., Utt, M. H. A unified process for software and
information development. ACM/IEEE IPCC/SIGDOC 2000
Conference Proceedings

[8] Priestley, M., Berglund, E. Open-Source Documentation: in
search of user-driven, just-in-time documentation. ACM
SIGDOC 2001 Conference Proceedings

[9] Paris, C., Vander Linden, K., Lu, S. Automated knowledge
acquisition for instructional text generation. ACM SIGDOC
2002 Conference Proceedings

Trademarks

IBM is a trademark or registered trademarks of International
Business Machines Corporation in the United States, other
countries, or both

Microsoft is a registered trademark of Microsoft Corporation in
the United States, other countries, or both.

Other company, product or service names may be trademarks or
service marks of others.

51

