d
c
-
o
£
e
)
o
O
X
)
o
—
—
=
X
(@)
=
=
©
=

Dave Pawson

O’REILLY"

XSL-FO

Dave Pawson

O'REILLY"

Beijing - Cambridge - Farnham - Koln - Paris - Sebastopol - Taipei - Tokyo

CHAPTER 6
Inline Elements

In this chapter, we will cover what is perhaps the simplest area of XSL-FO: styling
the inline content. This is analogous to the word processor’s application of bold or
italics to particular words.

Inline content can be defined as content that, when formatted, does not extend
beyond the formatted line extent, i.e., it does not wrap into a new line. Typical source
content that may need marking for fo:inline might include content that needs to be
emphasized for a specific purpose, such as emphasis, computer commands, instruc-
tions, and cross-references. The formatted output might be italicized, underlined,
boldface, or hyperlinked. Other visual forms of emphasis include font changes and
nontext output, such as inline graphics, horizontal lines, or dot leaders. These are all
possible within fo:inline. It’s sometimes difficult to decide between using fo:block
and fo:inline. In such cases, if the content in question falls into a typeset line of con-
tent, use the fo:inline tag, otherwise, use fo:block.

A simpler view of an inline element is as a wrapper to apply style to phrases or indi-
vidual words. A word of advice: if you use a style change, make a note of it and stick
to it. If one specific font is used to represent a certain type of content, stick to it. Try
the options out on sample input and find a scheme that is identifiable by the schema
in use, and produces output that looks cohesive. A good example of this is provided
in Donald E. Knuth’s The TEXbook (Addison Wesley). Throughout the book, two
symbols are used. The first symbol is similar to a bend roadsign; the other has two
such symbols, referring to a dangerous bend! This simple scheme is used regularly
and produces a nice visual reminder.

Content

The content model for fo:inline is rather loose, permitting both other inline ele-
ments and block elements. It makes sense to restrict content to #PCDATA plus other
inlines elements, in most cases. I'll leave it to you to experiment. If you start out with

112

this principle, you will break it, though usually for good reason, and emerge with
greater understanding. I only ask that you consider why you are breaking it.

Inline Styling

Starting with the familiar, the stylesheet snippet of bullet 2 in Examples 6-1 and 6-2
demonstrates basic fo:inline usage.

Example 6-1. Inline example, XML source

<para>Some base content, containing an inline warning,
<emphasis role="warning">Do not touch blue paper</emphasis>,
a fairly straightforward piece requiring emphasis
<emphasis>TEXT</emphasis>, and some instructions which
require presenting in a different way, such as
<instruction>Now light the blue paper</instruction>.

</para>

Example 6-2. Inline example, stylesheet snippet

<xsl:template match="para">
(1] <fo:block>
<xsl:apply-templates/>
</fo:block>
</xsl:template>

<xsl:template match="emphasis[@role="warning']">
® <fo:inline background-color="red">Warning:</fo:inline>
<xsl:apply-templates/>
</xsl:template>

<xsl:template match="emphasis[not(@role) or @role='']">
(3] <fo:inline font-weight="bold">
<xsl:apply-templates/></fo:inline>
</xsl:template>

<xsl:template match="instruction">
@ <fo:inline font-style="italic">
<xsl:apply-templates/>
</fo:inline>
</xsl:template>
©® This is the containing block.
® The warning generates literal content using an inline.
® The simple emphasis tag generates bold content.
© The instruction tag generates italics.
This provides simple inline usage, probably the most common requirement, with the
output as shown in Figure 6-1.

Inline Styling | 113

Some base content, containing an inline warning, FiERURENL© not touch blue paper, a fairly
straightforward piece requiring emphasis TEXT, and some instructions which require presenting ina
different way, such as Now light the blue paper.

Figure 6-1. Inline output example

Other straightforward styles that may be applied in this manner are the font-style
attributes of normal, italic, oblique, and backslant; the font-weight attributes,
which split into relative values, are normal, bold, bolder, lighter, as well as the abso-
lute values of 100, 200, 300, 400, 500, 600, 700, 800, and 900. Decoration is applied
in the same way, using the text-decoration attribute of the fo:inline element.

The values for text-decoration are underline, overline, and line-through, which are
the affirmative requests to the formatter, requesting a line under, above, or through
the marked content, respectively. Each is effectively removed by the use of the no-
prefix, so that an inline with mixed underline can be produced, as in Example 6-3.
This nests inline content to (potentially) reduce the level of markup needed.
Figure 6-2 shows the text decoration being switched on and off.

Example 6-3. Text decoration

<fo:block text-decoration="underline">Underline on for all
but one <fo:inline text-decoration="no-underline">word</fo:inline>
of the sentence.

</fo:block>

Tnderline on for all but one word of the sentence.

Figure 6-2. Text decoration being switched on and off

In Figure 6-2, the containing block has the underline property set; the contained
inline turns it off for the single word.

The ability to select either the affirmative requirement (underline) or its inverse (no-
underline) is more readily appreciated when transforming from XML. The utility of
the specification becomes apparent only when you need it.

Other values for text-decoration are overline and line-through. This is very useful
when marking up content for insertion and deletion in a manuscript. New content
could be shown with either the background or the content colored and with content
set for deletion shown as strike-through.

When decorating content, each case should be judged on its merits and future use. If
you’re designing stylesheets for a general purpose schema, it might be wise to allow
for both cases, such that either may be applied. Which one you choose should be
determined more by the case than by any rules. This is where your understanding of
blocks and line layout will be tested.

114 | Chapter6: Inline Elements

text-shadow is available as an extended compliance option for text decoration; it is
applicable to all elements, though it’s most appropriate on inline content. It takes
two length specifications and a color attribute. It is not widely implemented. The
two lengths specify the horizontal and vertical offset, and the color specifies the color
to be used for the shadow, as in Example 6-4. The first length is the horizontal offset
from the text, the second, the vertical. Negative values indicate an offset left and up,
positive values, down and right

Example 6-4. Text shadow effect

<fo:block>
<fo:inline
text-shadow="red 1mm 1mm">
Text with a red shadow down and to the right by imm
.</fo:inline>
</fo:block>

Inapplicable Properties

Certain properties appear (to me) to be largely inapplicable to inlines. I hate to make
general rules, because it’s all too likely that they will be broken, but it is a reasonable
starting point. Borders are of less use inline than they are in blocks. Padding pro-
vides rather ugly whitespace around an inline and is best suited to blocks. Equally,
breaks are best left to the blocks. This is not the way to terminate a page or column.
Finally, whitespace preservation properties do not apply to inlines.

Inline Containers

fo:inline-container is available as an inline wrapper for content with a different
writing mode to that of the bulk of the content. This matches the provision of a
block with a change in writing mode, this time for inline content. A simple example
is shown in Example 6-5. Note that the content of this element is a block.

Example 6-5. The use of fo:inline-container

<fo:block>
<fo:inline-container writing-mode="rl-tb">
<fo:block>
Some text with writing mode st to rl-tb.</fo:block>
</fo:inline-container>

</fo:block>

Inline Graphics

Sometimes the formatter may not provide what you want. A classic response to this
has been the use of graphics as a replacement. For example, it has been common

Inline Styling | 115

practice to insert mathematical expressions into HTML as graphics. Another format-
ter might not have a glyph in the font you wish to use. XSL-FO provides a means of
including external graphics with fo:external-graphic, within the fo:inline element.
This can be used to provide graphic content that has the appearance of normal inline
content. A classic aspect of PDF that produces inaccessible content is the use of
graphics to replace the first letter of a word. When exported to provide plain text, of
course, the first letter is are omitted. Example 6-6 shows how you would obtain the
graphic.

Example 6-6. An inline graphic

<fo:inline id="1s1">The main
<fo:external-graphic src="url(images/image.png)"/> is
</fo:inline>

This form needs due care and attention because various facets tend to conspire against
it. First, the resolution of the surrounding content is likely to be higher than that of the
graphic. The graphic itself will need scaling and cropping to match the surrounding
text. XSL-FO has a property that aids with this aspect, permitting use of two proper-
ties that size the graphic with respect to the font in use, using something such as
Example 6-7.

Example 6-7. Scaled graphic

<fo:external graphic
content-height="1em"
content-width="1em"
src="url(images/image.png)
/>

Other uses of graphics are discussed further in Chapter 7.

The fo:instream-foreign-object has developed quite well to permit the use of vec-
tor graphics, due to the efforts and needs of the FOP group, who embedded Scalable
Vector Graphics (SVG) as a namespace-identified inclusion. This permits high-qual-
ity graphics, particularly line graphics, to be included as an integral element of a
high-quality print document. You can read more about SVG on the W3C site or in
SVG Essentials by David Eisenberg (O’Reilly).

Word and Letter Spacing

Both word and letter spacing are tasks for the formatter. XSL-FO provides both. The
letter-spacing property specifies spacing behavior between text characters. When a
length is specified, the value indicates inter-character space, in addition to the default
space between characters. Similarly, the word-spacing property indicates inter-word
space, in addition to the default space between words. See Example 6-8.

116 | Chapter6: Inline Elements

Example 6-8. Letter spacing

<fo:inline
letter-spacing="2mm">This is text with 2mm letter-spacing,</fo:inline>
<fo:inline word-spacing="1cm"> this has 1cm word spacing.</fo:inline>

Figure 6-3 is the result.

This 15 text with 2mm letter-spacing,
This has lem word spacing.
This has normal word and letter spacing

Figure 6-3. Character spacing

Other Styling Properties

The line-height property can emphasize certain content within a large surrounding
block of text, without other styling. This use of whitespace clearly outlines the con-
tent without otherwise distinguishing it. Note that if it is used within a block of con-
tent, the entire line will be laid out with the additional spacing. This is useful for
content that does not stretch over a line boundary, after which point it simply looks
strange. I find the percentage value most useful in this application, because it will
adjust to any changes in surrounding font size, being a percentage of the font size
itself.

The Horizontal Rule and Its Variants

The way a line is drawn in HTML is commonly known as the horizontal rule. XSL-
FO provides a more subtle way of producing the same effect. The uses of the fo:
leader element are generally decorative and might include breaks between sections
of a book, signature lines, dot leaders in a table of contents, or text spacing. fo:
leader is not allowed as a top-level element; it must be used within a block.

The basic, full-length line is shown in Example 6-9.

Example 6-9. Leaders for lines

<fo:block>

<fo:leader
leader-length="100%"
leader-pattern="rule"
rule-style="solid"
rule-thickness="0.1mm" color="black"/>

</fo:block>

00600

® Wrapper element
@® Length of the leader

Inline Styling | 117

® Its pattern
0 Its style
® How thick and what color the result should be

The length of the resulting line is a standard length specification. I’ve chosen per-
centage here. Any form of length range can be used.

The pattern is specified using the leader-pattern attribute, which accepts the follow-
ing options: space, rule, dots, use-content, and inherit. The pattern used in the
example is the rule option. The style of the rule (rule-style) can be one of the fol-
lowing: none, dotted, solid, double, groove, ridge, or inherit. Each provides a vari-
ant decoration.

The thickness of the leader is specified using a length specification on the rule-
thickness attribute. The example uses millimeters.

Note that the default for leader-length is 100% when a situation occurs where the
width of the content area is determined by something other than the content itself.
For example, when text-align-last is justify, the default rule-style is solid. In
these circumstances, use the following to get a full-width rule:

<fo:block text-align-last="justify">

<fo:leader leader-pattern="rule"/>

</fo:block>
A variation on this is to use two leader lines with a decorative character or graphic cen-
tered within the line. Figure 6-4 shows such an example, using a character from the
Zapf family and two leader lines on either side, each half slightly less than 50% wide.

+

Figure 6-4. Decorative rule

The various options for decorative characters are nearly self-explantory. The pattern to
be used is one from the selection space, rule, dots, or use-content. space uses the
space character; rule uses a plain line; dots produces the dot leaders often used in
lists; use-content produces a series of characters that are specified as actual content of
the fo:leader element. Example 6-10 shows an example of this, using the character o.

Example 6-10. Leader pattern example

<fo:leader leader-pattern="use-content" leader-length="60%">0</fo:leader>

The style of the rule is one from a selection list: none, dotted, solid, double, dashed,
groove, or ridge. Each selects a particular style of line. Figure 6-5 shows a variety of
these.

118 | Chapter6: Inline Elements

Style: solid, thickness: 1 pt
Style: dashed, thickness: 2 pt _ __ . — — — .
Style: dotted, thickness: 3 pt..ccccacnsnsnsmamsmamans.
Style: dotted, thickness: 12 pt. B B B BB
Style: double, thickness: 4 pt
Style: ridge, thickness: 5 pt

Style: groove, thickness: 6 pt p————
Style: none, thickness: 7 pt |End of leader

Figure 6-5. Line styles

The final use is the table of contents example shown in Example 6-11 and Figure 6-6.

Example 6-11. Table of contents usage

<fo:block
text-align-last="justify">Chapter 10
<fo:leader leader-pattern="dots" />Page 25</fo:block>

Chapter 10 i e PATE 25

Figure 6-6. Table of contents usage

This demonstrates that inline styling may also be applied to blocks. This styling
appears as a line of content, which is why it’s in this chapter. Note the use of the
text-align-last property, which ensures that the content is expanded to fill the
available block width.

Another use of fo:leader is to produce a blank space on a form for someone to fill in.
This makes use of the leader-pattern="space" and style="none" attribute settings,
with an appropriate length specification, and produces a blank space in which the
respondent can write. Note that if the font size is small, the line-height should be
adjusted to ensure sufficient space is left to hand-write a response. Another option
might be to use leader-pattern="dots" to provide a line on which to write, if the line
is surrounded by whitespace.

Line Layout

Within any individual line, there may be layout issues requiring resolution. Some of
these relate to block layout, such as those specific to first and last line layout; while
others are specific to inline content. Other issues may be a case of appropriate selec-
tion. Typical of this last group are cross-references, footnotes and their references,
and keeps and breaks.

Although covered in Chapter 9, I'll mention briefly the use of page numbers as typi-
cal inline content. The two aspects of this element, fo:page-number and fo:page-
number-citation, are not obvious. fo:page-number-citation creates a page number

Inline Styling | 119

reference. So when you want to talk about some material on another page, it
becomes a case of referencing the remote content and/or the page number on which
that content appears. The task of creating the page number is part of the formatting
stage; the task of creating the reference to the section is part of the transformation
stage. As in other such contexts, the use of ID values is a great help here. If you wish
to reference Chapter 6 on page 34, or the title of that chapter, then if its ID value is
known, it can be done easily in XSLT, using XSLT constructs and the fo:page-
number-citation element from the XSL-FO syntax. The XSLT function id(string)
takes a string value as a parameter, which is the ID needed, and returns the node-set
that contains that ID value. This can then be used to obtain, for example, the title of
the chapter using an XPath expression. The notable difference about fo:page-
number-citation is that the ID value is not an ID value in the source document, but
one in the intermediate document made up from the transform, such that the for-
matter has this information to determinine the page number on which this particular
content is laid out. The implications of this are that for any content having an ID
value in the source file, it is worthwhile generating an ID value on the derived block
or inline. This is done easily with a simple, named template that adds the ID value to
the block or inline only if the context node actually has an ID value. Such a tem-
plate, and its call, are shown in Example 6-12.

Example 6-12. 1D generation

<xsl:template match="p">

<fo:block>

<xsl:call-template name="gen-id">
<xsl:with-param name="id-val" select="@id"/>

</xsl:call-template>
<xsl:apply-templates/>

</fo:block>

</xsl:template>

<xsl:template name="gen-id">
<xsl:param name="id-val" select="@id"/>
<xsl:if test="$id-val">
<xsl:attribute name="id"><xsl:value-of
select="$id-val"/></xsl:attribute>
</xsl:if>
</xsl:template>

As an example of ID generation, consider the snippet of XML in Example 6-13.

Example 6-13. Cross-reference generation

<section id="sect1">
<head>Introduction</head>
<p>A plain paragraph</p>

<p id="referenced-para">A paragraph which is referenced,
hence has the id value.</p>

120 | Chapter6: Inline Elements

The section element is identifiable, and a particular paragraph is identified. Later on
in the document, we may see something similar to Example 6-14.

Example 6-14. Source XML example

<p>See <link target="sect1"/>
on page <pgref target="referenced-para"/>.</p>

Although single media, this shows the principles in use. The transformation require-
ment is to generate the head element contents in place of the link element and to
replace the pgref element with the page number on which that particular paragraph
is placed. The transform to execute this is shown in Example 6-15.

Example 6-15. Link usage

<xsl:template match="'section'>

<fo:block id='{@id}'>
<xsl:apply-templates/>

</fo:block>

</xsl:template>

<xsl:template match="para'>
<fo:block id='{generate-id()}'>
<xsl:apply-templates/>
</fo:block>

</xsl:template>

<xsl:template match="1ink">
<xsl:value-of select="id(@target)/head"/>
</xsl:template>

<xsl:template match="pgref">
<fo:page-number-citation ref-id="{@target}"/>
</xsl:template>

Note that because the ID value is copied across from the source XML document to
the transformed document, we can use it as the target of page-number-citation.

Keeping Line Content Together

Some applications require you to keep a block of content within one line. The line
wrapping options in XSL-FO will let you know about this, but it’s up to the
stylesheet author to manage it. The keep property keep-together.within-line
attribute can be set to always to control wrapping. Note that if content cannot be fit-
ted to the line, the overflow property can be used. If it is set to error-if-overflow,
the formatter will report the error.

Inline Styling | 121

Other Uses

Some uses of inlines may not be obvious. For example, lists may be built using lead-
ers with a fixed length to provide the spacing between the list marker and the list
item content. Example 6-16 shows an example of this. There may be occasions when
you simply need the line format that a list provides, but you don’t want the block
layout of a list.

Example 6-16. Leaders for lists

<fo:inline>
<fo:character
character="8•" font-family="ZapfDingbats"/> <fo:leader
leader-pattern="space"
leader-length="1.5cm"/> The list item contents</fo:inline>

Here, I have used the bullet character, U+2022, a fixed-length leader, and then the
element content. Note that this is viable only for lists with short content because
wrapping will not occur as in a proper list.

Page Headers

One of the requirements of a page header is often to contain two or three items.
These might be the page number, the running header, and perhaps the book title. A
number of options are available to do this, although the specification does not
address this need directly. Unfortunately, one of these options involves implementa-
tion dependency. The end result of this is a loss of portability. The layout you test
with one implementation may not work in another.

Use the text-align-last property of a block to stretch the block over the full line.
The specification does not say where this stretching should take place (assuming you
have content that can be stretched). To quote the recommendation, “The algorithm
for resolving the adjusted values between word-spacing and letter-spacing is User
Agent dependent.” Thus, one implementation may stretch the space between words,
and another may stretch the character spacing. Additionally, this is fraught with dan-
ger if the actual content is unknown and results in unequal content. Given these
caveats, [have provided examples that can provide this layout. In Example 6-17, 1
have used leaders to provide the stretchable spaces. Try them out with your format-
ter, and be careful.

Example 6-17. Stretchable spaces for three area headers

<fo:block text-align-last="justify">
<fo:inline> start1 </fo:inline>
<fo:inline> center </fo:inline>
<fo:inline> end </fo:inline>
</fo:block>

122 | (Chapter6: Inline Elements

Example 6-17. Stretchable spaces for three area headers (continued)

<fo:block text-align-last="justify">
<fo:inline letter-spacing="opt" word-spacing="0pt"> start2 </fo:inline>
<fo:inline letter-spacing="opt" word-spacing="0pt"> center </fo:inline>
<fo:inline letter-spacing="opt" word-spacing="opt"> end </fo:inline>
</fo:block>

<fo:block text-align-last="justify">
<fo:inline> start3 </fo:inline>
<fo:leader />
<fo:inline> center </fo:inline>
<fo:leader />
<fo:inline> end </fo:inline>
</fo:block>

<fo:block text-align-last="justify">
<fo:inline> start4 longer </fo:inline>
<fo:leader />
<fo:inline> center </fo:inline>
<fo:leader />
<fo:inline> end </fo:inline>
</fo:block>

<fo:list-block>
<fo:list-item>
<fo:list-item-label>
<fo:block id="A" text-align="left">start5</fo:block>
</fo:list-item-label>
<fo:list-item-body>
<fo:list-block>
<fo:list-item>
<fo:list-item-label>
<fo:block id="B" text-align="center">Center</fo:block>
</fo:list-item-label>
<fo:list-item-body>
<fo:block id="C" text-align="right">Right</fo:block>
</fo:list-item-body>
</fo:list-item>
</fo:1ist-block>
</fo:list-item-body>
</fo:list-item>
</fo:1ist-block>

The first part of the example uses whitespace as the stretchable item; the second part
uses word spacing—this guarantees that only spaces between inlines are expanded
(inlines with explicitly specified letter-spacing and word-spacing are not subject to
justification). The third part of the example uses a leader; the fourth part abuses the
list structure. Note the impact of the longer start direction in the third part of the
example on the centered area.

OtherUses | 123

Stretching the block can also be achieved within an inline using two properties of
inlines and leaders. First, the balanced spacing is achieved using a leader with its pat-
tern set to space, and the inline element uses the text-align-last attribute set to
justify. This spreads the three elements out over the inline giving the desired effect.
Using fo:block to replace the fo:inline will provide the full page width, as might be
used for a header or footer with content at the left, right, and center of the header.
Example 6-18 shows how this spreading is accomplished.

Example 6-18. Header justification

<fo:inline text-align-last="justify">
Left-hand text
<fo:leader leader-pattern="space" />
Centre Text using inlines
<fo:leader leader-pattern="space" />
Right-hand text
</fo:inline>

This produces output shown in Figure 6-7. The width depends on the content.

Left-hand text Certre Text using inlines Right-hand text

Figure 6-7. Header justification

An alternative, when the content of each header area is unequal, is to misuse the list.
Misuse is probably too strong a term. One XSL Working Group member suggested a
better title might be side-by-side formatting objects and provided Example 6-19,
which shows a static-content example that enables unbalanced content to be nicely
formatted in three areas, with all three correctly placed. This is written to be used as
a callable template, with a parameter (listed here as a variable $header-width) for the
actual header width.

Example 6-19. Lists in headers

<xsl:template name="head1'>
<xsl:param name='header-width'>

<fo:static-content flow-name="xsl-region-before">

<!-- header-width is the width of the full header in picas --»>

<xsl:variable name="header-width" select="36"/>

<xsl:variable name="header-field-width">

<xsl:value-of select="$header-width * 0.3333"/><xsl:text>pc</xsl:text>

</xsl:variable>

<fo:list-block font-size="8pt" provisional-label-separation="o0pt">
<xsl:attribute name="provisional-distance-between-starts">

<xsl:value-of select="$header-field-width"/>

</xsl:attribute>

124 | Chapter6: Inline Elements

Example 6-19. Lists in headers (continued)

<fo:list-item>
<fo:list-item-label end-indent="label-end()">
<fo:block text-align="left">
<xsl:text>The left header field which is long </xsl:text>
</fo:block>
</fo:list-item-label>
<fo:list-item-body start-indent="body-start()">
<fo:list-block provisional-label-separation="opt">
<xsl:attribute name="provisional-distance-between-starts">
<xsl:value-of select="$header-field-width"/>
</xsl:attribute>
<fo:list-item>
<fo:list-item-label end-indent="label-end()">
<fo:block text-align="center">
Page - <fo:page-number/>
</fo:block>
</fo:list-item-label>
<fo:list-item-body start-indent="body-start()">
<fo:block text-align="right">
<xsl:text>short right</xsl:text>
</fo:block>
</fo:1list-item-body>
</fo:list-item>
</fo:list-block>
</fo:1list-item-body>
</fo:list-item>
</fo:list-block>
</fo:static-content>
</xsl:template>

This produces the output shown in Figure 6-8, illustrating the balancing effect.

The left header fleld which ie Jong Fage-1 The ghort fight

Figure 6-8. Header justification 2

Inlines are only presented here in terms of what is practical and what is likely to be
needed. Many more properties are covered elsewhere in this book that can be used
with inlines.

As stated earlier, the overlap between inlines and blocks is significant. Most of the
properties available with inlines are also available with blocks, so use them as you
need them.

OtherUses | 125

	 Content
	Inline Styling
	Inapplicable Properties
	Inline Containers
	Inline Graphics
	Word and Letter Spacing
	Other Styling Properties
	The Horizontal Rule and Its Variants
	Line Layout
	Keeping Line Content Together

	Other Uses
	Page Headers

