

PML Core Specification 1.0
Auto-ID Center Recommendation 15 September 2003

This version:
 http://develop.autoidcenter.org/

Latest version:
 http://develop.autoidcenter.org/

Previous version:

Authors:
 Christian Floerkemeier (Auto-ID Center Lab Switzerland) floerkem@inf.ethz.ch

 Dipan Anarkat (Uniform Code Council) danarkat@uc-council.org

 Ted Osinski (Uniform Code Council) tosinski@uc-council.org

 Mark Harrison (Auto-ID Center Lab U.K.) mgh12@cam.ac.uk

Copyright ©2003 Auto-ID Center, All Rights Reserved.

Abstract
This report documents the core part of the physical markup language (PML Core). It
details the scope of PML Core, its relation to the physical markup language, usage
scenarios, requirements, design decisions and XML schemas and sample instance
documents.

Status of this document
This section describes the status of this document at the time of its publication. Other
documents may supersede this document. The latest status of this document series is
maintained at the Auto-ID Center.

This document has been reviewed by Auto-ID Center Members and other interested
parties and has been endorsed by the Director of Auto-ID Center. It is a stable document
and may be used as reference material or cited as a normative reference from another
document.

Comments on this document should be sent to the Auto-ID Software Action Group
mailing list sag-pml@develop.autoidcenter.org.

Table of Contents
PML Core Specification 1.0 ... 1

Auto-ID Center Recommendation 15 September 2003... 1

This version: .. 1

Latest version:.. 1

Previous version: ... 1

Authors: ... 1

1 PML Core Introduction .. 5

1.1 Background Information.. 5

1.2 Document Conventions ... 5

1.3 Scope of this document.. 6

1.4 PML Objectives and Scope ... 6

1.5 PML Core .. 7

1.5.1 Objectives and Scope.. 7

1.5.2 Motivation... 8

1.5.3 Usage... 8

1.6 Document Overview.. 9

1.7 Audience.. 9

2 EPC System Network Architecture.. 9

2.1 EPC Network Software Architecture Components ... 10

2.1.1 Readers.. 10

2.1.2 Savant.. 11

2.1.3 EPC Information Service .. 11

2.1.4 ONS – Object Name Service .. 11

2.1.5 ONS local cache.. 11

2.2 EPC Network Data Standards.. 12

2.2.1 Electronic Product Code (EPC) .. 12

2.2.2 Physical Markup Language (PML)... 12

2.3 EPC Network Architecture – across Enterprises ... 13

3 PML Core Requirements.. 14

3.1 Overall description and usage scenarios.. 14

3.2 General guidelines ... 15

3.2.1 Use of existing standards .. 15

3.2.2 Rigidity ... 15

3.2.3 Simplicity.. 15

3.2.4 No assumption about underlying transport protocol..................................... 15

3.2.5 Human readability... 16

3.2.6 Availability of tools for schema validation language and authoring 16

3.2.7 Enable maximum component reuse .. 16

3.2.8 80/20 rule .. 16

3.2.9 Tool use and support ... 16

3.2.10 Interchange use .. 17

3.3 Data Requirements .. 17

3.3.1 Data captured by RFID readers... 17

3.3.2 Data captured by non-RFID identification sensors....................................... 17

3.3.3 Data generated by sensors mounted on RFID tags 18

3.3.4 Data captured by fixed wired sensors that monitor physical properties 18

3.3.5 Hierarchy of sensor observations.. 18

3.3.6 Representation of generic sensor observations ... 19

3.3.7 Representation of sensor specific observations .. 19

3.3.8 Openness for different kinds of sensor observations 19

3.3.9 Represent tags with and without memory... 20

3.3.10 Make the EPC the default identification scheme....................................... 20

4 PML Core Schema Architecture .. 21

4.1 PML Design Methodology Overview ... 21

4.2 PML Namespace design guidelines... 22

4.2.1 Namespace Hierarchy ... 22

4.3 PML Core File Structure ... 24

5 PML Core Specification Elements... 26

5.1 Overview ... 26

5.1.1 Sensor Element ... 29

5.1.2 Observation Element... 30

5.1.3 Data Element... 31

5.1.4 Tag Element .. 33

5.1.5 ID Element .. 36

6 APPENDIX .. 39

6.1 XML Schemas ... 39

6.1.1 PmlCore.xsd.. 39

6.1.2 Identifier.xsd ... 42

6.2 XML Instance files .. 43

6.2.1 RFID Reader and Tags.. 43

6.2.2 RFID Reader and Tags with Data... 44

6.2.3 RFID Reader and Tags with mounted Sensors ... 45

6.2.4 Sensor and Data .. 45

6.3 Identifier representation within PML Core ... 46

7 References .. 48

1 PML Core Introduction

1.1 Background Information
This document draws from the previous work at the Auto-ID Center, and we recognize
the contribution of the following individuals: David Brock, Dan Engels, Robin Koh, Tim
Milne, Christian Floerkemeier, Brendon Lewis, Yun Kang.

The following papers capture the contributions of these individuals:

� David L. Brock, Timothy P. Milne, Yun Y. Kang & Brendon Lewis, "The
Physical Markup Language," 2001. (See
http://www.autoidcenter.org/publishedresearch/MIT-AUTOID-WH-005.pdf)

� David L. Brock, The Physical Markup Language - A Universal Language for
Physical Objects

1.2 Document Conventions
The keywords MUST, MUST NOT, REQUIRED, SHALL, SHALL NOT, SHOULD,
SHOULD NOT, RECOMMENDED, MAY and OPTIONAL, when they appear in this
document, are to be interpreted as described in [RFC 2119] as quoted here:

• MUST: This word, or the terms "REQUIRED" or "SHALL", means that the
definition is an absolute requirement of the specification.

• MUST NOT: This phrase, or the phrase "SHALL NOT", means that the definition
is an absolute prohibition of the specification.

• SHOULD: This word, or the adjective "RECOMMENDED", means that there
may exist valid reasons in particular circumstances to ignore a particular item,
but the full implications must be understood and carefully weighed before
choosing a different course.

• SHOULD NOT: This phrase, or the phrase "NOT RECOMMENDED", means
that there may exist valid reasons in particular circumstances when the particular
behavior is acceptable or even useful, but the full implications should be
understood and the case carefully weighed before implementing any behavior
described with this label.

MAY: This word, or the adjective “OPTIONAL”, means that an item is truly optional.
One vendor may choose to include the item because a particular marketplace requires it
or because the vendor feels that it enhances the product while another vendor may omit
the same item. An implementation, which does not include a particular option, MUST be
prepared to interoperate with another implementation, which does include the option,
though perhaps with reduced functionality. In the same vein an implementation, which
does include a particular option, MUST be prepared to interoperate with another
implementation, which does not include the option (except, of course, for the feature the
option provides).

1.3 Scope of this document
This report documents the core part of the physical markup language (PML Core). It
details the scope of PML Core, its relation to the physical markup language, usage
scenarios, requirements, design decisions and XML schemas and sample instance
documents.

1.4 PML Objectives and Scope
The goal of the “Physical Markup Language” (PML) is to provide a collection of
common, standardized vocabularies to represent and distribute information related to
EPC Network enabled objects.

Examples of the kind of content that might be included are observations by sensors such
as RFID reads, configuration files for infrastructure components such as RFID readers or
e-commerce documents featuring EPC data such as advanced shipping notices containing
EPCs of the items shipped (see Figure 1). Although these different vocabularies might
have diverse contents, they will be using naming and design rules common to the PML.

The PML vocabularies provide the XML definitions of the data exchanged between
components in the EPC Network system. XML messages interchanged in the systems
should be instantiated from these PML schemas.
The PML development is part of the Auto-ID Center’s effort to develop standardized
interfaces and protocols for the communication with and within the Auto-ID
infrastructure.

PML does not attempt to replace existing vocabularies for business transactions or any
other XML application libraries, but complements these by defining a new library
containing definitions about EPC Network system related data.

 PML
A collection of vocabularies to represent information

related to EPC Network enabled objects

SAVANT Extension
Vocabulary to standardize

the communication
between the Savant and
enterprise applications

Other vocabulary
To be defined

Other vocabulary
To be defined

PML CORE
Vocabulary to

represent data captured
by the EPC Network

Figure 1 Relationship between PML and PML Core

1.5 PML Core

1.5.1 Objectives and Scope
The purpose of the core part of the physical markup-language (PML Core) is to provide a
standardized format for the exchange of the data captured by the sensors in an Auto-ID
infrastructure, e.g. RFID readers.

PML Core provides a set of schemas that define the interchange format for the
transmission of the data values captured. These data entities might be accessed directly
from the sensor, or from data routers and data stores such as the Savant or the EPC
Information Service that distribute the captured data.

PML Core focuses on observables - physical properties and entities that are capable of
being observed or measured by a sensor - rather than the observational and performance
characteristics of the individual sensors or the interpretation of the observed values.

Any possible interpretation of these raw data is handled by other vocabularies under the
PML umbrella.

PML Core is one of the vocabularies in the collection of vocabularies under the PML
umbrella (see Figure 1).

1.5.2 Motivation
It is believed that by focusing on what is unique to Auto-ID we can provide a vocabulary
that suits the needs of the Auto-ID community and at the same time avoids reinventing
the wheel by defining a new vocabulary for elements that are already defined in existing
business standards such as UBL, EAN.UCC, RosettaNet® and many more (see Technical
Memo: Physical Mark-Up Language Update by Christian Floerkemeier and Robin Koh
MIT-AUTOID-TM-006 for more details). PML Core hence focuses on providing a
flexible framework to represent data captured by sensors in the EPC Network.

1.5.3 Usage
Messages based on the PML Core schema can be exchanged between any two XML
enabled systems in the EPC Network. Typically the information exchange based on the
PML Core schema will occur between Savant and the EPC Information Service and/or
other enterprise applications. This does not preclude other opportunities for usage of the
PML Core schema. Any other industry vertical or organization with requirements that
match the PML Core model may make use of it by importing the schema into their
specific XML schema or application. Tool support based on the PML schema may be
another such opportunity. In general we can say that PML Core messaging can be
accomplished between any 2 systems capable of XML messaging.

System B

PML
Core
Schema

XML
Parser

XML Messaging

PML
Core
Messages

PML Core Messaging

System A

PML
Core
Schema

XML
Parser

XML Messaging

Figure 2 PML Core Messaging

PML
Core
Schema

Industry
specific
and other
schemas

Tools,
Applications,
etc ..

uses

uses

uses

PML Core Schema Usage

Figure 3: PML Core Schema Usage

1.6 Document Overview
Section 2 of this document contains a general introduction to the various components of
the EPC Network and how they relate to PML Core. Section 3 lists the features of PML
Core needed to fulfill the requirements and to adequately represent the data captured by
the EPC Network. This section contains general guidelines as well as specific data
features required. Section 4 introduces the PML schema architecture and in Section 5
details about the sensor model and the specification of the various elements are provided.
The Appendix is comprised of the XML Schemas and XML instances.

1.7 Audience
Technical managers and developers are considered to be the primary audience of this
document.

2 EPC System Network Architecture
Radio Frequency Identification is a technology used to identify, track and locate assets.
The vision that drives the developments at the Auto-ID Center is the universal unique
identification of individual items. The unique number, called EPC (electronic product
code) will be encoded in an inexpensive Radio Frequency Identification (RFID) tag. The

EPC Network will also capture and make available (via Internet and for authorized
requests) other information that pertains to a given item to authorized requestors.

2.1 EPC Network Software Architecture Components
The EPC Network Architecture as in Fig. 4 shows the high-level components of the EPC
Network.

 Figure 4: EPC Network Architecture: Components and Layers
These functional components from the figures above are described in the sections below.

2.1.1 Readers
Readers are devices responsible for detecting when tags enter their read range. They may
also be capable of interrogating other sensors coupled to tags or embedded within tags.

The Auto-ID Reader Protocol Specification 1.0 defines a standard protocol by which
Readers communicate with Savants and other hosts. The Savant also has an “adapter”
provision to interface to older readers that do not implement the Auto-ID Reader
Protocol.

2.1.2 Savant
Savant is “middleware” software designed to process the streams of tag or sensor data
(event data) coming from of one or more reader devices. Savant performs filtering,
aggregation, and counting of tag data, reducing the volume of data prior to sending to
Enterprise Applications. The Auto-ID Savant Specification 1.0 defines the working of
Savant, and the interface to Enterprise Applications.

2.1.3 EPC Information Service
The EPC Information Service makes EPC Network related data available in PML format
to requesting services. Data available through the EPC Information Service may include
tag read data collected from Savant (for example, to assist with object tracking and
tracing at serial number granularity); instance-level data such as date of manufacture,
expiry date, and so on; and object class-level data such as product catalog information.
In responding to requests, the EPC Information Service draws upon a variety of data
sources that exist within an enterprise, translating that data into PML format. When the
EPC data is distributed across the supply chain, an industry may create an EPC Access
Registry that will act as a repository for EPC Information Service interface descriptions.
The Auto-ID EPC Information Service Specification 1.0 defines the protocol for
accessing the EPC Information Service.

2.1.4 ONS – Object Name Service
The Object Name Service provides a global lookup service to translate an EPC into one
or more Internet Uniform Reference Locators (URLs) where further information on the
object may be found. These URLs often identify an EPC Information Service, though
ONS may also be used to associate EPCs with web sites and other Internet resources
relevant to an object.

ONS provides both static and dynamic services. Static ONS typically provides URLs for
information maintained by an object’s manufacturer. Dynamic ONS services record a
sequence of custodians as an object moves through a supply chain.

ONS is built using the same technology as DNS, the Domain Name Service of the
Internet. The Auto-ID Object Name Service Specification 1.0 defines the working of
ONS and its interface to applications.

2.1.5 ONS local cache
The local ONS cache is used to reduce the need to query the global Object Name Service
for each object which is seen, since frequently-asked / recently-asked values can be
stored in the local cache, which acts as the first port of call for ONS type queries. The
local cache may also manage lookup of private internal EPCs for asset tracking. Coupled
with the local cache will be registration functions for registering EPCs with the global
ONS system and with a dynamic ONS system for private tracking and collaboration
within the supply chain seen by each unique object.

2.2 EPC Network Data Standards
The operation of the components of the EPC Network is subject to data standards that
specify the syntax and semantics of data exchanged among components.

2.2.1 Electronic Product Code (EPC)
The Electronic Product Code is the fundamental identifier for a physical object. The
Auto-ID Electronic Product Code Data Specification 1.0 defines the abstract content of
the Electronic Product Code, and its concrete realization in the form of RFID tags,
Internet URIs, and other representations.

2.2.2 Physical Markup Language (PML)
The Physical Mark-Up Language (PML) is a collection of common, standardized
XML vocabularies to represent and distribute information related to EPC Network
enabled objects. The PML standardizes the content of messages exchanged within the
EPC network. It is, therefore, part of the Auto-ID Center’s effort to develop standardized
interfaces and protocols for the communication with and within the Auto-ID
infrastructure. The core part of the physical mark-up-language (PML Core) provides a
standardized format for the exchange of the data captured by the sensors in the Auto-ID
infrastructure, e.g. RFID readers. The Auto-ID PML Core specification 1.0 defines the
syntax and semantics of PML Core.

2.3 EPC Network Architecture – across Enterprises

Figure 5: EPC Network Architecture: across Enterprises

3 PML Core Requirements
The purpose of this section is to collect, analyze and define the high-level needs and
features of PML Core. This requirement section focuses on the capabilities needed by
stakeholders and target users and why these needs exist. The details of how the core
physical mark-up language fulfills these needs and the design decisions made are detailed
in the later sections of this document.

3.1 Overall description and usage scenarios
The PML Core vocabulary should provide the payload mark-up of sensor data
communication between:

• A Savant/EPC Information Service and an external application

• Savants attached to individual sensors and Savants that aggregate information

• A sensor (such as an RFID reader) and a Savant,
if the processing capabilities of the components allow for an XML based information
interchange.

It is supposed to be used as the format for any interchange of the captured data with and
within the Auto-ID infrastructure, while being agnostic about how the data are stored or
transported.

The following sections outline how PML Core can be used in conjunction with the other
EPC Network components explained in the previous section:

RFID readers and other AIDC technologies (such as bar code readers)
The RFID readers and other AIDC technologies detect and identify objects and as such
generate the EPC data. RFID readers can use PML Core to describe this content with a
standard vocabulary for the distribution of the captured data.

Savant
The Savant is the “middleware” of the Auto-ID technology responsible for data
processing, routing and filtering. It can make use of the PML Core vocabulary to mark-up
captured data it has received from EPC Network sensors before the data are distributed to
other entities using the transfer routing protocol of choice.

EPC Information Service
The EPC Information Service is the “point of query” for external applications that need to
query EPC Network related data. If the queries relate to data captured by the EPC
network (e.g. RFID reads) the response should be marked up using the PML Core
vocabulary.

External custom applications
PML Core language provides the common syntax for the data captured by the EPC
Network and received by these applications.

The physical markup language standard makes no recommendations on how the data
exchanged are stored in the various components. A Savant or the EPC information
service for example does not necessarily need to store or process data in PML Core
format, since PML Core should only be used to mark-up sensor data, when they are
exchanged with other nodes in the EPC network.

3.2 General guidelines

3.2.1 Use of existing standards
Description: Using existing standards to describe and uniquely define individual entities
such as date, time is recommended whenever applicable. The requirement to use existing
standards also applies to the appropriate choice of naming and design rules and to the
choice of a particular schema architecture.

Rationale: Alignment with existing standards will ensure speed of development,
maximum interoperability and ease of long-term maintenance. It also ensures that the
focus and scope of the PML Core development does not creep to include features that are
not unique to Auto-ID and are already covered by other efforts.

3.2.2 Rigidity
Description: The language should be described in a way that the document structure and
the content are constrained.

Rationale: Using a rigidly specified language allows for the use of parsers that check the
validity of the document and its contents. This should prevent the sort of problems seen
with HTML, which did not encourage strict adherence to the syntax, leaving it up to the
browser author to decide which violations of syntax to accept.

3.2.3 Simplicity
Description: Simplicity means that the use and implementation of the language is
straightforward.

Rationale: To encourage the adoption of the PML Core language and the Auto-ID
technology the PML language should be as simple and expressive as possible.

3.2.4 No assumption about underlying transport protocol
Description: During the design and implementation no specific transport protocol that
carries the data from one node to another should be assumed.

Rationale: Making no assumption about the underlying transport protocol allows us to
pick an appropriate transport protocol at a later stage without being constraint by our
initial choice for the design and implementation of PML Core.

3.2.5 Human readability
Description: By human readability it is meant that the semantics of data fields are not
made less obvious by choosing cryptic names.

Rationale: The rationale for human readability is that it increases the learning curve and
simplifies the debugging process. It is common practice in today’s XML standards
development. The disadvantage of human readability and expressive names is that more
data have to be transferred. It is however believed that these bandwidth savings are not
large enough to justify the use of cryptic tag names.

3.2.6 Availability of tools for schema validation language and
authoring

Description: To support the use of PML Core the user will need to rely on tools to author
files in the specified syntax and validate its content against the schema of the language.

Rationale: Without support tools the adoption of PML is endangered because of lacking
vendor support.

3.2.7 Enable maximum component reuse
Description: The language should be designed in such a way that the individual
components can be reused in different context settings.

Rationale: Designing with component reuse in mind the PML Core building blocks can
be reused in a context that might not be envisioned during the initial design.

3.2.8 80/20 rule
Description: The design of PML Core should provide 20% of the features that
accommodate 80% of the needs.

Rationale: As mentioned above PML Core should have a simple design. By including
special needs that only a very few users require, the vocabulary would become rather
complex and difficult to use.

3.2.9 Tool use and support
Description: PML Core should make no assumption about tools for creation,
management, storage or presentation being available.

Rationale: To ease adoption of the PML Core vocabulary we should not restrict its usage
by relying on specific tools to create, manage or store the data.

3.2.10 Interchange use
Description: PML Core is intended for interchange and application use. It should not
make any assumptions or recommendations about how the data are actually stored.

Rationale: The goal of PML Core is to standardize the mark-up of data captured by the
EPC Network. By assuming certain storage mechanism, e.g. XML databases, we would
unnecessarily endanger the adoption since parties implementing PML Core would be
forced to adopt those storage recommendations as well.

3.3 Data Requirements
The following section outlines the data types that were believed to be required in PML
Core.

3.3.1 Data captured by RFID readers
Description: RFID readers capture the electronic product code (in various
representations) stored on the individual Auto-ID compliant tags. PML Core should be
able to represent this sensing process, where a certain RFID reader, which is identified by
a unique identifier, observes/detects certain tags in its read range at a certain moment in
time. Each such observation might need to be labeled with the command that was issued
to trigger the observation and a unique label to reference a certain observation.

Rationale: RFID readers are one of the main components within the EPC Network. The
data they capture are routed within the EPC Network from readers to Savant, from one
Savant to other , from Savant to the EPC Information Service. To standardize the mark-
up of those captured data, PML Core needs to adequately represent the observed values.

The unique label is needed to reference certain observations once they are used to infer
certain high-level information e.g. certain RFID reads at a dock door are interpreted as
the arrival of a shipment. To reference the cause of this interpretation, it might be useful
to reference the actual observation.

The command that was issued e.g. to make the RFID reader scan its read range, is needed
because the reader itself might support a variety of measurement modes. To interpret the
observed value accordingly the command issued will help to provide further insights.

Priority: Must have

3.3.2 Data captured by non-RFID identification sensors
Description: Non-RFID identification sensors such as bar code scanners capture similar
information when compared to RFID identification sensors. The actual data requirements
are hence also similar to the ones mentioned for RFID readers.

Rationale: To ease adoption existing identification systems such as bar code scanners
should be supported.

Priority: Should have

3.3.3 Data generated by sensors mounted on RFID tags
Description: RFID tags may contain sensors, which observe certain environmental
phenomena and make the observed values available. The mounted sensors can for
example include temperature sensors, humidity sensors or weight sensors. Each sensor
observation requires its own timestamp and potentially the command that was issued to
make the measurement.

Rationale: Future generation of Auto-ID tags will contain active RFID tags that have on-
board sensors. To adequately represent the data these sensor capture PML Core needs to
be able to model the observed values.

Priority: Should have

3.3.4 Data captured by fixed wired sensors that monitor physical
properties

Description: Fixed wired sensors monitor the environment and provide data such as the
temperature at a certain location or the weight of a certain item. Similar to sensors
mounted on tags they observe a certain physical property and make the observed value
available. This value can be a single data entity, a vector of data entities or an aggregate
such an average, maximum or minimum.

The actual data requirements of this item are similar to the one for sensors mounted on
RFID tags (see previous requirement). It is nonetheless included to underline that we
need to consider data captured by wired and wireless sensors.

Rationale: Fixed wired sensors that monitor physical properties augment the data
captured by identification sensors such as RFID readers or Bar Code scanners. In order to
use this information together with location information provided by the identification
sensors, a standardized format to represent the observed physical properties is needed.

Priority: Should have

3.3.5 Hierarchy of sensor observations
Description: A hierarchy of sensor observations occurs, when an RFID tag with sensing
capabilities is present. The on-board sensors measure a certain physical property, store
the observed values and transmit them, once they are in the vicinity of an RFID reader
and the RFID tag is detected. Each observation/measurement needs its own timestamp so
that the individual observations can be distinguished once they are transmitted from the
active tag to the RFID reader.

Rationale: The hierarchy of sensor observations is a direct consequence of the availability
of sensors mounted on RFID tags.

Priority: Should have

3.3.6 Representation of generic sensor observations
Description: Generic sensor observations do not indicate the semantics of the observed
data. Consider a particular RFID reader, which makes the observed data, which might
include collisions on the air interface, CRC errors and the EPCs of the tags detected in
hex notation, available as a byte array. Rather than representing the observed value in an
expressive format where it is evident that certain tags are detected and that collisions
occurred, the availability of generic sensor observations allows the sensor to report its
observation as a data field (“ a data blob”), whose semantics can only be accessed by
referring to additional documentation provided by the sensor.

Rationale: The representation of generic sensor observations provides flexibility to PML
Core so that it can be used to represent data entities that are e.g. at a fairly low-level and
would require a much more extensive PML Core, since all possible observed values
would need to be modeled explicitly.

Priority: Must have

3.3.7 Representation of sensor specific observations
Description: Sensor specific observations distinguish themselves from the generic ones
by explicitly saying of what type the observed value is. Rather than representing tag reads
as a blob of data, whose meaning can only be retrieved by accessing the documentation
provided by the sensor, the observations are represented e.g. as tag reads or temperature
values explicitly.

Rationale: The EPC network is mainly believed to capture data from RFID readers and
sensors observing the environment such as temperature sensors. To represent these
predominant types of observations we need to model them explicitly. Otherwise,
application developers are required to implement the conversion from a generic data blob
containing tag reads to the individual EPCs detected by them.

Priority: Must have

3.3.8 Openness for different kinds of sensor observations
Description: The PML Core schemas should enable instance document authors to create
instance documents containing elements above and beyond what was specified by the
PML Core schemas with respect to observations the sensors make and how the sensors
are configured.

Rationale: This localized openness allows instance document authors to describe features
that were not anticipated by the schema designers of PML Core. This is required
especially in light of the development of Auto-ID compliant active tags, which will offer
many more possibilities with respect to memory structure, mounted sensors and access
control. PML Core needs to facilitate these additional features without necessarily
specifying at this stage what the various features are.

Priority: Should have

3.3.9 Represent tags with and without memory
Description: Tags can either store an identifier only or also have additional memory to
store random data.

Rationale: Although the early EPC compliant tags will store an identifier only, later
generation of Auto-ID Center tags might feature additional memory.

Priority: Should have

3.3.10 Make the EPC the default identification scheme
Description: To uniquely identify sensors, tags and other objects within the EPC Network
unique identification schemes are required. The EPC should be the default identification
scheme. Under exceptional circumstances other identification schemes can be used, if the
type of identification scheme is properly specified.

Rationale: The EPC is one of the main components of the EPC Network and its use
should therefore be promoted within PML Core.

Priority: Must have

 Copyright ©2003 Auto-ID Center, All Rights Reserved. Page 21 of 48

4 PML Core Schema Architecture
As PML Core is a subset of PML, the PML Core schemas follow the PML design
methodology. The specifications provide nomenclature, design principles and best
practices for PML Core schema development. From a PML Core standpoint it is enough
for the reader to know that a standard and well-defined XML design methodology has
been applied to produce quality PML Core schemas. Interested readers may further
explore the details of the XML design methodology as described below, but is not
required to know the same for implementing PML Core schemas.

4.1 PML Design Methodology Overview
PML uses the W3C XML Schema language [XSD] as the schema meta-language for its
definition. Although different syntactic representations could be used, XML Schema has
been well defined and in general use as a simple method for embedded meta-data in
flexible structures.

Any standardized XML vocabulary needs to have a documented and well-defined design
methodology for ease of understanding, adoption and implementation. A well-defined
XML design methodology documents the design principles used to architect a particular
XML Schema vocabulary. A XML design methodology standardizes design principles
such as:

• Naming and design rules for schema files and components

• Versioning of schemas and components

• Namespace definition and use

• Complexity, generality and modularity of schemas and components

• Component reusability

• Schema documentation
Rather than reinvent a new XML design methodology of its own, PML makes use of an
existing and well-defined methodology for its design. The design of PML is based on the
XML design methodology as defined by RosettaNet®. The details of this methodology
are beyond the scope of this document. The XML design methodology is defined in the
following 3 RosettaNet® specifications:

1. Universal Structures (hereafter [UST])

2. XML Design Guidelines (hereafter [XMLDG])

3. Namespace Specification and Management (hereafter [NSSM])

Further details about [UST], [NSSM] and [XMLDG] can be found in the ‘References’
section of this document. This methodology as adopted and extended for use in PML
development is hereafter referred to as PML design methodology. To understand the

 Copyright ©2003 Auto-ID Center, All Rights Reserved. Page 22 of 48

details of the PML design methodology, the reader should be familiar with the above-
mentioned specifications as the design of PML is based on these specifications.

4.2 PML Namespace design guidelines
Uniform Resource Names (URNs) serve as persistent, location-independent, resource
identifiers. This section describes the structure of legal URNs for Auto-ID XML
resources as covered by PML. All PML resources MUST adopt the namespace design
guidelines as outlined in the section below. These guidelines are based on the [NSSM]
specification that provides guidelines for designing hierarchical namespace URNs.
Though these guidelines have been established as part of the PML design methodology
effort they can be extended and applied to all Auto-ID resources.

4.2.1 Namespace Hierarchy
Namespaces are formatted as URNs and have a hierarchical structure. Each hierarchical
level of the namespace URN provides additional information about the specification
entity being identified by the name space in consideration. The Namespace ID (NID) to
be used for all Auto-ID namespaces is “autoid”. For the Namespaces Specific String
(NSS) part of a URN we defined the following hierarchical structure [RFC 2141] with
one branch “specification” at the top of the hierarchy. In the future Auto-ID may define
additional top-level branches as required.

Note that RFC 2141 specifies both “urn” and NID to be case-insensitive, however NSS
in Auto-id namespaces is to be considered as case-sensitive.

4.2.1.1 “specification” Hierarchy
The “specification” hierarchy consists of published Auto-ID specifications. As described
in the Figure 5 below, the specifications can belong to many specification classes, such as
domain, universal, interchange, or to an as yet unspecified specification class. The
specification may be schemas, text documents, etc. The “specification” hierarchy also
requires mandatory versioning of all URNs for reusable or referable resources within this
hierarchy.

 Copyright ©2003 Auto-ID Center, All Rights Reserved. Page 23 of 48

domain

interchange

universal

specification

other…

Figure 6: Specification hierarchy

The “specification” hierarchy is described below:

urn:autoid:specification:{specification-class}:{specification-
subclass?}:{specification-id?}:{type}:{:subtype}?{:document-
id?}{:version-id}

specification-class ::= domain|universal|interchange|…
specification-class is the class of a specification. “domain” identifies resources

that are defined in that particular domain. “universal” identifies resources that
are universal in the “autoid” namespace. “interchange” identifies resources
that are interchanged between components in the Auto-ID system, example;
XML messages.

specification-subclass ::= Savant|Reader|…
specification-subclass should be used wherever it is applicable to identify

subclasses within specification-class.
specification-id is a unique identifier within the specification-class for the

resource, and MUST be the same as an existing name within the specification-
subclass (or specification-class as the case may be).

type ::= xml| …
type is the type of the resource, and MUST be easily understood and recognized

by Auto-ID audience. The value of “type” MUST be ‘xml’ for all PML
resources.

sub-type::=schema| soap-rpc|stylesheet|service|…
sub-type is an optional sub-type of the resource, and MUST be easily understood

and recognized by Auto-ID audience.

 Copyright ©2003 Auto-ID Center, All Rights Reserved. Page 24 of 48

document-id is an optional identifier of the document to which the resource is
related to, and MUST be the same as an existing document name or an
abbreviation of it. Typically, a document is a file.

version-id ::= {major}

E.g., Example values for the fields:
Specification-

class
specification-
subclass

specification-id type subtype document-
id

Version-
id

universal Identifier xml schema 1

interchange PMLCore xml schema 1

interchange Savant core xml soap-
rpc

 1

interchange Savant core xml service 1

interchange Savant readerproxy xml soap-
rpc

 1

interchange Savant readerproxy xml service 1

The URNs constructed with these values are:

urn:autoid:specification:universal:Identifier:xml:schema:1
urn:autoid:specification:interchange:PMLCore:xml:schema:1

urn:autoid:specification:interchange:Savant:core:xml:soap-rpc:1

urn:autoid:specification:interchange:Savant:core:xml:service:1

urn:autoid:specification:interchange:Savant:readerproxy:xml:soap-rpc:1

urn:autoid:specification:interchange:Savant:readerproxy:xml:service:1

4.3 PML Core File Structure
PML Core specification elements as specified in the next section are defined in the
‘PMLCore.xsd’ file. As explained earlier, PML Core defines the sensor data model.
‘Sensor’ is the global element in the PML Core schema based on which XML messages
should be instantiated for interchange of sensor data between two XML enabled
components in the EPC Network system. ‘PMLCore.xsd’ follows the methodology
guidelines as specified in the sections above. It is an ‘interchange’ schema as it defines
the ‘Sensor’ interchange element.

‘PMLCore.xsd’ imports the ‘Identifier.xsd’ PML schema. ‘Identifier.xsd’ is a Universal
schema as it defines the ‘Identifier’ structure that is truly universal and not specific to
PML Core.

 Copyright ©2003 Auto-ID Center, All Rights Reserved. Page 25 of 48

PMLCore.xsd

Identifier.xsd

import

Sensor, Observation,
Tag, Data, …

Identifier

Figure 6: PML Core file structure

 Copyright ©2003 Auto-ID Center, All Rights Reserved. Page 26 of 48

5 PML Core Specification Elements

5.1 Overview
The PML Core Sensor Model is comprised of the following components:

• Sensors - Sensors are considered devices that are capable of making
measurements of physical properties and entities. Examples include RFID
readers, bar code scanners, temperature sensors and weight devices (see Figure 4).

• Observations - Observations represent measurements made by the sensors. They
associate the actual observed data with the sensor.

• Observables - Observables are physical properties and entities that are capable of
being observed by the sensors. This includes for example tags detected or
temperature and humidity values measured.

PML Core is hence based on a model, in which an observer or sensor makes certain
observation of certain observables.

It is worthwhile to stress that RFID readers are considered just another type of sensors
when compared to temperature or weight sensors. RFID readers are therefore not
explicitly modeled in the PML Core Sensor Model. Just as thermometer, humidity
sensors, bar code scanners, GPS devices it is just represented as a sensor.

The rationale for representing an RFID reader not explicitly as such is that PML Core
should provide a generic flexible framework for sensor observation within the EPC
Network. By explicitly modeling RFID readers we would constrain this framework to
RFID readers, and thus limiting the use of PML Core. Other sensor types would then
need an explicit representation as well.
 Sensor

Automatic
Identification

Sensors

Positioning
 Sensors

Optical
Sensors

Environmental
Sensors

RFID Reader

Bar Code
Scanner GPS

Temperature

Humidity

........

 Copyright ©2003 Auto-ID Center, All Rights Reserved. Page 27 of 48

Figure 4: Approximate taxonomy of sensors - illustrating that PML Core represents all these
different devices as sensors. They are not explicitly represented in PML Core.

A common property to any sensor or tag device in the EPC Network is that it has an
identification. The ID of the device should by default be an EPC but is not limited to the
same. Sensors could also have any proprietary form of identification.

 Copyright ©2003 Auto-ID Center, All Rights Reserved. Page 28 of 48

PML Core - Sensor Data Model

any
(from XSD E lem ents)

<<XSDelement>>

Sensor
ID [1..1] : Identifier

Tag
ID [1 ..1] : Identifier

0.. *

+Sensor

0.. *

sensor(s) mounted on the tag

Observation
ID [0..1] : Identifier
Command [0..1] : string
DateTime [1..1] : dateTime

1..* +Obs ervation1..*

sensor observations

0..*

+Tag

0..*

tags observed

string
(f rom XSD Dat at ypes)

<<XSDsimpleType>>
hexBinary

(from XSD Datatypes)

<<XSDsimpleType>>

Data0..1

+Data

0..1data stored on the tag

0..*+Data 0..*

observed data

1 1
Any XMLContent

11

{namespace="##any"
processContents="skip"}

1

<<XSDchoice>>
<<XSDchoice>> <<XSDchoice>>

1
+Text

1+Binary +XML 1

Figure 5 PML Core Sensor Data Model

 Copyright ©2003 Auto-ID Center, All Rights Reserved. Page 29 of 48

The PML Core specification elements are defined in ‘PMLCore.xsd’ XML schema file
which can be found in Appendix A of this specification document. The schema is
normative and takes precedence over the text contained herein in case of any ambiguity.

5.1.1 Sensor Element
The Sensor element is the main interchange element for PML Core messaging. This
element is a composite element comprised of the following subordinate elements:

• ID element

• one or more Observation elements (see section 5.1.2 for details)
The Sensor element captures sensor information. As mentioned earlier, a sensor is
considered any device that makes measurements and observations. In the PML Core
sensor model there is hence no distinction between an RFID reader and a temperature
sensor except that they have a different identifier code. The different identifier code and
the information that can be retrieved using this identifier allow applications to gain
further insights into the sensing process. The data entities that can be retrieved this way
might include the following items – none of which will be part of PML Core though:

• Quality characteristics (e.g. accuracy)

• Performance characteristic (e.g. sampling rate)

• Orientation and location of the sensor

Requirement Trace:

• Data captured by RFID readers

• Data captured by non-RFID identification sensors

• Data generated by sensors mounted on RFID tags

• Data captured by fixed wired sensors that monitor physical properties

5.1.1.1 ID Element
Sensors in the EPC Network are identified by an identifier code. The default
identification scheme should be the EPC. The attributes of the identifier can however be
used to specify an alternate identification scheme under exceptional circumstances. The
universal structure ID element is reused to capture sensor identification information. See
section 5.1.5 for details of the ID element.

Requirement Trace:

• Make the EPC the default identification scheme

 Copyright ©2003 Auto-ID Center, All Rights Reserved. Page 30 of 48

5.1.1.2 Sample XML for Sensor Element

<pmlcore: Sensor>
 <pmluid:ID>urn:epc:1:4.16.36</pmluid:ID>
 <pmlcore:Observation>
 <pmlcore:DateTime>2002-11-06T13:04:34-06:00</pmlcore:DateTime>
 <pmlcore:Tag>
 <pmluid:ID>urn:epc:1:2.24.400</pmluid:ID>
 </pmlcore:Tag>
 <pmlcore:Tag>
 <pmluid:ID>urn:epc:1:2.24.401</pmluid:ID>
 </pmlcore:Tag>
 </pmlcore:Observation>
</pmlcore:Sensor>

5.1.2 Observation Element
Each Observation element contains data that are the result of a measurement by a
particular sensor. Each observation must be labeled with date and time. It can also be
equipped with a unique ID, and a reference to the kind of command that was issued to
make the observation.

The Observation element consists of the following:

• an optional ID element

• an optional Command element

• DateTime element

• zero or more Data elements (see section 5.1.3 for details)

• zero or more Tag elements (see section 5.1.4 for details)

5.1.2.1 DateTime Element
The DateTime element captures the date and time when the observation was made. It is
based on the [XSD] data type ’dateTime’.

5.1.2.2 ID Element
PML Core does not define the actual format of the unique identifier of the individual
observation. It is an optional field that allows developers to label the observation
uniquely. The universal structure ID element is reused to capture unique identification
information about the observation made. See section 5.1.5 for details of the ID element.

Requirement Trace:

• Data captured by RFID readers

5.1.2.3 Command Element
The Command element can be used to specify the command that was issued to trigger the
observation. For an RFID reader this could for example be “read pallet tags only”. The

 Copyright ©2003 Auto-ID Center, All Rights Reserved. Page 31 of 48

various command sets that are available for a certain sensor are detailed in the
documentation of the sensor (outside the scope of PML Core).

Requirement Trace:

• Data captured by RFID readers

5.1.2.4 Sample XML for Observation Element

<pmlcore: Sensor>
 <pmluid:ID>urn:epc:1:4.16.36</pmluid:ID>
 <pmlcore:Observation>
 <pmluid:ID>00000001</pmluid:ID>

 <pmlcore:DateTime>2002-11-06T13:04:34-06:00</pmlcore:DateTime>
 <pmlcore:Command>READ_PALLET_TAGS_ONLY</pmlcore:Command>
 <pmlcore:Tag>
 <pmluid:ID>urn:epc:1:2.24.400</pmluid:ID>
 </pmlcore:Tag>
 <pmlcore:Tag>
 <pmluid:ID>urn:epc:1:2.24.401</pmluid:ID>
 </pmlcore:Tag>
 </pmlcore:Observation>
</pmlcore:Sensor>

5.1.3 Data Element
The Data element must be used to represent the data captured when a sensor measured a
particular property or entity, unless the data captured can be represented as Tag elements
(see Tag element specification)

It can be used to either represent unstructured data as a simple data blob or structured
data by inserting additional XML tags from a different namespace. The schemas for those
XML instances are not within the scope of this PML Core version.

The Data element consists of a choice of the following 3 elements:

• Text element

• Binary element

• XML element

5.1.3.1 Text Element
The Text element must be used to represent captured data as a “data blob” in string
notation. It uses the [XSD] ‘string’ data type.

The Text element reflects the requirement to represent generic sensor observations, since
the data are represented as a data blob and its semantics are not indicated. Tag reads by
an RFID reader can for example be represented in this field as a byte array featuring
collisions on the air interface or CRC errors. The semantics of this byte array would be
documented in the information provided by the sensor. The unique ID of the sensor can
be used as a reference to access this information. Another example would be a set of
numbers representing temperature readings by a temperature sensor.

 Copyright ©2003 Auto-ID Center, All Rights Reserved. Page 32 of 48

Requirement Trace:

• Openness for different kinds of sensor observations

• Representation of generic sensor observations

5.1.3.2 Sample XML for Text Element

<pmlcore:Sensor>
 <pmluid:ID>urn:epc:1:124.162.37</pmluid:ID>
 <pmlcore:Observation>
 <pmlcore:DateTime>2002-11-06T13:04:34-06:00</pmlcore:DateTime>
 <pmlcore:Data>
 <pmlcore:Text>temp=22,24,25,22,22,23,22</pmlcore:Text>
 </pmlcore:Data>
 </pmlcore:Observation>
</pmlcore:Sensor>

5.1.3.3 Binary Element

The Binary element must be used to represent captured data as a data blob in ‘hexbinary’
notation. It uses the [XSD] ‘hexbinary’ data type.

Similar to the Text element, the Binary element reflects the requirement to represent
generic sensor observations, since the data are represented as a data blob and its
semantics are not indicated.

Requirement Trace:

• Openness for different kinds of sensor observations

• Representation of generic sensor observations

5.1.3.4 Sample XML for Binary Element

<pmlcore:Sensor>
 <pmluid:ID>urn:epc:1:124.162.37</pmluid:ID>
 <pmlcore:Observation>
 <pmlcore:DateTime>2002-11-06T13:04:34-06:00</pmlcore:DateTime>
 <pmlcore:Data>
 <pmlcore:Binary> 0FB8A0F5CB0F11000FB8A0F5CB0F11000FB8A0F5CB0F1100</pmlcore:Binary>
 </pmlcore:Data>
 </pmlcore:Observation>
</pmlcore:Sensor>

5.1.3.5 XML Element
The XML Element must be used when the instance author wants to represent captured
data with XML elements that go beyond what is specified in PML Core.

The [XSD] ‘any’ element enables instance document authors to create instance
documents containing elements above and beyond what is specified by the PML Core
schema. The instance documents are hence extensible. This should be contrasted with the

 Copyright ©2003 Auto-ID Center, All Rights Reserved. Page 33 of 48

remainder of the PML Core schema where the content of all elements is always fixed and
static. By inserting this localized openness we are empowering the instance document
author with the ability to define what data makes sense to him/her.

The rationale for the localized openness is that we have to design the PML Core schemas
with the recognition that, as schema designers, we can never anticipate all the different
kinds of data instance document authors will want to use in the instance document when
they represent measurements by various authors.

Requirement Trace:

• Openness for different kinds of sensor observations

• Data generated by sensors mounted on RFID tags

• Data captured by fixed wired sensors that monitor physical properties

• Representation of sensor specific observations

5.1.3.6 Sample XML for XML Element

<pmlcore:Sensor>
 <pmluid:ID>urn:epc:1:124.162.37</pmluid:ID>
 <pmlcore:Observation>
 <pmlcore:DateTime>2002-11-06T13:04:34-06:00</pmlcore:DateTime>
 <pmlcore:Data>
 <pmlcore:XML>
 <TemperatureReading xmlns="http://sensor.example.org/">
 <Unit>Celsius</Unit>
 <Value>5.3</Value>
 </TemperatureReading>
 </pmlcore:XML>
 </pmlcore:Data>
 </pmlcore:Observation>
</pmlcore:Sensor>

5.1.4 Tag Element
The tag element is a special kind of observed value introduced with recognition of the
importance of automatic identifications in the EPC network. The “tag” entity represents
any device that can be detected by a sensor. It may contain memory to store random data
and it may itself contain other sensor e.g. a temperature sensor. It does however not
necessarily need to be an electronic device such as an RFID tag, since a bar code detected
by a bar code scanner would also be considered a “tag”. The tag entity is defined by the
Tag element

The Tag element consists of the following elements

• ID element

• optional Data element

• zero or more Sensor elements

 Copyright ©2003 Auto-ID Center, All Rights Reserved. Page 34 of 48

Requirement Trace:

• Data captured by RFID readers

• Data captured by non-RFID identification sensors

• Representation of sensor specific observations

5.1.4.1 ID Element
Tags in the EPC Network are identified by an identifier code. The universal structure ID
element is reused to capture tag identification information. See section 5.1.5 for details of
the ID element. The default identification scheme should be the EPC. The attributes of
the ID element can however be used to specify an alternate identification scheme under
exceptional circumstances.

Requirement Trace:

• Make the EPC the default identification scheme

5.1.4.2 Sample XML for Tag Element

<pmlcore: Sensor>
 <pmluid:ID>urn:epc:1:4.16.36</pmluid:ID>
 <pmlcore:Observation>
 <pmlcore:DateTime>2002-11-06T13:04:34-06:00</pmlcore:DateTime>
 <pmlcore:Tag>
 <pmluid:ID>urn:epc:1:2.24.400</pmluid:ID>
 </pmlcore:Tag>
 <pmlcore:Tag>
 <pmluid:ID>urn:epc:1:2.24.401</pmluid:ID>
 </pmlcore:Tag>
 </pmlcore:Observation>
</pmlcore:Sensor>

5.1.4.3 Data element
The tag Data element is used to make random data available that was stored on a tag if it
provides this feature. See Section 5.1.3 for more details about the Data element. It allows
for the representation of data blobs as well as structured data in the form of XML
instances under a different namespace.

Requirement Trace:

• Represent tags with and without memory

5.1.4.4 Sample XML Data Element

<pmlcore: Sensor>
 <pmluid:ID>urn:epc:1:4.16.36</pmluid:ID>
 <pmlcore:Observation>
 <pmlcore:DateTime>2002-11-06T13:04:34-06:00</pmlcore:DateTime>
 <pmlcore:Tag>

 Copyright ©2003 Auto-ID Center, All Rights Reserved. Page 35 of 48

 <pmluid:ID>urn:epc:1:2.24.400</pmluid:ID>
 <pmlcore:Data>
 <pmlcore:XML>
 <EEPROM xmlns="http://sensor.example.org/">
 <FamilyCode>12</FamilyCode>
 <ApplicationIdentifier>123</ApplicationIdentifier>
 <Block1>FFA0456F</Block1>
 <Block2>00000000</Block2>
 </EEPROM>
 </pmlcore:XML>
 </pmlcore:Data>
 </pmlcore:Tag>
 </pmlcore:Observation>
</pmlcore:Sensor>

5.1.4.5 Sensor Element
Sensors mounted on a tag can make observations independent of the sensor detecting the
tag that contains the sensors. The observations made by these sensors are represented as
detailed in the above sections on sensor observations. The Sensor element contained in
the Tag element is used provide for the information captured by sensors on mounted on
tags. It reflects a recursive structure, where a sensor detects a tag that contains other
sensors.

Requirement Trace:

• Hierarchy of sensor observations

• Data generated by sensors mounted on RFID tags

5.1.4.6 XML sample for Sensor Element

<pmlcore:Sensor>
 <pmluid:ID>urn:epc:1:4.16.36</pmluid:ID>
 <pmlcore:Observation>
 <pmluid:ID>00000001</pmluid:ID>
 <pmlcore:DateTime>2002-11-06T13:04:34-06:00</pmlcore:DateTime>
 <pmlcore:Tag>
 <pmluid:ID>urn:epc:1:2.24.400</pmluid:ID>
 <pmlcore:Sensor>
 <pmluid:ID>urn:epc:1:12.8.128</pmluid:ID>
 <pmlcore:Observation>
 <pmlcore:DateTime>2002-11-06T11:00:00-06:00</pmlcore:DateTime>
 <pmlcore:Data>
 <pmlcore:XML>
 <TemperatureReading xmlns="http://sensor.example.org/">
 <Unit>Celsius</Unit>
 <Value>5.3</Value>
 </TemperatureReading>
 </pmlcore:XML>
 </pmlcore:Data>
 </pmlcore:Observation>
 <pmlcore:Observation>
 <pmlcore:DateTime>2002-11-06T12:00:00-06:00</pmlcore:DateTime>
 <pmlcore:Data>
 <pmlcore:XML>
 <TemperatureReading xmlns="http://sensor.example.org/">
 <Unit>Celsius</Unit>
 <Value>5.8</Value>
 </TemperatureReading>
 </pmlcore:XML>

 Copyright ©2003 Auto-ID Center, All Rights Reserved. Page 36 of 48

 </pmlcore:Data>
 </pmlcore:Observation>
 </pmlcore:Sensor>
 </pmlcore:Tag>
 </pmlcore:Observation>
</pmlcore:Sensor>

5.1.5 ID Element
The ID element is defined in the ‘Identifier.xsd’ PML schema. It is of the type
‘Identifier’. ‘Identifier.xsd’ is a universal structure schema and is used by other schemas
like the PML Core schema. PML Core reuses the ID element from ‘Identifier.xsd’ to
define the PML Core sensor data model.

The EPC is the default identification scheme to uniquely identify sensors and tags. The
use of other identification scheme is supported, but is not encouraged.

If alternate identification schemes are to be used, the scheme must be labeled using the
XML attributes of the identifier type.

If no other scheme is indicated, the EPC identification scheme must be used. The EPC
must be represented as a URI as specified in [EPC] or later versions of this specification.

The XML format of the identifier, which is of the [XSD] ‘string’data type, facilitates this
representation.

The ID element has the following attributes

• an optional schemeID attribute

• an optional schemeAgencyID attribute

• an optional schemeVersionID attribute

• an optional schemeURI attribute

 Copyright ©2003 Auto-ID Center, All Rights Reserved. Page 37 of 48

Identifier
schemeID [0..1] : token
schemeAgencyID [0..1] : token
schemeVersionID [0..1] : token
schemeURI [0..1] : anyURI

token
(from XSD Datatypes)

<<XSDsimpleType>>

The actual format of the identifier code is the [XSD] ‘string’ data type without any
restriction on its length.

5.1.5.1 schemeID attribute
The schemeID attribute specifies the identifier of the identification scheme.

5.1.5.2 schemeAgencyID attribute
The schemeAgencyID attribute specifies the identifier of the agency that maintains the
identification scheme.

5.1.5.3 schemeVersionID attribute
The schemeVersionID attribute specifies the version number of the identification scheme.

5.1.5.4 schemeURI attribute
The schemeURI attribute specifies the Uniform Resource Identifier that identifies where
the Identification Scheme is located.

5.1.5.5 Sample XML for ID Element
Sample showing the use of the EPC identification scheme:

<pmlcore: Sensor>
 <pmluid:ID>urn:epc:1:4.16.36</pmluid:ID>
 <pmlcore:Observation>

 Copyright ©2003 Auto-ID Center, All Rights Reserved. Page 38 of 48

 <pmlcore:DateTime>2002-11-06T13:04:34-06:00</pmlcore:DateTime>
 <pmlcore:Tag>
 <pmluid:ID>urn:epc:1:2.24.400</pmluid:ID>
 </pmlcore:Tag>
 <pmlcore:Tag>
 <pmluid:ID>urn:epc:1:2.24.401</pmluid:ID>
 </pmlcore:Tag>
 </pmlcore:Observation>
</pmlcore:Sensor>

Sample showing the use of other identification schemes than the EPC:
<pmlcore:Sensor>
 <pmluid:ID schemeID="MyScheme" schemeAgencyID="SomeCompany"
schemeVersionID="v1">10023453</pmluid:ID>
 <pmlcore:Observation>
 <pmlcore:DateTime>2002-11-06T13:04:34-06:00</pmlcore:DateTime>
 <pmlcore:Tag>
 <pmluid:ID schemeID="MyScheme" schemeAgencyID="SomeCompany"
schemeVersionID="v1">21114444</pmluid:ID>
 </pmlcore:Tag>
 <pmlcore:Tag>
 <pmluid:ID schemeID="MyScheme" schemeAgencyID="SomeCompany"
schemeVersionID="v1">21114400</pmluid:ID>
 </pmlcore:Tag>
 </pmlcore:Observation>
</pmlcore:Sensor>

 Copyright ©2003 Auto-ID Center, All Rights Reserved. Page 39 of 48

6 APPENDIX

6.1 XML Schemas

6.1.1 PmlCore.xsd
<?xml version="1.0" encoding="UTF-8"?>
<schema targetNamespace="urn:autoid:specification:interchange:PMLCore:xml:schema:1"
xmlns="http://www.w3.org/2001/XMLSchema" xmlns:autoid="http://www.autoidcenter.org/2003/xml"
xmlns:pmlcore="urn:autoid:specification:interchange:PMLCore:xml:schema:1"
xmlns:pmluid="urn:autoid:specification:universal:Identifier:xml:schema:1" elementFormDefault="qualified"
attributeFormDefault="unqualified" version="1.0">
 <import namespace="urn:autoid:specification:universal:Identifier:xml:schema:1"
schemaLocation="../Universal/Identifier.xsd"/>
 <annotation>
 <documentation>
 <autoid:copyright>Copyright ©2003 Auto-ID Center, All Rights Reserved.</autoid:copyright>
 <autoid:disclaimer>Auto-ID Center, its members, officers, directors, employees, or agents shall not be
liable for any injury, loss, damages, financial or otherwise, arising from, related to, or caused by the use of this
document. The use of said document shall constitute your express consent to the foregoing
exculpation.</autoid:disclaimer>
 <autoid:program>Auto-ID version 1.0</autoid:program>
 <autoid:purpose>PML Core Specification version 1.0</autoid:purpose>
 </documentation>
 </annotation>
 <element name="Sensor" type="pmlcore:SensorType"/>
 <complexType name="AnyXMLContentType">
 <annotation>
 <documentation>
 <autoid:definition>The AnyXMLContentType provides localized openess </autoid:definition>
 </documentation>
 </annotation>
 <sequence>
 <any namespace="##any" processContents="skip">
 <annotation>
 <documentation>
 <autoid:definition>Any content</autoid:definition>
 </documentation>
 </annotation>
 </any>
 </sequence>
 </complexType>
 <complexType name="DataType">
 <annotation>
 <documentation>
 <autoid:definition>The Data element holds text, binary or XML data.</autoid:definition>
 </documentation>
 </annotation>
 <choice>
 <element name="Text" type="string">
 <annotation>
 <documentation>
 <autoid:definition>Text value</autoid:definition>
 </documentation>
 </annotation>
 </element>
 <element name="Binary" type="hexBinary">
 <annotation>
 <documentation>

 Copyright ©2003 Auto-ID Center, All Rights Reserved. Page 40 of 48

 <autoid:definition>Binary value</autoid:definition>
 </documentation>
 </annotation>
 </element>
 <element name="XML" type="pmlcore:AnyXMLContentType">
 <annotation>
 <documentation>
 <autoid:definition>The XML element holds any XML elements the instance author would
like to include. It is provided to enable localized openness and to allow instance document authors to create
instance documents containing elements above and beyond what is specified by the PML CORE
schema</autoid:definition>
 </documentation>
 </annotation>
 </element>
 </choice>
 </complexType>
 <complexType name="ObservationType">
 <annotation>
 <documentation>
 <autoid:definition>Information related to an observation/measurement by a sensor in the EPC
Network. Observations represent measurements by the sensor. They associate the actual observed data with the
sensor.</autoid:definition>
 </documentation>
 </annotation>
 <sequence>
 <element ref="pmluid:ID" minOccurs="0">
 <annotation>
 <documentation>
 <autoid:definition>The observation ID element is a number assigned to this specific
observation.</autoid:definition>
 </documentation>
 </annotation>
 </element>
 <element name="DateTime" type="dateTime">
 <annotation>
 <documentation>
 <autoid:definition>The Observation DateTime element denotes the date and time stamp
when the observation was made.</autoid:definition>
 </documentation>
 </annotation>
 </element>
 <element name="Command" type="string" minOccurs="0">
 <annotation>
 <documentation>
 <autoid:definition>The observation command element denotes the command was issued
to the sensor to trigger the observation.</autoid:definition>
 </documentation>
 </annotation>
 </element>
 <element name="Tag" type="pmlcore:TagType" minOccurs="0" maxOccurs="unbounded">
 <annotation>
 <documentation>
 <autoid:definition>The Observation Tag element denotes tags observed by a sensor as
part of the observation.</autoid:definition>
 </documentation>
 </annotation>
 </element>
 <element name="Data" type="pmlcore:DataType" minOccurs="0" maxOccurs="unbounded">
 <annotation>
 <documentation>
 <autoid:definition>The Observation Data element denotes any data captured by the
sensors as part of the observation.</autoid:definition>
 </documentation>
 </annotation>
 </element>

 Copyright ©2003 Auto-ID Center, All Rights Reserved. Page 41 of 48

 </sequence>
 </complexType>
 <complexType name="SensorType">
 <annotation>
 <documentation>
 <autoid:definition>Information related to a sensor in the EPC Network. A sensor is any device that
is capable of making measurements e.g. RFID readers, temperature sensors, humidity sensors.</autoid:definition>
 </documentation>
 </annotation>
 <sequence>
 <element ref="pmluid:ID">
 <annotation>
 <documentation>
 <autoid:definition>The Sensor ID element is the number assigned to this particular sensor
in the EPC network. It is by default an EPC. If a different identification scheme is to be used, the identifiation
scheme must be specified using the attributes of the identifier type.</autoid:definition>
 </documentation>
 </annotation>
 </element>
 <element name="Observation" type="pmlcore:ObservationType" maxOccurs="unbounded">
 <annotation>
 <documentation>
 <autoid:definition>The Sensor Observation element denotes observations/measurements
made by this particular sensor.</autoid:definition>
 </documentation>
 </annotation>
 </element>
 </sequence>
 </complexType>
 <complexType name="TagType">
 <annotation>
 <documentation>
 <autoid:definition>Information related to a tag in the EPC Network. A tag is any electronic or non-
electronic device that carries at least an identifier.</autoid:definition>
 </documentation>
 </annotation>
 <sequence>
 <element ref="pmluid:ID">
 <annotation>
 <documentation>
 <autoid:definition>The Tag ID element is a unique number assigned to the
tag.</autoid:definition>
 </documentation>
 </annotation>
 </element>
 <element name="Data" type="pmlcore:DataType" minOccurs="0">
 <annotation>
 <documentation>
 <autoid:definition>The Tag Data element contains any data stored on the
tag.</autoid:definition>
 </documentation>
 </annotation>
 </element>
 <element ref="pmlcore:Sensor" minOccurs="0" maxOccurs="unbounded">
 <annotation>
 <documentation>
 <autoid:definition>The Tag Sensor element denotes any sensor that is mounted on the
tag</autoid:definition>
 </documentation>
 </annotation>
 </element>
 </sequence>
 </complexType>
</schema>

 Copyright ©2003 Auto-ID Center, All Rights Reserved. Page 42 of 48

6.1.2 Identifier.xsd
<?xml version="1.0" encoding="UTF-8"?>
<schema targetNamespace="urn:autoid:specification:universal:Identifier:xml:schema:1"
xmlns:pmluid="urn:autoid:specification:universal:Identifier:xml:schema:1"
xmlns:autoid="http://www.autoidcenter.org/2003/xml" xmlns="http://www.w3.org/2001/XMLSchema"
elementFormDefault="qualified" attributeFormDefault="unqualified" version="1.0">
 <annotation>
 <documentation>
 <documentation>
 <autoid:copyright>Copyright ©2003 Auto-ID Center, All Rights Reserved.</autoid:copyright>
 <autoid:disclaimer>Auto-ID Center, its members, officers, directors, employees, or agents shall not
be liable for any injury, loss, damages, financial or otherwise, arising from, related to, or caused by the use of this
document. The use of said document shall constitute your express consent to the foregoing
exculpation.</autoid:disclaimer>
 <autoid:program>Auto-ID version 1.0</autoid:program>
 <autoid:purpose>PML Core Specification version 1.0</autoid:purpose>
 </documentation>
 </documentation>
 </annotation>
 <element name="ID" type="pmluid:IdentifierType"/>
 <annotation>
 <documentation>
 <autoid:definition>A reusable element of type 'IdentifierType'</autoid:definition>
 </documentation>
 </annotation>
 <complexType name="IdentifierType">
 <annotation>
 <documentation>
 <autoid:definition>A character string to identify and distinguish uniquely, one instance of an object
in an identification scheme from all other objects within the same scheme</autoid:definition>
 </documentation>
 </annotation>
 <simpleContent>
 <extension base="token">
 <attribute name="schemeID" type="token" use="optional">
 <annotation>
 <documentation>
 <autoid:definition>The identifier of the identification scheme</autoid:definition>
 </documentation>
 </annotation>
 </attribute>
 <attribute name="schemeAgencyID" type="token" use="optional">
 <annotation>
 <documentation>
 <autoid:definition>The identifier of the agency that maintains the identification
scheme</autoid:definition>
 </documentation>
 </annotation>
 </attribute>
 <attribute name="schemeVersionID" type="token" use="optional">
 <annotation>
 <documentation>
 <autoid:definition>The version of the identification scheme</autoid:definition>
 </documentation>
 </annotation>
 </attribute>
 <attribute name="schemeURI" type="anyURI" use="optional">
 <annotation>
 <documentation>
 <autoid:definition>The Uniform Resource Identifier that identifies where the
Identification Scheme is located</autoid:definition>
 </documentation>
 </annotation>
 </attribute>

 Copyright ©2003 Auto-ID Center, All Rights Reserved. Page 43 of 48

 </extension>
 </simpleContent>
 </complexType>
</schema>

6.2 XML Instance files
The XML instance files below demonstrate usage scenarios for basic data acquisition in
the Auto-ID infrastructure, which is the data captured by sensors. They illustrate
observations made by different types of sensor devices and the different types of data that
may be captured using PML Core messaging between 2 PML enabled systems in the EPC
Network System. Data communication between Savant and EPC Information Service or
Enterprise Applications in the EPC Network system would be a typical PML Core
messaging scenario. These XML Instance files are based on the PML Core schema
documented in the previous section and are provided to illustrate the use of the same.

6.2.1 RFID Reader and Tags
At the very heart of the EPC Network System, RFID readers detect tags, which are
identified by their EPC. This example demonstrates how multiple tag read by a RFID
Reader are represented.

RFIDReaderAndTags.xml

<?xml version="1.0" encoding="UTF-8"?>
<pmlcore:Sensor xmlns:pmlcore="urn:autoid:specification:interchange:PMLCore:xml:schema:1"
xmlns:pmluid="urn:autoid:specification:universal:Identifier:xml:schema:1"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="urn:autoid:specification:interchange:PMLCore:xml:schema:1
../SchemaFiles/Interchange/PMLCore.xsd">
 <pmluid:ID>urn:epc:1:4.16.36</pmluid:ID>
 <pmlcore:Observation>
 <pmluid:ID>00000001</pmluid:ID>
 <pmlcore:DateTime>2002-11-06T13:04:34-06:00</pmlcore:DateTime>
 <pmlcore:Command>READ_PALLET_TAGS_ONLY</pmlcore:Command>
 <pmlcore:Tag>
 <pmluid:ID>urn:epc:1:2.24.400</pmluid:ID>
 </pmlcore:Tag>
 <pmlcore:Tag>
 <pmluid:ID>urn:epc:1:2.24.401</pmluid:ID>
 </pmlcore:Tag>
 <pmlcore:Tag>
 <pmluid:ID>urn:epc:1:2.24.402</pmluid:ID>
 </pmlcore:Tag>
 <pmlcore:Tag>
 <pmluid:ID>urn:epc:1:2.24.403</pmluid:ID>
 </pmlcore:Tag>
 <pmlcore:Tag>
 <pmluid:ID>urn:epc:1:2.24.404</pmluid:ID>
 </pmlcore:Tag>
 </pmlcore:Observation>
</pmlcore:Sensor>

The following example illustrates the use of PML Core for the same scenario as
mentioned above. The only difference is that the default identification scheme, the EPC,
is not used.

 Copyright ©2003 Auto-ID Center, All Rights Reserved. Page 44 of 48

RFIDReaderAndTags2NoEPC.xml

<?xml version="1.0" encoding="UTF-8"?>
<pmlcore:Sensor xmlns:pmlcore="urn:autoid:specification:interchange:PMLCore:xml:schema:1"
xmlns:pmluid="urn:autoid:specification:universal:Identifier:xml:schema:1"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="urn:autoid:specification:interchange:PMLCore:xml:schema:1
../SchemaFiles/Interchange/PMLCore.xsd">
 <pmluid:ID schemeID="MyScheme" schemeAgencyID="http://sensor.example.org/"
schemeVersionID="v1">10023453</pmluid:ID>
 <pmlcore:Observation>
 <pmlcore:DateTime>2002-11-06T13:04:34-06:00</pmlcore:DateTime>
 <pmlcore:Tag>
 <pmluid:ID schemeID="MyScheme" schemeAgencyID="http://sensor.example.org/"
schemeVersionID="v1">21114444</pmluid:ID>
 </pmlcore:Tag>
 <pmlcore:Tag>
 <pmluid:ID schemeID="MyScheme" schemeAgencyID="http://sensor.example.org/"
schemeVersionID="v1">21114400</pmluid:ID>
 </pmlcore:Tag>
 </pmlcore:Observation>
</pmlcore:Sensor>

6.2.2 RFID Reader and Tags with Data
Future generations of Auto-ID Center tags might also feature additional data that
applications can read from and write to. When an RFID reader detects such memory tags,
the tag ID and the data can be made available. This example illustrates the tag ID and
data read from such a tag using a RFID Reader.

RFIDReaderAndTagsWithMemory.xml
<?xml version="1.0" encoding="UTF-8"?>
<pmlcore:Sensor xmlns:pmlcore="urn:autoid:specification:interchange:PMLCore:xml:schema:1"
xmlns:pmluid="urn:autoid:specification:universal:Identifier:xml:schema:1"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="urn:autoid:specification:interchange:PMLCore:xml:schema:1
../SchemaFiles/Interchange/PMLCore.xsd">
 <pmluid:ID>urn:epc:1:4.16.36</pmluid:ID>
 <pmlcore:Observation>
 <pmluid:ID>00000001</pmluid:ID>
 <pmlcore:DateTime>2002-11-06T13:04:34-06:00</pmlcore:DateTime>
 <pmlcore:Tag>
 <pmluid:ID>210000A8900016F000169DC1</pmluid:ID>
 <pmlcore:Data>
 <pmlcore:XML>
 <EEPROM xmlns="http://sensor.example.org/">
 <FamilyCode>12</FamilyCode>
 <ApplicationIdentifier>123</ApplicationIdentifier>
 <Block1>FFA0456F</Block1>
 <Block2>00000000</Block2>
 </EEPROM>
 </pmlcore:XML>
 </pmlcore:Data>
 </pmlcore:Tag>
 </pmlcore:Observation>
</pmlcore:Sensor>

 Copyright ©2003 Auto-ID Center, All Rights Reserved. Page 45 of 48

6.2.3 RFID Reader and Tags with mounted Sensors
It is understood that with the evolution of the EPC Network system different types of tags
will evolve. The example below shows how the data resulting from the following
scenario can be represented using PML Core: A temperature sensor is mounted on an
active tag, which measures the temperature at certain time intervals and stores the data.
Once the tag is in the vicinity of the RFID reader the tag transmits its ID and the data
observed by the sensor

RFIDReaderAndTagsWithSensor.xml

<?xml version="1.0" encoding="UTF-8"?>
<pmlcore:Sensor xmlns:pmlcore="urn:autoid:specification:interchange:PmlCore:xml:schema:v1_0"
xmlns:pmlunv="urn:autoid:specification:universal:ComplexType:Identifier:xml:schema:v1_0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="urn:autoid:specification:interchange:PmlCore:xml:schema:v1_0 PmlCore_1.xsd">
 <pmlunv:ID>urn:epc:1:4.16.36</pmlunv:ID>
 <pmlcore:Observation>
 <pmlunv:ID>00000001</pmlunv:ID>
 <pmlcore:DateTime>2002-11-06T13:04:34-06:00</pmlcore:DateTime>
 <pmlcore:Tag>
 <pmlunv:ID>urn:epc:1:2.24.400</pmlunv:ID>
 <pmlcore:Sensor>
 <pmlunv:ID>urn:epc:1:12.8.128</pmlunv:ID>
 <pmlcore:Observation>
 <pmlcore:DateTime>2002-11-06T11:00:00-06:00</pmlcore:DateTime>
 <pmlcore:Data>
 <pmlcore:XML>
 <TemperatureReading xmlns="http://sensor.example.org/">
 <Unit>Celsius</Unit>
 <Value>5.3</Value>
 </TemperatureReading>
 </pmlcore:XML>
 </pmlcore:Data>
 </pmlcore:Observation>
 <pmlcore:Observation>
 <pmlcore:DateTime>2002-11-06T12:00:00-06:00</pmlcore:DateTime>
 <pmlcore:Data>
 <pmlcore:XML>
 <TemperatureReading xmlns="http://sensor.example.org/">
 <Unit>Celsius</Unit>
 <Value>5.3</Value>
 </TemperatureReading>
 </pmlcore:XML>
 </pmlcore:Data>
 </pmlcore:Observation>
 </pmlcore:Sensor>
 </pmlcore:Tag>
 </pmlcore:Observation>
</pmlcore:Sensor>

6.2.4 Sensor and Data
The EPC Network will not only consist of tags and readers, but also of sensors that
monitor the environment and augment the data from the automatic identification sensors.
The following example shows how observations made by a particular sensor can be
represented as a simple data blob in hexbinary notation.

 Copyright ©2003 Auto-ID Center, All Rights Reserved. Page 46 of 48

SensorAndData.xml

<pmlcore:Sensor xmlns:pmlcore="urn:autoid:specification:interchange:PMLCore:xml:schema:1"
xmlns:pmluid="urn:autoid:specification:universal:Identifier:xml:schema:1"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="urn:autoid:specification:interchange:PMLCore:xml:schema:1
../SchemaFiles/Interchange/PMLCore.xsd">
 <pmluid:ID>urn:epc:1:4.16.36</pmluid:ID>
 <pmlcore:Observation>
 <pmlcore:DateTime>2002-11-06T13:04:34-06:00</pmlcore:DateTime>
 <pmlcore:Data>
 <pmlcore:Binary>0FB8A0F5CB0F11000FB8A0F5CB0F11000FB8A0F5CB0F1100</pmlcore:Binary>
 </pmlcore:Data>
 </pmlcore:Observation>
</pmlcore:Sensor>

6.3 Identifier representation within PML Core
The following representations of an identifier code were considered before the one
mentioned above was chosen (listed above as the first option).

• An identifier format that has no constraints on the type or the number of
characters must be used. Attributes are used to specify the type of identification
scheme as e.g. recommended in ebXML Core Components Methodology.

The advantage of this approach is that it allows for making the EPC the default
identification scheme, but it also permits the use of other identification scheme if
they are properly labeled. It hence fulfills the corresponding requirement, and that
updates to the available identification schemes can be made via code list rather
than updates to the actual schemas. It also facilitates the use of the URI
representations of the electronic product code as outlined in “URI representations
of the Electronic Product Code”.

This approach does, however, not use the built-in data type structures of the
[XSD] schema language, which would permit an automatic validity check of an
identifier instance.

• A common data type for all EPC e.g. using the hexbinary data type from [XSD]
with no limit on the actual number of bits represented.

This approach represents all electronic product codes, while the actual type of
EPC used is still only available to the application developer by inspecting the
header bit of the EPC or looking up the appropriate attribute of the identifier field.
It restricts the use of PML Core to EPC based identifiers.

• A different data type for each representation of the electronic product code e.g. a
96-bit version.

This approach makes full use of the type checking possibilities of [XSD] parsers.
However, new EPC representations require updates to the schemas and there is no
flexibility with respect to other identification schemes.

 Copyright ©2003 Auto-ID Center, All Rights Reserved. Page 47 of 48

• A structured, complex data type which maps the EPC structure into separate
fields.

While this approach relieves the application developer from parsing the
appropriate EPC for certain data bits e.g. the object class, it results in an overhead
on the data routing side because all EPCs need to be converted into the various
fields. Flexibility is difficult to achieve because later updates to the EPC format
require updates to all places where EPCs gathered from RFID readers are
converted into XML messages. Although this format might be useful for certain
other usage scenarios, it is not recommended for the sensor observations scenarios
addressed by PML Core, since the unique identification rather than the coding
feature provided by the EPC is most needed here.

 Copyright ©2003 Auto-ID Center, All Rights Reserved. Page 48 of 48

7 References
1. Technical Memo: Christian Floerkemeier and Robin Koh, Physical Mark-Up

Language Update, MIT-AUTOID-TM-006, July 2002,

2. [UST] RosettaNet® Universal Structures

3. [NSSM] RosettaNet® Namespace Specification and Management

4. [XMLDG] RosettaNet® XML Design Guidelines

5. [XSD] XML Schema Part 2: Datatypes W3C Recommendation, 02 May 2001
(http://www.w3.org/TR/xmlschema-2/)

6. [RFC 2119] Key Words for use in RFCs to Indicate Requirement Levels, Internet
Engineering Task Force, March 1997 (http://www.rfc-editor.org/rfc/rfc2119.txt)

7. [RFC 2141] ”URN Syntax,” May 1997, http://www.ietf.org/rfc/rfc2141.txt

8. [EPC] Michael Mealling and Ken Traub, “The URI Representation of the
Electronic Product Code and Related Types”, Working Draft Version, 12 August
2003

