A better XML parser through functional pro-
gramming

oleg@pobox.com oleg@acm.org

Presented at the 4th International Symposium
Practical Aspects of Declarative Languages
PADL'02, January 19-20 2002, Portland, OR,
USA.

The corresponding paper is published in LNCS
2257, Shriram Krishnamurthi and C.R. Ramakr-
iIshnan, Eds. Springer-Verlag Berlin Heidel-
berg, 2002.

Is XML simple?

e Attribute normalization rules

e Parsed and parameter entities

e \White space

e XML Namespace

e Checking well-formedness and validation con-
straints: element content model, attribute
value content model, ID uniqueness, etc.

Before I get to the meat of the talk, I have to dis-
pel a persistent myth that XML is trivial and XML
parsing is trivial. Emphatically there is more to XML
that the grammar presented in the XML Recommen-
dation. There are attribute normalization rules, well-
formedness constraints, let alone validation constraints.
XML Namespaces add another layer of complexity.

Note that the current version of XML Recommendation
is called "Version 1.0, Second Edition". The language
itself hasn’t changed. However, it was recognized that
the Recommendation had to be clarified. This alone is
an indicator of complexity {and of the fact that XML
isn't specified formally). The treatment of &It; and of
line terminators required several clarifications. It turns
out that some productions and rules were having un-
intended effect.} As one example, errata E62 changed
the interpretation of white spaces in NAMES and NM-
TOKENS productions; it was later rescinded by errata
E108. The latter was rescinded by E20 errata of the
second edition. It's hard to believe that white space
would cause so much controversy.

2-1

Attribute value normalization rules

(section 3.3.3 of the XML Recommendation)

e replace TAB, CR, LF and CRLF with a
single space

e expand character references, e.qg.,

e expand internal entity references, e.g., <

normalize the expansion text

check for no character '<’

treat quotes as regular characters
expand nested character and internal en-
tities

check a non-recursion constraint: "A
parsed entity must not contain a recur-

sive reference to itself, either directly or
indirectly"

One example of XML complexity is attribute value nor-
malization rules {(Section 3.3.3 of the XML Recom-
mendation)}. To obtain the value of an attribute, it
is not enough to merely read text between two sin-
gle or double quotes. A parser shall replace TAB, CR,
LF characters and a CRLF character combination with
a single space. A parser shall expand character refer-
ences, e.g.,
 A parser shall expand internal entity
references, e.g., <. The expansion text of an inter-
nal entity shall also be normalized. A parser shall check
that the replacement text does not contain a charac-
ter "<’ verbatim. A parser shall treat quotes that may
appear in the replacement text as regular characters of
no special meaning. The replacement text may con-
tain references to other character and internal entities,
which must be expanded and normalized in turn. Fur-
thermore, the parser must keep in mind a non-recursion
constraint: "A parsed entity must not contain a re-
cursive reference to itself, either directly or indirectly".
Even a non-validating XML parser must follow all these
rules. <I'm out of breath just reading all these rules>.

3-1

SAX vs. DOM

e Document Object Model (DOM):
Parsing is XML — AST

e Simple API for XML (SAX):
Parsing as a sequence of events

SAX is

e Mmore general: can produce DOM and other
data structures

e memory efficient, especially for huge doc-
uments

e faster

e more difficult to use

There are two styles of parsing XML. The traditional
view is a transformation of a source document into an
abstract syntax tree. This is called a Document Object
Model (DOM) parsing. The DOM approach is called for
for applications that repeatedly traverse and search the
abstract syntax tree of a document. Other applications
however scan through the document tree entirely, and
only once. Such applications can potentially process an
XML document as they read it. Loading the whole doc-
ument into memory as an abstract syntax tree is then
inefficient both in terms of time and memory. Such
applications can benefit from a lower-level, event-based
model of XML parsing called a Simple Application Pro-
gramming Interface for XML (SAX). A SAX parser ap-
plies user-defined actions to elements, character data
and other XML entities as they are identified. The
actions can transform received elements and character
data on the fly, or can incorporate them into custom
data structures, including the DOM tree. Therefore,
a SAX parser can always act as a DOM parser. The
converse is not true.

Although the event-based XML parsing model is more
general, more memory efficient and faster, SAX parsers
are regarded as difficult to use. We will demonstrate
that later.

4-1

SSAX parser
e Sstream-oriented SAX XML parser
e used in industrial applications

e supports XML Namespaces, parsed enti-
ties, attribute value normalization, ...

e written in a pure referentially-transparent
subset of Scheme

e has a better API

— minimizes the amount of application-
specific state that has to be shared among
user-supplied event handlers

— Event handlers are simpler, and simpler
to reason about

http://ssax.SourceForge.net/

The goal of this talk is to show by construction that it
is possible to implement an efficient, compliant, stream-
oriented XML parser with a convenient user interface.
Furthermore, Functional programming was indeed of
great help in designing and implementing such a parser.

The parser, called SSAX, is a compliant SAX XML
parser that is being used in several industrial applica-
tions. SSAX is not a toy parser: it fully supports XML
Namespaces, character, internal and external parsed en-
tities, attribute value normalization, etc. At the same
time, SSAX minimizes the amount of application-specific
state that has to be shared among event handlers. SSAX
is written in a pure-referentially-transparent subset of
Scheme. The event handlers are referentially transpar-
ent and simpler — which makes them easier for a pro-
grammer to write and to reason about. The better user
application interface for the event-driven XML parsing is
in itself a contribution of the paper. We will show that
this interface is not an accident but the outcome of a
correctly chosen control abstraction, which captures the
pattern of depth-first traversal of trees.

5-1

Outline

o Complexity of XML

e SAX vs. DOM

e XML parsing as tree traversal

e SSAX and other XML parsers
— FXP: compare API
— Expat: compare performance

— CL-XML (Common Lisp), XISO (Scheme),
Tony (OCaml), HaXml (Haskell), XMerL
(Erlang).

The rest of the talk will have two parts: a theoretical
part that derives the SSAX API and a practical part that
compares SSAX with other functional-style parsers and
with the Expat.

Of these functional-style parsers, only XMerL supports
the XML Namespaces (but not fully). All but two functional-
style XML parsers barely comply even with a half of the
XML Recommendation. With the exception of FXP
and to some extent XMerL, the existing functional-style
parsers cannot process XML documents in a stream-
wise fashion. The application interface of the only one
functional, full-featured, stream-oriented parser FXP mir-
rors the API of the reference XML parser Expat. Expat
is notorious for its difficult and error-prone application
interface.

Let us indeed look into the parser’s interface.

6-1

XML document as a tree

<node><node><node><leaf>0</leaf><leaf>1</leaf>
</node>
<node><leaf>2</leaf><leaf>3</leaf>
</node></node>
<node><node><leaf>4</leaf><leaf>5</leaf>
</node>
<node><leaf>6</leaf><leaf>7</leaf>
</node></node></node>

Before I dive into theory I'd like to make a remark.
Speaking from personal experience, it’'s common to hack
something together and then bring up theory to "jus-
tify" it. Especially for such a noble purpose as sub-
mitting a paper. {This is a common strategy in many
areas of science, e.g., theoretical chemistry, which has
a peculiar property that it can explain everything but
predict precious little.} This is NOT what happened
in the present paper. The current version of the SSAX
parser started with an insight that XML parsing is a tree
traversal. I was also influenced by Ralf Hinze's talk at
ICFP’00, which led to the idea that an XML document
IS @ composite term, and the parser is its interpreter.
The insight and the derivation of the API were first
written in the comments. The code was written after-
wards, following the comments. I can offer the RCS
records as a proof.

Let's consider a sample XML document. We will return
to it in the benchmarking section of the talk. We note
that an XML document with familiar angular brackets is
a concrete representation of a tree laid out in a depth-
first order. Elements, processing instructions, and char-
acter data are the nodes of such a tree. Character data
are always the leaves. {Elements in this document do
not have attributes; if they had, the attributes would
be collections of named values attached to the corre-
sponding element nodes. Since element nodes can be
non-terminal nodes, the moments the traversal enters
and leaves an element node must be specifically marked,
respectively as the start and the end tags.}

7-1

XML processing is then traversing this tree and execut-
ing certain operations on the nodes as we visit them.
The parser reads the document sequentially, this way.
This is precisely the depth-first traversal order of a tree.
{Operations on nodes include building and linking DOM
objects, searching or matching with a specific element,
or storing data in a database.} XML processing is a
pre-post-order, down-and-up traversal as it invokes user
actions when the traversal process enters a node and
again when the process has visited all child branches
and is about to leave the node.

Can we separate the task of tree traversal and recur-
sion from the task of transformation of a node and
a state? The benefits of encapsulating common pat-
terns of computation as higher-order operators instead
of using recursion directly are well-known. For lists, the
common pattern of traversal is captured by the familiar
fold operators. If we can find such an operator for XML
tree traversals — if we can abstract the pattern of such
traversals — then the operator becomes the XML parser
and its parameters are call-backs. We can derive the
XML parser and its application interface.

Folding over a tree

data Tree = Leaf String | Ref String | Nd [Treel

foldt:: (String -> a) -> ([a] -> a) -> Tree ->a
foldt f g (Leaf str) = f str

foldt £ g (Nd kids) = g (map (foldt f g) kids)

str_value = concat . foldt (:[]) concat

O(n logn) complexity in time and garbage

This is exactly the way the SSAX parser was derived.
{We need to find an operator that encapsulates the pat-
tern of the depth-first traversal of trees.} XML docu-
ment tree (similar to the one on the previous slide) has
the following structure. Let's forget about this term
for a moment and concentrate on trees whose leaves
are strings.

We start by checking out a tree fold {— a generaliza-
tion of foldr for trees, or an instantiation of a general
categorical fold for trees}. It takes two actions: one
to execute on leaves of the tree and the other on the
processed children.

As an example, suppose we want to concatenate strings
attached to all leaves, in their depth-first traversal or-
der. In XML-speak, this is the problem of computing a
string-value for the root node of the tree. We can write
the solution using the tree fold: the leaf action turns a
string into a one-element list; the g action concatenates
such lists; finally; we concatenate all the strings into
one big string. This code has two obvious drawbacks:
it wastes both time and memory at n*logn complex-
ity. The best solution is to build a list of strings in the
reverse order — with the reversal and concatenation at
the very end. But that solution cannot be expressed
as foldt, at least not directly. The biggest problem is
this map function. It means that children of a node are
processed in an indeterminate order, in parallel, so to
speak. If we want to build a list of leaf strings in re-
verse order, we want to accumulate strings one after

8-1

another, that is, strictly sequentially. In an example of
string_value problem, we only lose in efficiency. How-
ever, some problems cannot be expressed with the tree
fold at all. Imagine that we want to compute the MD5
digest of the tree. Unlike the list append, the MD5
digest function is not associative. Many other stream
processing functions we want to do with an XML doc-
ument are not associative. That is, actions at branches
are dependent on the history of the traversal and cannot
be simply mapped to children nodes.

{There is a way around the predicament: higher-order
or continuation-passing folds. Essentially such a fold re-
places this tree of data with a tree of actions (closures),
which are then executed. We may gain good time com-
plexity but we certainly lose in terms of memory. In
languages like Scheme closures are relatively expensive.
Furthermore, this method does not apply if the entire
document (tree) is too big to fit into available memory.}

Thus, Fold over list is single threaded while fold over a
tree is multi-threaded (all branches are folded indepen-
dently). What we need is a single-threaded folding over
the tree. So, we make one.

Extended tree fold

foldts fdown fup fhere seed (Leaf str) =
fhere seed str
foldts fdown fup fhere seed (Nd kids) =
fup seed $
foldl (foldts fdown fup fhere) (fdown seed)
kids

str_value = concat . reverse . (str_value’ [])

where
str_value’ = foldts id (_->id) (£flip (:))

tree digest = mdbFinal .(foldts fd fu fh mdb5Init
where fh ctx str = md5Update "/leaf" $
md5Update str $ md5Update "leaf" ctx
fd ctx = mdbUpdate '"node" ctx
fu = ctx = md5Update "/node" ctx

{To make "mapping" of an accumulating, stateful func-
tion to a tree efficient, we introduce a more general con-
trol operator, foldts.} A user instantiates foldts with
three actions; for comparison, the list fold requires
only one action and the tree foldt needs two. The three
actions of foldts are threaded via a 'seed’ parameter,
which maintains the local state. An action accepts a
seed as one of its arguments and returns a new seed as
the result. Action fhere is applied to a leaf of the tree.
Action fdown is invoked when a non-leaf node is just
entered. The fdown action has to generate a seed to
pass to the first visited child of the node. Action fup is
invoked after all children of a node have been seen. The
action is a function of two seeds: the parent seed, and
the result of visiting all child branches. {The fup action
is to produce a seed that is taken to be the state of the
traversal after the process leaves the current branch.}
The two previously mentioned examples — computation
of a string value and of a digest for a tree — can easily
be written with foldts. In this example, the seed is the
list of leaf values accumulated in the reverse order. The
fhere action prepends the value of the visited leaf to the
list. Actions fdown and fup are trivial: they merely prop-
agate the seed. The computation of the tree digest is
no more complex. The seed is the MD5 context. The
fdown and fup actions mark the fact of entering and
exiting a non-leaf node. This example clearly demon-
strates that consuming node values and updating the
local state are separated from the task of traversing the
tree and recurring into its branches.

o-1

Incidentally, foldts can also be used for breadth-first
traversal and accumulation. <see a backup slide>

Benchmarks and comparisons: API

FXP

e Stream-oriented validating SAX XML parser

e purely-functional equivalent of Expat

e written in SML

e relies on parameterized modules for cus-
tomization

e event-based interface with referentially-
transparent “hooks”

e author: Andreas Neumann

http://www.Informatik.Uni-Trier. DE/ " aberlea/Fxp/
10

From the theoretical depths we now get back to the
surface, to see if the theoretical derivation of the parser
engine really gave us anything. We will compare SSAX
with the other simple API parser, namely FXP. FXP is
a purely functional, validating XML parser "shell" writ-
ten in SML. {Both SSAX and FXP invoke user-supplied
handlers (called "hooks" in FXP) at "interesting" mo-
ments during XML parsing. The hooks receive an appli-
cation state parameter and must return a possibly new
state.}

It can be said that FXP is a purely functional equivalent
of the reference XML parser, Expat. The differences in
API between SSAX and FXP is the differences between
SSAX and any other simple API XML parsers. Because
FXP is as purely referentially-transparent as SSAX, the
comparison of both parser’s interfaces is more meaning-
ful and revealing.

10-1

Simple DOM parser in FXP

structure TreeData =
struct
exception IllFormed
type Tag = int * HookData.AttSpecList
datatype Tree = TEXT of UniChar.Vector
| ELEM of Tag * Content
withtype Content = Tree list

end

11

A sample FXP application discussed in the FXP API
documentation is a good example to illustrate that dif-
ference. The application converts an XML document
to an abstract syntax tree form, which is not unlike the
Tree datatype we saw previously. A SSAX distribution
includes a similar function. It is instructive to compare
event handlers of the two applications.

11-1

DOM parser in FXP (hooks)

structure TreeHooks =

struct
open IgnoreHooks TreeData UniChar
type AppData = Content * (Tag * Content) list
val appStart = (nil,nil)

fun hookStartTag ((content,stack),
(_,elem,atts, ,empty)) =
if empty then
(ELEM ((elem,atts),nil) :: content,stack)
else (nil, ((elem,atts),content) :: stack)

fun hookEndTag ((_,nil),) = raise IllFormed

| hookEndTag
((content, (tag,content?’) :: stack),) =
(ELEM (tag,rev content) :: content’,stack)

fun hookData ((content,stack),(_,vec,)) =
(TEXT vec :: content,stack)

end

12

In the FXP application, the application data — or the
seed — represents the partial document tree constructed
so far. The seed has two components — a stack and
the content. At any point the stack holds all currently
open start-tags along with a list of their left siblings.
The content component accumulates the children of
the current element that are known so far. In the ini-
tial state, both components are empty. Character data
event handlers add the identified character data to the
content of the current element. The hook for a start-
tag pushes that tag along with its parent’s content onto
the stack. Function hookEndTag reverses the accumu-
lated content of the current element, pops the tag of
the current element off the stack and constructs the
branch. The branch is then prepended to the content
of the parent element.

Maintenance of FXP's stack was split across two sep-
arate hooks: handlers for the start and the end tags.
There may be a lot of code in-between. It's not trivial
to guarantee that the stack is manipulated consistently.

The function that pops data off the stack may of course
find the stack empty. The programmer therefore must
anticipate that snafu and do something intelligent —
raise an error, for example.

12-1

Simple DOM parser in SSAX

(define (simple-XML->SXML port)

(reverse
((SSAX:make-parser
NEW-LEVEL-SEED
(lambda (elem-gi attributes namespaces
expected-content seed) ’())

FINISH-ELEMENT
(lambda (elem-gi attributes namespaces
parent-seed seed)
(cons (cons elem-gi (reverse seed))
parent-seed))

CHAR-DATA-HANDLER
(lambda (stringl string2 seed)
(if (string-null? string?2)
(cons stringl seed)
(cons* string2 stringl seed)))

)
port 2())))

13

The SSAX application code (here it is, on this slide)
does correspond to the FXP application’s description to
a certain extent. However, simple-XML->SXML is notably
simpler. Whereas FXP's application state is comprised
of a stack and the content, this function’s state is a reg-
ular list. The list contains the preceding siblings of the
current entity, in reverse document order. In contrast
to FXP, the handlers of simple-XML->SXML are relieved
of any stack maintenance responsibility. This function
does not have any stack. The SSAX handlers (unlike
those of FXP) do not need to check for the stack under-
flow and do not need to raise an IllFormed exception.
As you see the handlers of simple-XML->SXML hardly do
anything at all. The new-level-seed handler is particu-
larly trivial; finish-element is not more complex either.
We see now the advantage of passing the finish-element
handler two seeds: one seed from the branch traversal,
and the parent seed. Anyway, the simpler the handlers
are, the easier it is to write them and to reason about
them.

We should point out that not only simple-XML->SXML
lacks a stack, the SSAX parsing engine itself does not
have an explicit stack of currently open XML elements.
The traversal stack is implicit in activation frames of
a recursive handle-start-tag procedure of the engine. If
there is no explicit stack, there can be no stack un-
derflow errors. Thus the comparison between FXP and
SSAX indicates that the SSAX framework provides a
higher level of abstraction for event-based XML pars-
ing. This is the direct consequence of building SSAX
around the foldtsl tree traversal combinator.

13-1

Benchmarks and comparisons: performance

Expat

e ‘'stream-oriented” SAX XML parser

e imperative

e written in C

e event-based interface with imperative call-
pbacks

e the XML parser. The fastest XML parser

e author: James Clark

14

No discussion of XML parsing can avoid Expat, which is
the reference XML parser, written in C by James Clark.
Expat is a stream-oriented, event-based parser. {As
the user passes it chunks of the input XML document,
Expat identifies elements, character data or other enti-
ties and invokes the appropriate handler (if the user has
registered one). The size of the chunks is controlled by
the user; chunks can range from one byte to the whole
XML document.}

14-1

Benchmark SSAX code

(define (remove-markup xml-port)
(let ((result
((SSAX:make-parser
NEW-LEVEL-SEED
(lambda (elem-gi attrs namespaces
expected-content seed)
seed)

FINISH-ELEMENT
(lambda (elem-gi attrs namespaces
parent-seed seed) seed)

CHAR-DATA-HANDLER
(lambda (strl str2 seed)
(let* ((seed (cons strl seed)))
(if (string-null? str2) seed
(cons str2 seed))))

)
xml-port *())))
(string-concatenate-reverse result)

)

15

To compare SSAX and Expat in performance, and to
check the complexity of SSAX, we chose the following
benchmark. The benchmark does untagging. This is
a common "XML to text" translation that removes all
markup from a well-formed XML document. We have
already seen this example.

15-1

XML document as a tree

<node><node><node><leaf>0</leaf><leaf>1</leaf>

</node>
<node><leaf>2</leaf><leaf>3</leaf>

</node></node>
str_value = concat . reverse . (str_value’ [])

where
str_value’ = foldts fdown fup fhere
fdown seed = seed
fup parent_seed seed = seed
fhere seed str = str:seed

16

Indeed, untagging is precisely determining the string-
value of an XML document tree. This function oper-
ated on trees represented as linked data structures in
memory (like this). The function remove-markup deals
with a tree that is an XML document itself (available
through the input port).

<Put this and the previous slide side-by-side>. As you
can see, str_value and remove-markup functions are iden-
tical modulo parentheses and a few extra arguments.
The seed is the list of character data in reverse order.
When we encounter character data, we add them to our
seed <show on both slides>. The downward action is
the identity: it propagates the seed at entrance to the
parent to the children. The upward action returns the
seed accumulated during child branch traversals <show
on both slides>. At the very end, we reverse concate-
nate the resulting seed. This example makes it very clear
that the XML parser engine is indeed the realization of
the extended tree fold.

We apply this benchmark code (remove-markup) to XML
documents that look exactly like this: realizations of
binary trees of increasing depth. Parsing of such docu-
ments — with really a lot of deeply nested markup — is a
good exercise and a test of the parsing engine. It is also
a good model of a typical Web service reply processing.
Here are results.

16-1

Performance results

35

string-value.c
string-value-by-one.c e
| string-value-ssax -

CPU time (s)
= N N w
ol o ol o
*

[y
o
T

(&)
T

;%Zi%-----*—----l- ----------------) I | |
0 5000 10000 15000 20000 25000 30000
File size (KBytes)

o

File size 13.5MB

string-value.c 1.6964 s
string-value-by-one.c | 11.7658 s
string-value-ssax.scm | 17.0322 s

Pentium III Xeon 500 MHz/128 MB; FreeBSD

4.0-RELEASE; Bigloo Scheme 2.4b
17

The X axis measures the sizes of the input documents,
in KBytes. The documents are the realizations of full
binary trees of depths 15 through 20. The Y axis is
the user CPU time in seconds for the benchmark code,
using Expat or SSAX parsing engines. These two lines
correspond to Expat — as expected, Expat parsing time
grows linearly with the size of the document. We saw
that the naive pure functional traversal of trees with tree
fold has O(n logn) complexity. The extended tree fold
and the SSAX parser avoid this trap. As the plot shows,
SSAX also has a linear time complexity. The paper
shows that the garbage complexity of SSAX is linear
as well. This is the experimental result, obtained by
measuring the performance of the full-scale XML parser.

{We ran all benchmarks on a Pentium III Xeon 500 MHz
computer with 128 MB of main memory and FreeBSD
4.0-RELEASE operating system. The benchmark Scheme
code was compiled by a Bigloo 2.4b compiler.} The ta-
ble shows the results for one particular tree, of depth 19
<show as a line on a graph>.

{To meaningfully compare SSAX and Expat, we need to
discuss the difference in input modes of the two parsers.
An application that uses Expat is responsible for read-
ing an XML stream by blocks and passing the blocks to
Expat, specifically noting the last block. Expat requires
the calling application be able to determine the end of
the XML document stream before parsing the stream.

17-1

If an application can do that, it can read the stream
by large blocks. An application can potentially load the
whole document into memory and pass this single block
to Expat. Expat uses shared substrings extensively, and
therefore is specifically optimized for such a scenario. If
we take a document from a (tcp) pipe, it may be impos-
sible to tell offhand when to stop reading. Furthermore,
if we unwittingly try to read a character past the logi-
cal end of stream, we may become deadlocked. SSAX
reads ahead by no more than one character, and only
when the parser is positive the character to read ahead
must be available. SSAX can therefore safely read from
pipes, can process sequences of XML documents with-
out extra delimiters, and can handle selected parts of a
document.}

The first benchmark application, string-value.c, imple-
ments the most favorable to Expat scenario: it reads
the whole document into memory, passes it to Expat
and asks the parser to remove the markup. The sec-
ond benchmark application, string-value-by-one.c, also
uses Expat and also loads the whole document into
memory first. The application however passes the con-
tent of that buffer to Expat one character at a time.
This simulates the work of the SSAX parser. Finally, a
SSAX benchmark string-value-ssax.scm likewise loads
an XML document first, opens the memory buffer as a
string port and passes the port to SSAX.

The most notable result of the benchmarks is that a
Scheme application is only 45% slower than a compa-
rable well-written C application, stringvalue-by-one.c.

SSAX seems quite competitive in performance, espe-
cially keeping in mind that the parser and all of its han-
dlers are referentially transparent. The ability to read
from pipes and streams whose end is not known ahead
of parsing costs performance. We do think however
that the feature is worth the price. Shared substrings,
present in some Scheme systems (alas not in the com-
piler used for benchmarking) will mitigate the trade-off.

Conclusions

e XML parsing as tree traversal

e foldts

e Better abstraction of XML parsing

e Better API for an event-based XML parser:
callbacks ...
— have less state
— referentially-transparent

— easier to write and to reason about

18

Thus we have shown an example of a principled con-
struction of a SAX XML parser. The parser is based
on a view of XML parsing as a depth-first traversing
of an input document considered as a spread-out tree.
We have considered the problem of efficient functional
traversals of abstract trees and of capturing the pattern
of recursion in a generic and expressive control struc-
ture: foldts. Unlike the regular tree fold, foldts per-
mits space- and time-optimal accumulating tree traver-
sals.

The foldts operator became the core of a stream-
oriented, event-based XML parser. Its engine effectively
abstracts the details of traversing the XML document
tree; the engine makes it unnecessary for user handlers
to maintain their own stack of open elements. The
comparison with other SAX parsers (the reference XML
parser Expat and its functional analogue FXP) shows
that SSAX indeed provides a higher-level abstraction for
event-based XML parsing. The user-handlers of SSAX
are referentially transparent. All together, this makes
callbacks easier to write and thus removes whole classes
of possible bugs. These benefits are direct outcome of
the principled, declarative approach to XML parsing.

18-1

We have nothing to be
ashamed of

19

And another conclusion: we do not have to apologize for
the languages and design tools we use (namely, declara-
tive languages and Mathematics). I think analysts work-
ing with nearly meaningless UML, cowboy programmers
who make the lack of a design a virtue, and C and es-
pecially Visual C++4 programmers have to apologize —
for contradictory specifications, excruciating APIs and
buffer overflows. And pay for them from their own
pocket.

19-1

Backup slides

20

Breadth-first traversal via foldts

data Tree = Leaf String | Nd [Tree]

breadth first =

foldr (x seed -> foldl (flip (:)) seed x) [l
. foldts fdown fup fhere [[]]
where

fhere (level_here:levels below) str

= (str:level_here):levels_below

fdown (_:[1) = []:[]

fdown (_:levels below) = levels_below

fup (level here:levels below) new levels below

= level here:new levels below

breadth first
(Nd [Leaf "O0", Nd [Leaf "11", Leaf "12"],
Leaf "2"])
== ["0","2","11","12"]

21

Note that

foldr (x seed -> foldl (flip (:)) seed x) []
is an efficient implementation of

concat . map reverse

You can't efficiently implement the breadth_first with
the first-order fold (and the second-order fold is inef-
ficient). This was the subject of Gibbons and Jones’

paper.

21-1

Traversing linked trees

data Tree = Leaf String | Ref String | Nd [Treel
type EntityGrove = [(String, Tree)]

foldtsl entities fdown fup fhere seed (Leaf str)
= fhere seed str

foldtsl entities fdown fup fhere seed (Ref ref)-
case lookup ref entities of
Nothing -> error $ "Undefined entity "++ref
Just tree | tree == singleton ->
error $§ "Circular ref to entity "++ref
| otherwise ->
foldtsl ((ref,singleton):entities)
fdown fup fhere seed tree
where

singleton = Ref "---under processing---"

foldtsl entities fdown fup fhere seed (Nd kids)-=
fup seed $

foldl (foldtsl entities fdown fup fhere)
(fdown seed) kids

22

The Tree datatype introduced in Section 2.1 had an-
other kind of leaf: a Ref String. The String represents a
"reference" into an EntityGrove. The "Ref String" leaf
is to model general entity references of XML. Accord-
ing to the XML Recommendation, an XML document is
composed of units called entities. An entity may refer to
other entities to cause their inclusion in the document.
{The replacement text for a (general) entity reference
is defined either in DTD (for internal parsed entities)
or in separate files. A validating parser replaces entity
references with their replacement text. A non-validating
XML processor is permitted to keep external entity ref-
erences unexpanded, delegating the task of fetching and
parsing of entities to an application. A data model of
an XML document — XML Information Set (Infoset) —
defines a special information item for an unexpanded
entity reference. We model such information items with
the "Ref String" nodes.}

The most familiar entity references are ">", "&lIt;"
etc., which represent characters that may not appear
literally in the content of any node. General entities may
be far more complex than one-character strings. The
replacement text of a general entity may be any well-
formed XML fragment. In particular, the replacement
text of an entity may contain a reference to another
entity. The XML Recommendation specifically forbids
circular references. If a circular entity reference does
occur, it must be detected and reported, as a violation
of a "No Recursion" well-formedness constraint.

22-1

The previous examples of computing a string value and
a tree digest extend painlessly to linked trees — the trees
that may contain '"references" to other linked trees.
This ease of extension shows the benefits of separating
the traversal pattern from node operations. We only
need to generalize our traversal combinator, foldts, as
follows: We have added an EntityGrove argument for
the associative list of declared entities, and a case for a
"Ref str'" node. The foldtsl code correctly detects the
two possible errors: a reference to an undefined entity
and a cyclic entity reference.

Enforcement of the "No Recursion" well-formedness con-
straint is noteworthy. Detection of circular references
obviously requires some kind of a list of "active" enti-
ties, the ones being currently expanded. Whenever an
entity reference is encountered, we check if the entity is
already mentioned in the list of active entities. If it does,
we report a recursive entity reference error. Otherwise,
we add the name of the entity to the list of active en-
tities and begin traversing the "replacement tree" for
the entity. After the traversal is finished, we need to
remove the name of the entity from the active entities
list. This essentially imperative recipe is literally imple-
mented in a well-known, Reference XML parser Expat.
Expat maintains a dedicated stack of active entities. It
is obvious but crucially important that pushing an entity
onto the stack of active entities be matched by popping
the entity of the stack when its expansion completes.
These two stack operations are textually separated by
entity expansion code, which may have branches and

even non-local exits. It requires a special effort from
a developer to make sure the stack popping operation
occurs in any path through the entity reference pro-
cessing code. The pure functional code foldtsl makes
it impossible to "overlook" the entities stack popping
operation. For one thing, there is no dedicated stack
of active entities. We use the list of known entities to
mark active entities as well: we associate the name of
an active entity with a singleton expansion tree. The
singleton tree is to be chosen in such a way so it cannot
OCCUr as an expansion tree of any legal entity. An active
entity is unmarked automatically, when the traversal of
its expansion tree finishes. There is absolutely no need
for any clean-up operations.

An XML parser requires maintenance of a notable amount
of state — a list of active entities, a stack of XML Names-
paces, etc. Implementing the parser in a declarative way
similar to that of foldtsl makes maintenance of such
state far easier and eliminates the whole class of possi-
ble bugs.

