OpenTravel Alliance 2001C Infrastructure Specification Page 1

TRAVEL
A" lIance OpenTravel™ Alliance

2001C Infrastructure Specification

Abstract

This document presents the specifications for the underlying infrastructure for the exchange of messagesin
the travel industry, covering travel services for airlines, car rentals, hotels, and travel insurance. It uses the
Extensible Markup Language (XML) for the exchange of these messages transmitted under Internet
protocols and includes a detailed mapping onto ebXML Message Services.

Section 1 - Introduces this OTA specification, its intended audience and conventions used throughout the
document.

Section 2 — Best Practices for development of XML messages for use within OTA specifications.

Section 3 — Generic Messages and the Service/Action Model describe generic messages, defined within the
infrastructure, that are used within various vertical specific message sets. The service/action model
provides a web-services like model for the exchange of messages between trading partners.

Section 4 - Infrastructure, the underlying architectural model, and details of the on-the-wire data for OTA
message exchange over an ebXML Messaging Service.

Section 5 — Detailed explanation and examples of the generation and processing of messages that use the
OTA generic update method.

Section 6 — Definition of Service/Action mappings for all current OTA messages. Recommendations are
also made for an optimum class of delivery.

Section 7 — Summary of infrastructure from previous OTA specifications.
Section 8 — Utilizing ebXML v2.0 in OTA Solutions.

OpenTravel Alliance, Inc.

333 John Carlyle Street, Suite 600
Alexandria, Va. 22314 USA

+1 703-548-7005

Fax +1 703-548-1264

opentravel @disa.org

http://www.opentravel.org/

Prepared in partnership with Data I nterchange Standards Association (http://www.disa.org)

Copyright & 2001. OpenTravel Alliance www.opentravel .org/

OpenTravel Alliance 2001C Infrastructure Specification Page 2

OpenTravel™ Alliance, Inc.

License Agreement
Copyright, OpenTravel Alliance (OTA), 2001.

All rights reserved, subject to the User License set out below.

Authorization to Use Specifications and documentation

IMPORTANT: The OpenTravedd™ Alliance (“OTA”) Message Specifications
(“Specifications’), whether in paper or electronic format, are made available subject to the
terms stated below. Please read the following carefully as it constitutes a binding Agreement,
based on mutual consideration, on you and your company as licensee (“You”).

1. Documentation. OTA provides the Specifications for voluntary use by individuas,
partnerships, companies, corporations, organizations, and other entities at their own risk.
The Specifications and any OTA supplied supporting information, data, or software in
whatever medium in connection with the Specifications are referred to collectively as the
“Documentation.”

2. License Granted.

2.1.

2.2.

2.3.

24.

2.5.

2.6.

OTA holds al rights, including copyright, in and to the Documentation. OTA
grants to You this perpetual, non-exclusive license to use the Documentation,
subject to the conditions stated below. All use by You of the Documentation is
subject to this Agreement.

You may copy, download, and distribute the Documentation and may modify the
Documentation solely to alow for implementation in particular contexts. You
may bundle the Documentation with individual or proprietary software and/or
sublicense it in such configurations.

Y ou must reference, in a commercially reasonable location, the fact that the OTA
Documentation is used in connection with any of your products or services, in
part or in whole, whether modified or not, and You may include truthful and
accurate statements about Your relationship with OTA or other use of the
Documentation.

However, you may not change or modify the Specification itself, develop a new
standard or specification from the Documentation, or state or imply that any
works based on the Documentation are endorsed or approved by OTA.

You must include the OTA copyright notice in connection with any use of the
Documentation. Any uses of the OTA name and trademarks are subject to the
terms of this Agreement and to prior review and approval by OTA.

Nothing in this Agreement shall be interpreted as conferring on You or any other
party any other interest in or right to the Documentation. Nothing in this
Agreement shall be interpreted as in any way reducing or limiting OTA’s rights
in the Documentation.

3. LIABILITY LIMITATIONS. THIS AGREEMENT IS SUBJECT TO THE FOLLOWING
LIABILITY LIMITATIONS:

Copyright & 2001. OpenTravel Alliance www.opentravel .org/

OpenTravel Alliance 2001C Infrastructure Specification Page 3

3.1. ANY DOCUMENTATION PROVIDED PURSUANT TO THIS NON-
EXCLUSIVE LICENSE AGREEMENT IS PROVIDED *“AS IS’ AND
NEITHER OTA NOR ANY PERSON WHO HAS CONTRIBUTED TO THE
CREATION, REVISION, OR MAINTENANCE OF THE DOCUMENTATION
MAKES ANY REPRESENTATIONS OR WARRANTIES, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO WARRANTIES OF
MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE.

3.1. Neither OTA nor any person who has contributed to the creation, revision or
maintenance of the documentation makes any representations or warranties,
express or implied, that the use of the documentation or software will not infringe
any third party copyright, patent, patent application, trademark, trademark
application, or other right.

3.2, Neither OTA nor any person who has contributed to the creation, revision, or
maintenance of the documentation shall be liable for any direct, indirect, special
or consequential damages or other liability arising from any use of the
documentation or software. Y ou agree not to file a lawsuit, make a claim, or take
any other formal or informal action against OTA based upon Your acquisition,
use, duplication, distribution, or exploitation of the Documentation.

3.3. The foregoing liability limitations shall apply to and be for the benefit of OTA,
any person who has contributed to the creation, revision or maintenance of the
documentation, and any member of the board of directors, officer, employee,
independent contractor, agent, partner, or joint venturer of OTA or such person.

4. No Update Obligation. Nothing in this Agreement shall be interpreted as requiring OTA to
provide You with updates, revisions or information about any development or action
affecting the Documentation.

5. No Third Party Beneficiary Rights. This Agreement shall not create any third party
beneficiary rights.

6. Application to Successors and Assignees. This Agreement shall apply to the use of the
Documentation by any successor or assignee of the Licensee.

7. Term. Theterm of thislicense is perpetual subject to Your compliance with the terms of this
Agreement, but OTA may terminate this License Agreement immediately upon your breach
of this Agreement and, upon such termination you will cease all use duplication, distribution,
and/or exploitation of the Documentation in any manner.

8. Interpretation and Choice of Forum. The law of the Commonwealth of Virginia and any
applicable Federal law shall govern this Agreement. Any disputes arising from or relating to
this Agreement shall be resolved in the courts of the Commonwealth of Virginia, including
Federal courts. You consent to the jurisdiction of such courts and agree not to assert before
such courts any objection to proceeding in such forum.

9. Acceptance. Your acceptance of this License Agreement will be indicated by your
affirmative acquisition, use, duplication, distribution, or other exploitation of the
Documentation. If you do not agree to these terms, please cease al use of the
Documentation now.

10. Questions. Questions about the Agreement should be directed to www.opentravel.org.

Copyright & 2001. OpenTravel Alliance www.opentravel .org/

OpenTravel Alliance 2001C Infrastructure Specification Page 4

Table of Contents
1 ADOUL thISDOCUMENToiiiiiiiieie et 7
1.1 INteNdEd AUGIENCEeoiiieieeiiee ettt n e ne e e e nne e s 7
1.2 Definitions and CONVENTIONSc.cueiiiieiiiriieieesee e 7
1.3 Relationship with previous OTA Standards............cocveieeieerienieeneeseee e 7
1.4 Relationship with ébXML Standards.........c.ooceeeiieeiciieee e 7
1.5 Useof Namespacesin this SpeCifiCalionceveieriiir i 8
2 OTA XML BESE PraCtiCeS.......ceiuiiuieiieiieieeeesie ettt sttt st sne e 9
2.1 XML Standard SPeCifiCaliONS........ccoivereiiie e eiee e et e et e e e e 9
2.2 BESEPIACUCES.....coiiiiiiiee ettt 10
A RS o o TP 10
222 XML Component Parts and ROIES.........ccooeiiiiiiiiie e 10
2.3 OTA XML GUIEIINEScoviriiiiieiieieeee sttt st n e s e e s nne e 10
231 Tag Naming CONVENIONS (1)....c.cueerreerreriirieeniie et 10
2.3.1.1 XML Tag NamMES (1-1) ...cueeeeiieeeeiiieie et 10
2.3.1.2 XML Tag NaMES (1-2) ...c.ueeeeiieeieiiieie ettt 11
2.3.1.3 XML Tag NamMES (1-3) ...cueeeerieeieriieie et 11
2.3.1.4 XML Tag NaMES (1-4) ...c.ueeeeiieeieeieeie ettt 11
2.3.1.5 XML Tag NamMES (1-5)ueeiuerieeieiieie et 11
2.3.1.6 XML Tag NamMES (1-6)ceruerueeieriieie ettt 11
2.3.1.7 XML Tag NaMES (1-7) ...cueeeeeieeie et 12
232 Elementsvs. AtrDULES (1) ..ceeeieiiiieieie e 13
2.3.2.1 Elements vs. ArDULES (11-1)....cccveiiiiiieeiieeee e 13
2.3.2.2 Elements vs. AtIDULES (11-2).....ccveeiiiiieeieeeee e 13
2.3.2.3 Elements vs. ArDULES (11-3)....cccveeiiiiieeieeee e 13
2.3.3 DTD vs. XML SChEMA (1) ceueeeiieiiiieiee e 14
2.3.3.1 DTD vs. XML SChema (I11-1) ..cccveeiiieieeieeeee e 14
234 Globa vsLoca Element Types and Elements/Attributes (IV)cccevceeieeiicnnene 14
2.3.4.1 Global vsLocal Element Types and Elements/Attributes (IV-1)........cccccceeveneee. 14
2.3.4.2 Global vs Local Element Types and Elements/Attributes (IV-2).........cccceeveeneen. 14
2.3.4.3 Global vs Local Element Types and Elements/Attributes (IV-3)........cccceveveenee. 15
2.3.5 NAMEIPEACES (V) .uveeieerieieieeiiie ettt nneenneenaneens 16
2.3.5.1 NAMEIPECES (V1) .eeiurieiieiieeeieesiee ettt sn e 16
2.3.5.2 NAMEIPECES (V=2) ..eeureeieeiieeeieesiee sttt n e n e sneenneenees 16
2.3.5.3 NAMEIPECES (V=3) .eeiureereeriieeiieiiee ettt nneenees 16
2.3.6 Versoning XML SChemas (V1) ...ccceeieeiieiieieieeeeesee e 16
2.3.6.1 Versioning XML SChemas (V1-1)oociiiiiiiiiieeieeeee e 16
2.3.6.2 Versioning XML SChemas (V1-2)cccieiiiiiiieieeeeeeeee e 17
2.3.7 XML Markup — General (V11).....ooeeoeieeeeeeieeerieeee e 18
2.3.7.1 XML Markup - General (V-1)cooiiieiiiieieeeesee e 18
2.3.7.2 XML Markup - General (V11-2)coouiiieiiiieiereeeeee e 18
2.3.7.3 XML Markup - General (V11-3)cooiiiiiiiieiereeseree e 18
2.3.8 OTA GENEAl (V) et 18
2.3.8.1 OTA GeNneral (VHT-1) ..ot 18
2.3.8.2 OTA GENEral (VHT-2) ..o 19
2.3.8.3 OTA General (VH1-3) ..ot 19
2.3.8.4 OTA GeNEral (VHT-4) ... 19
2.3.8.5 OTA General (VHI-5) ...oueiiiiieiiiieee et 20
24 ReSpONSE MESSA0E DESIGN ..c.eeiiiiiee ettt e e e ne e st e e snreeeneeeens 20
241 Standard Payload AttrDULES...........ceoiiiiiiiie e 21

Copyright & 2001. OpenTravel Alliance www.opentravel .org/

OpenTravel Alliance 2001C Infrastructure Specification Page 5

2.4.1.1 Mapping OTA Payload Attributes onto ebXML MS Headers...........cccocvevveenen. 21
2.4.2 Design Patterns for Response MESSAJES.cocueieiiirerieeeiieesieeeseee e e seeeesneee e 22

3 Generic Messages and the Service/Action MOdEL...........cooviiiiiiieiiine e 26
3.1 The ServiCe/ACtiON CONCEPL.........ooiieiiirreesee et nneenees 26
311 Service/Action MeSSage MapPINGSccouveereerieereerreesiee e e e s e e 26
3.2 Unique Identifiers Within OTA MESSAgES.ueeeiueeeiieeerieeeieeesteeeseeeeneeeeseeeesneeeesneeeens 27
3.21 Examplesof unique identifiersS.........oocieeiiieiiiie e 28
3.3 Generic INfrastruCture MESSAgES........ccuuirreeiiieiiie ettt 29
3.3l CrEalE MESSAOESveeeiureeeiureeeieee st e s e e s ne e e sne e e snre e sne e e sre e e snr e e e ann e e sne e e snreesanneennnes 29
3.3.2 GeNeriC REAN MESSAGL.ueeueerieieieeiee ettt 30
3.3.3 GeNneriC UPdae MESSAE.cuverueieureetiesieeeieesiee e as et e e s neesse e e nneesneenaneens 31
3.34 GeNEriC DEEIE MESSAE. ... ceiueerieieiieiie sttt sne e nare e 32
3.35 Generic CanCel REQUESL.......cccoeieieee ettt 35
3.3.5.1 Consequences Of CaNCEINGcccveiueririeiiere e 35
3.3.5.2 Read Request Prior t0 CanCelcccociiiieiiiiieeieeeee e 36
3.3.5.3 SeCurity CONSIAEIBLIONS.ccevieieerieerreeniee e neas 36
3.3.5.4 OTA CanCe MESSAGESc.ueeruiieiieiieeie ettt e nneenees 37
3.3.5.5 Confirmation of CanCeallaion.............coceiiieiiiriieiee e 39

4 OTA INFIBSIIUCIUNE. ...ttt ettt ne e n e nneenaneeneas 42
4.1 ATChItECTUIE OVEIVIEIV ...ttt es 42
411 RefErenCe MOUEooiiiiiieiiiee e 43
4.1.2 TranSPOrt ProtOCOIS.eiiieiee ettt et saee e eneeeene 44
g G T oo o1 (o [OOSR PRSPPSO 45
A.1.4 AUAITING ...ttt b e n e n e e e n e n e ne s 45
4.2 Message Structure and PacKagingccoeereerieeiieiieeieesee s 46
421 The 'Unit-0f-Work’ CONCEPLoiiiiiieieie et 47
422 Packaging asingle unit-0f-WOrk............cccoeiiiiiiiiiic e 47
4.2.3 Content-type for OTA XML PaylOadscccooviriiiiiienieiieeiiesee e 48
4.3 Classes of MeSSage DEIIVENYc..ooiiiiiieie e 48
4.3.1 Higtorical use within the travel iNdUSITYooociioiii e 48
.30 TYPE A ettt n e 49
B.3.0.2 TYPE B .o 49
4.3.2 EDBXML ClasseS Of DEIVENYccooiiiiiiiieiieiee e 49
4.4 EDbXML Header DOCUMENL.ccviiiiiiieriee st et nneenees 49
441 OTA Subset of an ebXML Header DOCUMENTcocveiiiiiieiiciee e 49
4.4.1.1 Acknowledgement EIementcoooir i 50
4.4.0.2 VIAEIBMENT ..o 50
4.4.1.3 MessageHeader EIement.........coooiiiiie e 51

4.5 SOAP BOCY EIEMENES......coiiiiieiiiiee e 54
4.6 EbXML Collaboration Protocol Profile..........cccoeiiiiiiiiiiiiciieeeesee e 55
4.7 EbXML Header EXAMPIESeieiiie ettt 56
471 Type A ReQUESE MESSAOE.......oeiii ittt e nb e 56
472 TypeB ReqUESt MESSAJE.utii i itiee ettt ettt ebe e e snr e e s e nneas 57
4.7.3 Type A RespoNSe EXAMPIE........cociiiieiieeeee s 57
474 TypeB Response EXAMPIEc.oiiiiieee e 58
4.7.4.1 Reliable MESSAgING .. .eeeieiieiiieeiee ettt e e e e st e e sneeeenneeeens 59
4.7.4.2 Once and Only ONCE MESSAGING ...c.cvveeeuereiierenieeeeeeeieeesteesneeeesreeesneeeenneeeans 59
4.75 Mapping Class of Delivery to Service/ACtion Pairs..........cccceevieiieiiieiicneeneeen 59
4.8 SESSIONSIN OTA .ottt et e b e e sae e ean e e aneeeneennneenees 59
481 What We mMean DY “SESSIONSeeieiiiieieeeieeeieeeseteeeteeeseeeeseeeeseeeesneeeesaeeeenneeeans 59
4.8.2 What we do Nnot mean by *SESSIONSeiiiiiieiiee et 60

Copyright & 2001. OpenTravel Alliance www.opentravel .org/

OpenTravel Alliance 2001C Infrastructure Specification Page 6

7
8

4.8.3 The OTA SESSION SEIVICE.....cciueiirietieiieeereesiee ettt ne e s e enees 60
4.8.3.1 Session/CreateRQ and Session/CreateRS...........cooviiieiiiiieeeee e, 60
4.8.3.2 Session/CloseRQ and Session/CIOSeRSoooiiiiie e 63
4.8.3.3 SessionControl SChema defiNitionoovevieiienie e 64
4.8.3.4 SESSION/EITOIRS..... ..ot 66

4.8.4 SeCUMNNG OTA SESSIONScuuiiuiiirieieerieeeireessee et e e sneesneesseesn e nne e e e sreenees 67
4.8.4.1 BasiC-authorization @nd SSL...........cooiiiiiiiiiieee e 67
4.8.4.2 TOWBIAS EEPEN SECUNMLYeuvieurierieeiri et iesie et 67

4.9 Web Services Description for OTA €DXML ...ooviiiiiiiiiiceee e 67

OTA UPUate MESSAQES. ... eeeeeiiieeiieeeeiiee et e see e sttt e st e e s e e esaeeesteeesnseeaaneeesaseeesnseeeanseesnnes 70
5.1 Representing change in XML ... e 70
5.2 Position Representation With XPathcoooiiiiiii e 70
5.3 OPEIBNGS ...ttt n e nan e n e ne e naneene s 71
B4 OPEIELHIONS ...ttt et e ettt ettt s e e et e e st e e s s teeeneeeateeeaneeeeneeeanteeeanteeenneeean 71
5.5 Order of Representation and APPlICALION.........oeeieiriiiieiie e 74
5.6 UPdate EXAMPIES.....co ettt sttt et e et eeneeean 75
5.7 Validation of Update MESSA0ES.ceiiuiieiiieeiiee et e etee ettt et e et e e eesneeeeneeeens 81
5.8 The SIMple"REPIACE" VEIDooiiiiieeeeee s 81
5.9 OTA_UpdateRS — Responding to a generic OTA_UpdateRQ message........ccevcveeeeueenne 82

Service and ACHON MaPPINGS.cooveeiieerreeieeeiee e sse e e sneesneenaneens 83
6.1 ThE SESSION SEIVICE ...ttt nnn e n e ne e nnneenees 83
6.2 TNEPIOMIE SEIVICE ... 83
6.3 The VehiCleBOOKING SEIVICE.coiiiiiiiieeiee it 84
6.4 The AIrBOOKING SEIVICE......cciuiiiieiieiee ettt ettt nn e nneenees 84
6.5 The TravelINSUraNCE SEIVICE.ooiuiiiiiiieeiee et 84
6.6 The HOtelBOOKING SEIVICEoiiiiee ittt eeneeeens 85
6.7 The HOtelRESNOLIfiCaliON SEIVICEcueiiiieieeie et 85
6.8 The Hotel Propertylnformation SEMVICE........cuoiiiiiieiieeeeeesee e 85
6.9 The MeatingPrOfil@ SEIVICE.cocuiiieieee e 86
6.10 The PackageBooKing SErVICE.cccuiiiiiiieieeeee s 86
6.11 The GOIf TEETIMES SEIVICEeiiieiieiiieeitee et 86
6.12 Determining ServiCes SUPPOIEAcccveeieereiriieesiee e 87

6.12.1 The <ServicesSupported™ ElemMent...........ccocveiieriieniieesie e 87

6.12.2 The <SEIVICE> ElOMENToiiiiieieee e 88

6.12.3 The <ACHON> BEMENT......coiiiiiieiee e 88

6.12.4 The <EXIENSION> ElEMENToiiiiiiieiie ettt 88

6.12.5 The ServicesSUPPOrted SCNEMAL........cc.eiiiirieeie e 88

6.13 Sample SesSIoN MESSAgE FIOW.......c.eiiiiiiieieeeeeee s 90

Summary of INfrastructure ChangES..........cooueeiieiierie et 92

Appendix - Utilizing ebXML v2.0in OTA SOIULIONS.........ccoueiiiiiieiieniceieesee e 93

Copyright & 2001. OpenTravel Alliance www.opentravel .org/

OpenTravel Alliance 2001C Infrastructure Specification Page 7

1 About this Document

This version of the Open Travel Alliance specification constitutes a major revision to the
underlying technical architecture and a significant expansion of the ‘best practices
recommendations pertaining to OTA message sets.

This revision supercedes 2001A part 1 which was related to architecture and infrastructure. Part 2
of 2001A which contains profile message specifications till stands.

1.1 Intended Audience
This document serves two distinct audiences:

Working group members who are actively working on designing or revising XML
messages for use within OTA specifications. For these working group members the
sections ‘ XML Best Practices' and ‘ Generic Messages and the Service Action Model’ are
of interest and provides useful guidelines and recommendations to aid in their work

Software implementation teams working on an implementation of OTA specifications.
For this audience the section ‘ OTA Infrastructure’ will be of particular interest

1.2 Definitions and Conventions

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
document are to be interpreted as described in IETF document RFC 2119.

This text makes every attempt to accurately reflect the XML Schemas listed in the Appendices.
In the case of a conflict between the document text and the XML Schema, the XML Schema
takes precedence.

1.3 Relationship with previous OTA standards

This specification supercedes the infrastructure defined in the OTA 2001A specification, part 1.
(Part 2 of 2001A is still applicable as it relates to message definitions). In 2001A best practices,
infrastructure and generic messages were interspersed within a single large section. To make this
specification easier to read and to alow its audience to focus on the sections which are applicable
to their particular work, the overall structure has been revised with separate major sections
defining:

XML best practices

Generic messages and the Service/Action model

OTA Infrastructure

1.4 Relationship with ebXML standards

EbXML is sponsored by UN/CEFACT and OASIS as a modular suite of specifications that
enable enterprises of any size and in any geographical location to conduct business over the
Internet. EbXML Transport Routing and Protocol runs on top of W3C SOAP 1.1,
http://www.w3.0rg/TR/ISOAP/ and SOAP with Attachments, providing deeper infrastructure
when required such as reliable message delivery and an enhanced security model.

Copyright & 2001. OpenTravel Alliance www.opentravel .org/

OpenTravel Alliance 2001C Infrastructure Specification Page 8

OTA RECOMMENDS ebXML as a viable infrastructure for the exchange of OTA messages
across private and public networks and the Infrastructure section in this document covers a
detailed mapping of OTA payloads onto an ebXML framework.

OTA implementations are not REQUIRED to use ebXML infrastructure, and parties agreeing
bilaterally may use any method for message exchange they mutually agree upon. OTA’s goalsin
making this recommendation are:

to provide aviable and robust infrastructure which is both open and available
to enable off-the-shelf implementations on a variety of platforms
to allow on-the-wire interoperability between implementations

1.5 Use of Namespaces in this specification

Unless otherwise qualified with a prefix, al elements and attributes within this specification are
assumed to be within the OTA namespace which is defined as follows:

xm ns="http://ww. opentravel . or g/ OTA’

The following table defines al namespace prefixes used within this document and their
applicable namespaces:

{nil} xm ns="http://ww. opentravel . or g/ OTA”

OTA: xm ns: OTA="ht t p: / / www. opent r avel . or g/ OTA’

eb: xm ns: eb="http://ww. ebxnl . or g/ nanespaces/ nessageHeader”
tp: xm ns:tp="http://ww. ebxm . or g/ namespaces/ tradePart ner”
xlink: xm ns: xl i nk="http://ww. w3c. or g/ 1999/ x| i nk”

XS: xm ns: xs="http://ww. w3c. or g/ 2001/ XM_Schena”

XSi: xm ns: xsi ="http://ww. w3c. or g/ 2001/ XM_Schema- i nst ance”

SOAP-ENV: xm ns: SOAP- ENV="ht t p: / / schemas. xm soap. or g/ soap/ envel ope”

Copyright & 2001. OpenTravel Alliance www.opentravel .org/

OpenTravel Alliance 2001C Infrastructure Specification Page 9

2 OTA XML Best Practices

The IT Business world has long employed the principles of producing high quality products with
areduction of product development cost and faster “time-to-market” product delivery. Intoday’s
global — Internet ready marketplace, these principles are as critical to the bottom line as ever.
One way Corporations can apply these “increased earning potential principles’ is by establishing
acommon set of best practice XML and XML Schema guidelines.

The current W3C XML specifications were created to satisfy a very wide range of diverse
applications and this is why there may be no single set of “good” guidelines on how best to apply
XML technology. However, when the application environment can be restricted by corporate
direction or by a common domain, one can determine, by well-informed consensus, a set of
effective guidelines that will lead to the best practice of using XML and related standards in that
environment.

This document defines the Open Travel Alliance's Best Practices Guidelines for al of OTA’s
XML data assets. OTA approved message specifications released prior to version base 2001C
may not follow the guidelines defined in this document. However, the approval of any OTA
specification to be released with verson 2001C (or beyond) will be based on how well it
complieswith OTA’s Best Practice Guidelines.

2.1 XML Standard Specifications

Currently, there are several XML related specification recommendations produced by W3C
(http://www.w3.org/Consortium/). This section refers to the W3C recommendations
(http://www.w3.org/Consortium/Process-20010719/) and versions listed below:

Extensible Markup Language (XML) 1.0 (Second Edition) :
http://www.w3.0rg/TR/2000/REC-xml-20001006

XML SchemaParts 0 - 2:

http://www.w3.0org/TR/2001/REC-xmlschema-0-20010502/
http://www.w3.0rg/TR/2001/REC-xmlschema-1-20010502/
http://www.w3.0rg/TR/2001/REC-xmlschema-2-20010502/

Copyright & 2001. OpenTravel Alliance www.opentravel .org/

OpenTravel Alliance 2001C Infrastructure Specification Page 10

2.2 Best Practices

2.2.1 Scope

The OTA Best Practices Guidelines cover all of OTA’s XML components (elements, attributes,
tag names and Schema definitions).

The general OTA guideline approach is to maximize component (elements/attributes) reuse for
the highly diverse and yet closely related travel industry data. This would be accomplished by
building messages via context-driven component assembly. One example would be the
construction of a ‘Flight Leg’ segment from base objects such as: ‘Time', ‘Date’, ‘Location’
(depart/arrival). The best mechinism XML Schemas have to support this approach is via
encapsulating lower level components (element and attribute objects) with-in named type
definitions while using (and reusing) this base components to construct messages.

2.2.2 XML Component Parts and Roles

The critical XML components that best support OTA’s goa of a consistent set of reusable travel
industry message content are listed below:

I. Tag Naming conventions
I1. Elementsvs. Attributes
[1l. DTD vs. XML Schema
IV. Global vsLoca Element Types and Elements/Attributes
V. Namespaces
VI. Versioning XML Schemas
VII. XML Markup - Generd
VIIl. OTA Genera

Each of the eight items above play a unique role, supporting a common vocabulary, syntax, and
semantic grammar for XML Schema and XML component (element and attribute) definitions.
Also, each of the guidelines details its specific role in the rationale section. This document
defines OTA guidelines for all XML data assets.

2.3 OTA XML Guidelines

The subsections below form the complete set of OTA’s XML Best Practices Guidelines. Each
guideline is presented as follows:

Guideline: The base rule (or rules) that should be followed for compliance with OTA’s Best
Practices.

Rationale: OTA’s general consensus reasoning for the guideline.
Example: An example (if applicable).

2.3.1 Tag Naming Conventions (I)

2.3.1.1 XML Tag Names (I-1)

Copyright & 2001. OpenTravel Alliance www.opentravel .org/

OpenTravel Alliance 2001C Infrastructure Specification Page 11

Guideline: Use mixed case tag names, with the leading character of each word in upper case and
the remainder in lower case without the use of hyphens between words (a.k.a. “UCC camel case”
or “PascalCasing”).

Rationale: Thisformat increases readability and is consistent with common industry practices.
Example: <Wor kAddr ess> <Post al Code>

2.3.1.2 XML Tag Names (I-2)

Guideline: Acronym abbreviations are discouraged, but where needed, use all upper case.

Rationale: In some cases, common acronyms inhibit readability. This is especialy true for
internationally targeted audiences. However, in practice, business requirements and/or physical
limitations may require the need to use acronyms.

Example: <Busi nessURL> <HoneUSA>

2.3.1.3 XML Tag Names (I-3)

Guideline: Word abbreviations are discouraged, however where needed, word abbreviations
should use UCC camel case.

Rationale: Abbreviations may inhibit readability. This is especially true for internationally
targeted audiences. However, in practice, business requirements and/or physical limitations may
require the need to use acronyms.

Example: <Product I nfo> <Bl dgPernit>

2.3.1.4 XML Tag Names (I-4)

Guideline: Element and attribute names should not exceed 25 characters. Tag names should be
spelled out except where they exceed 25 characters, then standardized abbreviations should be

applied.

Rationale: This approach can reduce the overall size of a message significantly and limit impact
to any bandwidth constraints.

Example: Thetag: <Shar eSynchr oni zat i onl ndi cat or > can be reduce to:
<Shar eSyncl nd>

2.3.1.5 XML Tag Names (I-5)

Guideline: Where the merger of tag name words and acronyms cause two upper case characters
to be adjacent, separate them with an underscore (*).

Rationale: This technique eliminates or reduces any uncertainty for tag name meaning.
Example: <PO_Box>, <UDDI _Keys>

2.3.1.6 XML Tag Names (1-6)

Guideline: Use common tag name suffixes for elements defined by similar or common XML
Schema type definitions.

Rationale: This approach supports a consistent syntax and semantic meaning for elements and
attributes.

Copyright & 2001. OpenTravel Alliance www.opentravel .org/

OpenTravel Alliance 2001C Infrastructure Specification Page 12

Example: <Cont act Addr ess> <HonmeAddr ess> <Wbr kAddr ess>

2.3.1.7 XML Tag Names (I-7)

Guideline: The OTA approved, defined or derived XML Schema type definitions (includes
simpleTypes, complexTypes, attributeGroups and groups) should incorporate the following list of
suffixes for naming type labels. However, if auser defined ‘smpleType’ definition isidentical to
abuilt-in XML Schematype, the built-in type definition should be used.

Amount A number of monetary units specified in a currency

Code A character string that represents a member of a set of values.

Date A day within a particular calendar year. Note: Reference 1SO 8601 (CCY'Y -
MM-DD).

Time The time within any day in public use locally, independent of a particular
day. Reference 1SO 8601: 1988 (hh:mm:sg[.ssss...[Z | +/-hh:mm]])

DateTime A particular point in the progression of time.
(CCYY-MM-DD [Thh:mm:ss[.ssss...[Z | +/-hh:mm]]]). Reference 1SO 8601.

Boolean Examples. true, false

Identifier A character string used to identify and distinguish uniquely, one instance of
an object within an identification scheme (standard abbreviation ID).

Name A word or phrase that constitutes the distinctive designation of a person,
object, place, event, concept etc.

Quantity A number of non-monetary units. It is normally associated with a unit of
measure.

Number A numeric value which is often used to imply a sequence or a member of a
series.

Rate A ratio of two measures.

Text A character string generally in the form of words.

Type An enumerated list of values from which only one value can be chosen at a
time.

Rationale: This approach supports a consistent syntax and semantic meaning for XML Schema
definitions and does not affect the naming of element and attribute tags in an instance document.

Example:

<xs: conpl exType nane="Travel Event Dat eTi ne" >
<xs: si npl eCont ent >
<xs: ext ensi on base="xs: dateTime">
<xs:attribute nane="type">
<xs:si mpl eType>
<xs:restriction base="xs:string">
<xs:enuneration val ue="depart"/>
<xs:enuneration value="arrive"/>
<xs:enuneration val ue="pi ck-up"/>
<xs:enuneration val ue="drop-of f"/>
<xs:enuneration val ue="checkin"/>
<xs:enuneration val ue="checkout"/>

Copyright & 2001. OpenTravel Alliance www.opentravel .org/

OpenTravel Alliance 2001C Infrastructure Specification Page 13

</ xs:restriction>
</ xs: si mpl eType>
</xs:attribute>
</ xs: ext ensi on>
</ xs: si nmpl eCont ent >
</ xs: conpl exType>

2.3.2 Elements vs. Attributes (ll)

2.3.2.1 Elements vs. Attributes (11-1)

Guideline: For a given OTA data element, the preferred method is to represent that data-element
as an attribute. The data-element is represented as an element if and only if:

itisnot atomic (i.e. It has attributes or child elements of its own) OR
the anticipated length of the attribute value is greater than 64 characters' OR

presence or absence of the attribute represents a semantic 'choice’ or branch within the
schema OR

an element should also be used where it is likely that the data e ement in question will be
extended in the future.

Rationale: The intention is to create a consistent OTA message design approach and to reduce the
overall message size as well asto avoid the potentia of tag naming collisions.

Example:
Element:

<Locati onDescription>Five mles South of highway 85 and Main St. intersection next to Town
Square Mal | </ Locati onDescri pti on>

Attribute:
<Arrival Airport Locati onCode="M A" />

2.3.2.2 Elements vs. Attributes (11-2)

Guideline: Do not overload element tags with too many attributes (no more than 10 as a rule of
thumb) by encapsulating attributes within child elements that are more closely related (or more
granular). This should be done for those attributes that are likely to be extended by OTA or by
specific trading partners.

Rationale: Maintains the built-in extensibility XML provides with elements and is necessary to
provide backward compatibility as the specification evolves. It also provides a consistent guide to
the level of granularity used to compose OTA’s schema objects (or fragments).

2.3.2.3 Elements vs. Attributes (11-3)

Guideline: Multiple XML element containers must be used for repeating complexType e ements
if the XML Schema 'maxOccurs attribute exceeds 6 repititions. The encapsulating element
container is optional if the XML Schema 'maxOccurs attribute is less-than or equal to 6.

! URLs are considered less than 64 characters

Copyright & 2001. OpenTravel Alliance www.opentravel .org/

OpenTravel Alliance 2001C Infrastructure Specification Page 14

However, a single XML <element> container can be used for "ssimpleType" repeating content
(viathe XML Schema"list" construct).

Rationale: Provides consistency for OTA approved repeating data fields.
Example:
conpl exTypes -

<St at es>
<State country="US">NY</ St at e>
<State country="US">FL</ St at e>
<State country="US">CA</ St at e>
</ St at es>

si npl eTypes -
<St at es>NY FL CA</ St at es>

or
<Location RegionStates = "NY" "FL" "GA"/>

2.3.3 DTD vs. XML Schema (lll)

2.3.3.1 DTD vs. XML Schema (I111-1)

Guideline: The XML Schema recommendations from W3C should be used to define all XML
message documents.

Rationale:

Schemas are written in XML syntax, rather than complex SGML regular expression
syntax.

Because XML Schemas are themselves well-formed XML documents, they can be
programmeatically generated and validated using a meta-schema -- a schema used to
define other schema models.

XML schemas have built-in datatypes and an extensible data-typing mechanism. (DTDs
only understand markup and character data.)

Using an XML syntax to define data model requirements allows for more constraints,
strong datatyping, etc.

Provides for a consistent Data Repository syntax.
2.3.4 Global vs Local Element Types and Elements/Attributes (1V)

2.3.4.1 Global vs Local Element Types and Elements/Attributes (I1V-1)

Guideline: Define XML Schema element types globally in the namespace for the elements that
are likely to be reused (instead of defining the type anonymoudy in the Element declaration).
This applies to both simpleType and complexType element type definitions.

Rationale: This approach supports a domain library or repository of reusable XML Schema
components. Also, since Schema type names are not contained in XML instance documents, they
can be verbose to avoid Schema element type naming collisions.

2.3.4.2 Global vs Local Element Types and Elements/Attributes (1V-2)

Copyright & 2001. OpenTravel Alliance www.opentravel .org/

OpenTravel Alliance 2001C Infrastructure Specification Page 15

Guideline: Define XML Schema elements as nested elements via the ‘type’ attribute or an inline
type definition (‘smpleType or ‘complexType’) instead of the ‘ref’ attribute that references a
global element.

Rationale: This approach for local element naming reduces the possibility of tag name collisions
and allows the creation of short tag names. Globally defined elements should be reserved only
for travel domain elements with well-defined meanings; such global names should be constructed
with sufficient roots and modifiers to identify their domain of use and avoid, tag naming
collisions.

Example:

<xs: conpl exType nane="AddressType">
<xs:sequence>
<xs: el ement nanme="Street Nmbr" type=" xs:string" m nCccurs="0"/>
<xs: el ement nanme="Bl dgRoonl" type="Pl acel D_Type"
m nCccur s="0" maxCccur s="unbounded"/ >
<xs: el ement nanme="AddressLi ne" type="AddressLi neType"
m nCccur s="0" maxCccur s="unbounded"/ >
<xs: el ement nanme="Ci tyNane" m nCccurs="0">
<xs:conpl exType>
<xs: si npl eCont ent >
<xs:extension base="xs:string">
<xs:attribute nanme="Postal Code" type=" Postal CodeType"/>
</ xs: ext ensi on>
</ xs: si nmpl eCont ent >
</ xs: conpl exType>
</ xs: el ement >
<xs: el ement nanme="St at eProv" type="StateProvinceType” m nCccurs="0"/>
<xs: el ement nanme="CountryNanme" nanme="CountryNanmeType” m nCccurs="0"/>
<xs: el ement name="PrivacyDetails" type="Privacy"/>
</ xs: sequence>
</ xs: conpl exType>

2.3.4.3 Global vs Local Element Types and Elements/Attributes (1V-3)

Guideline: Define common attribute parameters globally as a reusable component via the XML
Schema *attributeGroup’ element definition.

Rationale: This approach supports a domain library or repository of reusable XML Schema
components. Also, since the names used for the XML Schema ‘attributeGroup’ components are
not contained in XML instance documents, they can be verbose to avoid naming collisions with
other ‘attributeGroup’ definitions.

Example:®

<xs:attributeG oup name="OTA Payl oadStdAttri butes">
<xs:attribute name="EchoToken" type="OTA TokenType"/>
<xs:attribute name="Ti meStanp" type="xs:dateTi me"/>
<xs:attribute name="Target" default="Production">
<xs:si mpl eType>
<xs:restriction base="xs: NMTOKEN' >
<xs:enuneration val ue="Test"/>
<xs:enuneration val ue="Production"/>
</xs:restriction>
</ xs: si mpl eType>
</xs:attribute>
<xs:attribute nanme="Version" type="OTA VersionType"
use="required”/ >
<xs:attribute name="SequenceNmbr" type="xs:integer"/>
</ xs:attribut eG oup>

3 For the complete definition of the attributeGroup OTA Pay| oadSt dAt t ri but es see section 2.4.2

Copyright & 2001. OpenTravel Alliance www.opentravel .org/

OpenTravel Alliance 2001C Infrastructure Specification Page 16

2.3.5 Namespaces (V)

2.3.5.1 Namespaces (V-1)

Guideline: All schemas specified as compliant with OTA's XML message specifications SHALL
put the global names they declare in one namespace; this SHALL be the ‘OTA’ namespace,
which is http://www.opentravel.org/OTA.

Rationale: This approach supports a consistent way to manage and identify OTA’s XML based,
transaction assets both internally and externally (via trading partners and global e-business
repositories such as UDDI). It also avoids the need for explicit prefixes on both schema and
instance docs.

2.3.5.2 Namespaces (V-2)

Guideline: Each XML instance document produced by the 'OTA' namespaced Schemas should
specify a default namespace and that should be the 'OTA' namespace defined above. Also, a
namespace prefix of “OTA” isto be reserved for the *OTA’ namespace and used where ‘OTA’ is
required not to be a default namespace to satisfy unique business needs.

Rationale: The same rationae as V-1 above. Also, provides a standard way for “OTA”
namespaced content to be merged with other Industry or Trading Partner namespace content.

2.3.5.3 Namespaces (V-3)

Guideline: Each XML schema document produced as an ‘OTA’ namespaced schema should
specify a default namespace and a targetNamespace and both should be the 'OTA' namespace.

Rationale: The same rationae as V-1 above.

Example:

<xs:schema xm ns: xs="http://ww. w3. org/ 2001/ XM_Schenma"

t ar get Nanespace="http://www.opentravel .org/0TA"

xm ns="http://www.opentravel .org/0TA"

versi on="http://ww. opentravel . org/ OTA/ 2002A- REC/ VEH- avai | abi | i ty/ VehAvai | Rat eRQ
23. xsd” >

2.3.6 Versioning XML Schemas (VI)

2.3.6.1 Versioning XML Schemas (VI-1)

Guideline: Theroot tag for all XML payload instances should contain a‘version’ attribute
(obtained from the 2001C attributeGroup * PayloadStdAttributes’) whose value will mimic the
OTA version release, plus OTA restricted extension meta-data (if extensions are present).*
Additionally, the *schemalocation’ attribute should contain a URI that corresponds to the
location of the schema version (requester’s, receiver’s or common repository) defining this
particular XML payload instance.

4 a numeric extension type is used only for OTA approved Use Cases where the unique added content
satisfies an important need - however, is deemed not common enough to migrate in the base version
(Controlled by OTA’s InterOperability committeg). Alternatively, OTA alows an extension starting with
letter ‘T’ for trading partners to add proprietary content via the <TPA_Extension> element specified in
OTA XML Schemas at specific locations (see examples below; also see guideline ‘VIII-2® for a
<TPA_Extension> example).

Copyright & 2001. OpenTravel Alliance www.opentravel .org/

OpenTravel Alliance 2001C Infrastructure Specification Page 17

Rationale:This approach supports automated schema discovery and provides sufficient version
meta-data for repository maintenance. It also provides a quick and simple way for human or
machine users to identify XML message transaction versions.

Example:®
‘2002A"; ‘2002B.23'; ‘2003A. Tabcl23'; ‘2001C. Txyz456’
wher e:
‘2002A° - is the bi-annual year of release (ie. 2002B, 2003A).
.23 - Anuneric reference value ‘.nn’ to the base OTA schema
version (ie. 2002A) which contai ns extensions derived
froman XML Schema sinpl eType or froman existing
OTA Schema type (sinple or conplex).
‘. Tabc123’ - This extension type flags the presence of the

<TPA_Ext ension> el ement within an XM instance

message. The OTA based schema for this type of

versi on extension can be any OTA version, base or
extension. The format for this extension is: ‘T followed
by a short string that user tradi ng partners can recognize.

2.3.6.2 Versioning XML Schemas (VI-2)

Guideline: Each version of a schema produced under the 'OTA' namespace must have a unique
URI value for the ‘version’ attribute of the <xs: schema> opening tag. The URI must value
must correspond to both the OTA payload message root tag name and to the root tag's version
attribute value as shown in the format following example.” Additonally, if ebXML is used as the
transport medium, the URI value MUST be duplicated within the ebXML Manifest as the value
of its grandchild <eb:schema> element.

Rationale: Using a version mechanism that paralels the schema-discovery mechanism of
validating XML parsers is desirable and is supported by many schema validation tools.
Additionally, having a versioning scheme that mimics OTA'’s specification release methodology
reduces the overall work effort of both schema publication and maintainability. Similarly, the
‘domain_path’ recommendations can greatly reduce the work required to maintain and XML
Schemas and schema fragments. This feature can be further enhanced by supplying the
‘domain_path’ as schema meta-data in a repository tool. Also, the 2001C Service and Action
transaction model can leverage the ‘domain_path’ as the Service token.

Example:
<xs:schema xm ns:xs = "http://ww. w3. org/ 2001/ XM_Schema"
t ar get Nanespace = “http://ww. opentravel . org/ OTA"
xmns = “http://ww. opentravel . org/ OTA”

versi on = “http://www.opentravel .org/0TA/2002A-REC/roottag-nn.xsd” >

wher e:
‘2002A' - bi-annual base version release (ie. 2002B, 2003A).

‘ REC — can be either ‘TEST', ‘CAN or ‘REC which is
Test, Candi date or Reconmendati on nessage status respectively.

‘roottag’ — OTA Payl oad root tag name.

® related to guideline example in section *VI —2'.

" An exception to this attribute value exist for OTA schema fragment files — where the value is defined as a
simple positive integer.

Copyright & 2001. OpenTravel Alliance www.opentravel .org/

OpenTravel Alliance 2001C Infrastructure Specification Page 18

‘-nn’ — is an OTA Schema extension neta-data string which is
defined in detail in Guideline ‘VI-1".

2.3.7 XML Markup — General (VII)

2.3.7.1 XML Markup - General (VI1-1)

Guideline: The attribute schemalocation replaces the DOCTY PE and can be used on elements in
instances to name the location of a retrievable schema for that e ement associated with that
namespace.

Rationale: Supports OTA’s decision to use XML Schemas, which are not aware of this construct.

Example:

Attribute:
xsi : schenmalLocati on="http://ww. opentravel . org/ OTA http://ww. opentravel . org/ OTA 2002A-
REC/ VEH- avail ability/VehAvail Rat eRQ 23. xsd”

2.3.7.2 XML Markup - General (VI11-2)

Guideline: OTA approved XML Schemas will use the <docunent at i on> sub-element of the
<annot at i on> element for schema documention.

Rationale: Comments are not part of the core information set of a document and may not be
avallable or in a useful form. However, <docunent at i on> elements are available to users of
the Schema

Example:

<xs:annot ati on>
<xs:docunent ati on>Privacy sharing control attributes.
</ xs: document ati on>

</ xs: annot ati on>

2.3.7.3 XML Markup - General (VII-3)

Guideline: OTA approved XML Schemas will avoid the use of Processing Instructions (Pl) by
replacing them with the <appinfo> sub-element of the <annotation> element which supplies this
functionality.

Rationale: <appi nf 0> elements are available to users of the Schema. PIs require knowledge of
their notation to parse correctly. Extensions to the XML Schema can be made using
<appi nf 0>. An extension will not change the schema-validity of the document.

2.3.8 OTA General (VIII)

2.3.8.1 OTA General (VIII-1)

Guideline: Theroot tag of all OTA payload documents (XML instance messages), MUST contain
the following attributes:

xmlns=" http://www.opentravel.org/OTA”

Version="[current version here]”
xmlns:xsi="http://www.w3c.org/2001/X ML Schemarinstance”

xsi:schemal ocation="http://www.opentravel.org/...”

Copyright & 2001. OpenTravel Alliance www.opentravel .org/

OpenTravel Alliance 2001C Infrastructure Specification Page 19

Rationale: Provides a standard way to identify OTA payload messages, message version and the
corresponding schema.

Example:®

<OTA_VehAvai | Rat eRQ

xm ns="http://ww. opentravel . or g/ OTA”

Ver si on="2002A"

Xm ns: xsi ="http://ww. w3c. or g/ 2001/ XM_Schena- i nst ance”

xsi : schenmalLocati on="http://ww. opentravel . or g/ OTA

http://ww. opentravel . or g/ OTA 2002A- REC/ VEH- avai | abi | i ty/ VehAvai | Rat eRQ. xsd” >
<l-- Payl oad content...-->

</ OTA_VehAvai | Rat eRQ>

2.3.8.2 OTA General (VI1I1-2)

Guideline: Proprietary trading partner data can be included in an XML instance message within
the <TPA_Ext ensi on> global element at OTA sanctioned plug-in points defined in the
schema. This element may also contain the boolean attribute *mustProcess which notifies that
the message receiver must process the ‘ TPA_Extension’ data

Rationale: This approach (along with the versioning Guideline of VI-2) provides a standard way
for OTA to integrate and manage proprietary trading partner information.

Example: schema fragment:

<xs: el ement nanme="TPA_Extensi on" type="xs:anyType”>

Sample XML:

<OTA_VehResRQ xm ns="http://ww. opentravel . org/ OTA”
Ver si on="2002A. Tze123"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance”
xsi : schenmalLocati on="http://ww. opentravel . org/ OTA
http://ww. opentravel . or g/ OTA/ 2002A- REC/ VEH- booki ng/ VehResRQ Tzel123. xsd” >
<PCS>
<Sour ce PseudoCi t yCode="ABC123" Agent Si ne="123456789"/ >
<Uni quel d URL="http://swi tch. conl OTAEngi ne/”
Type="VehResRQ' |d="123456"/>
<Booki ngChannel Type="CDS"/>
</ Sour ce>
<TPA_Extension nust Process="1">
<Negot i at edServi ce Type="Tour Cui deDri ver”/>
</ TPA_Ext ensi on>
</ PCS>
<VehRequest >
<! —OTA VehRequest content -->
</ VehRequest >
</ OTA_VehResRQ>

2.3.8.3 OTA General (VI111-3)

Guideline: Whenever possible, OTA schema data types should use the standard built-in simple
types defined in the XML Schema specification.

Rationale: Simplifies OTA message implementation because validation tools support built-in
XML Schema simple types.

2.3.8.4 OTA General (VI111-4)

® attribute details are shown in guidelines ‘IV-3' and V1-2'

Copyright & 2001. OpenTravel Alliance www.opentravel .org/

OpenTravel Alliance 2001C Infrastructure Specification Page 20

Guideline: Create new schema data types using or extending existing OTA type definitions or
from built-in XML Schema types whenever possible.

Rationale: Maximizes reuse and avoids definition duplication.

2.3.8.5 OTA General (VI111-5)

Guideline: OTA XML Schemas should avoid rigid type restrictions unless the type is a common
industry standard which is unlikely to change.

Rationale: This approach alows OTA defined messages to inter-operate globaly more
seamlessly and allows any particular trading partner to locally restrict content values as needed
for unique business requirements.

2.3.8.6 OTA General (VI111-6)

Guideline: When adding a preference level attribute qualifier to an OTA element, a complexType
definition should be created which extends the base type of the element using the attribute group
PreferLevel.

Rationale: This approach provides a standard way for creating and processing OTA element
preferences.

Example: schema fragment:

<xs:conpl exType nane="FreeText Type>
<xs:annot ati on>
<xs:document ati on>Provi des textual information in regarding nmessage
cont ext
</ xs: docunent ati on>
<xs: si npl eCont ent >
<xs:restriction base="xs:string"/>
</ xs: si nmpl eCont ent >
</ xs: conpl exType>

extends to the follow ng new type

<xs: conpl exType nane="FreeText Pref Type>
<xs:annot ati on>
<xs:document ati on>Provi des textual information in regarding nmessage
context including its preference |eve
</ xs: docunent ati on>
<xs: si npl eCont ent >
<xs: ext ensi on base="FreeText Type">
<xs:attributeG oup ref="PreferLevel Type">
</ xs: si nmpl eCont ent >
</ xs: conpl exType>

2.4 Response Message Design

The OTA specification provides for returning application errors when those errors result from
interactions with the trading partner's server. This section outlines specific requirements for
response messages and any associated errors.

Typicaly, if a business message, such as updating a customer profile, fails for a business level
reason, the business message itself should use the expected response message <xxxRS> to
declare a failure when it is returned. This response has meaning only in the context of the
business message, based on the notion that a business content level error constitutes the response.

Copyright & 2001. OpenTravel Alliance www.opentravel .org/

OpenTravel Alliance 2001C Infrastructure Specification Page 21

2.4.1 Standard Payload Attributes™®

The response message <xxxRS> contains the AttributeGroup Payl oadSt dAttri butes on
the root element. The meaning and usage of each of these standard attributesis as follows:

EchoToken: a sequence number for additional message identification assigned by the
requesting host system. When a request message includes an EchoToken, the corresponding
response message MUST include an EchoToken with an identical value.

TimeStamp: indicates the creation date and time of the message in UTC using the following
format specified by 1SO 8601: YYYY-MM-DDThh:mm:ssZ with time values using the 24-
hour (military) clock. e.g. 20 November 2000, 1:59:38pm UTC becomes 2000-11-
20T13:59:382

Target: indicates if the message is a test or production message, with a default value of
Production. Valid values: (Test | Production)

* Version: For all OTA versioned messages, the version of the message is indicated by an
integer value.

* SequenceNmbr - This optiona attribute is used to identify the sequence number of the
transaction as assigned by the sending system. Allows for an application to process messages
in a certain order, or to request a resynchronization of messages in the event that a system has
been offline and needs to retrieve messages that were missed.

Error messages (and warnings), for any valid OTA response message provide a facility to help
trading partners identify the outcome of a message.

Note: All OTA versioned message requests MAY result in a response message that consists of a
non-versioned StandardError construct alone. When a <St andar dErr or > is not returned,
trading partners should be able to quickly determine whether the request succeeded, or had other
errors identified by the application that processed the request.

Therefore, every <xxxRS> element MUST have an optional <Success/ > element as its first
child. The presence of the empty <Success/ > element explicitly indicates that the OTA
message succeeded. In addition to <Success/ >, an implementation may return <\\r ni ngs>
in the event of one or more non-fatal business context errors, OR <Er r or s> in the event of a
failure to process the message altogether.

2.4.1.1 Mapping OTA Payload Attributes onto ebXML MS Headers

Each of the standard payload attributes has an equivalent in a standard ebXML MS envelope, and
as such it is NOT RECOMMENDED that any standard payload attribute except “version” be
included when OTA messages are transported over an ebXML MS. The following table details
this mapping:

EchoToken eb:Messageld, Response messages are
eb:RefToMessageld matched with requests by
placing the eb:Messageld

19 Wwith the exception of the Version attribute other standard payload attributes are redundant when using
the OTA RECOMMENDED ebXML transport. These attributes are provided for backward compatibility
and to provide some semblance of infrastructure when operating in a non-ebXML environment.

Copyright & 2001. OpenTravel Alliance www.opentravel .org/

OpenTravel Alliance 2001C Infrastructure Specification Page 22

element value from the request
in the eb:RefToMessageld
element of the response

TimeStamp eb: Timestamp Automatically generated by an
ebXML MS
Target OTA:SessionControlRequest Mode Negotiated during session

setup. Possible values. “Test”
or “Production”

Version - - No equivalent. OTA
RECOMMENDS the Version
atribute be sent with each

message

SequenceNumber eb:SequenceNumber Only applicable for type-B
messages

2.4.2 Design Patterns for Response Messages

Error and Warning elements share a common definition (with the exception of the tag name).
These common elements and parameter entities provided for convenience when defining message
response schemas are defined in the standard include schema fragment "OTA_v2ent.xsd" shown
below:

<?xm version="1.0" encodi ng="UTF- 8" ?>
<l-- Created and edited with "vi' -->
<xs:schema xm ns: xs="http://ww. w3. org/ 2001/ XM_Schenma"
xm ns="http://ww. opentravel . or g/ OTA"
t ar get Nanespace="htt p: // www. opentravel . or g/ OTA"
el enent For nDef aul t =" qual i fi ed">

<xs:annot ati on>
<xs:docunentation xm :|lang="en">
OTA v2001C Specification - General elenents used in response nessages
Copyright (C) 2001 Open Travel Alliance. Al rights reserved.
</ xs: docunent ati on>
</ xs: annot ati on>

<xs:include schenaLocati on="Uni quel d. xsd"/>

<xs:attributeG oup name="OTA _Payl oadStdAttri butes">
<xs:annot ati on>
<xs: docunent ati on>The OTA Payl oadSt dAttributes defines the standard attributes
that appear on the root elenent for all OTA payl oads where ebXM. is not being used (with the
exception of version).</xs:docunentation>
</ xs: annot ati on>
<xs:attribute name="EchoToken" type="xs:string"/>
<xs:attribute name="Ti meStanmp" type="xs:string"/>
<xs:attribute name="Target" default="Production">
<xs:si nmpl eType>
<xs:restriction base="xs: NMTOKEN' >
<xs:enuneration val ue="Test"/>
<xs:enuneration val ue="Production"/>
</xs:restriction>
</ xs: si mpl eType>
</xs:attribute>
<xs:attribute name="Version" type="xs:string"/>
<xs:attribute name="SequenceNmbr" type="xs:integer"/>
</ xs:attribut eG oup>

<xs:attributeG oup name="RegRespVersion">
<xs:annot ati on>

Copyright & 2001. OpenTravel Alliance www.opentravel .org/

OpenTravel Alliance 2001C Infrastructure Specification Page 23

<xs:docunent ati on>The ReqRespVersion attribute is used to request the version of
the payl oad nessage desired for the response. </xs: docunent ati on>
</ xs: annot ati on>
<xs:attribute nanme="ReqRespVersion" type="xs:string"/>
</ xs:attributeG oup>

<xs: el ement name="Success">
<xs:conpl exType>
<xs:annotati on>
<xs:docunent ati on>St andard way to indicate success processing an OTA
message</ xs: docunent ati on>
</ xs: annot ati on>
</ xs: conpl exType>
</ xs: el ement >

<xs: el ement nanme="War ni ngs" >
<xs:conpl exType>
<xs:annot ati on>
<xs:docunent ati on>l ndi cat es successful processing, but warnings
occur ed. </ xs: docunent ati on>
</ xs: annot ati on>
<xs:sequence>
<xs: el ement ref="Warning" maxCccurs="unbounded"/>
</ xs: sequence>
</ xs: conpl exType>
</ xs: el ement >

<xs: el emrent nanme="Errors">
<xs:conpl exType>
<xs: annot ati on>
<xs:docunent ati on>A Warning and an Error el enent have the sane
structure. </ xs: docunent ati on>
</ xs: annot ati on>
<XS:sequence>
<xs:element ref="Error" maxQccurs="unbounded"/>
</ xs: sequence>
</ xs: conpl exType>
</ xs: el ement >

<xs:conpl exType nane="Error Type” >
<xs: si npl eCont ent >
<xs:restriction base="xs:string">
<xs:attribute nane="Type" use="required">
<xs:si npl eType>
<xs:restriction base="xs: NMTOKEN' >
<xs:enuneration val ue="Unknown"/>
<xs:enuneration val ue="Nol npl enent ati on"/>
<xs:enuneration val ue="Bi zRul e"/ >
<xs:enuneration val ue="Aut hentication"/>
<xs:enuneration val ue="Aut henti cati onTi neout"/>
<xs:enuneration val ue="Aut horization"/>
<xs:enuneration val ue="Protocol Viol ati on"/>
<xs:enuneration val ue="Transacti onhodel "/ >
<xs:enuneration val ue="Aut henti cati onivbdel "/ >
<xs:enuneration val ue="ReqFi el dM ssi ng"/ >
<xs:enuneration val ue="TransportFailure”/>
<xs:enuneration val ue="Envel opeFail ure”/>
</ xs:restriction>
</ xs: si mpl eType>
</xs:attribute>
<xs:attribute nanme="Code" type="xs:string"/>
<xs:attribute name="DocURL" type="xs:string"/>
<xs:attribute name="Status" type="xs:string"/>
<xs:attribute nane="Tag" type="xs:string"/>
<xs:attribute name="Recordld" type="xs:string"/>
</ xs:restriction>
</ xs: si nmpl eCont ent >
</ xs: conpl exType>

<xs: el ement nanme="Warni ng" type="ErrorType” />

Copyright & 2001. OpenTravel Alliance www.opentravel .org/

OpenTravel Alliance 2001C Infrastructure Specification Page 24

<xs:el ement name="Error" type="ErrorType” />
</ xs: schema>

This schema fragment may then be included in other message definition schemas, as the
following example illustrates. In this hypothetical example, we define an <Exanpl eRS>
message:
<?xm version="1.0" encodi ng="UTF- 8" ?>
<l-- Created and edited with "vi' -->
<xs:schema xm ns: xs="http://ww. w3. org/ 2001/ XM_Schena"

xm ns="http://ww. opentravel . or g/ OTA"

t ar get Nanespace="htt p: // www. opentravel . or g/ OTA"

el enent For nDef aul t =" qual i fi ed">

<xs:include schemalLocati on="OTA v2ent.xsd"/>
<xs:include schemalLocati on="Exanpl eEl enent . xsd”"/ >

<xs: el ement nanme="Exanpl eRS" >
<xs:conpl exType>
<xs: choi ce>
<xs:sequence>
<xs: el ement ref="Success" />
<xs: el enment ref="Warni ngs" m nCccurs="0" />
<xs: el ement ref="Exanple" />
</ xs: sequence>
<xs:element ref="Errors" />
</ xs: choi ce>
<xs:attributeGoup ref="0TA Payl oadStdAttributes" />
</ xs: conpl exType>
</ xs: el ement >
</ xs: schema>

Note how the definition of the <Exanpl e> element, the central element in this <Exanpl eRS>
response message, is imported from another schema fragment ("ExampleElement.xsd" in this
case).

The attributes of a <WWar ni ng> or <Er r or > element are identical and defined as follows:

Type - The Error element MUST contain the Type attribute that uses a recommended set of values
to indicate the error type. Theinitial enumeration list MUST contain:

Unknown - Indicates an unknown error. It is recommended that additional information be
provided within the PCDATA, whenever possible.

Nolmplementation - Indicates that the target business system has no implementation for
the intended request. Additional information may be provided within the PCDATA.

BizRule - Indicates that the XML message has passed a low-level validation check, but
that the business rules for the request, such as creating a record with a non-unique
identifier, were not met. It is up to each implementation to determine when or if to use
this error type or a more specific upper level content error. Additional information may
be provided within the PCDATA.

AuthenticationModel - Indicates the type of authentication requested is not recognized.
Additiona information may be provided within the PCDATA.

Authentication - Indicates the message lacks adequate security credentials. Additional
information may be provided within the PCDATA.

AuthenticationTimeout - Indicates that the security credentials in the message have
expired. Additional information may be provided within the PCDATA.

Copyright & 2001. OpenTravel Alliance www.opentravel .org/

OpenTravel Alliance 2001C Infrastructure Specification Page 25

Authorization - Indicates the sender lacks adequate security authorization to perform the
request. Additional information may be provided within the PCDATA.

ProtocolViolation - Indicates that a request was sent within a message exchange that does
not align to the message protocols. Additional information may be provided within the
PCDATA.

TransactionModel - Indicates that the target business system does not support the
intended transaction-oriented operation. Additional information may be found within the
PCDATA.

RegFieldMissing - Indicates that an element or attribute that is required by the Schema
(or required by agreement between trading partners) is missing from the message.

VersionViolation — an invalid/unsupported version of a payload was sent

Code - If present, thisrefers to a table of coded values exchanged between applications to identify
errors or warnings.

DocURL - If present, this URL refers to an online description of the error that occurred.

Status - If present, recommended values are (Not Processed | |Inconplete |
Compl ete | Unknown) however, the data type is designated as CDATA for versioned
message responses, recognizing that trading partners may identify additional status conditions not
included in the enumeration.

Tag - If present, this attribute may identify an unknown or misspelled tag that caused an error in
processing. It is recommended that the Tag attribute use XPath notation to identify the location of
a tag in the event that more than one tag of the same name is present in the document.
Alternatively, the tag name alone can be used to identify missing data [Type=ReqFieldMissing].

Recordld - If present, this attribute allows for batch processing and the identification of the
record that failed amongst a group of records.

The following is an example of an error message in which a profile (identified by its Uniqueld)
was not found:

<OTA_ReadProfil eRS Version="2">
<Errors>
<Error Type="Bi zRul "> Uni quel d 09782345768 not found</Error>
</ Errors>
</ OTA_ReadProf i | eRS>

Copyright & 2001. OpenTravel Alliance www.opentravel .org/

OpenTravel Alliance 2001C Infrastructure Specification Page 26

3 Generic Messages and the Service/Action Model

OTA defines a smple service/action model which envelops all defined messages. Although many
messages are specific to a particular travel sub-domain (e.g. Air) other messages are generaly
applicable and may be used more broadly than on one domain-specific service. Many OTA
messages are defined in terms of Request/Response pairs (though the infrastructure aso provides
for reliably-delivered send-only notification type messages) In this section we explore the
service/action model and generic messages which are often applicable to multiple high-level
services.

3.1 The Service/Action Concept

The Service/Action modedl is conceptualy smilar to a Web Services model where an
implementation provides one or more high-level services, each of which has one or more
applicable actions (these equate to methods available on services). When used in conjunction with
Request/Response message pairs, the model is conceptually similar to an RPC™, though in fact
the underlying messaging substrate need not rely on RPCs.

EbXML provides for the definition of Service and Action as placeholders for information
pertaining to the intended processing of an ebXML message. From the perspective of the ebXML
message service these values are merely passed through and they are provided to allow parties to
target their messages for processing or action on particular services within their application
systems. Service and Action take the form of REQUIRED elements within the ebXML message
header.

When operating over an ebXML substrate, OTA REQUIRES the use of defined values for
Service and Action elements and the values defined are analogous in concept to Web Services and
methods available on a particular web service (think of the ebXML Service being conceptually a
Web Service and the ebXML Action being analogous to a method within that web service).

3.1.1 Service/Action Message Mappings

Within the ebXML Service element there is an optiona type attribute which parties may use in
the interpretation of the meaning of service. Within OTA messages flowing over ebXML, the
value of the type attribute SHALL be “OTA”.

The following fragment illustrates the context in which Service and Action will appear within a
MessageHeader:

Example 1 - MessageHeader showing a read operation*? on the AirBooking service

<eb: MessageHeader id="." eb:version="1.0" SOAP-ENV: nust Under st and="1">
<eb: Fronm
<eb: Partyld eb:type="urn: duns”>008925431</ eb: Partyl d>
</ eb: From>

" Remote Procedure Call — a synchronous, blocking request/response message exchange across an
underlying network. RPCs are popular as a model among application programmers as they offer complete
encapsulation of underlying network and messaging infrastructure.

OTA'’s infrastructure specifies high-volume messaging with different classes of delivery. This substrate
allows for multiple outstanding requests on a single session and offers considerable performance
advantages over RPC based infrastructure.

12 Note the use of one of the generic message — OTA_ReadRQ as an action within the AirBooking service

Copyright & 2001. OpenTravel Alliance www.opentravel .org/

OpenTravel Alliance 2001C Infrastructure Specification Page 27

<eb: To>
<eb: Partyld eb:type="urn:duns">008296571</ eb: Partyl d>
</ eb: To>
<eb: CPAl d>htt p: / / opentravel . or g/ cpa/ 2001C/ def aul t cpp. xm </ eb: CPAI d>
<eb: Conversati onl d>987654321- 123456789</ eb: Conver sati onl d>
<eb: Servi ce eb:type="OTA">Ai r Booki ng</ eb: Servi ce>
<eb: Acti on>0OTA_ReadRQx/ eb: Acti on>
<eb: MessageDat a>
<eb: Messagel d>m d: UUl D- 2</ eb: Messagel d>
<eb: Ti mest anp>2001- 10- 25T12: 19: 05Z</ eb: Ti mest anp>
</ eb: MessageDat a>
<eb: Qual i tyOF Servi cel nfo eb: del i verySemanti cs="BestEffort”/>
</ eb: MessageHeader >

As such, the following Services are defined within OTA™:

Profile This service provides operations on customer profiles

VehicleBooking Service to check availability, book, modify and/or cancel vehicle
rentals

AirBooking Service to check air/flight availability and for air/flight
reservation/booking

Travellnsurance Travel Insurance related service

HotelBooking Service to search for and identify hotels, check availability, book,

modify and/or cancel hotel accommodations

HotelResNotification Service for delivery of hotel bookings between systems (eg.
between central systems and property-based systems)

HotelPropertylnformation Services for actions pertaining to detailed per-stay accommodation
statistics, agency commission reports and property related statistics
of interest to 3 party systems such as revenue-management

systems

MeetingProfile Service to create/modify meeting profiles for group/convention
related business

PackageBooking Service to check availability, book/modify/cancel holiday/tour
packages

Session OTA Infrastructure service used to establish, and/or terminate
sessions

GolfTeeTimes Service for locating a golf course, checking availability and

booking tee times

3.2 Unique Identifiers within OTA Messages

Each record that identifies a unique business document containing travel-related information,
such as a profile or reservation record, MUST have a unique identifier assigned by the system

3 Working groups should define additional services as new message sets are defined. See section 6 for
detail mappings of messages onto specific actions on these services.

Copyright & 2001. OpenTravel Alliance www.opentravel .org/

OpenTravel Alliance 2001C Infrastructure Specification Page 28

that creates it with the tag name <Uni quel d>**. The unique identifier on the record MUST
contain both a Type and an Id attribute. It MAY optionaly include a URL and an Instance
attribute. The syntax for a<Uni quel d> isformally defined in the following Schema fragment:

Schema 1 - <UniquelD>:

<xs: el ement name="Uni quel d">
<xs:conpl exType>
<xs:attribute name="URL" type="xs:string"/>
<xs:attribute name="Type" type="xs:string" use="required"/>
<xs:attribute name="1d" type="xs:|D"' use="required"/>
<xs:attribute nanme="|nstance" type="xs:string"/>
</ xs: conpl exType>
</ xs: el ement >

URL - This optional attribute is what makes a <Uni quel d> instance globally unique outside
the context of a single bilateral conversation between known trading partners. OTA
RECOMMENDS that the URL be a reference to the public OTA implementation for each

trading partner. Note: In the absence of having a public URL, the reference for this attribute
could be determined by bilateral agreement.

Type - This enumerated attribute references the type of object this <Uni quel d> refers to,
and gives this element its generality. By convention, the Type attribute value is the same as
the OTA element tag name for the referenced object, for example, "Profile" or “Reservation”.
As additional message types are defined in future versions of OTA specifications, the Type
atribute enumeration will expand to include additional tag names values where a
<Uni quel d> applies.

Id - This represents a unique identifying value assigned by the creating system, using the
XML datatype ID. The Id attribute might, for example, reference a primary-key value within
a database behind the creating system’ s implementation.

Instance - This optional attribute represents the record as it exists at a point in time. An
Instance is used in update messages where the sender must assure the server that the update
sent refers to the most recent modification level of the object being updated. Every time the
record changes Instance assumes a different value.

Possible implementation strategies for Instance values are:
= atimestamp
= amonotonically increasing sequence (incremented on each update)
= anmd>5 sum of the binary representation of the object in its persistent store

3.2.1 Examples of unique identifiers

A valid unique identifier MAY contain only the Type and Id (a unique string assigned by the
system that created it) attributes:

<Uni quel d Type="Profile" |d="1234567"/>

To ensure that a unique identifier is globally unique (in the universal namespace) add a URL
attribute which includes a fully-qualified domain-name:

14 OTA <Uniqueld> elements are not related to the unique identifiers supplied within an ebXML
MessageHeader i.e. the eb:Messageld is generated by an ebMS and refers to the ebXML message as a
whole whereas an OTA Uniqueld is generated within application space and uniquely identifies a business
object, having the same lifecycle as that business object.

Copyright & 2001. OpenTravel Alliance www.opentravel .org/

OpenTravel Alliance 2001C Infrastructure Specification Page 29

<Uni quel d URL="http://vnguys. com OTAengi ne/" Type="Profile" |d="1234567"/>

This Id is assured of being globally unique in any namespace as the URL points to a vendor’'s
OTA implementation which, in turn, relies on the unique domain name for the vendor assigned
by a government approved Internet Domain Name registrar. OTA has considered the potential
effect a name change would have on globally unique identifiers, and noted that a change in URL
or primary domain name should not present an issue unless another business entity assumes the
previous URL unaltered.

This approach to unique naming takes into consideration the following benefits:
provides a simple and succinct representation

guaranteed to be a globally unique identifier within the universal namespace (with the use of
the URL attribute)

becomes applicable and reusable in other OTA specifications

3.3 Generic Infrastructure Messages

Defining certain actions at the infrastructure level alows for reuse on multiple services and
avoids duplication of work between domain-specific working groups. Generic infrastructure
messages also offer opportunities for software reuse within implementations. The basic
operations include Create, Read, Update, and Delete — memorably abbreviated CRUD. These four
verbs provide consistent conventions for basic actions affecting both infrastructure and business
elementsin OTA specifications.

The Create, Read, and Delete actions MUST apply only to entire records. Updates allow for
addressing one or more individual elements, and making changes to part(s) of a record.

3.3.1 Create messages

Create messages define an operation that generates a new record with a unique identifier. The
sequence follows these steps:

Requestor sends a Create request along with the initial data, and optionally a unique
identifier.

Receiver creates a new record and assigns a unique identifier (e.g. a Profile Id or Reservation
[d).

Receiver responds with a message providing a unique identifier for the new record created
and optionally, any data entered by the requestor.

Example 2 — Create request message:™

<OTA CreateProfil eRQ Version="2">
<Uni quel d Type="Profile"/>
<Profil e>
<Cust omer Gender ="Ml e" >
<Per sonNane>
<G venNane>John</ G venNane>
<Sur name>Smi t h</ Sur nane>
</ Per sonNane>

</ Cust oner >

15 We thank Adam Athimuthu for creating the sample “ Create" messages.

Copyright & 2001. OpenTravel Alliance www.opentravel .org/

OpenTravel Alliance 2001C Infrastructure Specification Page 30

</Profile>
</ OTA _Creat eProfil eRQ>

Example 3 - Create response message:

<OTA CreateProfil eRS Version="2">
<Success />
<Uni quel d
URL="htt p://ww. si xconti nents. conl OTAPr ocessor"
Type="Profile"
| d="1234567"/ >
</ OTA _Creat eProfil eRS>

There is no generic OTA message for create. Each working group should define new Create
messages for their business objects using the patterns outlined above.

3.3.2 Generic Read message

The Read infrastructure action defines an operation that opens an existing record and transmits
information contained in that record. The Read operation enables the user to identify a particular
record and retrieve its entire contents. The basic operation has the following steps:

Requestor queries the database where the record resides by sending a Read request message
with the object's unique identifier

Receiver returns the record to the requestor

The use of the OTA <Uni quel d> element allows for a generalized read transaction message.
With the object type specified via the Type attribute, the action type is identified within a general
read request.

The use of the OPTIONAL OTA <PCS> element allows an implementation to determine whether
the remote user has permission to view the object being read.

Example 4 - OTA ReadRQ message:

<OTA_ReadRQ RegRespVer si on="2">
<Uni quel d
URL="htt p://vmguys. coml OTAEngi ne/"
Type="Profile"
| d="0507-12345"/ >
</ OTA_ReadRQ>

ReqRespVersion - The optiona "Request Response Version" attribute allows the sender to
indicate the version desired for the response message. For example, the OTA_ReadRQ message
sample above indicates a request to return an OTA Customer Profile.

This request applies to al types of objects, not just profiles. The type of the generated response
depends, of course, on the Type specified in the request; for example, the <OTA_ ReadRQ>
shown in the example would generate a <OTA_ReadPr of i | eRS> message that contains an
OTA Profile as aresponse, as in the example below.™®

This generalization significantly reduces the maintenance burden for individua infrastructure
verbs, with effectively zero loss in semantics.

Example 5 - Read response message:

<OTA_ReadProfil eRS Version="2">
<Uni quel d

16 Expected responses for each request type are formally defined in section 6: Service/Action mappings.

Copyright & 2001. OpenTravel Alliance www.opentravel .org/

OpenTravel Alliance 2001C Infrastructure Specification

URL="htt p://vmguys. com OTAEngi ne/"

Type="Profile"

| d="0507-12345"

I nst ance="20000531172200"/ >
<Profile>

</ Pr.o'f 'i I e>
</ OTA_ReadProf i | eRS>

Page 31

An Instance value returned in a Read response, if not implemented as a timestamp, may specify
the same instance value to all requestors until the record is changed by a subsequent action to the

record, such as an update.

The generic OTA_ReadRQ message is formally defined by the following schema fragment:

Schema 2 - <OTA_ReadRQ>:

<?xm version="1.0" encodi ng="UTF- 8" ?>
<l-- Created and edited with "vi' -->
<xs:schema xm ns: xs="http://ww. w3. org/ 2001/ XM_Schenma"
xm ns="http://ww. opentravel . or g/ OTA"
t ar get Nanespace="htt p: // www. opentravel . or g/ OTA"
el enent For nDef aul t =" qual i fi ed">

<xs:annot ati on>
<xs:docunentation xm :lang="en">
OTA v2001C Specification - Generic OTA ReadRQ message definition
Copyright (C) 2001 Open Travel Alliance. Al rights reserved.
</ xs: docunent ati on>
</ xs: annot ati on>
<xs:include schemalLocati on="OTA v2ent.xsd"/>
<xs:include schemalLocati on="OTA_PCS. xsd”/ >

<xs: el ement nanme="OTA_ReadRQ'>
<xs:annot ati on>
<xs:docunentation xm :lang="en">
A generic nessage, available as an action on several OTA services
whi ch requests a server to read and return the document type
identified by the Uniqueld el enent.
</ xs: docunent ati on>
</ xs: annot ati on>
<xs:conpl exType>
<xs:sequence>
<xs: el ement ref="Uni queld"/>
<xs: el ement ref="P0S” m nCccurs="0"/>
</ xs: sequence>
<xs:attributeG oup ref="0TA Payl oadStdAttributes"/>
<xs:attributeG oup ref="RegRespVersion"/>
</ xs: conpl exType>
</ xs: el ement >
</ xs: schema>

3.3.3 Generic Update message

The Update infrastructure action defines an operation that opens an existing record, identifies the
information that needs changing, then transmits data corresponding to the appropriate elementsin

the tree, and adds or replaces those data in the record.

Because Update operations are more complex and can affect parts of the record rather than the
entire record, handling update messages generaly can be more difficult. As a result, two

approaches to updating records are defined in this specification.
The goals considered in the design of the Update operation include:

Minimizing the size of a payload on the wire to represent an update transaction

Copyright & 2001. OpenTravel Alliance

www.opentravel .org/

OpenTravel Alliance 2001C Infrastructure Specification Page 32

Defining an explicit representation about what has changed
Defining a representation with a clear and simple conceptual model

Creating a representation that is content-independent and general-purpose in nature so as
to be reusable throughout future OTA specifications

Providing a simple-to-implement "replace” option to allow developers to get smpler
implementations running quickly - at the expense of the first 2 goals (representation of
change and size of message) above

Because data to be modified may be stored in a database and not in an XML document format, it
may not be possible to reconstruct the original document that transmitted the data. Therefore, it is
RECOMMENDED that implementations utilizing the partial update process perform a Read
regquest to abtain the structure of the XML tree prior to constructing an Update request.

The definition of the Update message is lengthy. An example update request for a customer
profile modification is shown below. A detailed treatment of update requests, how to generate and
approaches to processing them is included in an appendix (see section 5 — OTA Update

M essages).
Example 6 - OTA_UpdateRQ"":

<?xm version="1.0" encodi ng="UTF- 8" ?>
<l-- created by 'DiffGen'" using VMIools 0.2 (http://ww.vnguys.confvntools/) -->
<OTA_Updat eRQ xm ns="htt p:// ww. opentravel . or g/ OTA"
xm ns: xsi ="http://ww. w3c. or g/ 2001/ XM_Schena- i nst ance"
xsi : schemalLocati on="http://ww. opentravel . org/ OTA OTA Updat eRQ. xsd"
RegRespVer si on="2">
<Uni quel d Type="Profile"
| d="987654321"
URL="htt p: //ww. vnguys. conl OTAEngi ne/ "
I nst ance="20011012160659" />
<Posi ti on XPat h="/Profil e/ Cust oner/ Addr essl nf o/ Addr ess/ St r eet Nnbr" >
<Attribute Name="PO Box" Operation="delete" />
</ Posi tion>
<Posi ti on XPat h="/Profil e/ Cust oner/ Tel ephonel nf 0" >
<Attribute Name="PhoneUse" Operation="nodify" Val ue="Hone" />
</ Posi tion>
<Posi tion XPat h="/Profil e/ Custoner/PersonNane/ M ddl eNane" >
<Subtree Operation="delete" />
</ Posi tion>
<Posi tion XPat h="/Profil e/ Custoner">
<Subtree Operation="insert" Child="5">
<Rel at edTravel er Rel ati on="Child">
<Per sonNanme>
<NanePr ef i xNamePr ef i x>Ms. </ NanePr ef i xNamePr ef i x>
<G venName>Any</ G venNane>
<M ddI eNanme>E. </ M dd| eName>
<Sur name>Sni t h</ Sur name>
</ Per sonNane>
</ Rel at edTr avel er >
</ Subt r ee>
<Attribute Name="Gender" Operation="nodify" Val ue="Male" />
</ Posi tion>
</ OTA_Updat eRQ>

3.3.4 Generic Delete message

7 Additional examples, including before and after images, may be found in section 5 — OTA Update
messages

Copyright & 2001. OpenTravel Alliance www.opentravel .org/

OpenTravel Alliance 2001C Infrastructure Specification Page 33

The Delete infrastructure action defines an operation that identifies an existing record, and
removes the entire record from the database. The use of the Delete action depends upon the
business rules of an organization. Alternative strategies, such as mapping a duplicate record to
another by use of the Uniqueld, may be considered.

The requestor MAY also verify the record before deleting it to ensure the correct record has been
identified prior to deleting it. In this case, the use of the Instance attribute may be useful in
determining whether the record has been updated more recently than the information that is
intended to be deleted. That choice, again, would be dictated by good business practices.

Steps in the Delete operation include:
Requestor submits a Read request to view the record
Receiver returns the record for the requestor to view
Requestor submits a Delete request.
Receiver removes the record and returns an acknowledgement

The use of the OPTIONAL OTA <PCS> element alows an implementation to determine whether
the remote user has permission to delete the object being read.

Example 7 - illustrating the Delete process, Read request:

<?xm version="1.0" encodi ng="UTF- 8" ?>
<OTA_ReadRQ RegRespVer si on="2">
<Uni quel d>
URL=ht t p: // vnguys. coml OTAENngi ne/
Type="Profile"
| d="0507-12345"
</ Uni quel d>
</ OTA_ReadRQ>

Example 8 - illustrating the Delete process Read response:

<?xm version="1.0" encodi ng="UTF- 8" ?>
<OTA_ReadProfil eRS Version="2">
<Uni quel d>
URL="http://vmguys. coml OTAEngi ne/"
Type="Profile"
| d="0507- 12345"
I nst ance="2"
</ Uni quel d>
<Profile>

</Profile>
</ OTA_ReadProf i | eRS>

Example 9 - illustrating the Delete request:

<?xm version="1.0" encodi ng="UTF- 8" ?>
<OTA_Del et eRQ ReqRespVer si on="2">
<Uni quel d>
URL="http://vmguys. coml OTAEngi ne/"
Type="Profile"
| d="0507- 12345"
I nst ance="2"
</ Uni quel d>
</ OTA_Del et eRQ>

Example 10 - illustrating the Delete response:

<?xm version="1.0" encodi ng="UTF- 8" ?>
<OTA Del et eRS Versi on="2">
<Uni quel d>
URL="htt p://vmguys. or g/ OTAEngi ne/"
Type="Profile"
| d="0507-12345"

Copyright & 2001. OpenTravel Alliance www.opentravel .org/

OpenTravel Alliance 2001C Infrastructure Specification Page 34

I nst ance="0"/>
</ Uni quel d>
<Success/ >

</ OTA_Del et eRS>

A generic OTA delete message is formally defined by the following schema fragment:

Schema 3 - <OTA_DeleteRQ>:

<?xm version="1.0" encodi ng="UTF- 8" ?>
<l-- Created and edited with "vi' -->
<xs:schema xm ns: xs="http://ww. w3. org/ 2001/ XM_Schenma"
xm ns="http://ww. opentravel . or g/ OTA"
t ar get Nanespace="htt p: // www. opentravel . or g/ OTA"
el enent For nDef aul t =" qual i fi ed">

<xs:annot ati on>
<xs:docunentation xm :|lang="en">
OTA v2001C Specification - Generic OTA Del et eRQ message definition
Copyright (C) 2001 Open Travel Alliance. Al rights reserved.
</ xs: docunent ati on>
</ xs: annot ati on>
<xs:include schemalLocati on="OTA v2ent.xsd"/>
<xs:include schenaLocation” OTA_PCS. xsd”/ >

<xs: el ement nanme="OTA Del et eRQ'>
<xs:annot ati on>
<xs:docunentation xm :|lang="en">
A generic nessage, available as an action on several OTA services
whi ch requests a server to delete the business object
identified by the Uniqueld el enent.
</ xs: docunent ati on>
</ xs: annot ati on>
<xs:conpl exType>
<xs:sequence>
<xs: el ement ref="Uniqueld" />
<xs:element ref="P0S" m nCccurs="0" />
</ xs: sequence>
<xs:attributeG oup ref="0TA Payl oadStdAttributes"/>
<xs:attributeG oup ref="RegRespVersion"/>
</ xs: conpl exType>
</ xs: el ement >
</ xs: schema>

A response to a delete request follows the normal pattern for OTA responses and is formally
defined by the following schema fragment:

Schema 4 - <OTA_DeleteRS>:

<?xm version="1.0" encodi ng="UTF- 8" ?>
<l-- Created and edited with "vi' -->
<xs:schema xm ns: xs="http://ww. w3. org/ 2001/ XM_Schenma"
xm ns="http://ww. opentravel . or g/ OTA"
t ar get Nanespace="htt p: // www. opentravel . or g/ OTA"
el enent For nDef aul t =" qual i fi ed">

<xs:annot ati on>
<xs:docunentation xm :|lang="en">
OTA v2001C Specification - Generic OTA Del et eRS nmessage definition
Copyright (C) 2001 Open Travel Alliance. Al rights reserved.
</ xs: docunent ati on>
</ xs: annot ati on>
<xs:include schemalLocati on="OTA v2ent.xsd"/>

<xs: el ement nanme="OTA Del et eRS">
<xs:annot ati on>
<xs:docunentation xm :|lang="en">
Response to a generic OTA Del et eRQ message, available as an action

Copyright & 2001. OpenTravel Alliance www.opentravel .org/

OpenTravel Alliance 2001C Infrastructure Specification Page 35

on several OTA services which requests a server to del ete the business
object identified by the Uniqueld el ement.
</ xs: docunent ati on>
</ xs: annot ati on>
<xs:conpl exType>
<xs: choi ce>
<xs: sequence>
<xs: el ement ref="Success" />
<xs: el ement ref="Warni ngs" m nCccurs="0" />
<xs: el ement ref="Uniqueld" />
</ xs: sequence>
<xs:element ref="Errors" />
</ xs: choi ce>
<xs:attributeG oup ref="0TA Payl oadStdAttributes"/>
</ xs: conpl exType>
</ xs: el ement >
</ xs: schema>

3.3.5 Generic Cancel Request

OTA has developed a generic cancel message for use within the travel industry because there are
common patterns between industry verticals for canceling a reservation, and it is anticipated that
the messages defined here would be used to cancel a reservation made using the specifications in
this publication.

The basic pattern for all industry verticals is to identify the reservation by some form of unique
identification number, whether that number is called a Record Locator Number, PNR,
Reservation ID, Confirmation 1D, or called by some another name. While the nomenclature may
differ from system to system, the convention is universal: 1) identify the ID unique to the system
assigned to perform the cancellation, and 2) receive a confirmation of the cancellation as a
response.

If atravel service is not going to be fulfilled, the availability of inventory is affected, and the
system holding the inventory will want to release that inventory. Typically, the cancel action is
executed by the receiving system, as it is usualy the system that holds the reserved inventory.
The cancdllation allows the inventory to be returned back to the marketplace and enables the
supplier to resell it as quickly as possible.

A cancdllation could conceptually be considered as a special case of a "modify” transaction
because the record of the reservation is generaly not removed immediately from a system, but
placed into a different status. However, a cancel transaction differs from a modification because
the entirety of the services booked will not be consumed. The information exchange differs
because the system doing the cancellation does not have to return the bulk of the reservation
information as is the case when confirming the modification of reservation information. The
process becomes much simpler: send the unique identifier to the system with the indication that
the action to be taken is to perform a cancel; receive a response that the action has taken place.

A cancellation also differs from the generic infrastructure verb, OTA_DeleteRQ. The Delete
action removes the record out of the database, while in a cancellation, the record of the
reservation is not necessarily deleted. A cancellation is a business process driven by the business
rules applied to the reservation, and effectively provides a change of status of that reservation.

3.3.5.1 Consequences of Canceling

When a cancel message is sent, two possibilities exist: the reservation may be canceled without
penalty, or the cancellation incurs a penalty for doing so. For many travel services, perhaps the
majority in this day and age of bargains, promotional fares and specia rates, some sort of
restrictions may apply. A cancellation of travel services may result in forfeiture of an amount paid
for a guarantee, or deposit, etc.

Copyright & 2001. OpenTravel Alliance www.opentravel .org/

OpenTravel Alliance 2001C Infrastructure Specification Page 36

3.3.5.2 Read Request Prior to Cancel

The logical steps that occur for a cancellation recognize that prior to sending a cancellation
message, the party holding the reservation may wish to retrieve and review that reservation.
Reasons for doing so include reviewing associated information that may communicate the
cancellation policy, or simply to confirm the identification of the reservation to be cancelled,
among a series of reservations held by that party.

The function of retrieving the reservation uses the generic OTA_ReadRQ, specifying the
Uniqueld of the reservation, with Type=" Reser vat i on”, and optionally supplying a URL to
identify the party holding the reservation or the machine location where the reservation is being
stored.

Example 11 - <OTA_ReadRQ> message:

<OTA_ReadRQ RegRespVersi on="1">
<Uni quel d
URL="http://provider1l. com OTAEngi ne/"
Type="Reservation"
| d="05071G4325"/ >
</ OTA_ReadRQ>

The response is a specific OTA Read message, containing the reservation information.

Example 12 - <OTA_ReadHotelResRS> message:

<OTA_ReadHot el ResRS Versi on="1">
<Uni quel d
URL="http://vmguys. com OTAEngi ne/"
Type="Reservation"
| d="05071G4325"
I nst ance="20000531172200"/ >
<Hot el Res>

</ Hot el Res>
</ OTA_ReadHot el ResRS>

An optional Instance value returned in a Read response, if implemented as a timestamp, may
indicate the most recent record of the reservation and allow for synchronization if the requesting
and receiving party do not hold the same reservation.

3.3.5.3 Security considerations

Inherent in the business practices of companies exchanging information is the requirement for
some kind of qualification that entitles the requestor to receive the reservation information.
Sufficient information should be sent for the receiving system to be able to recognize the
reguesting system, and to qualify it to receive the information.

Systems may assume a point-to-point connection upon receiving a request to retrieve a booking,
but may till need to know who is on the terminal, particularly with transactions that may come
from travel web sites where the individua has the opportunity to log on and control their own
reservation. The booking engine, or application processing the request, is tasked to qualify the
requestor so that it can be certain that the party is who they represent themselves to be. This
usualy involves furnishing some kind of information such as a last name, membership number,
confirmation number, or credit card number (at least the last 4 digits of the credit card number)
that was used for the reservation. That level of verification may be required even with the
identification of the source and booking channel supplied by the Point-of-Sale information.

Copyright & 2001. OpenTravel Alliance www.opentravel .org/

OpenTravel Alliance 2001C Infrastructure Specification Page 37

This generic cancel message assumes that the software asking for the read or cancel action has
pre-determined the other party's rights for viewing at either end of the message conversation. The
same considerations for the security of the connection, as well as identification of the requesting
party, is true for transactions involving reading and modifying a profile.

It is common practice for many systems to keep a summary level view of areservation, retaining
information about the requestor. Therefore, within the remit of information in the request, some
level of security can be applied to view or cancel that information. In many cases, sending the
transaction to retrieve a reservation must be made through the channel or source where the
origina booking took place.

Complications arise when, within a booking or channel, all of the other qualifiers might be right,
but the request is not made through the same source. For example, a travel agency branch office
could be handling a request for a customer who made the original reservation through another
location. In that case, the retrieving application is then tasked to take the qualification to the next
level and match the request up to the channel and source to display only those reservations that
were booked through that agency.

Travel suppliers may wish to support returning all reservations that can be identified with their
company, e.g. using identifiable confirmation numbers, regardless of where the reservation was
booked (e.g. through their Central Reservation System, or through a web site, etc.). Conversely,
the customer who had booked a reservation through a specific web site, could not go on another
travel supplier web site, and retrieve a booking made on the competitor's site. The reservation
could only be retrieved through the original source.

Note: It islikely that within one company, systems will be able to use the generic Read or Cancel
request for conversations between trusted sources, such as an interface from their web site to a
legacy system. Additional information may be needed to establish a level of confidence between
trading partners. As the nature of XML is to be extensible, partners wishing to expand upon
requirements in their environment may use the <TPA_Ext ensi on> defined elsewhere in this
document.*®

The use of the OPTIONAL OTA <PCS> element alows an implementation to determine whether
the remote user has permission to cancel a particular booking.

3.3.5.4 OTA Cancel Messages

This specification provides a request/response pair of messages to support the functionality of
canceling areservation.

The following message pair is used on all applicable servicesto cancel areservation:
OTA_CancelRQ - Identifies the reservation and requests a cancellation.

OTA_CancelRS — MAY return a list of rules that govern the cancellation, a cancellation
number upon execution of the cancel action, or Warnings or Errors if the processing of the
request did not succeed.

3.3.5.4.1 OTA Cancel Request

The root element of the OTA_CancelRQ contains the standard payload attributes found in all
OTA payload documents as well as the attribute ReqRespVersion= that requests a specific version

18 See section 2.3.8.2 Best Practices Guideline V111-2 for details and examples of <TPA_Extension>

Copyright & 2001. OpenTravel Alliance www.opentravel .org/

OpenTravel Alliance 2001C Infrastructure Specification Page 38

of the response message. As thisisthe first publication of the OTA cancel message set, currently
the only valid valueis"1".

The cancd request dso has an attribute, Cancel Type = " ", that defines the action
requested in the cancel message.

Attributes of OTA_CancelRQ are as follows:
OTA_PayloadStdAttributes - includes the 5 standard attributes on al OTA messages.
ReqRespVersion - Reguests aversion of the response message.

CancelType - An enumerated type indicating the type of request made for the cancellation.
Valid Vaues are: (Initiate | Ignore | Confirm).

Initiate - Indicates the initial request to cancel areservation.
Ignore - Indicates aroll-back of the request to cancel, leaving the reservation intact.

Confirm - Indicates a request to complete the cancellation.

3.3.5.4.2 Cancel Request
The cancel request is formally defined by the following schema fragment:

Schema 5 - <OTA_CancelRQ> message:

<?xm version="1.0" encodi ng="UTF- 8" ?>
<l-- Created and edited with "vi' -->
<xs:schema xm ns: xs="http://ww. w3. org/ 2001/ XM_Schena"
xm ns="http://ww. opentravel . or g/ OTA"
t ar get Nanespace="htt p: // www. opentravel . or g/ OTA"
el enent For nDef aul t =" qual i fi ed">

<xs:annot ati on>
<xs:docunentation xm :|lang="en">
OTA v2001C Specification - Generic OTA Cancel RQ nmessage definition
Copyright (C) 2001 Open Travel Alliance. Al rights reserved
</ xs: docunent ati on>
</ xs: annot ati on>
<xs:include schemalLocati on="OTA v2ent.xsd"/>
<xs:include schenmalLocati on="OTA_PCS. xsd”/ >

<xs: el ement name="OTA Cancel RQ'>
<xs:annot ati on>
<xs:docunentation xm :lang="en">
A generic nessage, available as an action on several OTA services which
requests a server to cancel the booking identified by the Uniqueld el enent.
</ xs: docunent ati on>
</ xs: annot ati on>

<xs:conpl exType>
<xs:sequence>
<xs: el ement ref="Uni queld"/>
<xs: el ement ref="P0S” m nCccurs="0"/>
</ xs: sequence>
<xs:attributeG oup ref="0TA Payl oadStdAttri butes"/>
<xs:attributeG oup ref="RegRespVersion"/>
<xs:attribute name="Cancel Type" use="required">
<xs: si npl eType>
<xs:restriction base="xs:string">
<xs:enuneration value="Initiate"/>
<xs:enuneration val ue="Ignore"/>
<xs:enuneration val ue="Confirni/>
</xs:restriction>
</ xs: si mpl eType>
</xs:attribute>

Copyright & 2001. OpenTravel Alliance www.opentravel .org/

OpenTravel Alliance 2001C Infrastructure Specification Page 39

</ xs: conpl exType>
</ xs: el enent >
</ xs: schema>

3.3.5.4.3 Cancel Request - Sample XML message

The following sample message is an example of an initial cancel message:

<OTA _Cancel RQ xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Scheme- i nst ance"
xsi : noNanespaceSchemaLocat i on="OTA_Cancel RQ. xsd"
Ver si on="1" ReqRespVer si on="1"
Cancel Type="Initiate">

<Uni queld URL=" http://providerl. org/ OTAEngi ne/"

Type="Reservation"
| d="0507G4325"
| nst ance="2001- 06- 03T13: 09: 21"/ >

</ OTA_Cancel RQ>

3.3.5.5 Confirmation of Cancellation

When a cancellation has been executed, the majority of systems will return a cancellation
number. The identification number supplied serves to confirm that the action has taken place, and
makes it possible to track monetary ramifications that may be associated with the cancellation.

A single cancel request can result in a transaction that straightforwardly cancels a reservation and
returns a confirmation that the cancellation has taken place. Alternatively, the request to cancel a
reservation may violate a business rule, subjecting the party to a cancellation penalty. In that case,
it is desirable to return information about the cancellation penalty in the response.

The OTA_CancelRQ message alows for the possibility to perform a two-phase transaction to
inform the party wishing to cancel of the penalties that would be incurred, and to alow them to
verify their intention to cancel. The Cancel Type attribute is a flag that can be set to the choices of
(Initiate | Ignore | Confirm). This enables the message conversation to send in an initial request to
cancel a reservation, anticipate a response that returns the consequences of doing so, and alows
for the option of rolling back the transaction and choosing NOT to cancel the reservation.

3.3.5.5.1 OTA Cancel Response

The <OTA_Cancel RS> message follows the standard design pattern for response messages.™
Additiondlly, it MAY return a collection of cancellation rules, with penaty amounts, if incurred,
and an indication of the status of the cancellation request, either "Cancelled”, "Pending”, or
"Ignored" if the transaction has been rolled back and the reservation remains intact.

Attributes of OTA_CancelRS are as follows:
OTA_PayloadStdAttributes - includes the 5 standard attributes on all OTA messages.
CancellD - Theidentification number of the cancellation.

Status - An enumerated type indicating the status of the cancellation request. Valid Values
are: (Pending | Ignored | Canceled).

Pending - Indicates the initial request to cancel a reservation is pending confirmation to
complete the cancel action. Cancel rules may have been returned along with the response.

Ignored - Indicates the request to cancel was rolled back, leaving the reservation intact.

19 See sectin 2.4.2 “Response Message Design Patterns” for details

Copyright & 2001. OpenTravel Alliance www.opentravel .org/

OpenTravel Alliance 2001C Infrastructure Specification Page 40

Canceled - Indicates the cancdllation is complete. A cancellation ID may have been returned
along with the response.

By providing the option of a two-step process, individual business rules may determine how their
system processes the initial request. If there are no penalties involved in the cancellation, the
cancel transaction can take place and the response return the cancellation number along with the
status that the reservation has been cancelled.

If the processing system determines that a cancellation policy has been invoked, it may choose to
send back the OTA_CancelRS with the Status="Pending", accompanied by a collection of
cancellation rules, allowing the originating party to determine if the cancellation should proceed.
The originating system would then resend the OTA_CancelRQ. A Cancel Type="Ignore" would
anticipate a response with the Status "Ignored”, thus ending the message conversation with no
action being taken to cancel the reservation.

A CancelType = "Commit" indicates a definitive "Yes' to process the cancellation. This message
would anticipate the response of Status="Cancelled", along with the return of a Cancellation Id,
and that transaction would complete the cancellation process. The cancel RQ is the same message
in each case, with the Cancel Type attribute indicating the action to be taken on the request.

3.3.5.5.2 Cancel Rules

The <OTA_Cancel RS> message has two child elements: the reservation record is identified by
the use if the Uniqueld element, and the cancellation rules and/ or penalties are communicated by
the use of the CancelRules collection that may return one or many Cancel Rule elements.

The attributes of the Cancel Rule e ement are as follows;

CancelByDate - Identifies the date by which a cancellation should be made in order to avoid
incurring a penalty.

Amount - The monetary amount incurred as a result of the cancellation.
CurrencyCode - The code that identifies the currency of the penalty amount, using 1SO 4217.

The data type of the CancelRule element is xs:string, which can be used for text describing the
cancellation penalties. Cancel Rule is a repeating element and can be used as many times as
needed to communicate the cancel penalties and rules

3.3.5.5.3 Cancel Response
The Cancel response is formally defined by the following schema fragment:

Schema 6 - <OTA_CancelRS> message:

<?xm version="1.0" encodi ng="UTF- 8" ?>
<l-- Created and edited with "vi' -->
<xs:schema xm ns: xs="http://ww. w3. org/ 2001/ XM_Schenma"
xm ns="http://ww. opentravel . or g/ OTA"
t ar get Nanespace="htt p: // ww. opentravel . or g/ OTA"
el enent For nDef aul t =" qual i fi ed">

<xs:annot ati on>
<xs:docunentation xm :|lang="en">
OTA v2001C Specification - Generic OTA Cancel RS nmessage definition
Copyright (C) 2001 Open Travel Alliance. Al rights reserved.
</ xs: docunent ati on>
</ xs: annot ati on>
<xs:include schemalLocati on="OTA v2ent.xsd"/>

<xs: el ement name="OTA Cancel RS">

Copyright & 2001. OpenTravel Alliance www.opentravel .org/

OpenTravel Alliance 2001C Infrastructure Specification Page 41

<xs:conpl exType>
<xs: choi ce>
<xs:sequence>
<xs: el ement ref="Success" />
<xs: el ement ref="Warnings" m nCccurs="0" />
<xs: el ement ref="Uniqueld" />
<xs: el ement ref="Cancel Rul es"/>
</ xs: sequence>
<xs:element ref="Errors" />
</ xs: choi ce>
<xs:attributeGoup ref="0TA Payl oadStdAttributes" />
<xs:attribute nanme="Status" use="required">
<xs:si mpl eType>
<xs:restriction base="xs:string">
<xs:enuneration val ue="Pendi ng"/>
<xs:enuneration val ue="Ignored"/>
<xs:enuneration val ue="Cancel ed"/ >
</xs:restriction>
</ xs: si mpl eType>
</xs:attribute>
<xs:attribute nanme="Cancel | d" type="xs:string"/>
</ xs: conpl exType>
</ xs: el ement >

<xs: el ement nane="Cancel Rul es" >
<xs:conpl exType>
<Xs: sequence>
<xs: el ement ref="Cancel Rul e" maxQccur s="unbounded"/ >
</ xs: sequence>
</ xs: conpl exType>
</ xs: el enent >

<xs: el ement name="Cancel Rul e">
<xs:conpl exType>
<xs: si npl eCont ent >
<xs: ext ensi on base="xs:string">
<xs:attribute nanme="Cancel ByDate" type="xs:string"/>
<xs:attribute name="Amount" type="xs:string"/>
<xs:attribute nanme="CurrencyCode" type="xs:string"/>
</ xs: ext ensi on>
</ xs: si nmpl eCont ent >
</ xs: conpl exType>
</ xs: el ement >
</ xs: schema>

3.3.5.5.4 Cancel Response - Sample XML message

The following sample message is an example of a cancel response message:

<OTA _Cancel RS xm ns: xsi ="htt p: //ww. w3. or g/ 2001/ XM_Schena- i nst ance”
xm ns="http://ww. opentravel . or g/ OTA”
xsi : schenmalLocati on="http://ww. opentravel . org/ OTA OTA_Cancel RS. xsd"
Ver si on="2"
St at us="Cancel ed"
Cancel | d="1236597GB45" >
<Success/ >
<Uni quel d URL="http://providerl. org/ OTAEngi ne/"
Type="Reservation"
| d="0507G4325"
| nst ance="2001- 06- 03T13: 09: 21"/ >
<Cancel Rul es>
<Cancel Rul e Cancel ByDat e="2001- 05- 31T13: 19: 42- 05: 00"
Amount =" 75. 00"
CurrencyCode="USD" >
Cancel l ations within 30 days incur a penalty of $75.00</ Cancel Rul e>
</ Cancel Rul es>
</ OTA_Cancel RS>

Copyright & 2001. OpenTravel Alliance www.opentravel .org/

OpenTravel Alliance 2001C Infrastructure Specification Page 42

4 OTA Infrastructure

In this section we explore the revised OTA infrastructure. See section 7 for alist of changes since
the last publication of the infastructure specification in 2001A.

4.1 Architecture Overview

OTA’s Infrastructure Architecture borrows heavily from ebXML’s Technical Architecture®
[ebTA] and Message Service™ [ebMS]. EbXML’s Message Service, which is based on SOAP
verson 1.1 and the Soap with Attachments informational document, provides the functionality
needed for two or more parties to engage in an “electronic business transaction”. Products that
implement the ebMS specification should be capable of the reliable and secure exchange of
business data associated with a “business transaction”. It is expected that any company
implementing an OTA compliant system will be capable of supporting synchronous and
asynchronous processing models as required by the various OTA message types described
elsewhere in this document

Business Applications interface with an ebMS through a “service interface”, which is unique to
each ebMS product. The “service interface” allows applications to request services and receive
notifications from an ebMS product. When an application needs to engage in an electronic
business transaction with a trading partner it must call upon its local ebMS service, through the
service interface, to establish a secure and reliable session with a trading partners eoMS/OTA
system. Once a session is established the ebMSOTA systems exchange information germane to
the type of “service/action” being requested. A session may include multiple message exchanges
between the ebMS/OTA systems of two or more parties.

. V2001 offers a typical developer working on an OTA-compliant application the option of using
a standard ebMS rather than (as with v2001A) being compelled to design and implement the
OTA infrastructure. It is the ebMS product vendor who is responsible for implementing the
functionality described in the ebMS specification [ebMS]. A high quality ebM S implementation
would aso provide facilities for encrypting and digitaly signing data, access control,
authentication and authorization, rea-time error notifications, logging, auditing and
administrative tasks.

Following is an architectural diagram of an ebMS:

20 Seer http://www.ebxml.org/specs/ebTA .pdf
2 Seer hittp://www.ebxml.org/specs/ebM S.pdf

Copyright & 2001. OpenTravel Alliance www.opentravel .org/

OpenTravel Alliance 2001C Infrastructure Specification Page 43

Messaging Service Interface

Message Service
SOAP with Attachments

Authentication, authorization
and
repudiation services

v

Header
Processing

v

Encryption, I
Digita Signature

v

Message Packaging
Module

;

Delivery Module

Send/Receive
Transport Mapping and

Binding

§

SMTP 11OP FTP

HTT

4.1.1 Reference Model

An ebMS may serve as a centralized “E-Business Server” to manage all of a company’s
electronic business transaction exchanges with trading partners. Alternatively ebM S functionality
may be “integrated” within each business application that engages in electronic business
transactions with trading partners. Regardless of which model is used ebMS implementers
SHOULD provide the same service levels, access control, reliability, availability and security
required by the electronic business transactions defined by OTA.

Below is areference model depicting a centralized E-Business Server:

Copyright & 2001. OpenTravel Alliance www.opentravel .org/

OpenTravel Alliance 2001C Infrastructure Specification Page 44

Trading Partner A Trading Partner B

Servicel| Interfaces

GDS — \ CRS

ebM S » ebMS
E-Business E-Business
Server |« Server
POS ry Y POS
SYSTEM SYSTEM

A
A 4

Below is a reference model depicting the integration of ebMS functionality within Business
Applications:

Trading Partner A Trading Partner B
GDS CRS
Applications Applications
1ttt fttd 1ttt fttd
Service Interface Service Interface
POS POS
Applications Applications
1ttt fttd 1ttt fttd
Service Interface Service Interface

ebMS Services ebM S Services

4.1.2 Transport Protocols

Copyright & 2001. OpenTravel Alliance www.opentravel .org/

OpenTravel Alliance 2001C Infrastructure Specification Page 45

The ebM S was designed to be transport neutral, however there are certain transport protocols that
are more likely to be used for eectronic transactions between trading partners over the Internet,
one such protocol isHTTP (ref: RFC 2616).

EbMS/OTA implementers MUST support the HTTP protocol binding specifications defined in
appendix B.2 of the ebMS specification. Additionally, eoMSOTA implementers MUST support
Basic Authentication (ref: RFC 2617) for access control, operating over a secure channel, using
SSL Version 3.0 or TLS (ref: RFC 2246) with 128-bit key sizes for symmetric encryption
algorithms. EbMS implementers MUST accept self signed digital certificates, as well as those of
well-known Certificate Authorities (eg. Verisign, Entrust, Thawte, et al), during the
establishment of an SSL session.

OTA implementers SHOULD maintain ebMS systems that are available 24 hours per day, 7 days
per week, to receive and process electronic business transactions from trading partners.

4.1.3 Logging

Organizations offering OTA transactions SHOULD provide logging capability, regardliess of the
type of transaction in the business message (e.g., travel verbs, infrastructure verbs), and trading
partners MAY exchange event logs to provide audit trails.

Because of the lack of widely used standards or conventions for defining event logs, OTA does
not require use of a specific log format, nor does the message architecture preclude any logging
capability. Logging capabilities are expected to vary based upon the capabilities of an underlying
ebXML message service implementation.

4.1.4 Auditing

EbMS product implementations SHOULD maintain audit logs that contain information used to
track and correlate message exchanges between trading partners. The following information
SHOULD be stored in an audit log:

Date and time of entry

Sender and Receiver |P addresses

To/Partyld

From/Partyld

Status of the exchange (success/failure)
Messageld

RefToMessageld

CPAId

Conversationld

Service

Action

Via

QualityOf Servicelnfo/syncreply value, if present
Contents of Each Reference Element within a manifest

Contents of Acknowledgement element, if present

Copyright & 2001. OpenTravel Alliance www.opentravel .org/

OpenTravel Alliance 2001C Infrastructure Specification Page 46

Contents of Error elements, if present
EbM S products SHOULD provide administrative functions to search and view logs.

4.2 Message Structure and Packaging

An ebXML Message following OTA’s conventions MUST contain one header container and zero
or one payload container. Both containers are enveloped by a single MIME/Multipart envelope
and the entire package is referred to as a Message Package.

The two containers within a Message Package are described below:

The first MIME part, referred to as the Header Container, contains one ebXML
header document. The header document contains only those elements and attributes
required by OTA, the details of which are specified el sawhere in this document.

The optional second MIME part, referred to as the Payload Container, contains
application level payloads containing business data germane to the service/action
identified in the ebXML header. A single payload container may contain one or more
OTA business transactions.

The general structure and composition of an OTA compliant ebXML Message is described in
the following figure.

POST /ebXMLhandler HTTP/1.1 .
Host: OTAServer.example.com o The HTTP 1.1 transport protocol and entity
SOAPAction: “ebXML* headers needed by ebXML/OTA
Content-Length: XXXX

onne 1on:

Keep-Alive

Message Package is everything contained
within and including the
multipart/related envelope

Content-type: text/xml Header Container containing one
EBXML HEADER GOES HERE ebXML Header document with data
used for routing, identification, and
quality of service

Content-type: XXXXX/XXXXX

OTA BUSINESS TRANSACTION GOES
HERE

Payload Container can contain asingle OTA
transaction or multiple OTA transactions
enveloped within a single MIME multipart

Copyright & 2001. OpenTravel Alliance www.opentravel .org/

OpenTravel Alliance 2001C Infrastructure Specification Page 47

4.2.1 The ‘Unit-of-work’ Concept

EbXML is extremely flexible in how messages can be packaged within payloads and in the
absence of any guidelines implementers may choose substantially different approaches to
packaging. As such OTA strongly recommends that all OTA message payloads within a given
ebXML package pertain to one and only one *unit of work’.

The concept of a unit of work is very similar to the concept of transactions in a transaction
processing environment. An easy way to decide whether messages belong to the same unit of
work is by applying the following tests:

Do the messages fall within the boundary of a single transaction?
Do the messages congtitute items within the same batch?
A single OTA message by definition matches the unit-of-work criteria

4.2.2 Packaging a single unit-of-work

The “scope”’ of a unit-of-work is highly dependent on the capahilities of the systems that engage
in an electronic transaction. For example, a reservation system may be capable of performing a
reservation for a single type of transaction (airline reservation), whereas another system may be
capable of performing areservation for an airline, automobile and hotel in the context of a single
transaction. In the case where a single transaction (e.g. one airline reservation) is the unit-of-work
this data may be packaged as a single MIME body part with a content-type (aka media type)
identifying the data (e.g. application/xml, application/EDI-X12, image/jpeg, etc.) each will have a
corresponding entry in the manifest that references it. Following is an example of a single
transaction packaged within a single payload container:

Content-1D: airlinereservati onlll@ maconpany.com
Content - Type: application/xm: charset="utf-8"

<OTA_Ai r BookRQ>
<l-- content omtted for brevity...-->
</ OTA_Ai r BookRQ>

When a unit-of-work involves multiple transaction documents (e.g. a reservation delivery
notification with a corresponding customer profile) the data may be packaged within a MIME
multipart content-type containing multiple body parts, with each body part containing a single
transaction document. For example the following multipart MIME structure represents a single
unit-of-work that would exist in a single payload container:

Content-type: multipart/rel ated; boundary="Boundar Y"
--Boundar Y

Content-1D: hotel reservationlll@ maconpany.com
Content - Type: application/xm: charset="utf-8"

<OTA_Hot el ResNot i f RG>
<l-- content omtted for brevity...-->
</ OTA_Hot el ResNot i f RQ>

--Boundar Y
Content-1D: hotelreservationlllprofil e@ maconpany.com
Content - Type: application/xm: charset="utf-8"

<OTA _CreateProfil eRQ>
<l-- content omtted for brevity...-->
</ OTA_Creat eProfil eRQ>

- - Boundar Y- -

Copyright & 2001. OpenTravel Alliance www.opentravel .org/

OpenTravel Alliance 2001C Infrastructure Specification Page 48

In some cases an application system may operate in a “batch mode” where multiple, related
transactions may be packaged as a single unit-of-work. For example, many POS systems process
a batch of transactions during the settlement process. A single “batch” may contain individua
transactions (e.g. authorizations, credits, voids, etc.) that are processed as a single unit-of-work.
OTA compliant systems are allowed to package multiple transactions into a “batch” for
processing as a single unit-of-work. For example a hotel reservation system capable of processing
a“batch” of reservations may expect to receive the following payload container:

Content-type: multipart/rel ated; boundary="Boundar Y"
--Boundar Y

Content-1D: hotel reservationlll@ maconpany.com
Content - Type: application/xm: charset="utf-8"

<OTA _Hot el ResNot i f RG>
</ OTA_Hot el ResNot i f RQ>

--Boundar Y
Content-1D: hotel reservationll12@ maconpany. com
Content - Type: application/xm: charset="utf-8"

<OTA _Hot el ResNot i f RG>
</ OTA_Hot el ResNot i f RQ>

--Boundar Y
Content-1D: hotel reservationl13@ maconpany. com
Content - Type: application/xm: charset="utf-8"

<OTA_Hot el ResNot i f RG>
</ OTA_Hot el ResNot i f RQ>

- - Boundar Y- -

4.2.3 Content-type for OTA XML Payloads

OTA recommends that implementations specify a content-type of application/xml with the
optional character set attribute set to * utf-8".

4.3 Classes of Message Delivery

The EbXML Messaging Service [ebMS] on top of SOAP with attachments which does not
inherently provide any underlying mechanism for reliable messaging. An ebXML ebMS
implementation will however provide the ability to use reliable messaging for the transport of

messages.
Within OTA it is anticipated that there is a need for both reliable and non-reliable messaging,
depending upon the type of messages being exchanged.

4.3.1 Historical use within the travel industry

The travel industry has a long history of automated message exchange dating back to the 1960's.
Broadly speaking two classes of message delivery have been used and continue to be used in
legacy systems:

Type A —interactive, best effort delivery
Type B — store-and-forward, ‘ guaranteed’, ordered delivery

Copyright & 2001. OpenTravel Alliance www.opentravel .org/

OpenTravel Alliance 2001C Infrastructure Specification Page 49

4.3.1.1 Type A%

Type A message delivery is typicaly used for the expedient delivery of interactive messages
(usually request/response pairs synchronous within a sub-conversation). Upon non-response,
failure or timeout applications may fall back to alternate messages via type-B.

NOTE: Type A messages utilize ebXML’s Best Effort delivery semantics, which makes no
guarantee as to the delivery of a message, nor does it prevent duplicate messages from being
delivered. It is possible to have multiple deliveries of a single Type A message, which could
result in the receipt and processing of duplicate messages by a receiving Message Service
Handler. It is assumed that a recipient application program, above the Message Service
Handler, will prevent the processing of duplicate Type A messages. This will be relatively easy
to do given timeToLive constraints.

4.3.1.2 Type B®

Type B message delivery is typically used for ‘guaranteed’, ordered delivery of messages.
Delivery of type-B messages is often at a lower priority than type-A messages. Type-B messages
are used in scenarios where responses may or may not be expected. They are not used for
synchronous request/response type exchanges.

4.3.2 EbXML Classes of Delivery

The eébMS has been designed to meet a spectrum of requirements from one-way, unreliable
message delivery up-to and including guaranteed, ordered message delivery using synchronous or
asynchronous exchanges.

4.4 EbXML Header Document

The ebMS defines an ebXML header as an XML document, structured according to SOAP
version 1.1. A SOAP XML document consists of one Envelope Element, which contains one
mandatory body element and one optional header element. The ebMS mandates that al ebXML
header documents MUST contain both header and body elements. The following example depicts
askeleton SOAP structure:

<SOAP- ENV: Envel ope xm ns: SOAP- ENV="ht t p: // schemas. xnl soap. or g/ soap/ envel ope/ "
SOAP- ENV: encodi ngStyl e="htt p: // schemas. xm soap. or g/ soap/ encodi ng/ " >
<SOAP- ENV: Header >
</ SOAP- ENV: Header >
<SQOAP- ENV: Body>
</ SOAP- ENV: Body>
</ SOAP- ENV: Envel ope>

4.4.1 OTA Subset of an ebXML Header Document

An ebXML header document contains the information necessary for two communicating
Message Service Handlers to engage in a conversation involving the exchange and processing of
an OTA unit-of-work. The ebMS defines several complex header elements that are used for

2 The term ‘type-A’ comes from the SLC P1024A wire protocol commonly used throughout the 1970's
and 1980’ s (the acronym SL C stands for Synchronous Link Control — synchronous, 6-hit, little or no error
recovery)

% the term ‘type-B’ comes from the SLC P1024B wire protocol commonly used throughout the 1970's and
1980's

Copyright & 2001. OpenTravel Alliance www.opentravel .org/

OpenTravel Alliance 2001C Infrastructure Specification Page 50

identification, routing, Quality of Service, Tracking and Status reporting. OTA does not require
an implementer to support all of the functionality defined by eoMS. OTA implementers are only
required to support the functionality needed to support the exchange of type A and B messages.

ebXML’s Message Service identifies 6 child elements of the SOAP header element and 4 child
elements of the SOAP body element. For purposes specific to OTA, only the following ebXML
header elements are allowed to appear as child elements of the SOAP Header:

Acknowledgement REQUIRED B, RESPONSE
OPTIONAL A, RESPONSE
Via REQUIRED A, REQUEST
MessageHeader REQUIRED A and B, REQUEST and RESPONSE

NOTE: the ebXML Message Service 1.0 specification supports two additional elements
within a SOAP-ENV:Header, eb:ErrorList, eb:TraceHeaderList and ds:Signature. These
elements are not required by this version of the OTA specification, but they may be used
between consenting parties as needed.

4.4.1.1 Acknowledgement Element

The Acknow edgenent element will only appear as part of an ebXML response message. It is
used to indicate that a request message has been successfully received by a receiving Server.
Further details of the Acknow edgenent element can be found in section 8.6 of the ebMS.
The Acknow edgenent element used by OTA contains the following attributes and child
elements:

The Acknow edgenent element contains three REQUIRED attributes:
SQOAP- ENV: nust Under st and with avalue of “1”
SQOAP- ENV: act or with the value “http://schemas.xmlsoap.org/soap/actor/next”
eb: ver si on with avalue of “1.0”

The Acknow edgenent element contains one required element, Ti mest anp that contains the
creation date and time of the Acknow edgenent formatted in accordance with XML Schema
timelnstant. Following isan Acknowl edgenent example:

<eb: Acknow edgnent SOAP- ENV: nust Under st and="1" eb: versi on="1. 0"
SOAP- ENV: act or ="htt p: // schemas. xnl soap. or g/ soap/ act or/ next ">
<eb: Ti mest anp>2001- 03- 09T12: 22: 30Z</ eb: Ti mest anp>
</ eb: Acknowl edgenent >

The existence of an Acknow edgenent element in a Response indicates that a Request
message was successfully received. The existence of an Error Li st in a Response indicates
that a Request has failed.

4.4.1.2 Via Element

The Vi a element is used to indicate the type of response (synchronous/asynchronous) expected
of a server receiving a request message. Further details of the Vi a element can be found in

Copyright & 2001. OpenTravel Alliance www.opentravel .org/

OpenTravel Alliance 2001C Infrastructure Specification Page 51

section 8.7 of the ebMS. It is only used on type A messages, those requiring a synchronous,
business level response.

The Vi a element contains four REQUIRED attributes and one optional attribute:
REQUIRED attributes:
SQOAP- ENV: nust Under st and with avalue of “1”
SQOAP- ENV: act or with avaue of “http://schemas.xmlsoap.org/soap/actor/next”
eb: ver si on with avalue of “1.0”
eb: syncRepl y with avaue of “true”
OPTIONAL attribute:
eb: ackRequest ed with avalue of “Unsigned”

Type A messages MAY contain an eb: ackRequest ed=" Unsi gned” toindicatethat the
sender requests that the receiving Message Service Handler return an Acknowl edgenent
element indicating that a message was successfully received and processed.

Following is an example usage of the Vi a element:

<eb: Vi a SOAP- ENV: nust Under st and="1" SOAP-
ENV: act or ="htt p://schemas. xnml soap. or g/ soap/ actor/ next” eb:version="1.0" eb: syncRepl y="true”
eb: ackRequest ed=" Unsi gned” > </ eb: Vi a>

4.4.1.3 MessageHeader Element

Each Type A and type B, request and response message MUST contain one MessageHeader
Element. Each MessageHeader element MUST contain one SOAP-ENV:mustUnderstand
attribute with a value of “1” (including double quotes) and one eb:version attribute with a value
of “1.0”. See example below:

<eb: MessageHeader SOAP- ENV: nust Under st and="1" eb: versi on="1. 0" >

</ eb: MessageHeader >

OTA utilizes the following child elements of the Message Header element:

To REQUIRED ALL Identify Recipient

From REQUIRED ALL Identify Sender

CPAId REQUIRED ALL Identify a TPA

Conversationld REQUIRED ALL Session context

Service REQUIRED ALL Service to invoke

Action REQUIRED ALL Action to perform

MessageData REQUIRED ALL Message | dentification

QualityOfServicelnfo REQUIRED TypeA and B Request Indicates type of delivery
semantics

SequenceNumber REQUIRED Type B Request Needed for ordered delivery

Description OPTIONAL ALL Human readable description

Copyright & 2001. OpenTravel Alliance www.opentravel .org/

OpenTravel Alliance 2001C Infrastructure Specification Page 52

4.4.1.3.1 To element

Contains one child element, Partyld, which contains the DUNS Number of the intended recipient.
The Partyld element contains one attribute, “type”, containing the value “urn:x12.org:105:01".
This value indicates the data contained in the Partyld element is semantically defined by the X12
organization (x12.org), 105 indicates the particular set of identifiers defined by X12 to identify
“parties’ and O1 indicates the content of Partyld is a DUNS Number. Following is an example of
the To element:

<eb: To>
<eb: Partyld eb:type="urn:x12.org:|05: 01" >123456789</ eb: Partyl d>
</ eb: To>

4.4.1.3.2 From element

Contains one child element, Partyld, which contains the DUNS Number of the sender. The
Partyld element contains one attribute, “type”’, containing the value “urn:x12.org:105:01". This
value indicates the data contained in the Partyld element is semantically defined by the X12
organization (x12.org), 105 indicates the particular set of identifiers defined by X12 to identify
“parties’ and O1 indicates the content of Partyld is a DUNS Number. Following is an example of
the From element:

<eb: Fron
<eb: Partyld eb:type="urn:x12.org:|05: 01" >987654321</ eb: Partyl d>
</ eb: From>

4.4.1.3.3 CPAId element

This element is required by ebXML, however its content is determined by mutual consent
between parties. CPAId may be used to identify a particular agreement (e.g. trading partner
agreement) that defines the “rules of engagement” two communicating parties agree to abide by.
If no such agreement exists CPAId MUST contain a constant value of “NULL”, for example:

<eb: CPAI d>NULL</ eb: CPAI d>

4.4.1.3.4 Conversationld element

This element is used to provide context for a particular exchange of messages. It is primarily used
for session identification. The content of Conversationld is a compound string consisting of
SId@FQDN. A “sid” is a session identifier. Each party is required to construct unique sid values
for each new session established. A “Fully Qualified Domain Name” (FQDN) MUST be
appended to a sid, in order to ensure the uniqueness of Conversationld’s across company
boundaries.

A Conversationld is obtained by a sender during the establishment of a new session. Refer to the
section titled “Sessions in OTA” for detailed usage of this element. Following is an example
Conversationld:

<eb: Conversati onl d>20011017161501- 777@B2Bser ver . i naconmpany. com
</ eb: Conver sati onl d>

4.4.1.3.5 Service and Action elements

The Service and Action elements identify the particular operation being performed, which
correspond directly to specific protocol behavior. The Service element may contain one of the
possible values defined in the section titled “Service and Action Mappings’. The service element
MUST contain a“type” attribute with the fixed value “OTA” when using Services defined by this
document. Other Services MAY be utilized which are not defined within this document (e.g.

Copyright & 2001. OpenTravel Alliance www.opentravel .org/

OpenTravel Alliance 2001C Infrastructure Specification Page 53

ebXML Ping message). When using non-OTA defined Services implementers are expected to
follow the usage guidelines defined for the Service.

The Action element is used to provide additional context to the Service element. The Action
identifies the protocol “verb”. Taken together the Service/Action should provide sufficient
identification to invoke proper protocol behavior between parties. The list of possible values for
the Service element, the type attribute and the Action element are listed in section titled “Service
and Action Mappings’.

Following is an example:

<eb: Servi ce type="COTA’>Profile</eb: Servi ce>

<eb: Acti on>0TA_CreateProfileRQ</eb: Acti on>
4.4.1.3.6 MessageData element

This element is used to provide identification information for each ebXML message
exchanged between parties. There are three possible child elements under MessageData:

Messageld REQUIRED ALL Unique Message Id

Timestamp REQUIRED ALL Creation date/time

RefToMessageld REQUIRED ResponsesOnly Messageld of request

TimeToLive REQUIRED TypeA Request Specify delivery and
processing expiration
date/time

44.1.3.6.1 Messageld Element

Contains a unique message identifier formed in conformance with RFC 2392, which defines a
string containing uniqueidentifier @FQDN, for example:

<eb: Messagel d>m d: abc123@?2bser ver. i maconpany. conk/ eb: Messagel d>

4.4.1.3.6.2 Timestamp Element

Contains the creation date and time of the message formatted in accordance with XML Schema
timelnstant, for example:

<eb: Ti meSt anp>2001- 02- 15T11: 12: 12Z</ eb: Ti mest anp>

4.4.1.3.6.3 RefToMessageld Element

Contains the message identifier from the original Messageld that “this’ message is in response to,
for example:

<eb: Ref ToMessagel d>ni d: abc123@2bser ver. i maconpany. conk/ eb: Ref ToMessagel d>

441.3.6.4 TimeToLive Element

Contains the expiration date and time of a message formatted in accordance with XML Schema
timelnstant, for example:

<eb: Ti meTolLi ve>2001- 02- 15T11: 12: 12Z</ eb: Ti meToLi ve>

Both the sending and receiving ebMS are expected to generate and report an error condition
whenever message delivery/processing has aborted due to expiration. A Sending ebMS MUST

Copyright & 2001. OpenTravel Alliance www.opentravel .org/

OpenTravel Alliance 2001C Infrastructure Specification Page 54

notify a higher layer application, through its service interface or by some other means, whenever
a message request aborts due to expiration. If a Sending ebMS has been configured to retry
message delivery for messages with BestEffort deliverySemantics (ref: retries in section 10.2.6 of
[ebMS], NOTE: thisis not the recommended behavior for BestEffort deliverySemantics) then the
sending ebMS SHOULD attempt to resend a message that aborts due to expiration. The
recommended minimum time for TimeToLive SHOULD be no less than 5 seconds in the future
from the date time value contained in the MessageData/ Timestamp.

A request message containing a TimeToLive value is considered satisfied within its allotted time
period if a corresponding response message is received by the sending ebM S before the point in
time identified by the TimeToLive.

Message Service Handlers are expected to maintain time synchronization by synchronizing
systems clocks, at least monthly, with a recognized time source, such as the National Ingtitute of
Standards and Technology NIST-F1 Cesium Fountain Atomic Clock,
http://nist.time.gov/timezone.cqgi?2UTC/S/0

4.4.1.3.7 QualityOfServicelnfo element

This element is used to indicate the need for reliable message exchange between parties. The
ebMS defines three possible attributes for this element, however OTA will only utilize two,
deliverySemantics and messageOrderSemantics.

This element is used on type A and B Request Messages. Type A messages MUST specify a
deliverySemantics attribute with the value “BestEffort”, (including double quotes). Type B
messages MUST specify a deliverySemantics attribute with the value “OnceAndOnlyOnce”
(including double quotes) and messageOrderSemantics containing the value “Guaranteed”.
Examples below:

TYPEA:

<eb: Qual i t yOF Servi cel nfo eb: deliverySemanti cs="BestEffort"/>

TYPE B:

<eb: Qual i t yOF Servi cel nfo eb: del i verySemanti cs="OnceAndOnl yOnce"
messageOr der Semant i cs=" Guar ant eed” / >

4.4.1.3.8 SequenceNumber

This element indicates the sequence in which messages MUST be processed by a receiving
Message Service. Each Type B request message MUST contain a SequenceNumber element in
order to guarantee ordered delivery. This element contains an integer value in the range O-
99999999. There is one REQUIRED attribute, “ status’, that MUST contain one of the following
values, “Reset” or “Continue”. Detailed usage of this element may be found in section 8.4.8 of
[ebMg].

4.4.1.3.9 Description

This element contains a human readable description that SHOULD be germane to the
Service/Action of the message in which it appears. The element MAY be present on any request

Or response message.

4.5 SOAP Body Elements

Copyright & 2001. OpenTravel Alliance www.opentravel .org/

OpenTravel Alliance 2001C Infrastructure Specification Page 55

The following ebXML header elements MUST be located within the SOAP Body element, when
required:

Manifest

The Manifest element is used to identify all of the payload documents within in a payload
container. Each document within a payload container MUST be identified by a corresponding
Reference element within the Manifest. The Manifest element and at least one Reference element
MUST be present in a Message Package containing a payload container.

The Reference element is used to identify information needed by a particular service/action pair
in order to perform proper processing. Conceptually, the Reference element can be thought of as
identifying the “arguments’ needed by a particular Service/Action. A Reference element contains
two Xlink attributes that provide information about a payload. The two attributes are:

xlink:href Contains a URI identifying a payload Examples:

document cid:123@imacompany.com

http://www.imacompany.com/filel

xlink:type “simple’

Following is an example of a Manifest element containing one Reference element, indicating the
presence of one payload document:
<eb: Mani f est SOAP- ENV: nust Under st and="1" eb: versi on="1. 0">
<eb: Ref erence xlink: href="cid: hotel reservati onlll@xanpl e. cont
xli nk: type="si npl e" >
</ eb: Ref erence>
</ eb: Mani f est >

4.6 EbXML Collaboration Protocol Profile

EbXML has defined the Collaboration-Protocol-Profile and Agreement Specification [ebCPP*]
for the definition of key parameters used by trading partners within the context of their on-the-
wire eCommerce conversations.

Whereas portions of a valid CPP document are pertinent only to the parties participating within a
particular conversation, other portions of a CPP may be more generally applicable. In the interests
of fostering wire compatibility between implementations the OTA RECOMMENDS the use of
the following CPP fragment within any CPP documents you may define. This OTA fragment
defines transport and delivery channels consistent with the infrastructure defined in this
document:

<tp: Transport tp:transportl|d="HTTPSO1" >
<t p: Sendi ngProt ocol tp:version="1.1">HTTP</t p: Sendi ngPr ot ocol >
<t p: Recei vi ngProt ocol tp:version="1.1">HTTP</t p: Recei vi ngPr ot ocol >
<t p: Endpoi nt tp:uri="http://exanpl e.com servl et/ebxm handl er"
tp:type="al | Purpose"/>
<t p: Transport Security>
<t p: Protocol tp:version="3.0">SSL</tp: Protocol >
</tp: Transport Security>
</tp: Transport >

<t p: DocExchange t p: docExchangel d=" TYPEA" >
<t p: ebXMLBi ndi ng tp:version="1.0">

2 seer http://www.ebxml .org/specs/ebCPP. pdf

Copyright & 2001. OpenTravel Alliance www.opentravel .org/

OpenTravel Alliance 2001C Infrastructure Specification Page 56

<t p: Rel i abl eMessagi ng tp:deliverySemanti cs="BestEffort" tp:idenpotency="true">
</tp: Rel i abl eMessagi ng>
</t p: ebXM.Bi ndi ng>
</t p: DocExchange>

<t p: DocExchange t p: docExchangel d=" TYPEB" >
<t p: ebXMLBi ndi ng tp:version="1.0">
<t p: Rel i abl eMessagi ng tp:deliverySemanti cs="0OnceAndOnl yOnce"
t p: i denpot ency="true"
t p: messageOr der Semant i cs=" Not Guar ant eed" >
<tp:Retries>5</tp: Retries>
<tp: Retrylnterval >1800</tp: Retrylnterval > <l--time in seconds-->
<t p: Persi st Durati on>24H</t p: Per si st Durati on>
</tp: Reliabl eMessagi ng>
</t p: ebXM.Bi ndi ng>
</t p: DocExchange>

<t p: Del i veryChannel tp:channel | d="TYPEA" tp:transportl|d="HTTPSO1"
t p: docExchangel d=" TYPEA" >
<t p: Characteristics tp:syncRepl yMbde="responseOnl y"

t p: nonrepudi ati onOf Ori gi n="f al se"
t p: nonr epudi ati onOf Recei pt ="fal se"
t p: secureTransport="true"
tp:confidentiality="fal se"
tp: aut henti cat ed="true"
tp: authori zed="true"/>

</t p: Del i veryChannel >

<t p: Del i veryChannel tp:channel | d="TYPEB" tp:transportl|d="HTTPSO1"
t p: docExchangel d=" TYPEB" >
<t p: Characteristics tp:syncRepl yMbde="none"
t p: nonrepudi ati onOf Ori gi n="f al se"
t p: nonr epudi ati onOf Recei pt ="f al se"
t p: secureTransport="true"
tp:confidentiality="fal se"
tp: aut henti cat ed="true"
tp:authori zed="true"/>
</t p: Del i veryChannel >

4.7 EbXML Header Examples

4.7.1 Type A Request Message

Content -1 D: <ebxhnmheader 111@2B. conpany. con»
Content - Type: text/xm; charset="UTF-8"

<?xm version="1.0" encodi ng="UTF- 8" ?>
<SOAP- ENV: Envel ope xml ns: SOAP- ENV="ht t p: / / schemas. xnl soap. or g/ soap/ envel ope/”
xm ns: eb="http://ww. ebxm . or g/ namespaces/ nessageHeader”
xm ns: x| i nk="http://ww.w3. org/ 1999/ xl i nk” >
<SOAP- ENV: Header >
<eb: MessageHeader SOAP- ENV: nust Under st and="1" eb: versi on="1. 0">
<eb: Fronm
<eb: Partyld type="urn: x12. org:|05: 01">123456789</ eb: Partyl d>
</ eb: Fronm>
<eb: To>
<eb: Partyld type=" urn:x12.org:|105: 01">912345678</ eb: Partyl d>
</ eb: To>
<eb: CPAI d>NULL</ eb: CPAI d>
<eb: Conver sati onl d>2000120913300328572@2b. conpany. com
</ eb: Conver sati onl d>
<eb: Servi ce eb:type="OTA">Profil e</eb: Servi ce>
<eb: Acti on>OTA_Cr eat eProfi | eRQ</ eb: Acti on>
<eb: MessageDat a>
<eb: Messagel d>m d: 20001209- 133003- 28572@2b. conpany. conx/ eb: Messagel d>
<eb: Ti mest anp>2001- 02- 15T11: 12: 12Z </ eb: Ti nest anp>
<eb: Ti meToLi ve>2001- 02- 15T11: 12: 17Z </ eb: Ti meToLi ve>
</ eb: MessageDat a>
<eb: Qual i t yOF Servi cel nfo eb: del i verySemanti cs="BestEffort"/>

Copyright & 2001. OpenTravel Alliance www.opentravel .org/

OpenTravel Alliance 2001C Infrastructure Specification

</ eb: MessageHeader >
<eb: Vi a SOAP- ENV: nust Under st and="1"
SOAP- ENV: act or =" http://schemas.xmlsoap.org/soap/actor/next”
eb: version="1.0" eb:syncReply="true” />
</ SOAP- ENV: Header >
<SQOAP- ENV: Body>
<eb: Mani f est SOAP- ENV: nust Under st and="1" eb: versi on="1.0">
<eb: Reference xlink: href="cid:profil elll@?2b. company. cont
xli nk: type="si npl e" >
</ eb: Ref erence>
</ eb: Mani f est >
</ SOAP- ENV: Body>
</ SOAP- ENV: Envel ope>

4.7.2 Type B Request Message

Content -1 D: <ebxhnmheader 111@2B. conpany. con»
Content - Type: text/xm ; charset="UTF-8"

<?xm version="1.0" encodi ng="UTF- 8" ?>
<SOAP- ENV: Envel ope xml ns: SOAP- ENV="ht t p: / / schemas. xnl soap. or g/ soap/ envel ope/”
xm ns: eb="http://ww. ebxm . or g/ namespaces/ nessageHeader”
xm ns: x| i nk="http://ww.w3. org/ 1999/ xl i nk” >
<SOAP- ENV: Header >
<eb: MessageHeader SOAP- ENV: nust Under st and="1" eb: versi on="1. 0">
<eb: Fronm
<eb: Partyld type="urn: x12. org:|05: 01">123456789</ eb: Partyl d>
</ eb: Fronm>
<eb: To>
<eb: Partyld type=" urn:x12.org:105:01">912345678</ eb: Partyl d>
</ eb: To>
<eb: CPAI d>NULL</ eb: CPAI d>
<eb: Conver sati onl d>2000120913300328572@2b. conpany. com
</ eb: Conver sati onl d>
<eb: Servi ce eb:type="OTA">Profil e</eb: Servi ce>
<eb: Acti on>OTA_Cr eat eProfi | eRQ</ eb: Acti on>
<eb: MessageDat a>
<eb: Messagel d>m d: 20001209- 133003- 28572@2b. conpany. conk/ eb: Messagel d>
<eb: Ti mest anp>2001- 02- 15T11: 12: 12Z </ eb: Ti nest anp>
</ eb: MessageDat a>
<eb: Qual i t yOf Servi cel nf o eb: del i verySemanti cs="OnceAndOnl yOnce"
eb: nessageOr der Semant i cs=" Guar ant eed” / >

Page 57

<eb: SequenceNunber eb: st at us="Reset” >0</ eb: SequenceNunber> </ eb: MessageHeader >

</ SOAP- ENV: Header >
<SQOAP- ENV: Body>
<eb: Mani f est SOAP- ENV: nust Under st and="1" eb: versi on="1.0">
<eb: Reference xlink: href="cid:profil elll@?2b. company. cont
xli nk: type="si npl e" >
</ eb: Ref erence>
<eb: Reference xlink: href="cid:profil ell2@?2b. conmpany. cont
xli nk: type="si npl e" >
</ eb: Ref erence>
<eb: Reference xlink: href="cid:profil ell3@?2b. company. cont
xli nk: t ype="si npl e" >
</ eb: Ref erence>
<eb: Reference xlink: href="cid:profil ell4@?2b. company. cont
xli nk: type="si npl e" >
</ eb: Ref erence>
</ eb: Mani f est >
</ SOAP- ENV: Body>
</ SOAP- ENV: Envel ope>

4.7.3 Type A Response Example

Content -1 D: <ebxhnmheader 111@2Bser ver . i maconpany. conr
Content - Type: text/xm ; charset="UTF-8"

<?xm version="1.0" encodi ng="UTF- 8" ?>
<SOAP- ENV: Envel ope xml ns: SOAP- ENV="ht t p: / / schemas. xnl soap. or g/ soap/ envel ope/”
xm ns: eb="http://ww. ebxm . or g/ namespaces/ nessageHeader”

Copyright & 2001. OpenTravel Alliance www.opentravel .org/

OpenTravel Alliance 2001C Infrastructure Specification Page 58

xm ns: x| i nk="http://ww. w3. org/ 1999/ xl i nk” >
<SOAP- ENV: Header >
<eb: MessageHeader SOAP- ENV: nust Under st and="1" eb: versi on="1. 0">
<eb: Fronm
<eb: Partyld type="urn: x12.org:|05: 01">912345678</ eb: Partyl d>
</ eb: From>
<eb: To>
<eb: Partyld type=" urn:x12.org:105: 01">123456789</ eb: Partyl d>
</ eb: To>
<eb: CPAI d>NULL</ eb: CPAI d>
<eb: Conver sati onl d>2000120913300328572@2b. conpany. com
</ eb: Conver sati onl d>
<eb: Servi ce eb:type="OTA">Profil e</eb: Servi ce>
<eb: Acti on>OTA_Cr eat eProfi | eRS</ eb: Acti on>
<eb: MessageDat a>
<eb: Messagel d>m d: 20001209- 133503- 1111 @32Bser ver . i maconpany. conx/ eb: Messagel d>
<eb: Ti mest anp>2001- 02- 15T11: 15: 12Z </ eb: Ti nest anp>
<eb: Ref ToMessagel d> m d: 20001209- 133003-
28572@2bh. conpany. conk/ eb: Ref ToMessagel d>
</ eb: MessageDat a>
</ eb: MessageHeader >

</ SOAP- ENV: Header >
<SQOAP- ENV: Body>
<eb: Mani f est SOAP- ENV: nust Under st and="1" eb: versi on="1. 0">
<eb: Reference xlink:href="cid:profilelll@?2b.i maconpany. conf
xli nk: type="si npl e" >
</ eb: Ref erence>
</ eb: Mani f est >
</ SOAP- ENV: Body>
</ SOAP- ENV: Envel ope>

4.7.4 Type B Response Example

Content -1 D: <ebxhnmheader 111@2Bser ver . i maconpany. conr
Content - Type: text/xm ; charset="UTF-8"

<?xm version="1.0" encodi ng="UTF- 8" ?>
<SOAP- ENV: Envel ope xml ns: SOAP- ENV="ht t p: / / schemas. xnl soap. or g/ soap/ envel ope/”
xm ns: eb="http://ww. ebxm . or g/ namespaces/ nessageHeader”
xm ns: x| i nk="http://ww.w3. org/ 1999/ xl i nk” >
<SOAP- ENV: Header >
<eb: MessageHeader SOAP- ENV: nust Under st and="1" eb: versi on="1. 0">
<eb: Fron
<eb: Partyld type="urn: x12.org:|05: 01">912345678</ eb: Partyl d>
</ eb: Fronm>
<eb: To>
<eb: Partyld type=" urn:x12.org:|105: 01">123456789</ eb: Partyl d>
</ eb: To>
<eb: CPAI d>NULL</ eb: CPAI d>
<eb: Conver sati onl d>2000120913300328572@2b. conpany. com
</ eb: Conver sati onl d>
<eb: Servi ce eb:type="OTA">Profil e</eb: Servi ce>
<eb: Acti on>OTA_Cr eat eProfi | eRS</ eb: Acti on>
<eb: MessageDat a>
<eb: Messagel d>m d: 20001209- 133503- 1111 @32Bser ver . i maconpany. conx/ eb: Messagel d>
<eb: Ti mest anp>2001- 02- 15T11: 15: 12Z </ eb: Ti nest anp>
<eb: Ref ToMessagel d> m d: 20001209- 133003-
28572@2b. conpany. conk/ eb: Ref ToMessagel d>
</ eb: MessageDat a>
</ eb: MessageHeader >
<eb: Acknow edgnent SOAP- ENV: nust Under st and="1" eb: versi on="1. 0"
SOAP- ENV: act or ="htt p: // schemas. xnl soap. or g/ soap/ act or/ next ">
<eb: Ti mest anp>2001- 03- 09T12: 22: 30Z</ eb: Ti mest anp>
</ eb: Acknowl edgenent >

</ SOAP- ENV: Header >
<SQOAP- ENV: Body>

</ SOAP- ENV: Body>

</ SOAP- ENV: Envel ope>

Copyright & 2001. OpenTravel Alliance www.opentravel .org/

OpenTravel Alliance 2001C Infrastructure Specification Page 59

4.7.4.1 Reliable Messaging

In the context of OTA, reliable messaging refers to the requirements that an ebXML Message
Service Product be capable of reliably delivering and persisting incoming and outgoing payload
data until the successful delivery to atrading partner or an internal application. It is expected that
all ebXML compliant Message Service products are capable of performing reliable messaging in
accordance with the eMS gpecification following the requirements for
reliabl eMessagi ngMet hod="ebXM." (the only type supported by OTA at this time and
the default method for ebXML) in section 10.2.4.

A message requires reliable delivery if the del i ver ySemant i cs=" OnceAndOnl yOnce”.
Only type B request messages require reliable delivery.

4.7.4.2 Once and Only Once Messaging
ebXML supports two type of delivery Semantics:

1. OnceAndOnlyOnce
2. BedEffort (thisis the default when unspecified)

All type A reguest messages MUST utilize BestEffort deliverySemantics. All type B request
messages MUST utilize OnceAndOnlyOnce deliverySemantics with guaranteed ordered delivery.
The OnceAndOnlyOnce deliverySemantics are used when guaranteed, single delivery of a
message is required. A Message Service Handler is expected to identify and ignore duplicate
type B message reguests.

CAUTION: Messages sent using the BestEffort deliverySemantics may result in failed
delivery or multiple deliveries of the same message. Implementers should take caution when
using type A messages to ensure that failed message delivery or multiple message delivery
does not compromise the integrity of a system. This can be easily achieved by using
sequence numbers. Also, guaranteed ordered delivery does NOT insure that data contained
in the payload portion of a message is “processed” in the order they were received.

4.7.5 Mapping Class of Delivery to Service/Action Pairs

In section 7 for each Service/Action pair there is a RECOMMENDED class of delivery.
Implementations following these recommendations are expected to have wire interoperability.

4.8 Sessions in OTA

Previous versions of OTA infrastructure defined both session-oriented and single-shot
conversations with differing conversational semantics and message control structures for each of
these.

As there are currently no known use-cases among defined messages for the single-shot messaging
OTA has defined simpler session-oriented conversations and RECOMMENDS that
implementations always use a valid session during all conversations.

4.8.1 What we mean by ‘sessions’

The term ‘session’ has many different meanings depending on context. Within the context of
OTA infrastructure session is defined as an authenticated, authorized on-going conversation
between two implementations. Sessions have the following characteristics:

They are ongoing

Copyright & 2001. OpenTravel Alliance www.opentravel .org/

OpenTravel Alliance 2001C Infrastructure Specification Page 60

Session initiation and session termination are relatively low overhead
Sessions may be long-lived (they may last for days, even weeks on end)
Sessions are leased™

Messages belonging to a session are identified with that session via a conversation-id and
sequence numbers

Session conversation-ids provide a convenient ‘hook’ for implementation end-points to
maintain state (related, of course, to a particular session) e.g. security

Sessions follow a client/server model

4.8.2 What we do not mean by ‘sessions’

It isimportant to also explicitly note what we do not mean by the term *session’. In particular, the
concept of OTA sessions is completely orthogonal to the notion of ‘session control’ within
booking conversations (those familiar with session control will recall that a ‘session’ is initiated
implicitly and terminated explicitly via an ‘ET’ (End Transaction) message — analogous to a
commit or an ‘1G’ (Ignore) message — analogous to a rollback).

Currently there is no notion of traditional travel industry session control within defined OTA
message sets, however as and when such a notion is defined it will be via message sets and new
actions on corresponding services. This notion of ‘session-control’ belongs at a higher layer much
closer to the application, and is conceptualy entirely different from the infrastructure layer
sessions being defined here.

4.8.3 The OTA Session service

The OTA session service is used to establish context for either a single request/response message
exchange or a series of reguest/response message exchanges between parties. A Sender MUST
establish a Session with a Receiver before any message exchanges containing OTA business
transactions (units-of-work) will be allowed.

Messages exchanged during a session may be related to a single OTA unit-of-work or multiple,
unrelated units-of-work. OTA’s session service is aso used to negotiate and establish operational
parameters to govern communications that occur within a given session.

The Session service defines five possible Actions::

CreateRQ — sent by session initiator to establish a new session

CreateRS — sent by recipient of a CreateRQ to grant or deny a session
CloseRQ — sent by session initiator to close a session

CloseRS — sent by the recipient of a CloseRQ to indicate session closure

o~ DR

ErrorRS - sent by a server in response to any message to indicate a session error

4.8.3.1 Session/CreateRQ and Session/CreateRS

4.8.3.1.1 Session/CreateRQ

% Similar to a DHCP lease, or a lease on an apartment rights within a session will expire automatically
unless renewed prior to the agreed expiration date and time

Copyright & 2001. OpenTravel Alliance www.opentravel .org/

OpenTravel Alliance 2001C Infrastructure Specification Page 61

This service/action pair is used to request the start of a new session. The initiator of
Session/CreateRQ MUST construct an ebXML message header, following the requirements for
Type A request messages. The ebXML Header MessageHeader/Conversationld MUST contain a
value of NULL.

A single payload container is used to pass a SessionControlRequest document that defines the
operational parameters requested by the initiator. The SessionControlRequest document is an
XML document containing the following information:

A REQUIRED, recurring OTA_Version element that is used to identify the various OTA
versions supported by the sender. A single attribute, preference, containing a numerical
value that is used to indicate the senders “preferred” version to be used during this
session. The lowest preference value indicates the senders highest preference. A
preference value of “0” or the absence of a preference attribute indicates no preference.

An OPTIONAL mode attribute that is used to identify “Test” or “Production” mode. If
not specified node=" Pr oduct i on” isassumed.

A REQUIRED version attribute (currently set to “1”)

An OPTIONAL LeaseRequestTime element that specifies the amount of time asession is
expected to remain “alive”. When present, the element contains a positive integer value
or “0" (zero). The element also contains one OPTIONAL attribute, cadence, that contains
one of the following values:

0 seconds
0 minutes
o hours

0 days

When the LeaseRequestTime element contains a value of “0” (zero) or the element is not
present, this is semantically equivalent to “infinite”. If the “cadence” attribute is not
present, the value in LeaseRequestTime element SHALL be interpreted as “ seconds”.

An OPTIONAL MaxldleTime element that specifies the amount of time a session may
remain idle before the server system “expires’ the session. When present, the element
contains a positive integer value or “0" (zero). The element also contains one
OPTIONAL attribute, cadence, that contains one of the following values:

0 seconds
0 minutes
o hours

o days

When the MaxldleTime element contains a value of “0” (zero) or the element is not
present, this is semantically equivalent to “infinite”. If the “cadence” attribute is not
present, the value in MaxldleTime element SHALL be interpreted as “ seconds’.

An example SessionControl Request document follows:

<Sessi onCont r ol Request node="Producti on” version="1">
<OTA Version preference="1">2001C</ OTA Ver si on>

<OTA Version preference="2">2001A</ OTA Ver si on>
<LeaseRequest Ti me cadence="seconds” >60</ LeaseRequest Ti me>
<Max! dl eTi me cadence="mi nut es” >15</ Max| dl eTi me>

</ Sessi onCont r ol Request >

Copyright & 2001. OpenTravel Alliance www.opentravel .org/

OpenTravel Alliance 2001C Infrastructure Specification Page 62

Additional elements and attributes may be added in alater version of this specification that could
be used to identify OTA capabilities (e.g. supported Transactions) and other operationa
parameters.

4.8.3.1.2 Session/CreateRS

This service/action pair is sent in response to a Session/CreateRQ to inform the requesting party
the status of the request. The sender of Session/CreateRS MUST construct an ebXML message
header, with a RefToMessageld containing the value of Messageld in the Session/CreateRQ
message, along with the other information required within response messages. The ebXML
Header MessageHeader/Conversationld MUST contain avalue of NULL.

A single payload container is used to pass a SessionControlResponse document that defines the
status of the request and other operational parameters that will be used during the session. The
SessionControl Response document is an XML document containing the following attributes and
elements:

A “status’ attribute containing one of the following values:
Approved
Rejected
A single OTA_Version element identifies the OTA version that both parties agree to
follow during the session.

A single Conversationld element containing the value of Conversationld that MUST be
used in the MessageHeader/Conversationld element of all subsequent messages
exchanged during this session.

An OPTIONAL LeaseRequestTime element that specifies the amount of time a server
has will alow a session to remain “alive’. This dement MUST be present, if the
corresponding Session/CreateRQ message contained a LeaseRequestTime. The element
contains a positive integer value or “0" (zero). The element also contains one
OPTIONAL attribute, cadence, that contains one of the following values:

0 seconds
0 minutes
o hours

0 days

When the LeaseRequestTime element contains a value of “0” (zero) or the element is not
present, this is semantically equivalent to “infinite”. If the “cadence” attribute is not
present, the value in LeaseRequestTime element SHALL be interpreted as “seconds”.

An OPTIONAL MaxldleTime element that specifies the amount of time a server will
allow a session to remain idle before it “expires’ the session. This element MUST be
present, if the corresponding Session/CreateRQ message contained a MaxlIdleTime.
When present, the element contains a positive integer value or “0” (zero). The element
also contains one OPTIONAL attribute, cadence, that contains one of the following

values.
0 seconds
0 minutes
o hours

Copyright & 2001. OpenTravel Alliance www.opentravel .org/

OpenTravel Alliance 2001C Infrastructure Specification Page 63

0 days

When the MaxldleTime element contains a value of “0” (zero) or the element is not present, this
is semantically equivalent to “infinite”. If the “cadence” attribute is not present, the value in
MaxldleTime element SHALL be interpreted as “ seconds’.

Zero or more Reason elements indicating the reason why a Session was rejected. The
Reason element MAY only be present when the status attribute of the
SessionControl Response element contains the value “Rejected”. When a session has been
Rejected the SessionControlResponse document MUST NOT contain a Conversationld
element.

Zero or one ServiceSupported element, see section 6 for details of this element. If the
value of the status attribute is st at us=" Appr oved” a <Ser vi cesSupport ed>
element MUST be present.

Following are two example SessionControl Response documents:

<Sessi onCont r ol Response versi on="1" status="Approved”>
<OTA_Ver si on>2001C</ OTA_Ver si on>
<Conver sati onl d>20011027081907- 862@ost . i maconpany. con</ Conver sat i onl d>
<LeaseRequest Ti me cadence="seconds” >60</ LeaseRequest Ti me>
<Max! dl eTi me cadence="mi nut es” >15</ Max| dl eTi me>
<Ser vi cesSupport ed>
<l— content omtted for brevity -->
</ Servi cesSupport ed>
</ Sessi onCont r ol Response>

<Sessi onCont r ol Response verson="1" status="Rejected”>

<OTA_Ver si on>2001C</ OTA_Ver si on>

<Reason>No System Avail abl e to Process Request — Schedul ed Mai nt enance</ Reason>
</ Sessi onCont r ol Response>

The negotiated parameters returned on the response define the values that will be used for the
remainder of the session.

4.8.3.2 Session/CloseRQ and Session/CloseRS

4.8.3.2.1 Session/CloseRQ

This service/action pair is used to request the closure of a sesson. The initiator of
Session/CloseRQ MUST construct an ebXML message header, following the requirements for
Type A request messages. The ebXML Header MessageHeader/Conversationld MUST contain
the value of the session to be closed. This is the same Conversationld value that was contained in
the Session/CreateRS SessionControl Response document when the session was Accepted.

The recipient of a Session/CloseRQ must take steps to ensure that only authorized parties are
allowed to close a session. Any Session/CloseRQ messages containing a Conversationld that was
not issued to the party issuing the Session/CloseRQ MUST be responded to with
Session/CloseRS message containing a <Er r or Li st ><Er r or > indicating that the CloseRQ
has failed. and the session MUST remain active, if it is already active.

A SESSION MAY ONLY BE CLOSED BY THE PARTY THAT WAS GRANTED THE
SESSION AND WITHIN THE CONTEXT OF THE SESSION BEING CLOSED (by using the
MessageHeader/Conversationld that was issued by the Acceptor of the session). Implementers
SHOULD maintain some identifying characteristics (e.g. IP address of original Requesting Party)
as verification before completing a Session/CloseRQ

Copyright & 2001. OpenTravel Alliance www.opentravel .org/

OpenTravel Alliance 2001C Infrastructure Specification Page 64

Once a session has been closed, either due to expiration or during a CloseRQ, no further message
exchanges are allowed over that sesson. Any attempt to send a message containing a
Conversationld for a session that has been closed MUST be responded to with a
<Er r or Li st ><Er r or > indicating that the session is no longer active within the appropriate
response Service/Action message.

There is no payload associated with this message.

4.8.3.2.2 Session/CloseRS

This service/action pair is sent in response to a Session/CloseRQ indicating that a session has
been closed. The sender of Session/CloseRS MUST construct an ebXML message header, with a
RefToMessageld containing the value of Messageld in the Session/CloseRQ message, along with
the other information required within response messages. The ebXML Header
MessageHeader/Conversationld MUST contain the value of the closed session.

A SESSION MAY ONLY BE CLOSED BY THE PARTY THAT WAS GRANTED THE
SESSION AND WITHIN THE CONTEXT OF THE SESSION BEING CLOSED (identified by
the Conversationld that was issued by the Acceptor of the session). Implementers SHOULD
maintain some identifying characteristics (e.g. IP address of origina Requesting Party) as
verification before completing a Session/CloseRQ and issuing a Session/CloseRS.

Once a session has been closed, either due to expiration or during a CloseRQ, no further message
exchanges are allowed over that sesson. Any attempt to send a message containing a
Conversationld for a session that has been closed MUST be responded to with a
<Er r or Li st ><Err or > indicating that the session is no longer active within the appropriate
response Service/Action message.

There is no payload associated with this message.

4.8.3.3 SessionControl Schema definition
The following schema fragment formally defines SessionControl messages:

<?xm version="1.0" encodi ng="UTF- 8" ?>

<l-- Created and edited with "vi' -->

<xs:schema xm ns: xs="http://ww. w3. org/ 2001/ XM_Schenma"
xm ns="http://ww. opentravel . or g/ OTA"
t ar get Nanespace="htt p: // www. opentravel . or g/ OTA"
el enent For nDef aul t =" qual i fi ed">

<xs:annot ati on>
<xs:docunentation xm :|lang="en">
OTA v2001C Specification - SessionControl nmessage definitions
Copyright (C) 2001 Open Travel Alliance. Al rights reserved.
</ xs: docunent ati on>
</ xs: annot ati on>

<xs: el ement nanme="Sessi onContr ol Request " >
<xs:annot ati on>
<xs:docunentation xm :|lang="en">
A Sessi onControl Request is used to negotiate paraneters to apply
to an OTA session.
</ xs: docunent ati on>
</ xs: annot ati on>
<xs:conpl exType>
<xs:sequence>
<xs: el ement ref="0TA Version" maxQccurs="unbounded" />
<xs: el ement ref="LeaseRequestTi ne" m nCccurs="0" />
<xs: el ement ref="MaxldleTime" mnCccurs="0" />
</ xs: sequence>
<xs:attribute nanme="version" type="versi onNunber" use="required" />

Copyright & 2001. OpenTravel Alliance www.opentravel .org/

OpenTravel Alliance 2001C Infrastructure Specification

<xs:attribute nanme="node" default="Production">
<xs: si mpl eType>
<xs:restriction base="xs:string">
<xs: enuneration val ue="Test"/>
<xs: enuneration val ue="Production"/>
</xs:restriction>
</ xs: si mpl eType>
</xs:attribute>
</ xs: conpl exType>
</ xs: el enent >

<xs: el ement nanme="OTA Version" type="xs:string">
<xs:attribute name="preferred" type="xs:integer" />
</ xs: el ement >

<xs: el ement nanme="LeaseRequest Ti me" type="xs:integer">
<xs:attribute nane="cadence" type="cadenceType" defaul t="seconds"/>
</ xs: el ement >

<xs:si npl eType nane="cadenceType" >
<xs:restriction base="xs:string">
<xs:enuneration val ue="seconds"/>
<xs:enuneration val ue="m nutes"/>
<xs:enuneration val ue="hours"/>
<xs:enuneration val ue="days"/>
</ xs:restriction>
</ xs: si nmpl eType>

<xs: el ement nanme="Max| dl eTi me" type="xs:integer">
<xs:attribute nane="cadence" type="cadenceType" defaul t="seconds"/>
</ xs: el ement >

<xs: el ement nanme="Sessi onContr ol Response" >
<xs:annot ati on>
<xs:docunentation xm :lang="en">
A Sessi onControl Response is used to negotiate paranmeters to apply
to an OTA session.
</ xs: docunent ati on>
</ xs: annot ati on>
<xs:conpl exType>
<xs:sequence>
<xs: el ement ref="0OTA Version" />
<xs: el ement ref="Conversationld" />
<xs: el ement ref="LeaseRequestTi ne" m nCccurs="0" />
<xs: el ement ref="MaxldleTime" mnCccurs="0" />
<xs: el enent ref="Reason" m nCccurs="0" maxCccurs="unbounded"
<xs: el ement ref="ServicesSupported" mi nCccurs="0" />
</ xs: sequence>

<xs:attribute name="version" type="versi onNunber" use="required"

<xs:attribute nanme="status" use="required">
<xs: si npl eType>
<xs:restriction base="xs:string">
<xs:enuneration val ue="Accepted"/>
<xs:enuneration val ue="Rejected"/>
</xs:restriction>
</ xs: si mpl eType>
</xs:attribute>
</ xs: conpl exType>
</ xs: el ement >

<xs: el ement nanme="Conversationld" type="xs:string" />
<xs: el ement nanme="Reason" type="xs:string" />

<xsd: si npl eType nane="ver si onNunber" >
<xsd: annot ati on>
<xsd: docunment ati on xml : |l ang="en">
Al'l OTA version nunbers are unsigned integers in the range 1..9999
Ver si on nunbers should begin with the value '1'" and be increnented
each tinme a nessage is revised
</ xsd: docunent ati on>
</ xsd: annot ati on>

Copyright & 2001. OpenTravel Alliance

Page 65

/>

/>

www.opentravel .org/

OpenTravel Alliance 2001C Infrastructure Specification Page 66

<xsd:restriction base="xsd: unsi gnedShort" >
<xsd: m nl ncl usi ve val ue="1"/>
<xsd: maxl| ncl usi ve val ue="9999"/>
</xsd:restriction>
</ xsd: si nmpl eType>
</ xs: schema>

4.8.3.4 Session/ErrorRS

OTA maintains an error response message <ErrorRS>, which an implementation may send in
response to any request in the event of a session error. Note that this is an infrastructure and/or
session related error, not an application level error. For application errors use an <OTA:Errors>
element in the standard design pattern used for all response messages (see section 2.4.2 for
details).

The following table contains all possible OTA session errors.

errorCode ErrorMessages

SessionFailure-100 Version not supported
SessionFailure-101 Session has expired
SessionFailure-102 Session aready closed
SessionFailure-103 Parameter not supported

The following schema fragment formally defines an ErrorRS message:

<?xm version="1.0" encodi ng="UTF- 8" ?>
<xs:schemm target Namespace="http://ww. opentravel . org/ OTA
xm ns: xs="http://ww. w3. or g/ 2001/ XM_Scherma" xm ns="http://ww. opentravel . or g/ OTA
el enent For nDef aul t =" qual i fi ed">
<xs:annot ati on>
<xs:docunentation xm :|lang="en">
OTA v2001C Specification - Session ErrorRS nmessage definition
Copyright (C) 2001 Open Travel Alliance. Al rights reserved
</ xs: docunent ati on>
</ xs: annot ati on>
<xs:include schemalLocati on="OTA v2ent.xsd"/>
<xs: el ement name="ErrorRS">
<xs:conpl exType>
<xs: si npl eCont ent >
<xs:extension base="xs:string">
<xs:attributeG oup ref="0TA Payl oadStdAttri butes"/>
<xs:attribute name="Error Code" use="required">
<xs:si mpl eType>
<xs:restriction base="xs: NMTOKEN' >
<xs:enuneration val ue="Sessi onFai | ure-100"/>
<xs:enuneration val ue="Sessi onFai | ure-101"/>
<xs:enuneration val ue="Sessi onFai | ure-102"/>
<xs:enuneration val ue="Sessi onFai |l ure-103"/>
</xs:restriction>
</ xs: si mpl eType>
</xs:attribute>
<xs:attribute name="Severity" use="optional"/>
<xs:attribute name="Error Message" use="optional ">
<xs:si mpl eType>
<xs:restriction base="xs:string">
<xs:enuneration val ue="OTA version not supported"/>
<xs:enuneration val ue="Sessi on has expired"/>
<xs:enuneration val ue="Sessi on al ready cl osed"/>
<xs:enuneration val ue="Paraneter not supported"/>
</xs:restriction>
</ xs: si mpl eType>
</xs:attribute>

Copyright & 2001. OpenTravel Alliance www.opentravel .org/

OpenTravel Alliance 2001C Infrastructure Specification Page 67

</ xs: ext ensi on>
</ xs: si nmpl eCont ent >
</ xs: conpl exType>
</ xs: el enent >
</ xs: schema>

4.8.4 Securing OTA Sessions

All data passed over an OTA sesson MUST be protected from unauthorized parties.
Additionally, all servers used by OTA implementers MUST maintain access control in order to
prevent unauthorized use of an OTA system. The security and integrity of an OTA system should
be atop priority for all OTA implementers.

4.8.4.1 Basic-authorization and SSL

All OTA implementers MUST support, at a minimum, SSL version 3.0 using a minimum key
size of 128 hits for symmetric cryptographic algorithms and a key size of 2048 bits for
asymmetric cryptographic algorithms (e.g.public key). Presently, only servers are required to
implement Digital Certificates. Some future version may require clients to implement Digital
Certificates for authentication purposes during the establishment of a SSL connection. During the
establishment of an SSL connection OTA servers are required to present a Digital Certificate, as
part of the SSL handshake. All OTA clients MUST accept self signed Digital Certificates as well
as those that have been signed by a recognized Certificate Authority (e.g. Verisign, Entrust,
Thawte, et d).

All OTA implementers MUST use HTTP Basic Authentication (usernames and passwords) (ref:
RFC 2617) to control access to an OTA system. Any party that fails to provide an authorized
username/password pair in the Authorization header of an HTTP request when sending an OTA
Reguest or Response message using HTTP POST method will likely generate an HTTP 401
error®. Implementers are expected to secure the transport of sensitive username/password data by
only transporting this information over an established SSL connection with a server that is known
to belong to your trading partner.

4.8.4.2 Towards deeper security

EbXML offers many levels of security beyond our base recommendation of basic-authorization
over SSL, including the ability to:

Digitaly sign payloads

Encrypt payloads

Digitally sign and encrypt payloads

Require client-side X.509 certificates on HTTP/S sessions

Different commercial ebXML implementations are expected to have differing level of support for
these additional security features. Beyond our recommendation for a basic authenticated and
secure channdl it is up to trading partners to agree on any deeper level of security to be applied to
their eCommerce exchanges.

4.9 Web Services Description for OTA ebXML

% The HTTP 401 error code indicates an unauithorized attempt to access a restricted resource

Copyright & 2001. OpenTravel Alliance www.opentravel .org/

OpenTravel Alliance 2001C Infrastructure Specification Page 68

The following web services description language [wsdl]?’ fragment formally defines OTA type A
and type B requests and responses from a web services perspective, should OTA partners want to
make use of a UDDI registry which supports WSDL:

<?xm version="1.0" encodi ng="utf-8"?>

<definitions xm ns:s="http://ww.w3. org/ 2001/ XM_Schema”

xm ns: http="http://schemas. xnl soap. org/ wsdl / http/"

xm ns: m me="http://schemas. xnl soap. or g/ wsdl / m e/ ”

xm ns: eb="http://ww. ebxm . or g/ namespaces/ nessageHeader "

xm ns: soap="http://schemas. xnl soap. or g/ wsdl / soap/”

xm ns: soapenc="htt p://schemas. xm soap. or g/ soap/ encodi ng/ "

t ar get Nanespace="ht t p: / / www. ebxml . or g/ nanespaces/ nessageHeader "
xm ns="http://schemas. xm soap. or g/ wsdl / ">

<types>
<schenmn t ar get Nanespace=htt p: // ww. ebxnl . or g/ namespaces/ nessageHeader "
xm ns="http://ww. w3. or g/ 2000/ 10/ XM_Schena" >
</types>

<message nane="TypeARequest">
<part name="MessageHeader" type="ebh: MessageHeader" />
<part name="Via" type="eb:Via" />
<part name="Mani fest" type="eb: Manifest" />

</ message>

<message nane="TypeAResponse">
<part name="MessageHeader" type="eb: MessageHeader" />
<part name="ErrorList" type="eb:ErrorList" />
<part name="Manifest" type="eb: Manifest" />

</ message>

<message nane="TypeBRequest">
<part name="MessageHeader" type="eb: MessageHeader" />
<part name="Mani fest" type="eb: Manifest" />

</ message>

<message nane="TypeBResponse">
<part name="MessageHeader" type="eb: MessageHeader" />
<part name="Acknow edgenent" type="eb: Acknow edgenent" />
<part name="ErrorList" type="eb:ErrorList" />

</ message>

<port Type nane="ebXWM.">

<operati on name="TypeARequest">
<i nput nmessage="eb: TypeARequest" />
<out put message="eb: TypeAResponse" />

</ operati on>

<operati on name="TypeBRequest">
<i nput nessage="eb: TypeBRequest" />
<out put message="eb: TypeBResponse" />

</ operati on>

</ port Type>

<bi ndi ng nane="ebxm handl er" type="eb: ebXM." >
<soap: bi nding transport="http://schenas. xm soap. or g/ soap/ http"
styl e="docunent" />

<operati on name="TypeARequest">
<soap: operati on soapAction="ebXM." styl e="docunment" />
<i nput >
<soap: header
namespace="htt p: // ww. ebxm . or g/ nanespaces/ nessageHeader" />
<soap: body
namespace="htt p: // ww. ebxm . or g/ nanespaces/ nessageHeader" />
<m nme: m meXm part="Body" />
</i nput >

Z Twsdl] — Web Services Description Language — a W3C Technical Recommendation available at:
http://www.w3c.org/TR/wsdl

Copyright & 2001. OpenTravel Alliance www.opentravel .org/

OpenTravel Alliance 2001C Infrastructure Specification Page 69

<out put >
<soap: header
namespace="htt p: // ww. ebxm . or g/ nanespaces/ nessageHeader" />
<soap: body
namespace="htt p: // ww. ebxnl . or g/ nanmespaces/ nessageHeader" />
<m me: m meXm part="Body" />
</ out put >
</ operati on>

<operati on name="TypeBRequest">
<soap: operati on soapAction="ebXWM." styl e="docunment" />
<i nput >
<soap: header
namespace="htt p: // ww. ebxm . or g/ nanespaces/ nessageHeader" />
<soap: body
namespace="htt p: // ww. ebxm . or g/ nanmespaces/ nessageHeader"/ >
<m me: m meXm part="Body" />
</i nput >
<out put >
<soap: header
namespace=" http://ww. ebxml . or g/ namespaces/ nessageHeader"/ >
</ out put >
</ operati on>
</ bi ndi ng>

<servi ce name="ebxmnl handl er">
<port nanme="ebxm " bi ndi ng="eb: ebxm handl er" >
<http: address | ocation="http://b2b. conpany. coni servl et/ ebxm" />
</ port>
</ servi ce>
</definitions>

Copyright & 2001. OpenTravel Alliance www.opentravel .org/

OpenTravel Alliance 2001C Infrastructure Specification Page 70

5 OTA Update Messages

As described before, OTA update messages were designed with the following goals:
Minimizing the size of a payload on the wire to represent an update transaction
Defining an explicit representation for what has changed
Defining a representation with a clear and simple conceptual model

Creating a representation that is content-independent and genera-purpose in nature so as to
be reusable throughout future OTA specifications

Providing a simple-to-implement "replace" option to alow developers to get simpler
implementations running quickly - at the expense of the first 2 goals (representation of
change and size of message) above.

5.1 Representing change in XML

Representing change is not a problem unique to the OTA. The approach presented in this
specification assumes use of the following:

library utilities® that can compare before and after images of a particular XML document
and then generate a succinct representation of the differences (conceptualy similar to a
GNU diff utility)

a representation for differences that is both human readable and understandable by
automated tools

library utilities that can take an XML document, apply a differences document and
generate the same after image (conceptually similar to a GNU patch utility)

Applying an Update action involves a tree-to-tree comparison, similar to well-known operations
outside the XML arena. This specification assumes that prior to sending an <OTA_Updat eRQ>
message, the sender has used standard libraries to generate the differences between the 'before
and desired ‘after' images of the XML document. Implementors may wish to consult
documentation of algorithms for tree-to-tree comparison and correction in computer science
publications™, to provide the background for understanding this X M L-specific approach.

5.2 Position Representation with XPath

The general concept of an OTA generic update request is to send a <Posi ti on> element
followed by one or more operations to be applied at that position. XPath is a well-known W3C
recommendation for representing a node in an XML document. The two best known applications
of XPath are within XSL and XLink (themselves XML recommendations).

Within the OTA update representation, XPath is used to reference a specific element within a
source document. This XPath is encoded within the XPath attribute in the <Posi ti on>

%8 an open source implementation of such a library is available from OTA member VM Systems, Inc. (see
http://www.vmguys.com/vmtool &/)

® For an excellent paper outlining the commonalties and differences between the best known agorithms
see: "Tree-to-tree Correction for Document Trees', Technical Report 95-372 by David T. Barnard, Gwen
Clarke and Nicholas Duncan (available from Queen’s University, Kingston Ontario at:
ftp://ftp.qucis.queensu.cal/pub/reports/1995-372.ps)

Copyright & 2001. OpenTravel Alliance www.opentravel .org/

OpenTravel Alliance 2001C Infrastructure Specification Page 71

element. In OTA update messages, the XPath attribute within any given <Posi ti on> will
always refer to an element, and this explanation therefore is restricted to that proper subset of
XPath notation which refers to elements. The representation of <Posi t i on> followed by one or
more operations is used, as updates will often consist of more than one operation to be performed
at the same position. This representation will often be shorter than the alternative of embedding
an XPath position explicitly within each operation.

It is important to note that when processing a differences document, insertion or deletion of nodes
may invalidate subsequent XPath references. This is addressed in the section "Order of
Representation and Application” (See Section 5.5).

5.3 Operands

In keeping with the design goals of minimal representation and explicit representation of change,
changes are represented as occurring at four different levels, using the following operands:

Attribute - performs an operation on the attribute name of the currently selected Element

Element - performs an operation on the structure (i.e. content or children) of the currently
selected element (but not its attributes)

Subtree - allows for the grafting or pruning of an element which has its own children

Root - this special attribute is ONLY used for asmple 'replace’ aternative where an updated
representation of the entire object is sent as opposed to sending incremental differences

In the case of <El enent > and <Subt r ee> operands, insert operations are performed on
children of the selected Element (selection is made via the <Posi ti on> Xpath attribute).
Children are always specified via the Child attribute, which is a one-relative integer where
children positions are specified left-to-right, with position one indicating the leftmost child.

5.4 Operations

Operations are specified on an operand via the Operation attribute. Operations are "insert”,
"modify" and "delete", though the "modify" operation is not applicable to the operand
<Subt r ee>. Theoperand <Root > isthe only operand to have the specia "replace" operation.

The following table describes the result of each operation on its associated operand:

Operand Operation Description

Attribute i nsert The attribute name with value value will be added to
selected element

Attribute nmodi fy The vaue of the attribute name will be changed to value
on the selected element

Attribute del ete The attribute name will be deleted from the selected
element

El enent i nsert A child eement will be inserted beneath the currently

selected element. This child will be inserted at one-
relative position Child (see also Subtree insert)

El enent nmodi fy The value of the currently selected element will be
modified to the value specified. The text content of an
element is removed by using a modify operation with a
null replacement value.

Copyright & 2001. OpenTravel Alliance www.opentravel .org/

OpenTravel Alliance 2001C Infrastructure Specification Page 72

El enent

del et e

The currently selected element is deleted. If this element
has children of its own, these children will become
children of their grandparent in the tree, with their
position being equivalent to an insertion at the point
previously occupied by the current element. Use Subtree
delete to remove an Element and al its children from its
currently selected parent

Subtr ee

i nsert

The subtree will be inserted beneath the currently
selected element. This subtree will be inserted as a child
at position Child (see al'so Element insert)

Subtr ee

del et e

The subtree beginning at the currently selected element
will be deleted (use Element delete if an element is to be
removed, but its children preserved)

Root

repl ace

A replacement representation of the entire document
object follows. This operation alows implementors to
avoid the complexity of the difference representation and

send afull "after’ image of the updated document object

Although it is possible to replace the entire tree by performing a <Subt r ee> delete operation on
the root, it is not possible to then insert a new subtree as a replacement. The <Root > replace

operation is provided for this purpose.

The syntax for an <OTA_Updat eRQ> isformally defined in the following schema fragment:

Schema 7 - <OTA_UpdateRQ>:

<?xm version="1.0" encodi ng="UTF- 8" ?>
<l-- Created and edited with "vi' -->
<xs:schema xm ns: xs="http://ww. w3. org/ 2001/ XM_Schenma"
xm ns="http://ww. opentravel . or g/ OTA"
t ar get Nanespace="htt p: // www. opentravel . or g/ OTA"
el enent For nDef aul t =" qual i fi ed">

<xs:annot ati on>
<xs:docunentation xm :|lang="en">
OTA v2001C Specification - Generic OTA Updat eRQ nmessage definition
Copyright (C) 2001 Open Travel Alliance. Al rights reserved.
</ xs: docunent ati on>
</ xs: annot ati on>
<xs:include schemalLocati on="OTA v2ent.xsd"/>
<xs:include schermalLocati on="OTA_PCS. xsd”/ >

<xs: el ement nanme="OTA Updat eRQ'>
<xs:annot ati on>
<xs:docunentation xm :|lang="en">
This el enent represents the increnental changes to the busi ness docunent
referred to by Uniqueld
</ xs: docunent ati on>
</ xs: annot ati on>
<xs:conpl exType>
<xs:sequence>
<xs: el ement ref="Uni queld"/>
<xs: el enment ref="P0S” m nCccurs="0"/>
<xs: el ement ref="Position" maxCccurs="unbounded"/>
</ xs: sequence>
<xs:attributeG oup ref="0TA Payl oadStdAttri butes"/>
<xs:attributeG oup ref="RegRespVersion"/>
</ xs: conpl exType>
</ xs: el ement >

<xs: el ement nane="Position">

Copyright & 2001. OpenTravel Alliance

www.opentravel .org/

OpenTravel Alliance 2001C Infrastructure Specification Page 73

<xs:conpl exType>
<xs: choi ce>
<xs:sequence>
<xs:element ref="Attribute" m nCccurs="0" maxCOccur s="unbounded"/ >
<xs: el ement ref="El ement" m nCccurs="0" maxCccurs="unbounded"/>
<xs: el ement ref="Subtree" m nCccurs="0" maxCccurs="unbounded"/>
</ xs: sequence>
<xs: el ement ref="Root"/>
</ xs: choi ce>
<xs:attribute name="XPath" type="xs:string" use="required"/>
</ xs: conpl exType>
</ xs: el ement >
<xs:el ement name="Attribute">
<xs:conpl exType>
<xs:attribute name="Operation" use="required">
<xs:si mpl eType>
<xs:restriction base="xs:string">
<xs:enuneration val ue="insert"/>
<xs:enuneration val ue="nodi fy"/>
<xs:enuneration val ue="del ete"/>
</ xs:restriction>
</ xs: si mpl eType>
</xs:attribute>
<xs:attribute name="Name" type="xs:string" use="required"/>
<xs:attribute name="Val ue" type="xs:string"/>
</ xs: conpl exType>
</ xs: el ement >
<xs: el ement nanme="El ement ">
<xs:conpl exType>
<xs:sequence>
<xs:any/ >
</ xs: sequence>
<xs:attribute name="Operation" use="required">
<xs:si mpl eType>
<xs:restriction base="xs:string">
<xs:enuneration value="insert"/>
<xs:enuneration val ue="nodi fy"/>
<xs:enuneration val ue="del ete"/>
</ xs:restriction>
</ xs: si mpl eType>
</xs:attribute>
<xs:attribute name="Child" type="xs:string"/>
</ xs: conpl exType>
</ xs: el ement >
<xs: el ement nanme="Subtree">
<xs:conpl exType>
<xs:sequence>
<xs:any/ >
</ xs: sequence>
<xs:attribute name="Operation" use="required">
<xs: si npl eType>
<xs:restriction base="xs:string">
<xs:enuneration val ue="insert"/>
<xs:enuneration val ue="del ete"/>
</ xs:restriction>
</ xs: si mpl eType>
</xs:attribute>
<xs:attribute name="Child" type="xs:string"/>
</ xs: conpl exType>
</ xs: el ement >
<xs: el ement nanme="Root ">
<xs:conpl exType>
<xs:sequence>
<xs:any/ >
</ xs: sequence>
<xs:attribute name="Operation" use="required">
<xs:si nmpl eType>
<xs:restriction base="xs:string">
<xs:enuneration val ue="repl ace"/>
</ xs:restriction>
</ xs: si npl eType>

Copyright & 2001. OpenTravel Alliance www.opentravel .org/

OpenTravel Alliance 2001C Infrastructure Specification Page 74

</xs:attribute>
</ xs: conpl exType>
</ xs: el enent >
</ xs: schema>

5.5 Order of Representation and Application

The XPath notation is used to determine the position in an XML document where operations are
to be applied. As that position is specified via an XPath, it is entirely possible that application of
an operation will invalidate subsequent XPath expressions if care is not taken explicitly in the
order of presentation.

An XML document is inherently a tree, and when considering an XML document, the most
natural order for presentation is a depth-first pre-order traversal (thisisthe way in which an XML
document is represented in XML notation). Unfortunately, that order is the one that is most likely
to invalidate X Paths when applying differencesin order.

Therefore, for purposes of representing differences in an update message, positions and
operations are presented in an order which favors a post-order traversa®. This ensures that
differences may be applied sequentially to a source document to transform it into a target without
invalidating the XPath of any subsequent unprocessed difference.

A brief illustration will help make this point clearer. Assuming the following abstract source
document:

<A>

<C/ >
<D>
<E/ >
</ D>
</ B>
<F>
<G
<H >
</ &
<l >
<J/ >
</l>
</ F>
</ A>

The depth-first pre-order traversal presents elements in the following sequence:
<AS<Co<De><E><F><Go<H><] ><]>

However, a post-order traversal presents elements in the following alternate sequence:
<Co<BE><D><H><G<I><| ><F><A>

When considering tree-traversals in the context of XML, perhaps the easiest way to think of it is
asfollows:

depth-first pre-order traversal presents elements in the order that opening tags occur

post-order traversal presents elements in the order that element closure occurs (i.e. follow the
closing tags)

% 1t should be noted that the fastest known agorithms for tree-to-tree correction operate on a post-order
traversal

Copyright & 2001. OpenTravel Alliance www.opentravel .org/

OpenTravel Alliance 2001C Infrastructure Specification Page 75

An additiona requirement for order is placed on repeating sequences of elements, as follows:

When operation(s) are to be performed on more than one element in a repeating sequence the
<Posi ti on> for those elements in the sequence must be presented from right-to- left, i.e. from
the largest index to the smallest.

By presenting and applying differences using a post-order traversal representation (and reverse
index order for repeating sequences) operations applied to the current position cannot break the
XPath to a subsequent position as later operations are deeper within the tree (closer to the root)
down any given branch.

5.6 Update Examples

Given the difference representation above, the following examples illustrate this technique. These
examples illustrate a chain of updates, showing before and after images at each step. All these
changes are designed to be incremental, that is, the "after" image from the previous update
becomes the "before" image for the next update.

Example 13 - initial "'before’ document image

<Profile>
<Cust omer >
<Per sonNarme NanmeType="Defaul t">
<NanePr ef i x>M . </ NamePr ef i x>
<G venNanme>CGeor ge</ G venNanme>
<M ddI eNanme>A. </ M dd| eName>
<Sur name>Sni t h</ Sur name>
</ Per sonNane>
<Tel ephonel nfo PhoneTech="Voi ce" PhoneUse="Wrk" >
<Tel ephone>
<Ar eaCi t yCode>206</ Ar eaCi t yCode>
<PhoneNunber >813- 8698</ PhoneNunber >
</ Tel ephone>
</ Tel ephonel nf 0>
<Payment For n»

</ Paynent For n»

<Addr ess>
<Street Nmbr POBox="4321-01">1200 Yaki na St </ Street Nnbr >
<Bl dgRoonm>Sui t e 800</ Bl dgRoon»>
<Ci tyName>Seat t| e</ C t yName>
<St at ePr ov Post al Code="98108" >WA</ St at ePr ov>
<Count r yNane>USA</ Count r yName>

</ Addr ess>

</ Cust oner >
</Profile>

Let's begin by making a simple change — we'll update the profile to reflect a change in the
customer’s area code from ‘206" to ‘253'. The smplest way to implement this is to send the
entire profile as a change, but thisis alarge message to send for a simple change of area code (see
the example below):

Example 14 - update of AreaCode using <Root Operation=""replace"/>

<?xm version="1.0" encodi ng="UTF- 8" ?>
<l-- created by 'DiffGen'" using VMIools 0.3 (http://ww.vnguys.confvntools/) -->
<OTA_Updat eRQ xm ns="htt p: // www. opentravel . or g/ OTA"
xm ns: xsi ="http://ww. w3c. or g/ 2001/ XM_Schena- i nst ance"
xsi : schenmalLocati on="http://ww. opentravel . or g/ OTA
OTA_Updat eRQ. xsd"
RegRespVer si on="2">
<Uni quel d Type="Profile" |d="9876543210"
URL="htt p: //ww. vnguys. conl OTAEngi ne" | nstance="1" />

Copyright & 2001. OpenTravel Alliance www.opentravel .org/

OpenTravel Alliance 2001C Infrastructure Specification Page 76

<Posi tion XPath="/Profile">
<Root Operation="repl ace">
<Profile xm ns="">
<Cust omer >
<Per sonNarme NanmeType="Defaul t">
<NanePr ef i x>M . </ NamePr ef i x>
<G venNanme>Ceor ge</ G venName>
<M ddI eNanme>A. </ M dd| eNanme>
<Sur nanme>Sni t h</ Sur name>
</ Per sonNane>
<Tel ephonel nfo PhoneTech="Voi ce" PhoneUse="Wr k" >
<Tel ephone>
<Ar eaCi t yCode>253</ Ar eaCi t yCode>
<PhoneNunber >813- 8698</ PhoneNunber >
</ Tel ephone>
</ Tel ephonel nf 0>
<Paynent For n». . . </ Payment For m>
<Addr essl nf o>
<Addr ess>
<Street Nmbr PO _Box="4321-01">1200 Yaki ma St </ Street Nnbr>
<Bl dgRoonm>Sui t e 800</ Bl dgRoon»>
<Ci tyNanme>Seat t| e</ Ci t yName>
<St at eProv Post al Code="98108" >WA</ St at ePr ov>
<Count r yNane>USA</ Count r yName>
</ Addr ess>
</ Addr essl nf o>
</ Cust oner >
</Profile>
</ Root >
</ Posi tion>
</ OTA_Updat eRQ>

If we use the more succinct representation supported by OTA generic updates this same change
of area code from ‘206’ to ‘253" can be represented by the much more succinct and expressive
message below:

Example 15 - change area code use <Element Operation=""modify"">:

<?xm version="1.0" encodi ng="UTF- 8" ?>
<l-- created by 'DiffGen'" using VMIools 0.3 (http://ww.vnguys.confvntools/) -->
<OTA_Updat eRQ xm ns="htt p: // www. opentravel . or g/ OTA"
xm ns: xsi ="http://ww. w3c. or g/ 2001/ XM_Schena- i nst ance"
xsi : schenmalLocati on="http://ww. opentravel . or g/ OTA OTA_ Updat eRQ. xsd"
RegRespVer si on="2">
<Uni quel d Type="Profile" |d="9876543210"
URL="htt p: //ww. vnguys. conl OTAEngi ne" | nstance="1" />
<Posi tion XPat h="/Profil e/ Custoner/ Tel ephonel nf o/ Tel ephone/ AreaCi t yCode" >
<El enent Operati on="nodi fy" >253</ El enent >
</ Posi tion>
</ OTA_Updat eRQ>

Note that the operation " nodi f y" replaces the PCDATA within the element. In order to delete
the data, the update request is sent with empty content in the element. (A " del et e" operation
deletes the entire element.)

Example 16 - update of RelatedTraveler using <Subtree Operation=""insert"">

<?xm version="1.0" encodi ng="UTF- 8" ?>
<l-- created by 'DiffGen'" using VMIools 0.3 (http://ww.vnguys.confvntools/) -->
<OTA_Updat eRQ xm ns="ht t p: // www. opentravel . or g/ OTA"
xm ns: xsi ="http://ww. w3c. or g/ 2001/ XM_Schena- i nst ance"
xsi : schenmalLocati on="http://ww. opentravel . or g/ OTA OTA_ Updat eRQ. xsd"
RegRespVer si on="2">
<Uni quel d Type="Profile" |d="9876543210"
URL="htt p: //ww. vnguys. conl OTAEngi ne" | nstance="2" />
<Posi tion XPat h="/Profil e/ Customer">

Copyright & 2001. OpenTravel Alliance www.opentravel .org/

OpenTravel Alliance 2001C Infrastructure Specification Page 77

<Subtree Operation="insert" Child="5">
<Rel at edTravel er Rel ati on="Child">
<Per sonNane>
<G venNane>Devi n</ G venNane>
<M ddl eName>R. </ M ddI eNane>
<Sur name>Smi t h</ Sur nane>
</ Per sonNane>
</ Rel at edTr avel er >
</ Subt r ee>
<Subtree Operation="insert" Child="6">
<Rel at edTravel er Rel ati on="Child">
<Per sonNane>
<G venName>Any</ G venNane>
<M ddl eName>E. </ M dd|l eNane>
<Sur name>Smi t h</ Sur nane>
</ Per sonNane>
</ Rel at edTr avel er >
</ Subt r ee>
<Subtree Operation="insert" Child="7">
<Rel at edTravel er Rel ati on="Child">
<Per sonNane>
<G venNane>Al fred</ G venNanme>
<M ddl eNanme>E. </ M dd|l eNane>
<Sur name>Newnan</ Sur nanme>
</ Per sonNane>
</ Rel at edTr avel er >
</ Subt r ee>
</ Posi tion>
</ OTA_Updat eRQ>

Example 17 - document image after <Subtree Operation=""insert"">

<Profile>
<Cust omer >
<Per sonNarme NanmeType="Defaul t">
<NanePr ef i x>M . </ NamePr ef i x>
<G venNanme>CGeor ge</ G venNanme>
<M ddI eNanme>A. </ M dd| eName>
<Sur name>Sni t h</ Sur name>
</ Per sonNane>
<Tel ephonel nfo PhoneTech="Voi ce" PhoneUse="Wr k"
<Tel ephone>
<Ar eaCi t yCode>253</ Ar eaCi t yCode>
<PhoneNunber >813- 8698</ PhoneNunber >
</ Tel ephone>
</ Tel ephonel nf 0>
<Payment For n»

</ Paynent For n»
<Addr ess>
<Street Nmbr POBox="4321-01">1200 Yaki na St </ Street Nnbr >
<Bl dgRoonm>Sui t e 800</ Bl dgRoon»>
<Ci tyNanme>Seat t| e</ C t yName>
<St at eProv Post al Code="98108" >WA</ St at ePr ov>
<Count r yNane>USA</ Count r yName>
</ Addr ess>
<Rel at edTr avel er Rel ati on="Chil d"
<Per sonNane>
<G venNane>Devi n</ G venNane>
<M ddl eName>R. </ M ddI eNane>
<Sur name>Smi t h</ Sur nane>
</ Per sonNane>
</ Rel at edTr avel er >
<Rel at edTr avel er Rel ati on="Chil d"
<Per sonNane>
<G venName>Any</ G venNane>
<M ddl eNanme>E. </ M ddIl eNane>
<Sur name>Smi t h</ Sur nane>
</ Per sonNane>

Copyright & 2001. OpenTravel Alliance www.opentravel .org/

OpenTravel Alliance 2001C Infrastructure Specification Page 78

</ Rel at edTr avel er >
<Rel at edTr avel er Rel ati on="Chil d"
<Per sonNane>
<G venNane>Al fred</ G venNane>
<M ddl eName>E. </ M dd|l eNane>
<Sur name>Newnan</ Sur nanme>
</ Per sonNane>
</ Rel at edTr avel er >
</ Cust oner >
</Profile>

Example 18 - update of document using <Subtree Operation=""delete"'/>

This operation will delete the first and third Related Travelers. (Note the required order of the
operations):

<?xm version="1.0" encodi ng="UTF- 8" ?>
<l-- created by 'DiffGen'" using VMIools 0.3 (http://ww.vnguys.confvntools/) -->
<OTA_Updat eRQ xm ns="ht t p: // www. opentravel . or g/ OTA"
xm ns: xsi ="http://ww. w3c. or g/ 2001/ XM_Schena- i nst ance"
xsi : schenmalLocati on="http://ww. opentravel . or g/ OTA OTA_ Updat eRQ. xsd"
RegRespVer si on="2">
<Uni quel d Type="Profile" |d="9876543210"
URL="htt p: //ww. vnguys. conl OTAEngi ne" | nstance="3" />
<Posi tion XPath="/Profil e/ Custoner/Rel at edTravel er[3] ">
<Subtree Operation="delete" />
</ Posi tion>
<Position XPath="/Profil e/ Custoner/Rel atedTravel er[1] ">
<Subtree Operation="delete" />
</ Posi tion>
</ OTA_Updat eRQ>

Note: Use of the <Del et e> element removes a designated element from the tree. Any children
of the element removed will move up to the grandparent of the element. If the desired result is the
removal of the element and al of its children, the element <Subt r ee> paired with the operation
"del et e" should be used, as in the example above.

Example 19 - Document image after <Subtree Operation=""delete""/>

<Profile>
<Cust omer >
<Per sonNarme NanmeType="Defaul t">
<NanePr ef i x>M . </ NamePr ef i x>
<G venNanme>Ceor ge</ G venNanme>
<M ddI eNanme>A. </ M dd| eNanme>
<Sur name>Sni t h</ Sur name>
</ Per sonNane>
<Tel ephonel nfo PhoneTech="Voi ce" PhoneUse="Wrk" >
<Tel ephone>
<Ar eaCi t yCode>253</ Ar eaCi t yCode>
<PhoneNunber >813- 8698</ PhoneNunber >
</ Tel ephone>
</ Tel ephonel nf 0>
<Payment For n»

</ Paynent For n»
<Addr essl nf o>
<Addr ess>
<Street Nmbr POBox="4321-01">1200 Yaki ma St </ Street Nnbr >
<Bl dgRoonm>Sui t e 800</ Bl dgRoon»>
<Ci tyNanme>Seat t| e</ Ci t yName>
<St at eProv Post al Code="98108" >WA</ St at ePr ov>
<Count r yNane>USA</ Count r yName>
</ Addr ess>
</ Addr essl nf o>
<Rel at edTravel er Relation="Child" >

Copyright & 2001. OpenTravel Alliance www.opentravel .org/

OpenTravel Alliance 2001C Infrastructure Specification Page 79

<Per sonNane>
<G venName>Any</ G venNane>
<M ddl eName>E. </ M dd|l eNane>
<Sur name>Smi t h</ Sur nane>

</ Per sonNane>

</ Rel at edTr avel er >
</ Cust oner >
</Profile>

Example 20 - Update document using <Attribute Operation=""modify""/>
This examples changes the Telephonelnfo PhoneUse attribute.

<?xm version="1.0" encodi ng="UTF- 8" ?>
<l-- created by 'DiffGen'" using VMIools 0.3 (http://ww.vnguys.confvntools/) -->
<OTA_Updat eRQ xm ns="htt p: // www. opentravel . or g/ OTA"
xm ns: xsi ="http://ww. w3c. or g/ 2001/ XM_Schena- i nst ance"
xsi : schenmalLocati on="http://ww. opentravel . org/ OTA OTA Updat eRQ. xsd"
RegRespVer si on="2">
<Uni quel d Type="Profile" |d="9876543210"
URL="htt p: //ww. vnguys. conl OTAEngi ne" | nstance="4" />
<Posi tion XPat h="/Profil e/ Cust oner/ Tel ephonel nf 0" >
<Attribute Name="PhoneUse" Operation="nodify" Val ue="Hone" />
</ Posi tion>
</ OTA_Updat eRQ>

Example 21 - Document image after <Attribute Operation=""modify""/>

<Profile>
<Cust omer >
<Per sonNarme NanmeType="Defaul t">
<NanePr ef i x>M . </ NamePr ef i x>
<G venNanme>CGeor ge</ G venNanme>
<M ddI eNanme>A. </ M dd| eNanme>
<Sur name>Sni t h</ Sur name>
</ Per sonNane>
<Tel ephonel nfo PhoneTech="Voi ce" PhoneUse="Hone" >
<Tel ephone>
<Ar eaCi t yCode>253</ Ar eaCi t yCode>
<PhoneNunber >813- 8698</ PhoneNunber >
</ Tel ephone>
</ Tel ephonel nf 0>
<Payment For n»

</ Paynent For n»
<Addr essl nf o>
<Addr ess>
<Street Nmbr PO _Box="4321-01">1200 Yaki ma St </ Street Nnbr>
<Bl dgRoonm>Sui t e 800</ Bl dgRoon»>
<Ci tyNanme>Seat t| e</ C t yName>
<St at eProv Post al Code="98108" >WA</ St at ePr ov>
<Count r yNane>USA</ Count r yName>
</ Addr ess>
</ Addr essl nf o>
<Rel at edTravel er Rel ati on="Child">
<Per sonNane>
<G venName>Any</ G venNane>
<M ddl eName>E. </ M dd|l eNane>
<Sur name>Smi t h</ Sur nane>
</ Per sonNane>
</ Rel at edTr avel er >
</ Cust oner >
</Profile>

Example 22 - Update document using <Attribute Operation=""delete""/>

Copyright & 2001. OpenTravel Alliance www.opentravel .org/

OpenTravel Alliance 2001C Infrastructure Specification Page 80

This operation will delete the PO_Box attribute of StreetNmbr.

<?xm version="1.0" encodi ng="UTF- 8" ?>
<l-- created by 'DiffGen'" using VMIools 0.3 (http://ww.vnguys.confvntools/) -->
<OTA_Updat eRQ xm ns="htt p: // www. opentravel . or g/ OTA"
xm ns: xsi ="http://ww. w3c. or g/ 2001/ XM_Schena- i nst ance"
xsi : schenmalLocati on="http://ww. opentravel . org/ OTA OTA Updat eRQ. xsd"
RegRespVer si on="2">
<Uni quel d Type="Profile" |d="9876543210"
URL="htt p: //ww. vnguys. conl OTAEngi ne" | nstance="5" />
<Posi tion XPat h="/Profil e/ Customner/Addressl| nf o/ Address/ St reet Nbr" >
<Attribute Name="PO Box" Operation="delete" />
</ Posi tion>
</ OTA_Updat eRQ>

Example 23 - Document image after <Attribute Operation=""delete""/>

<Profile>
<Cust omer >
<Per sonNarme NaneType="Defaul t">
<NanePr ef i x>M . </ NamePr ef i x>
<G venNanme>CGeor ge</ G venNanme>
<M ddI eNanme>A. </ M dd| eName>
<Sur nanme>Sni t h</ Sur name>
</ Per sonNane>
<Tel ephonel nfo PhoneTech="Voi ce" PhoneUse="Hone" >
<Tel ephone>
<Ar eaCi t yCode>253</ Ar eaCi t yCode>
<PhoneNunber >813- 8698</ PhoneNunber >
</ Tel ephone>
</ Tel ephonel nf 0>
<Payment For n»

</ Paynent For n»
<Addr essl nf o>
<Addr ess>
<St reet Nmbr >1200 Yaki na St </ Street Nnbr >
<Bl dgRoonm>Sui t e 800</ Bl dgRoon»>
<Ci tyNanme>Seat t| e</ C t yName>
<St at eProv Post al Code="98108" >WA</ St at ePr ov>
<Count r yNane>USA</ Count r yName>
</ Addr ess>
</ Addr essl nf o>
<Rel at edTravel er Rel ati on="Child">
<Per sonNane>
<G venName>Any</ G venNane>
<M ddl eName>E. </ M dd|l eNane>
<Sur name>Smi t h</ Sur nane>
</ Per sonNane>
</ Rel at edTr avel er >
</ Cust oner >
</Profile>

Example 24 - Compound update using multiple operations

These compound operations will insert the Gender attribute on Customer, delete the
MiddleName, and insert NamePrefix on the Related Traveler:

<?xm version="1.0" encodi ng="UTF- 8" ?>
<l-- created by 'DiffGen'" using VMIools 0.3 (http://ww.vnguys.confvntools/) -->
<OTA_Updat eRQ xm ns="htt p: // www. opentravel . or g/ OTA"
xm ns: xsi ="http://ww. w3c. or g/ 2001/ XM_Schena- i nst ance"
xsi : schenmalLocati on="http://ww. opentravel . org/ OTA OTA Updat eRQ. xsd"
RegRespVer si on="2">
<Uni quel d Type="Profile" |d="9876543210"
URL="htt p: //ww. vnguys. conl OTAEngi ne" | nstance="6" />
<Posi tion XPat h="/Profil e/ Customner/Rel at edTravel er/ Per sonNanme" >
<El enent Operation="insert" Child="1">

Copyright & 2001. OpenTravel Alliance www.opentravel .org/

OpenTravel Alliance 2001C Infrastructure Specification Page 81

<NamePrefi x xm ns="">Ms. </ NamePr ef i x>

</ El enent >
</ Posi tion>
<Posi ti on XPat h="/Profil e/ Cust omer/ Per sonNane/ M ddl eNane" >

<El enent Operati on="del ete" />
</ Posi tion>
<Posi ti on XPat h="/Profil e/ Customer">

<Attribute Name="Gender" Operation="insert" Value="Male" />
</ Posi tion>

</ OTA_Updat eRQ>

Example 25 - document image after compound update

<Profile>
<Cust omer Gender ="Mal e" >
<Per sonNarme NanmeType="Defaul t">
<NanePr ef i x>M . </ NamePr ef i x>
<G venNanme>CGeor ge</ G venNanme>
<Sur nanme>Sni t h</ Sur name>
</ Per sonNane>
<Tel ephonel nfo PhoneUse="Hone" >
<Tel ephone PhoneTech="\Voi ce" >
<Ar eaCi t yCode>253</ Ar eaCi t yCode>
<PhoneNunber >813- 8698</ PhoneNunber >
</ Tel ephone>
</ Tel ephonel nf 0>
<Payment For n»

</ Paynent For n»
<Addr ess>
<St reet Nmbr >1200 Yaki na St </ Street Nnbr >
<Bl dgRoonm>Sui t e 800</ Bl dgRoon»>
<Ci tyNanme>Seat t| e</ C t yName>
<St at ePr ov Post al Code="98108" >WA</ St at ePr ov>
<Count r yNane>USA</ Count r yName>
</ Addr ess>
<Rel at edTravel er Rel ati on="Child">
<Per sonNane>
<NamePr ef i x>Ms. </ NamePr ef i x>
<G venName>Any</ G venNane>
<M ddl eNanme>E. </ M ddIl eNane>
<Sur name>Smi t h</ Sur nane>
</ Per sonNane>
</ Rel at edTr avel er >
</ Cust oner >
</Profile>

5.7 Validation of Update Messages

The update request message is a valid message within its own structure, but since it identifies
only a portion of the content of an XML tree, it cannot be validated in the context of the business
schema. Validation at the level of the business schema must occur after the update has been
completed. Implementors may wish to validate the image of the document before changes have
been applied and again after the changes have been applied in order to ascertain that the desired
result has been obtained and is valid within the business context.

5.8 The Simple "Replace" verb

The Replace infrastructure verb defines an operation that updates an existing record by replacing
the existing information with a complete overlay image of the document as it would appear after
changes are applied. The Replace verb does not require a Read request to obtain an image of the

Copyright & 2001. OpenTravel Alliance www.opentravel .org/

OpenTravel Alliance 2001C Infrastructure Specification Page 82

current record prior to sending the message to replace it with the information being transmitted,
although this may be desirable from the standpoint of good business practice.

The "replace” verb allows implementors greater flexibility in choosing how they wish to perform
updates of information, since difference representation may be bypassed and a smple
replacement image of the document object to be updated is sent. This reduces the complexity of
handling updates for some implementations, but at the expense of size of the messages.

Example 26 - Document update using <Root Operation=""replace'">

<OTA_Updat eRQ ReqRespVer si on="2">
<Uni queld URL="http://vnmguys. com OTAEngi ne/"
Type="Profile"
| d="12345678"
I nstance="7"/>
<Position XPath="/Profile">
<Root Operation="repl ace">
<Profile>

<l-- include entired updated 'after’ inage here -->

</Profile>
</ Root >
</ Posi tion>
</ OTA_Updat eRQ>

5.9 OTA UpdateRS — Responding to a generic OTA UpdateRQ
message

An OTA update response follows the design pattern for OTA responses and is formally defined
by the following schema fragment:

Schema 8 - <OTA_UpdateRS>:

<?xm version="1.0" encodi ng="UTF- 8" ?>
<l-- Created and edited with "vi' -->
<xs:schema xm ns: xs="http://ww. w3. org/ 2001/ XM_Schenma"
xm ns="http://ww. opentravel . or g/ OTA"
t ar get Nanespace="htt p: // www. opentravel . or g/ OTA"
el enent For nDef aul t =" qual i fi ed">

<xs:annot ati on>
<xs:docunentation xm :|lang="en">
OTA v2001C Specification - Generic OTA Updat eRS nmessage definition
Copyright (C) 2001 Open Travel Alliance. Al rights reserved.
The message id of the nessage being responded to is in the ebXM. header.
</ xs: docunent ati on>
</ xs: annot ati on>
<xs:include schemalLocati on="OTA v2ent.xsd"/>

<xs: el ement nanme="OTA Updat eRS">
<xs:conpl exType>
<xs: choi ce>
<xs:sequence>
<xs: el ement ref="Success"/>
<xs: el ement ref="Warnings" m nCccurs="0"/>
<xs: el ement ref="Uniqueld"/>
</ xs: sequence>
<xs:element ref="Errors"/>
</ xs: choi ce>
<xs:attributeG oup ref="0TA Payl oadStdAttributes"/>
</ xs: conpl exType>
</ xs: el ement >
</ xs: schema>

Copyright & 2001. OpenTravel Alliance www.opentravel .org/

OpenTravel Alliance 2001C Infrastructure Specification Page 83

6 Service and Action Mappings

This section defines al the Action values which are permitted within each particular Service. In
all cases there are RECOMMENDED ‘class of delivery’ semantics (see section 4.3 for definition
of these).

Each defined OTA message is assigned its own Action within a specific Service. The generic
messages are assigned as a permissible Action within each Service for which they are applicable.
Working groups are strongly encouraged to make use of the generic messages wherever possible.

Within OTA Services many Actions are part of request/response pairs. When this is the case the
corresponding expected response or type of request is indicated.

The criteriafor grouping related Actions into the same Service are as follows:

All actions within a service are logically related and are likely to be implemented by the
same application system

Generic messages are defined as actions on each service to which they apply

Request/response pairs always belong to the same service, though in some circumstances
they may belong to more than one service (e.g. generic messages such as OTA_ReadRQ).

6.1 The Session Service
The following table defines the actions available within this service:

CreateRQ Type-A CreateRS -

CreateRS Type-A - CreateRQ
CloseRQ Type-A CloseRS -

CloseRS Type-A - CloseRQ
ErrorRS Type-A/Type-B - Any OTA RQ

During Session creation parties MUST establish which services and actions are supported via a
<Ser vi cesSupport ed> element on the <Sessi onCont r ol Response> message. This
process is outlined in the following section.

6.2 The Profile Service
The following table defines the actions available within this service:

OTA_CreateProfileRQ Type-A OTA_CreateProfileRS -
OTA_CreateProfileRS Type-A - OTA_CreateProfileRQ
OTA _ReadRQ Type-A OTA_ReadProfileRS -
OTA_ReadProfileRS Type-A - OTA_ReadRQ
OTA_UpdateRQ Type-A OTA_UpdateRS -

Copyright & 2001. OpenTravel Alliance www.opentravel .org/

OpenTravel Alliance 2001C Infrastructure Specification Page 84
OTA_UpdateRS TypeA - OTA_UpdateRQ
OTA_DeleteRQ Type-A OTA_DeleteRS -

OTA DeleteRS Type-A - OTA_DeeteRQ

6.3 The VehicleBooking Service
The following table defines the actions available within this service:

OTA_VehAvailRateRQ Type-A

OTA_VehAvalRateRS -

OTA_VehAvailRateRS Type-A

- OTA_VehAvailRaeRQ

OTA_VehResRQ Type-A OTA_VehResRS -
OTA_VehResRS Type-A - OTA_VehResRQ
OTA _CancelRQ Type-A OTA_CancelRS

OTA_CancelRS Type-A - OTA_CancelRQ

6.4 The AirBooking Service
The following table defines the actions available within this service:

OTA_SpecificFlightAvailRQ TypeA OTA_SpecificFlightAvailRS -
OTA_SpecificFlightAvailRS Type-A - OTA_SpecificFlightAvallRQ
OTA _SpecificAirlineAvailRQ Type-A OTA_SpecificAirlineAvalRS -
OTA_SpecificAirlineAvailRS Type-A - OTA_SpecificAirlineAvailRQ
OTA_MultipleAirlineAvailRQ Type-A OTA_MultipleAirlineAvallRS -
OTA_MultipleAirlineAvailRS Type-A - OTA_MultipleAirlineAvalRS
OTA_AirBookRQ Type-A OTA_AirBookRS -

OTA_AirBookRS Type-A - OTA_AirBookRQ
OTA_CancelRQ Type-A OTA_CancelRS

OTA_CancelRS Type-A - OTA_CancelRQ

6.5 The Travellnsurance Service
The following table defines the actions available within this service:

OTA_InsuranceQuoteRQ

Type-A

OTA_InsuranceQuoteRS

OTA _InsuranceQuoteRS

Type-A

OTA_InsuranceQuoteRQ

Copyright & 2001. OpenTravel Alliance

www.opentravel.org/

OpenTravel Alliance 2001C Infrastructure Specification Page 85

OTA_InsuranceBookRQ
OTA _InsuranceBookRS

Type-A OTA_lInsuranceBookRS -
OTA_InsuranceBookRQ

Type-A -

6.6 The HotelBooking Service
The following table defines the actions available within this service:

OTA HotelSearchRQ Type-A OTA_HotelSearchRS -
OTA_HotelSearchRS Type-A - OTA_Hotel SearchRQ
OTA_HotelAvailRQ Type-A OTA_HotelAvalRS -
OTA_HotelAvailRS TypeA - OTA_HotelAvalRQ
OTA HotelResRQ Type-A OTA_HotelResRS -

OTA_HotelResRS Type-A - OTA_HotelAvailRQ
OTA_CancelRQ Type-A OTA_CancelRS

OTA_CancelRS Type-A - OTA_CancelRQ

6.7 The HotelResNotification Service®
The following table defines the actions available within this service:

OTA_HotelResNotifRQ Type-A OTA_HotelResNotifRS -
OTA_HotelResNotifRS Type-A - OTA_HotelResNotifRQ
OTA_GetMsgRQ Type-A OTA_GetMsgRS -

OTA_GetMsgRS Type-A - OTA_GetMsgRQ
OTA_GetMsgInfoRQ Type-A OTA_GetMsgIinfoRS -

OTA_GetMsgInfoRS Type-A - OTA_GetMsgInfoRQ

6.8 The HotelPropertylnformation Service®
The following table defines the actions available within this service:

OTA_CommNotifRQ

Type-A

OTA_CommNotifRS

% Some of the messages on this service are ideal candidates for a single type-B notification message rather

than request/response pair.

%2 some of the messages on this service are ideal candidates for a single type-B notification message rather

than request/response pairs.

Copyright & 2001. OpenTravel Alliance

www.opentravel.org/

OpenTravel Alliance 2001C Infrastructure Specification

Page 86

OTA_CommNotifRS Type-A - OTA_CommNotifRQ
OTA_StayInfoNotifRQ Type-A OTA_StaylnfoNotifRS -
OTA_StayInfoNotifRS Type-A - OTA_StayInfoNotifRQ
OTA _StatisticsNotifRQ Type-A OTA_StatisticsNotifRS -
OTA_StatisticsNotifRS Type-A - OTA_StatisticsNotifRQ
OTA _StatisticsRQ Type-A OTA_StatisticsRS -

OTA_StatisticsRS Type-A - OTA_StatisticsRQ
OTA_GetMsgRQ Type-A OTA_GetMsgRS -

OTA_GetMsgRS Type-A - OTA_GetMsgRQ
OTA_GetMsgInfoRQ Type-A OTA_GetMsgIinfoRS -
OTA_GetMsgInfoRS Type-A - OTA_GetMsgInfoRQ

6.9 The MeetingProfile Service
The following table defines the actions available within this service:

OTA_CreateMeetingProfileRQ Type-A OTA_CreateMeetingProfileRS -

OTA_CreateMeetingProfileRS Type-A

OTA_CreateMesetingProfileRQ

6.10 The PackageBooking Service
The following table defines the actions available within this service:

OTA_PkgAvailRQ

Type-A

OTA_PkgAvailRS

6.11The GolfTeeTimes Service

OTA_PkgAvailRS TypeA - OTA_PkgAvalRQ
OTA_PkgBookRQ Type-A OTA_PkgBookRS -
OTA_PkgBookRS Type-A - OTA_PkgBookRQ

The following table defines the actions available within this service:

OTA_CourseSearchRQ

Type-A OTA_CourseSearchRS -

OTA _CourseSearchRS

Type-A -

OTA_CourseSearchRQ

OTA_CourseAvailRQ

Type-A OTA_CourseAvalRS -

OTA _CourseAvailRS

Type-A -

OTA_CourseAvalRQ

Copyright & 2001. OpenTravel Alliance

www.opentravel.org/

OpenTravel Alliance 2001C Infrastructure Specification Page 87

OTA_CourseResRQ Type-A OTA_CourseResRS -

OTA_CourseResRS Type-A - OTA_CourseResRQ

6.12 Determining Services Supported

A CreateRS action on the Session service MUST be accompanied by a <ServicesSupported>
within a <SessionControlResponse> document located in the payload container of the message.
Upon receipt of Session CreateRQ request an implementation responds with a CreateRS action
message with a datus attribute status="Accepted”. Here is an example of a
<SessionControlResponse> with a <ServicesSupported> element:

Example 27 - sample <SessionControlResponse> payload:

<?xm version="1.0" encodi ng="UTF- 8" ?>

<Sessi onCont r ol Response xm ns="htt p://ww. opent ravel . or g/ OTA"
xm ns: xsi ="http://ww. w3c. or g/ 2001/ XM_Schena- i nst ance"
xsi : schenmalLocati on="http://ww. opentravel . org/ OTA Sessi onContr ol Response. xsd"
Ver si on="1" stat us="Approved” >
<OTA_Ver si on>2001C<OTA_Ver si on>
<Conver sati onl d>20011027081907- 862@ost . i maconpany. conk/ Conver sat i onl d>

<Ser vi cesSupport ed>

<Servi ce Type="OTA" Name="Hot el Booki ng" >
<Acti on Nane="OTA Hot el Sear chRQ' Version="2"/>
<Acti on Nanme="OTA Hot el Avai | RQ' Version="2"/>
<Acti on Nane="OTA Hot el ResRQ' Version="2">

<Ext ensi on Name="VMst ayAneni ti es" Version="1" Required="no" />

</ Acti on>

</ Servi ce>

<Servi ce Type="OTA" Nanme="Profile">
<Action Nane="OTA CreateProfil eRQ" Version="2">
<Ext ensi on Name="Del t aSkynmi | es" Versi on="1" Required="no" />
</ Action>
<Action Nane="OTA _ReadRQ' Version="2"/>
<Acti on Nane="OTA Updat eRQ' Version="2"/>
</ Servi ce>

<Servi ce Type="OTA" Nanme="Session">
<Action Nanme="CreateRQ' Version="1" />
<Action Nanme="C oseRQ' Version="1" />
</ Servi ce>
</ Servi cesSupport ed>
</ Sessi onCont r ol Response>

In this example, an implementation supports two services (HotelBooking and Profile) in addition
to the Session service itsalf.

6.12.1 The <ServicesSupported> element
The ServicesSupported element has the following attributes
Version : The version of this message. Currently avalue of 1.

The ServicesSupported element MUST contain a sequence of at least one Service element. N.B.
Services and Actions included in a ServicesSupported message are always from the perspective of
the system sending the message i.e. the message formally defines which services the
implementation provides and which actions upon each service it implements and will accept

Copyright & 2001. OpenTravel Alliance www.opentravel .org/

OpenTravel Alliance 2001C Infrastructure Specification Page 88

messages for. An implementation specifies the request actions it will accept, but does not need to
specify the response actions it will generate (these are implied based upon the Service definition
tables earlier in this section).

6.12.2 The <Service> element
The Service element has the following required attributes:

Type: A value of “OTA”. Thisis the value that MUST be used in the type attribute of the
<eb:Service> element on the <eb:MessageHeader>

Name: The service name. This is the value which MUST be used as the content of the
<eb:Service> element on the <eb:MessageHeader>

The Service element MUST contain a sequence of at |east one Action element.

6.12.3 The <Action> element
The Action element has the following required attributes:

Name: The action name. This is the value that MUST be used as the content of the

<eb:Action> element on the <eb:MessageHeader>. This name also usually corresponds
directly to one of the defined OTA message types (except in the case of the Session
service)

Version: The version of the OTA message supported. Implementations that support more
than one version of a given message can indicate this by including additional <Action>
elements with the same Name but different values for Version

The Action element MAY contain a sequence of Extension elements.

6.12.4 The <Extension> element

An Extension indicates a hilaterally agreed upon message extension between two trading
partners, using the <TPA_Ext ensi on> mechanism. The Extension element has the following
attributes:

Name: The name of an extension (required)
Version: the version of that extension (required)
Required: ayes/no value indicating whether the extension is mandatory (defaultsto ‘no’)

6.12.5 The ServicesSupported Schema
The following schema fragment formally defines the <Ser vi cesSuppor t ed> element:

Schema 9- ServicesSupported.xsd

<?xm version="1.0" encodi ng="UTF- 8" ?>
<l-- Created and edited with 'vi' -->

<xs:schema xm ns: xsd="http://ww. w3. or g/ 2001/ XM_Schema"
xm ns="http://ww. opentravel . or g/ OTA”
t ar get Nanespace="htt p: // www. opentravel . or g/ OTA"
el enent For nDef aul t =" qual i fi ed">

<xs: annot ati on>

Copyright & 2001. OpenTravel Alliance www.opentravel .org/

OpenTravel Alliance 2001C Infrastructure Specification Page 89

<xs:docunentation xm :|lang="en">
OTA v2001C Specification - ServicesSupported nmessage definition
Copyright (C) 2001 Open Travel Alliance. Al rights reserved
</ xs: docunent ati on>
</ xs: annot ati on>

<xs: si npl eType nane="versi onNunber" >
<xs:annotati on>
<xs:docunentation xm :|lang="en">
Al'l OTA version nunbers are unsigned integers in the range 1..9999
Ver si on nunbers should begin with the value '1'" and be increnented
each time a nessage is revised
</ xs: docunent ati on>
</ xs: annot ati on>

<xs:restriction base="xs:unsi gnedShort">
<xs: m nl ncl usi ve val ue="1"/>
<xs: max| ncl usi ve val ue="9999"/>
</ xs:restriction>
</ xs: si mpl eType>

<xs: el ement nanme="Servi cesSupported">
<xs:annot ati on>
<xs:docunentation xm :lang="en">
Generated and sent during OTA session negotiation to indicate the services
a given inplenmentati on supports
</ xs: docunent ati on>
</ xs: annot ati on>

<xs:conpl exType>
<xs:sequence>
<xs: el ement ref="Service" mnCccurs="1" maxCccurs="unbounded" />
</ xs: sequence>
<xs:attribute nanme="Version" type="versi onNunber" />
</ xs: conpl exType>
</ xs: el ement >

<xs: el ement name="Service">
<xs:annot ati on>
<xs:docunentation xm :|lang="en">
I ndi cates a defined OTA Service which this inplementation supports
providi ng one or nore of the standard actions defined on that service
</ xs: docunent ati on>
</ xs: annot ati on>

<xs:conpl exType>
<xs:sequence>
<xs:element ref="Action" mnCccurs="1" maxCccurs="unbounded" />
</ xs: sequence>
<xs:attribute nane="Type" use="required">
<xs: si npl eType>
<xs:restriction base="xs:string">
<xs:enuneration val ue="COTA"/ >
</xs:restriction>
</ xs: si nmpl eType>
</xs:attribute>
<xs:attribute name="Name" type="xs:string" use="required" />
</ xs: conpl exType>
</ xs: el ement >

<xs: el ement name="Action">
<xs:annot ati on>
<xs:docunentation xm :|lang="en">
I ndi cates an Action upon a defined OTA Service which this inplenmentation
supports. For npost OTA Services the Action nanme is equivalent to the action
verb and root tag of the primary payl oad docunent.
</ xs: docunent ati on>
</ xs: annot ati on>

<xs:conpl exType>
<xs:sequence>

Copyright & 2001. OpenTravel Alliance www.opentravel .org/

OpenTravel Alliance 2001C Infrastructure Specification Page 90

<xs: el ement ref="Extension" mnCccurs="0" maxCccurs="unbounded" />
</ xs: sequence>
<xs:attribute name="Name" type="xs:string" use="required" />
<xs:attribute nanme="Version" type="versi onNunber" use="required" />
</ xs: conpl exType>
</ xs: el ement >

<xs: el ement nanme="Ext ensi on">
<xs:annot ati on>
<xs:docunentation xm :lang="en">
I ndi cates an extension point within a standard OTA action that this
i mpl enent ati on under st ands.
</ xs: document at i on>
</ xs: annot ati on>

<xs:conpl exType>
<xs:attribute name="Name" type="xs:string" use="required" />
<xs:attribute nanme="Version" type="versi onNunber" use="required" />
<xs:attribute nanme="Required" default="no">
<xs: si npl eType>
<xs:restriction base="xs:string">
<xs:enuneration val ue="yes"/>
<xs:enuneration val ue="no"/>
</xs:restriction>
</ xs: si mpl eType>
</xs:attribute>
</ xs: conpl exType>
</ xs: el ement >

</ xs: schema>

6.13 Sample Session Message Flow

The example below shows the messages exchanged during a sample session, including session
initiation and termination.

Example 28 - sample session

Conment s: System A System B
Ainitiates SSL connection with B | HTTP POST wi th Aut hori zation |
Cont ai ni ng User nane/ password data | |
Wil e creating a new session | Session:: Creat eRQ |
Ainitiates a new session with B R R T >|

...B accepts the session | < mm e m e o |

I I
| AirBooking::OTA MiltiAirAvail RQ |
A checks air availability R R T >|

...B responds with availability RS |

A makes an air booking request R R T >|

...B responds | < mm e m e |

A makes a different avail. request R R T >|

...B responds | < mmm i m e |

Ainitiates cancellation of a booking [--------------mmmmmmmm >

...B confirms cancellation] @ccccccccscnomsccacencnomnosasensas |

Copyright & 2001. OpenTravel Alliance www.opentravel .org/

OpenTravel Alliance 2001C Infrastructure Specification

| AirBooking:: OTA Updat eRQ
A nodifies details on a booking R R T >|

...B confirms nodification] @ ccocccccscnomscsacencnonnosaoensas |

nurer ous ot her exchanges occur

A begi ns session term nation R R T >|

...B confirms session term nation RS |

Copyright & 2001. OpenTravel Alliance

Page 91

www.opentravel .org/

OpenTravel Alliance 2001C Infrastructure Specification Page 92

7 Summary of Infrastructure Changes

This section is informative and provides a description of the changes in infrastructure from
previousy published OTA standards.

Movement from published DTDs to published XML schemas for specification of message
syntax and the underlying reference model

A mapping to ebXML 1.0 Transport, Routing and Packaging as a RECOMMENDED
infrastructure substrate for OTA implementations

Elimination of the previousdy mandatory <Control > payload in favor of equivaent
capabilities provided by underlying infrastructure

Definition of the Service/Action concept and mapping of each defined OTA message as an
<Act i on>on &t least one <Ser vi ce>

Concrete definition of the notion of OTA sessions and the definition of a Session
<Ser vi ce> which controls session setup and termination

Elimination of the previous non-versoned VersionDiscovery mechanism in favor of
<Ser vi cesSuppor t ed> negotiation during session establishment

Elimination of the <Sendby> semantics allowed for in the previous <Cont r ol > section.
OTA STRONGLY RECOMMENDS all message exchanges occur within the context of a
valid session

Support for <Repl yTo> <CCTo> and the Or i gBodyReq attribute has been dropped from
this specification. These elements, or a mechanism providing similar functionality will be
considered during a future specification when a valid use-case dictates (this kind of
functionality may be provided by a publish-subscribe messaging model)

Copyright & 2001. OpenTravel Alliance www.opentravel .org/

OpenTravel Alliance 2001C Infrastructure Specification Page 93

8 Appendix - Utilizing ebXML v2.0 in OTA Solutions®

The recent release of ebXML TR&P v2.0 offers several additional advantages when used to
support the exchange of OTA-compliant documents. The following sections will describe how
this updated specification may best be mapped to OTA.

What did / did not change from ebXML V1.0 to ebXML V2.0:

A. The usage of MIME is unchanged since ebXML1.0 relied on that specification to define the
packaging and version 2.0 added nothing but clarification to the existing documentation. No
impact for OTA.

B. The Manifest payload remains unchanged except for the obvious update to the eb:version
attribute value, which is now "2.0" for al top-level ebXML SOAP extension element, whereas
this value had been "1.0". No impact for OTA.

C. The QualityOfServicelnfo element has been eliminated and its constituent aspects have been
separated out. This has the most significant (positive) impact on the existing OTA specification.

D. The Viaelement: has been eliminated and replaced with a SyncReply element . No impact for
OTA.

The Impact to the OTA 2001C Specification:

The impact is minimal, but quite favorable. With the replacement of the QualityOfServicelnfo
element by a set of "reliable Message Parameters’, ebXML V2.0 better addresses the needs of the
OTA infrastructure than its precdecessor. Specifically, until this point, OTA TypeA messages
were forced to use deliverySemantics="BestEffort” and there was no futher QualityOfService
support available. Now by specifying:

DuplicateElimination
be set for al such messages, the receiving OTA process no longer has to cache al received

MessagelDs to perform such checking on its own, as it will be automatically done by the
Mesasge Service Handler.

When sending OTA TypeB messages (guaranteed ordered once-only delivery), an OTA-
compliant application would need to ensure that both:

DuplicateElimination

ACKRequested
parameters were specificed. Additional Message Parameters controlling retry timeout values and
message persistence may aso be made available through the ebXML TR&P provider. These may

now optionally be used to tailor an OTA session to the idiosyncrasies of the physical connection
over which it is established.

% The OpenTravel Alliance will do a more comprehensive revision to map to the most current ebXML MS
version in afuture specification.

Copyright & 2001. OpenTravel Alliance www.opentravel .org/

