
Hewlett-Packard webMethods, Inc.
3000 Hanover Street 3930 Pender Drive
Palo Alto, CA 94304-1185 Fairfax, VA 22030
USA USA
650.857.1501 703.460.2500
http://www.hp.com http://www.webmethods.com

Open Management Interface
Specification

VERSION 1.0
Revision 1 OASIS

Co-Authors

webMethods HP
Geoff Bullen Art Harkin

Ash Nangia Victor Martin

Doug Stein Homayoun Pourheidari

Mona He Fu-Tai Shih

Prasad Yendluri

Steve Jankowski

®

The Business Integration Company

Copyright ©2001 Hewlett-Packard Company and webMethods, Inc. All rights reserved.

Permission is granted to copy and distribute this publication provided that it is reproduced in its entirety without
modification and includes the above copyright notice and this permission notice.

No licenses, express or implied, are granted with respect to any of the technology described in this publication. Hewlett-
Packard Company and webMethods, Inc. retain all their intellectual property rights described in this publication.

Even though Hewlett-Packard and webMethods have reviewed this publication, HEWLETT-PACKARD AND
WEBMETHODS MAKE NO WARRANTY OR REPRESENTATION, EITHER EXPRESS OR IMPLIED, WITH RESPECT TO
THIS PUBLICATION, ITS QUALITY, ACCURACY, NONINFRINGMENT, MERCHANTABILITY, OR FITNESS FOR A
PARTICULAR PURPOSE. AS A RESULT, THIS PUBLICATION IS PROVIDED “AS IS” AND THE READER ASSUMES
THE RISK AS TO ITS QUALITY, ACCURACY, OR SUITABILITY FOR ANY PARTICULAR PURPOSE.

IN NO EVENT WILL HEWLETT-PACKARD OR WEBMETHODS BE LIABLE FOR DIRECT, INDIRECT, SPECIAL,
INCIDENTAL, OR CONSEQUENTIAL DAMAGES RESULTING FROM ANY DEFECT OR INACCURACY IN THIS
PUBLICATION, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

This publication is provided with RESTRICED RIGHTS. Use, duplication, or disclosure by the Government are subject to
restrictions set forth in DFARS 252.277-7013 or 48 CFR 52.227-19 as applicable.

The HP logo is a trademark of Hewlett-Packard Company “hp” is a registered trademark of Hewlett-Packard Company.
The webMethods logo is a trademark of webMethods, Inc. “webMethods” is a registered trademark of webMethods, Inc.
All other marks are the property of their respective owners.

 Contents
Contents

 Contents . 3

Section 1 Preface . 7
1.1 About the OMI Specification . 7
1.2 Disclaimer . 8
1.3 Revision History . 12
1.4 Terminology . 12
1.5 References . 13

Section 2 Overview . 15
2.1 Role of OMI . 15

2.1.1 SMV Console . 15
2.1.2 SMV Services . 15
2.1.3 Open Management Interface . 16
2.1.4 OMI Implementation . 16
2.1.5 Integration Platform . 16

2.2 Basic Architecture . 16
2.3 OMI Components . 17

Section 3 Managed Objects . 19
3.1 OMI Managed Object . 19
3.2 OMI Interface . 19

3.2.1 Interface Name . 19
3.2.2 Attributes . 20
3.2.3 Metrics . 21
3.2.4 Operations . 23
3.2.5 Notifications . 23
3.2.6 Interface Types . 24
3.2.7 Standard Interfaces . 24
3.2.8 Vendor Interfaces . 25

3.3 Object Names . 26
3.4 Managed Object Implementation . 26

Section 4 Notifications . 27
4.1 Notification Type . 28
4.2 Severity . 28
4.3 Messages . 28
4.4 Originating Object . 28
4.5 Notification Detail . 29
Open Management Interface Specification Version 1.0, Revision 1 OASIS 3

4.6 Resource Tags . 29

Section 5 Management Model . 31
5.1 OMI Object Relationships . 31

5.1.1 Managed Object Containment Tree . 31
5.1.2 Business Process Relations . 33
5.1.3 Domain Relations . 34
5.1.4 Cluster Relations . 34
5.1.5 Host Relations . 35
5.1.6 OMI Server Relations . 35
5.1.7 Packaged Application Relations . 35
5.1.8 Service Relationships . 36

Section 6 OMI Server . 37
6.1 OMI API . 37
6.2 Managed Objects . 37

6.2.1 Object Names . 37
6.2.2 Root Managed Object . 39
6.2.3 Folders . 39
6.2.4 OMI Server Managed Object . 39
6.2.5 Discovery Managed Objects . 40

6.3 Management Model . 40
6.4 Notifications . 40
6.5 Security . 40

6.5.1 Access Control . 40
6.5.2 Authentication . 40
6.5.3 Encryption . 41

6.6 Internationalization . 41

Section 7 OMI Interface Definitions . 43
7.1 OMI Interface Hierarchy . 43
7.2 omi.BaseObject . 44
7.3 omi.ManagedObject . 45
7.4 omi.PhysicalResource . 47
7.5 omi.SystemResource . 48
7.6 omi.SystemProcess . 50
7.7 omi.PlatformServer . 51
7.8 omi.OmiServer . 52
7.9 omi.Adapter . 53
7.10 omi.LogicalResource . 54
7.11 omi.BusinessProcess . 55
7.12 omi.BusinessProcessStep . 57
4 Open Management Interface Specification Version 1.0, Revision 1 OASIS

 Contents
7.13 omi.Service . 58
7.14 omi.WebService . 59
7.15 omi.Domain . 60
7.16 omi.Cluster . 61
7.17 omi.Folder . 62
7.18 omi.RootManagedObject . 63
7.19 omi.ExternalObject . 65
7.20 omi.Host . 66
7.21 omi.PackagedApplication . 67
7.22 omi.Discovery . 68
7.23 omi.DiscoverySearch . 70
7.24 omi.DiscoveryMonitor . 72
7.25 omi.EnabledResource . 73
7.26 omi.ProductResource . 74

Section 8 API Overview . 77
8.1 API Model . 77
8.2 Object Description . 78
8.3 Complex Data Types . 78
8.4 Notifications . 78

8.4.1 Pull . 79
8.4.2 Push . 79
8.4.3 Guaranteed Delivery . 79

8.5 Internationalization . 79
8.5.1 Preferred Locale . 79
8.5.2 Locale Usage . 80

8.6 Security . 80
8.6.1 Sessions . 80
8.6.2 Authentication . 81

Section 9 SOAP Usage . 83
9.1 XML Namespace . 83
9.2 Envelope . 83
9.3 Header . 83
9.4 Body . 84
9.5 SOAP Usage over HTTP . 84

9.5.1 Request . 84
9.5.2 Response . 85

9.6 Errors . 86
9.6.1 SOAP Faults . 86
9.6.2 Message Ids . 86
9.6.3 Error Reference . 87
9.6.4 Errors Returned by All Functions . 88
Open Management Interface Specification Version 1.0, Revision 1 OASIS 5

Section 10 API Function Definitions . 91
10.1 getRootObject . 92
10.2 getObjectDescription . 93
10.3 getObjectRelations . 94
10.4 invokeOperation . 95
10.5 getAttributeValues . 97
10.6 setAttributeValues . 99
10.7 registerNotificationInterest . 101
10.8 cancelNotificationInterest . 102
10.9 getNotificationInterest . 103
10.10 getNotificationAvailability . 104
10.11 getNotifications . 105
10.12 registerNotificationListener . 107

Section 11 Structure Reference . 109
11.1 objectName . 109
11.2 objectDescriptionSet . 109
11.3 objectDescription . 109
11.4 attributeInfo . 109
11.5 operationInfo . 109
11.6 operationParamType . 109
11.7 notificationInfo . 110
11.8 objectRelations . 110
11.9 operationParam . 110
11.10 operationResult . 110
11.11 attributeValuesSet . 110
11.12 attributeValues . 110
11.13 attributeValue . 111
11.14 notificationInterest . 111
11.15 notificationAvailability . 111
11.16 notificationSet . 111
11.17 notification . 111
11.18 omiSuccess . 111
11.19 omiError . 112

Section 12 API Examples . 113
12.1 Populate Console Object Tree . 113
12.2 View/Edit Attributes of One Object . 113
12.3 View/Edit Attributes of Multiple Objects . 114
12.4 Sample XML . 115

12.4.1 Get The Root Object Example . 115
12.4.2 Get The Object Description Example . 115
6 Open Management Interface Specification Version 1.0, Revision 1 OASIS

Section 1 Preface

1.1 About the OMI Specification
The Open Management Interface is a specification jointly authored by Hewlett-Packard
and webMethods. Both companies participated in the design and review process leading
up to the release of the specification.

The intent of OMI is to provide an easy, open way for systems management vendors and
other interested parties to access and manage the resources associated with an integration
platform and its associated business processes.

What has been developed is a generic and extendable interface, accessed as a web service
(i.e. via SOAP, XML and HTTP). Through this interface consumers can manipulate a set of
OMI managed objects that represent the available resources. The OMI specification also
defines a set of standard attributes, operations and notifications for each type of OMI
managed resource and also a set of relations that can exist between OMI managed objects.

Both companies encourage and support the adoption and use of this specification. Usage
includes developing management tools for OMI based resources and supplying new OMI
manageable resources.

Comments and suggestions are encouraged and will be entered into a review process for
inclusion in future versions of this specification. Feedback could include, but is not
limited to:

New web service functions

New standard OMI Managed object definitions

New relationship requirements

Changes to the existing functionality of the specification

Improvements to the clarity and readability of the specification

Comments can be sent to:

omi-feedback@open-management.org

Note: Per the License Terms related to this specification, you may submit feedback via this
email address. All feedback shall become the exclusive property of Hewlett-Packard
Company and webMethods, Inc. and may be used in any way without obligation.
Open Management Interface Specification Version 1.0, Revision 1 OASIS 7

mailto:omi-feedback@open-management.org

S e c t i o n 1 P r e f a c e
1.2 Disclaimer
DISCLAIMER OF WARRANTIES. USER ACKNOWLEDGES THAT THE
SPECIFICATION MAY HAVE ERRORS OR DEFECTS AND IS PROVIDED "AS IS."
HEWLETT-PACKARD AND WEBMETHODS MAKE NO EXPRESS OR IMPLIED
WARRANTIES OF ANY KIND WITH RESPECT TO THE SPECIFICATION, AND
SPECIFICALLY DISCLAIM THE IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR PURPOSE, EVEN IF THAT PURPOSE IS KNOWN
TO HEWLETT-PACKARD OR WEBMETHODS.

LIMITATION OF LIABILITY. HEWLET-PACKARD AND WEBMETHODS SHALL NOT
BE RESPONSIBLE FOR ANY LOSS TO ANY THIRDS PARTIES CAUSED BY USING THE
SPECIFICATION IN ANY MANNER WHATSOEVER. HEWLETT-PACKARD AND
WEBMETHODS SHALL NOT BE LIABLE FOR ANY DIRECT, INDIRECT, SPECIAL,
INCIDENTAL, OR CONSEQUENTIAL DAMAGES, WHETHER BASED ON
CONTRACT, TORT OR ANY OTHER LEGAL THEORY, ARISING OUT OF ANY USE OF
THE SPECIFICATION OR ANY PERFORMANCE OF HEWLETT-PACKARD OR
WEBMETHODS RELATED TO THIS SUBMISSION TO OASIS. USER FURTHER
ACKNOWLEDGES THAT THE SPECIFICATION IS PROVIDED FOR EVALUATION
PURPOSES ONLY, AND USER ASSUMES ALL RISKS ASSOCIATED WITH ITS USE.
8 Open Management Interface Specification Version 1.0, Revision 1 OASIS

 Disclaimer
This page intentionally left blank.
Open Management Interface Specification Version 1.0, Revision 1 OASIS 9

S e c t i o n 1 P r e f a c e
This page intentionally left blank.
10 Open Management Interface Specification Version 1.0, Revision 1 OASIS

 Disclaimer
This page intentionally left blank.
Open Management Interface Specification Version 1.0, Revision 1 OASIS 11

S e c t i o n 1 P r e f a c e
1.3 Revision History
Versions and revisions of the OMI Specification are listed in the following table.

1.4 Terminology
OMI: Abbreviation for Open Management Interface

Management console: a graphical tool for displaying manageable objects.

Business Integration Platform: The set of all components that make up the
installation of a business integration product from a particular vendor. Examples of
business integration platform vendors include: webMethods, Vitria, Tibco, etc.

OMI managed resource: A distinct part of the integration platform that is interesting
to manage. A manageable resource can be either physical or logical. An integration
platform may contain many types of manageable resources.

OMI managed object: An object representing an OMI managed resource in the
integration platform. A managed object defines a management interface to the
resource.

OMI managed object interface: A description of the attributes, operations, and
notifications available for an OMI managed object. OMI defines a standard set of
interfaces. Specific managed object implementations will extend one of the standard
interfaces to define the management interface for a managed resource.

OMI API: The application programming interface to an OMI Server. The API is
defined by this document. It takes the form of an XML SOAP protocol.

OMI Client: A program or process that uses the OMI API to access management
information in an OMI Server.

OMI Server: The set of components necessary to provide an implementation of OMI
for a particular vendor’s Business Integration Platform or other software system. The
OMI Server is accessed using the OMI API.

SMV: This is an abbreviation for Systems Management Vendor. Examples of system
management vendors include: HP, IBM, BMC and CA.

Version Date Description

OMI 1.0 April 17, 2002 First release of OMI Specification

OMI 1.0, Revision 1 June 6, 2002 Correct errors in the 1.0 specification.
Changes from the previous revision are
marked with change bars in the left column

OMI 1.0, Revision 1
OASIS

July 16, 2002 Same as June 6, 2002 with disclaimers for
OASIS.
12 Open Management Interface Specification Version 1.0, Revision 1 OASIS

 References
SMV Management Services: The set of management related services provided by a
particular systems management vendors product. Such services would include event
correlation and aggregation, filtering, historical gathering of statistics, etc.

SMV Console: The GUI provided by a systems management vendor that is to be used
by operations staff in order to manage the Business Integration Platform.

Attribute: The name, value pair representing the current value of some data
associated with an OMI managed object. Examples of this data might include a
statistic (such as current queue size on a server) or configuration information (such as
the location of an object). Attribute values can be read or written using the OMI API.
The type of the value associated with each attribute will be one of the standard OMI
data types.

Notification: This represents an unsolicited management event, generated by the
OMI managed object. Each specific OMI managed object interface provides details of
the notifications that can be generated by OMI managed objects that implement the
interface. Each notification includes details of the reason for the notification and the
severity of the notification. Notifications can be accessed using the OMI API.
Examples of notifications might include “the managed resource has failed” or “the
managed resource is reaching maximum capacity”.

Operation: Each OMI managed object supports a set of management operations
(sometimes called methods or actions) that can be performed on the object itself. Each
operation represents one task that must be performed by the managed object.
Examples of operations might include “start this managed resource” or “reset the
managed resource”.

1.5 References
SOAP 1.1: http://www.w3.org/TR/SOAP/

HTTP 1.1: (RFC2616) http://www.w3.org/Protocols/rfc2616/rfc2616.html

HTTP 1.0: (RFC1945) http://www.w3.org/Protocols/rfc1945/rfc1945

Uniform Resource Locators (URL): (RFC1738) http://www.ietf.org/rfc/rfc1738.txt

XML: http://www.w3.org/TR/2000/REC-xml-20001006

XML Namespace: http://www.w3.org/TR/1999/REC-xml-names-19990114/

Tags for the Identification of Languages: (RFC1766) http://www.ietf.org/rfc/rfc1766.txt

ISO 8601 - Representation of dates and times: Some details about 8601 are available
from W3 http://www.w3.org/TR/NOTE-datetime

WSDL - Web Service Description Language 1.1: http://www.w3.org/TR/wsdl

 Schema - W3C Recommendation, 2 May 2001: http://www.w3.org/TR/xmlschema-0/
Open Management Interface Specification Version 1.0, Revision 1 OASIS 13

http://www.w3.org/TR/NOTE-datetime
http://www.w3.org/TR/SOAP/
http://www.w3.org/Protocols/rfc2616/rfc2616.html
http://www.w3.org/Protocols/rfc1945/rfc1945
http://www.ietf.org/rfc/rfc1738.txt
http://www.w3.org/TR/2000/REC-xml-20001006
http://www.w3.org/TR/1999/REC-xml-names-19990114/
http://www.ietf.org/rfc/rfc1766.txt
http://www.w3.org/TR/NOTE-datetime
http://www.w3.org/TR/wsdl
http://www.w3.org/TR/xmlschema-0/

S e c t i o n 1 P r e f a c e
14 Open Management Interface Specification Version 1.0, Revision 1 OASIS

Section 2 Overview
The Open Management Interface (OMI) provides a programmatic interface into the
management aspects of a business integration platform. It provides a generic abstraction
layer on top of what could be a very complex environment. It provides systems
management vendors (SMV) with a consistent management model and mechanism. The
OMI is intended as a means for management frameworks to access the management
capabilities of a business integration platform.

2.1 Role of OMI
The following diagram shows where OMI fits between a management framework and the
business integration platform.

Figure 2-1 Open Management Interface and Existing Management Systems

2.1.1 SMV Console
This is the management console (or views within a management console) built by the
systems management vendor for the display and manipulation of all business integration
platform related management information. The console will typically provide a number
of topological views into the integration platform and the associated management
environment, suitable for different types and levels of operations and managerial staff.

2.1.2 SMV Services
These are the management services provided by the SMV to support the management of a
business integration platform. The services may include: rules-based actions, event

Open Management Interface

Management Console

Management Services

Implementation of Open Management Interface

Business Integration Platform
Open Management Interface Specification Version 1.0, Revision 1 15

S e c t i o n 2 O v e r v i e w
correlation, thresholds, analytic services, and administrator alerts. The SMV must
implement the client side of OMI to manage an OMI capable integration platform.

2.1.3 Open Management Interface
This is the management model and programming interface for discovering, browsing,
manipulating and monitoring the management capabilities of an integration platform. It
exists as a specification (this document) implemented by integration software vendors on
the server side and management software vendors on the client side.

2.1.4 OMI Implementation
The integration software vendor supplies an implementation of OMI to expose the
management capabilities of their platform. The implementation contains the required
communication mechanisms (SOAP, XML, HTTP) to support access from OMI clients.
OMI also requires discovery mechanisms, a notification sub-system, a management
model, durable storage, and access to the management functions of the integration
platform.

2.1.5 Integration Platform
This is the existing business integration platform. The integration software vendor may
implement all or part of OMI with the integration platform itself. The OMI does not
require any specific management capabilities or behavior of the integration platform.
However, OMI does define management interfaces that satisfy most SMV requirements.
If the platform does not provide matching interfaces, then the management applications
will be limited in their ability to serve operations and management staff.

2.2 Basic Architecture
The Open Management Interface consists of three major components:

1 OMI Managed Object - This provides access to one managed resource; a specific
component of the business integration platform. A managed object exposes the
management capabilities of the managed resource using attributes, operations, and
notifications. Managed objects exist for “physical” resources such as servers,
adapters, and the machines supporting those resources. The business processes
implemented using the physical resources may also have managed objects.

The attributes, operations, and notifications of an OMI managed object are defined by
its OMI interface. The OMI defines a set of standard interfaces which managed
objects extend and implement for their specific capabilities. The standard interfaces
categorize the managed objects and provide a consistent interface for the systems
management vendors.

2 OMI Management Model - The set of relationships between OMI managed objects
that describes the management associations between the managed resources. For
16 Open Management Interface Specification Version 1.0, Revision 1

 OMI Components
example, an adapter uses a particular database. This could be modeled as a
relationship between the adapter managed object and the database managed object.

3 OMI API - A set of functions providing access to OMI managed objects. The API
includes functions to discover, browse, monitor, and manipulate any managed object
in the business integration platform.

2.3 OMI Components
OMI clients can manipulate OMI managed objects through the OMI server. The managed
objects represent the managed resources available in the business integration platform.

Figure 2-2 OMI System Components

OMI Client OMI Server Managed Resources
Business IntegrationManaged Objects

Management Model
Management Console

OM
I S

OA
P

AP
I

Platform

Adapter

Data Server

Process Server

Process Step
Open Management Interface Specification Version 1.0, Revision 1 17

S e c t i o n 2 O v e r v i e w
This page intentionally left blank.
18 Open Management Interface Specification Version 1.0, Revision 1

Section 3 Managed Objects
In the Open Management Interface, managed objects supply an interface to a specific
resource. The interface focuses on the management capabilities of the resource.

The managed object may be implemented as part of the managed resource or in a
different environment. The interface between the managed object and its resource is part
of the managed object implementation and is not defined by the OMI specification.

3.1 OMI Managed Object
An OMI managed object has two parts

1 OMI Interface - This is the description of the capabilities of the managed object.
The description includes attributes, operations, and notifications. A managed
object implements just one interface, but the interface may extend several other
interfaces.

2 Object Name - This is a string that uniquely identifies the managed object within a
management scope.

An OMI managed object instance is an implementation of the interface running in an OMI
server. In this specification, the use of “OMI managed object” implies an OMI managed
object instance.

3.2 OMI Interface
An OMI interface describes the capabilities of a type of managed object. OMI interfaces
have a name and a formal description. The description is divided into attributes -
information about the resource and its current status, operations - actions or information
queries, and notifications - messages about significant events in the managed resource.

OMI interfaces are organized into a tree starting with a standard base interface. Interfaces
extend the base interface or another interface that itself extends the base interface. An
interface that extends another interface gains all the attributes, operations, and
notifications of the extended interface in addition to what the interface itself defines. This
works much like inheritance in object-oriented systems and languages. An interface may
extend multiple interfaces. In this case, the available attributes, etc., are the union of those
defined in the extended interfaces.

3.2.1 Interface Name
The interface name identifies the interface within the name space of OMI interfaces. The
name is composed of strings separated by dots (‘.’). The first string is always “omi”. The
second string should be a short acronym or mnemonic for the integration software vendor
defining the interface. Additional strings can be used to further categorize the interface.
The last string should be a descriptive name of the interface. By convention, all strings are
Open Management Interface Specification Version 1.0, Revision 1 19

S e c t i o n 3 M a n a g e d O b j e c t s
in lower-case except for the last which should use mixed-case. Interface names can be
composed of any characters except dot (‘.’) which is reserved as a string separator.

The standard OMI interfaces use just two strings in their interface name. The second
string is the descriptive name of the interface.

3.2.2 Attributes
Managed object attributes provide information about the managed resource. This usually
includes identifying information, version numbers, statistics, and current status. The
managed object implementation should keep its attributes as up to date as possible,
especially data related to the resource status.

Attributes have a name, a data type, and an access mode. The name must be unique
within a managed object’s interface tree. The data type must be one of the OMI primitive
data types or a sequence of the primitive data type. Multi-dimensional sequences are
allowed. The access mode must be one of read-only, read/write, or write-only. The access
modes may be abbreviated RO, RW, and WO respectively.

Primitive Data Types

OMI supports the following primitive data types.

Complex Data Types

Attributes, operation results, and operation parameters may have complex types. A
complex type is either a sequence of primitive types, or a collection of named types (like a
structure).

Data Type Description

string An ordered sequence of characters. String values may have an associated language
tag.

char A single character.

int A signed integral value that can be stored in a 32-bit value.

byte A signed integral value that can be stored in an 8-bit value.

short A signed integral value that can be stored in a 16-bit value.

long A signed integral value that can be stored in a 64-bit value.

boolean A value that is logically ‘true’ or ‘false’.

float A signed floating point value that can be stored in 32-bits.

double A signed floating point value that can be stored in 64-bits.

date Date and time expressed using an ISO 8601 format.

objectName A structured value referenced with an object name. May also be the object name of
a manged object.
20 Open Management Interface Specification Version 1.0, Revision 1

 OMI Interface
A sequence can be made of any of the primitive data types. The sequence can have
multiple dimensions (sequence of a sequence). A sequence type is described by
appending ‘[]’ after the basic type. One ‘[]’ is appended for each dimension of the
sequence.

A collection of named types is called a structure. The structure can have one or more
names each referring to a primitive type or another structure. OMI does not define a
separate type syntax for structures. Instead, an objectName references a specific instance
of a structured value. The object description of the objectName will describe the
structured value. The object description for a structured value is similar to that for a
managed object, but will not have an interface and will only define attributes. The fields
of a structured value can be retrieved using the same mechanism as used to get the
attributes of a managed object.

A sequence of structures is represented using a sequence of objectName.

3.2.3 Metrics
Metrics are attributes that track resource statistics. Metric attributes have all the same
qualities as normal attributes with the addition of properties describing the statistics
being measured or gathered.

Metric attributes have extra properties to describe the type and units of the metric. Metric
attributes must have a metric type. The metric units are optional.

A metric type can be a “Counter” - an ever-increasing number, or a “Gauge” - a number
that may increase or decrease. The metric units describe what is being measured; what
are the units of the number. For example, a car speedometer is a Gauge metric with the
units miles/hour. A car odometer is a Counter metric with the units miles.

Units

The units of a metric are described by one or more unit terms and optional unit factors.
The unit terms can be one of several OMI defined strings or a resource-defined string.
Unit terms describe what the metric is measuring. If two terms are used, then the metric is
an average of the first unit over the second unit (e.g. KByte/Minute).

A unit factor modifies the scale of a unit term. Multiply the unit term by the factor to
arrive at the actual unit. If the factor is not specified, it defaults to one.

OMI defines several base units; Bit, Byte, Second, and Percent. OMI also defines pre-
factored units for the base units. For example, unit Minute is the equivalent of unit
Second with a factor of 60.

The managed object can use resource-defined units to describe a metric. Typical examples
are Message, Document, Transaction, and Request. These unit terms are passed to the
OMI client unmodified. A unit term cannot include a "/" character.

The factor of unit Percent defines the range of the percentage value. A factor of 1 (the
default) indicates a percentage expressed as a number from 0 to 1. A factor of 100
Open Management Interface Specification Version 1.0, Revision 1 21

S e c t i o n 3 M a n a g e d O b j e c t s
indicates a percentage expressed as a number from 0 to 100. The attribute type of the
former should be a float or a double, but the latter could be an int.

A factor with the value "Epoch1970" describes a metric that measures time since 00:00:00
UTC, January 1, 1970. The unit for this kind of metric is usually Second or MilliSecond
and the attribute type is long.

The unit terms and factors should never be localized. They are keywords defined by the
OMI specification. The OMI client should provide localization for these values.
Resource-defined units should be localized by the OMI server.

Format

A metric type must be one of “Counter” or “Gauge”.

Units are specified as a string of unit terms separated with slashes (“/”). For example:
Miles/Hour.

Unit factors are specified as numbers separated with slashes (“/”). There must be one unit
factor for each unit term. If the unit terms are “Second/meter”, then the factors could be
“60/1000” for minutes per 1000 meters.

Unit terms

OMI defines several base unit terms and pre-factored terms for common measurements.
The pre-factored terms are equivalent to the base unit term with an appropriate factor.

Factors

Factors must be positive numbers of the OMI “long” data type, or positive number of the
OMI “double” data type.

The special factor “Epoch1970” may only be used with a Counter metric with units
“Second” or “Millisecond”. The attribute is usually of type “long” for this kind of metric.

Base Unit Pre-factored units

Bit KBit, MBit, GBit, TBit

Byte KByte, MByte, GByte, TByte

Second Minute, Hour, Day, Week, Year, Millisecond

Percent

resource defined There are no pre-factored units for resource defined unit terms.
22 Open Management Interface Specification Version 1.0, Revision 1

 OMI Interface
Factor Equivalents

3.2.4 Operations
Managed object operations provide a means of performing an action on the managed
object given a set of parameters. The operation may return a value as a result of the
action. Operations are typically used to invoke management control functions (e.g. start
resource or stop resource) or query for status or configuration detail.

An operation has a name, a set of parameters, and a result type. The name must be
unique within a managed object’s interface tree. The parameters are named and have an
associated data type. The result type and the parameter types may be any OMI data type.
The result type may be “void” in which case there is no result value.

3.2.5 Notifications
Managed object notifications are messages sent by a managed object to report a significant
event on the managed resource. Notifications are typically sent for resource status change
and for errors logged by the resource. The managed object implementation should filter

Base Unit Pre-factored Unit Equivalent

Bit Bit unit=Bit, factor=1

KBit unit=Bit, factor=1024

MBit unit=Bit, factor=1048576

GBit unit=Bit, factor=1073741824

TBit unit=Bit, factor=1099511627776

Byte Byte unit=Byte, factor=1

KByte unit=Byte, factor=1024

MByte unit=Byte, factor=1048576

GByte unit=Byte, factor=1073741824

TByte unit=Byte, factor=1099511627776

Second Second unit=Second, factor=1

Minute unit=Second, factor=60

Hour unit=Second, factor=3600

Day unit=Second, factor=86400

Week unit=Second, factor=604800

Year unit=Second, factor=31536000

Millisecond unit=Second, factor=0.001
Open Management Interface Specification Version 1.0, Revision 1 23

S e c t i o n 3 M a n a g e d O b j e c t s
the resource activity and only generate notifications when an event occurs with
management significance. Care should be taken when sending notifications so as to not
burden the OMI server and management framework with trivial or repetitive data.

Notifications have a type, a severity, a source object name, a timestamp, and a variety of
information about the source object and the event that caused the notification. The type
will typically convey the nature of the event: failure, warning, model change, etc. The
event itself can be described with message strings and a structured block of “detail” data.
For some notifications, the type is enough to convey what has happened. Notifications
from resources typically include message strings from the resource’s API (error message)
or from the resource’s log files.

Notifications are also sent by the OMI server to track managed objects and their
relationships in the management model. These are covered in detail in the description of
the RootManagedObject interface.

3.2.6 Interface Types
OMI interfaces are all described in the same manner, but they may be used in different
ways.

Standard Interface - An interface defined by the OMI specification.

Vendor Interface - An interface defined by an integration software vendor. Vendor
interfaces must extend one or more of the standard interfaces.

Mix-in Interface - An interface that does not extend omi.BaseObject. Managed objects
may implement mix-in interfaces to expose additional capabilities.

Most-derived Interface - This is the interface implemented by a managed object. The
interface must be a vendor interface, but not a mix-in interface. A standard interface
may not be used as a most-derived interface.

3.2.7 Standard Interfaces
The table below summarizes the most important standard OMI interfaces. Refer to this
table when reviewing “Management Model” on page 31. Definitions for all the standard
OMI interfaces can be found in “OMI Interface Definitions” on page 43.

Managed objects must not directly implement a standard OMI interface. Instead, a most-
derived interface extending a standard interface should be used.
24 Open Management Interface Specification Version 1.0, Revision 1

 OMI Interface
3.2.8 Vendor Interfaces
Managed object developers may define interfaces to represent the management
capabilities of their resources. The interfaces may extend any of the OMI standard
interfaces including mix-in interfaces. They may also define additional mix-in interfaces.

Interface Name Description

omi.BaseObject All OMI interfaces extend omi.BaseObject except mix-in
interfaces.

omi.ManagedObject A managed object must extend omi.ManagedObject or, more
likely, one of the interfaces derived from omi.ManagedObject.
This interface provides attributes for resource status.

omi.PhysicalResource This is an empty interface used to classify “physical” versus
“logical” managed objects. The interface includes location
information.

omi.SystemResource Defines operations for starting, stopped, and restarting a
resource.

omi.PlatformServer This is a server in the integration platform. It includes network,
machine, and process information about the server.

omi.LogicalResource This is an empty interface used to classify “logical” versus
“physical” managed objects.

omi.Service A service provided by the integration platforms. Defines several
service statistics.

omi.Domain A logical grouping of managed objects.

omi.Cluster A group of managed objects for resources that act as one unit,
usually to provide load balancing or fail-over.

omi.BusinessProcess This is a business process implemented by the integration
platform using the “physical” resources of the platform.

omi.BusinessProcessStep This is a unit of execution or decision in a business process.

omi.ExternalObject A resource that is used by the integration platform, but cannot be
managed by the OMI implementation.

omi.Host This is a computer used by the integration platform.

omi.PackagedApplication This is a business application from an enterprise software vendor.

omi.RootManagedObject Interface implemented by the managed object at the top of the
management model containment tree.

omi.Folder This is a container for managed objects. omi.Folder managed
objects are used to support the OMI management model.

omi.OmiServer This is the managed object for the OMI server implementation. It
contains resource discovery managed objects.
Open Management Interface Specification Version 1.0, Revision 1 25

S e c t i o n 3 M a n a g e d O b j e c t s
Vendor interfaces should avoid defining attributes or operations with the same or very
similar meaning as those found on the OMI standard interfaces.

3.3 Object Names
Managed object names are opaque identifiers used in the management model and the
OMI API. The names are opaque to the OMI client, but have a structure which the OMI
server must enforce.

OMI object names must be globally unique. This must be enforced by the managed object
implementation. If a resource is managed by different management servers, the managed
object name in each server must be the same.

Details of the OMI object name can be found in “OMI Server” on page 37.

3.4 Managed Object Implementation
An OMI managed object implementation must make a reasonable effort to extend the
appropriate interfaces and correctly implement the atttributes, operations, and
notifications defined by the interfaces. This is especially true of the OMI standard
interfaces. OMI clients should expect each managed object to behave as described by the
OMI specification.
26 Open Management Interface Specification Version 1.0, Revision 1

Section 4 Notifications
OMI clients can use notifications to capture and correlate events from OMI managed
objects. Notifications are used to report managed resource activity and changes to the
management model.

Notifications are issued for the following conditions:

Creation and deletion of managed objects

The addition or removal of relations between managed objects

Failure of a managed resource

Warning of possible managed resource failure

Message logged by a managed resource

Notifications contain information about the managed object that sent the notification, the
resource where the event occurred, and when the event or notification happened. The
following table describes the possible data contained in a notification. The field names
correspond to the element names in the OMI API “notification” element.

Notification Field Description

sourceObject Object name of the managed object that sent the notification.

type The notification type

severity The notification severity. Must be an OMI defined severity.

serial The notification serial number. Value must be an OMI long.

timeStamp When the OMI server saved the notification. Value must be an OMI date.

hostName The host name of the managed resource.

interface The most-derived interface of the sourceObject.

origObject Object name of the managed object that had the originating event that
caused this notification.

resourceTag Resource specific information about the notification.

message Text description of the event or condition. This is often an error message
from the managed resource.

correctiveMessage Text describing how to correct the condition.

detail Structured data describing the notification. This is used by the
management model notifications to describe relation changes. May also be
used by managed objects.
Open Management Interface Specification Version 1.0, Revision 1 27

S e c t i o n 4 N o t i f i c a t i o n s
4.1 Notification Type
The notification type is a string of dot-separated components. Typically they take the
form “omi.vendor.resource.notification-type”. The first component, “omi”, is required.

4.2 Severity
OMI provides a set of standard severity values. Managed objects must map the resource’s
severity values to the standard severities. The possible severities are:

critical, major – A serious problem has occurred that has immediate impact on the
operation of the resource. Critical severity should always be used when there is total
failure of the resource. Major severity should indicate a problem that severely limit
the operation of the resource.

minor – A problem has occurred that may impact the operation of the resource. The
resource is still operational, but certain non-critical aspects may not be working.

warning – A condition has been detected that could be a prelude to a failure.

info – Informational messages from the resource. These are often about normal
resource start and stop.

ok – Informational messages indicating that a previous problem has been fixed or
resolved.

indeterminate – The severity level could not be determined.

Note: Resources and managed objects may not utilize all of the standard OMI severities.
At a minimum, resources should support critical, warning, and info.

4.3 Messages
Messages are used to carry human-readable descriptions of the resource event or
condition. The messages typically come directly from the resource or the resource’s API.

The OMI server should provide localized messages when possible and when requested by
the OMI client.

4.4 Originating Object
A notification may be caused by the failure of a different, but related managed object. In
these cases, the OMI will attempt to provide the object name of the managed object that
originated the problem. For example, a server process may host multiple managed
resources, which may themselves host more managed resources. If the server process
28 Open Management Interface Specification Version 1.0, Revision 1

 Notification Detail
goes down, notifications will be issued for all resources in the server process. The
notifications should contain the object name of the server process as the originating object.

This value can be found in the origObject element of a notification.

This feature cannot replace a management framework’s event correlation abilities because
the use of origObject depends on the managed object implementation. The presence of
origObject can aid in event correlation, but it should not be relied upon.

4.5 Notification Detail
Notifications may include structured “detail” data. The data included depends on the
notification type and the specific managed object implementation. The data can be found
in the “detail” element. The documentation for the notification type as found in the OMI
Interface documentation should define the structure of notification detail.

4.6 Resource Tags
Notifications may contain resourceTag elements to store the resource’s severity value and
other resource specific information about the notification. Each resourceTag has a tag-key
and a tag-value. The tag-key must be one of the following:

severity – The resource’s severity value

group – The general context of the notification (operation, performance, security, etc.)

serial – The resource’s serial number for the notification. This value may be used by
the OMI server and managed objects to implement guaranteed delivery.

timeStamp - When the resource recorded the event that caused the notification. This
is different from the timeStamp element in the notification which contains when the
OMI server saved the notification.
Open Management Interface Specification Version 1.0, Revision 1 29

S e c t i o n 4 N o t i f i c a t i o n s
30 Open Management Interface Specification Version 1.0, Revision 1

Section 5 Management Model
The OMI management model reflects the organization of managed resources with respect
to their management capabilities. This is different from resource’s data model or
messaging model. The management model shows how the software components are
organized with respect to their physical and, some times, logical relationships. Physical
containment is of particular interest; a computer runs server software which is composed
of a number of components. The components are contained in the server software, which
is contained in the computer.

The management model may also reflect relationships that are both physical and logical.
The components of the server software may be used by components in a different
software system. The dependency between the two components is important to capture
in the management model. If one component goes down, the other will not be able to
function. An OMI client can follow the relationships of a failed managed resource to map
its effect on other resources.

5.1 OMI Object Relationships
OMI managed objects have relationships with other managed objects. The relationships
reflect the dependencies between managed resources.

A relation describes a set of associated objects. Each relation has two or more role types
and lists of managed objects in those roles. The role types describe how the managed
object is participating in the relation. For example, if a role name is “employee” then an
object in that role is an employee. The relation would have another role called
“employer” with a company object. Relations have an identifier unique to the
management scope. The identifier will be included in all descriptions or updates of the
relation so OMI clients can maintain a consistent view of the management model.

5.1.1 Managed Object Containment Tree
OMI maintains a hierarchical representation of all OMI managed objects available on the
system. Each managed object in the management scope will appear just once in the
containment tree. OMI clients can traverse the containment relation tree using the
child/parent role types. If the containment tree is traversed starting from the root
managed object, every managed object can be found.

An OMI server will have just one root managed object (extending
omi.RootManagedObject). The root managed object will contain (have child relations
with) several standard folder managed objects (extending omi.Folder). The standard
folders have well-known names as shown below. The contents of the folders will be
managed objects extending certain interfaces. Each OMI implementation will populate
the folders with OMI managed objects as appropriate for their integration platform.
Open Management Interface Specification Version 1.0, Revision 1 31

S e c t i o n 5 M a n a g e m e n t M o d e l
Folders are used when there is no real managed object available to provide containment.
Any managed object can have containment relations. Managed objects do not need to
implement omi.Folder to have containment relations.

Figure 5-1 Managed Object Containment Tree

The RootManagedObject is a folder because omi.RootManagedObject extends omi.Folder.
Under the folders are the interfaces implemented by managed objects contained in the
folder.

omi.Root (Name=RootManagedObject)

omi.Folder (Name=Services)

omi.Folder (Name=WebServices)

omi.Cluster

omi.Folder (Name=OmiResources)

omi.PackagedApplication

omi.Folder (Name=Hosts)

omi.Discovery

omi.OmiServer

omi.Folder (Name=Infrastructure)

omi.SystemResource

omi.WebService

omi.Folder (Name=Clusters)

omi.Host

omi.BusinessProcess

omi.Folder (Name=BusinessProcesses)

omi.BusinessProcessStep

omi.Folder (Name=Domains)

omi.Folder (Name=PackagedApplications)

omi.Domain
32 Open Management Interface Specification Version 1.0, Revision 1

 OMI Object Relationships
Containment is not limited to one kind of managed object. The children of a folder can
implement a variety of interfaces. But their most-derived interface should at least extend
from the standard interface shown for their containing folder.

5.1.2 Business Process Relations
The relations on a business process managed objects model the steps used to perform the
business process as well as the control flow followed when the process is running. If the
steps utilize other resources for their processing, this will be modeled with a dependency
relation.

Business process managed objects (omi.BusinessProcess) are contained in the
BusinessProcesses folder. A business process itself contains business process step
managed objects (omi.BusinessProcessStep). The relationships among the steps is
described using additional role types.

1 Order - Business process steps have an order of execution or flow. The order is
modeled with next/prev relations on business process steps. Some steps, such as
decision steps, may have multiple next steps. A join step may have multiple prev
steps. By collecting the next/prev relations of all steps in a business process, an OMI
client may construct a graph of the process control flow.

2 Starting Point - The first step of a business process is modeled by a startedBy/starts
relation between a business process managed object and a business process step
managed object. The business process step must also be a child of the business
process. In most cases a business process will have just one starting point, but it is
allowed to have multiple starting points.

3 Uses - Each business process step may have a relationship to one or more
omi.PhysicalResource managed objects. The uses/usedBy relations model the
dependency between a step and the physical resources used to perform the step. For
example, a business process step uses an SAP adapter (an omi.Adapter) to perform
order entry. This allows the OMI client to map the business process logic to the
physical infrastructure (the integration platform) that supports it.

The uses relation cannot exist on the same business process step with a calls relation.

4 Calls - A business process step that invokes another business process can be modeled
with the calls/calledBy relation. A business process step may have only one calls
relation. This relation may be used when large or complex business processes are
modeled as a number of smaller business processes.

The calls relation cannot exist on the same business process step with a uses relation.
Open Management Interface Specification Version 1.0, Revision 1 33

S e c t i o n 5 M a n a g e m e n t M o d e l
Figure 5-2 Business Process Relationships Diagram

5.1.3 Domain Relations
omi.Domain managed objects (located in the Domain folder) are logical objects that
represent a grouping of services. The grouping is normally geographical in nature or
based on network topology. Each domain object will have one or more
domainContains/domainContainedIn relationships with omi.SystemResource objects
from the Infrastructure folder.

Figure 5-3 Domain Relationship Diagram

5.1.4 Cluster Relations
omi.Cluster managed objects model a group of physical resources that act as one, to
provide load balancing, fault-tolerance, or both. The clusterContains/clusterContainedIn
relationship, between omi.Cluster objects and omi.SystemResource objects allows OMI
clients to find all the managed resources associated with a cluster. Normally, the managed
objects in a cluster implement the same OMI interface.

 (1) omi.BusinessProcess
(1)

(n)
(1) omi . BusinessProcessStep (n)

(n)

(n)
(n) omi.BusinessProcessStep

(n)

(1)
omi.PhysicalResource

(1)
omi.BusinessProcess

uses/usedBy
calls/calledBy

child/parent child/parent

startedBy /starts

next/prev

(1) omi.BusinessProcess
(1)

(n)
(1) omi . BusinessProcessStep (n)

(n)

(n)
(n) omi.BusinessProcessStep

(n)

(1)
omi.ManagedObject

(1)
omi.BusinessProcess

uses/usedBy
calls/calledBy

child/parent child/parent

startedBy /starts

next/prev

omi.Domain
(1)

(n)
omi.SystemResource

domainContains/
domainContainedIn

omi.Domain
(1)

(n)
omi.SystemResource

domainContains/
domainContainedIn
34 Open Management Interface Specification Version 1.0, Revision 1

 OMI Object Relationships
Figure 5-4 Cluster Relationship Diagram

5.1.5 Host Relations
omi.Host managed objects should exist for each computer (host) on which OMI managed
resources are located. The hosts/hostedOn relationship will exist between
omi.SystemResource objects located in the Infrastructure folder and the appropriate
omi.Host object located in the Hosts folder. There should be one such relationship for
each child of the Infrastructure folder.

Figure 5-5 Host Relationship Diagram

5.1.6 OMI Server Relations
The OMI server managed object (omi.OmiServer) has a server/root relation with the root
managed object (omi.RootManagedObject). An OMI client can always find the
omi.OmiServer managed object for the server it’s connected to by getting the root object
and following the server role.

5.1.7 Packaged Application Relations
Packaged application managed objects (omi.PackagedApplication) may have an
integrates/integratedBy relation to another managed object, usually a physical resource.
The physical resource provides integration access to the packaged application.

omi.Cluster
(1)

(n)
omi.SystemResource

clusterContains/
clusterContainedIn

omi.Cluster
(1)

(n)
omi.SystemResource

clusterContains/
clusterContainedIn

omi.Host
(1)

(n)
omi.ManagedObject

hosts/hostedOn

omi.Host
(1)

(n)
omi.ManagedObject

hosts/hostedOn
Open Management Interface Specification Version 1.0, Revision 1 35

S e c t i o n 5 M a n a g e m e n t M o d e l
Figure 5-6 Packaged Application Relationship Diagram

5.1.8 Service Relationships
If an omi.WebService managed object is implemented by a different managed resource,
this can be modeled with a uses/usedBy relation. If the omi.WebService managed object
directly manages a web service resource, then this relation is not needed.

 (n)
(1) omi.BusinessProcessStep (n)

(n)

(1)
omi.ManagedObject

(n)

(1)
omi.PackagedApplication

uses/usedBy

integrates/integratedBy

omi.BusinessProcessStep
(n)

(1)
omi.ManagedObject

(n)

(1)
omi.PackagedApplication

uses/usedBy

integrates/integratedBy
36 Open Management Interface Specification Version 1.0, Revision 1

Section 6 OMI Server
The OMI server is the access point for OMI managed objects, notifications, and the
management model. An OMI server must meet requirements in several areas.

OMI API

Required managed objects

Management model

Notifications

Security

Internationalization

6.1 OMI API
The OMI server must implement all functions and features of the OMI API as defined in
the OMI specification. The API must be network accessible via SOAP over HTTP. If
encryption or digital certificates are supported, the server should also support SOAP over
HTTPS. This specification calls for SOAP 1.1 compliance.

API requests must be handled within a “session” associated with the OMI client. The
server will use the session to record client state such as the preferred locale, notification
interest, and authenticated user identity. Sessions must be implemented with HTTP
cookies.

The OMI Server should support simultaneous processing of API requests from multiple
OMI clients. The actions of one OMI client should not block or hinder the actions of
another OMI client except where required to maintain data consistency or
synchronization.

6.2 Managed Objects
The OMI server must host or provide access to OMI managed objects. The OMI server
must follow the rules for object name and must supply the required managed objects.

6.2.1 Object Names
An OMI object name consists of a dot separated type name and an unordered list of
key/value pairs. The type name and the set of keys are static for a given managed object
implementation. The values on the other hand are dynamic and used to distinguish
between instances of a managed object implementation. The type name is combined with
the set of key-value pairs to create the unique object name.
Open Management Interface Specification Version 1.0, Revision 1 37

S e c t i o n 6 O M I S e r v e r
The type name may be the same as the managed object’s most-derived interface name.
However, this is not a requirement.

Scope

OMI object names must be globally unique. This must be enforced by the managed object
implementation, but the OMI server should provide services to help achieve this goal.
Care should be taken that the type name not overlap with any other type name, and that
the set of key/value pairs uniquely identify the managed object from other objects using
the same type.

There may be one and only one OMI object name for a given managed resource. It is
possible to have more than one managed object representing the same managed resource.
This can happen if more than one management server is connected to the same resource.
In this case, the names for each managed object representing the resource must be
identical. The managed object implementation is responsible for enforcing the 1 to 1
mapping between the object name and the managed resource.

Format

The object name is formatted as follows:
type-name:key=value,[key=value]*

The keys are sorted in lexical order so that string comparisons between object names can
be made. Colon, equals, comma, asterisk, ampersand, and question mark characters
(:=,*&?) are not allowed in any part of the name, including the type name, keys or values.
These characters can be encoded using XML character entities.

The type name is a dot-separated name that categorizes the object. All type names should
begin with the “omi.” prefix. The type name would then typically consist of a short
company name prefix, followed by one or more components describing the specific object.
For example, vendor X may have a data server managed object that could have the type
name “omi.x.DataServer”.

The same set of keys must be used for all objects using the same type. The set of values for
an object instance is dynamic and uniquely identifies the object with respect to all objects
using the same type. It is required that there be at least one key-value pair associated with
an object name. The key-value pairs are typically the smallest possible sub-set of the
object’s read-only attributes necessary to uniquely identify the managed object. However,
it is not a requirement that the key-value pairs correspond to object attributes.

Standard Keys

Each OMI managed object implementation will define a set of keys that are present in the
object name. The keys should conform to the following naming convention:
38 Open Management Interface Specification Version 1.0, Revision 1

 Managed Objects
Note: The resource vendor should not be specified as a key. Instead, this information
should be encoded into the managed object type name. For example, for webMethods all
object type names are prefixed with “omi.wm.”.

Performance Considerations

The managed object name should be made as short as possible for performance reasons.
In general, a short type name and only the minimal set of key-value pairs necessary to
uniquely identify the managed object should be included in the name. If the attribute
name corresponding to a key is overly long, the name for the key should be shortened to
save space.

6.2.2 Root Managed Object
The OMI server must implement one managed object with a vendor interface that extends
omi.RootManagedObject. This is called the root managed object.

The root managed object must have a server relation with the OMI server object. The root
managed object must have child relations with the folders shown in the management
model of the OMI specification.

6.2.3 Folders
The OMI server must implement a managed object with a vendor interface that extends
omi.Folder. Several instances of this managed object must exist as shown in the
management model of the OMI specification. Managed objects must be placed in the
correct folder as shown in the management model.

6.2.4 OMI Server Managed Object
The OMI server must implement one managed object with a vendor interface that extends
omi.OmiServer. This is called the OMI server object. All attributes of omi.OmiServer and
extended interfaces must be implemented. The OMI server object must have a root
relation with the root managed object. The OMI server object must contain discovery
managed objects for the resources supported by the server implementation.

Key Value Description

name Name of the managed resource

host Host name for the resource

port Network port used to access the resource
Open Management Interface Specification Version 1.0, Revision 1 39

S e c t i o n 6 O M I S e r v e r
6.2.5 Discovery Managed Objects
The OMI server must implement or provide access to discovery managed objects.
Discovery managed objects may implement the OMI standard interfaces for discovery
(omi.Discovery, omi.DiscoverySearch, omi.DiscoveryMonitor). Typically there is one
discovery managed object for each high level resource. A high level resource is usually
the highest container for other resources.

The discovery managed objects must be contained in the OMI server object.

Discovery managed objects may provide manual and automatic searches for manageable
resources.

6.3 Management Model
The OMI server must implement the management model as defined in the OMI
specification.

6.4 Notifications
The OMI server must keep a list of notifications sent by its managed objects. The
notification list must be kept in durable storage safe from server and computer restarts.
The notifications must be ordered by a serial number assigned by the OMI server. The
serial number should start with one (1) and increase monotonically with subsequent
notifications. The serial numbers must be permanent once assigned and must never be
reused. The fields of the notification must be completed as accurately as possible. In
particular, the timeStamp must be the time the notification was saved in durable storage.

The OMI server should provide guaranteed delivery of notifications from the managed
resource to the notification list whenever possible. This may involve the managed object
if event details need to be recovered from the resource.

6.5 Security

6.5.1 Access Control
The OMI server may implement access control on managed objects, operations, and
attributes. The nature of the access control and its configuration is defined by the OMI
server implementation.

6.5.2 Authentication
The OMI server may support a simple user, password authentication mechanism. If
supported, the server must provide at least HTTP 1.0 Basic Authentication. A concise
definition of Basic Auth can be found in the HTTP 1.0 informational RFC (RFC 1945).
40 Open Management Interface Specification Version 1.0, Revision 1

 Internationalization
6.5.3 Encryption
The OMI server may support or require encrypted communications using HTTPS.

6.6 Internationalization
The OMI server should be I18N ready. Information from the OMI server comes in two
forms: locale sensitive strings and locale neutral data and identifiers. The information
returned in a locale sensitive string is determined by the locale of the OMI client, not the
locale of the OMI server. The client locale is communicated to the server during the
creation of the HTTP session.

Display names are locale sensitive, and should be used when displaying information to
management staff. Descriptions, error messages, notification messages and some string
attributes are locale sensitive.

Locale neutral data is unaffected by the locale setting. OMI object names are locale
neutral in order to maintain the one to one mapping between an object name and it’s
managed resource. Dates and numbers are also locale neutral.

The OMI Server must attempt to return values in the client’s preferred locale whenever
possible. If the preferred locale is not available, the OMI server will look for the next
closest match by removing successive subtags from the right side of the language tag. If
match cannot be found in this manner, or if the client does not specify a preferred locale,
then values will be returned from the “en-US” locale. If a value is not available in the “en-
US” or preferred locale, then the value will be returned in one of the available locales. If
the locale of the value cannot be determined, then the data will not have a locale indicator.
Open Management Interface Specification Version 1.0, Revision 1 41

S e c t i o n 6 O M I S e r v e r
42 Open Management Interface Specification Version 1.0, Revision 1

Section 7 OMI Interface Definitions
The standard OMI interfaces provide a common set of management capabilities for
vendor interfaces to extend. All interfaces, except mix-in interfaces, must extend
omi.BaseObject.

The interface descriptions show only the attributes, operations, and notifications defined
for each interface. The complete interface definition includes all the attributes, operations,
and notifications from the interfaces they extend. In cases where an attribute or operation
is extended or substantially amended, the interface will repeat the definition with a new
or amended description.

7.1 OMI Interface Hierarchy
The standard OMI interfaces are shown below. Mix-in interfaces are shown disconnected
from the hierarchy.

Figure 7-1 OMI Interface Hierarchy

omi.BaseObject

omi.ManagedObject

omi.PhysicalResource

omi.SystemResource

omi.Service

omi.WebService

omi.Domain

omi.Cluster

omi.LogicalResource

omi.BusinessProcess

omi.BusinessProcessStep

omi.Folder

omi.RootManagedObject

omi.ExternalObject

omi.Host

omi.PackagedApplication

omi.SystemProcess

omi.OmiServer

omi.PlatformServer
omi.Discovery

omi.Adapter

omi.DiscoverySearch

omi.DiscoveryMonitor

omi.EnabledResource

omi.ProductResource
Open Management Interface Specification Version 1.0, Revision 1 43

S e c t i o n 7 O M I I n t e r f a c e D e f i n i t i o n s
7.2 omi.BaseObject
All OMI managed objects must support this interface, even if the object does not represent
a managed resource (e.g. omi.Host). This interface is the top level interface in the OMI
interface hierarchy.

Attributes

Operations
None

Notifications
None

Name Access Description

string DisplayName RW Human-readable name to associate with the object. The
DisplayName should be the shortest possible identifier that
would distinguish this managed object from others using
the same most-derived interface. The DisplayName should
not include the “type” of the object or its interface name.

string ObjectDescription RW Short human-readable description of the object

string ContactInfo RW How to find the owner of the object

string ImplementationVendor RO Vendor that implemented the managed object (not the
managed resource)

string ImplementationVersion RO Version of the managed object implementation (not the
managed resource)
44 Open Management Interface Specification Version 1.0, Revision 1

 omi.ManagedObject
7.3 omi.ManagedObject
A managed object that is managing a resource must extend omi.ManagedObject. This
interface provides basic resource status attributes and notifications.

Extends Interfaces
omi.BaseObject

Attributes

Operations
None

Name Access Description

string ObjectStatus RO The current status of the managed resource. Managed
objects must support OPERATIONAL, FAILED, INACTIVE
and UNKNOWN status values. OPERATIONAL and
FAILED represent the most basic operational conditions of
“up” and “down”. INACTIVE represents an intentional
“down” state. It can be used to show that an object is not
currently used or needed. If the OMI server or managed
object cannot determine the resource status, then the
UNKNOWN status can be used. Vendor interfaces may not
change or extend the set of status values.

The managed object should perform an active check of the
resource status every time the ObjectStatus attribute is
requested.

date LastStatusChange RO When the ObjectStatus attribute last changed. The
LastStatusChange may be updated if the resource moves to
a different FAILED state. For example, if the resource is
down because it crashed, then running again but cannot
open its data files. This attribute can be used to determine
how long as object has been “up” or how long it has been
“down”.

string[] AdminUserAccessURL RO A list of URLs to user-level administrative interfaces for the
managed resource. The URL may use any scheme (http,
ftp, etc.) but it is expected that http and https will be the
most common. If the resource administrative interface is an
executable program, the file scheme may be used.
Open Management Interface Specification Version 1.0, Revision 1 45

S e c t i o n 7 O M I I n t e r f a c e D e f i n i t i o n s
Notifications

Type Description

omi.operational Sent by the managed object when the managed resource is working
properly (becomes operational.) Managed objects should send this
notification each time the ObjectStatus changes to OPERATIONAL.
The notification should also be sent when the managed object is first
instantiated (or re instantiated) and the resource is operational.

omi.failure Sent by the managed object with the managed resource is experiencing
general or significant failures. The notification may include messages
and structured data to describe the nature of the failure. If corrective
action is possible, the managed object may include a message to
describe the corrective action.
46 Open Management Interface Specification Version 1.0, Revision 1

 omi.PhysicalResource
7.4 omi.PhysicalResource
Managed objects for a “physical” resource must extend omi.PhysicalResource. Physical
resources include computers, server software, system processes, and adapters.

Extends Interfaces
omi.ManagedObject

Attributes

Operations
None

Notifications
None

Name Access Description

string ObjectLocation RW Physical location of the managed resource. There is no
format or syntax for resource location, but it should be
something to help operations staff locate the hardware or
software resource.
Open Management Interface Specification Version 1.0, Revision 1 47

S e c t i o n 7 O M I I n t e r f a c e D e f i n i t i o n s
7.5 omi.SystemResource
A managed resource that can be started and stopped should extend omi.SystemResource.
Examples include server software and operating system processes.

Extends Interfaces
omi.PhysicalResource

Attributes

Operations

Name Access Description

string ObjectStatus RO Two status values are added by omi.SystemResource:
STARTING and STOPPING. The managed object should
use these values, if possible, to indicate intermediate states
between FAILED and OPERATIONAL and
OPERATIONAL and INACTIVE.

Name Parameters Return Type

start None void

Start the managed resource. The ObjectStatus should change to STARTING or OPERATIONAL after
this operation, or to FAILED if the operation was unsuccessful. The operation may return an error if
the resource failed to start or if a start operation does not apply or is not supported by the resource.

stop None void

Stop the managed resource. The ObjectStatus should change to STOPPING, INACTIVE, or FAILED
after this operation. The ObjectStatus may change to FAILED if the managed object cannot distinguish
between an orderly stop and a failure. The operation may return an error if the resource failed to stop
or if a stop operation does not apply or is not supported by the resource.

restart None void

Stop and then start the managed resource. The ObjectStatus should change several times after this
operation. The operation may return an error if the resource failed to stop or start, or if a restart
operation does not apply or is not supported by the resource
48 Open Management Interface Specification Version 1.0, Revision 1

 omi.SystemResource
Notifications

Type Description

omi.starting Sent by the managed object when the ObjectStatus changes to
STARTING.

omi.stopping Sent by the managed object when the ObjectStatus changes to
STOPPING.

omi.stopped Sent by the managed object when the ObjectStatus changes to
INACTIVE.
Open Management Interface Specification Version 1.0, Revision 1 49

S e c t i o n 7 O M I I n t e r f a c e D e f i n i t i o n s
7.6 omi.SystemProcess
A managed object should extend omi.SystemProcess if its resource runs on a particular
computer. The managed resource is usually an operating system process, or possibly a
group of processes.

Other Implemented Interfaces
omi.SystemResource

Attributes

Operations
None

Notifications
None

Name Access Description

string HostName RO The host name of the computer where the resource is
running. The managed object must make every effort to
report the computer’s “canonical” fully qualified host
name. This should be the computer’s most common name.
In the case of a clustered resource, the host name should be
the “virtual” host name (the one shared between the
clustered computers).

string ProcessId RO The system process id for this resource. If the resource is
composed of several processes, then the main, or parent, or
process group leader process id should be used.

string CommandLine RO The command line used to start the resource’s process
50 Open Management Interface Specification Version 1.0, Revision 1

 omi.PlatformServer
7.7 omi.PlatformServer
Managed objects for server software that is part of an integration platform should extend
omi.PlatformServer.

Extends Interfaces
omi.SystemProcess

Attributes

Operations
None

Notifications
None

Name Access Description

int Port RO The network port number for contacting the server. If the
server has multiple ports, this should be the main port. If
the server does not have a network port, this attribute
should be -1.
Open Management Interface Specification Version 1.0, Revision 1 51

S e c t i o n 7 O M I I n t e r f a c e D e f i n i t i o n s
7.8 omi.OmiServer
The managed object for the OMI server implementation must implement omi.OmiServer.
Every OMI server must have one instance of omi.OmiServer. The interface includes
parameters to control the handling of old notifications.

Vendor’s must extend omi.OmiServer to implement their OMI server managed object,
adding attributes and operations as appropriate.

The omi.OmiServer must have a root relation with the omi.RootManagedObject managed
object for the OMI server. An omi.OmiServer should contain discovery managed objects
(omi.Discovery) for the managed resources supported by the OMI server implementation.

Extends Interfaces
omi.PlatformServer

Attributes

Operations
None

Notifications
None

Name Access Description

int ManagedObjectCount RO The total number of managed objects registered in the
server.

int NotificationListMaximumLength RW Maximum size of list

float NotificationListExpireAge RW The number of days an object will remain on the expired list

int NotificationListExpireInterval RW The interval at which the expire list will be updated
52 Open Management Interface Specification Version 1.0, Revision 1

 omi.Adapter
7.9 omi.Adapter
An adapter moves and transforms data between a resource, such as a packaged
application or database, and the integration platform. Managed objects for adapters must
extend omi.Adapter.

Other Implemented Interfaces
omi.SystemResource

Attributes

Operations
None

Notifications
None

Name Access Description

string AdapterType RO The type of resource the adapter uses.
Open Management Interface Specification Version 1.0, Revision 1 53

S e c t i o n 7 O M I I n t e r f a c e D e f i n i t i o n s
7.10 omi.LogicalResource
Managed objects for a “logical” resource must extend omi.LogicalResource. Logical
resources include Business Processes, Domains, etc.

Extends Interfaces
omi.ManagedObject

Attributes
None

Operations
None

Notifications
None
54 Open Management Interface Specification Version 1.0, Revision 1

 omi.BusinessProcess
7.11 omi.BusinessProcess
Managed objects for high-level automated business processes must extend
omi.BusinessProcess. The managed object represents the definition of a specific business
process, not the instances of the running business process. These instances are called
“activations.” An omi.BusinessProcess provides some aggregate statistics from
activations of the business process.

An omi.BusinessProcess may contain one or more omi.BusinessProcessStep managed
objects. It may have a startedBy relation with one of the steps. See “Management Model”
on page 31 for a complete description of business process relations.

Extends Interfaces
omi.LogicalResource

Attributes

Name Access Description

int TotalActive RO The current number of active business process activations.

long TotalComplete RO Total number of business process activations completed to
date.

long TotalFailed RO Total number of failed business process activations.

long CumulativeTime RO The cumulative time taken to complete all business process
activations (measured in milliseconds.)

date LastModified RO The last time that the definition of this business process
changed.
Open Management Interface Specification Version 1.0, Revision 1 55

S e c t i o n 7 O M I I n t e r f a c e D e f i n i t i o n s
Operations

Notifications
None

Name Parameters Return Type

getActivations string[] criteria string[]

Get business process activation ids. The activations can be restricted by the given criteria. If the criteria
is empty, then all activation ids are returned. Each criteria array element is a single binary expression.
Multiple expressions are logically and’d together. The supported expressions are:

status=activation-status
runtime OP number-of-seconds

The activation-status must be one of running, done, or error. The OP may be one of <, >, <=, =>,
<>, !=, or =. The number-of-seconds must be an OMI long. White space is not permitted around OP.

The expressions have the following meaning:
status=running Running activations
status=done Completed activations
status=error Failed activations
runtime<### Activations running for less than ### seconds
runtime>### Activations running for more than ### seconds
runtime<=### Activations running for less than or equal to ###
runtime>=### Activations running for more than or equal to ###
runtime<>### Activations running for more or less than ### seconds
runtime!=### Same as <>
runtime=### Activations running for exactly ### seconds

To get all the activations running more than 2 minutes:
criteria[0]="status=running"
criteria[1]="runtime>120"

To get all activations that took more than 10 minutes to complete:
criteria[0]="status=done"
criteria[1]="runtime>600"

getActivationAdminUrl string activation_id string[]

Get a list of URLs to user-level administrative interfaces for the given activation. The URL may use any
scheme (http, ftp, etc.) but it is expected that http and https will be the most common. If the resource
administrative interface is an executable program, the file scheme may be used.
56 Open Management Interface Specification Version 1.0, Revision 1

 omi.BusinessProcessStep
7.12 omi.BusinessProcessStep
A business process step is one in a chain of steps that perform the functions of a business
process. Managed objects that extend omi.BusinessProcessStep represent the definition of
of a business process step, not a running instance of a step. Running instances are called
activations.

An omi.BusinessProcessStep must be contained in an omi.BusinessProcess. It may also
have next/prev relations with other omi.BusinessProcessSteps contained in the same
omi.BusinessProcess. If possible, the omi.BusinessProcessStep should have a uses relation
with a managed object that extends omi.PhysicalResource. See “Management Model” on
page 31 for a complete description of business process relations.

Extends Interfaces
omi.LogicalResource

Attributes

Operations

Notifications
None

Name Access Description

int TotalActive RO The current number of active business process step
activations.

long TotalComplete RO Total number of business process step activations
completed to date.

long TotalFailed RO Total number of failed business process step activations.

long CumulativeTime RO The cumulative time taken to complete all business process
step activations (measured in milliseconds.)

Name Parameters Return Type

getActivations string[] criteria string[]

Get business process step activation ids. The activations can be restricted by the given criteria. If the
criteria is empty, then all activation ids are returned. See the description of operation getActivations in
omi.BusinessProcess for criteria parameter usage.
Open Management Interface Specification Version 1.0, Revision 1 57

S e c t i o n 7 O M I I n t e r f a c e D e f i n i t i o n s
7.13 omi.Service
Managed objects that implement this interface represent a logical service provided by the
integration platform. The managed object should be able to gather some basic statistics
from the managed resource.

Extends Interfaces
omi.LogicalResource

Attributes

Operations
None

Notifications
None

Name Access Description

string ServiceName RO The service name. This name should not be localized.

int TotalActive RO The number of currently active services of this type.

long TotalComplete RO Total number of this type of service completed to date.

long TotalFailed RO Total number of failed services of this type.

long CumulativeTime RO The cumulative time taken to complete all services
(measured in milliseconds.)
58 Open Management Interface Specification Version 1.0, Revision 1

 omi.WebService
7.14 omi.WebService
Managed objects for resources that have a “web service” interface should extend
omi.WebService. Alternatively, omi.WebService can be implemented by a different
managed object with a uses relation to the managed object of the web service resource.

Extends Interfaces
omi.Service

Attributes

Operations
None

Notifications
None

Name Access Description

string InterfaceDefinitionUrl RO The URL of the WSDL or equivalent.

string InterfaceSchemaUrl RO The URL of the XML Schema or equivalent.

string InterfaceDefinition RO WSDL or equivalent document.

string InterfaceSchema RO XML Schema or equivalent document.

string[] InvocationUrl RO The URL of the web service invocation point.
Open Management Interface Specification Version 1.0, Revision 1 59

S e c t i o n 7 O M I I n t e r f a c e D e f i n i t i o n s
7.15 omi.Domain
An omi.Domain managed object is a logical grouping of managed objects.

Other Implemented Interfaces
omi.LogicalResource

Attributes
None

Operations
None

Notifications
None
60 Open Management Interface Specification Version 1.0, Revision 1

 omi.Cluster
7.16 omi.Cluster
An omi.Cluster is a group of managed objects for resources that act as one unit, usually to
provide load balancing or fail-over.

Other Implemented Interfaces
omi.LogicalResource

Attributes
None

Operations
None

Notifications
None
Open Management Interface Specification Version 1.0, Revision 1 61

S e c t i o n 7 O M I I n t e r f a c e D e f i n i t i o n s
7.17 omi.Folder
omi.Folder managed objects are containers used in the OMI management model to
classify managed objects.

Extends Interfaces
omi.BaseObject

Attributes

Operations
None

Notifications
None

Name Access Description

string Name RO The folder name. This name should not be localized.

boolean Extension RO True if the folder is not part of the standard OMI
containment tree.
62 Open Management Interface Specification Version 1.0, Revision 1

 omi.RootManagedObject
7.18 omi.RootManagedObject
An OMI server implementation must have one managed object that implements an
interface extended from omi.RootManagedObject. This is the managed object at the top of
the management model containment tree.

The omi.RootManagedObject must have a server relation with the omi.OmiServer
managed object for the OMI server. omi.RootManagedObject and omi.OmiServer may
not be implemented by the name managed object.

Extends Interfaces
omi.Folder

Attributes
None

Operations
None

Notifications

Type Description

omi.registered Sent when a new OMI managed object has been created and added to
the containment tree. The notification detail will contain the name of
the registered managed object in an “objectName” element.

omi.unregistered Sent when an OMI managed object has been deleted and removed from
the containment tree. The notification detail will contain the name of
the unregistered managed object in an “objectName” element.

omi.relation.create Sent when a relation has been created. The notification detail will
contain the contents of the relation at the time it was created. The
relation will be described using the “relation” element as defined in the
OMI API.
Open Management Interface Specification Version 1.0, Revision 1 63

S e c t i o n 7 O M I I n t e r f a c e D e f i n i t i o n s
omi.relation.delete Sent when a relation has been deleted. The notification detail will
contain the relation identifier that was deleted. The relation identifier
will be contained in the “relId” attribute of an empty “relation” element
as defined in the OMI API.

omi.relation.update Sent when an existing relation has been updated. One notification will
be sent for each role update. The notification detail will contain the
new contents of the role that changed. The relation will be described
using a “relation” element as defined in the OMI API.

For example, if a managed object is added to a folder (omi.Folder) the
omi.relation.update will contain the complete list of managed objects in
the child role, but will not list the parent role because that role did not
change.

Type Description
64 Open Management Interface Specification Version 1.0, Revision 1

 omi.ExternalObject
7.19 omi.ExternalObject
OMI managed objects that implement this interface represent resources that are not
managed by the OMI server. They are represented in OMI so as to act as potential “points
of integration” between OMI managed objects and other management systems supported
by an OMI client. Examples include hosts and packaged applications.

Interfaces that extend omi.ExternalObject should provide enough identifying information
about the resource so it can be located in a foreign management system.
omi.ExternalObject managed objects often have a usedBy relation to another managed
object.

Extends Interfaces
omi.BaseObject

Attributes
None

Operations
None

Notifications
None
Open Management Interface Specification Version 1.0, Revision 1 65

S e c t i o n 7 O M I I n t e r f a c e D e f i n i t i o n s
7.20 omi.Host
A managed object for a physical host or computer.

Extends Interfaces
omi.ExternalObject

Attributes

Operations
None

Notifications
None

Name Access Description

string HostName RO The host name of the computer or device. The managed
object must make every effort to report the computer’s
“canonical” fully qualified host name. This should be the
computer’s most common name.
66 Open Management Interface Specification Version 1.0, Revision 1

 omi.PackagedApplication
7.21 omi.PackagedApplication
A managed object for a packaged application. Examples include SAP, Oracle, Siebel, etc.

Extends Interfaces
omi.ExternalObject

Attributes

Operations
None

Notifications
None

Name Access Description

string Name RO The name of the packaged application. This should identify
a specific running instance of the packaged application.

string HostName RO The host name of the computer where the packaged
application is running

string ResourceType RO The type of packaged application
Open Management Interface Specification Version 1.0, Revision 1 67

S e c t i o n 7 O M I I n t e r f a c e D e f i n i t i o n s
7.22 omi.Discovery
This is a generic interface for resource discovery managed objects. This is a “template”
interface; implementers should extend the interface and define a manage_<Interface>
operation for their resource.

Extends Interfaces
omi.ManagedObject

Attributes

Name Access Description

struct[] DiscoveredList RO The list of discovered, but not managed resources.

resource parameters RO Each field of the struct is a resource parameter. Typical
parameters include host name and network port.

struct[] IgnoredList RO The list of managed or ignored resources.

resource parameters RO Each field of the struct is a resource parameter. Typical
parameters include host name and network port.

objectName object RO The managed object for this resource. This field will be
blank or not present if the resource is ignored rather than
managed.
68 Open Management Interface Specification Version 1.0, Revision 1

 omi.Discovery
Operations

Notifications

Name Parameters Return Type

manage_<Interface> <resource parameters> objectName

Create a managed object for a resource. This is a “template” operation. Discovery managed objects will
implement a manage_ operation that accepts parameters specific to the managed resource. The
<Interface> will be the OMI interface of the resulting managed object. The operation will return the object
name of the managed object. The resource struct for the resource will be put in the IgnoredList so it
won’t be re-discovered by subsequent searches.

ignore struct discovered_resource void

Ignore a discovered resource. The discovered_resource should be the object name of a struct in the
DiscoveredList. The resource struct is moved from the DiscoveredList to the IgnoredList. Subsequent
discovery of the resource will be ignored. The resource can still be managed with an explicit call to
manage_.

forget struct any_resource void

Stop managing a resource or forget a resource. The any_resource may be the object name of a struct in
the IgnoredList or the DiscoveredList. The managed object for the resource, if one exists, is removed and
the resource struct is removed from its list. The resource may be discovered by subsequent searches.

unmanage struct ignored_resource void

Stop managing a resource. The ignored_resource should be the object name of a struct in the
IgnoredList. The managed object for the resource, if one exists, is removed. The resource struct is not
removed from the IgnoredList.

Type Description

omi.discover.resource Sent when a new resource has been discovered. The notification source
object will be the discovery managed object that found the resource.
The detail will contain the object name of the resource struct (located in
the DiscoveredList.)
Open Management Interface Specification Version 1.0, Revision 1 69

S e c t i o n 7 O M I I n t e r f a c e D e f i n i t i o n s
7.23 omi.DiscoverySearch
This is a generic interface for resource searching services. This is a “template” interface;
implementers should extend the interface and define an addSearch_<Type> operation for
their resource. This is a “mix-in” interface; implementers should extend omi.Discovery
and implement omi.DiscoverySearch if the discovery managed object will provide
resource searching capabilities.

Attributes

Operations

Name Access Description

struct[] SearchList RO The list of configured searches.

search parameters RO Each field of the struct is a search parameter. Search
parameter names cannot begin with “_”.

string _name RO The search name.

string _activity RO Current activity. Blank if the search is not running.

date _lastSearchTime RO Time the search was last started.

Name Parameters Return Type

removeSearch string search_name void

Remove the configured search from the SearchList.

startSearch string search_name
boolean manage_on_discovery

void

Start a resource search. If manage_on_discovery is false, the search will find new resources but
managed objects will not be created. A resource struct will be created for each found resource and
placed in the DiscoveredList. If manage_on_discovery is true, resources discovered during the search
will be automatically managed (managed objects will be created.) A resource struct will be created for
the resource and placed in the IgnoredList with its “object” field set to the resource’s managed object.

addSearch_<Type> string search_name
<search parameters>

struct

Configure a new search. This is a “template” operation. Discovery search managed objects will
implement an addSearch_ operation that accepts parameters specific to the supported search. The
<Type> will indicate the kind of search supported. The operation will return a struct (which can also be
found in the SearchList).
70 Open Management Interface Specification Version 1.0, Revision 1

 omi.DiscoverySearch
Notifications

Type Description

omi.discovery.search.start Sent when a resource search is started.

omi.discovery.search.done Sent when a resource search is done.
Open Management Interface Specification Version 1.0, Revision 1 71

S e c t i o n 7 O M I I n t e r f a c e D e f i n i t i o n s
7.24 omi.DiscoveryMonitor
This is a mix-in interface that may be implemented by discovery managed objects. If the
discovery managed object supports passive “listening” for new resources, it should
implement omi.DiscoveryMonitor.

Attributes

Operations
None

Notifications
None

Name Access Description

boolean MonitorForResource RW True if the discovery managed object will monitor the
network or system for new resources. The monitoring
should be passive and have little or no impact on system or
platform resources.

boolean ManageMonitorDiscoveries RW True if the resources discovered by monitoring should be
automatically managed (managed objects created.)
72 Open Management Interface Specification Version 1.0, Revision 1

 omi.EnabledResource
7.25 omi.EnabledResource
This is a mix-in interface for any managed object. omi.EnabledResource should be
implemented for any resource that has the option of automatically starting when the
computer or platform is started. This interface can also be used for resources that run
periodically, but can be disabled.

Attributes

Operations
None

Notifications
None

Name Access Description

boolean Enabled RW True if the resource is enable; it will start when the
computer or platform are started.
Open Management Interface Specification Version 1.0, Revision 1 73

S e c t i o n 7 O M I I n t e r f a c e D e f i n i t i o n s
7.26 omi.ProductResource
Managed objects that implement this mix-in interface can report product level
information about their managed resource.

Attributes

Operations
None

Notifications
None

Name Access Description

string ProductVendor RO The vendor of the resource software

string ProductSuiteName RO The name of the resource product suite

string ProductResourceName RO The product name of the resource software

string ProductVersion RO The version number of the resource software

string ProductPatchLevel RO The patch level for the resource software
74 Open Management Interface Specification Version 1.0, Revision 1

 omi.ProductResource
This page intentionally left blank.
Open Management Interface Specification Version 1.0, Revision 1 75

S e c t i o n 7 O M I I n t e r f a c e D e f i n i t i o n s
76 Open Management Interface Specification Version 1.0, Revision 1

Section 8 API Overview
The OMI API describes how management clients can communicate with an OMI server to
browse and manipulate OMI managed objects. The API uses the standards SOAP, XML,
HTTP, and HTTPS to provide network connectivity and language neutrality.

8.1 API Model
The OMI API has a simple request response model. An OMI client issues requests using
SOAP messages and receives SOAP messages in response. If there is an error in the
request or with the processing of the request, a SOAP Fault message is returned.

Figure 8-1 Request/Response Diagram

The functionality available through the OMI API includes:

Get the root managed object

Get the description of a managed object

Get managed object attributes

Invoke a managed object operation

Browse the management model via managed object relations

Get notifications of managed object and resource activity

Command-Request

Command-Response

O
M
I

O
M
I

Command-Request

SOAP-Fault-Response

Request / Response Exchange Request / Fault Exchange
Open Management Interface Specification Version 1.0, Revision 1 77

S e c t i o n 8 A P I O v e r v i e w
8.2 Object Description
Object descriptions include everything about an object except the current values of its
attributes. An object’s description should never change for a given version of a managed
object. The OMI client can safely cache a local copy of an object description to avoid
requesting it repeatedly.

The object description contains the following information:

Interface – The list of OMI interfaces supported by the object. The first interface in the
list is the most-derived interface.

Description – A description of the most-derived interface.

Display name – A short name for the most-derived interface.

Attributes – The list of attributes available on the object. Each attribute has a name, a
data type, and a description. The attribute’s access mode and any metric details are
also included.

Operations – The list of operations supported by the object. Each operation has a
name, a parameter list, a return type, and a description. The parameter list includes
parameter names and data types.

Notifications – The set of notification types used by the object.

8.3 Complex Data Types
Sequence values will be encoded as a series of “<seq>” elements inside an attributeValue,
operationResult, or operationParameter. The seq elements will be nested for multi-
dimensional sequences.

To get the description of a structured value, use getObjectDescription on the structure’s
object name. A structure will not have an interface element in its description.

8.4 Notifications
OMI clients get notifications from the OMI server using the API functions
registerNotificationInterest, getNotifications, and registerNotificationListener. Before
getting notifications, the client must register interest in the set of managed objects from
which they want to get notifications. Next the client can get notifications using the “pull”
or “push” methods.

Locale sensitive data in the notification will be based on the client’s preferred locale. For
“pull” mode, the preferred locale is determined from each getNotifications request. For
“push” mode, the preferred locale is determined from the registerNotificationListener
request.
78 Open Management Interface Specification Version 1.0, Revision 1

 Internationalization
8.4.1 Pull
The client can pull notifications from the OMI server using getNotifications. The function
returns zero or more notifications based on the parameters to the call and the available
notifications. If there are no notifications available, then the function returns immediately.

8.4.2 Push
The OMI server can push notifications to an HTTP URL on the OMI client. The OMI client
registers the URL with registerNotificationListener. The URL must be “http.” The OMI
server will make an HTTP SOAP invocation to this URL when notifications are available.
When the OMI client returns a response to the SOAP request, the OMI Server will send
the next set of notifications in another SOAP request. The notifications will proceed like
this through increasing serial numbers.

8.4.3 Guaranteed Delivery
OMI notifications may have the quality of guaranteed delivery. If the OMI client does go
down, when it starts up again, it can get all notifications, in order, from the point that it
went down. This is achieved through the use of the notification serial numbers.

An OMI client can achieve guaranteed delivery by keeping track of the last serial number
it successfully processed. When the OMI client asks for more notifications, it supplies the
starting serial number. This should be the last serial number processed plus one. The
OMI server will return available notifications starting with that serial number.

If notification processing involves committable storage (such as a database), then the OMI
client should store the last serial number in the same transaction as the processed data.
When the OMI client restarts, it can get the last serial number from its storage and use that
to set the starting serial number. If the last transaction did not commit, then the previous
value of the last serial number will be in storage and the “missing” notifications will be
retrieved first.

8.5 Internationalization

8.5.1 Preferred Locale
The OMI client can indicate its preferred language locale in the Accept-Language HTTP
header. The Accept-Language value should be a single language tag as per RFC1766. For
example:

Accept-Language: ja
Open Management Interface Specification Version 1.0, Revision 1 79

S e c t i o n 8 A P I O v e r v i e w
8.5.2 Locale Usage
Elements with locale sensitive data have an optional “lang” attribute. If this attribute
appears on a container element (such as objectDescription) then all enclosed locale
sensitive elements will use that locale. An enclosed element may have its own “lang”
attribute to override an enclosing locale. If the locale of a value is unknown, the “lang”
attribute will be missing or set to an empty string. The following OMI API elements may
contain locale sensitive values:

description

displayName

message

correctiveMessage

attributeValue

operationResult

operationParam

The OMI Client can send locale sensitive data in the attributeValue and operationParam
elements. However the OMI server cannot guarantee that the locale will be used or
correctly interpreted by a managed resource.

8.6 Security
If a request is restricted by access controls, the OMI server will return E_accessDenied.

8.6.1 Sessions
OMI clients must maintain a session with the OMI server. The session tracks notification
interest and may be authorized for certain actions. The OMI server will assign a session id
when a client first contacts the server. The client should send the session id with every
subsequent request.

Sessions will be canceled when they time-out or the OMI server stops. The OMI client
may receive an authentication error if it uses a canceled session id. Alternatively, the OMI
server may return a new session id for use on subsequent requests. A new session can be
created at any time, but the notification interest and any listener must be registered again.

The OMI server must use HTTP cookies to implement sessions. If the OMI client follows
standard cookie processing rules, then sessions will be managed correctly. An example of
HTTP cookie usage follows.
80 Open Management Interface Specification Version 1.0, Revision 1

 Security
HTTP Session Cookie Example

The session id is passed between client and server using an HTTP Cookie. When the
client first contacts the OMI server, a Set-Cookie HTTP header will be included in the
response. The cookie name will be “ssnid” and the value will be the session id. The
cookie will also have a path attribute set to the URI of the OMI server. For example:

Set-Cookie: ssnid=1234567890; path=/omi-server;

The OMI client should send the session id in an HTTP header with every subsequent
request made to the OMI server. For example:

Cookie: ssnid=1234567890

The session id can be any string, not necessarily a number.

A new session can be created by simply making a request that does not include the Cookie
HTTP header. Better performance can be achieved if a session is reused for multiple
requests.

Listener Sessions

OMI Clients using the push model for notifications will receive a session id with each
HTTP request from the OMI Server. The session id will be the same as the session id of
the client that called registerNotificationListener. The client should return an error to
requests that use an unexpected session id.

8.6.2 Authentication
The OMI server may support a simple user, password authentication mechanism. The
mechanism uses the HTTP 1.0 Basic Authentication protocol. The protocol is reviewed
here for convenience. A concise definition of Basic Auth can be found in the HTTP 1.0
informational RFC (RFC 1945).

If authentication is required to access an OMI server, any unauthorized request will
receive an HTTP “401 Access Denied” error in response. The OMI client should acquire a
user name and password and resend the request with an “Authorization” HTTP header.
The syntax of the Authorization header is:

Authorization: Basic base64-encoded-user:password

The base64-encoded-user:password is the user name followed by a colon (‘:’) followed by the
password, then base64 encoded.

If the user name is unknown or the password does not match, then the server responds
with HTTP “401 Invalid credentials”.

If the authentication is successful, then the request is processed and a response is returned
as normal. Each subsequent request must include the Authorization HTTP header if
required.
Open Management Interface Specification Version 1.0, Revision 1 81

S e c t i o n 8 A P I O v e r v i e w
This page intentionally left blank.
82 Open Management Interface Specification Version 1.0, Revision 1

Section 9 SOAP Usage
The OMI API is based on SOAP 1.1 to implement remote procedure calls. The OMI API
uses SOAP Envelope (DOC), but not SOAP Encoding (RPC). The API generally conforms
to SOAP RPC, but does not use the SOAP Array encoding.

A SOAP request is made by sending a request message and waiting for the result
message. The request must include SOAP Envelope, Header, and Body elements.

9.1 XML Namespace
The namespace for the OMI API is “urn:omi-org:api”. The top level OMI elements in
each message must have an xmlns attribute equal to the OMI API URN.

Name space qualifiers, also known as name space prefixes, may be used by the OMI
client, but are not required.

9.2 Envelope
The Envelope element encloses all request and result messages. A message must have one
Envelope. The Envelope must contain one Body element. A request message must have a
Header element in the Envelope.

9.3 Header
The Header element contains data context information not related to the request being
made. OMI defines one header element, omiHeader that must contain a version element.
The version must be “1.0”. The Header is not required on result messages.

<?xml version="1.0" encoding="UTF-8" ?>
<Envelope xmlns="http://schemas.xmlsoaporg.org/soap/envelope/">

<Header>
<omiHeader xmlns=”urn:omi-org:api”>

<version>1.0</version>
</omiHeader>

</Header>
<Body> … </Body>

</Envelope>
Open Management Interface Specification Version 1.0, Revision 1 83

S e c t i o n 9 S O A P U s a g e
9.4 Body
The SOAP Envelope must contain one Body element in request and result messages. On a
request, the Body contains one OMI API function element. On a result, the Body contains
one OMI API element.

For example, a getRootObject request would look like this:

The result of getRootObject would look like this:

9.5 SOAP Usage over HTTP

9.5.1 Request
SOAP request messages are sent using an HTTP request. The request URI is
implementation dependent, but should be the same for all requests to a given OMI server.

<?xml version="1.0" encoding="UTF-8" ?>
<Envelope xmlns="http://schemas.xmlsoaporg.org/soap/envelope/">

<Header> … </Header>
<Body>

… request or results here …
</Body>

</Envelope>

<?xml version="1.0" encoding="UTF-8" ?>
<Envelope xmlns="http://schemas.xmlsoaporg.org/soap/envelope/">

<Header>
<omiHeader xmlns=”urn:omi-org:api”>

<version>1.0</version>
</omiHeader>

</Header>
<Body>

<getRootObject xmlns=”urn:omi-org:api”>
</getRootObject>

</Body>
</Envelope>

<?xml version="1.0" encoding="UTF-8" ?>
<Envelope xmlns="http://schemas.xmlsoaporg.org/soap/envelope/">

<Body>
<objectName xmlns=”urn:omi-org:api”>

object-name
</objectName>

</Body>
</Envelope>
84 Open Management Interface Specification Version 1.0, Revision 1

 SOAP Usage over HTTP
SOAP 1.1 requires the presence of the HTTP header field named SOAPAction when an
HTTP binding is specified. OMI requires the presence of this HTTP Header field to be
SOAP 1.1 compliant. For OMI, the field must be set to “OMI”.

The following shows an HTTP request containing a getRootObject request message.

9.5.2 Response
The response to an OMI request follows the SOAP 1.1 HTTP binding. Response messages
do not need Header elements.

POST /someOMIServer HTTP/1.0
Host: somehost
Content-Type: text/xml; charset="utf-8"
Content-Length: nnnn
SOAPAction: "OMI"

<?xml version="1.0" encoding="UTF-8" ?>
<Envelope xmlns="http://schemas.xmlsoap.org/soap/envelope/">

<Header>
<omiHeader xmlns=”urn:omi-org:api”><version>1.0</version></omiHeader>

</Header>
<Body>

<getRootObject xmlns=”urn:omi-org:api”>
</getRootObject>

</Body>
</Envelope>

HTTP/1.0 200 OK
Content-Type: text/xml; charset=”utf-8”
Content-Length: nnnn

<Envelope xmlns="http://schemas.xmlsoap.org/soap/envelope/">
<Body>

<objectName xmlns=”urn:omi-org:api”>
…

</objectName>
</Body>

</Envelope>
Open Management Interface Specification Version 1.0, Revision 1 85

S e c t i o n 9 S O A P U s a g e
9.6 Errors
Errors encountered by the OMI server while servicing a request are returned as SOAP
Faults messages containing the error detail.

A SOAP Fault includes a fault code, a fault string, and error detail.

Note: The omiError can contain multiple error elements to describe multiple error
conditions.

If the error is from the OMI Server or infrastructure, the SOAP Fault code will use the
prefix “Client.”. The fault detail will include an omiError. The omiError will include the
error number, the error code, and a descriptive error message. The omiError may contain
multiple error elements to describe multiple failures.

The SOAP fault code, OMI error number, and error code are locale neutral. The fault
string and error message are locale sensitive.

9.6.1 SOAP Faults
The following standard SOAP fault codes will be used:

VersionMismatch: An invalid namespace was referenced for the SOAP envelope
element. The valid namespace is http://www.xmlsoap.org/soap/envelope/.

Client: A message was incorrectly formed or did not contain enough information to
perform more exhaustive error reporting. The OMI server may return more specific
error codes by appending dot (‘.’) separated strings to ‘Client’.

9.6.2 Message Ids
Messages may have an id in addition to the message text. Most systems have error or
message numbers that correlate to a specific message. Some times these are used to
lookup the message text from a catalog. If available, they can often be found in the

<?xml version="1.0" encoding="UTF-8" ?>
<Envelope xmlns="http://schemas.xmlsoaporg.org/soap/envelope/">

<Body>
<Fault>

<faultcode>Client</faultcode>
<faultstring>Client Error</faultstring>
<detail>

<omiError xmlns=”urn:omi-org:api”>
…

</omiError>
</detail>

</Fault>
</Body>

</Envelope>
86 Open Management Interface Specification Version 1.0, Revision 1

 Errors
system’s documentation or operations manual where more detailed diagnostic
information is available.

If available, the managed object will put the message id in the “msgId” attribute of the
message element. The message id may be any string in any format.

9.6.3 Error Reference

Code Name Description

1001 E_invalidObjectName Managed object not found.

Object name has invalid format.

1002 E_invalidOperation Operation does not exist on managed object.

1003 E_missingParam An expected API element or operation parameter is
missing.

1004 E_invalidParam Unexpected API element in request.

Parameter name does not match managed object
operation signature.

1005 E_invokeFailed General failure invoking managed object operation.

1006 E_invalidAttribute Unknown managed object attribute.

Attempting to read attribute that is not readable.

1007 E_immutableAttribute Attempting to write managed object attribute that is not
writable.

1008 E_noInterest No notification interest has been registered.

1009 reserved

1010 E_canceled Blocking or asynchronous request has been canceled.

1011 E_invalidValue API element value is invalid or out of range.

Managed object operation parameter is invalid or the
wrong data type.

1012 E_noConnect OMI server could not make the requested connection.

1013 E_invalidResponse OMI server received wrong or poorly formatted response.

1014 E_unavailableAttribute Managed object attribute is temporarily unavailable.

1015 E_unavailableOperation Managed object operation is temporarily unavailable.
Open Management Interface Specification Version 1.0, Revision 1 87

S e c t i o n 9 S O A P U s a g e
9.6.4 Errors Returned by All Functions
The following errors can be returned by all OMI functions.

Code Name Description

1100 E_unsupportedVersion The OMI server does support the required version of
OMI.

1101 E_fatal OMI server encountered an unrecoverable error.
Behavior of the OMI server is undefined.

1102 E_accessDenied The request cannot be fulfilled due to access controls.

1103 E_resourceException The managed resource returned an error or exception
while the managed object was servicing the request.

1104 E_invalidFormat Request or API element was not in the expected data
format.

1105 E_missingElement An API element is missing from the request.

1106 E_invalidCommand An unknown OMI API function was requested.

1107 E_serverException An internal OMI server error occurred.

1108 E_exists The requested object already exists.

1109 E_notCompliant Managed object implementation is not compliant.

1110 E_noImpl Managed object implementation is missing.

Request cannot be completed because the implementation
is missing or required services are missing.

1111 E_implException Unexpect error or exception from the managed object
implementation.

1112 E_notFound The requested object does not exist.

1113 E_busy The request cannot be completed because the server or
managed object are temporarily unavailable.
88 Open Management Interface Specification Version 1.0, Revision 1

 Errors
This page intentionally left blank.
Open Management Interface Specification Version 1.0, Revision 1 89

S e c t i o n 9 S O A P U s a g e
90 Open Management Interface Specification Version 1.0, Revision 1

Section 10 API Function Definitions
The API functions are request messages returning a specific result message. The messages
are described using an XML short-hand.

An element with a trailing ‘</>’ is short-hand for <element>value</element>.

 Brackets (‘[]’) around an element make the element optional.

An ellipsis (‘…’) indicates the preceding element may be repeated.

Sets of elements can be grouped with parenthesis ‘()’.

 A pipe (‘|’) indicates that either the preceding or following element can be used, but
not both.

The request messages described in this section must be implemented by OMI compliant
servers. All functions have synchronous behavior.

API Data Format
omi-severity
Must be one of: critical, major, minor, warning, info, ok, indeterminate

date
Absolute date and time given in a ISO 8601 UTC format. The exact format supported is:

YYYY-MM-DDThh:mm:ss.sssZ

The 'T' and 'Z' are fixed parts of the format and will always be present. The 'T' separates
the date and time portions. The 'Z' indicates UTC (GMT) time.

serial-number
A unique positive integral value identifying a notification. The value will be no larger
than can be stored in a signed 64-bit value.

metric-type
Must be one of: Gauge or Counter

units
One or more unit terms separated by slashes (‘/’).

factors
One or more factor terms or numbers separated by slashes (‘/’).
Open Management Interface Specification Version 1.0, Revision 1 91

S e c t i o n 1 0 A P I F u n c t i o n D e f i n i t i o n s
10.1 getRootObject
The getRootObject message returns an objectName message with the object name to the
root object.

Syntax
<getRootObject xmlns=”urn:omi-org:api”>
</getRootObject>

Arguments
None

Returns
This function returns an objectName message on success.

Errors
None
92 Open Management Interface Specification Version 1.0, Revision 1

 getObjectDescription
10.2 getObjectDescription
The getObjectDescription message returns an objectDescription message that contains the
attributes, operations, and notifications available for the managed object.

Syntax
<getObjectDescription xmlns=”urn:omi-org:api”>

<objectName></> …
</getObjectDescription>

Arguments

Returns
This function returns an objectDescriptionSet message containing an
objectDescription for each supplied objectName.

Errors

Name Description

objectName One or more object-name values that represent
specific managed objects.

— E_invalidObjectName One of the supplied objectName did not match
any known managed object. No partial results
are returned.
Open Management Interface Specification Version 1.0, Revision 1 93

S e c t i o n 1 0 A P I F u n c t i o n D e f i n i t i o n s
10.3 getObjectRelations
The getObjectRelations message returns managed object relationships.

Syntax
<getObjectRelations xmlns=”urn:omi-org:api”>

<objectName></> …
</getObjectRelations>

Arguments

Returns
This function returns an objectRelations message for each supplied objectName.

Errors

Name Description

objectName One or more object-name values that represent
specific managed objects.

— E_invalidObjectName One of the supplied objectName did not
match any known managed object. No
partial results are returned.
94 Open Management Interface Specification Version 1.0, Revision 1

 invokeOperation
10.4 invokeOperation
The invokeOperation message causes an operation to be called on a managed object.

Syntax
<invokeOperation xmlns=”urn:omi-org:api”>

<objectName></>
<operation>operation-name</>
[<operationParam></> …]

</invokeOperation>

Arguments

Behavior
An operation is invoked on the given object. This function returns when the
operation completes.

Returns
This function returns an operationResult message on success. If the operation
returned a value, the value will be encoded into the operationResult.

If there was an error in the operation (as opposed to an OMI error), an
E_operationError is returned. The message will contain a vendor specific error code
and message.

Errors

Name Description

objectName The managed object to run the operation on.

operation The operation to invoke.

operationParam One or more parameters to the operation.

— E_invalidObjectName One of the supplied objectName did not match
any known managed object. No partial results
are returned.

— E_invalidOperation The operation is not supported by the
managed object.

— E_missingParam A required parameter for the operation is
missing.

— E_invalidParam One of the parameters does not match the type
or name of an operation parameter.
Open Management Interface Specification Version 1.0, Revision 1 95

S e c t i o n 1 0 A P I F u n c t i o n D e f i n i t i o n s
— E_invokeFailed An implementation specific error occurred
invoking the operation.

— E_operationError The operation itself failed with a vendor
specific error.

— E_invalidValue Parameter value did not match the operation
parameter type.
96 Open Management Interface Specification Version 1.0, Revision 1

 getAttributeValues
10.5 getAttributeValues
The getAttributeValues message returns managed object attribute values.

Syntax
<getAttributeValues xmlns=”urn:omi-org:api”>

<attributeNames>
<objectName></> …
[<attributeName>attribute-name</> …]

</attributeNames>
[<attributeNames></> …]

</getAttributeValues>

Arguments

Returns
This function returns an attributeValuesSet containing one attributeValues for each
supplied objectName in an attributeNames. If multiple attributeNames or
objectName were passed, the results will be returned in the same order as the values
passed.

Only the attribute names listed in the attributeNames will be returned. If the attribute
name list is empty, then all the attributes are returned for that managed object. If
multiple objectName appear in an attributeNames, then attribute names are required
in that attributeNames.

If the same objectName appears in multiple attributeNames, multiple attributeValues
will be returned for that objectName.

Errors
Partial results will be returned if there is a run-time error getting an attribute. The
errors will be indicated in the attributeValue element for the attribute. The element

Name Description

attributeNames One or more pairs of an object name and
attribute name list.
Open Management Interface Specification Version 1.0, Revision 1 97

S e c t i o n 1 0 A P I F u n c t i o n D e f i n i t i o n s
will have an errorNumber with the OMI error code and the attributeValue body will
contain the error message.

— E_invalidObjectName One of the supplied objectName did not
match any known managed object. No
partial results are returned.

— E_invalidAttribute One of the attribute names was not
supported by one of the managed objects.
No partial results are returned.
98 Open Management Interface Specification Version 1.0, Revision 1

 setAttributeValues
10.6 setAttributeValues
The setAttributeValues message sets attributes on managed objects.

Syntax
<setAttributeValues xmlns=”urn:omi-org:api”>

<attributeValues></> …
</setAttributeValues>

Arguments

Behavior
Set the attributes on the given objects. The attributeValues contains an objectName
and one or more attribute settings. Attributes not in the attributeValues are
unaffected by the call.

Returns
This function returns an attributeValuesSet containing one attributeValues for each
supplied attributeValues. The attributeValues will contain the value of attributes after
they have been set. A managed object may modify an attribute value to match
formatting or numeric range requirements. The OMI client can detect modified
attributes by comparing the requested attribute values with the returned attribute
values.

Errors
Partial results may be returned if there is a run-time error setting an attribute. The
errors will be indicated in the attributeValue element for the attribute. The element
will have an errorNumber with the OMI error code and the attributeValue body will
contain the error message.

Name Description

attributeValues One or more sets of attribute values.

— E_invalidObjectName One of the supplied objectName did not match
any known managed object. No attributes will
be changed.

— E_invalidAttribute One of the attribute names was not supported
by one of the managed objects. Some
attributes may have been set.
Open Management Interface Specification Version 1.0, Revision 1 99

S e c t i o n 1 0 A P I F u n c t i o n D e f i n i t i o n s
— E_immutableAttribute One of the attribute names was read-only.
Some attributes may have been set.

— E_invalidValue Attribute value did not match the attribute
type.
100 Open Management Interface Specification Version 1.0, Revision 1

 registerNotificationInterest
10.7 registerNotificationInterest
This function registers interest in receiving notifications from a set of managed objects.

Syntax
<registerNotificationInterest xmlns=”urn:omi-org:api”>

<notificationInterest mode=”inclusive”|”exclusive”>
[<objectName></> …]

</notificationInterest>
</registerNotificationInterest>

Arguments

Behavior
Registers the set of objects that will return management notifications to the next
getNotifications request or to a notification listener. The objects specified override
any previous settings.

If the mode is ‘inclusive’, then the set includes only those objects given. If the mode is
‘exclusive’, then the set includes only those objects not given.

If no objects are listed and the mode is ‘inclusive’, then all objects are of interest. If the
mode is ‘exclusive’ at least one objectName must be given.

New sessions have no notification interest.

Returns
On success, an omiSuccess is returned.

Errors

Name Description

mode registers interest or disinterest. The mode may
be ‘inclusive’ or ‘exclusive’.

objectName zero or more object names

— E_invalidObjectName One of the supplied objectName did not match
any known managed object. The notification
interest is not changed.

— E_invalidParam Exclusive mode is set, but no object names
were given.

— E_invalidValue The mode is an unknown value.
Open Management Interface Specification Version 1.0, Revision 1 101

S e c t i o n 1 0 A P I F u n c t i o n D e f i n i t i o n s
10.8 cancelNotificationInterest
This function removes all objects from the interest set.

Syntax
<cancelNotificationInterest xmlns=”urn:omi-org:api”>
</cancelNotificationInterest>

Arguments
None

Behavior
Cancel notification interest supplied in last registerNotificationInterest request. All
objects are removed from the interest list. Any pending calls to getNotifications
return E_canceled. Registered notification listeners received an E_canceled error.
Subsequent calls to getNotifications or getNotificationInterest will return
E_noInterest.

Returns
On success, an omiSuccess is returned.

Errors
None
102 Open Management Interface Specification Version 1.0, Revision 1

 getNotificationInterest
10.9 getNotificationInterest
This function returns the registered notification interest.

Syntax
<getNotificationInterest xmlns=”urn:omi-org:api”>
</getNotificationInterest>

Arguments
None

Returns
On success, notificationInterest is returned containing zero or more objectName. If
interest is registered for all objects, then no objectName will be returned.

Errors

— E_noInterest Notification interest has not been registered.
Open Management Interface Specification Version 1.0, Revision 1 103

S e c t i o n 1 0 A P I F u n c t i o n D e f i n i t i o n s
10.10 getNotificationAvailability
This function returns information about the set of notifications available to the OMI client.

Syntax
<getNotificationAvailability xmlns=”urn:omi-org:api”>
</getNotificationAvailability>

Arguments
None

Returns
On success, a notificationAvailability message is returned. The information returned
includes the serial numbers of the first and last notifications, and the time those
notifications were received by the OMI server. If there are no available notifications,
then lastSerialNumber will be zero. This information is not bound by the OMI client’s
notification interest.

Errors
None
104 Open Management Interface Specification Version 1.0, Revision 1

 getNotifications
10.11 getNotifications
This function returns notifications from objects registered with
registerNotificationInterest.

Syntax
<getNotifications mode=”poll” xmlns=”urn:omi-org:api”>

(<startSerial>serial-number</>
[<endSerial>serial-number</>]) |

(<startTime>date</>
[<endTime>date</>])

[<maxBatch>int</>]
</getNotifications>

Arguments

Behavior
The function getNotifications can return notifications based on serial numbers or a
time range. Either method may be used, but not both in the same call.

The function only returns notifications from objects set with a prior call to
registerNotificationInterest. If no objects were registered, then E_noInterest is
returned.

The maxBatch sets the maximum number of notifications to return from the request.
maxBatch must be a positive integer including zero. If maxBatch is zero or
unspecified then the OMI server assumes a default value. The OMI server may limit
the number of returned notifications based on message size or an internal maximum
batch size.

Serial Number Usage

The startSerial is a positive integral value including zero. Zero is used to
represent the lowest available serial number. The endSerial is a positive integral

Name Description

mode Determines whether the client wants blocking
or non-blocking behavior. The mode must be
‘poll’.

startSerial The serial number of the first notification to get

endSerial The serial number of the last notification to get

startTime The time of the first notification to get

endTime The time of the last notification to get

maxBatch Maximum number of notifications to return
Open Management Interface Specification Version 1.0, Revision 1 105

S e c t i o n 1 0 A P I F u n c t i o n D e f i n i t i o n s
value excluding zero. If endSerial is present, then startSerial must also be present.
If endSerial is not present, then the last serial number is assumed. The function
returns all available notifications between the given start and end serial numbers.
No notifications will be available if the start and end are both lower than the
lowest available serial number, or if the start serial number is one greater than the
last serial number.

Time Range Usage

The startTime and endTime are absolute UTC date and time specified using the
standard format. If startTime is present, then endTime is optional. If the
endTime is not present, then the current time is assumed. The time values are
refer to when the OMI server received the notification, which may be different
from the timestamp on the notification itself. The function returns all available
notifications sent at or after the startTime but before the endTime.

If no notifications are available, an empty message is returned.

Returns
Returns a notificationSet containing zero or more notification from the set of
registered objects.

Errors

— E_canceled The notification interested was canceled.

— E_invalidParam The mode attribute is an unsupported value.

— E_invalidParam Time range and serial number usage were
mixed.

— E_invalidValue The startSerial is greater than the (last serial +
1) in the notification list.

— E_noInterest No notification interest is registered.

— E_missingParam The mode is missing.

— E_missingParam None of startSerial, endSerial, startTime, or
endTime were specified.
106 Open Management Interface Specification Version 1.0, Revision 1

 registerNotificationListener
10.12 registerNotificationListener
This function sets the URL to invoke when a notification is sent from an object registered
with registerNotificationInterest.

Syntax
<registerNotificationListener xmlns=”urn:omi-org:api”>

<listener></>
<startSerial>serial-number</>
[<maxBatch>int</>]

</registerNotificationListener>

Arguments

Behavior
The OMI server will make HTTP SOAP invocations on the given URL to deliver
notifications from objects specified with registerNotificationInterest. The SOAP
message will be a notificationSet containing one or more notification elements.
Notifications will begin with startSerial and proceed with increasing serial numbers.
If startSerial is not available, then the next highest available notification will be sent.
startSerial may not be greater than the (last serial + 1) in the notification list.

The maxBatch sets the maximum number of notifications to return from the request.
maxBatch must be a positive integer including zero. If maxBatch is zero or
unspecified then the OMI server assumes a default value. The OMI server may limit
the number of returned notifications based on message size or an internal maximum
batch size.

Subsequent calls to registerNotificationListener override previous calls. Only one
notification listener may be registered at a time.

Messages to the notification listener can be stopped by calling
registerNotificationListener with an empty listener.

The listener URL must use the “http” or “https” scheme (see RFC 1738).

The OMI Server will include a session id in each SOAP invocation. The session id will
be the same as the one used to call registerNotificationListener. The session id will be
included in the HTTP header of each notification delivery for this registration. The

Name Description

listener The URL of the notification listener

startSerial Serial number of the first notification to send

maxBatch Maximum number of notifications to return
Open Management Interface Specification Version 1.0, Revision 1 107

S e c t i o n 1 0 A P I F u n c t i o n D e f i n i t i o n s
OMI Client should ignore notifications using a different session id than the one most
recently registered.

The OMI Server will send an “omi.test” notification to the listener to verify
connectivity. The test is done before registerNotificationListener returns a response
message. If the test fails to connect to the URL, then E_noConnect is returned. If the
listener fails to respond or responds incorrectly, then E_invalidResponse is returned.
The test notification will have serial number 0 and use the client’s session id.

Client Response

The OMI client listener must return a valid SOAP response to each set of
notifications. Normally, the response has an empty SOAP Body. When the OMI
server receives the response, it will send the next notifications, if any are
available. The OMI client can alter the flow of notifications by returning different
responses. To change the next serial number, the client can include a startSerial
in the SOAP Body of its response. The server will send notifications from the
given serial number. To stop sending notifications to this listener, the client can
return HTTP status 403 (Forbidden). The body of the HTTP request can be empty.

Returns
On success, omiSuccess is returned.

Errors

Note: Any existing registered listener is unaffected if an error is returned.

— E_invalidValue The URL is not correctly formatted.

— E_invalidValue The startSerial is negative or not a number.

— E_invalidValue The startSerial is greater than the (last serial +
1) in the notification list.

— E_noInterest No notification interest is registered.

— E_noConnect Could not connect to the listener server

— E_invalidResponse The listener returned an invalid response
108 Open Management Interface Specification Version 1.0, Revision 1

Section 11 Structure Reference

11.1 objectName
<objectName>object-name</objectName>

11.2 objectDescriptionSet
<objectDescriptionSet>

[<objectDescription></> …]
</objectDescriptionSet>

11.3 objectDescription
<objectDescription object=”object-name” [lang=”language”]>

<interface>omi-interface-name</> …
[<description>class-description</>]
[<displayName>class-display-name</>]
[<attributeInfo></> …]
[<operationInfo></> …]
[<notificationInfo></> …]

</objectDescription>

11.4 attributeInfo
<attributeInfo name=”attribute-name” dataType=”data-type”

[access=readwrite|writeonly] [lang=”language”]>
[<description>attribute-description</>]
[<displayName>display-name</>]
[<metric>metric</>]

</attributeInfo>

11.5 operationInfo
<operationInfo name=”operation-name” [lang=”language”]>

[<description>operation-description</>]
[<displayName>display-name</>]
[<operationParamType></> …]
[<operationResultType>data-type</>]

</operationInfo>

11.6 operationParamType
<operationParamType name=”parameter-name“ dataType=”data-type” [lang=”language”]>

[<description>param-description</>]
[<displayName>display-name</>]

</operationParamType>
Open Management Interface Specification Version 1.0, Revision 1 109

S e c t i o n 11 S t r u c t u r e R e f e r e n c e
11.7 notificationInfo
<notificationInfo [lang=”language”]>

<type>notification-type</>
[<description>notification-description</>]
[<displayName>display-name</>]

</notificationInfo>

11.8 objectRelations
<objectRelations object=”object-name”>

[<relation relId=”relation-id” [relType=”from-type”] >
[<role relType=”to-type”> [<objectName>related-object-name</> …] </role>
…]

</relation>
…]

</objectRelations>

11.9 operationParam
<operationParam name=”parameter-name” dataType=”parameter-type”

[lang=”language”]>
parameter-value

</operationParam>

11.10 operationResult
<operationResult [lang=”language”]>

…
</operationResult>

11.11 attributeValuesSet
<attributeValuesSet>

[<attributeValues></> …]
<\attributeValuesSet>

11.12 attributeValues
<attributeValues>

<objectName></>
[<attributeValue></> …]

</attributeValues>
110 Open Management Interface Specification Version 1.0, Revision 1

 attributeValue
11.13 attributeValue
<attributeValue name=”attribute-name” [errorNumber=”omi-error-code”]

[lang=”language”]>
attribute-value

</attributeValue>

11.14 notificationInterest
<notificationInterest mode=inclusive|exclusive>

[<objectName></> …]
</notificationInterest>

11.15 notificationAvailability
<notificationAvailability>

<lastSerial>serial-number</>
<firstSerial>serial-number</>
<nextSerial>serial-number</>
<lastTime>GMT-time</>
<firstTime>GMT-time</>

</notificationAvailability>

11.16 notificationSet
<notificationSet>

[<notification></> …]
</notificationSet>

11.17 notification
<notification>

<sourceObject>object-name</>
<type>notification-type</>
<severity>omi-severity</>
<serial>serial-number</>
<timeStamp>GMT-time</>
<hostName></>
<interface></>
[<origObject>object-name</>]
[<resourceTag key=”tag-key”>tag-value</> …]
[<correctiveMessage [lang=”language”] [msgId=”msg-id”]>message-text</>]
[<message [lang=”language”] [msgId=”msg-id”]>message-text</> …]
[<detail> … </detail>]

</notification>

11.18 omiSuccess
<omiSuccess/>
Open Management Interface Specification Version 1.0, Revision 1 111

S e c t i o n 11 S t r u c t u r e R e f e r e n c e
11.19 omiError
<omiError>

<error number=”omi-error-number”>
<message [lang=”language”] [msgId=”error-msg-id”]>

error-message
</message>
[<detail>error-detail</detail> …]

</error>
[<error></> …]

</omiError>
112 Open Management Interface Specification Version 1.0, Revision 1

Section 12 API Examples

12.1 Populate Console Object Tree
One of the first things an OMI application is likely to do is traverse the tree of managed
objects. The procedure starts with the management server’s root object and proceeds
recursively through an object’s children until all managed objects have been found.

The procedure also gathers information about each of the objects and their current
attribute values.

1 getRootObject
Returns root-object-name, use this object name in the next step

2 getObjectRelations(objectName=object-name)
Returns a list of “children”

3 getObjectDescription(objectName=child-object-name …)
Returns objectDescription for all the children.

4 getAttributeValues(objectName=child-object-name …)
Returns attributeValues for all the children.

5 getObjectRelations(objectName=child-object-name …)
Returns objectRelations for all the children.

6 For each child, goto step #2 with the child object name

12.2 View/Edit Attributes of One Object
The OMI application will already know all the attributes of an object from the
objectDescription obtained when it traversed the object tree. The attribute info includes a
name, description, data type, and read/write access mode. The only thing missing is the
current values of the attributes.

1 getAttributeValues(attributeNames=(objectName=object-name))
Returns attributeValues containing all the attributes for the object. No attribute
names were given, so all the values were returned.

The application now has everything it needs to present an attribute browser/editor. If
some of the attributes are changed, then they can be set on the managed object.

2 setAttributeValues(attributeValues=(objectName=object-name,
attributeValue(ObjectLocation=”room 212”), attributeValue(ContactInfo=”x5555”))
Returns omiSuccess if the attributes were set.
Open Management Interface Specification Version 1.0, Revision 1 113

S e c t i o n 1 2 A P I E x a m p l e s
12.3 View/Edit Attributes of Multiple Objects
If the application wishes to present an attribute editor for multiple objects, then it will
need to determine the set of attributes that appear in all selected objects. This can be
determined by comparing the objectDescriptions returned by getObjectDescription.

The OMI API supports getting the same attributes and values from multiple objects with
one API call. This can be done by including multiple objectName in one attributeNames
passed to getAttributeValues. The attributeNames must also include a list of attribute
names to get from the objects.

1 getAttributeValues(attributeNames=(objectName=object-ref1,
objectName=object-ref2, attributeName=ObjectLocation,
attributeName=ContactInfo))
Returns two attributeValues, one for object-ref1 and one for object-ref2. Each
attributeValues contains the values for the ObjectLocation and ContactInfo attributes
of their respective objects.

Presumably, an attribute editor for multiple objects would allow a single value to be
set for an attribute across the selected objects. OMI can set this on the managed
objects by passing multiple attributeValues to setAttributeValues.

2 setAttributeValues(attributeValues=(objectName=object-ref1,
attributeValue(ObjectLocation=”room 212”)), attributeValues=(
objectName=object-ref2, attributeValue(ObjectLocation=”room 212”))
Returns omiSuccess if the attributes were set.
114 Open Management Interface Specification Version 1.0, Revision 1

 Sample XML
12.4 Sample XML
Example operations with full XML.

12.4.1 Get The Root Object Example
1 getRootObject request message

2 getRootObject response message

12.4.2 Get The Object Description Example
This sample gets the description for the root managed object.

1 getObjectDescription request message

<?xml version="1.0" encoding="UTF-8" ?>
<Envelope xmlns="http://schemas.xmlsoap.org/soap/envelope/">

<Header>
<omiHeader xmlns=”urn:omi-org:api”>

<version>1.0</version>
</omiHeader>

</Header>
<Body>

<getRootObject xmlns=”urn:omi-org:api”>
</getRootObject>

</Body>
</Envelope>

<Envelope xmlns="http://schemas.xmlsoap.org/soap/envelope/">
<Body>

<objectName xmlns=”urn:omi-org:api”>
omi.wm.Root:name=Root

</objectName>
</Body>

<?xml version="1.0" encoding="UTF-8" ?>
<Envelope xmlns="http://schemas.xmlsoap.org/soap/envelope/">

<Header>
<omiHeader xmlns=”urn:omi-org:api”>

<version>1.0</version>
</omiHeader>
</Header>
<Body>

<getObjectDescription>
<objectName>omi.wm.Root:name=Root</objectName>

</getObjectDescription>
</Body>

</Envelope>
Open Management Interface Specification Version 1.0, Revision 1 115

S e c t i o n 1 2 A P I E x a m p l e s
2 getObjectDescription response message

<?xml version="1.0" encoding="UTF-8"?>
<Envelope xmlns="http://schemas.xmlsoap.org/soap/envelope/">
 <Body>

<objectDescriptionSet>
 <objectDescription object="omi.wm.Root:name=Root" lang="en-US">
 <interface>omi.wm.RootManagedObject</interface>
 <interface>omi.RootManagedObject</interface>
 <interface>omi.Folder</interface>
 <interface>omi.BaseObject</interface>
 <displayName>RootManagedObject</displayName>
 <description>webMethods implementation of RootManagedObject</description>
 <attributeInfo name="ImplementationVersion" dataType=”string”>
 <displayName>ImplementationVersion</displayName>
 <description>The implementation version. This should be the version of

the resource, not the version of the the OMI MBean.</description>
 </attributeInfo>
 <attributeInfo name="ImplementationVendor" dataType=”string”>
 <displayName>ImplementationVendor</displayName>
 <description>The vendor (company) that implemented the managed object.

This should be the vendor of the resource, not the vendor that wrote
the OMI MBean.</description>

 </attributeInfo>
 <attributeInfo name="DisplayName" dataType=”string” access=”readwrite”>
 <displayName>DisplayName</displayName>
 <description>The short name of this managed object suitable for user
116 Open Management Interface Specification Version 1.0, Revision 1

 Sample XML
display.</description>
 </attributeInfo>
 <attributeInfo name="ObjectDescription" dataType=”string”

access=”readwrite”>
 <displayName>ObjectDescription</displayName>
 <description>A description of this managed object suitable for user

display.</description>
 </attributeInfo>
 <attributeInfo name="ContactInfo" dataType=”string” access=”readwrite”>
 <displayName>ContactInfo</displayName>
 <description>The contact information for the person responsible for this

managed object.</description>
 </attributeInfo>
 <attributeInfo name="Name" dataType=”string”>
 <displayName>Name</displayName>
 <description>Attribute exposed for management</description>
 </attributeInfo>
 <attributeInfo name="Extension" dataType=”boolean”>
 <displayName>Extension</displayName>
 <description>The extension flag indicates if the folder is part of

standard OMI containment structure</description>
 </attributeInfo>
 <notificationInfo>
 <type>omi.register</type>
 <displayName>register</displayName>
 <description>Notification type to report that a managed object has been

registered with the OMI server.</description>
 </notificationInfo>
 <notificationInfo>
 <type>omi.unregister</type>
 <displayName>unregister</displayName>
 <description>Notification type to report that a managed object has been

unregistered with the OMI server.</description>
 </notificationInfo>
 <notificationInfo>
 <type>omi.relation.create</type>
 <displayName>relation.create</displayName>
 <description>Notification type to report that a relation has been

created.</description>
 </notificationInfo>
 <notificationInfo>
 <type>omi.relation.update</type>
 <displayName>relation.update</displayName>
 <description>Notification type to report that a relation has been

2 getObjectDescription response message (Continued)
Open Management Interface Specification Version 1.0, Revision 1 117

S e c t i o n 1 2 A P I E x a m p l e s
updated.</description>
 </notificationInfo>
 <notificationInfo>
 <type>omi.relation.delete</type>
 <displayName>relation.delete</displayName>
 <description>Notification type to report that a relation has been

deleted.</description>
 </notificationInfo>
 </objectDescription>

</objectDescriptionSet>
 </Body>
</Envelope>

2 getObjectDescription response message (Continued)
118 Open Management Interface Specification Version 1.0, Revision 1

	Contents
	Section 1 Preface
	Section 2 Overview
	2.1 Role of OMI
	2.2 Basic Architecture
	2.3 OMI Components

	Section 3 Managed Objects
	3.1 OMI Managed Object
	3.2 OMI Interface
	3.3 Object Names
	3.4 Managed Object Implementation

	Section 4 Notifications
	4.1 Notification Type
	4.2 Severity
	4.3 Messages
	4.4 Originating Object
	4.5 Notification Detail
	4.6 Resource Tags

	Section 5 Management Model
	5.1 OMI Object Relationships

	Section 6 OMI Server
	6.1 OMI API
	6.2 Managed Objects
	6.3 Management Model
	6.4 Notifications
	6.5 Security
	6.6 Internationalization

	Section 7 OMI Interface Definitions
	7.1 OMI Interface Hierarchy
	7.2 omi.BaseObject
	7.3 omi.ManagedObject
	7.4 omi.PhysicalResource
	7.5 omi.SystemResource
	7.6 omi.SystemProcess
	7.7 omi.PlatformServer
	7.8 omi.OmiServer
	7.9 omi.Adapter
	7.10 omi.LogicalResource
	7.11 omi.BusinessProcess
	7.12 omi.BusinessProcessStep
	7.13 omi.Service
	7.14 omi.WebService
	7.15 omi.Domain
	7.16 omi.Cluster
	7.17 omi.Folder
	7.18 omi.RootManagedObject
	7.19 omi.ExternalObject
	7.20 omi.Host
	7.21 omi.PackagedApplication
	7.22 omi.Discovery
	7.23 omi.DiscoverySearch
	7.24 omi.DiscoveryMonitor
	7.25 omi.EnabledResource
	7.26 omi.ProductResource

	Section 8 API Overview
	8.1 API Model
	8.2 Object Description
	8.3 Complex Data Types
	8.4 Notifications
	8.5 Internationalization
	8.6 Security

	Section 9 SOAP Usage
	9.1 XML Namespace
	9.2 Envelope
	9.3 Header
	9.4 Body
	9.5 SOAP Usage over HTTP
	9.6 Errors

	Section 10 API Function Definitions
	10.1 getRootObject
	10.2 getObjectDescription
	10.3 getObjectRelations
	10.4 invokeOperation
	10.5 getAttributeValues
	10.6 setAttributeValues
	10.7 registerNotificationInterest
	10.8 cancelNotificationInterest
	10.9 getNotificationInterest
	10.10 getNotificationAvailability
	10.11 getNotifications
	10.12 registerNotificationListener

	Section 11 Structure Reference
	11.1 objectName
	11.2 objectDescriptionSet
	11.3 objectDescription
	11.4 attributeInfo
	11.5 operationInfo
	11.6 operationParamType
	11.7 notificationInfo
	11.8 objectRelations
	11.9 operationParam
	11.10 operationResult
	11.11 attributeValuesSet
	11.12 attributeValues
	11.13 attributeValue
	11.14 notificationInterest
	11.15 notificationAvailability
	11.16 notificationSet
	11.17 notification
	11.18 omiSuccess
	11.19 omiError

	Section 12 API Examples
	12.1 Populate Console Object Tree
	12.2 View/Edit Attributes of One Object
	12.3 View/Edit Attributes of Multiple Objects
	12.4 Sample XML

