
White Paper OAGIS Implementation Using ebXML CPP, CPA, and BPSS specifications

Version 1.03 Page 1 of 64 Last Modified: 9/27/2001

OAGIS Implementation Using the
ebXML CPP, CPA and BPSS
specifications v1.0

White Paper OAGIS Implementation Using ebXML CPP, CPA, and BPSS specifications

Version 1.03 Page 2 of 64 Last Modified: 9/27/2001

Table of Contents
Introduction 5

The Open Applications Group 5
ebXML 5
Rationale 7
Scope 8
Requirements 8

Overall Approach 9
ebXML Support for Third-Party Content 9
Background 10

High-Level Comparison of ebXML and OAGI Specification Elements 10
Why Collaboration Definitions Are Important? 11

Specifying ebXML Business Collaboration from OAGI Scenario Diagrams 12
ebXML Semantics 12
B2B Collaboration Definitions 15

Business Transaction Definitions 16
Document Definitions 19
Business Collaboration Choreography 21
Condition Expressions 27
Business Collaboration Failures 27
ebXML Signals 32
Patterns 36
Multiparty Collaborations 36

Application-to-Application Collaboration Definitions 38
The ebXML Metamodel Subset 38
DTD 41
Example 46

ebXML Collaboration Protocol Profile and Agreement 48
Collaboration Protocol Profile 48
Collaboration Protocol Agreement 51

Bringing it All Together 52
The Role of the OAGI Organization in Specifying CPPs and CPAs 52
ebXML Functional Phases 53

Appendix 1: ebXML Deliverables (www.ebXML.org) 55
Technical Specifications 55
Technical Reports 57
Reference Materials 58
White Papers 58

Appendix 2: OAGI Scenario 55 RFQ / Quote 59

White Paper OAGIS Implementation Using ebXML CPP, CPA, and BPSS specifications

Version 1.03 Page 3 of 64 Last Modified: 9/27/2001

Copyright Statements

This document represents an instance of utilization of the ebXML specifications and also
describes a portion of the Open Applications Group specifications. There is no explicit or
implied attempt to replace any part of these specifications. For the purposes of illustration,
the author has copied sections of the ebXML specification or the OAGIS specification and
has tried to make it explicit. The purpose of this document is to assist ebXML
implementations with the Open Applications Group Integration Specification.

Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

This document and translations of it may be copied and furnished to others, and derivative works that
comment on or otherwise explain it or assist in its implementation may be prepared, copied, published
and distributed, in whole or in part, without restriction of any kind, provided that the above copyright
notice and this paragraph are included on all such copies and derivative works. However, this
document itself may not be modified in any way, such as by removing the copyright notice or references
to ebXML, UN/CEFACT, or OASIS, except as required to translate it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked by ebXML or its
successors or assigns. This document and the information contained herein is provided on an "AS IS"
basis and ebXML DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT
LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT
INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE

Copyright © Open Applications Group, Inc. 2001 All Rights Reserved.

This document and translations of it may be copied and furnished to others, and derivative works that
comment on or otherwise explain it or assist in its implementation may be prepared, copied, published
and distributed, in whole or in part, without restriction of any kind, provided that the above copyright
notice and this paragraph are included on all such copies and derivative works. However, this
document itself may not be modified in any way, such as by removing the copyright notice or references
to the Open Applications Group, OAGI, or OAGIS, except as required to translate it into languages
other than English.

The limited permissions granted above are perpetual and will not be revoked by OAGI or its successors
or assigns. This document and the information contained herein is provided on an "AS IS" basis and
OAGI DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO
ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY
RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE

Copyright © eXcelon Corporation. All rights reserved. Object Design, ObjectStore, Leadership by
Design and Object Exchange are registered trademarks of eXcelon Corporation. eXcelon, EXLN,
Xpress, eXcelon Portal Server, eXcelon Partner Server, eXcelon Integration Server, eXcelon
eSolutions, Supplier Connect, Stylus, Cache-Forward, and Javlin are trademarks of eXcelon
Corporation. All other trademarks are the property of their respective owners.

This document and translations of it may be copied and furnished to others, and derivative works that
comment on or otherwise explain it or assist in its implementation may be prepared, copied, published
and distributed, in whole or in part, without restriction of any kind, provided that the above copyright
notice and this paragraph are included on all such copies and derivative works. However, this

White Paper OAGIS Implementation Using ebXML CPP, CPA, and BPSS specifications

Version 1.03 Page 4 of 64 Last Modified: 9/27/2001

document itself may not be modified in any way, such as by removing the copyright notice or references
to eXcelon Corp. or any of the trademarks expressed above.

The limited permissions granted above are perpetual and will not be revoked by eXcelon Corp. or its
successors or assigns. This document and the information contained herein is provided on an "AS IS"
basis and eXcelon Corp. DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT
NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT
INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE

Special thanks to Connie Phillips, eXcelon, who spent long hours reviewing this document.

White Paper OAGIS Implementation Using ebXML CPP, CPA, and BPSS specifications

Version 1.03 Page 5 of 64 Last Modified: 9/27/2001

Introduction

The OAGI (Open Applications Group, Inc.) has developed the largest set of business
messages and integration scenarios for enterprise application integration and business-to-
business (B2B) integration. However, OAGI does not specify an implementation
architecture (also called an implementation framework). Three major B2B implementation
architectures have been developed to this day: RosettaNet, BizTalk, and ebXML. They
provide the basis for interoperability between different vendor and home-grown solutions
alike. The OAGI policy is to be technology sensitive but not specific, and to use existing
open standards when possible.

This white paper provides a detailed recommendation for how to transport OAGI BODs
(Business Object Documents) (Version 7.1 dated April 25, 2001) using ebXML v1.0 dated
5/14/2001.

The reader is expected to have a thorough understanding of the OAGI BOD structure and
the ebXML v1.0 specifications. The reader is encouraged to read the OAGI BOD
Architecture documents (Section 1, Chapters 1 and 2) and the ebXML specifications.
These documents can be freely obtained from the OAGI and ebXML Web sites.

The Open Applications Group

The OAGI Integration Specification (OAGIS) includes a broad set of BODs and integration
scenarios that can be used in different business environments, such as A2A and B2B.
BODs are message definitions that can be used broadly across many different industries
(for example, telecommunications and automotive) and aspects of Supply Chain
Automation (for example, Ordering, Catalog Exchange, Quotes, etc.). OAGI also defines
the OAMAS (Open Application Middleware API Specification), which is an application
programming interface (API) for application integration that provides an abstraction from
specific vendor solutions.

ebXML

ebXML is a set of specifications that together enable a modular electronic business
framework. ebXML enables a global electronic marketplace where enterprises of any size
and in any geographical location can meet and conduct business with each other through
the exchange of XML-based messages. ebXML is jointly sponsored by the United Nations
(UN/CEFACT) and the Organization for Structured Information Standards (OASIS).

There are four categories of ebXML deliverables:

White Paper OAGIS Implementation Using ebXML CPP, CPA, and BPSS specifications

Version 1.03 Page 6 of 64 Last Modified: 9/27/2001

• Technical Specifications
• Technical Reports
• Reference Materials
• White Papers

Technical Specifications are documents whose material fulfils the requirements of the
ebXML Requirements document.

Technical Reports are documents that are either of the following:

• Guidelines: documents containing information to guide in the interpretation or
implementation of ebXML concepts.

• Catalogs: documents containing foundation material based on ebXML Technical
Specifications or Reports.

White Paper OAGIS Implementation Using ebXML CPP, CPA, and BPSS specifications

Version 1.03 Page 7 of 64 Last Modified: 9/27/2001

Rationale

OAGI strives to adopt existing technology where possible and will benefit from the use of
ebXML as an “implementation architecture.” ebXML is one of the most advanced B2B
implementation architecture available today. Its Messaging Service specifies how
messages are communicated over a particular transport medium (for example, HTTP) and
enables infrastructure-level interoperability among different vendor solutions. It also
enables the specification of Collaboration Protocol Profiles (CPPs), which provide a
machine-processable description of the capabilities of a particular company. This CPP can
be published to an ebXML Registry and discovered by other Business Partners. Two
CPPs can be composed to form a Collaboration Protocol Agreement (CPA) shared
between two Business Partners, which specifies how these two companies have agreed
to carry out a particular Business Collaboration.

The concept of a Business Collaboration is at the core of the design of ebXML and has
been formalized as a “Business Process Definition,” which is also known as a
Collaboration Definition. ebXML is the first specification to provide the capability to model
complete OAGI scenarios in a machine-processable Collaboration Definition. OAGI
scenarios can be published as Collaboration Definitions that can then be used in CPPs
and CPAs. These Collaboration Definitions could even be used with document formats
that are not specified by OAGI, providing a new level of reuse for the work done by OAGI.
Business Collaborations are made up of Business Transactions which themselves are
composed of requesting and responding Business Actions. Like RosettaNet PIPs, ebXML
transactions either succeed or fail, in which case, it would require each company to roll
back its state to the one prior to the transaction. A Business Action is a message
exchange between two partners and is analogous to a BOD.

Business Collaborations are central to the ability to do end-to-end collaborative commerce
because they provide a way to express complete, complex, and legally binding “contracts”
between Parties regardless of their respective application capabilities. In addition, a typical
ebXML infrastructure would manage the state of each Collaboration instance, which does
not require enterprise systems to understand or manage the complete end-to-end
scenarios. Enterprise systems then can be organized into services that are bound to
particular ebXML Business Actions of the Collaboration Definition. A Business Action is
either a request or a response which compose an ebXML Business Transaction. Hence it
is expected that, compared to RosettaNet, ebXML will enable far more complex ways of
conducting electronic commerce while reducing the cost of implementation. By
comparison, a RosettaNet infrastructure, or any service-based architecture, is merely a
gateway between an application and Business Partners. On the other hand, an ebXML
infrastructure provides the opportunity to integrate applications and Business Partners at
the business process level.

In addition to the concept of Collaboration, ebXML introduces the notion of Registries.
Registries enable Business Partners to publish the capabilities of their systems and
applications, and to let other Business Partners discover this information in order to
configure their own systems.

These series of specifications provide a robust framework in which to carry out
sophisticated electronic commerce transactions. RosettaNet has made public its
willingness to adopt the ebXML framework in lieu of RNIF 2.0. Microsoft has also
announced some level of support.

White Paper OAGIS Implementation Using ebXML CPP, CPA, and BPSS specifications

Version 1.03 Page 8 of 64 Last Modified: 9/27/2001

Although ebXML provides an implementation architecture that can transport various
content, a working group has been initiated to define “Core Components” which can be
viewed as reusable pieces of content that can be assembled to create Business
Documents such as invoices and purchase orders. This group has not yet completed its
work and is not part of the voted specifications.

Scope

This document provides a general recommendation for the usage and configuration of the
ebXML implementation architecture in carrying out electronic transactions with OAGI
BODs. In particular, it specifies how to define Collaboration Definitions for scenario
diagrams. It also specifies how to declare CPPs and corresponding CPAs based on these
Collaborations. The CPPs can be published to an ebXML Registry just like any other CPP.
The Messaging Service can be used as is since it is content agnostic.

This document also describes the relationship between the infrastructure level messages
(Signal Messages) used by ebXML and OAGI (Confirm BOD) to identify message receipt
or exceptions.

This white paper does not deal with the aspects of ebXML that are not yet part of the
specification (such as Core Components).

In addition, this paper recommends the use of Business Collaborations outside the context
of ebXML. A Collaboration Definition can be used outside the scope of an ebXML solution
and consequently could be used to formalized all OAGI scenario diagrams even the one
that do not involve B2B communication. This approach may be desirable in order to
provide a commercial OAGI solution with out-of-the-box capabilities while retaining the
ability to customize the use of scenario diagrams for internal applications.

Requirements

The primary requirements for the use of OAGI over ebXML:
• Use existing OAGI BODs without modification.
• Provide capability to exchange all OAGI BODs.
• Allow existing OAGI-based systems to operate with little or no change.

White Paper OAGIS Implementation Using ebXML CPP, CPA, and BPSS specifications

Version 1.03 Page 9 of 64 Last Modified: 9/27/2001

Overall Approach

The tremendous value provided by ebXML, in addition to its robust Messaging Service, is
in its ability to formalize all aspects of B2B relationships and express these formal
specifications as machine-readable XML documents. This capability is a big advance in
the realm of B2B since one of the drawbacks of present B2B solutions is the need to
communicate a lot of design details between Parties and create specific or sometimes
dedicated implementations to exchange Business Documents. RosettaNet had solved the
communication problem by providing documents (PIP definitions) that each Party can
implement without communicating; however, this translates into fairly rigid specifications
that cannot be optimized and later discovered on a per partner basis. Furthermore,
RosettaNet documents are not machine readable.

The approach we have taken in this paper is to specify a mapping between scenario
diagrams and Business Collaborations in both a B2B and an A2A context. Then, we detail
how CPPs and CPAs can be specified for the Business Collaborations. Even though,
CPPs and CPAs are specific to each company a large portion can be specified at the
Open Applications Group level, facilitating interoperability between OAGI implementations.

ebXML Support for Third-Party Content

ebXML was designed to be content neutral. However, the ebXML Business Process
Specification Schema (BPSS) imposes the following restrictions:

ebXML Signal Messages must be used as is; no third-party content can be included in
these messages. Signal Messages are directly analogous to OAGI’s ConfirmBOD and
supplant its use within ebXML. However, to support existing OAGI-based applications that
rely on ConfirmBOD, a relationship is defined such that a ConfirmBOD can be mapped to
and from a Signal Message.

White Paper OAGIS Implementation Using ebXML CPP, CPA, and BPSS specifications

Version 1.03 Page 10 of 64 Last Modified: 9/27/2001

Background

High-Level Comparison of ebXML and OAGI Specification Elements

A brief comparison of the elements within the two specifications is provided in the following
table. The shaded area indicates the scope of the current document.

Table 1. Specification-Level Comparison of RosettaNet and OAGI

EbXML Specification Elements OAGI Specification Elements

Process Specification covers integration scenarios
that span multiple Binary Collaborations or Multiparty
Collaborations.

Scenario Diagrams are abstract business system
Collaboration diagrams that describe the possible
interaction among business systems or components.

Binary Collaboration covers integration scenarios
that span multiple Business Transactions.

No corresponding elements, even though some
scenario diagrams may be as simple as a single Binary
Collaboration.

Multiparty Collaboration covers integration scenarios
that span multiple Binary Collaborations. These
Collaborations can be assembled into a Multiparty
Collaboration.

Scenario Diagrams are often specified between two
roles and sometimes between more than two roles.
Even in a two-role situation, scenario diagrams may
contain more than one Binary Collaboration, therefore
requiring the synthesis of multiple Binary
Collaborations.

Business Transaction defines explicit Request and
Response message exchange sequences (for
example, Purchase Order Request – Purchase Order
Acceptance).

Sub-Scenarios indicate possible Request and
Response sequences (for example, ProcessPO –
AcknowledgePO).

Business Action defines in particular the XML
documents that are exchanged as part of the
message.

Business Object Document (BOD) defines the XML
message that is exchanged (for example, ProcessPO).

Collaboration Protocol Profile (CPP) specifies the
capabilities of a given company.

No corresponding element

Collaboration Protocol Agreement (CPA) specifies
the contract between two Business Partners as the
intersection of two CPPs.

No corresponding element

Registries are global systems accessible by all via an
API using the ebXML Messaging Service to publish
and discover CPPs.

No corresponding element

Messaging Service defines the communication and
transport mechanisms for exchanging messages.

No corresponding element

OAGI defines integration scenario diagrams that suggest how BODs are exchanged. In
B2B scenarios, this lack of rigidity is more a liability than an asset. One of the goals of this
white paper is to provide the framework for systematically developing an ebXML process
specification for each OAGI scenario diagram. Shortly, OAGI will publish an ebXML
version of its scenario diagram and create the corresponding CPP templates. Full CPPs
cannot be created because they need to contain information specific to each company.
Alternatively, companies may create their own version of a Collaboration Definition based
on an OAGI scenario diagram and publish on ebXML Registries for their partners to
discover.

Certain BODs can contain response messages such as the ProcessPO and
AcknowledgePO messages. However, most have an implied message exchange

White Paper OAGIS Implementation Using ebXML CPP, CPA, and BPSS specifications

Version 1.03 Page 11 of 64 Last Modified: 9/27/2001

sequence such as the Get/Show and GetList/List combinations of BODs. (for example,
GetPO – ShowPO and GetListPO – ListPO).

Why Collaboration Definitions Are Important?

Business collaboration is a fairly new concept in the software industry. As part of a
Collaboration Protocol Agreement (CPA), it represents a “contract” between two or more
Business Partners which explicitly defines when and why a specific message should be
sent or received. This part of the “contract” provides a shared understanding of the
interaction. The way the contract is implemented is private but the expectations are public.
In an environment where your organization may receive tens of thousands of business
messages per day, it is important to be able to relate a context to each and every one of
them. This is the goal of the BPSS specification. The infrastructure that enforces
Collaborations acts as a business firewall, allowing messages that initiate a Collaboration
and subsequently only the messages that precisely follow the sequencing rules of
Business Transaction Activities and their respective transitions.

The closest analogy to a Collaboration is two APIs that need to invoke each other. Most
often, a system will publish an API that other systems can invoke without necessarily
exposing their functionality and capabilities to the original system. In the B2B world, both
systems are most often stateful and we need to specify the interaction with great detail to
be able to configure each system. At this point, the API (or services) is almost irrelevant
because the goal of the system is to complete the Collaboration, not necessarily a function
call.

Collaboration Definitions are particularly important in two cases: a large company that may
have multiple system performing the same function (for example, procurement systems)
and small-to-medium Business Partners that need to interact with diverse groups of
partners.

In the first case, a Collaboration allows the company to expose a common business logic
regardless of the Business Rules specific to each application. It also provides an
opportunity to “outsource” some of the validation outside the application, leaving the
application focusing on its business problem (processing an invoice) rather than deciding if
this invoice is coming from an authorized source and is part of a valid on-going
transaction. This approach to developing new business systems will ensure a greater
overall maintainability. ebXML provides a machine-readable way of specifying the
business logic, which allows us to move from a procedural approach to a declarative
approach.

A Business Partner dealing with various groups, each of which supports slightly varying
Collaborations, is of equal interest. An ebXML infrastructure will enforce each agreement
and allow the company to reconcile each one of them with a common processing system
(such as order entry).

ebXML Collaboration Definitions open up a new way to carry out commerce activity that
resemble the way business is done today with phone, fax mail, and email while enabling a
new application programming model in which a lot of the “business process” logic is
outsourced, and not hard-coded.

White Paper OAGIS Implementation Using ebXML CPP, CPA, and BPSS specifications

Version 1.03 Page 12 of 64 Last Modified: 9/27/2001

Specifying ebXML Business Collaboration from OAGI Scenario
Diagrams

The goal of the ebXML Business Process Specification Schema is to support the
specification of Business Transactions and the choreography of Business Transactions
into Business Collaborations. Each Business Transaction can be implemented using one
of many available standard UN/CEFACT Modeling Methodology (UMM) patterns. These
patterns determine the actual exchange of Business Documents and business signals
between the partners to achieve the required electronic commerce transaction. Business
Transactions that do not follow UMM patterns can also be defined.

OAGI uses scenario diagrams for both the specification of A2A and B2B BOD
interchanges. Sometimes scenarios can actually be implemented in both an A2A (system-
to-system) or B2B (company-to-company) configuration. In the following two sections, we
cover the use of Collaboration Definitions for both B2B and A2A scenarios. We will use
examples to illustrate our approach: Scenario 55.0 BUYER AND SUPPLIER RFQ -
QUOTE SCENARIO, as well as Scenario 1.0 GENERAL LEDGER TO SUB-LEDGER
SCENARIO. The complete description of these scenarios can be found on the
S2_Scenarios.doc document of the OAGI specification.

ebXML Semantics
A Business Collaboration is essentially the specification of Business Transaction Activities
between two roles, their associated document flow, and the choreography of these
Business Transaction Activities. It is important to note that the sequencing rules contained
in a Collaboration Definition are not between messages but between Business
Transaction Activities. It is also important to note that the specification distinguishes
between Business Transactions and Business Transaction Activities. A Business
Transaction can be viewed as a type declaration, while Business Transaction Activities
(which reference a unique business transaction type) are the usage of this transaction
within a particular choreography. In particular, several references to the same Business
Transaction may appear several times in the same Collaboration Definition. And a
Business Transaction may sometimes be used either way between the two roles.

White Paper OAGIS Implementation Using ebXML CPP, CPA, and BPSS specifications

Version 1.03 Page 13 of 64 Last Modified: 9/27/2001

Figure 1. Basic Semantics of a Business Collaboration1

Reading the entire ebXML Business Process Specification Schema document is highly
recommended. Here is an extract of the Business Transaction definition:

A Business Transaction1 is the atomic unit of work in a trading arrangement between two business
partners. A Business Transaction is conducted between two parties playing opposite roles in the
transaction. The roles are always a requesting role and a responding role.

Like a Binary Collaboration, a Business Transaction is a re-useable protocol between two roles. The
way it is re-used is by referencing it from a Binary Collaboration through the use of a Business
Transaction Activity as per above. In a Business Transaction Activity the roles of the Binary
Collaboration are assigned to the execution of the Business Transaction.

Unlike a Binary Collaboration, however, the Business Transaction is atomic, it cannot be decomposed
into lower level Business Transactions.

A Business Transaction is a very specialized and very constrained protocol, in order to achieve very
precise and enforceable transaction semantics. These semantics are expected to be enforced by the
software managing the transaction, i.e. an ebXML Business Service Interface (BSI).

A Business Transaction will always either succeed or fail. If it succeeds it may be designated as legally
binding between the two partners, or otherwise govern their collaborative activity. If it fails it is null and
void, and each partner must relinquish any mutual claim established by the transaction. This can be
thought of as ‘rolling back’ the Business Transaction upon failure.

Figure 2. Schematic of Core Business Transaction Semantics

White Paper OAGIS Implementation Using ebXML CPP, CPA, and BPSS specifications

Version 1.03 Page 14 of 64 Last Modified: 9/27/2001

Scenario diagrams needs to be organized as Business Transactions, also called sub-
scenarios in the OAGI specification.

Some semantics attached to the Business Transaction or the Business Collaboration
definitions are specific to transactions between companies. For instance, the Business
Actions that form a Business Transaction can be specified with the
isNonRepudiationRequired or IsGuaranteedDelivery flag set to true. On the other hand,
parameters such as the timeToPerform attribute of a Business Transaction can be suited
for both situations – B2B and A2A.

White Paper OAGIS Implementation Using ebXML CPP, CPA, and BPSS specifications

Version 1.03 Page 15 of 64 Last Modified: 9/27/2001

B2B Collaboration Definitions

In this section, we illustrate our approach with Scenario 55. Each Business Transaction
needs to be specified and choreographed. This choice is somewhat arbitrary. In addition,
the usage of ConfirmBOD is not necessarily required as the semantics of a Business
Transaction allow for both a receipt and a business acknowledgement prior to sending the
response to a request.

This example is a Multiparty Collaboration (a buyer, a seller, and an intermediary such as
a marketplace), composed of two Binary Collaborations.

Figure 3. OAGI Scenario 55 divided as ebXML Business Transactions

White Paper OAGIS Implementation Using ebXML CPP, CPA, and BPSS specifications

Version 1.03 Page 16 of 64 Last Modified: 9/27/2001

Business Transaction Definitions

The Business Transaction is a key concept in ebXML BPSS. As mentioned earlier, the
semantics are extremely precise and were designed to carry out reliably complex
commerce activities between Business Partners.

OAGI does not have a corresponding element. One of the challenges in defining Business
Transactions is to package BODs as requests and responses. The request is usually easy
to identify; however, the response is trickier. The ebXML semantics specify that a
responding activity’s document envelope may contain multiple attachments. A BOD
corresponds to one attachment. In addition, a responding activity may have multiple
possible response document envelopes, each containing any number of attachments
(Figure 4), out of which one and only one document envelope will be sent as the
response. The isPositiveResponse attribute indicates if the response is meant to be
positive or negative; this parameter is associated with the “business failure” of the
business transaction (see the section titled “Business Collaboration Failures”).

RespondingBusinessActivity

 isAuthorizationRequired:isAuthorizationRequired
 isIntelligibleCheckRequired:isIntelligibleCheckRequired
 isNonRepudiationReceiptRequired:isNonRepudiationReceiptRequired
 isNonRepudiationRequired:isNonRepudiationRequired
 name:name
 timeToAckn

DocumentEnvelope
 businessDocument:businessDocument
 businessDocumentIDRef:businessDocumentIDRef
 isAuthenticated:isAuthenticated
 isConfidential:isConfidential
 isPositiveResponse:isPositiveResponse
 isTamperProof:isTamperProof

*

businessDocument
<<Expression>>Attachment

 businessDocument:businessDocument
 businessDocumentIDRef:businessDocumentIDRef
 isAuthenticated:isAuthenticated
 isConfidential:isConfidential
 isTamperProof:isTamperProof
 mimeType:mimeType
 name:name
 specification:specification
 version:

*

Figure 4. ebXML Document Envelope

White Paper OAGIS Implementation Using ebXML CPP, CPA, and BPSS specifications

Version 1.03 Page 17 of 64 Last Modified: 9/27/2001

Transitions from the Business Transaction can be based on the success or failure of the
transaction, as well as by guard expressions on the content of the document if the success
cannot be determined by the document envelope alone.

A possible representation of a Business Transaction is to use UML activity diagrams:

IntermediarySupplier

[SUCCESS]

[FAILURE]

RequestingActivity

GetList RFQ
Responding

Activity

List RFQ

End Fail

Figure 5. GetList RFQ Business Transaction

The UML notation represents the two roles as swim lanes, the exchange of documents as
object flows, and the start and end of the Business Transaction. This notation is in no way
part of the specification. However, it is being used by the RosettaNet and UN/CEFACT as
part of the UMM effort, of which ebXML BPSS is a semantics subset.

MEGA Int. offers an alternative but proprietary representation:

? getList RFQ

= list RFQ
Intermediary Seller

Figure 6. GetList RFQ Business Transaction with MEGA's Notation

White Paper OAGIS Implementation Using ebXML CPP, CPA, and BPSS specifications

Version 1.03 Page 18 of 64 Last Modified: 9/27/2001

Here is the corresponding Business Transaction definition:

<BusinessTransaction name=" BT:Get RFQ List"
isGuaranteedDeliveryRequired="true">
 <RequestingBusinessActivity isNonRepudiationRequired="true"
 timeToAcknowledgeReceipt="PT1M"
 timeToAcknowledgeAcceptance=""
 isAuthorizationRequired="true"
 isIntelligibleCheckRequired="true"
 isNonRepudiationReceiptRequired="false"
 isNonRepudiationRequired="false">
 <DocumentEnvelope businessDocument="Getlit RFQ"
 isPositiveResponse="false"
 isAuthenticated="false"
 isConfidential="false"
 isTamperProof="false" />
 </RequestingBusinessActivity>
 <RespondingBusinessActivity isAuthorizationRequired="false"
 isIntelligibleCheckRequired="true"
 isNonRepudiationReceiptRequired="false"
 isNonRepudiationRequired="true">
 <DocumentEnvelope businessDocument="Showlist RFQ"
 isPositiveResponse="true"
 isAuthenticated="false"
 isConfidential="false"
 isTamperProof="false" />
 </RespondingBusinessActivity>
 </BusinessTransaction>

All the attributes above are related to the “quality of service” required when performing the
Business Transaction. The timeToPerform attribute is actually defined late when the
Business Transaction is used in the context of a Binary Collaboration as a Business
Transaction Activity.

We provide a few guidelines about using these attributes. First, in rare cases, someone
would need to use an Acceptance Acknowledgement signal. A Receipt Acknowledgement
will confirm that the request (or response) has been received, that it has been somehow
archived, and that it is valid with respect to its schema definition. An Acceptance
Acknowledgement would add that internal Business Rules about the request have been
validated. This is often redundant with the response message itself. So we recommend in
most cases to use the receipt signal only.

Other parameters are expensive to implement or deploy and should be used
appropriately:
1) Non-Repudiation and Legally Binding often require the storage of all the messages

and receipts for extended periods of time (months or years).
2) Confidentiality and Tamper Proof documents require digital signature and encryption

technologies.

Lastly, we recommend to set the timeout parameters in a way that does not generate a lot
of unnecessary exceptions. A typical mistake is to set their value to the expected value
rather than the maximum value.

White Paper OAGIS Implementation Using ebXML CPP, CPA, and BPSS specifications

Version 1.03 Page 19 of 64 Last Modified: 9/27/2001

Document Definitions

Business Documents that participate in Business Transactions are defined by their name,
specification element, and specification location. The specification element is a reference
to the element within the schema definition that defines this document.

DocumentEnvelope references a primary document as indicated in the following figure.
Several attachments can be added to a document envelope, each of which references a
Business Document as well. Attributes such as isConfidential, isAuthenticated, and
isTamperProof deal with the security of the document between parties as well as within a
party of the collaboration.

DocumentEnvelope
 businessDocument:businessDocument
 businessDocumentIDRef:businessDocumentIDRef
 isAuthenticated:isAuthenticated
 isConfidential:isConfidential
 isPositiveResponse:isPositiveResponse
 isTamperProof:isTamperProof

Attachment
 businessDocument:businessDocument
 businessDocumentIDRef:businessDocumentIDRef
 isAuthenticated:isAuthenticated
 isConfidential:isConfidential
 isTamperProof:isTamperProof
 mimeType:mimeType
 name:name
 specification:specification
 version:

*

BusinessDocument
 name:name
 specificationElement:specificationElement
 specificationLocation:specificationLocation

*

Figure 7. ebXML Business Document

For example, the following BusinessDocument definition:

 <BusinessDocument name="Getlist RFQ"
 specificationLocation=
 ”www.openapplications.org/OAGIS/v7.1/148_getlist_rfq_003.dtd”
 specificationElement=”GETLIST_RFQ_003” />

can be used in a DocumentEnvelope definition as:

 <RequestingBusinessActivity name="Request RFQ List">
 <DocumentEnvelope businessDocument="Getlist RFQ"/>
 </RequestingBusinessActivity>

White Paper OAGIS Implementation Using ebXML CPP, CPA, and BPSS specifications

Version 1.03 Page 20 of 64 Last Modified: 9/27/2001

Condition expressions can be attached to a document to indicate the intent of a particular
response. For instance, in a Process Purchase Order transaction, there can be three
possible “logical” responses that are all carried via the same BOD (Acknowledge
Purchase Order).

Figure 8. Process Purchase Order Business Transaction with Three Possible Responses

SellerBuyer

RespondingActivity

Ack PO

Process PO

Reject PO

[SUCCESS]
[FAILURE]

RequestingActivity Back Order

<BusinessDocument name="Ack PO"
specificationLocation="http://www.openapplications.org/OAGIS/v7.1/004_acknowl
edge_po_007.dtd" specificationElement="ACKNOWLEDGE_PO_007">
 <ConditionExpression expressionLanguage="XPath"
expression="//STATUSLVL="00"" />
</BusinessDocument>
<BusinessDocument name="Reject PO"
specificationLocation="http://www.openapplications.org/OAGIS/v7.1/004_acknowl
edge_po_007.dtd" specificationElement="ACKNOWLEDGE_PO_007">
 <ConditionExpression expressionLanguage="XPath"
expression="//STATUSLVL="01"" />
</BusinessDocument>
<BusinessDocument name="Back Order"
specificationLocation="http://www.openapplications.org/OAGIS/v7.1/004_acknowl
edge_po_007.dtd" specificationElement="ACKNOWLEDGE_PO_007">
 <ConditionExpression expressionLanguage="XPath"
expression="//STATUSLVL="02"" />
</BusinessDocument>

These “logical” Business Documents can be used to express sequencing rules in a Binary
Collaboration Definition. One advantage of this approach, rather than making the condition
explicit in the Collaboration Definition, is the isolation of the document format and the rule
that depends on it such that new versions of a format (or different formats altogether) can
be used without impacting the logic of the Collaboration Definition itself, provided the intent
of the “logical” document is respected.

White Paper OAGIS Implementation Using ebXML CPP, CPA, and BPSS specifications

Version 1.03 Page 21 of 64 Last Modified: 9/27/2001

Business Collaboration Choreography

Once all Business Transactions have been defined, we can start to specify the
choreography of the Collaboration. As UML profiles, Collaborations can be represented
with UML artifacts. The UML notation does not readily provide the ability to represent
ebXML Collaborations in their entirety. For instance, “UML Collaboration diagrams” cannot
represent sequencing rules. This section follows the UN/CEFACT Modeling Methodology
(UMM) guidelines. However, in the present state, such representation will not be able to
capture enough details in order to have an isomorphic relationship with the XML definition.
We recommend to always refer to the XML document for the specification, and use only
UML artifacts as a guide in understanding the content of the XML document, which may
sometimes become very large.

We chose to represent a Collaboration in two views:

• Business Transactions: activity diagrams
• Binary Collaboration: activity diagrams

The following figure represents the getList RFQ Business Transaction definition.

Figure 9. getList RFQ Business Transaction Representation with a UML Activity Diagram

IntermediarySupplier

[SUCCESS]

[FAILURE]

RequestingActivity

GetList RFQ
Responding

Activity

List RFQ

End Fail

White Paper OAGIS Implementation Using ebXML CPP, CPA, and BPSS specifications

Version 1.03 Page 22 of 64 Last Modified: 9/27/2001

A Collaboration and its sequencing rules are represented with an activity diagram:

SupplierIntermediary

getList RFQ

get RFQ

respond RFQ
Supplier

cancel
RFQ

add
Quote

sync
Quote

Business
Failure

respond RFQ
Intermediary

Business
Failure

change
Quote

respond
Quote

cancel
Quote

End
Technical Failure

Figure 10. Collaboration Activity Diagram

An activity within a swim lane indicates that this Business Transaction Activity is initiated
by the corresponding role. Consequently, this notation is not appropriate for representing
multiparty Collaborations since the receiving Party is implied rather than explicit. This is not
the only shortcoming of the notation. Negotiation patterns such as the ones above are
hard to represent without breaking the rules of an activity diagram.

A Business Transaction Activity that can be repeated indefinitely, such as the respond
RFQ (questions and answers about the RFQ), is represented with a transition to itself:

respond RFQ
Supplier

White Paper OAGIS Implementation Using ebXML CPP, CPA, and BPSS specifications

Version 1.03 Page 23 of 64 Last Modified: 9/27/2001

In particular, we mean that in the event of a success or a failure of this transaction, the
supplier is allowed to send further questions about the RFQ. In this case, there is no
transition out of this Business Transaction Activity because the way the collaboration
proceeds is via a timeout.

However, the way the ebXML specification was designed, one cannot specify a timeout for
the Fork/Join elements. The way to design this Collaboration in a way where one can
specify the proper timeouts is to aggregate the corresponding Business Transaction
Activities into a Collaboration Definition. This Collaboration Definition can then be used as
a Collaboration activity as represented in the following figure.

Intermediary Supplier

getList
RFQ

get
RFQ

add
Quote

review Quote

review RFQ

End Fail

Figure 11. A Collaboration Definition Used as a Collaboration Activity

White Paper OAGIS Implementation Using ebXML CPP, CPA, and BPSS specifications

Version 1.03 Page 24 of 64 Last Modified: 9/27/2001

MEGA Int. offers a proprietary notation, which we show here:

Figure 12. MEGA Notation

Intermediary Seller

Get RFQ List
getList RFQ
list RFQ

Get RFQ
getRFQ
showRFQ

Respond RFQ
respondRFQ
1-respondRFQ

Cancel RFQ
cancelRFQ

Respond RFQ
respondRFQ
1-respondRFQ

add Quote
add Quote

sync Quote
sync Quote

change Quote
changeQuote

cancel Quote
cancelQuote

respond Quote
respondQuote
1-respondQuote

respond Quote
respondQuote
1-respondQuote

White Paper OAGIS Implementation Using ebXML CPP, CPA, and BPSS specifications

Version 1.03 Page 25 of 64 Last Modified: 9/27/2001

Binary Collaboration definitions refer to Business Transaction Activity definitions (which
are a usage of a Business Transaction definition) and represent the states of the activity
diagrams. The transitions are usual activity diagram transitions.

 <BinaryCollaboration name="oagi:55.0 INTERMEDIARY AND SUPPLIER RFQ - QUOTE
SCENARIO " timeToPerform="P30D">
 <Documentation>timeToPerform = Period: 30 days from start of
transaction</Documentation>
 <InitiatingRole name="supplier"/>
 <RespondingRole name="intermediary"/>
 <BusinessTransactionActivity name="Get RFQ List"
 businessTransaction="BT:Get RFQ List"
 fromAuthorizedRole="supplier"
 toAuthorizedRole="intermediary"/>
 <BusinessTransactionActivity name="Get RFQ"
 businessTransaction="BT:Get RFQ"
 fromAuthorizedRole="supplier "
 toAuthorizedRole="intermediary "/>
 <Start toBusinessState="Get RFQ List"/>
 <Transition fromBusinessState="Get RFQ List"
 toBusinessState="Get RFQ"/>
 ...
 </BinaryCollaboration>

The next part of the Collaboration uses a Fork element to specify that multiple Business
Transaction Activities can happen in parallel. In this phase, there are actually two
Business Transaction Activities that share the same Business Transaction definition:
Respond RFQ. This activity can either be initiated from the intermediary role or from the
supplier role.

 <BinaryCollaboration name="oagi:55.0A REVIEW RFQ" timeToPerform="P30D">
 <InitiatingRole name="intermediary"/>
 <RespondingRole name="supplier"/>
 <BusinessTransactionActivity name="Cancel RFQ"
 businessTransaction="BT:Cancel RFQ"
 fromAuthorizedRole="intermediary"
 toAuthorizedRole=""/>
 <BusinessTransactionActivity name="Respond RFQ Intermediary"
 businessTransaction="BT:Respond RFQ"
 fromAuthorizedRole="intermediary"
 toAuthorizedRole=""/>
 <BusinessTransactionActivity name="Respond RFQ Supplier"
 businessTransaction="BT:Respond RFQ"
 fromAuthorizedRole="intermediary"
 toAuthorizedRole=""/>
 <Fork name=”Review RFQ Start” nameId=”Review RFQ Start”/>
 <Start toBusinessState="Review RFQ Start"/>
 <Transition fromBusinessState="Review RFQ Start"
 toBusinessState="Cancel RFQ"/>
 <Transition fromBusinessState="Review RFQ Start "
 toBusinessState="Respond RFQ Intermediary "/>
 <Transition fromBusinessState="Review RFQ Start "
 toBusinessState="Respond RFQ Supplier"/>

White Paper OAGIS Implementation Using ebXML CPP, CPA, and BPSS specifications

Version 1.03 Page 26 of 64 Last Modified: 9/27/2001

 <Join name=”Respond RFQ End” nameid=”Review RFQ End”
 waitForAll=”No”/>
 <Failure fromBusinessState="Cancel RFQ"/>
 <Transition fromBusinessState="Respond RFQ Intermediary"
 toBusinessState="Respond RFQ Intermediary"/>
 <Transition fromBusinessState="Respond RFQ Supplier"
 toBusinessState="Respond RFQ Intermediary"/>
 </BinaryCollaboration>

This part of the Collaboration Definition uses the “Failure” element, which indicates that the
Collaboration ends if the Cancel RFQ Business Transaction completes “successfully”.

There is, however, an issue with the Collaboration Definition, specifically with the way it
was defined as part of Scenario 55. All the BODs that are exchanged as part of the last
phase of the Collaboration leave the Collaboration open ended, meaning that one could
wait an indefinite amount of time to expect a Change Quote BOD. Some people who have
actually implemented this Collaboration are sending an email to the suppliers as a
notification of acceptance of the quote. Even though the ebXML BPSS provides the tools
to describe such an event in a Collaboration Definition, it might be more appropriate to
specify a BOD, as mundane as the ConfirmBOD, to end the Collaboration unambiguously.

SupplierIntermediary add
Quote

sync
Quote

Business
Failure

change
Quote

respond
Quote

cancel
Quote

Technical Failure

Elect Quote

Figure 103. Unambiguous End for the Collaboration Definition Using the Elect Quote Business Transaction

White Paper OAGIS Implementation Using ebXML CPP, CPA, and BPSS specifications

Version 1.03 Page 27 of 64 Last Modified: 9/27/2001

Condition Expressions

Guards can be defined for any transitions. There are two ways to specify guards.

1) A Business Transaction definition may establish clearly specific end states such as
Success, AnyFailure, BusinessFailure, and TechnicalFailure. Transitions from state to
state or to completion state can be based on this attribute value. This presents some
advantages over method number 2 below, since having an explicit expression as a
guard might tie the Collaboration Definition to document formats, for instance, which
may not be desirable since formats can evolve over time. It might also prevent the use
of the Collaboration with document formats other than BODs.

So typically, each transition should either have present a guardCondition attribute or a
ConditionExpression (see paragraph 2) below).

<Transition fromBusinessState="Get RFQ"
 toBusinessState="Respond RFQ Start"
 guardCondition=”Success”/>

This means that in Scenario 55, one can only start the Respond RFQ activity if one
successfully completed the transaction Get RFQ. It is critical for the well being of every
ebXML application that these guards are in place to explicitly end the Collaboration
when a failure occurs.

2) ConditionExpressions can be explicit statements, for instance, in Java or as XPath
predicates. This example shows how the guard can be defined to identify whether
there is actually an RFQ in the response document envelope.

<Transition fromBusinessState="Get RFQ"
 toBusinessState="Respond RFQ Start">
 <ConditionExpression expressionLanguage=”XPATH”
 expression=”//RFQ”>
</Transition>

Business Collaboration Failures1

The following subsections discuss the two causes of failure1: Timeouts and Exceptions.
When either one happens, it is the responsibility of the two roles to do the necessary roll-
back, and to exit the transaction. The responsibilities of the two roles differ slightly and are
described in each of the sections below. Generally, if a failure happens at the responding
role, the responding role will send an exception signal to the requesting role, and both
Parties will exit the current transaction. If a failure happens at the requesting role, the
requesting role will exit the current transaction and in a separate transaction notify the
responding role about the failure. This way the flow of control within a transaction is always
unambiguous and finite.

1 Note that this section is mostly a copy of the corresponding section in the ebXML BPSS document.

White Paper OAGIS Implementation Using ebXML CPP, CPA, and BPSS specifications

Version 1.03 Page 28 of 64 Last Modified: 9/27/2001

Business Failures

Business failures are solely related to the agreed upon intend of the response document
envelope marked by the isPositiveResponse property. The condition expressions on the
content of a document that lead to a business transaction business failure are defined at
the business document level. These “logical documents” can be related to a clear intent on
the success or failure of the business transaction they are part of.

Consequently, the BusinessFailure on a Transition conditionGuard is true when the
response document envelope is marked with isPositiveResponse=false.

Technical Failures

There are two types of technical failures: timeouts and exceptions.

Timeouts

Since all Business Transactions must have a distinct time boundary, there are timeout
parameters associated with the response, and each of the acknowledgement signals. If
the timeout occurs before the corresponding response or signal arrives, the transaction is
null and void.

Here are the timeout parameters relative to the three response types:

Response Required Parameter Name Meaning of Timeout
Receipt acknowledgement timeToAcknowledgeReceipt The time a responding

role has to acknowledge
receipt of a Business
Document.

Acceptance
Acknowledgement (Non-
substantive)

timeToAcknowledgeAcceptance The time a responding
role has to non-
substantively
acknowledge business
acceptance of a
Business Document.

Substantive Response timeToPerform The time a responding
role has to substantively
acknowledge business
acceptance of a
Business Document.

A timeout parameter must be specified whenever a requesting partner expects one or
more responses to a Business Document request. A requesting partner must not remain
in an infinite wait state.

The timeout value for each of the timeout parameters is absolute, that is, not relative to
each other. All timers start when the initial requesting Business Document is sent. The
timer values must comply with the well-formedness rules for timer values.

A responding partner simply terminates if a timeout is thrown. This prevents responding
Business Transactions from hanging indefinitely. A requesting partner terminates if a

White Paper OAGIS Implementation Using ebXML CPP, CPA, and BPSS specifications

Version 1.03 Page 29 of 64 Last Modified: 9/27/2001

timeout is thrown and then sends a notification of failure to the responder as part of a
separate transaction.

When the time to perform an activity equals the time to acknowledge a receipt or the time
to acknowledge business acceptance, then the highest priority timeout exception must be
used when the originator provides a reason for revoking the original Business Document
offer. The timeToPerform exception is lower priority than both the
timeToAcknowledgeReceipt and the timeToAcknowledgeBusinessAcceptance.

Two parameters are defined in the Business Transaction definition:

<BusinessTransaction name="BT:Add Quote">
 <RequestingBusinessActivity name="Request RFQ List"

 timeToAcknowledgeAcceptance=”P24H”
 timeToAcknowledgeReceipt=”P1H”>

 <DocumentEnvelope businessDocument="Add Quote"/>
 </RequestingBusinessActivity>
</BusinessTransaction>

While the time to perform a Business Transaction is defined at the Business Transaction
Activity level (that is, it can be specific to each instance of the Business Transaction):

 <BusinessTransactionActivity name="Respond RFQ Supplier"
 businessTransaction="BT:Respond RFQ"
 fromAuthorizedRole="intermediary"
 toAuthorizedRole=""

 timeToPerform=”P2D”/>

One may want to be optimistic and not put too many constraints on timeout. In particular,
timeToAcknowledgeReceipt should be larger than a typical downtime of an ebXML
system; otherwise, a lot of timeouts might be generated without a particular purpose.

Binary Collaborations also have a timeToPerform attribute. This is particularly useful when
a timeout needs to be associated to a group of Business Transactions rather than a single
transaction. In the RFQ/Quote example, there are two open-ended periods during which
one may want to enable Business Transactions but without necessarily expecting them to
occur. For instance, the respond RFQ, respond Quote, and Cancel Quote are all possible
Business Transactions, but relatively unlikely in a regular scenario. The only way to
express a global timeout to specify that the periods of reviewing the RFQ or the quote are
completed is to specify these Business Transaction Activities as part of a “sub-
collaboration” and define a Collaboration activity within the main Collaboration Definition,
which is an instance of this Collaboration activity.

 <BinaryCollaboration name="oagi:55.0B QUOTE REVIEW" timeToPerform="P5D">

...
</BinaryCollaboration>

 <BinaryCollaboration name="oagi:55.0A RFQ REVIEW" timeToPerform="P10D">

White Paper OAGIS Implementation Using ebXML CPP, CPA, and BPSS specifications

Version 1.03 Page 30 of 64 Last Modified: 9/27/2001

...
</BinaryCollaboration>
 <BinaryCollaboration name="oagi:55.0 INTERMEDIARY AND SUPPLIER RFQ - QUOTE
SCENARIO " timeToPerform="P30D">
 ...
 <CollaboratioActivity name="Review RFQ"
 binaryCollaboration=" oagi:55.0 INTERMEDIARY AND SUPPLIER RFQ
- QUOTE SCENARIO:RFQ REVIEW "
 fromAuthorizedRole="intermediary"
 toAuthorizedRole=""/>

 <BusinessTransactionActivity name="Add Quote"
 businessTransaction="BT:Add Quote"
 fromAuthorizedRole="supplier"
 toAuthorizedRole="intermediary"/>

 <Transition fromBusinessState="Review RFQ"
 toBusinessState="Add Quote"/>

 <CollaboratioActivity name="Review Quote"
 binaryCollaboration=" oagi:55.0 INTERMEDIARY AND SUPPLIER RFQ
- QUOTE SCENARIO:QUOTE REVIEW "
 fromAuthorizedRole="intermediary"
 toAuthorizedRole=""/>

 <Transition fromBusinessState="Add Quote"
 toBusinessState="Review Quote"/>

 ...

 </BinaryCollaboration>

Exceptions

Under all normal circumstances, the response message and/or the timeouts determine the
success or failure of a Business Transaction. However, the business processing of the
transaction can go wrong at either the responding or the requesting role.

• Control Exception

A ControlException signals an error condition in the management of a Business
Transaction. This business signal is asynchronously returned to the initiating activity
that originated the request. This exception must terminate the Business Transaction.
These errors deal with the mechanisms of message exchange such as
verification, validation, authentication, and authorization and will occur up to message
acceptance. Typically, the rules and constraints applied to the message will have only
dealt with structure, syntax, and message element values.

• Business Protocol Exceptions

White Paper OAGIS Implementation Using ebXML CPP, CPA, and BPSS specifications

Version 1.03 Page 31 of 64 Last Modified: 9/27/2001

A business protocol exception (or ProcessException) signals an error condition in a
Business Activity. This business signal is asynchronously returned to the initiating role
that originated the request. This exception must terminate the Business Transaction.
These errors deal with the mechanisms that process the business transaction
and will occur after message verification and validation. Typically, the rules and
constraints applied to the message will deal with the semantics of message elements
and the validity of the request itself. The content is not valid with respect to a
responding role’s Business Rules. This type of exception is usually generated after
an AcceptanceAcknowledgement has been returned.

A business protocol exception terminates the Business Transaction. The following are
business protocol exceptions:
� Negative acknowledgement of receipt. The structure/schema of a message is

invalid.
� Negative acknowledgement of acceptance. The business rules are violated.
� Performance exceptions. The requested Business Action cannot be

performed.
� Sequence exceptions. The order or type of a Business Document or

business signal is incorrect.
� Syntax exceptions. There is invalid punctuation, vocabulary, or grammar in

the Business Document or business signal.
� Authorization exceptions. Roles are not authorized to participate in the

Business Transaction.
� Business process control exceptions. Business Documents are not signed for

non-repudiation when required.

A Business Transaction is defined in very atomic and deterministic terms. It always is
initiated by the requesting role, and will always conclude at the requesting role. Upon
receipt of the required response and/or signals, or timeout of same, the requesting
role can unambiguously determine the success or failure of the Business Transaction.

To preserve this semantics, control failures and business failures are treated
differently by the requesting and responding roles as follows:

A responding role that encounters a business protocol exception signals the exception
back to the requesting role and then terminates the Business Transaction. If any
business exceptions (includes negative receipt and acceptance acknowledgements)
are signaled, then the Business Transaction must terminate.

A requesting role that encounters a business protocol exception terminates the
transaction but does NOT send a business exception signal to the responding role.
Rather, the requesting role then sends as a separate Business Transaction a
notification revoking the offending Business Document request. This new transaction
may be defined as a continuation of the current Binary Collaboration, or it may start a
new Binary Collaboration specifically defined to handle this notification of failure.

The consequence for someone writing a Collaboration Definition corresponding to
and OAGI scenario is that all possible exceptions must be handled specifically. The
parameters below specify the exceptions that will be trapped by the ebXML
application such that they can specifically trigger the corresponding Business
Transaction Activities that handle them.

IsAuthorizationRequired

If a partner role needs authorization to request a Business Action or to respond to a
Business Action, then the sending partner role must sign the Business Document

White Paper OAGIS Implementation Using ebXML CPP, CPA, and BPSS specifications

Version 1.03 Page 32 of 64 Last Modified: 9/27/2001

exchanged and the receiving partner role must validate this business control and
approve the authorizer. A responding partner must signal an authorization exception if
the requesting partner role is not authorized to perform the Business Activity. A
sending partner must send notification of failed authorization if a requesting partner is
not authorized to perform the responding Business Activity.

IsNonRepudiationRequired

If non-repudiation of origin and content is required, then the Business Activity must
store the Business Document in its original form for the duration mutually agreed to in
a trading partner agreement. A responding partner must signal a business control
exception if the sending partner role has not properly delivered their Business
Document. A requesting partner must send notification of failed business control if a
responding partner has not properly delivered their Business Document.

isNonRepudiationOfReceiptRequired

Both partners agree to mutually verify receipt of a requesting Business Document and
that the receipt must be non-repudiatable. A requesting partner must send notification
of failed business control (possibly revoking a contractual offer) if a responding partner
has not properly delivered their Business Document. For a further discussion of non-
repudiation of receipt, see also the ebXML E-Commerce and Simple Negotiation
Patterns.

Non-repudiation of receipt provides the data for the following audit controls.
� Verify responding role identity (authenticate) – Verify the identity of the

responding role (individual or organization) that received the requesting
Business Document.

� Verify content integrity – Verify the integrity of the original content of the
Business Document request.

isPositiveResponse

An expression whose evaluation results in TRUE or FALSE. If TRUE, this
DocumentEnvelope is intended as a positive response to the request. The value for
this parameter supplied for a DocumentEnvelope is an assertion by the sender of the
DocumentEnvelope regarding its intent for the transaction to which it relates, but does
not bind the recipient, or override the computation of transactional success or failure
using the transaction's guard expressions.

If a requesting role, upon evaluation of these expressions, determines a failure, then
the requesting role will “roll back” the Business Transaction and send a notification of
failure.

As mentioned earlier, this mechanism is very important in expressing OAGI scenarios
as ebXML Collaboration Definitions because it allows one to specify the intent of the
BOD (success or failure) and consequently provide Collaboration Definitions that can
be reused beyond OAGI document format definitions.

ebXML Signals

White Paper OAGIS Implementation Using ebXML CPP, CPA, and BPSS specifications

Version 1.03 Page 33 of 64 Last Modified: 9/27/2001

Business signals are application-level documents that “signal” the current state of the
Business Transaction. These business signals have specific business purposes and are
separate from lower protocol and transport signals.

However, the structures of ebXML business signals are “universal” and do not vary from
transaction to transaction. Thus, they can be defined once and for all as part of the ebXML
Business Process Specification Schema itself.

The Business Process Specification Schema provides both the choreography of business
signals and the structure definition of the business payload of a business signal. The
ebXML Message Service Specification signal structures provide business service state
alignment infrastructure, including unique message identifiers and digests used to meet
the basic process alignment requirements. The business signal payload structures
provided herein are optional and normative and are intended to provide business and
legal semantics to the business signals.

A DTD is provided for each of the possible business signals in section 9 of the ebXML
BPSS document.

This design was borrowed from the RosettaNet Implementation Framework specification.
Consequently, the section of the OAGI RosettaNet IF 2.0 white paper was used almost as
is for the purpose of this section.

The following diagrams show message exchange sequences for the use of ebXML Signal
Messages for specific error conditions. In a “discrete system model” when a ConfirmBOD
is used, the STATUSLVL field value determines which ebXML Signal Message is used.
The use of the ConfirmBOD is controlled through the CONFIRMATION field in the
CNTROLAREA and should be coordinated with the PIP requirements for the use of
AcknowledgementOfReceipt.
Sequence Diagram 1: Communication with no error -

OAG Adapter:
Initiator

ebXML
Infrastructure:

Initiator

ebXML
Infrastructure:

Responder

OAG Adapter:
Responder

1:BOD
2:ebXML wrapped BOD

4: BOD

5: confirmBOD

4: acknowledgment of Receip

6: Acknowledgement of Acceptance

7: confirmBOD

White Paper OAGIS Implementation Using ebXML CPP, CPA, and BPSS specifications

Version 1.03 Page 34 of 64 Last Modified: 9/27/2001

Receiving ebXMLAdapter (Responder) passes parser-level validation, OAGAdapter
validates content and generates a ConfirmBOD with STATUSLVL=”00” resulting in a non-
substantive AcknowledgementOfAcceptance message. Sending ebXMLAdapter (Initiator)
generates ConfirmBOD from Signal Message.

Sequence Diagram 2: Syntax Error – Exception: Receipt-Acknowledgement-
Exception

OAG Adapter:
Initiator

ebXML
Infrastructure:

Initiator

ebXML
Infrastructure:

Responder

OAG Adapter:
Responder

1:BOD
2:ebXML wrapped BOD

4: exception
3:

Receiving ebXMLAdapter (Responder) detects a parser-level error and generates
Exception: Receipt-Acknowledgement-Exception. Sending ebXMLAdapter (Initator)
generates a ConfirmBOD with STATUSLVL=”99” to indicate the error.

Sequence Diagram 3: Content Error – Exception: Business-Exception

OAG Adapter:
Initiator

ebXML
Infrastructure:

Initiator

ebXML
Infrastructure:

Responder

OAG Adapter:
Responder

1:BOD
2:ebXML wrapped BOD

4: BOD

5: confirmBOD

4: acknowledgment of Receip

6: exception

7: confirmBOD

White Paper OAGIS Implementation Using ebXML CPP, CPA, and BPSS specifications

Version 1.03 Page 35 of 64 Last Modified: 9/27/2001

Receiving ebXMLAdapter (Responder) passes parser-level validation, OAGAdapter
detects an OAGI content error and generates a ConfirmBOD with STATUSLVL=”99”. The
receiver-side ebXMLAdapter (Responder) creates an Exception: Business-Exception.
Sending ebXMLAdapter (Responder) re-creates a ConfirmBOD with STATUSLVL=”99” to
indicate the error.

RosettaNet Notification of Failure Message and ebXML

Unlike RosettaNet, ebXML does not provide a specific notification of failure to enable the
initiator of a Collaboration to cancel a Business Transaction he has initiated without waiting
for the response of the Responder.

Instead, ebXML provides a general mechanism to initiate a new Business Transaction
while one is currently on-going. (See the onInitiation attribute of a Business Activity). If this
mechanism is more generic and can be used for purposes other than aborting a
transaction, it also has its drawback since it is required to be explicit in the Collaboration
Definition.

Sequence Diagram 4: Communication-Level Failures

OAG Adapter:

Initiator
ebXML

Infrastructure:
Initiator

ebXML
Infrastructure:

Responder

OAG Adapter:
Responder

1:BOD 2: Failed Transpor

3: confirmBOD

White Paper OAGIS Implementation Using ebXML CPP, CPA, and BPSS specifications

Version 1.03 Page 36 of 64 Last Modified: 9/27/2001

OAG Adapter:
Initiator

ebXML
Infrastructure:

Initiator

ebXML
Infrastructure:

Responder

OAG Adapter:
Responder

1:BOD

6: confirmBOD

2: ebXML wrapped BOD

4: failed delivery

3: acknowledgment of Receip

5: Failed Acceptance

The illustrations in Diagram 4 show the message sequence when the ebXML
infrastructure fails to transport the ebXML-wrapped message or fails to deliver the
message to the OAGI-based recipient. This may be a result of transport-level errors or
timeout conditions as defined in the Business Transaction. In the case of a timeout
condition as a result of Failed Delivery (3), only the acknowledgment of receipt is returned
by ebXMLAdapter. Unlike RosettaNet, the initiating ebXMLAdapter does not have to
resend the message in this case; it is only the acceptance that failed, not the transport.

Patterns

ebXML Business Service Interfaces are configured to execute the business processes
specified in a Business Process Specification. They do so by exchanging ebXML
messages and business signals.

Each Business Transaction can be implemented using one of many available standard
patterns. These patterns determine the actual exchange of messages and business
signals between the partners to achieve the required electronic commerce transaction.

The Business Transaction Interaction Patterns set forth in Chapter 8 of the UMM
N090R9.1 document illustrate recommended permutations of message sequences as
determined by the type of Business Transaction defined and the timing policies specified
in the transactions.

While the UMM patterns themselves are not part of the ebXML specifications, all the
security and timing parameters required to express the pattern properties are provided as
attributes of elements in the ebXML Business Process Specification Schema.

Multiparty Collaborations

White Paper OAGIS Implementation Using ebXML CPP, CPA, and BPSS specifications

Version 1.03 Page 37 of 64 Last Modified: 9/27/2001

Scenario diagrams are often composed of several Binary Collaborations that are
interleaved with one another just like Scenario 55, which is composed of two Binary
Collaborations that will occur in parallel and are dependent on one another.

The ebXML specification provides a way not only to express the two Binary Collaborations
independently but also to synthesize them into a global “multiparty Collaboration.”
Sequencing rules may also be defined to choreograph the Business Transactions across
Binary Collaborations, such as “if Business Transaction 3 ends in Collaboration A,
Business Transaction 2 can start in Collaboration B.”

The example below illustrates the fact that the intermediary is only allowed to send a
cancel RFQ to the supplier when the buyer has itself successfully completed a Cancel
RFQ transaction.

 <MultiPartyCollaboration name="OAGI:RFQ / Quote With Intermediary">
 <BusinessPartnerRole name="Buyer">
 <Performs initiatingRole="Buyer"/>
 <Transition fromBusinessState="Cancel RFQ Buyer"
 toBusinessState="Cancel RFQ Intermediary"/>
 </BusinessPartnerRole>
 …

White Paper OAGIS Implementation Using ebXML CPP, CPA, and BPSS specifications

Version 1.03 Page 38 of 64 Last Modified: 9/27/2001

Application-to-Application Collaboration Definitions

People implementing the OAGI specification may also be interested in using a formal
definition for the scenario diagrams that occur only in the Application-to-Application (A2A)
scenario. The goal of this section is to define a precise subset of the ebXML specification
that does not feature “business related” semantics to specify a long-running message
interchange between two applications of the same company.

The benefit of this approach is that it provides a formal way to configure both application
and interapplication infrastructure. This should prove useful when one needs to extend or
modify existing implementations. Today, since there is no formal expression of the
scenario diagrams, one has to basically hard code the scenario in some application or
come up with a proprietary machine-readable representation of the scenario. In this
section, we explore how to develop a “standard” representation based on the ebXML
BPSS specification.

The ebXML Metamodel Subset

The subset was deduced very simply by removing all business-related semantics (Table 2
presents the major changes to the metamodel).

As one may have expected, most of the changes have been at the Business Transaction
level. The sequencing rules remain unchanged as well as the multiparty Collaboration
design. Partner Roles have been replaced by component roles, such as Inventory or
Billing.

Signals are much simpler than in ebXML. Receipts are somewhat useless in the
Application-to-Application scenario. OAGI already provides a signal that can be used for
both acceptance acknowledgement and exceptions (ConfirmBOD). We have left the
timeToAcknowledgeAcceptance attribute to a requesting activity in order to indicate that a
CONFIRMBOD signal is expected.

The following figure presents a simple subset of the ebXML BPSS Metamodel designed
for Application to Application integration only.

White Paper OAGIS Implementation Using ebXML CPP, CPA, and BPSS specifications

Version 1.03 Page 39 of 64 Last Modified: 9/27/2001

Transaction
 beginsWhen
 endsWhen
 isGuaranteedDeliveryRequired
 name
 postCondition
 preCondition

TransactionActivity
 isConcurrent
 timeToPerform

Action
 name

RequestingActivity
 timeToAcknowledgeAcceptance

RespondingActivity

Activity
 name

State

Collaboration
Activity

BinaryCollaboration
 beginsWhen
 endsWhen
 name
 postCondition
 preCondition
 timeToPerform

AuthorizedRole
 isInitiator
 name

n

Performs

to

from

CommponentRole
 name

n

Figure 114. ebXML Metamodel Subset for A2A Integration Scenarios

White Paper OAGIS Implementation Using ebXML CPP, CPA, and BPSS specifications

Version 1.03 Page 40 of 64 Last Modified: 9/27/2001

Table 2. ebXML Semantics1 Applied to Application-to-Application Scenarios

Parameter A2A Comments
Business Transaction Transaction
Pattern No
isGuaranteedDeliveryRequired Possible
precondition Yes Optional
PostCondition Yes Optional
BeginsWhen Yes Optional
EndWhen Yes Optional

Business Transaction Activity TransactionActivity
TimeToPerform Yes Optional
isLegallyBinding No
IsConcurrent Yes Optional

Business Action Action
IsIntelligibleCheckRequired No
IsAuthorizationRequired No
timeToAcknowledgeReceipt No
isNonRepudiationRequired No
isNonRepudiationOfRecieptRequired No
timeToAcknowledgeAcceptance Yes Optional

DocumentEnvelope Idem
isPositiveResponse Yes Mandatory

DocumentSecurity Idem
IsTamperProof Yes Optional
IsConfidential Yes Optional

Binary Collaboration Idem
precondition Yes Optional
PostCondition Yes Optional
BeginsWhen Yes Optional
EndWhen Yes Optional
TimeToPerform Yes Optional
Pattern No

White Paper OAGIS Implementation Using ebXML CPP, CPA, and BPSS specifications

Version 1.03 Page 41 of 64 Last Modified: 9/27/2001

DTD

The corresponding DTD was created from the one of ebXML.

<!-- === -->
<!-- Editor: Jean-Jacques Dubray (eXcelon Corp) -->
<!-- Version: Version 1.00 -->
<!-- Updated: 2001-06-15 -->
<!-- -->
<!-- Public Identifier: -->
<!-- "-//OAGI//DTD Integration Scenarion Specification ver
1.0//EN" -->
<!-- -->
<!-- -->
<!-- === -->
<!ELEMENT IntegrationScenarioSpecification (Documentation* ,
SubstitutionSet* , (Include | BOD | IntegrationScenarioSpecification |
Package | BinaryCollaboration | Transaction | MultiPartyCollaboration)*)>
<!ATTLIST IntegrationScenarioSpecification name ID #REQUIRED
 uuid CDATA #REQUIRED
 version CDATA #REQUIRED >
<!ELEMENT Documentation (#PCDATA)>
<!ATTLIST Documentation uri CDATA #IMPLIED >
<!ELEMENT Include (Documentation*)>
<!ATTLIST Include name CDATA #REQUIRED
 uuid CDATA #REQUIRED
 uri CDATA #REQUIRED
 version CDATA #REQUIRED >
<!ELEMENT BOD (ConditionExpression? , Documentation*)>
<!ATTLIST BOD name CDATA #REQUIRED
 nameID ID #IMPLIED
 specificationLocation CDATA #IMPLIED
 specificationElement CDATA #IMPLIED >
<!ELEMENT ConditionExpression (Documentation*)>
<!ATTLIST ConditionExpression expressionLanguage CDATA #IMPLIED
 expression CDATA #IMPLIED >
<!ELEMENT SubstitutionSet (DocumentSubstitution | AttributeSubstitution |
Documentation)*>
<!ATTLIST SubstitutionSet name CDATA #IMPLIED
 nameId IDREF #IMPLIED
 applyToScope CDATA #IMPLIED >
<!ELEMENT DocumentSubstitution (Documentation*)>
<!ATTLIST DocumentSubstitution originalBOD CDATA #IMPLIED
 originalBODID CDATA #IMPLIED
 substituteBOD CDATA #IMPLIED
 substituteBODId CDATA #IMPLIED >
<!ELEMENT AttributeSubstitution (Documentation*)>
<!ATTLIST AttributeSubstitution attributeName CDATA #IMPLIED
 value CDATA #IMPLIED >
<!ELEMENT Package (Documentation* , (Package | BinaryCollaboration |
Transaction | MultiPartyCollaboration)*)>
<!ATTLIST Package name CDATA #REQUIRED
 nameID ID #IMPLIED >
<!ELEMENT BinaryCollaboration (Documentation* , InitiatingRole ,
RespondingRole , (Documentation | Start | Transition | Success | Failure |
TransactionActivity | CollaborationActivity | Fork | Join)*)>
<!ATTLIST BinaryCollaboration name CDATA #REQUIRED

White Paper OAGIS Implementation Using ebXML CPP, CPA, and BPSS specifications

Version 1.03 Page 42 of 64 Last Modified: 9/27/2001

 nameID ID #IMPLIED
 beginsWhen CDATA #IMPLIED
 endsWhen CDATA #IMPLIED
 preCondition CDATA #IMPLIED
 postCondition CDATA #IMPLIED
 timeToPerform CDATA #IMPLIED >
<!ELEMENT MultiPartyCollaboration (Documentation* , ComponentRole*)>
<!ATTLIST MultiPartyCollaboration name CDATA #REQUIRED
 nameID ID #IMPLIED >
<!ELEMENT InitiatingRole (Documentation*)>
<!ATTLIST InitiatingRole name CDATA #REQUIRED
 nameID ID #IMPLIED >
<!ELEMENT RespondingRole (Documentation*)>
<!ATTLIST RespondingRole name CDATA #REQUIRED
 nameID ID #IMPLIED >
<!-- A BusinessState is one of Start, Success, Failure, Fork, Join,
BusinessTransactionActivity or CollaborationActivity -->
<!-- fromBusinessState and toBusinessState are fully qualified using XPath --
>
<!ELEMENT Transition (ConditionExpression? , Documentation*)>
<!ATTLIST Transition onInitiation (true | false) 'false'
 fromBusinessState CDATA #IMPLIED
 fromBusinessStateIDRef IDREF #IMPLIED
 toBusinessState CDATA #IMPLIED
 toBusinessStateIDRef IDREF #IMPLIED
 conditionGuard (Success |
 BusinessFailure |
 TechnicalFailure |
 AnyFailure) #IMPLIED >
<!-- Start is a special type of Transition in that it only has a destination
-->
<!ELEMENT Start (Documentation*)>
<!ATTLIST Start toBusinessState CDATA #REQUIRED
 toBusinessStateIDRef IDREF #IMPLIED >
<!-- Success is a special type of Transition in that it only has a
origination -->
<!ELEMENT Success (ConditionExpression? , Documentation*)>
<!ATTLIST Success fromBusinessState CDATA #REQUIRED
 fromBusinessStateIDRef IDREF #IMPLIED
 conditionGuard (Success |
 BusinessFailure |
 TechnicalFailure |
 AnyFailure) #IMPLIED >
<!-- Failure is a special type of Transition in that it only has a
origination -->
<!ELEMENT Failure (ConditionExpression? , Documentation*)>
<!ATTLIST Failure fromBusinessState CDATA #REQUIRED
 fromBusinessStateIDRef IDREF #IMPLIED
 conditionGuard (Success |
 BusinessFailure |
 TechnicalFailure |
 AnyFailure) #IMPLIED >
<!-- Fork is a special type of BusinessState that can be transitioned to -->
<!ELEMENT Fork (Documentation*)>
<!ATTLIST Fork name CDATA #REQUIRED
 nameID ID #IMPLIED >
<!-- Join is a special type of BusinessState that can be transitioned to -->
<!ELEMENT Join (Documentation*)>

White Paper OAGIS Implementation Using ebXML CPP, CPA, and BPSS specifications

Version 1.03 Page 43 of 64 Last Modified: 9/27/2001

<!ATTLIST Join name CDATA #REQUIRED
 nameID ID #IMPLIED
 waitForAll (true | false) 'true' >
<!-- fromAuthorizedRole and toAuthorizedRole are fully qualified using XPath
-->
<!-- BusinessTransactionActivity is a BusinessState that can be transitioned
to -->
<!ELEMENT TransactionActivity (Documentation*)>
<!ATTLIST TransactionActivity name CDATA #REQUIRED
 nameID ID #IMPLIED
 fromAuthorizedRole CDATA #REQUIRED
 fromAuthorizedRoleIDRef IDREF #IMPLIED
 toAuthorizedRole CDATA #REQUIRED
 toAuthorizedRoleIDRef IDREF #IMPLIED
 isConcurrent (true | false)
'true'
 timeToPerform CDATA #IMPLIED
 transaction CDATA #IMPLIED
 transactionIDRef CDATA #IMPLIED >

<!-- fromAuthorizedRole and toAuthorizedRole are fully qualified using XPath
-->

<!-- CollaborationActivity is a BusinessState that can be transitioned to -->

<!ELEMENT CollaborationActivity (Documentation*)>

<!ATTLIST CollaborationActivity name CDATA #REQUIRED

 nameID ID #IMPLIED

 fromAuthorizedRole CDATA #REQUIRED

 fromAuthorizedRoleIDRef IDREF #IMPLIED

 toAuthorizedRole CDATA #REQUIRED

 toAuthorizedRoleIDRef IDREF #IMPLIED

 binaryCollaboration CDATA #REQUIRED

 binaryCollaborationIDRef IDREF #IMPLIED >

<!ELEMENT Transaction (Documentation* , RequestingActivity ,
RespondingActivity)>

<!ATTLIST Transaction name CDATA #REQUIRED

 nameID ID #IMPLIED

 beginsWhen CDATA #IMPLIED

 endsWhen CDATA #IMPLIED

 isGuaranteedDeliveryRequired (true | false) 'false'

 preCondition CDATA #IMPLIED

 postCondition CDATA #IMPLIED >

<!ELEMENT RequestingActivity (Documentation* , DocumentEnvelope)>

<!ATTLIST RequestingActivity name CDATA #IMPLIED

 nameID ID #IMPLIED

 timeToAcknowledgeAcceptance CDATA #IMPLIED >

<!ELEMENT RespondingActivity (Documentation* , DocumentEnvelope*)>

White Paper OAGIS Implementation Using ebXML CPP, CPA, and BPSS specifications

Version 1.03 Page 44 of 64 Last Modified: 9/27/2001

<!ATTLIST RespondingActivity name CDATA #IMPLIED

 nameID ID #IMPLIED >

<!ELEMENT DocumentEnvelope (Documentation* , Attachment*)>

<!ATTLIST DocumentEnvelope isPositiveResponse (true | false) 'false'

 isAuthenticated (true | false) 'false'

 isConfidential (true | false) 'false'

 isTamperProof (true | false) 'false'

 BOD CDATA #IMPLIED

 BODIDRef CDATA #IMPLIED >

<!ELEMENT Attachment (Documentation*)>

<!ATTLIST Attachment name CDATA #REQUIRED

 nameID ID #IMPLIED

 mimeType CDATA #REQUIRED

 specification CDATA #IMPLIED

 version CDATA #IMPLIED

 isAuthenticated (true | false) 'false'

 isConfidential (true | false) 'false'

 isTamperProof (true | false) 'false'

 BOD CDATA #IMPLIED

 BODIDRef CDATA #IMPLIED >

<!ELEMENT ComponentRole (Documentation* , Performs* , Transition*)>

<!ATTLIST ComponentRole name CDATA #REQUIRED

 nameID ID #IMPLIED >

<!-- authorizedRole is fully qualified using XPath -->

<!ELEMENT Performs (Documentation*)>

<!ATTLIST Performs initiatingRole CDATA #IMPLIED

 inititiatingRoleIDRef IDREF #IMPLIED

 respondingRole CDATA #IMPLIED

 respondingRoleIDRef IDREF #IMPLIED >

White Paper OAGIS Implementation Using ebXML CPP, CPA, and BPSS specifications

Version 1.03 Page 45 of 64 Last Modified: 9/27/2001

White Paper OAGIS Implementation Using ebXML CPP, CPA, and BPSS specifications

Version 1.03 Page 46 of 64 Last Modified: 9/27/2001

Example

Integration Scenario 1.0 describes the integration scenario for subledger business
software components to integrate with a general ledger business software component
because many applications create data that causes changes in the account balances of a
general ledger application.

Accounts Payable
Accounts Receivable
Budget
Project Accounting
Manufacturing
Inventory
Order Management
Billing
Purchasing
Assets
Human Resources

General
Ledger

Post Journal Sub - Ledgers

Sync COA

Confirm BOD

Accounts Payable
Accounts Receivable
Budget
Project Accounting
Manufacturing
Inventory
Order Management
Billing
Purchasing
Assets
Human Resources

General
Ledger

Post Journal Sub - Ledgers

Sync COA

Confirm BOD

General
Ledger

Post Journal Post Journal Ledgers

Sync COA Sync COA

Confirm BOD Confirm BOD

We can organize this simple scenario into two transactions (Sync COA and Post
Journal/Confirm BOD as an acceptance signal).

The XML integration scenario definition follows.

White Paper OAGIS Implementation Using ebXML CPP, CPA, and BPSS specifications

Version 1.03 Page 47 of 64 Last Modified: 9/27/2001

<!--
 edited by Jean-Jacques Dubray (eXcelon Corp.)
 -->
 <!--
 Notes
 -->
 <IntegrationScenario name="1.0 GENERAL LEDGER TO SUB-LEDGER SCENARIO" version="1.0"

uuid="[1234-5678-901234]">
 <!--
 Business Documents
 -->
 <BusinessDocument name="Sync COA" />
 <BusinessDocument name="Post Journal" />
 <Package name="OAGIS">

 <!--
 Binary Collaboration
 -->
 <BinaryCollaboration name="BC:GENERAL LEDGER TO SUB-LEDGER SCENARIO"

timeToPerform="P1H">
 <Documentation>timeToPerform = Period: 1 hour from start of

transaction</Documentation>
 <InitiatingRole name="Ledger" />
 <RespondingRole name="Sub-ledger" />
 <BusinessTransactionActivity name="Sync COA" businessTransaction="BT:Sync

COA" fromAuthorizedRole="Ledger" toAuthorizedRole="Sub-Ledger" />
 <BusinessTransactionActivity name="Post Journal" businessTransaction="BT:Post

Journal" fromAuthorizedRole="Sub-Ledger" toAuthorizedRole="Ledger" />
 <Start toBusinessState="Sync COA" />
 <Transition fromBusinessState="Sync COA" toBusinessState="Post Journal"

conditionGuard="Success" />
 <Success fromBusinessState="Post Journal" guardCondition="success" />
 <Failure fromBusinessState="Post Journal" guardCondition="BusinessFailure"

guardExpression="//CONFIRMBOD/CODE="Reject"" />
 </BinaryCollaboration>
 <!--
 Here are all the Business Transactions needed
 -->
 <BusinessTransaction name="BT:Sync COA">

 <RequestingBusinessActivity name="">
 <DocumentEnvelope businessDocument="Sync COA" />

 </RequestingBusinessActivity>
 </BusinessTransaction>
 <BusinessTransaction name="BT:Post Journal">

 <RequestingBusinessActivity name="" timeToAcknowledgeAcceptance="P10M">
 <DocumentEnvelope isPositiveResponse="true" businessDocument="" />

 </RequestingBusinessActivity>
 </BusinessTransaction>

 </Package>
 </IntegrationScenario>

White Paper OAGIS Implementation Using ebXML CPP, CPA, and BPSS specifications

Version 1.03 Page 48 of 64 Last Modified: 9/27/2001

ebXML Collaboration Protocol Profile and Agreement

As defined in the ebXML Business Process Specification Schema [ebBPSS], a Business
Partner is an entity that engages in Business Transactions with another Business
Partner(s) 1. Each Partner's capabilities (both commercial/Business and technical) to
engage in electronic Message exchanges with other Partners MAY be described by a
document called a Trading-Partner Profile (TPP). The agreed interactions between two
Partners MAY be documented in a document called a Trading-Partner Agreement (TPA).
A TPA MAY be created by computing the intersection of the two Partners' TPPs.

The Message-exchange capabilities of a Party MAY be described by a Collaboration
Protocol Profile (CPP) within the TPP. The Message-exchange agreement between two
Parties MAY be described by a Collaboration Protocol Agreement (CPA) within the TPA.
Included in the CPP and CPA are details of transport, messaging, security constraints,
and bindings to a Business Process Specification (or, for short, Process Specification)
document that contains the definition of the interactions between the two Parties while
engaging in a specified electronic Business Collaboration.

The goal of this section is to provide guidelines in developing CPP s and CPAs that
support OAGIS Business Collaborations.

Collaboration Protocol Profile

The CPP contains the information relative to the Party (PartyInfo element) that owns the
CPP as well as how the Message Header and payload constituent(s) are packaged for
transmittal (Packaging element).

The OAGI guidelines are featured in Table 3. Most of the constraints are at the delivery
channel and reliable messaging levels.

Table 3. CPP Guidelines

EbXML PartyInfo Elements Action for OAGI
PartyId @type Follow ebXML guidelines
PartyRef @href Follow ebXML guidelines
CollaborationRole N/A
 ProcessSpecification @version @name
 @xlink:type @xlink:href

Pointer to an OAGI Collaboration
Definition

 Role @name @xlink:type @xlink:href Role played by the Party within the
Collaboration

 CertificateRef @certId Follow ebXML guidelines
 ServiceBinding @channelId @packageId Default service binding - Follow

ebXML guidelines
 Service @type
 Override @action @channelId @packageId
 @xlink:href @xlink:type

If any override binding is needed (e.g.
security can be added). Follow ebXML

White Paper OAGIS Implementation Using ebXML CPP, CPA, and BPSS specifications

Version 1.03 Page 49 of 64 Last Modified: 9/27/2001

guidelines
 Certificate @certId Follow ebXML guidelines
 KeyInfo Follow ebXML guidelines
DeliveryChannel @channeled @transported
 @docExchangeId

Follow ebXML guidelines

 Characteristics @syncReplyMode

Following OAGI model the Business-
response Message should be
asynchronous; however, the Party
may still use a synchronous signal

 @nonrepudiationOfOrigin Based on the OAGI scenario, this
parameter may be set either way

 @nonrepudiationOfReceipt Based on the OAGI scenario, this
parameter may be set either way

 @secureTransport Based on the OAGI scenario, this
parameter may be set either way

 @confidentiality Based on the OAGI scenario, this
parameter may be set either way

 @authenticated Based on the OAGI scenario, this
parameter may be set either way

 @authorized Based on the OAGI scenario, this
parameter may be set either way

Transport @transported
 SendingProtocol @version
 ReceivingProtocol @version
 Endpoint @uri @type
 TransportSecurity
 Protocol @version
 CertificateRef @certId

Follow ebXML guidelines

DocExchange @docExchangeId N/A
 ebXMLBinding @version N/A

ReliableMessaging
@deliverySemantics
@idempotency
@messageOrderSem
antics

 Retries
 RetryInterval

 PersistDuration

Messages should be delivered
“OnceAndOnlyOnce”, with an
idempotency test (check for
duplicates) and a guaranteed order.
Retries, and retry interval and persist
duration can be set to any appropriate
value

NonRepudiation
 Protocol
 HashFunction
 SignatureAlgorithm

 CertificateRef @certId

Follow ebXML guidelines

 DigitalEnvelope
 Protocol @version
 EncryptionAlgorithm
 CertificateRef @certId

Follow ebXML guidelines

White Paper OAGIS Implementation Using ebXML CPP, CPA, and BPSS specifications

Version 1.03 Page 50 of 64 Last Modified: 9/27/2001

Typically the subtree under the Packaging element indicates the specific way in which
constituent parts of the Message are organized. MIME processing capabilities are typically
the capabilities or agreements described in this subtree. The Packaging element provides
information about MIME content types, XML namespaces, security parameters, and MIME
structure of the data that is exchanged between Parties.

The ProcessingCapabilities element specifies whether the Messaging Service may
parse or generate the “packaging constructs.” Presently, the BODs are generated by the
application rather than the messaging service layer, hence the values provided in the table
below.

CompositeList is a container for the specific way in which the simple parts are combined
into groups (MIME multiparts) or encapsulated within security-related MIME content-types.
The CompositeList element MAY be omitted from Packaging when no security
encapsulations or composite multiparts are used.

 <CompositeList>
 <Composite mimetype = "multipart/related" id = "P13"
 mimeparameters = "type=application/xml">
 <Constituent idref = "BOD1"/>
 <Constituent idref = "BOD2"/>
 </Composite>
 </CompositeList>

Table 4. ebXML Packaging Element

EbXML Packaging Elements Action for OAGI
ProcessingCapabilities @parse true
 @generate false
 SimplePart @mimetype “application/xml”
 NamespaceSupported @location
 @version

Provide OAGI namespace
reference

 CompositeList
 Composite @mimetype "multipart/related"

 @mimeparameters Value should be set to
“type=application/xml”

Constituent @idref Reference to the corresponding
simplepart

White Paper OAGIS Implementation Using ebXML CPP, CPA, and BPSS specifications

Version 1.03 Page 51 of 64 Last Modified: 9/27/2001

Collaboration Protocol Agreement

A Collaboration Protocol Agreement (CPA) defines the capabilities that two Parties must
agree upon to enable them to engage in electronic Business for the purposes of the
particular CPA. In particular, the CPA is “calculated” as the intersection of two CPPs:

Figure 125. CPA Metamodel

CPA
+status
+startDate
+endDate
+cpaId

PartyInfo
+partyRef2

DigitalSignature

ConverstationConstrains
+invocationLimits
+concurrentConversations

The PartyInfo element has the same content as the corresponding CPP element, limited
to the intersection of the two CPPs involved.

All the elements of the CPA can be used as is by the ebXML specification; there is no
particular recommendation with respect to its usage in the context of OAGI.

White Paper OAGIS Implementation Using ebXML CPP, CPA, and BPSS specifications

Version 1.03 Page 52 of 64 Last Modified: 9/27/2001

Bringing it All Together

The Role of the OAGI Organization in Specifying CPPs and CPAs

Obviously, a lot of the parameters specified in the CPP and CPA are specific to
companies and Parties involved in the Collaboration. The Role of OAGI is to specify both
end-to-end and application-to-application scenarios, and in certain cases some CPP
elements or constraints.

Figure 16. Role of Open Applications Group

OAGI

E2E
Integration
Scenarios

CPP
Elements

Industry Vertical Party

A2A
Integration
Scenarios

E2E
Integration
Scenarios

More
CPP

Elements

CPA
Elements

CPP

CPA

OAGI is also working actively with industry vertical consortia such as the STAR (Standard
for Technology in the Automotive Retail) to specify specialize integration scenarios and
BODs. These verticals provide more context to specify CPP and sometimes CPA
elements. Finally, a user of an OAGI or Vertical OAGI specification will have to create
complete CPPs and CPAs in order to carry out electronic commerce within the ebXML
framework.

White Paper OAGIS Implementation Using ebXML CPP, CPA, and BPSS specifications

Version 1.03 Page 53 of 64 Last Modified: 9/27/2001

ebXML Functional Phases

ebXML provides a complete framework to carry out electronic commerce in a near real-
time, secure, and legally binding environment. Once Content, Collaborations, CPPs, and
CPAs have been specified, the Parties involved can use the ebXML Messaging Service
as is to carry out electronic transactions.

Figure 17. The four phases of a B2B implementation

Transact

Party
A

Party
B

Messaging

Service

Transact

Party
A

Party
B

Message

Service

Design Time

Define Content
<PO>

…
</PO>

Business
Transactions

Business
Collaborations

Business
Documents

Implement Discover

Party
A

Party
B

Collaboration
Protocol
Profile

Collaboration
Protocol
Profile

ebXML
Registry

Collaboration
Protocol

Agreement

In particular, and ebXML Registry is accessible by all and contains the following artifacts
(see figure below):

• Business Process and information metamodels
• Business Library
• Core Library
• Collaboration Protocol Profiles
• List of scenarios
• Messaging constraints
• Security constraints

White Paper OAGIS Implementation Using ebXML CPP, CPA, and BPSS specifications

Version 1.03 Page 54 of 64 Last Modified: 9/27/2001

Figure 18. ebXML Registry Overview

White Paper OAGIS Implementation Using ebXML CPP, CPA, and BPSS specifications

Version 1.03 Page 55 of 64 Last Modified: 9/27/2001

Appendix 1: ebXML Deliverables (www.ebXML.org)

There are four categories of ebXML deliverables:

• Technical Specifications

• Technical Reports

• Reference Materials

• White Papers
Note: the PDF versions of these documents are the normative versions.
Click here to download the PDF versions of all of the Specification documents.
(4,880 kb zip file).
Click here to download the PDF versions of all of the Technical Report and
Reference Material documents. (3,741 Kb zip file).
Click here to download the PDF versions of all of the White Paper documents. (338
Kb zip file).
These documents are also available from the XML.org Registry at
www.xml.org/registry

Technical Specifications

Technical Specifications are documents whose material fulfils the requirements
of the ebXML Requirements document.
The following Technical Specification was approved by the ebXML Plenary on 16
February 2001.

Specification Project Team Document

ebXML Technical Architecture Specification
v1.04

Technical
Architecture

ebTA.pdf
ebTA.doc

The following Technical Specifications were approved by the ebXML Plenary on
11 May 2001.
Specification Project Team Document

Business Process
Specification Schema v1.01
(XML schema and DTD
examples available separately)

Business Process ebBPSS.pdf
ebBPSS.doc
ebBPSS.dtd
ebBPSS.xml
ebBPSS.xsd

Registry Information Model v1.0 Registry/Repository ebRIM.pdf
ebRIM.doc

Registry Services Specification
v1.0

Registry/Repository ebRS.pdf
ebRS.doc

EbXML Requirements
Specification v1.06

Requirements ebREQ.pdf
ebREQ.doc

Collaboration Protocol Profile Trading Partner ebCPP.pdf

White Paper OAGIS Implementation Using ebXML CPP, CPA, and BPSS specifications

Version 1.03 Page 56 of 64 Last Modified: 9/27/2001

and Agreement
Specification v1.0

ebCPP.doc

Message Service Specification
v1.0

Transport, Routing,
and Protocol

ebMS.pdf
ebMS.doc

White Paper OAGIS Implementation Using ebXML CPP, CPA, and BPSS specifications

Version 1.03 Page 57 of 64 Last Modified: 9/27/2001

Technical Reports

Technical Reports are documents that are either
• Guidelines: documents that contain information to guide in the interpretation

or implementation of ebXML concepts.

• Catalogs: documents that contain foundation material based on ebXML
Technical Specifications or Reports.

The following Technical Reports were accepted by the ebXML Plenary on 11
May 2001.

Report Project

Team
Document

Business Process and Business
Information Analysis Overview v1.0

Business
Process

bpOVER.pdf
bpOVER.doc

Business Process Analysis
Worksheets & Guidelines v1.0

Business
Process

bpWS.pdf
bpWS.doc

E-Commerce Patterns v1.0 Business
Process

bpPATT.pdf
bpPATT.doc

Catalog of Common Business
Processes v1.0

Business
Process

bpPROC.pdf
bpPROC.doc

Core Component Overview v1.05 Core
Components

ccOVER.pdf
ccOVER.doc

Core Component Discovery and
Analysis v1.04

Core
Components

ebCCD&A.pdf
ebCCD&A.doc

Context and Re-Usability of Core
Components v1.04

Core
Components

ebCNTXT.pdf
ebCNTXT.doc

Guide to the Core Components
Dictionary v1.04

Core
Components

ccCTLG.pdf
ccCTLG.doc

Naming Convention for Core
Components v1.04

Core
Components

ebCCNAM.pdf
ebCCNAM.doc

Document Assembly and Context
Rules v1.04

Core
Components

ebCCDOC.pdf
ebCCDOC.doc

Catalogue of Context Drivers v1.04 Core
Components

ccDRIV.pdf
ccDRIV.doc

Core Component Dictionary v1.04 Core
Components

ccDICT.pdf
ccDICT.doc

Core Component Structure v1.04 Core
Components

ccSTRUCT.pdf
ccSTRUCT.xls

Technical Architecture Risk
Assessment v1.0

Security secRISK.pdf
secRISK.doc

White Paper OAGIS Implementation Using ebXML CPP, CPA, and BPSS specifications

Version 1.03 Page 58 of 64 Last Modified: 9/27/2001

Reference Materials

Reference Materials are documents that are normative references in approved
specifications.
The following Reference Material documents were accepted by the ebXML
Plenary on 11 May 2001.
Reference Project Team Document

ebXML Glossary Technical
Architecture

ebGLOSS.pdf
ebGLOSS.doc

White Papers

White Papers are documents that constitute a snapshot of ongoing work within
each respective Project Team and represent a report that has been approved by
the Project Team.

The following White Papers were accepted by the ebXML Steering Committee on
10-11 May 2001.

White Paper Project Team Document

Proposed revisions to
Technical Architecture
Specification v1.0.4

Business Process bpTAREV.pdf
bpTAREV.doc

Using UDDI to find ebXML
Registry/Repository

Registry/Repository rrUDDI.pdf
rrUDDI.doc

ebXML Registry Security
Proposal

Security secREG.pdf
secREG.doc

White Paper OAGIS Implementation Using ebXML CPP, CPA, and BPSS specifications

Version 1.03 Page 59 of 64 Last Modified: 9/27/2001

Appendix 2: OAGI Scenario 55 RFQ / Quote

This section features the complete example used in this document.

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE ProcessSpecification SYSTEM "ebBPSS-v1.01.dtd">
<ProcessSpecification name="OAGI:55" uuid="1" version="1.0">
 <BusinessDocument name="Getlist RFQ"

specificationLocation="www.openapplications.org/OAGIS/v7.1/148_getlist_rfq_00
3.dtd"
 specificationElement="GETLIST_RFQ_003" />
 <BusinessDocument name="List RFQ"

specificationLocation="www.openapplications.org/OAGIS/v7.1/149_getlist_rfq_00
3.dtd"
 specificationElement="LIST_RFQ_003" />
 <BusinessDocument name="Get RFQ"

specificationLocation="www.openapplications.org/OAGIS/v7.1/150_get_rfq_003.dt
d"
 specificationElement="GET_RFQ_003" />
 <BusinessDocument name="Show RFQ"

specificationLocation="www.openapplications.org/OAGIS/v7.1/151_show_rfq_003.d
td"
 specificationElement="SHOW_RFQ_003" />
 <BusinessDocument name="Cancel RFQ"

specificationLocation="www.openapplications.org/OAGIS/v7.1/146_cancel_rfq_003
.dtd"
 specificationElement="CANCEL_RFQ_003" />
 <BusinessDocument name="Respond RFQ"

specificationLocation="www.openapplications.org/OAGIS/v7.1/147_respond_rfq_00
3.dtd"
 specificationElement="RESPOND_RFQ_003" />
 <BusinessDocument name="Sync Quote"

specificationLocation="www.openapplications.org/OAGIS/v7.1/152_sync_quote_003
.dtd"
 specificationElement="SYNC_QUOTE_003" />
 <BusinessDocument name="Add Quote"

specificationLocation="www.openapplications.org/OAGIS/v7.1/153_add_quote_003.
dtd"
 specificationElement="ADD_QUOTE_003" />
 <BusinessDocument name="Change Quote"

specificationLocation="www.openapplications.org/OAGIS/v7.1/154_change_quote_0
03.dtd"
 specificationElement="CHANGE_QUOTE_003" />
 <BusinessDocument name="Cancel Quote"

White Paper OAGIS Implementation Using ebXML CPP, CPA, and BPSS specifications

Version 1.03 Page 60 of 64 Last Modified: 9/27/2001

specificationLocation="www.openapplications.org/OAGIS/v7.1/155_cancel_quote_0
03.dtd"
 specificationElement="CANCEL_QUOTE_003" />
 <BusinessDocument name="Respond Quote"

specificationLocation="www.openapplications.org/OAGIS/v7.1/156_respond_quote_
003.dtd"
 specificationElement="RESPOND_QUOTE_003" />
 <BusinessDocument name="Elect Quote"

specificationLocation="www.openapplications.org/OAGIS/v7.1/002_confirm_bod_00
3.dtd"
 specificationElement="CONFIRM_BOD_003">
 <ConditionExpression expressionLanguage='XPath'
expression='//STATUSLVL="18"' />
 </BusinessDocument>

<Package name="IntermediarySupplier" nameID="Scenario 1">
 <BusinessTransaction name="BT:Getlist RFQ">
 <RequestingBusinessActivity
 isNonRepudiationRequired="false"
 timeToAcknowledgeReceipt="PT2H"
 timeToAcknowledgeAcceptance="PT24H">
 <DocumentEnvelope businessDocument="Getlist RFQ"/>
 </RequestingBusinessActivity>

 <RespondingBusinessActivity>
 <DocumentEnvelope
 businessDocument="list RFQ"
 isPositiveResponse="true"/>
 </RespondingBusinessActivity>
 </BusinessTransaction>

 <BusinessTransaction name="BT:Get RFQ">
 <RequestingBusinessActivity
 isNonRepudiationRequired="false"
 timeToAcknowledgeReceipt="PT2H"
 timeToAcknowledgeAcceptance="PT24H">
 <DocumentEnvelope businessDocument="Get RFQ"/>
 </RequestingBusinessActivity>

 <RespondingBusinessActivity>
 <DocumentEnvelope
 businessDocument="Show RFQ"
 isPositiveResponse="true"/>
 </RespondingBusinessActivity>
 </BusinessTransaction>

 <BusinessTransaction name="BT:Cancel RFQ">
 <RequestingBusinessActivity
 isNonRepudiationRequired="false"
 timeToAcknowledgeReceipt="PT2H"
 timeToAcknowledgeAcceptance="PT24H">

White Paper OAGIS Implementation Using ebXML CPP, CPA, and BPSS specifications

Version 1.03 Page 61 of 64 Last Modified: 9/27/2001

 <DocumentEnvelope businessDocument="Cancel RFQ"/>
 </RequestingBusinessActivity>

 </BusinessTransaction>

 <BusinessTransaction name="BT:Respond RFQ">
 <RequestingBusinessActivity
 isNonRepudiationRequired="false"
 timeToAcknowledgeReceipt="PT2H"
 timeToAcknowledgeAcceptance="PT24H">
 <DocumentEnvelope businessDocument="Respond RFQ"/>
 </RequestingBusinessActivity>
 <RespondingBusinessActivity>
 <DocumentEnvelope
 businessDocument="Respond RFQ"
 isPositiveResponse="true"/>
 </RespondingBusinessActivity>
 </BusinessTransaction>

 <BusinessTransaction name="BT:Add Quote">
 <RequestingBusinessActivity
 isNonRepudiationRequired="true"
 timeToAcknowledgeReceipt="PT2H"
 timeToAcknowledgeAcceptance="PT24H">
 <DocumentEnvelope businessDocument="Add Quote"/>
 </RequestingBusinessActivity>
 </BusinessTransaction>

 <BusinessTransaction name="BT:Cancel Quote">
 <RequestingBusinessActivity
 isNonRepudiationRequired="true"
 timeToAcknowledgeReceipt="PT2H"
 timeToAcknowledgeAcceptance="PT24H">
 <DocumentEnvelope businessDocument="Cancel Quote"/>
 </RequestingBusinessActivity>
 </BusinessTransaction>

 <BusinessTransaction name="BT:Change Quote">
 <RequestingBusinessActivity
 isNonRepudiationRequired="true"
 timeToAcknowledgeReceipt="PT2H"
 timeToAcknowledgeAcceptance="PT24H">
 <DocumentEnvelope businessDocument="Change Quote"/>
 </RequestingBusinessActivity>
 </BusinessTransaction>

 <BusinessTransaction name="BT:Respond Quote">
 <RequestingBusinessActivity
 isNonRepudiationRequired="false"
 timeToAcknowledgeReceipt="PT2H"
 timeToAcknowledgeAcceptance="PT24H">
 <DocumentEnvelope businessDocument="Respond Quote"/>
 </RequestingBusinessActivity>
 <RespondingBusinessActivity>
 <DocumentEnvelope
 businessDocument="Respond Quote"
 isPositiveResponse="true"/>

White Paper OAGIS Implementation Using ebXML CPP, CPA, and BPSS specifications

Version 1.03 Page 62 of 64 Last Modified: 9/27/2001

 </RespondingBusinessActivity> </BusinessTransaction>
 <BusinessTransaction name="BT:Elect Quote">

 <RequestingBusinessActivity

 isNonRepudiationRequired="true"
 timeToAcknowledgeReceipt="PT2H"
 timeToAcknowledgeAcceptance="PT24H">
 <DocumentEnvelope businessDocument="Elect Quote"/>
 </RequestingBusinessActivity>
 </BusinessTransaction>

 <BinaryCollaboration name="RFQ-QUOTE" timeToPerform="PT30D">
 <InitiatingRole name="supplier"/>
 <RespondingRole name="intermediary"/>
 <BusinessTransactionActivity name="BTA:Getlist RFQ"
 businessTransaction="BT:Getlist RFQ"
 fromAuthorizedRole="supplier"
toAuthorizedRole="intermediary"/>
 <BusinessTransactionActivity name="BTA:Get RFQ"
 businessTransaction="BT:Get RFQ"
 fromAuthorizedRole="supplier"
toAuthorizedRole="intermediary"/>
 <BusinessTransactionActivity name="BTA:Add Quote"
 businessTransaction="BT:Add Quote"
 fromAuthorizedRole="supplier"
toAuthorizedRole="intermediary"/>
 <BusinessTransactionActivity name="BTA:Elect Quote"
 businessTransaction="BT:Elect Quote"
 fromAuthorizedRole="supplier"
toAuthorizedRole="intermediary"/>
 <CollaborationActivity binaryCollaboration="Review RFQ"
 fromAuthorizedRole="supplier" toAuthorizedRole="intermediary"/>
 <CollaborationActivity binaryCollaboration="Review Quote"
 fromAuthorizedRole="intermediary" toAuthorizedRole="supplier"/>
 <Start toBusinessState="Getlist RFQ"/>

 <Transition fromBusinessState="BTA:Getlist RFQ"
toBusinessState="BTA:Get RFQ"
 conditionGuard="Success"/>
 <Failure fromBusinessState="BTA:Getlist RFQ"
 conditionGuard="AnyFailure"/>
 <Transition fromBusinessState="BTA:Get RFQ"
toBusinessState="CA:Review RFQ"
 conditionGuard="Success"/>
 <Failure fromBusinessState="CA:Review RFQ"
 conditionGuard="AnyFailure"/>
 <Transition fromBusinessState="CA:Review RFQ"
toBusinessState="BTA:Add Quote"
 conditionGuard="Success"/>
 <Failure fromBusinessState="CA:Review RFQ"
 conditionGuard="AnyFailure"/>
 <Transition fromBusinessState="BTA:Add Quote"
toBusinessState="CA:Review Quote"
 conditionGuard="Success"/>

White Paper OAGIS Implementation Using ebXML CPP, CPA, and BPSS specifications

Version 1.03 Page 63 of 64 Last Modified: 9/27/2001

 <Failure fromBusinessState="BTA:Add Quote" conditionGuard="AnyFailure"/>
 <Transition fromBusinessState="CA:Review Quote"
toBusinessState="BTA:Elect Quote"
 conditionGuard="Success"/>

 <Failure fromBusinessState="CA:Review Quote"

 conditionGuard="AnyFailure"/>
 <Success fromBusinessState="BTA:Elect Quote"
conditionGuard="Success"/>
 </BinaryCollaboration>

 <BinaryCollaboration name="Review RFQ" timeToPerform="PT5D">
 <InitiatingRole name="supplier"/>
 <RespondingRole name="intermediary"/>
 <BusinessTransactionActivity name="BTA:Cancel RFQ"
 businessTransaction="BT:Cancel RFQ"
 fromAuthorizedRole="intermediary"
toAuthorizedRole="supplier"/>
 <BusinessTransactionActivity name="BTA:Respond RFQ Intermediary"
 businessTransaction="BT:Respond RFQ"
 fromAuthorizedRole="intermediary"
toAuthorizedRole="supplier"/>
 <BusinessTransactionActivity name="BTA:Respond RFQ Supplier"
 businessTransaction="BT:Respond RFQ"
 fromAuthorizedRole="supplier"
toAuthorizedRole="intermediary"/>

 <Fork name="Fork:Review RFQ Start"/>
 <Join name="Join:Review RFQ End" waitForAll="No"/>
 <Start toBusinessState="Fork:Review RFQ Start"/>

 <Transition fromBusinessState="Fork:Review RFQ Start"
toBusinessState="BTA:Respond RFQ Supplier"/>
 <Transition fromBusinessState="Fork:Review RFQ Start"
toBusinessState="BTA:Respond RFQ Intermdiary"/>
 <Transition fromBusinessState="Fork:Review RFQ Start"
toBusinessState="BTA:Cancel"/>
 <Transition fromBusinessState="BTA:Respond RFQ Intermediary"
toBusinessState="BTA:Respond RFQ Intermediary"/>
 <Transition fromBusinessState="BTA:Respond RFQ Supplier"
toBusinessState="BTA:Respond RFQ Supplier"/>
 <Failure fromBusinessState="BTA:Cancel RFQ"
 conditionGuard="Success"/>
 <Success fromBusinessState="Join:Review RFQ End"/>
 </BinaryCollaboration>

 <BinaryCollaboration name="Review Quote" timeToPerform="PT5D">
 <InitiatingRole name="intermediary"/>
 <RespondingRole name="supplier"/>
 <BusinessTransactionActivity name="BTA:Cancel Quote"
 businessTransaction="BT:Cancel Quote"
 fromAuthorizedRole="supplier"
toAuthorizedRole="intermediary"/>
 <BusinessTransactionActivity name="BTA:Respond Quote"
 businessTransaction="BT:Respond Quote"

White Paper OAGIS Implementation Using ebXML CPP, CPA, and BPSS specifications

Version 1.03 Page 64 of 64 Last Modified: 9/27/2001

 fromAuthorizedRole="intermediary"
toAuthorizedRole="supplier"/> <BusinessTransactionActivity name="BTA:Change Quote"
 businessTransaction="BT:Change Quote"
 fromAuthorizedRole="supplier"
toAuthorizedRole="intermediary"/>
 <BusinessTransactionActivity name="BTA:Sync Quote"
 businessTransaction="BT:Sync Quote"

 fromAuthorizedRole="supplier"
toAuthorizedRole="intermediary"/>

 <Fork name="Fork:Review Quote Start"/>
 <Join name="Join:Review Quote End" waitForAll="No"/>
 <Start toBusinessState="Fork:Review Quote Start"/>

 <Transition fromBusinessState="Fork:Review Quote Start"
toBusinessState="BTA:Respond Quote"/>
 <Transition fromBusinessState="Fork:Review Quote Start"
toBusinessState="BTA:SyncQuote"/>
 <Transition fromBusinessState="Fork:Review Quote Start"
toBusinessState="BTA:Cancel Quote"/>
 <Transition fromBusinessState="Fork:Review Quote Start"
toBusinessState="BTA:Change Quote"/>
 <Transition fromBusinessState="BTA:Respond Quote"
toBusinessState="BTA:Respond Quote"/>
 <Transition fromBusinessState="BTA:Change Quote"
toBusinessState="BTA:Change Quote"/>
 <Transition fromBusinessState="BTA:Sync Quote"
toBusinessState="BTA:Sync Quote"/>
 <Failure fromBusinessState="BTA:Cancel Quote"
 conditionGuard="Success"/>
 <Success fromBusinessState="Join:Review RFQ End"/>
 </BinaryCollaboration>

</Package>
</ProcessSpecification>

1 Source ebXML BPSS Document

	Introduction
	The Open Applications Group
	ebXML
	Rationale
	Scope
	Requirements

	Overall Approach
	ebXML Support for Third-Party Content
	Background
	High-Level Comparison of ebXML and OAGI Specification Elements
	Sub-Scenarios indicate possible Request and Respo

	Why Collaboration Definitions Are Important?

	Specifying ebXML Business Collaboration from OAGI Scenario Diagrams
	ebXML Semantics
	B2B Collaboration Definitions
	Business Transaction Definitions
	Document Definitions
	Business Collaboration Choreography
	Condition Expressions
	Business Collaboration Failures
	Business Failures
	Technical Failures
	Timeouts
	Exceptions

	ebXML Signals
	Sequence Diagram 1: Communication with no error -
	Sequence Diagram 2: Syntax Error – Exception: Rec
	Sequence Diagram 3: Content Error – Exception: Bu
	RosettaNet Notification of Failure Message and ebXML
	Sequence Diagram 4: Communication-Level Failures
	�

	Patterns
	Multiparty Collaborations

	Application-to-Application Collaboration Definitions
	The ebXML Metamodel Subset
	DTD
	Example

	ebXML Collaboration Protocol Profile and Agreement
	Collaboration Protocol Profile
	Collaboration Protocol Agreement

	Bringing it All Together
	The Role of the OAGI Organization in Specifying CPPs and CPAs
	ebXML Functional Phases

	Appendix 1: ebXML Deliverables (www.ebXML.org)
	
	Technical Specifications
	Technical Reports
	Reference Materials
	White Papers

	Appendix 2: OAGI Scenario 55 RFQ / Quote

