
CMIS Browser Binding

Content Management Interoperability Services

Browser Bindings

Version:

Draft v0.63, 29. May 2009

1

CMIS Browser Binding

Table of Contents
1 Preface...4

1.1 Status...4
1.2 CMIS version..4

2 Introduction..4
2.1 Motivation...4
2.2 Goals...5

3 Use Cases...5
3.1 Simple Reading...5
3.2 Simple Writing ...5
3.3 Batch Writing ...6
3.4 Simple Search ..6

4 Usage of the URL Space..6
4.1 Use of path and CMIS identifier ..6
4.2 Use of extensions & “selectors” ...6
4.3 HTTP Methods & Response codes ..7
4.4 Reserved locations ...7

5 Reading..7
5.1 Overview...7
5.2 Format...7

5.2.1 Invalid JSON Characters..8
5.3 Addressing CMIS Objects..8

5.3.1 Overview..8
5.3.2 Hierarchical Access..8
5.3.3 Access by Identifier..9
5.3.4 Access Unfiled Content..9
5.3.5 Deep Reading...9

5.3.5.1 Client-Specified Depth..9
5.3.5.2 Default Depth...11
5.3.5.3 Configurable Depth..11

5.4 Reading CMIS Objects...11
5.4.1 Reading Documents..11

5.4.1.1 Document Properties...12
5.4.1.2 Content Stream..12

5.4.2 Reading Folders..12
5.4.2.1 Folder Properties..12
5.4.2.2 Listing Child Objects...12
5.4.2.3 Descendants of a Folder...13
5.4.2.4 Conflicts Between Child Objects...13

5.4.3 Reading Relationship Objects..13
5.4.3.1 Relationship Properties..14

5.5 Reading Properties..14
5.5.1 Property Types..14
5.5.2 Property Value..15

5.5.2.1 Single-Valued Properties...15
5.5.2.2 Multi-Valued Properties...16
5.5.2.3 “Value not set” state...16

5.5.3 Conflicts between Properties..17
5.6 Reading Object-Types...17

5.6.1 Object-Type Properties Definitions..17
5.6.2 Object-Type Attributes...18

5.6.2.1 Conflicts between Attributes...18
5.6.3 Property Definition...18

5.6.3.1 Conflicts between Attributes...19
5.7 Reading Hierarchy Information..19

5.7.1 Hierarchical Structure of a CMIS Repository..19
6 Writing...19

6.1 Overview...19
6.2 Format...19
6.3 Writing CMIS Objects..19

2

CMIS Browser Binding

6.3.1 Create CMIS Objects..19
6.3.1.1 Create Document Objects..20
6.3.1.2 Create Folder Objects..21
6.3.1.3 Create Objects with a Custom Object-Type..21
6.3.1.4 Create Relationship Objects..21

6.3.2 Delete CMIS Objects..22
6.3.2.1 Delete Document Objects..22
6.3.2.2 Delete Folder Objects..22
6.3.2.3 Delete Relationship Objects..22

6.4 Writing Properties...22
6.4.1 Updating Properties..23
6.4.2 Adding Properties...23
6.4.3 Removing Properties..23
6.4.4 Handling Special Properties...24

6.4.4.1 Setting Content Streams..24
6.4.4.2 Deleting Content Streams..24

6.5 Batched Writing..24
6.5.1 Diff Format...25

6.5.1.1 Object Identification within the cmis:diff Parameter..25
6.5.2 Create Objects..26
6.5.3 Delete Objects..27
6.5.4 Move Objects...27
6.5.5 Create and Delete Relationship Objects...27
6.5.6 Write Properies...28

6.5.6.1 Update Properties...28
6.5.6.2 Change Property State to "value not set"...28
6.5.6.3 Update Binary Content..29

7 Search..29
8 Appendix..29

8.1 Reserved Names and "Selectors"..29
8.1.1 Reserved Names...29

8.1.1.1 cmis:properties...29
8.1.1.2 cmis: relationships...29
8.1.1.3 cmis:object-types...30
8.1.1.4 cmis:unfiled...30
8.1.1.5 cmis:delete...30
8.1.1.6 cmis:diff...30
8.1.1.7 cmis:contentstream..30

8.1.2 "Selectors"..30
8.1.2.1 query..30
8.1.2.2 depth..30
8.1.2.3 none..30

3

CMIS Browser Binding

1 Preface
This document describes the “Browser Bindings” of CMIS. In early testing of the two existing
Bindings (SOAP and AtomPub), despite being HTTP based, basic use cases can not be covered
when using a standard web browser. The intention of this document is to cover that gap and make
CMIS a “Browser-enabled” protocol that delivers on the promise of “Browser mash-up” as a use-
cases.

1.1 Status
TODO: status of this document

Known TODOs:

– describe error handling

– map CMIS exceptions

– relationship objects creation/modification/deletion

1.2 CMIS version
Unless otherwise stated all references point to Version 0.63.c of the specification “CMIS Part I -
Domain Model”.

2 Introduction

2.1 Motivation
Currently the SOAP and AtomPub bindings of CMIS don’t lend themselves to a straight forward
consumption by standard web browsers and require the creation and use of large java script libraries

4

CMIS Browser Binding

for the most basic use cases. Other use cases as simple as “uploading a file” even cannot be covered
at all with a browser talking to a CMIS repository.

The lack of this ability even triggered conversations in the TC about having server-sided proxies
that would again speak a proprietary protocol just to able to translate CMIS to a protocol that allows
for mash-ups and browser interaction, which seems like very undesirable effect when specifying an
HTTP based protocol for consumption by browser.

Since mash-ups and simple browser interaction is a stated goal and use case of CMIS this document
tries to close this gap by introducing a lightweight and easy to consume binding that makes CMIS
effective in a standard Web environment.

2.2 Goals
The goal of this specification is to offer a simple protocol that is efficient from a network
perspective and intuitive to use from a standard (javascript enabled) web browser. This document
does not attempt to cover the full breadth of CMIS and will always compromise edge-cases for
simplicity. Also this binding does not necessarily attempt to cover all the features and domain
model expressed in CMIS, but there are no implicit limitations on how much of the domain model
is covered.

The binding should be designed in a fashion that allows web browsers and other web infrastructure
(such as spiders) to easily introspect the contents of the repository and interact with it.

The overall goal of this document is to produce a binding that is intuitive to use and hence ease of
use is the most important guiding principal.

3 Use Cases

3.1 Simple Reading
A simple browser based application should be able to retrieve content from the repository and make
sense of the properties and display documents (content stream).

The specification should allow the simple build of a “CMIS browser application” with just a few
lines of javascript to satisfy the mash-up use case.

After browsing for a “document”, the “document” should be displayed with a proper resolution of
all the relative references pointing to other documents in the CMIS repository.

When displaying a document in a browser (such as an HTML file) the relative URL references need
to be kept intact, this includes for example typical HTML elements like

or

.

3.2 Simple Writing
Creating a simple HTML form in a browser should be enough to update properties and the content
stream. The names of properties (potentially the relative paths) are addressed using form field
names in the browsers.

Just uploading a file is as simple as having one

<input type=”file”>

posting the form to the parent folders child list.

5

CMIS Browser Binding

To create a custom way to update or create content in CMIS is as simple as setting up a simple web
form and POSTing it to the respective URL identifying the document or folder.

3.3 Batch Writing
Posting a number of documents to the repository or modifying a larger number of properties in the
repository is as simple as creating a more complex form.

Given the fact that some operations are not expressed in a simple and efficient manner by the form
fields name value pairs, a “patch” mechanism can be used that is applied against the repository.
This provides a more efficient way from a network perspective but also allows javascript
applications to interact with the repository from the browser client without having to simulate full
form submissions.

3.4 Simple Search
Queries can be issued in an intuitive way exposing a full-text search engine style GET request that
can be linked to. Appending a simple query parameter will issue the human readable query.

Example:
Searching myfolder

http://<host:port>/<mount-point>/myfolder.query.json?q=

4 Usage of the URL Space
This binding assumes that it is “mounted” into the URL space and has a potentially unidentified
root path that is used as a prefix for all URLs managed by this binding. It is allowed and
recommended that an implementation makes use of the URLs that are not identified by the
combination of verbs below. For example it should be possible to have a complete WebDAV
implementation or an existing implementation sharing the same URL space. An example of an
application that could share the same URL space would for example be a simple HTML based
repository browser to navigate folders similar to the usual directory listing found in FS based web
servers.

4.1 Use of path and CMIS identifier
The path in the URL that is prefixed with the mount-point of this binding is used to identify a
document and folder following the folder hierarchy exposed by the CMIS. At the same time any
document or folder can be access using its identifier (ObjectId).

A document “d.doc” that is located in folder “myfolder” and has the identifier “1234” can be
identified by the following urls.

Example:

http://<host:port>/<mount-point>/myfolder/d.doc
http://<host:port>/<mount-point>/[1234]

4.2 Use of extensions & “selectors”
Generally an implementor is encouraged to use file extensions that match the mime-types to
enhance interoperability with filesystems that a user of CMIS may use to store data retrieved from
the server. While for the documents this is probably mostly guided by the mime-type information
and the documents provided by the end user, we choose to use the proper mime types to access meta

6

CMIS Browser Binding

information about a document. Responses that have a mime-type of json also have a file extension
.json.

To further identify the appropriate operation that is requested on a particular CMIS object we
introduce a period delimited so-called selector. A selector is very similar to a URL query parameter
but exposes additional constraints and offers a slightly more static feel from a URL perspective.

The properties of a structure of a document “d.doc” that is located in folder “myfolder” with an
identifier “6789” and has the identifier “1234” can be queried by issuing a GET operation to the
following example urls.

Example:
Query variants to find properties within the object tree starting at
"myfolder"

http://<host:port>/<mount-point>/myfolder.json (get list of children)
http://<host:port>/<mount-point>/myfolder.1.json (get children)
http://<host:port>/<mount-point>/myfolder.infinity.json (get descendents)
http://<host:port>/<mount-point>/myfolder.infinity.json (get descendents)
http://<host:port>/<mount-point>/[6789].infinity.json (get descendents)
http://<host:port>/<mount-point>/myfolder/d.doc.json (get document)
http://<host:port>/<mount-point>/[1234].json (get document)
http://<host:port>/<mount-point>/myfolder.query.json?q=cmis (querys folder
and descendants for fulltext “cmis”)

4.3 HTTP Methods & Response codes
In this specification we use GET for operations that are safe and do not modify the content and we
use POST for writing.

Given the fact that there are a number of popular HTTP clients that do not implement HTTP
properly an implementation is specifically allowed to take a more lenient approach to support some
of those clients.

4.4 Reserved locations
The namespaces /cmis:object-types and /cmis:unfiled are mapped to the respective information. See
Reading Object-Types and Access Unfiled Content, respectively.

5 Reading

5.1 Overview
All operation that read from the CMIS content repository in this binding use GET as a safe
operation. CMIS Objects can be addressed either by the hierarchy exposed in the folder structure of
CMIS or by their identifier. Both the path or the identifier are a appended to mount-point which for
the sake of simplicity will be assumed to the root of a web server in all subsequent examples.

Both getting the content stream of a document but also getting the meta information (properties and
relationships) are equally simply dealt with by simple GETs to intuitively meaningful URLs.

5.2 Format
To transport fine-grained about a CMIS object the Javascript Object Notation (JSON) was selected
since it is both efficient and can be easily consumed by almost any programming language
environment most importantly javascript in browsers. The easiest way to consume JSON is to call
the eval function and get a object tree back.

7

CMIS Browser Binding

5.2.1 Invalid JSON Characters
In order to form valid JSON keys and values, all CMIS identifiers, properties and attributes and
their corresponding values must be properly escaped. See http://www.ietf.org/rfc/rfc4627.txt.

5.3 Addressing CMIS Objects

5.3.1 Overview
TODO

5.3.2 Hierarchical Access
Hierarchical relationship between CMIS objects are exposed by the navigation services, that allow
to traverse the hierarchy (or hierarchies) present in the repository.

The JSON representation of CMIS objects defined in the following sections allows to naturally map
the ancestor/descendant relationships present between CMIS objects. Consequently, the
relationships exposed in the JSON representation may be used to directly access a CMIS objects
and its descendants.

To ease the usability of the JSON representation on the client side the following rules should be
followed: TODO

• If present the Name of CMIS object should be used as key in the JSON representation.

• If no Name is available the implementation should define a human readable string that
identifies the among it's siblings.

• The implementation is in charge of properly dealing with naming conflicts (see also
Conflicts Between Child Objects).

Example:
Reading a folder.

Request:

GET /myfolder.json HTTP/1.1

Response:

{
"cmis:properties" :
 {
 "CreatedBy" : "uncled",
 "Name" : "myfolder",
 "ObjectId" : "50d9317a-3a95-401a-9638-333a0dbf04bb"
 "ObjectTypeId" : "Folder"
 …

 },
"cmis:relationships" : { … },
"child1" : { … },
"child2" : { … },
"child3" : { … }
}

8

http://www.ietf.org/rfc/rfc4627.txt

CMIS Browser Binding

5.3.3 Access by Identifier
An alternative way to retrieve the JSON representation of a CMIS object is the access by identifier.
Instead of traversing the object hierarchy a CMIS object is addressed by its ObjectId.

In order to properly resolve the identifier and avoid any conflicts the ObjectId is enclosed in
brackets. Similar to the hierarchical access the extension .json is appended.

Example:
Request:

GET /[50d9317a-3a95-401a-9638-333a0dbf04bb].json

Response:

HTTP/1.1 200 OK
Content-Type: text/plain; charset="utf-8"
Content-Length: xxxx

{
"cmis:properties" :
 {
 "ObjectId" : "50d9317a-3a95-401a-9638-333a0dbf04bb",
 "Name" : "myfolder",
 …

 },
"cmis:relationships" : { … },
"child" : {},
…

}

5.3.4 Access Unfiled Content
Unfiled CMIS objects that don't have a parent are also exposed under the reserved resource
/cmis:unfiled.

Example:

GET /cmis:unfiled/unfiledObject.json

5.3.5 Deep Reading
For all object types that allow children objects deep reading should be supported in order to allow
for efficient retrieval of hierarchy information. This applies both to hierarchical access as well as to
access by identifier.

In case of deep reading the JSON representation of descendant objects are included in the response
as members of the JSON representation of the requested CMIS object. The depth may either be
explicitly specified by the client or some implementation specific default. In any case the client is
obligated to properly deal with the response containing several hierarchy levels.

5.3.5.1 Client-Specified Depth
The user may optionally specify the desired depth in the request by adding a depth selector:

 Depth 0 indicates that children objects should not be included in the response.

 Depth 1 indicates that only the child objects should be included.

9

CMIS Browser Binding

 Any value > 1 requests for descendants up to the specified level.

 Infinite depths is indicated by an 'infinity' selector.
Note however that the implementation may restrict the maximum number of levels to be
included in the response. In this case an empty JSON object present with any of the
descendants indicates that the hierarchy isn't completed included in the response.

Example:
Reading a folder without child objects (Depth 0). For simplicity properties,
relationships are omitted.

Request:

GET /myfolder.0.json HTTP/1.1

Response:

{
"child1" : {},
"child2" : {},
…

}

Example:
Reading a folder including it's children (Depth 1). For simplicity
properties, relationships are omitted.

Request:

GET /myfolder.1.json HTTP/1.1

Response:

{
"child1" :
 {
 "grandchild11" : {},
 …

 },
…

}

Example:
Reading a folder and it's descendants (Depth > 1). For simplicity properties,
relationships are omitted. Every object and depth I only has a single child.
The children of the object at max-depths are included with an empty JSON
value.

Request:

GET /myfolder.4.json HTTP/1.1

Response:

{
"child1" :

10

CMIS Browser Binding

 {
 "grandchild11" :
 {
 "depth3" :
 {
 "depth4 :
 {
 "depth5" : {}
 }
 }
 }
 }
}

Example:
Request to read the complete tree starting at a given folder.

GET /myfolder.infinity.json HTTP/1.1

5.3.5.2 Default Depth
If the client does not specify the desired depth, some implementation specific default depth should
be used. The default depth may vary between individual CMIS objects or object-types. In any case
the client must be able to deal with responses containing multiple hierarchy levels not explicitly
requested.

5.3.5.3 Configurable Depth
An implementation may allow to configure the default depth. Possible approaches include
configuration by object-type, by name pattern or by hierarchy.

5.4 Reading CMIS Objects
CMIS defines the following typed Objects:

- Document object (see Reading Documents)

- Folder objects (see Reading Folders)

- Relationship objects (see Reading Relationship Objects)

Reading a CMIS Object by default includes information about

- child objects (if present)

- properties.

If a given JSON representation of a CMIS object recursively contains the complete JSON
representation depends on the specified request selectors:

The DEPTH selector (see Deep Reading) in turn specifies whether and to which extend the
descendants CMIS objects will be included in the response.

The structure of a CMIS object is defined by it's object-type (see Reading Object-Types).

5.4.1 Reading Documents
Every document object is represented by a single JSON object.

11

CMIS Browser Binding

5.4.1.1 Document Properties
The properties of a CMIS document object are added as members to the reserved cmis:properties
JSON object (see Reading Properties).

5.4.1.2 Content Stream
If a CMIS document objects provides a Content Stream1 the following rules apply to the JSON
representation: The binary itself is not included in the JSON object. Instead the implementation
must provide the ContentStreamUri2 property, which is included along with the other document
properties.

In order to read the binary the consumer of the JSON uses the JSON value (i.e. the URI of the
Content Stream) to access the value itself. The MIME Media Type of the Content Stream and it's
length are exposed both as JSON property and as appropriate HTTP header upon requesting the
Content Stream using its URI. If the implementation provides a separate display name
(ContentStreamFilename) it can be retrieved from the property list of the corresponding CMIS
document object.

The contentStreamAllowed attribute of the document object type informs about the ability of a
document to have a content stream altogether. This information can be retrieved along with the
attributes of the object-type definition (see Reading Object-Types).

5.4.2 Reading Folders
Every folder object is represented by a single JSON object.

5.4.2.1 Folder Properties
The properties of a CMIS folder object are added as members to the reserved cmis:properties JSON
object (see Reading Properties).

5.4.2.2 Listing Child Objects
The list of child objects present within a given CMIS folder are added as JSON members to the
JSON object representing the folder itself:

The CMIS Name property acts as JSON key (see also Invalid JSON Characters), while the
corresponding value consists of a JSON object. The JSON object can either be empty (see Deep
Reading) or contain the JSON representation of the child object. The latter depends on the object
type of each individual child.

Example:
JSON representation of child objects is empty.

{
"cmis:properties" : { … },
"child1" : {},
"child2" : {}
}

Example:
JSON representation of child objects included.

{

1 See 2.3.1 Content Stream
2 See 2.7.4.1.2 Document Object-Type Property Definitions

12

CMIS Browser Binding

"cmis:properties" : { … },
"child1" :
 {
 "cmis:properties" : { … },
 …

 },
"child2" :
 {
 "cmis:properties" : { … },
 "grandchild" : { … },
 …

 }
}

5.4.2.3 Descendants of a Folder
Descendant objects other than the direct children (see Listing Child Objects) may or may not be part
of the JSON representation of a folder. This behavior is controlled by implicit default depth or the
depth explicitly specified upon requesting the JSON representation of a folder object (see Deep
Reading for details).

The descendants of a folder object is included in the JSON in accordance to the behavior described
for child objects: They are added as JSON members to the JSON representation of their direct
parent (i.e. the folder which they are children of).

5.4.2.4 Conflicts Between Child Objects
The child objects of an object may collide in the JSON representation as the Name of a child object
is not required to be unique among the children of a single folder.

In this case the conflicting JSON key (or keys) (aka Name property) will get an index appended.
The index is enclosed by brackets in order to avoid collisions with any trailing numbers contained
in the name. The index of the first JSON key is optional and may be omitted. The index is an
integer greater than or equal to 1.

Example:

{
"cmis:properties" : { … },
"child" : { … },
"child[2]" : { … },
"child[3]" : { … },
"anotherC" : { … },
…

}

5.4.3 Reading Relationship Objects
CMIS relationship objects are defined as dependent objects that should not be file-able. In order to
make the available in the hierarchical access to the repository they are appended to the JSON
representation of their source object.

Therefore a reserved cmis:relationships JSON object is created that collects the relationships of the
specified source object. Each relationship is represented by a member of the cmis:relationships

13

CMIS Browser Binding

JSON object using the relationship's ObjectId as key. It's value is a new JSON object that lists the
properties of the relationship object as simple name-value pairs.

5.4.3.1 Relationship Properties
The properties of a CMIS relationship object are reflected as simple JSON members of the JSON
object associated with the corresponding relationship key (ObjectId).

Example:

{

"cmis:properties" : { … },
"cmis:relationships" :
 {
 "myRelationshipId" :
 {
 "CreatedBy" : "uncled",
 …

 "TargetId" : "b410b572-9363-4f9c-9f70-04593652179b"
 }
 },
"child" : { … },
…

}

5.5 Reading Properties
The properties of all independent CMIS objects are included as members of a reserved JSON object
whose key is cmis:properties that is automatically added as member to the JSON object
representing a given CMIS object. The CMIS properties in turn are reflected as simple name-value
members of the cmis:properties entry, where

- the property Name attribute acts as key,

- the property value(s) are included as JSON value of type string, number, boolean or in case
of a multi-valued property as an JSON array of the JSON values mentioned (Single-Valued
Properties, Multi-Valued Properties).

5.5.1 Property Types
The following property types defined by CMIS can be mapped to the types defined by JSON:

CMIS Property Type JSON Property Value Comment

String string

Decimal number TODO

Integer number TODO

Boolean true, false

The remaining CMIS property types

DateTime -

URI -

ID -

14

CMIS Browser Binding

XML -

HTML -

have no corresponding type in JSON. Instead their string representation properly escaped according
to the requirements will be used as JSON value. The type information of these properties can be
determined by reading the property definition (see Property Definition6).

5.5.2 Property Value

5.5.2.1 Single-Valued Properties
The value of single-value CMIS properties are directly included in the JSON. The conversion from
CMIS property type to JSON follows the rules described in section Property Types.

Example:
Response containing a String properties.

{
"cmis:properties" : { … },
"mydocument" :
 {
 "cmis:properties" :
 {
 "CreatedBy" : "uncled",
 "Name" : "mydocument",
 …

 }
 }
}

Example:
Response containing a Boolean property.

{
"cmis:properties" : { … },
"mydocument" :
 {
 "cmis:properties" :
 {
 "IsImmutable" : true,
 …

 }
 }
}

Example:
Response containing an Integer property.

{
"cmis:properties" : { … },
"mydocument" :
 {
 "cmis:properties" :
 {
 "ContentStreamLength" : 34497,
 …

15

CMIS Browser Binding

 }
 }
}

Example:
Response containing other property types. In this example DateTime, ID and Uri.
The remaining types (XML, HTML) are dealt with accordingly.

{
"cmis:properties" : { … },
"mydocument" :
 {
 "cmis:properties" :
 {
 "CreationDate" : "2009-05-19T11:37:55.431Z",
 "ObjectId" : "50d9317a-3a95-401a-9638-333a0dbf04bb",
 "Uri" : "http://localhost: 4302 /cmis/repo/my folder/mydocument .doc",
 …

 }
 }
}

5.5.2.2 Multi-Valued Properties
The JSON value of a multi-value CMIS property consists of a JSON non-nested JSON array. The
individual values themselves are transformed to JSON values as described in section Property
Types. This also applies if the value array only contains a single element.

Example:
Response containing a multi-valued property with multiple values

{
"cmis:properties" :
 {
 "AllowedChildObjectTypeIds" : { "typeId1","typeId2","typeId3" },
 …

 }
}

Example:
Response containing a multi-valued property with a single value

{
"cmis:properties" :
 {
 "AllowedChildObjectTypeIds" : { "typeId1" },
 …

 }
}

5.5.2.3 “Value not set” state
Properties that are in a “value not set” state3 are not included in the JSON. The same applies for
empty value lists if a property is multi-valued, which is not allowed within the scope of CMIS.
3 See 2.2.1 Property

16

http://localhost:80/cmis/repo/myFolder/myDocument
http://localhost:80/cmis/repo/myFolder/myDocument
http://localhost:80/cmis/repo/myFolder/myDocument

CMIS Browser Binding

5.5.3 Conflicts between Properties
The properties of a single CMIS object will never conflict as “within an object, each property is
uniquely identified by its name”4.

5.6 Reading Object-Types
The object-type of a CMIS object can be determied from the ObjectTypeId property that is exposed
in the JSON representation along with the other properties below cmis:properties. Object-type
definitions are mapped as members of a reserved cmis:object-types resource. The JSON
representation of the object-type definition can then be accessed by displayName or by typeId.

Example:
Request to retrieve the definition of the 'myObjectType' object-type.

GET /cmis:object-types/myObjectType.json HTTP/1.1

The complete set of object-type definitions can be obtained by inserting the infinity depth selector
upon requesting the cmis:object-types resource.

Example:
Request to retrieve all object-type definitions.

GET /cmis:object-types.infinity.json HTTP/1.1

5.6.1 Object-Type Properties Definitions
The property definitions of CMIS a object-type are exposed as members of the JSON representation
of the object-type below a reserved cmis:properties entry. The property Name will be used as key,
while the property attributes are inserted as key-value paired members below.

Example:
Request:

GET /cmis:object-types/myObjectType.json HTTP/1.1

Response:

HTTP/1.1 200 OK
Content-Type: text/plain; charset="utf-8"
Content-Length: xxxx

{
"cmis:properties" :
 {
 "Name" :
 {
 "name" : "Name",
 "propertyType" : "String",
 "description" : "A description of the Name property.",
 "cardinality" : "Single",
 "Inherited" : false,
 …
 },
 "myProperty" :

4 2.2 Object

17

CMIS Browser Binding

 {
 "propertyType" : "Integer",
 "defaultValue" : 13,
 "minValue" : 1,
 "maxValue" : 50,
 …
 }
 },
 …

}

5.6.2 Object-Type Attributes
The attributes of CMIS object-types are exposed as members of the JSON representation of the
object type. The attribute name acts as key, while the attribute value acts as JSON value.

Example:
Request:

GET /cmis:object-types/myObjectType.json HTTP/1.1

Response:

HTTP/1.1 200 OK
Content-Type: text/plain; charset="utf-8"
Content-Length: xxxx

{
"displayName": "myObjectType",
"baseType" : "Document",
"creatable" : true,
"description" : "Object-type derived from 'Document'.",
"fileable" : true,
"queryable" : true,
…

"cmis:properties" : { … }
}

5.6.2.1 Conflicts between Attributes
The set of attributes present with a CMIS object are defined by the repository. While CMIS does not
explicitly require attribute names to be unique among the attributes of a given object, it is expected
that conflicts don't occur as attributes are not inherited to derived object. Handling unexpected
conflicts is therefore left to the implementation.

5.6.3 Property Definition5

The characteristics of a property of a CMIS object is define by it's property definition, which forms
part of the corresponding object-type definition. The property definition consists of a set of
attributes, which are exposed as part of the object-type definition. Similar to the attributes of the
object-type itself, that attributes are listed with each property definition.

5 See 2.7.3 Object-Type Property Definitions

18

CMIS Browser Binding

5.6.3.1 Conflicts between Attributes
The set of attributes present with CMIS property are defined by the repository. While CMIS does
not explicitly require attribute names to be unique among the attributes of a given property, it is
expected that the repository is able to detect and handle conflicts arising from inheritance of
properties between object-types.

5.7 Reading Hierarchy Information

5.7.1 Hierarchical Structure of a CMIS Repository
Hierarchical relationship between two CMIS objects can be determined through the navigation
services6. With the structure defined by the browser binding simple ancestor/descendant
relationships can easily be determined both from the request URL and from the JSON objects
returned upon reading the repository.

In contrast unfiled content as well as object-type definitions that don't follow the parent-child
relationship present with folders and documents are exposed under the corresponding reserved
locations (see Access Unfiled Content and Reading Object-Types, respectively).

TODO: define how to determine multiple parents if present.

6 Writing

6.1 Overview
TODO

6.2 Format
The browser binding defines two variants of writing to a CMIS repository:

• Simple writing

• Batched writing.

Both are relying on standard functionality defined by HTTP 1.1 POST request. The batched writing
in addition defines a json-like diff format and is used to cover multiple or complex operations
within a single requests.

Simple writing is covered in sections Create CMIS Objects, Delete CMIS Objects and Writing
Properties. The details of batched writing are described in section Batched Writing.

6.3 Writing CMIS Objects

6.3.1 Create CMIS Objects
To create CMIS objects the URL of the form POST points to a parent Object and appends a trailing
slash. This indicates that a new CMIS object should be created as opposed to the omission of the
trailing slash which would constitute an update of an existing object identified in the URL.

Properties defined for the object-type to be created may be specified during the create request by
adding corresponding request parameters, whose name identifies the object property, while the
desired object value is passed as parameter value.

This behavior also allows to explicitly define the desire object-type for the CMIS object to be
created. If an ObjectTypeId parameter is present in the request the implementation must try to create

6 See 4.2 Navigation Services

19

CMIS Browser Binding

an object of that type. If the specified object-type isn't valid or not allowed at the given location the
request must fail with an appropriate error.

If however the ObjectTypeId parameter is omitted from the request, the following default behavior
should be adopted:

• If the request contains a file parameter the default object-type is 'Document' and a new
document should be created.

• If the request doesn't contain a file parameter the default object-type is 'Folder'.

6.3.1.1 Create Document Objects
Creating new document objects follows the general rules defined for creating objects. In addition
the following special cases must be respected:

• If the request contains a file parameter it's value must be used to set the content stream of the
new document.

• If the Name parameter is missing and the implementation allows or requires documents to
have a Name property, the 'filename' attribute of the file parameter should be used as default.

Example:
Request to create a new document without setting the content stream.

POST /myfolder/ HTTP/1.1
Content-Type: application/x-www-form-urlencoded
Content-Length: xxxxxx

Name=myDocument&ObjectTypeId=Document

Example:
Request to create a new document and setting it's content stream. Note that
the ObjectTypeId parameter can be omitted in this case.

POST /myfolder/ HTTP/1.1
Content-Type: multipart/form-data; boundary=---------------------------
21447684891610979728262467120
Content-Length: xxxxx

---------------------------21447684891610979728262467120
Content-Disposition: form-data; name="cmis:contentstream";
filename="small.gif"
Content-Type: image/gif

GIF89a...................!.......,............s...f.;
---------------------------21447684891610979728262467120
Content-Disposition: form-data; name="Name"
Content-Type: text/plain

myDocument
---------------------------21447684891610979728262467120--

Example:
Request to create a new document and setting it's content stream. Note that
the Name property of the document is retrieved from filename of the uploaded
file

POST /myfolder/ HTTP/1.1
Content-Type: multipart/form-data; boundary=---------------------------

20

CMIS Browser Binding

21447684891610979728262467120
Content-Length: xxxxx

---------------------------21447684891610979728262467120
Content-Disposition: form-data; name="cmis:contentstream";
filename="small.gif"
Content-Type: image/gif

GIF89a...................!.......,............s...f.;
---------------------------21447684891610979728262467120--

6.3.1.2 Create Folder Objects
Creating new folder objects follows the general rules defined for creating objects.

Example:
Request to create a new folder object

POST /myfolder HTTP/1.1
Content-Type: application/x-www-form-urlencoded
Content-Length: xxxxxx

Name=child&ObjectTypeId=Folder

Request to create a new folder object. As no file parameter is present the
ObjectTypeId parameter can be omitted.

POST /myfolder HTTP/1.1
Content-Type: application/x-www-form-urlencoded
Content-Length: xxxxxx

Name=child

6.3.1.3 Create Objects with a Custom Object-Type
Creating CMIS objects with a custom object-type follows the general rules defined for creating
objects. In contrast to documents and folder the object-type must explicitly specified.

Example:
Request

POST /myfolder HTTP/1.1
Content-Type: application/x-www-form-urlencoded
Content-Length: xxxxxx

Name=child&ObjectTypeId=myObjectType

6.3.1.4 Create Relationship Objects
TODO

Example:
Request to create a new relationship.

TODO

21

CMIS Browser Binding

6.3.2 Delete CMIS Objects
In order to be able to delete CMIS objects with a simple HTML form the reserved cmis:delete
parameter name is defined. The parameter value identifies the target object that needs to be deleted.
Similar to the read operations the target object my either be identified by its ObjectId or by
hierarchical access.

6.3.2.1 Delete Document Objects
Deleting document objects follows the rules defined for CMIS objects in general.

Example:
Request to delete the mydocument child of myfolder.

POST /myfolder HTTP/1.1
Content-Type: application/x-www-form-urlencoded
Content-Length: xxxxxx

cmis:delete=mydocument NOTE: url-encoding omitted

Example:
Request to delete the mydocument by its ObjectId.

POST /myfolder HTTP/1.1
Content-Type: application/x-www-form-urlencoded
Content-Length: xxxxxx

cmis:delete=[50d9317a-3a95-401a-9638-333a0dbf04bb]
 NOTE: url-encoding omitted

6.3.2.2 Delete Folder Objects
Deleting folder objects follows the rules defined for CMIS objects in general.

Example:
Request to delete myfolder.

POST / HTTP/1.1
Content-Type: application/x-www-form-urlencoded
Content-Length: xxxxxx

cmis:delete=myfolder NOTE: url-encoding omitted

6.3.2.3 Delete Relationship Objects
TODO

Example:
Request to delete a relationship.

TODO

6.4 Writing Properties
This section deals with setting, updating and removing of properties present with existing CMIS
objects. Generally the behavior described below only applies to updatable CMIS properties.
Whether a property can be updated or not depends on the corresponding property definition present
with the object-type defined for the containing CMIS object.

22

CMIS Browser Binding

6.4.1 Updating Properties
Modification of an existing CMIS property is achieved by submitting a simple HTML form
containing name-value pairs for the properties to be updated. The parameter name either contains
the CMIS id of the property to be updated or the name of the property. In the latter case the CMIS
object whose properties (or property) needs to be modified is identified by the request URL.

Example:
Request:

POST /myfolder/myobject HTTP/1.1
Content-Type: application/x-www-form-urlencoded
Content-Length: xxxxxx

myStringProperty=anyValue&myIntegerProperty=15

6.4.2 Adding Properties
CMIS properties that are not required according to their definition, may be missing in the JSON
representation of their containing object (see “Value not set” state). Setting it's value (i.e. adding the
property) works the same as updating an existing property with the exception that the property
wasn't previously present in the JSON representation of the containing object and the user must be
aware of the object-type and the set of possible, updatable properties.

As CMIS doesn't support undefined property definitions the type of the resulting property is always
defined by the corresponding property definition.

6.4.3 Removing Properties
CMIS properties may be "removed" by their value(s) thus changing the property state to "value not
set" state. Any subsequent request to the containing CMIS object will result in a JSON object that
does not list the removed property within cmis:properties. Similarly any attempt to address the
removed property directly (e.g. the content stream) will fail with an appropriate HTTP status error.

In order to avoid ambiguity between change the property value to be an empty string and changing
the status to "value not set" the approach used upon objected deletion is adopted: the reserved
cmis:delete parameter name is used, followed by propertyName.

Example:
Request to remove the myStringProperty and at the same time update the
myIntegerProperty.

POST /myfolder/myobject HTTP/1.1
Content-Type: application/x-www-form-urlencoded
Content-Length: xxxxxx

cmis:delete=myStringProperty&myIntegerProperty=26
 NOTE: url-encoding omitted

Note: If both a child object and a property exist with the same name, the cmis:delete parameter will
always affect the property. TODO: how to remove the child object in this case. By ObjectId?

23

CMIS Browser Binding

6.4.4 Handling Special Properties

6.4.4.1 Setting Content Streams
While the content stream of a CMIS document is exposed through various properties defined for the
document, the content stream manipulation is covered by separate methods in the document model.
For the browser-binding however, it makes sense to cover content stream modification along with
the general property handling. Note however, that the content type of the POST request should be
adjusted accordingly.

Example:
Request: Setting the content stream of an document object and update another
custom property.

POST /myfolder/mydocument HTTP/1.1
Content-Type: multipart/form-data; boundary=---------------------------
21447684891610979728262467120
Content-Length: xxxxx

---------------------------21447684891610979728262467120
Content-Disposition: form-data; name="cmis:contentstream";
filename="small.gif"
Content-Type: image/gif

GIF89a...................!.......,............s...f.;
---------------------------21447684891610979728262467120
Content-Disposition: form-data; name="customProperty"
Content-Type: text/plain

some other document property
---------------------------21447684891610979728262467120--
 NOTE: url-encoding omitted

6.4.4.2 Deleting Content Streams
Deleting the content stream of a document object follows the same rules as defined for regular
properties. Note that requesting the deletion of the reserved cmis:contentstream pseudoproperty
must have the same effect as deleteContentStream. This particularly applies to all content stream
related properties defined with the document object-type.

Example:
Request: Deleting the content stream of an document object

POST /myfolder/mydocument HTTP/1.1
Content-Type: application/x-www-form-urlencoded
Content-Length: xxxxxx

cmis:delete=cmis:contentstream NOTE: url-encoding omitted

6.5 Batched Writing
In order to be able to cover multiple and complex write operations with a single HTTP request,
batched writing should be supported by the implementation.

The main difference to the simple writing consists of the definition of a cmis:diff parameter instead
of multiple name-value pairs. The cmis:diff itself lists the set of operations to be executed in the
parameter value. Similarly to the simple writing operations the batched writing is achieved by
POST requests.

24

CMIS Browser Binding

6.5.1 Diff Format
The cmis:diff parameter is defined to consist of one or multiple JSON like key-value pair(s). The
JSON key must start with a character that identifies the desired operation followed by the
identification of the target object. The operation characters are any of "+", "^", "-" or ">"
representing the CMIS operations as follows:

· "+" : createObject, createFolder, createDocument, createPolicy, addObjectToFolder

· "^" : updateProperties, setContentStream, deleteContentStream

· "-" : deleteObject, deleteTree, removeObjectFromFolder

· ">" : moveObject

· TODO createRelationship ?

· TODO deleteObject for Relationship?
The key must be separated from the value by a ":" surrounded by whitespace and the command
must be completed by line ending. The nature of the value itself depends on the operation (see
below).

diff ::= members
members ::= pair | pairs
pair ::= key " : " value
pairs ::= pair line-end pair | pair line-end pairs
line-end ::= "\r\n" | "\n" | "\r"
key ::= opchar id
opchar ::= "+" | "^" | "-" | ">"
id ::= * identification of the object either by the ObjectId itself
 or through hierarchical access, where the request URL
 either identifies the target object itself or any of its
 ancestors *
value ::= value+ | value- | value^ | value>
value+ ::= * a JSON object *
value- ::= ""
value^ ::= * any JSON value except JSON object *
value> ::= id

6.5.1.1 Object Identification within the cmis:diff Parameter
The ids present as keys part in the cmis:diff parameter are used to identify the CMIS object (or
property that is affected by the desired operation.

The id either represents the ObjectId of the object itself or – alternatively is any other string that can
be resolved to the target object. In the latter case the object is obtained through hierarchical access
(see Hierarchical Access) where the objected addressed by the request URL is used as starting point.

Example:
Request: diff with object identification by ObjectID

POST /myfolder/mydocument HTTP/1.1
Content-Type: application/x-www-form-urlencoded
Content-Length: xxxxxx

cmis:diff=-50d9317a-3a95-401a-9638-333a0dbf04bb :
 NOTE: url-encoding omitted

Example:

25

CMIS Browser Binding

Request: diff with hierarchical object identification. 'mydocument' is child
of 'myfolder'.

POST /myfolder HTTP/1.1
Content-Type: application/x-www-form-urlencoded
Content-Length: xxxxxx

cmis:diff=-mydocument : NOTE: url-encoding omitted

Request: diff with hierarchical object identification. 'myFolder' is the
requested resouce as well as the target of the operation.

POST /myfolder HTTP/1.1
Content-Type: application/x-www-form-urlencoded
Content-Length: xxxxxx

cmis:diff=-. NOTE: url-encoding omitted

6.5.2 Create Objects
Object creation is triggered by the '+' operation character at the beginning of a new line. If the client
wishes to explicitly indicate the desired object-type, the corresponding property must be present in
the diff. Otherwise some implementation specific default should be used.

The value of the diff entry consists of a JSON object whose format corresponds to the serialization
of CMIS objects upon read access. This includes the possibility to not only create a single child
object but to import a complete object tree including their properties and relationships.

In order to form valid JSON keys and values, all CMIS identifiers, properties and attributes and
their corresponding values must be properly escaped. See http://www.ietf.org/rfc/rfc4627.txt.

Example:
Request to create a new document.

POST /myfolder HTTP/1.1
Content-Type: application/x-www-form-urlencoded
Content-Length: xxxxxx

cmis:diff=+mydocument : { "cmis:properties" : { "ObjectTypId" :
"myObjectType", "myProperty" : 24, … } }
 NOTE: url-encoding omitted for readability

Request to import an object tree.

POST /myfolder HTTP/1.1
Content-Type: application/x-www-form-urlencoded
Content-Length: xxxxxx

cmis:diff=+child : {
 "cmis:properties" : { "ObjectTypId" : "Folder", … },
 "grandchild" :
 {
 "cmis:properties" : { "ObjectTypId" : "Folder", … },
 "mydocument :
 {
 "cmis:properties" : { "ObjectTypeId : "myObjectType",
 "myProperty" : 24, … }
 }
 }

26

http://www.ietf.org/rfc/rfc4627.txt

CMIS Browser Binding

 } NOTE: url-encoding omitted for readability

6.5.3 Delete Objects
The '-' operation character is used to delete the CMIS object identified by the following id. Note
however that the delete operation line must not specify any value.

Example:
Request to delete the document 'mydocument'.

POST /myfolder HTTP/1.1
Content-Type: application/x-www-form-urlencoded
Content-Length: xxxxxx

cmis:diff=-mydocument : NOTE: url-encoding omitted for readability

Alternative solution to delete the same document:

POST /myfolder/mydocument HTTP/1.1
Content-Type: application/x-www-form-urlencoded
Content-Length: xxxxxx

cmis:diff=-. : NOTE: url-encoding omitted

… or by ObjectId:

POST /[b410b572-9363-4f9c-9f70-04593652179b] HTTP/1.1
Content-Type: application/x-www-form-urlencoded
Content-Length: xxxxxx

cmis:diff=-. : NOTE: url-encoding omitted

6.5.4 Move Objects
Moving objects is achieved by starting the line with the move operation character ('>'), followed by
the identification of the object to be moved. The parameter value contains the identification of the
target. In contrast to the domain model description this may not only be the ObjectId of the target
parent folder. TODO review again

Example:
Request to move a document.

POST /myfolder HTTP/1.1
Content-Type: application/x-www-form-urlencoded
Content-Length: xxxxxx

cmis:diff=>mydocument : /otherfolder/mydocument
 NOTE: url-encoding omitted

6.5.5 Create and Delete Relationship Objects
TODO

Example:

27

CMIS Browser Binding

Request to create a new relationship.

TODO

Example:
Request to delete a relationship.

TODO

6.5.6 Write Properies

6.5.6.1 Update Properties
The '^' character at the beginning of a new line in the diff parameter indicates that the subsequent id
refers to a property that needs to modified or created. The value following the :-separator must
specifiy the desired property value. The format of the value corresponds to the property serialization
upon read-access (see Property Value). This also includes the special treatment of the various
property types (see Property Types).

Example:
Request to update a property.

POST /myfolder/mydocument HTTP/1.1
Content-Type: application/x-www-form-urlencoded
Content-Length: xxxxxx

cmis:diff=^customProperty : "the property value"
 NOTE: url-encoding omitted

Example:
Request to update a multi-valued numeric property.

POST /myfolder/mydocument HTTP/1.1
Content-Type: application/x-www-form-urlencoded
Content-Length: xxxxxx

cmis:diff=^customProperty : [250975, 14, 109873]
 NOTE: url-encoding omitted

6.5.6.2 Change Property State to "value not set"
In order to change the state of a given non-required property to "value not set" the same diff entry is
created as if the property was updated. However, the value part is omitted. TODO review again.
Eventually change to use the '-' opchar in order to avoid ambiguity between empty-string an no-
value. See also the simple content editing...

Example:
Request to change the state of a property to "value not set".

POST /myfolder/mydocument HTTP/1.1
Content-Type: application/x-www-form-urlencoded
Content-Length: xxxxxx

cmis:diff=^customProperty : NOTE: url-encoding omitted

28

CMIS Browser Binding

6.5.6.3 Update Binary Content
Please note the special handling of setting the binary content stream of a CMIS document: The diff
treats the content stream as a regular property. However, due to it's binary nature however the JSON
format it not suite for the data serialization and the request has the following characteristics:

· the Content-Type of the request is multipart/form-data,

· as CMIS doesn't define an separate identifier for the content stream, cmis:contentstream is
used as placeholder.

· the value of the cmis:diff entry is expected to be missing

· a separate multipart parameter is added to request. It's name corresponds to the name of the
cmis::diff entry, while the parameter value contains the binary data.

· Note: Upon modification of the content stream of a CMIS document the related properties
must be adjust as well. This includes ContentStreamLength, ContentStreamMimeType,
ContentStreamFilename.

Example:
Request to set the content stream of a document.

POST /myfolder/mydocument HTTP/1.1
Content-Type: multipart/form-data; boundary=---------------------------
21447684891610979728262467120
Content-Length: xxxxx

---------------------------21447684891610979728262467120
Content-Disposition: form-data; name="cmis:contentstream"
Content-Type: image/gif

GIF89a...................!.......,............s...f.;
---------------------------21447684891610979728262467120
Content-Disposition: form-data; name="cmis:diff"
Content-Type: text/plain

^cmis:contentstream :
---------------------------21447684891610979728262467120--

7 Search
TODO

8 Appendix

8.1 Reserved Names and "Selectors"

8.1.1 Reserved Names

8.1.1.1 cmis:properties
TODO

8.1.1.2 cmis: relationships
TODO

29

CMIS Browser Binding

8.1.1.3 cmis:object-types
TODO

8.1.1.4 cmis:unfiled
TODO

8.1.1.5 cmis:delete
TODO

8.1.1.6 cmis:diff
TODO

8.1.1.7 cmis:contentstream
TODO

8.1.2 "Selectors"

8.1.2.1 query
TODO

8.1.2.2 depth
TODO

8.1.2.3 none
TODO

30

	1 Preface
	1.1 Status
	1.2 CMIS version

	2 Introduction
	2.1 Motivation
	2.2 Goals

	3 Use Cases
	3.1 Simple Reading
	3.2 Simple Writing
	3.3 Batch Writing
	3.4 Simple Search

	4 Usage of the URL Space
	4.1 Use of path and CMIS identifier
	4.2 Use of extensions & “selectors”
	4.3 HTTP Methods & Response codes
	4.4 Reserved locations

	5 Reading
	5.1 Overview
	5.2 Format
	5.2.1 Invalid JSON Characters

	5.3 Addressing CMIS Objects
	5.3.1 Overview
	5.3.2 Hierarchical Access
	5.3.3 Access by Identifier
	5.3.4 Access Unfiled Content
	5.3.5 Deep Reading
	5.3.5.1 Client-Specified Depth
	5.3.5.2 Default Depth
	5.3.5.3 Configurable Depth

	5.4 Reading CMIS Objects
	5.4.1 Reading Documents
	5.4.1.1 Document Properties
	5.4.1.2 Content Stream

	5.4.2 Reading Folders
	5.4.2.1 Folder Properties
	5.4.2.2 Listing Child Objects
	5.4.2.3 Descendants of a Folder
	5.4.2.4 Conflicts Between Child Objects

	5.4.3 Reading Relationship Objects
	5.4.3.1 Relationship Properties

	5.5 Reading Properties
	5.5.1 Property Types
	5.5.2 Property Value
	5.5.2.1 Single-Valued Properties
	5.5.2.2 Multi-Valued Properties
	5.5.2.3 “Value not set” state

	5.5.3 Conflicts between Properties

	5.6 Reading Object-Types
	5.6.1 Object-Type Properties Definitions
	5.6.2 Object-Type Attributes
	5.6.2.1 Conflicts between Attributes

	5.6.3 Property Definition5
	5.6.3.1 Conflicts between Attributes

	5.7 Reading Hierarchy Information
	5.7.1 Hierarchical Structure of a CMIS Repository

	6 Writing
	6.1 Overview
	6.2 Format
	6.3 Writing CMIS Objects
	6.3.1 Create CMIS Objects
	6.3.1.1 Create Document Objects
	6.3.1.2 Create Folder Objects
	6.3.1.3 Create Objects with a Custom Object-Type
	6.3.1.4 Create Relationship Objects

	6.3.2 Delete CMIS Objects
	6.3.2.1 Delete Document Objects
	6.3.2.2 Delete Folder Objects
	6.3.2.3 Delete Relationship Objects

	6.4 Writing Properties
	6.4.1 Updating Properties
	6.4.2 Adding Properties
	6.4.3 Removing Properties
	6.4.4 Handling Special Properties
	6.4.4.1 Setting Content Streams
	6.4.4.2 Deleting Content Streams

	6.5 Batched Writing
	6.5.1 Diff Format
	6.5.1.1 Object Identification within the cmis:diff Parameter

	6.5.2 Create Objects
	6.5.3 Delete Objects
	6.5.4 Move Objects
	6.5.5 Create and Delete Relationship Objects
	6.5.6 Write Properies
	6.5.6.1 Update Properties
	6.5.6.2 Change Property State to "value not set"
	6.5.6.3 Update Binary Content

	7 Search
	8 Appendix
	8.1 Reserved Names and "Selectors"
	8.1.1 Reserved Names
	8.1.1.1 cmis:properties
	8.1.1.2 cmis: relationships
	8.1.1.3 cmis:object-types
	8.1.1.4 cmis:unfiled
	8.1.1.5 cmis:delete
	8.1.1.6 cmis:diff
	8.1.1.7 cmis:contentstream

	8.1.2 "Selectors"
	8.1.2.1 query
	8.1.2.2 depth
	8.1.2.3 none

