
XPath containment in the presence of

disjunction, DTDs, and variables

Frank Neven and Thomas Schwentick

1 University of Limburg
frank.neven@luc.ac.be

2 Philipps-Universität Marburg
tick@mathematik.uni-marburg.de

Abstract. XPath is a simple language for navigating an XML tree and
returning a set of answer nodes. The focus in this paper is on the com-
plexity of the containment problem for various fragments of XPath. In
addition to the basic operations (child, descendant, filter, and wildcard),
we consider disjunction, DTDs and variables. W.r.t. variables we study
two semantics: (1) the value of variables is given by an outer context; (2)
the value of variables is defined existentially. We establish an almost com-
plete classification of the complexity of the containment problem w.r.t.
these fragments.

1 Introduction

XPath is a simple language for navigating an XML document and selecting a set
of element nodes [6]. Actually, XPath is the main XML selection language. In-
deed, XPath expressions are used, for instance, as basic patterns in several XML
query languages like XQuery [3] and XSLT [2, 7]; they are used in XML Schema
to define keys [8], and in XLink [10] and XPointer [9] to reference elements in ex-
ternal documents. In every such context an instance of the containment problem
is present: optimizing XPath expressions can be accomplished by an algorithm
for containment, and XSLT rule selection and inference of keys based on XPath
expressions again reduces to containment. In this paper we focus on the complex-
ity of the containment problem of various fragments of XPath. In particular, we
consider disjunction, DTDs and variables. The complexity of XPath evaluation
has recently been studied in [12, 13].

The XPath containment problem already attracted quite some attention [1,
11, 16, 17, 25, 23]. We next discuss the known results together with our own con-
tributions. The initial XPath fragment consists of the following operators: /,
//, [], ∗, | which denote child, descendant, filter, wildcard, and disjunction, re-
spectively. We indicate the fragment we use by listing the allowed operators. For
instance, XP(/,//) denotes the XPath fragment where only child and descendant
are allowed.

Among other results, Miklau and Suciu obtained that containment of XP(/,//,
[],∗) is conp-complete [16]. For this result it does not matter whether one consid-
ers XML documents over a finite or an infinite alphabet. We show that adding

disjunction to this fragment does not make the containment problem harder
when the input alphabet is infinite. The proof is an extension of their canoni-
cal model technique. However, when XML documents are restricted to a finite
alphabet the containment problem turns pspace-complete. The reason for this
complexity jump is that when the alphabet is finite, disjunction allows to ex-
press negation (like is the case with regular expressions), and negation allows
for a reduction from corridor tiling [5]. The upper bound is obtained by a
reduction to the containment problem of alternating tree automata on bounded
trees.

Deutsch and Tannen consider XPath containment in the presence of DTDs
and Simple XPath Integrity Constraints (SXICs) [11]. They obtain that this
problem is undecidable in general and in the presence of bounded SXICs and
DTDs. When only DTDs are present they have a pspace lower bound and
leave the exact complexity as an open question. We show that containment
testing for XP(DTD,/,//,[],∗,|) is in exptime and obtain that containment of
XP(DTD,/,//,|) and XP(DTD,/,//,[],∗) is hard for exptime. The upper bound
is obtained by a reduction to containment of unranked tree automata [21].
The presence of the DTD allows for a reduction from two-player corri-
dor tiling [5]. We do not know much about the complexity of more restrictive
fragments in the presence of DTDs. In fact, we can only prove that containment
of XP(DTD,/,[]) is conp-complete and containment of XP(DTD,//,[]) is conp-
hard. It is not clear whether or how the upper bound proof can be extended
to include, for instance, the descendant operator. Further, we show that in the
presence of very simple DTDs and node-set inequality the containment problem
is undecidable. The DTD can be eliminated when a modest form of negation is
allowed: negation that can express that a node cannot have a certain label.

The XPath recommendation allows variables to be used in XPath expressions
on which equality tests can be performed. For instance, //a[$x = @b][$y �= @c]
selects all a-descendants whose b-attribute equals the value of variable $x and
whose c-attribute differs from the value of variable $y. However, under the XPath
semantics the value of all variables should be specified by the outer context
(e.g., in the XSLT template in which the pattern is issued). So the semantics
of a pattern is defined w.r.t. a variable mapping. We show that the complexity
of containment is pspace-complete under this semantics. For the lower bound,
it suffices to observe that with variables a finite alphabet can be simulated. We
obtain the upper bound by reducing the containment problem to the containment
of several patterns without variables.

In addition to the XPath semantics, Deutsch and Tannen [11] considered
an existential semantics for variables: a pattern matches a document if there
is an assignment for the variables such that the pattern matches w.r.t. this
assignment. W.r.t. the existential semantics they showed that containment of
XP(/,//,[],∗,vars) and XP(/,//,[],|,vars) is ΠP

2 -hard, and that containment of
XP(/,//, [],|,vars) under fixed bounded SXICs is in ΠP

2 . We extend their result
by showing that containment of XP(/,//,[],|,vars,�=), that is, inequality tests on

variables and attribute values are allowed, remains in ΠP
2 . Interestingly, when ∗

is added, the problem turns undecidable.
In a recent paper, Wood obtained that containment of XP(/,//,[],∗) in the

presence of DTDs is decidable [23]. He also studies conditions for which contain-
ment under DTDs is in ptime. Benedikt, Fan, and Kuper study the expressive
power and closure properties of fragments of XPath [1]. They also consider sound
and complete axiom systems and normal forms for some of these fragments.

This paper is organized as follows. In Section 2, we define DTDs and the
basic XPath fragments. In Section 3, 4, and 5 we consider disjunction, DTDs,
and variables, respectively. We conclude in Section 6.

Due to space limitations we only provide sketches of proofs.

2 Preliminaries

In the present section, we define trees, DTDs, and the core of XPath.
For the rest of this paper we fix a recursively enumerable infinite alphabet Σ

and a recursively enumerable infinite set of data values D. A is always a finite
set of attributes. An XML document is faithfully modelled by a finite Σ-tree
where the attributes of the nodes have D-values.

Formally, a tree domain τ over N is a subset of N
∗, such that if v · i ∈ τ ,

where v ∈ N
∗ and i ∈ N, then v ∈ τ . Here, N denotes the set of natural numbers

without zero. If i > 1 then also v · (i − 1) ∈ τ . The empty sequence, denoted by
ε, represents the root. We call the elements of τ vertices. A vertex w is a child
of a vertex v (and v the parent of w) if vi = w, for some i.

Definition 1. A (Σ, A)-tree is a triple t = (dom(t), labt, λt), where dom(t) is a
tree domain over N, labt : dom(t) → Σ, and, for each a ∈ A, λa

t : dom(t) → D
are functions. Intuitively, labt(v) is the label of v, while λa

t (v) is the value of v’s
a-attribute.

When Σ and A are clear from the context or not important, we sometimes
say tree rather than (Σ, A)-tree. Of course, in real XML documents not every
element has the same attributes. Further, there can be nodes with mixed content,
but these can easily be modeled by using dummy intermediate nodes [2]. We only
make use of attributes in Section 5.

We formalize a DTD as a context-free grammar with regular expressions on
the right-hand side of rules.

Definition 2. A DTD is a tuple (d, Sd, Σd) where Σd is a finite subset of Σ,
Sd ∈ Σd is the start symbol, and d is a mapping from Σd to the set of regular
expressions over Σd. A tree t matches a DTD d iff labt(ε) = Sd and for every
u ∈ dom(t) with n children, labt(u1) · · · labt(un) ∈ L(d(lab(u))). We denote by
L(d) the set of all trees that satisfy d.

Note that DTDs do not constrain the value of attributes in any way. We usually
refer to a DTD by d rather than (d, Sd, Σd).

We next define the core fragment of XPath that we will consider in Sections 3
and 4.

Definition 3. An XP-expression is an expression defined by the following gram-
mar:

p := p1 | p2 (disjunction)
| /p (root)
| //p (descendant)
| p1/p2 (child)
| p1//p2 (descendant)
| p1[p2] (filter)
| σ (element test)
| ∗ (wildcard)

Here, σ ∈ Σ.

It remains to define the semantics of XP expressions. In brief, every XP
expression p induces a mapping [[p]]t : dom(t) �→ 2dom(t). This mapping is defined
w.r.t. a tree t. We inductively define [[p]]t as follows: for all u ∈ dom(t),

– [[p1 | p2]]t(u) := [[p1]]t(u) ∪ [[p2]]t(u);

– [[/p]]t(u) :=
{

[[p]]t(ε) if u = ε;
∅ otherwise;

– [[//p]]t(u) := {v | ∃w : v ∈ [[p]]t(w)};
– [[p1/p2]]t(u) := {v | ∃w ∈ N

∗, z ∈ N : w ∈ [[p1]]t(u) and v ∈ [[p2]]t(wz)};
– [[p1//p2]]t(u) := {v | ∃w ∈ N

∗, z ∈ N
∗ \ {ε} : w ∈ [[p1]]t(u) and v ∈ [[p2]]t(wz)};

– [[p1[p2]]]t(u) := {v | v ∈ [[p1]]t(u) and [[p2]]t(v) �= ∅};
– [[∗]]t(u) := {u};
– [[σ]]t(u) :=

{{u} if labt(u) = σ;
∅ otherwise;

Obviously, XPath expressions express unary queries. However, we can also
use expressions for Boolean queries by testing whether [[p]]t(ε) �= ∅. We denote
the latter also by t |= p or say that t matches p. Like in [16], we can reduce
containment testing of unary queries to containment of Boolean queries by in-
troducing new labels.

Definition 4. We say that p is contained in q, denoted p ⊆ q, if for all t, t |= p
implies t |= q. For a DTD d, p is contained in q w.r.t. d, denoted p ⊆d q, if for
all t ∈ L(d), t |= p implies t |= q.

As already mentioned in the introduction, we denote the fragment of XP
under consideration by listing the allowed operators. Element test is always
allowed.

In Definition 3, we allow absolute expressions, as opposed to relative ones, to
appear within filter expressions. For instance, in the expression //a[/c//b], /c//b
looks for a b starting at the children of the c-labeled root rather than starting
from a. When no disjunction is present we can always move such expressions to
the top and introduce a new root symbol. For instance, suppose we are given
//a[/c//b] and //a then we take the expressions /#[//a][/c//b] and /#//a. In
the proofs for fragments where disjunction is present, we always go through their

DNF, that is, for every expression q we take the equivalent expression q1 | · · · | qn

where no qi contains disjunction. In each of the disjuncts we can move absolute
expressions to the root. For this reason, we do not deal with absolute filter
expression in the upper bound proofs of this paper. But it should be pointed
out that we make significant use of absolute path expressions in the proof of
undecidability in the presence of DTDs and node-set inequality (Theorem 10).

In some proofs, we view patterns p from XP(/,//,[],∗) as tree patterns as
described by Miklau and Suciu [16]. From this point of view a tree t matches a
pattern p iff there is a homomorphism from (the tree pattern associated with)
p to t, i.e., a mapping which respects labels, child and descendant, (and does
not care about ∗). For example, the pattern a/b//c[d][∗/e] corresponds to the
tree pattern in Figure 1. Single edge and double edge correspond to child and
descendant relation. All nodes of the input tree that can be mapped onto the
x-labelled node are selected.

a

b

c x

d *

e

Fig. 1. The tree pattern corresponding to a/b//c[d][∗/e]

3 The base cases: /, //, [], |, and ∗
Milkau and Suciu showed that XP(/,//,[],∗) is conp-complete [16]. In this sec-
tion, we add | and show that containment remains in conp. Containment is even
hard for conp when | is considered in isolation with / or //. In fact, during the
write up of this paper, we noted that Miklau and Suciu already mention these
results in their discussion section but do not provide proofs. For this reason we
decided to include the proofs in this paper. Moreover, we want to stress that
the reason there is an conp upper bound is because the alphabet Σ is infinite.
Indeed, when we restrict to a finite alphabet, then XP(/,//,|) becomes hard for
pspace.

Theorem 5. 1. Containment of XP(/, //, [], ∗, |) expressions is in conp;
2. Containment of XP(/, |)-expressions is conp-hard.
3. Containment of XP(//, |)-expressions is conp-hard.

Proof. (sketch) The hardness proofs are rather straightforward and are omitted.
We proceed with the proof of (1). We develop a criterion which allows to check

in np whether, for given patterns p and q, p �⊆ q. Let p and q be fixed and
let p1|...|pl and q1| . . . |ql′ be the disjunctive normal forms (DNFs) of p and q,
respectively. Hence, each pi and qj is a pattern from XP(/, //, [], ∗). Let n and
m denote the maximum number of nodes in a pattern pi and qj , respectively.
Let T (p, q) be the set of trees with at most 2n(m + 2) nodes that are labelled
with labels that occur in p and with the new label # not occurring in p nor in
q. It is possible to prove the following claim:

Claim. p �⊆ q ⇔ there is a t ∈ T (p, q) such that t |= p but t �|= q.

It remains to show how the above criterion can be used for an np-algorithm
that checks whether p �⊆ q. The algorithm simply guesses a pattern pi from the
DNF of p (by nondeterministically choosing one alternative for each | in p) and
a t ∈ T (n, m). Then it checks that t |= pi and t �|= q. The latter can be done in
polynomial time as shown in [13]. �

When the alphabet is finite, the containment problem becomes pspace-
complete. Actually, the finite alphabet allows us to express that an element
name in the XML document does not occur in a certain set. This is the only
property we need. Therefore, if we extend the formalism with an operator ∗ �∈S

for a finite set S, expressing that any symbol but one from S is allowed, then
containment would also be hard for pspace.

Theorem 6. When Σ is finite,

1. containment of XP(/, //, [], ∗, |)-expressions is in pspace; and
2. containment of XP(/, //, |)-expressions is pspace-hard.

Proof. (sketch) Upper bound. Let k be a natural number. We say that a tree is
k-bounded if it has at most k non-unary nodes (that is, nodes with more than
one child) and every node has rank at most k (that is, at most k children). Let
p and q be two patterns in XP(/, //, [], ∗, |). Let f(p) denote the number of filter
expressions in p. It is easy to see that p is contained in q iff p is contained in q
on the class of f(p)-bounded trees. Indeed, suppose there is a t such that t |= p
and t �|= q. Let the DNF of p and q be p1| · · · |pn and q1| · · · |qm. Note that each
disjunct has at most as many of filter expressions as the original XP expression.
Let i be such that t |= pi. Hence, there is a (/, //, [], ∗)-homomorphism h from
pi to t (as defined in the proof of Theorem 5). Let V be the set of nodes on
the image of h. Let s be the tree obtained from t by deleting all nodes that are
not in V and are not ancestors of nodes in V . Then, clearly, s is f(p)-bounded,
s |= pi and s �|= qj for all j (otherwise, t |= qj).

By ATA we denote the class of ranked alternating top-down automata [22].
We say that an automaton is bounded iff there is a k such that whenever a tree
is accepted by the automaton it is k-bounded.

Given two patterns p and q in XP(/, //, [], ∗, |), let n = f(p). The remainder
of the proof consists of two steps: (1) we show that p can be transformed into
an n-bounded automaton Mp such that p and Mp are equivalent on n-bounded

trees; (2) we show that containment of n-bounded automata is in pspace. Details
are omitted.

Lower bound. We make use of a reduction from corridor tiling which is
known to be hard for pspace [5]. Let T = (D, H, V, b̄, t̄, n) be a tiling system.
Here, D = {a1, . . . , ak} is a finite set of tiles; H, V ⊆ D × D are horizontal and
vertical constraints, respectively; b̄ = (b1, . . . , bn), t̄ = (t1, . . . , tn) are n-tuples of
tiles; n is a natural number in unary notation. A player places tiles on an n×N

board (n columns, unlimited rows). On this board the bottom row is tiled with
b̄. Every placed tile should satisfy the horizontal and vertical constraints. The
top row should be tiled with t̄. The problem is to determine whether a tiling
exists.

We use a string representation of the n×N board where every row is delimited
by # and the last symbol is $. The XP pattern q selects all strings that do
not encode a tiling. As Σ we take D ∪ {#, $}. By Di we denote the pattern
(a1| · · · |ak), repeated i times which describes i successive symbols of D. The
pattern p is //$ assuring that the string contains the symbol $. The pattern q
is the disjunction of the following patterns:

– a row has the wrong format:
⋃n−1

i=0 //#Di#∪⋃n−1
i=0 /Di/#∪⋃n−1

i=0 //#Di/$∪
//Dn+1;

– $ occurs inside the string: //$/(D ∪ {$} ∪ {#});
– the string does not begin with b:

⋃n
i=1 /b1/ · · · /bi−1/(

⋃
aj �=bi

aj);
– the string does not end with t:

⋃n
i=1(

⋃
aj �=ti

aj)/ti+1/ · · · /tn/$
– some horizontal constraint is violated:

⋃
(d1,d2) �∈H //d1/(D ∪ {#})n+1/d2;

– some vertical constraint is violated:
⋃

(d1,d2) �∈V //d1/d2.

Now, T has a solution iff p �⊆ q. Clearly, if T has a solution then we can take
the string encoding of the tiling as a counter example for the containment of p
and q. Conversely, if p �⊆ q then there is a, not necessarily unary, tree t with one
branch s ending on a $ such that s |= p and s �|= q. So, this branch encodes a
solution for T . �

4 Containment in the presence of DTDs

Deutsch and Tannen obtained a pspace lower bound on the complexity of con-
tainment in the presence of DTDs. In the general case, we prove that the com-
plexity is exptime-complete. We also have a modest np-completeness result on
the fragment using only / and []. We do not know how to extend the upper bound
proof to include // or ∗. Finally, we show that adding nodeset comparisons w.r.t.
= and < leads to undecidability. In fact, when a modest form of negation is
introduced expressing that certain labels cannot appear as a child of a node,
the DTD can be dispensed with. The results of this section are summarized in
Table 1.

We start with a fragment in p. The lower bounds in Theorem 5 and in The-
orem 8 show that this is the largest fragment whose complexity of containment
w.r.t. DTDs is in p.

DTD / // [] | ∗ complexity

+ + + + in p

+ + + conp-complete
+ + + conp-hard

+ + + + + + exptime-complete
+ + + + exptime-complete
+ + + + + exptime-complete

+ + + + + undecidable with nodeset comparisons

Table 1. The complexity of containment in the presence of DTDs.

Theorem 7. Containment of XP(DTD, /, //, ∗)-expressions is in P.

Proof. (sketch) Let d be a DTD and p, q be patterns of XP(DTD, /, //, ∗). Note
that although p and q only can match paths it is not sufficient to reason about
single paths in trees. It might be the case that whenever a tree t has a path which
matches p, the DTD forces the tree to have a different path which matches q.

We construct a non-deterministic top-down tree automaton A that accepts
a tree t if and only if (1) t conforms to d, (2) t |= p, and (3) t �|= q. Once
A is constructed it only remains to check that A does not accept any tree to
conclude that p ⊆d q. This can be tested in polynomial time in |A|. Further, the
construction time and the size of |A| are polynomial in the overall size of d, p,
and q. Hence, the algorithm is indeed polynomial. Further details are omitted.
�

Next, we consider a fragment in conp. It is open whether XP(DTD, /, []) is
a maximal fragment whose complexity of containment w.r.t. DTDs is in conp.

Theorem 8. 1. Containment testing for XP(DTD, /, []) is in conp.
2. Containment testing for XP(DTD, /, []) is conp-hard.
3. Containment testing for XP(DTD, //, []) is conp-hard.

Proof. (sketch) We only prove (1). We present a nondeterministic algorithm
CheckPnotq which checks, given a DTD d, a non-terminal s of d, an XP(/, [])-
pattern q and a set P = {p1, . . . , pn} of XP(/, [])-patterns, whether there is
a tree t with root symbol s which conforms to d, matches the patterns in P
but does not match q. Clearly, invoking this algorithm with d, q, P = {p} and
s = root(d) checks whether p �⊆d q.

A complication arises from the fact that the smallest counter example tree t
might be of exponential size due to the constraints from d. Hence, we can not
simply guess such a counter example.

We make use of two algorithms with slightly simpler tasks. Algorithm CheckP
checks on input d, s, P whether there is a tree t with root s conforming to d
which contains all the patterns from P . Algorithm Checknotq checks on input
d, q whether there is a tree conforming to d with a root labelled by the root
symbol of q which does not match q. The construction of the two algorithms is

omitted. Both work non-deterministically in polynomial time. In both algorithms
and below, we make use of the following notation. For a DTD d let U(d) be the
set of non-terminals a of d that are useful in the sense that there is a tree t
with root label a that conforms to d. U(d) can be computed in polynomial (even
linear) time from d by using standard methods.

Algorithm CheckPnotq proceeds as follows. Let d, s, P = {p1, . . . , pn}, q be
an input.

– First, it checks whether all patterns in P have the root symbol s. If this is
not the case it returns FALSE.

– Next, it checks whether q has the root symbol s. If this is not the case it
calls CheckP with parameters d, s, P = {p1, . . . , pn} and returns TRUE iff
CheckP does.

– It guesses a string u of length at most (|d| + 1)(l + 1) and verifies that u
conforms to the regular expression of s in d and that all non-terminals in u
are in the set U(d) of useful symbols.

– It guesses a child of the root of q. Let q′ be the pattern rooted at this child.
– For each i ∈ {1, . . . , n}, it guesses a mapping fi from the children v1, . . . , vm

of the root of pi to the positions of u.
– For each position j of u, which is in the image of at least one of the mappings

fi, it does the following
• Let P ′ be the vertices that are mapped to j.
• If uj is the symbol of the root of q′ then call CheckPnotq recursively

with parameters d, uj , P
′, q′.

• Otherwise call CheckP with parameters d, uj , P
′.

• Let s′ be the label at the root of q′. If s′ does not occur in P ′ but in u
it calls Checknotq with parameters d, q′.

– It returns TRUE iff all the subcomputations return TRUE.

Clearly, this algorithm checks nondeterministically in polynomial time whether
there is a counter example conforming to d which matches all patterns in P but
not q. The reasoning for the correctness is similar to the case of CheckP.

We note that in the above theorem, (2) and (3) were also obtained by
Wood [24].

When disjunction, or filter and wildcard come in to play, the complexity
raises from p and conp to exptime.

Theorem 9. 1. Containment testing for XP(DTD, /, //, [], ∗, |) is in exptime.
2. Containment testing for XP(DTD, /, //, |) is hard for exptime.
3. Containment testing for XP(DTD, /, //, [], ∗) is hard for exptime.

Proof. (sketch) The upper bound is shown by a translation to emptiness of an
unranked tree automaton whose size is exponential in the input. See [18–20] for
an overview of unranked tree automata.

First of all, we indicate that, for each XP(/, //, [], ∗)-pattern p, one can con-
struct in exponential time an exponential size deterministic tree automaton Ap

such that Ap accepts a tree if and only if it matches p. Let tp be the tree pattern

for the expression p. The states of Ap are pairs (S1, S2) of sets of nodes of tp.
The intended meaning is as follows. If v ∈ S1 then the subtree of the input tree
rooted at the current node matches the subpattern of tp rooted at v. If v ∈ S2

then there is a node below the current node of the input tree which matches
the subpattern rooted at v. S2 is used to handle descendant edges. Note that
there are two sources for the exponential size of Ap. First of all, there is possi-
bly an exponential number of states. Second, the regular expressions (or finite
automata) that describe the transitions of Ap from the children of a node to the
node itself might be of exponential size. E.g., if a vertex in tp has k children then
the associated regular expression might be of size about k!.

Let now d be a DTD and let p and q be XP(/, //, [], ∗, |)-patterns. Let p =
p1 | · · · | pm and q = q1 | · · · | ql be disjunctive normal forms. Note that m
and l might be exponential in |p| and |q|, respectively (but not more). Let Ad

be a nondeterministic top-down automaton checking conformance with d. Let
A be the product automaton of Ad, the automata Api and the automata Aqj

such that A accepts, if Ad accepts, at least one of the Api accepts and all the
Aqj reject. The latter is possible as the Aqj are all deterministic. Clearly, A is of
exponential size.

Now p ⊆ q if and only if A does not accept any tree. This concludes the proof
of (1)

The proofs of the lower bound make use of a reduction from two-player
corridor tiling [5]. The latter problem is the extension of corridor tiling,
used in the proof of Theorem 6 (1), to two players (I and II). Again the game is
played on an n × N board. Each player places tiles in turn. While player I tries
to construct a corridor tiling, player II tries to prevent it. It is known that it
is exptime-complete to determine whether player I has a winning strategy no
matter how player II plays. Given such a tiling system, we construct a DTD d
and two patterns p and q such that p �⊆d q iff player I has a winning strategy.
Intuitively, the DTD defines the set of all strategy trees, p selects every tree, and
q checks whether a possible strategy tree contains an error. Details are omitted.
�

The core fragment XP of XPath, defined in the previous section, leaves out
many features of XPath: node-set equality, location paths, the many functions in
the function library, among others. When operators from the function library like
arithmetical operators or string concatenation are allowed, Moerkotte already
showed that containment is undecidable [17].

It is an interesting open question to pinpoint exactly the minimal XPath
fragments that have an undecidable containment problem. In the present section
we show that containment already becomes undecidable in the presence of very
simple DTDs when we allow node-set equality and inequality with the additional
< operator. In addition, we show that we can get rid of the simple DTDs when
a certain kind of negation, already present in full XPath, over child labels is
allowed.

We define XPns as XP extended with the following rules: if p, q1 and q2 are
XPns expressions then p[q1 = q2], p[q1 < q2], p[not(q1 = q2)], and p[not(q1 < q2)]

are XPns expressions. To define their semantics, we introduce some notation.
For a tree t and a node v ∈ dom(t), define yield(tv) as the string obtained by
concatenating from left to right the labels of the leave nodes that are descendants
of v. Note that this definition is in conformance with the definition of the string-
value of an element node in the XPath data model [6]. For instance, if t is the tree
a(b, a(c), d) then yield(tε) is bcd. We assume an ordering < on Σ. The semantics
is defined as follows, for ∗ ∈ {=, <},

[[p[q1 ∗ q2]]]t(u) := {v | v ∈ [[p]]t(u) and
∃v1 ∈ [[q1]]t(v), ∃v2 ∈ [[q2]]t(v) such that yield(tv1) ∗ yield(tv2)};

[[p[not(q1 ∗ q2)]]]t(u) := {v | v ∈ [[p]]t(u) and
∀v1 ∈ [[q1]]t(v), ∀v2 ∈ [[q2]]t(v) such that ¬(yield(tv1) ∗ yield(tv2))}.

A simple DTD is a DTD where every rule is of the form a → b or a →
c(b1 + · · · + bn). The next proof is an involved reduction from PCP, we only
provide a rough sketch.

Theorem 10. Containment of XPns expressions w.r.t. simple DTDs is unde-
cidable.

Proof. (sketch) We use a reduction from Post’s Correspondence Problem (PCP)
which is well-known to be undecidable [14]. An instance of PCP is a sequence of
pairs (x1, y1), . . . , (xn, yn), where xi, yi ∈ {a, b}∗ for i = 1, . . . , n. This instance
has a solution if there exist m ∈ N and α1, . . . , αm ∈ {1, . . . , n} such that
xα1 · · ·xαm = yα1 · · · yαm .

We construct a DTD d, and two XPath expressions p1 and p2 such that
p1 ⊆d p2 iff the PCP instance has a solution.

We consider XML trees that are almost unary trees or, equivalently, simply
strings. They are of the form u$v, where $ is a delimiter and u, v are strings rep-
resenting a candidate solution (xα1 , . . . , xαm ; yβ1 , . . . , yβm) for the PCP instance
in a suitable way. To check whether such a candidate is indeed a solution, we
roughly have to check whether

1. αi = βi for each i, that is, corresponding pairs are taken; and
2. both strings are the same, that is, corresponding positions in xα1 · · ·xαm and

yα1 · · · yαm carry the same symbol.

To check the correspondences mentioned in (1) and (2), we make use of a double
indexing system based on string-values of children nodes of the nodes of u and
v (and therefore the trees are not literally unary). Details are omitted. �

To get rid of simple DTDs, we allow a modest form of negation. Let XPns(not)
be the extension of XPns extended with the rules p[not(a)] and p[not(c) | not(b1 |
· · · | bn)] where a, c, b1, . . . , bn ∈ Σ, expressing that there is a node selected by p
that does not have an a child, and does not have a c-labeled child or does not
have one with a label coming from b1, . . . , bn, respectively.

Lemma 11. Let d be a simple DTD, let p and q be two XPns expressions, then
there is an XP(/,//,[],not) expression qd such that p ⊆d q iff p ⊆ q | qd.

Proof. For every rule a → b, let qa be the expression //a[not(b)]. For every rule
a → c(b1 + · · · + bn), let qa be the expression //a[not(c) | not(b1 | · · · | bn)].
Define qd as the union of all such expressions. �

Corollary 12. Containment of XPns(not) expressions is undecidable.

5 Containment in the presence of data values

In the present section, we add attribute comparisons to our XPath fragment.
Formally, we add the following rules to Definition 3:

| p[$x = @a] (variables)
| p[$x �= @a] (inequalities)

Here, a is an attribute, and $x, $y are variables. The presence of the former rule
is indicated by ‘vars’ the presence of the latter by ‘�=’.

We consider two semantics. The first one corresponds to the XPath semantics
and we refer to it in that way. The variable binding is defined in an outer context,
not by matching the pattern with the tree. In particular, the value of a pattern
is defined w.r.t. a variable assignment ρ : X → D where X is the set of all
variables. Formally,

[[p[$x = @a]]]ρt (u) := {v | v ∈ [[p]]ρt (u) and ρ(x) = λa
t (v)}; and

[[p[$x �= @a]]]ρt (u) := {v | v ∈ [[p]]ρt (u) and ρ(x) �= λa
t (v)}.

So, p is contained in q w.r.t. ρ, denoted p ⊆ρ q, iff [[p]]ρt (ε) �= ∅ implies [[q]]ρt (ε) �= ∅.
Theorem 13. (a) Containment testing for XP(/, //, [], |, ∗, vars, �=) under the

XPath semantics of variables is in pspace.
(b) Containment testing for XP(/, //, |, ∗, vars, �=) under the XPath semantics of

variables is pspace-hard.

Proof. (sketch)

(a) For the upper bound, we basically show that the problem can be reduced
to the case without variables. Let p and q be two expressions with variables
{x1, . . . , xk}. Let us first consider only variable assignments which assign a
different value to each variable. Hence, for an attribute a of a node u of a
tree t it is only relevant whether the value of a is equal to (exactly) one of
the xi or whether it is different from all of them. Let t be a tree such that
t |= p and t �|= q under assignment ρ. We add, for each attribute a of a node
v, a new child of v labelled by a which itself has a child which is labeled by
one of x1, . . . , xk or with none. So, if the value of a is ρ(xi) in t, for some i,
then it is labelled xi, and none if this is not the case, for all i. Let us call the

resulting tree t′. In p we replace each $xi = @a by a/xi and each $xi �= @a
by a/(x1 | · · · | xi−1 | xi+1 | · · · | xk | none). We call the resulting pattern
p′. Finally we construct q′ from q in the same way. It is easy to see that,
for each u in t: [[p]]ρt (u) = [[p′]]t′(u), where we identify the original nodes of
t′ with their counterparts in t.
We conclude that if ρ is a variable assignment with pairwise different values,
then p ⊆ρ q if and only if p′ ⊆ q′ on all trees of the form t′. Note that these
trees have partially a restriction to a finite alphabet. By using a similar proof
as for Theorem 6, it can be shown that this test can be done in pspace.
The algorithm now cycles through all possible equality types of the variable
assignment ρ. If, for a particular equality type, two variables get the same
value then one of them is replaced by the other in p and in q. Hence, we get
possibly fewer variables which are again pairwise different and we can apply
the above algorithm. The resulting algorithm is in pspace.

(b) We use basically the same construction as in Theorem 6. Let D = {σ1, . . . , σk}
be the alphabet used in that construction and assume w.l.o.g. that k = 2l,
for some l. We use attributes a1, . . . , al and one variable x to encode the
symbols of D. E.g., if all ai of a node v have the same value as x we consider
it as labelled with σ1. If the value of al is different from that of x but all
other ai have the value of x, for some v then we interpret this as symbol σ2

and so on. In this way, the k symbols correspond to the k different equality
types of attributes relative to x. In the expressions p and q the element tests
are replaced by the wildcard symbol together with the respective attribute
comparisons. �

Deutsch and Tannen considered a different semantics which does not assume
an external variable binding but rather allows a choice of values for the variables
that makes the expression match. More formally, [[p]]t(u) is defined as the set
{v ∈ [[p]]ρt (u) | ρ : X → D}. In particular, for Boolean patterns this means that
a tree t matches a pattern p under the semantics of Deutsch and Tannen if there
exists a variable assignment ρ such that t matches p relative to ρ. We will refer
to this sematics as the existential semantics.

Deutsch and Tannen showed that containment of XP(/, //, [], ∗, |, vars)-ex-
pressions under existential semantics is ΠP

2 -complete [11] (Theorem 2.3 and
3.3). Further, they show that containment of XP(/, //, [], vars)-expressions is
conp-complete.

Our main results about the existential semantics are the following. When �= is
added to XP(/, //, [], ∗, |, vars), then containment is undecidable. However, when
�= is added but ∗ is removed, then containment remains in ΠP

2 . Hardness follows
immediately as containment of conjunctive queries (CQs) with inequalities is
already ΠP

2 -hard and containment of CQs is reducible to XPath containment.
The results of this section are summarized in Table 2.

Theorem 14. Containment testing for XP(/, //, [], |, vars, �=) under existential
semantics is in ΠP

2 .

Proof. (sketch) We show that

/ // [] ∗ | vars �= complexity

+ + + + conp-complete [11]
+ + + conp-complete

+ + + + + + Πp
2 -complete [11]

+ + + + Πp
2 -complete

+ + + + + + Πp
2 -complete

+ + + + + + + undecidable

Table 2. The complexity of containment in the presence of data values under existential
semantics. Under XPath semantics the complexity for the full fragment is pspace.

(a) p �⊆ q if and only if there is a tree t of polynomial size in |p| + |q| such that
t |= p but t �|= q, and

(b) Whether t |= p can be tested in np.

Hence, the algorithm Guess a tree t of polynomial size and check that t |= p but
t �|= q is a Σ2-algorithm for the complement of containment testing.

We omit the proof of (a). To show (b), we remark that whether t |= p for
a pattern p in XP(/, //, [], |, vars, �=) can be tested as follows. First, a disjunct
pi of the disjunctive normal form of p is guessed. Next, a homomorphism from
pi to t and a value assignment for the variables of pi are guessed (with values
≤ |pi|) and it is checked whether all conditions hold. �

A proof of the next theorem is again a reduction from PCP and is omitted
due to space restrictions.

Theorem 15. Containment testing for XP(/,//, [],∗,|,vars,�=) under existential
semantics is undecidable.

6 Discussion

We have studied the complexity of the containment problem for a large class of
XPath patterns. In particular, we considered disjunction, DTDs and variables.
Unfortunately, the complexity of almost all decidable fragments lies between
conp and exptime. On the other hand, the size of XPath expressions is rather
small. As pointed out, Deutsch and Tannen, and Moerkotte already obtained
undecidability results for XPath containment. We added two more: presence of
node-set equality and modest negation or variables with the existential seman-
tics. It would be interesting to have a precise classification of which combination
of features makes the problem undecidable.

In a next step, also navigation along the other axes of XPath should be
investigated.

Acknowledgment

We thank Stijn Vansummeren for comments on a previous version of this paper.
We thank the anonymous referees for valuable suggestions.

References

1. M. Benedikt, W. Fan, and G. M. Kuper. Structural properties of XPath fragments.
ICDT 2003, this volume.

2. G. J. Bex, S. Maneth, and F. Neven. A formal model for an expressive fragment
of XSLT. Information Systems, 27(1):21–39, 2002.

3. D. Chamberlin, J. Clark, D. Florescu, J. Robie, J. Simeon, and M. Stefanascu.
XQuery 1.0: An XML query language. http://www.w3.org/TR/xquery/, 2002.

4. A. K. Chandra, D. Kozen, and L. J. Stockmeyer. Alternation. Journal of the ACM,
28(1):114–133, 1981.

5. B. S. Chlebus. Domino-tiling games. Journal of Computer and System Sciences,
32(3):374–392, 1986.

6. J. Clark. XML Path Language (XPath). http://www.w3.org/TR/xpath.
7. James Clark. XSL transformations version 1.0. http://www.w3.org/TR/WD-xslt,

august 1999.
8. World Wide Web Consortium. XML schema. http://www.w3.org/XML/Schema.
9. S. DeRose, E. Maler, and R. Daniel. XML pointer language (XPointer) version

1.0. http://www.w3.org/TR/xptr/, 2001.
10. S. DeRose, E. Maler, and D. Orchard. XML linking language (XLink) version 1.0.

http://www.w3.org/TR/xlink/, 2001.
11. A. Deutsch and V. Tannen. Containment and integrity constraints for xpath. In

Maurizio Lenzerini, Daniele Nardi, Werner Nutt, and Dan Suciu, editors, Pro-
ceedings of the 8th International Workshop on Knowledge Representation meets
Databases (KRDB 2001), number 45 in CEUR Workshop Proceedings, 2001.

12. G. Gottlob and C. Koch. Monadic queries over tree-structured data. In Proc. 17th
IEEE Symposium on Logic in Computer Science (LICS 2002), 2002.

13. G. Gottlob, C. Koch, and R. Pichler. Efficient algorithms for processing XPath
queries. In Proc. of 28th Conf. on VLDB, 2002.

14. J.E. Hopcroft and J.D. Ullman. Introduction to Automata Theory, Languages, and
Computation. Addison-Wesley, 1979.

15. H. Lewis and C. Papadimitriou. Elements of the theory of computation. Prentice-
Hall, 2 edition, 1997.

16. G. Miklau and D. Suciu. Containment and equivalence for an XPath fragment.
In Proc. 21th Symposium on Principles of Database Systems (PODS 2002), pages
65–76, 2002.

17. G. Moerkotte. Incorporating XSL processing into database engines. In Proc. of
28th Conf. on VLDB, 2002.

18. F. Neven. Automata, logic, and XML. In J. C. Bradfield, editor, CSL, volume
2471 of Lecture Notes in Computer Science, pages 2–26. Springer, 2002.

19. F. Neven. Automata theory for XML researchers. SIGMOD Record, 31(3), 2002.
20. F. Neven and T. Schwentick. Automata- and logic-based pattern languages for

tree-structured data. Unpublished, 2001.
21. F. Neven and T. Schwentick. Query automata on finite trees. Theoretical Computer

Science, 275:633–674, 2002.
22. G. Slutzki. Alternating tree automata. Theoretical Computer Science, 41(2–3):305–

318, 1985.
23. P. T. Wood. Containment for XPath fragments under DTD constraints. ICDT

2003, this volume.
24. P. T. Wood. Minimising simple XPath expressions. WebDB informal proceedings,

2001.

25. P. T. Wood. On the equivalence of XML patterns. In Lloyd et al., editor, Compu-
tational Logic – CL 2000, volume 1861 of Lecture Notes in Artificial Intelligence,
pages 1152–1166. Springer, 2000.

Appendix

Proof of Theorem 5 (continued) (1) We prove the claim:

p �⊆ q ⇔ there is a t ∈ T (p, q) such that t |= p but t �|= q.

⇐: trivial.
⇒: Assume there is an s matching p but not q. s has to match one of the pi,

hence there is a (/, //, [], ∗)-homomorphism h from pi to s, i.e., h maps the nodes
of the tree pattern of pi to the nodes of s such that (1) h(v) has the same label
as v unless v carries a wildcard, (2) h(v) is a child (descendant) of h(u) if and
only if v is a child (descendant) of u. We construct t by transforming s in several
steps. Let V denote the set of nodes of s in the image of h. We delete all nodes
in s that are neither in V nor an ancestor of a node in V . The remaining tree
has at most as many leaves as pi. We replace the label of all remaining nodes
not in V by #. Let V ′ be the set of branching nodes of the tree obtained so far,
i.e. of those nodes that have more than one child. The set V ′ contains at most
n vertices. Let a pure path be a path that does neither contain any node from
V nor from V ′. In particular, the nodes of a pure path are all labelled with #.
In the last step we replace all maximal pure paths with > m + 1 inner nodes by
a path with m + 1 #-labelled inner nodes. We call the resulting tree t.

It is easy to see that t ∈ T (p, q), that t |= pi and that t contains at most
m + 2 times |V | + |V ′|, hence ≤ 2n(m + 2), many nodes.

We have to show that t �|= q. Towards a contradiction assume that t |= qj , for
some j. Hence, there is a homomorphism h′ : qj → t. Next, we show how h′ can
be modified to obtain a homomorphism from qj to s which leads to the desired
contradiction. Observe first, that the only nodes of qj that can be mapped to
nodes outside V are nodes that are labelled with a ∗. Note also that there is
a natural embedding of all those parts of t into s that were not obtained by
replacing a long pure path by a shorter one. Hence, for these parts of t the
homomorphism h′ can be easily modified to get a (partial) homorphism from qj

to s. On the other hand, let v1, . . . , vk be some nodes in the image of h′ on a
pure path of length m + 1 with endpoints u and v in V ∪ V ′, ordered from the
root to the leaves. By the choice of m it holds that k ≤ m, therefore there must
be an i such that vi+1 is not a child of vi or v1 is not the first node of the path
or vk is not the last node of the path. In either case there is a mapping from
{u, v, v1, . . . , vk} to the corresponding original simple path in s which maps u
and v to the endpoints of that path and which respects the child and descendant
relation.

By composing h′ with these mappings and the above mentioned natural
embedding we get a (/, //, [], ∗)-homomorphism from qj to s, the desired contra-
diction. This finishes the proof of the claim.

(2) The hardness proof is the same proof that shows that containment of reg-
ular expressions is conp-hard [15]. We give it for completeness sake and because
the next proof depends on it.We use a reduction from validity of propositional
logic formulas in disjunctive normal form which is known to be complete for
conp [15]. Let ϕ =

∨m
i=1 Ci be a propositional formula in disjunctive normal

form over the variables x1, . . . , xn. Here, each Ci is a conjunction of literals. For
a disjunct C let C̃ be the XP expression a1/ · · · /an where

ai :=

0 if ¬xi occurs in C;
1 if xi occurs in C;
(0|1) otherwise.

Let q̃ be the disjunction of the expressions C̃i, i = 1, . . . , m. Further, let p be
the expression (0|1)/ · · · /(0|1) where (0|1) is repeated n times. Clearly, p ⊆ q̃ iff
ϕ is valid.

(3) The reduction is similar to the one above except that we define C̄ as
//a1//a2// · · · //an, q̄ as the disjunction of the expressions C̄i, i = 1, . . . , m,
and p as (0|1)// · · ·//(0|1). We show that p ⊆ q̄ ⇔ φ is valid. Suppose p ⊆ q̄,
then in particular q̄ matches everey 0-1-string of length n, hence, ϕ is valid.
Therefore, suppose ϕ is valid. If p matches a branch in the tree then there are in
particular n positions with 0 or 1. The ith such position can be seen as a truth
assignment to xi. As ϕ is valid all possible assignments are accounted for by q̄,
and q̄ matches that branch. �

Proof of Theorem 6 (continued). We start with the definition of alternating
automata on finite trees [22]

Definition 16. Fix a natural number k. An alternating tree automaton (ATA)
is a tuple A = (k, Q, Σ, q0, δ, F) where Q is a finite set of states, Σ is the
alphabet, q0 ∈ Q is the initial state, F ⊆ Q is the set of final states and δ :
Q × Σ × {0, 1, . . . , k} → B+({0, 1, . . . , k} × Q) is the transition function. Here,
B+({1, . . . , k} × Q) denotes the set of positive Boolean formulas over the set
{1, . . . , k} × Q.

A configuration on a tree t is a tuple [u, q] where u ∈ dom(t) and q ∈ Q. An
accepting run of A on t is a tree s where nodes are labeled with configurations
such that:

– the root of s is labeled with [ε, q0];
– let u be a node of s labeled with [v, q] with n children labeled [v1, q1], . . . , [vn, qn].

Note that vi is a child of v or v itself. For notational convenience we mean
v when we say v0. Let ρ be the truth assignment that assigns true to (, q′)
iff q ∈ F or there is an i such that vi = v and qi = q′. We then require that
δ(q, labt(v), m), where m is the number of children of v, is true under the
assignment ρ.

A tree is accepted by A if there is an accepting run. By L(A) we denote the set
of trees accepted by A.

Lemma 17. For every XP(/, //, [], ∗, |) pattern p there is a f(p)-bounded ATA
Ap such that p and Ap are equivalent on all f(p)-bounded trees. Moreover, Ap

can be constructed in logspace.

Proof. Let p be a XP(/, //, [], ∗, |) pattern. As the alphabet is finite, we can
replace every ∗ with a disjunction of the alphabet symbols. Hence, we assume
p does not contain ∗. Set k := |p|. Then define Ap = (k, Q, Σ, q0, δ, F) where Q
is the set of subpatterns of p and the state qacc, q0 = p, and F = {qacc}. The
transition function is inductively defined as follows: for all subpatterns p1, . . . , pn

and for all σ, σ′

– δ(/σ/p1, σ, 1) = (1, p1);
– δ(//σ/p1, σ, 1) = (1, //σ/p1) ∨ (1, /p1);
– δ(//σ//p1, σ, 1) = (1, //σ//p1) ∨ (1, //p1);
– δ(//σ/p1, σ

′, 1) = (1, //σ/p1) with σ �= σ′;
– δ(//σ//p1, σ

′, 1) = (1, //σ//p1) σ �= σ′;
– δ(/σ[p1] · · · [pn], σ, n) =

∧n
i=1

∨n
j=1(i, pj);

– δ(//σ[p1] · · · [pn], σ, n) =
∧n

i=1

∨n
j=1(i, pj);

– δ(//σ[p1] · · · [pn], σ′, 1) = (1, //σ[p1] · · · [pn]); note that σ need not be differ-
ent from σ′;

– For all i ∈ {1, . . . , }, δ(p1 | p2, σ, i) = (0, p1) ∨ (0, p2).
– For σ ∈ Σ, δ(σ, σ, 0) = qacc.

The combinations δ(a, σ, i) that are not mentioned are empty. In the first five
rules, the node at hand can only have one child. We only allow branching when
a filter expression is present. This requirement keeps the automaton bounded.

The requirements in the statement of the lemma are clearly satisfied. �

Lemma 18. Let p and q be two XP(/, //, [], ∗, |) patterns. Testing whether L(Ap) ⊆
L(Aq), where Ap, Aq are the ATA constructed in the previous lemma, can be done
in space polynomial in the size of |p| + |q|.
Proof. We only provide a sketch. If L(Ap) �⊆ L(Aq) then there is an f(p)-bounded
tree t such that t ∈ L(Ap) and t �∈ L(Aq). As an f(p)-bounded tree consists of
at most f(p) × f(p) paths, the containment problem reduces to containment of
alternating string automata which is known to be in pspace [4]. �

The result now follows from Lemma 17 and Lemma 18.
We conclude by saying a few words about unary queries. We should be a

bit careful when applying the Miklau-Suciu trick of adding a new symbol, say
$, at every position in the pattern where a selection is done: we have to make
sure that in every tree only one $ occurs, but this can easily be done by slightly
modifying the construction of Ap. �

Proof of Theorem 7 (continued). The automaton A is constructed as follows.
We construct in a straightforward manner a non-deterministic unranked top-
down tree automaton Ad which checks whether a tree conforms to d. Next,
we construct a non-deterministic unranked top-down tree automaton Ap which

checks that a tree has a path conforming to p. This is easy as p is a very simple
regular expression which can be transformed into a DFA in polynomial time.
Further, as p does not contain filter, the only non-determinism is in the choice
of the path in the tree. Finally, Aq is a deterministic unranked top-down tree
automaton which verifies that no path in the tree matches q. So A is the product
automaton of Ad, Ap and Aq which accepts if all three subautomata accept. �

Proof of Theorem 8 (continued). (1) We first describe algorithm CheckPnotq.
On input d, s, P = {p1, . . . , pn} it proceeds as follows.

– First, it checks whether all patterns in P have the root symbol s. If this is
not the case return FALSE.

– It guesses a string u of length at most (|d| + 1)(l + 1), where l is the total
number of children of the roots of the patterns in P and verifies that u
conforms to the regular expression of s in d and that all non-terminals in u
are in the set U(d) of useful symbols.

– For each i ∈ {1, . . . , n}, it guesses a mapping fi from the children v1, . . . , vm

of the root of pi to the positions of u.
– For each position j of u, which is in the image of at least one of the mappings

fi, it does the following
• Let P ′ be the vertices that are mapped to j.
• Call CheckP recursively with parameters d, uj , P

′. Here, uj is the symbol
at the j-th position in u.

– It returns TRUE iff all the recursive calls return TRUE.

Note that P might consist only of patterns with one node labelled s. In this case
the algorithm returns TRUE.

It is relatively straightforward to check that CheckP is correct. Of course, if it
returns TRUE then there is a tree t with the stated properties. For the converse
direction, assume that t is a tree with root s conforming to d which contains all
the patterns from P . We show that there t can be transformed into a tree where
each node has at most (|d| + 1)(l + 1) children. We can argue in an inductive
fashion. First of all, the sequence of children of the root conforms to the DTD.
For each i ≤ n there is a homomorphism from pi to t. Let v1, . . . , vm be those
children of the root of t that are in the image of at least one of these mappings.
Clearly m ≤ l. Hence, if the root of t has more than (|d|+1)(l+1) children then
there is a subsequence of length at least |d| that is not in the image of any hi.
By a standard pumping lemma argument it follows that we can get rid of some
of these vertices together with their subtrees. Note that |d| is an upper bound
for the number of states of a non-deterministic automaton which describes the
regular language of children of s-nodes. Hence, we can assume that t has at most
(|d| + 1)(l + 1) children and we proceed by induction.

Algorithm Checknotq works as follows on input d, q.

– If q consists of only one node then it returns FALSE.
– It guesses a string u of length at most |d| and verifies that u conforms to

the regular expression of s in d and that all non-terminals in u are in the set
U(d) of useful symbols.

– It guesses a child v of the root of q. Let q′ be the pattern rooted at this child.
If the label s′ of v does not occur in u it returns TRUE. Otherwise it calls
Checknotq with parameters d, q′.

(2–3) We use a reduction from 3SAT to the complement of the containment
problem. Let ϕ =

∧k
i=1 Ci be a CNF formula with variables x1, . . . , xn. We

construct a DTD d and expressions e, e1, . . . , ek such that

ϕ is satisfiable iff e �⊆ e1 | · · · | ek. (∗)
The DTD is defined as follows: d(r) = x1 · · ·xn and d(xi) = true | false for every
i. Define e as /r and, for every i, ei as /r[xj/true][x�/false][xm/true] when Ci is
of the form (¬xj ∨ x� ∨ ¬xm). Note that (∗) holds. Further, the reduction goes
through even when every / is replaced by //. This concludes the proof. �

Proof of Theorem 9 (continued)

In the next two proofs we make use of a reduction from two-player cor-
ridor tiling. This is the extension of corridor tiling, used in the proof
of Theorem 6 (1), to two players. Let T = (D, H, V, b̄, t̄, n) be a tiling system.
Here, D is a finite set of tiles; H, V ⊆ D × D are horizontal and vertical con-
straints, respectively; b̄, t̄ are n-tuples of tiles; n is a natural number. There are
two players (I and II) that place in turn tiles on an n×N board. On this board
the bottom row is tiled with b̄. Player I starts on the first square of the second
row. Each player in turn places a tile on the next free square going from left to
right and bottom to top. A player that puts down a tile not consistent with the
already placed tiles immediately looses. If player I can achieve a tiling of which
the top row is consistent with t̄ no matter how player II plays, then we say that
player I has a winning strategy. It is well-known that it is exptime-complete to
determine whether I has a winning strategy [5].

(2) We use the following DTD which defines all possible strategy trees. There
is only one terminal symbol: #. The set of non-terminals consists of the start
symbol S; two delimiters $1 and $2 separating different rows where the index
indicates which player should place a tile; and, the symbols (d, k) where d ∈ D
and k = 1, 2 indicating which tile has been placed by which player. Let D =
{d1, . . . , dm}. Then we define the productions of the DTD as follows: for every
d ∈ D,

S → (d1, 1) + · · · + (dm, 1)
(d, 1) → (d1, 2) · · · (dm, 2) + # + $2

(d, 2) → (d1, 1) + · · · + (dm, 1) + # + $1

$2 → (d1, 2) · · · (dm, 2)
$1 → (d1, 1) + · · · + (dm, 1)

Note that a derivation tree encodes a possible strategy tree (or game tree) for I.
Indeed, tiles labeled with (d, 1) have all other tiles as children (indicating that

I needs an answer for every choice of II, while tiles carrying a (d, 2) only have
one child (indicating that I should have only one answer for every tile placed
by II). As the bottom and the top row are fixed we do not represent them in
the strategy trees. I.e., these trees only represent intermediate rows. We assume
that the tiling consisting only of the top and bottom row is not valid. Therefore
any strategy tree has to represent at least one row.

We have to check whether there is a tree encoding a valid strategy tree for
I. If no such tree exists then I cannot win. To check whether a tree is a valid
strategy tree, we have to verify whether the horizontal and vertical constraints
are satisfied and whether every row has exactly n tiles. Actually, we will test for
the converse. That is, we will construct a union of XPath expressions that select
a tree when it does not encode a strategy for I.

More precisely, we construct an expression p such that /S//# ⊆ p iff player
I has no winning strategy. We define

p := qn tiles |
⋃

(d,d′) �∈H

qH
d,d′ |

⋃
(d,d′) �∈V

qV
d,d′ | qb̄ | qt̄,

where the expressions on the right hand side will be defined shortly. We use⋃
to denote a big disjunction of expressions. Each of the above expressions

identifies an error in the strategy tree. Hence, if every tree matches one of these
expressions, every tree contains an error and no tree can be a valid strategy tree.

Note that, although the expressions under consideration do not have the
wildcard available, the disjunction of all alphabet symbols defined by the gram-
mar is a kind of wildcard as the DTD assures that no other symbols occur in
the tree. In the rest of this proof, ∗ is an abbrevation for the expression that
denotes the disjunction of all alphabet symbols defined by the grammar, and ∗i

is an abbreviation for / ∗ / ∗ / · · · /∗ (i times).

Vertical Constraints are violated. For every d, d′ ∈ D,

qV
d,d′ :=

⋃
k,�=1,2

//(d, k)/ ∗n+1 /(d′,)

Further, define

qb̄ :=
n⋃

i=1

⋃
k=1,2

⋃
(bi,d) �∈V

/S/ ∗i−1 /(d, k),

checking the vertical constraints w.r.t. b̄. Define

qt̄ :=
⋃

k=1,2

n⋃
i=1

⋃
(d,ti) �∈V

//(d, k)/ ∗n−i /#,

checking the vertical constraints w.r.t. t̄.

Horizontal Constraints are violated. For every d, d′ ∈ D,

pH
d,d′ :=

⋃
k,�=1,2

//(d, k)/(d′,)

A row does not contain exactly n tiles.

qn tiles := Dn+1 |
n−1⋃
i=0

($1 | $2 | S)/Di/($1 | $2 | #)

Here, D stands for the expression ((d1, 1) | · · · | (dm, 1) | (d1, 2) | · · · |
(dm, 2)) and Di stands for the expression /D/ · · ·/D/ (i times).

(3) The construction in this case is similar to the construction in (2). First of
all, we define the expression qn tiles slightly different in order to get rid of the
inner disjunctions.

qn tiles :=
⋃

σ∈{$1,$2,S}

m⋃
i=1

2⋃
j=1

σ/ ∗n /(di, j) |

n−1⋃
i=0

⋃
σ∈{$1,$2,S}
σ′∈{$1,$2,S}

σ/ ∗i /σ′

The expression of the first line matches if the symbol at distance n + 1 from
a delimiter $1, $2, S is not a delimiter $1, $2, #. The expression in the second line
matches if delimiters occur in distance less than n + 1.

The outermost union can be handled by Lemma 1 of [16]. Of course, the
DTD has to be adapted accordingly. �

Proof of Theorem 10. We use a reduction from Post’s Correspondence Prob-
lem (PCP) which is well-known to be undecidable [14]. An instance of PCP is
a sequence of pairs (x1, y1), . . . , (xn, yn), where xi, yi ∈ {a, b}∗ for i = 1, . . . , n.
This instance has a solution if there exist m ∈ N and α1, . . . , αm ∈ {1, . . . , n}
such that xα1 · · ·xαm = yα1 · · · yαm .

We construct a DTD d, and two XPath expressions p1 and p2 such that
p1 ⊆d p2 iff the PCP instance has a solution.

We consider XML trees that are almost unary trees or, equivalently, simply
strings. They are of the form u$v, where $ is a delimiter and u, v are strings rep-
resenting a candidate solution (xα1 , . . . , xαm ; yβ1 , . . . , yβm) for the PCP instance
in a suitable way. To check whether such a candidate is indeed a solution, we
roughly have to check whether

1. αi = βi for each i, that is, corresponding pairs are taken; and
2. both strings are the same, that is, corresponding positions in xα1 · · ·xαm and

yα1 · · · yαm carry the same symbol.

To check the correspondences mentioned in (1) and (2), we make use of a double
indexing system based on string-values.

We explain the intuition behind our reduction by means of a small concrete
example.

Example 19. Consider the following PCP instance:

x1 := ab y1 := a
x2 := b y2 := bb.

We want to encode possible solutions x1x2; y1y2 by means of an almost linear
tree. Each x1 = ab, for instance, will be represented by a block of the form

X

block 1(x)

a(x, 1, 1)

position b(x, 1, 2)

position

The structure of the block is determined by the labels of the right-descendants.
Here, X indicates the beginning of a block; 1(x) means that x1 is picked; and,
a(x, 1, 1) b(x, 1, 2) encode that x1 is the string ab. More precisely, σ(x, i, j) en-
codes that the j-th position in the string xi is σ. We need this involved encoding
as we will define a DTD that can only produce valid sequences of blocks. The el-
ements “block” and “position” make up the double index system as will become
clear further on. Similarly, y2 is encoded by the block

Y

block 2(y)

b(y, 2, 1)

position b(y, 2, 2)

position

We refer to blocks corresponding to encodings of an xi (yi) as X-blocks (Y -
blocks). If a block corresponds to xi or yi the we say that its number is i.

The DTD defines trees of the form

S u#v&,

where u is a sequence of X-blocks and v is a sequence of Y -blocks. To check
that such a tree is indeed a solution we need to check that the block numbers of
corresponding blocks are the same and that the values (a or b) of corresponding
positions in the output string are the same. To this end, we use the element types

block and position. The block element is associated to X and Y labeled nodes,
the position element is associated to nodes labeled with σ(z, i, j) elements.

A correct encoding of the candidate solution x1x2; y1y2 would be the following
tree:

X

block

1

1(x)

a(x, 1, 1)

position

1

b(x, 1, 2)

position

2

X

block

2

2(x)

b(x, 2, 1)

position

3

#

Y

block

1

1(y)

a(y, 1, 1)

position

1

Y

block

2

2(y)

b(y, 2, 1)

position

2

b(y, 2, 2)

position

3

&

Here, the values of the block and position elements determines corresponding
blocks and corresponding positions within the strings.

The DTD d which derives trees of such form is given by the following set of
productions:

S → X
X → block 1(x) | block 2(x)

1(x) → a(x, 1, 1)
a(x, 1, 1) → position b(x, 1, 2)
b(x, 1, 2) → positionX | position#

2(x) → b(x, 2, 1)
b(x, 2, 1) → positionX | position#

→ Y
Y → block 1(y) | block 2(y)

1(y) → a(y, 1, 1)
a(y, 1, 1) → positionY | position &

2(y) → b(y, 2, 1)
b(y, 2, 1) → position b(y, 2, 2)
b(y, 2, 2) → positionY | position &

& → ε
block → PCDATA

position → PCDATA

Of course, the schema does not ensure that the string-values of the nodes are
defined as explained above. We will define a pattern that will select the root of
each string iff this string is not a valid encoding or, if it is a valid encoding but
does not represent a solution.

To define the DTD for the general case we introduce some notation, for
i := 1, . . . , n, let xi := σi

1 · · ·σi
ki

and yi := δi
1 · · · δi

�i
. Further, define P (xi) as

the set of productions i(x) → σi
1(x, i, 1), and for j := 1, . . . , ki − 1, σi

j(x, i, j) →
positionσi

j+1(x, i, j+1), and σi
ki

(x, i, ki) → positionX | position#. Analogously,
let P (yi) be the set of productions i(y) → δi

1(y, i, 1), and for j := 1, . . . , i − 1,
δi
j(y, i, j) → position δi

j+1(y, i, j + 1), and δi
�i

(y, i, i) → positionY | position &.
The DTD d consists of the productions

S → X
X → block 1(x)| . . . |block n(x)
→ Y
Y → block 1(y)| . . . |block n(y)
& → ε
block → PCDATA
position → PCDATA

together with P (xi) and P (yi) for i = 1, . . . , n. The start symbol is S.
Formally, a tree u#v& is syntactically correct if u and v contain the same

number of blocks and it fulfills the following two conditions. For z ∈ {u, v}, let
block(z) be the list consisting of the string-values of the block nodes in z and
let position(z) be the list consisting of the string-values of the position nodes
in z. Then it should be the case that block(u) = block(v) and position(u) =
position(v).

A syntactically correct string u$v& represents a solution of the PCP instance,
iff the block numbers of corresponding blocks are the same and the values (a or
b) of corresponding positions in the output string are the same.

Let p1 be the XPath expression /S and let d be as above. We next construct
p2 in such a way that it selects the root of an XML document if and only if it is
not syntactically correct or does not represent a solution. Hence, p2 accepts all
inputs and therefore p1 ⊆d p2 if and only if the PCP instance has no solution.

The XPath expressions is a union of the following expressions. Each of them
represents an error. In the following if z is the string abab then /z is a shorthand
for /a/b/a/b. Further, denote the string generated from xi (yi) by x̃i (ỹi).

1. The block index is wrong.
(a) the block value of the first X in u differs from the block value of the first

Y in v:
/S[not(X/block = //#/Y/block)].

(b) the block value of the last X in u differs from the block value of the last
Y in v: for each i, j ∈ {1, . . . , n} we have the XPath expression

/S[not(//X [i(x)/x̃i/#]/block = //Y [j(y)/ỹi/&]/block)].

(c) two X-block values are the same:

/S//X [block = //X/block]

(d) two Y -block values are the same;

/S//Y [block = //Y/block]

(e) there is an X-block that does not occur as a Y -block:

/S[//X [not(block = //Y/block)]]

(f) there is an Y -block that does not occur as an X-block:

/S[//Y [not(block = /S//X/block)]]

(g) the indices in X are not successive: for all i ∈ {1, . . . , n}

/S[//X [block >= i(x)/x̃i/X/block]]

(h) the indices in Y are not successive: for all j ∈ {1, . . . , n}

/S[//Y [block >= j(y)/ỹj/Y/block]]

2. The position index is wrong. This is checked in an analogous fashion. In the
next expressions we make use of the star. However, we can get rid of the star
by having an expression for each possible match. Indeed, each star can only
be matched by a symbol of the form i(z), σ(z, i, j) where i, j are numbers
depending on the PCP instance, σ = a, b, and z = x, y.
(a) the first position in u differs from the first position in v:

/S[not(/X/ ∗ / ∗ /position = //#/Y/ ∗ / ∗ /position)].

(b) the last position in u differs from the last in v:

/S[not(// ∗ [#]/position = // ∗ [&]/position)]

(c) two X-position values are the same:

/S[// ∗ [position = // ∗ /position[//#]]]

(d) two Y -position values are the same;

/S[//&/// ∗ [position = // ∗ /position]]]

(e) there is an X-position that does not occur as an Y -position: for ev-
ery σ1, σ2 ∈ {a, b}, i, j ∈ {1, . . . , n}, i1, i2 ∈ {1, . . . , |xi|}, and j1, j2 ∈
{1, . . . , |yj |} we have the XPath expression:

/S[//σ1(x, i1, i2)[not(position = //σ2(y, j1, j2)/position)]]

(f) there is an Y -position that does not occur as an X-position: for ev-
ery σ1, σ2 ∈ {a, b}, i, j ∈ {1, . . . , n}, i1, i2 ∈ {1, . . . , |xi|}, and j1, j2 ∈
{1, . . . , |yj |} we have the XPath expression:

/S[//σ2(y, j1, j2)[not(position = /S//σ1(x, i1, i2)/position)]]

(g) the position indices in X are not successive: we have to deal with sev-
eral cases as the successive positions can occur in the same block or in
successive blocks.
i. the X-positions occur in the same block for all i ∈ {1, . . . , n} and

k ∈ {1, . . . , |xi| − 1} we have the XPath expression

/S//X/i(x)/ ∗k−1 [position >= / ∗ /position].

ii. the X-positions occur in successive blocks for all i ∈ {1, . . . , n} we
have the XPath expression

/S//X/i(x)/ ∗|xi|−1 [position >= X/ ∗ / ∗ /position]

(h) the position indices in Y are not successive: similar.
3. w does not represent a solution:

(a) The block number for some block in u is different from the correspond-
ing block in v: for all i, j ∈ {1, . . . , n} with i �= j we have the XPath
expression

/S[//X [i(x)]/block = //Y [j(y)]/block]

(b) The a/b-value for some δ in u is different from the corresponding a/b-
value in v. Thereto, we have the following expressions: for all i, j ∈
{1, . . . , n}, k ∈ {1, . . . , |xi|}, ∈ {1, . . . , |yj |}

/S[//a(x, i, k)/position = //#//b(y, j,)/position]

and
/S[//b(x, i, k)/position = //#//a(y, j,)/position]

Clearly, w is not a solution iff one of the above conditions hold.
�

Lemma 20. – Containment testing for XP(/, [], vars) is conp-hard.
– Containment testing for XP(/, [], vars, �=) is ΠP

2 -hard.

Proof. Let Q be a Boolean CQ of the form L1, . . . , Ln, x1 �= x2, . . . , xm−1 �=
xm. Before we define corresponding XP-expressions we first describe how we
represent a database as a tree. Let DB be a database. The root is labeled with
S and for every relation R in DB and every tuple (d1, . . . , dn) in R it has a child
labeled R with n attributes @1, . . . , @n, where, for each i, @i has the value di.

The XP pattern pQ has the form /S[p1] · · · [pn] where every pi is obtained
from Li in the following way: if Li is of the form R(y1, . . . , yk) and the inequalities
yi1 �= zj1 , . . . yir �= zjr occur in x1 �= x2, . . . , xm−1 �= xm then pi is the pattern

R[$y1 = @1] · · · [$yk = @k][$zj1 �= @i1] · · · [$zjr �= @ir].

We illustrate the construction with an example. For instance, if Q equals

E(x, y), E(y, z), x �= z

then pQ is

/S[E[$x = @1][$y = @2][$z �= @1][E[$y = @1][$z = @2][$x �= @2]].

As containment of CQs and CQs with inequality is hard for conp and ΠP
2 ,

respectively, it suffices to show that for all Q1, Q2, Q1 ⊆ Q2 iff pQ1 ⊆ pQ2 .
Clearly, if Q1 �⊆ Q2 then there is a database DB such that DB |= Q1 and

DB �|= Q2. Clearly, tDB, as described above, matches pQ1 but not pQ2 .
Suppose that pQ1 �⊆ pQ2 and let t be the tree that matches pQ1 but not pQ2 .

We then take the restriction of t that suffices to match pQ1 and transform it into
a database. �

Proof of Theorem 14 (continued) We prove (a).
Let p and q be patterns and let p1|...|pm and q1| . . . |qn be the DNFs of p and q,
respectively. Note that the disjuncts can again be represented as tree patterns,
this time with additional constraints reflecting the equalities and inequalities
between variables and attributes.

Clearly, p �⊆ q if and only if for some i, pi �⊆ q. Hence, in proving (a) we can
restrict to the case where p does not contain |. Let A be the set of attributes
that occur in p or q.

We call a tree t an A-canonical tree for (p, q) if the following conditions hold.

– The tree structure of t is obtained from the tree patterns of p by replacing
each //-edge by two child edges with a new intermediate #-labeled node
where # is a label not occuring in p or q. Note that the number of vertices
of t is at most twice the number of vertices of the tree pattern of p.

– The attribute values in t are from the set {0, . . . , mk}, where m is the number
of vertices in t and k is the number of attributes in A.

Let S(p, q) denote the set of all A-canonical trees for (p, q). Note that, as the
data values are bounded by km = (|p| + |q|)m these trees can be encoded by
strings of polynomial size.

We show next, that whenever p �⊆ q for a pattern p from XP(/, //, [], vars, �=)
and a pattern q from XP(/, //, [], |, vars, �=) then there is a tree t ∈ S(p, q) that
matches p but not q.

Let therefore p �⊆ q be witnessed by a tree t′ not necessarily from S(p, q).
Hence, t′ |= p but t′ �|= q. Let e be a homomorphism from p to t′. Let a1, . . . , am

be the pairwise different attribute values of the vertices in e(p).
We construct the tree t as follows. Its structure is obtained from p as above

by replacing //-edges with new nodes labeled #. We call a vertex v of t that is
already in p an original vertex and write p(v) for its corresponding vertex in p.
An original vertex v of t inherits its attribute values from e(p(v)) as follows. If
attribute b of e(p(v)) has value ai then v gets the attribute value i. The attributes
of the other nodes get the value 0.

Let u and u′ be (not necessarily distinct) original vertices in t and let b, b′

be two attributes. Then the b-attribute of u is different from the b′-attribute of
u′ if and only if the b-attribute of e(p(u)) is different from the b′-attribute of
e(p(u′)).

Clearly, t ∈ S(p, q) and t |= p via the obvious homomorphism. It remains
to show that t �|= q. Assume otherwise. Hence, for some j, t |= qj . Let e′ be a
homomorphism from qj to t. As q does not contain the symbol # and there are no
wildcards, the image of qj under e′ only contains original vertices of t. As these
vertices have the same relationships within each other as their corresponding
vertices in t′ we can conclude that t′ also matches qj via the homomorphism
e ◦ p ◦ e′, the desired contradiction. This concludes the proof of (a).

Proof of Theorem 15. Again the reduction is from PCP. The structure of the
proof is similar to the proof of Theorem 10. We only mention the differences and
make use of the notation introduced in the latter proof. The crucial difference
is that the double index system is no longer encoded by the string-values of
elements but by the values of attributes. Indeed, the elements block and position
in the proof of Theorem 10 are now attributes. We first describe a construction
which still needs the presence of a DTD. Eventually, we will explain how we can
get of the DTD. Our DTD will define strings of the form S u#v&. For instance,
the candidate solution x1x2; y1y2 of Example 19 will be represented as follows:

S X 1(x) a(x, 1, 1) b(x, 1, 2) X 2(x) b(x, 2, 1) #
block 1 2
position 1 2 3

Y 1(y) a(y, 1, 1) Y 2(y) b(y, 2, 1) b(y, 2, 2) &
block 1 2
position 1 2 3

So we have the DTD D which consists of the productions

S → X
X → 1(x)| . . . |n(x)
→ Y
Y → 1(y)| . . . |n(y)
& → ε

together with P (xi) and P (yi) for i = 1, . . . , n. Here, P (xi) consists of the pro-
ductions i(x) → σi

1(x, i, 1), and for j := 1, . . . , ki−1, σi
j(x, i, j) → σi

j+1(x, i, j+1),
and σi

ki
(x, i, ki) → X | #. P (yi) is defined analogously. The start symbol is S.

Every X and Y has an attribute block ; every a and b has an attribute position.
The XPath expression p1 is again /S while p2 is a union of expressions each of
which identifies an error.

1. The block index is wrong.
(a) the block value of the first X in u differs from the block value of the first

Y in v:
/S/X [$d = @block]//#/Y [$d �= @block].

(b) the block value of the last X in u differs from the block value of the last
Y in v: for each i, j ∈ {1, . . . , n} we have the XPath expression

/S//X [$d = @block]/i(x)/x̃i/#//Y [$d �= @block]/j(y)/ỹi&

(c) two X-block values are the same:

/S//X [$d = @block]//X [$d = @block]//#

(d) two Y -block values are the same;

/S//#//Y [$d = @block]//Y [$d = @block]

(e) two successive X-block values are not successive in v: for all i, j ∈
{1, . . . , n} we have the XPath expression
/S//X [$d = @block]/i(x)/x̃i/X [$e = @block]//

#//Y [$d = @block]/j(y)/ỹj/Y [$e �= @block].
2. The position index is wrong. This is done in an analogous fashion.

(a) the first position in u differs from the first position in v:

/S/X/ ∗ / ∗ [$d = @position]//Y/ ∗ / ∗ [$d �= @position].

(b) the last position in u differs from the last in v:

/S// ∗ [$d = @position]/#// ∗ [$d �= @position]/&

(c) two X-position values are the same:

/S// ∗ [$d = @position]// ∗ [$d = @position]//#

(d) two Y -position values are the same;

/S//#// ∗ [$d = @position]// ∗ [$d = @position]

(e) two successive X-position values are not successive in v: we have to deal
with several cases as the successive positions can occur in the same block
or in successive blocks.
i. the X-positions occur in the same block, the Y -positions occur in

the same block: for all i, j ∈ {1, . . . , n}, k ∈ {1, . . . , |xi| − 1}, ∈
{1, . . . , |yj | − 1} we have the XPath expression

/S//X/i(x)/ ∗k−1 / ∗ [$d = @position]/ ∗ [$e = @position]

//Y/j(y)// ∗�−1 / ∗ [$d = @position]/ ∗ [$e �= @position]

ii. the X-positions occur in successive blocks, the Y -positions occur in
the same block: for all i, j ∈ {1, . . . , n}, ∈ {1, . . . , |yj | − 1} we have
the XPath expression

/S//X/i(x)/ ∗|xi|−1 / ∗ [$d = @position]/X/ ∗ / ∗ [$e = @position]

//Y/j(y)// ∗�−1 / ∗ [$d = @position]/ ∗ [$e �= @position]

iii. the X-positions occur in the same block, the Y -positions occur in
successive blocks: for all i, j ∈ {1, . . . , n}, k ∈ {1, . . . , |xi| − 1} we
have the XPath expression

/S//X/i(x)/ ∗k−1 / ∗ [$d = @position]/ ∗ [$e = @position]

//Y/j(y)// ∗|yj|−1 / ∗ [$d = @position]/Y/ ∗ / ∗ [$e �= @position]

iv. the X-positions occur in successive blocks, the Y -positions occur in
successive blocks: for all i, j ∈ {1, . . . , n} we have the XPath expres-
sion

/S//X/i(x)/ ∗|xi|−1 / ∗ [$d = @position]/X/ ∗ / ∗ [$e = @position]

//Y/j(y)// ∗|yj|−1 / ∗ [$d = @position]/Y/ ∗ / ∗ [$e �= @position]

3. w does not represent a solution:
(a) The block number for some block in u is different from the correspond-

ing block in v: for all i, j ∈ {1, . . . , n} with i �= j we have the XPath
expression

/S//X [$d = @block]/i(x)//Y [$d = @block]/j(y)

(b) The a/b-value for some δ in u is different from the corresponding a/b-
value in v. Thereto, we have the following expressions: for all i, j ∈
{1, . . . , n}, k ∈ {1, . . . , |xi|}, ∈ {1, . . . , |yj |}

/S//a(x, i, k)[$d = @position]//#//b(y, j,)[$d = @position]

and

/S//b(x, i, k)[$d = @position]//#//a(y, j,)[$d = @position]

Clearly, w is not a solution iff one of these conditions holds.
It remains to show how to get rid of the DTD. In the proof of Theorem 10 we

needed negation to express that a certain node can not have a certain label. Of
course, when labels come from a finite alphabet we do not need explicit negation
(c.f., the proof of Theorem 6(2)). For this reason, we encode labels of nodes by
equality types of attribute values. So, let L := 1, . . . , m be an enumeration of
all the labels we need. Every node has m attributes a1, . . . , am. If for a node,
j > 1 is the smallest number such that the value of a1 equals the value of aj then
the node is considered as labeled with j (when all attributes are different, then
the node is considered as labeled with a1). One can match a node labeled with
j by checking the corresponding equality type: for instance, by the expression

∗[$x1 = @a1][$x2 �= @a1] · · · [$xj−1 �= @a1][$xj = @a1][$x2 = @a2] · · · [$xj−1 = @aj−1].

Clearly, when using this approach we can express that a certain node is not
labeled by a certain label. For every rule a → b1 | · · · | bk in the DTD we

add the disjunct //a/c to p2 where c ∈ L \ {b1, . . . , bk}. When we write //a/c,
we of course mean XPath expressions taking labels into account as specified in
the manner above. Let p3 be obtained from p2 by adding all the disjuncts from
the DTD and replacing all references to labeling by references to encoding with
attributes.

It remains to argue that p1 �⊆ p3 iff the PCP instance has a solution. When
there is a solution to the PCP then clearly the encoding of this string will match
p1 but not p3. Suppose that there is a tree that matches p1 but not p3. This
means that no error occurs on any path in the tree. Therefore, every path is an
encoding of a solution to the PCP instance. �

