
/

ultiple
 or only

s for
such as
pplied to
both lan-

f com-
f object
 we out-
vanced
liant to

ms pro-
ypically
Reliability of Composed Web Services
From Object Transactions to Web Transactions

Thomas Mikalsen, Isabelle Rouvellou, Stefan Tai
IBM T.J. Watson Research Center, New York, USA

{tommi, rouvellou, stai}@us.ibm.com

Abstract

Multiple Web Services often need to be composed within some business process.
Existing Web Service standards do not address reliability of such compositions.
In this position paper, we argue that reliability can be achieved by adopting and
extending existing advanced object transaction processing technology, like the
OMG/J2EE Activity Service. We identify and discuss some important problems
and research issues related to this approach.

1 Introduction

A Web Service is a program that can be invoked in a distributed web environment. Web Service technologies like
SOAP, WSDL, and UDDI are standards to describe, publish, discover, and use Web Services; they define a develop-
ment model for integrating applications over the web.

SOAP and WSDL are fundamental technologies for an application to issue a request to a Web Service. However, they
do not provide support for the application to compose multiple Web Services. With SOAP and WSDL, requests to
multiple Web Services are issued individually, but a set of requests cannot be grouped into a single process flow
across the web. Because of this shortcoming, additional technologies for web business process specification and man-
agement are currently being developed. These include new languages extending WSDL, for example, IBM’s WSFL
WSEL and Microsoft’s XLANG.

WSFL and XLANG propose language constructs for defining web processes that can involve requests to m
Web Services. However, the composition of Web Services as achieved with WSFL and XLANG observes no
limited forms of reliability. We believe that this restricts their applicability unnecessarily. In many web system
electronic commerce, for example, a Web Service composition must be reliable. Qualities of composition,
atomicity of processing of a defined set of Web Services requests, or consistency of data transformations a
the set of composed Web Services, should be well-defined, observable, and guaranteed. For this purpose,
guage (contractual specification) as well as system infrastructure support is needed.

In this paper, we identify research issues in the development of system infrastructure support for reliability o
posed Web Services (deferring language issues at this time). We investigate the suitability and applicability o
transactions, a common and proven approach to reliability in object systems, to web environments. Further,
line ideas for a model of web transactions that is based on the OMG/J2EE Activity Service specification, an ad
object transaction service. Overall, we aim at exploring a practical solution to web transactions that is comp
Web Services standards.

2 Object Transactions

Transactions are fundamental to reliable distributed computing, and most commercial distributed object syste
vide support for traditional transaction models (e.g., ACID transactions, two-phase commit). Such systems t
1

orted by
aking it

object
port spe-
es for
 (2PC).
k as a
xtended
sent a
nit of
inue pro-
ransac-
 used to

ere of
systems
ility in

models
ve that

ributed
xisting

ver, will
ervices
CORBA
uted)
ersus
nce of
rtners

 model,
 to other
structure
es in one

ailable
ts that
support standard architectures, such as the CORBA Object Transaction Service (OTS) and the J2EE Java Transaction
Service (JTS). These systems offer a mature, interoperable, and widely used, solution to address reliability.

Increasingly, however, these systems are being used to build advanced applications, where traditional transaction
semantics are not appropriate. For example, in applications where transactions execute over long periods of time, the
concurrency control mechanisms employed to support ACID semantics are unacceptable. In other cases, dependen-
cies between application activities are complex, requiring flexibility in determining transaction outcome. The transac-
tion models required by these applications (so called “extended transaction models”) are rarely directly supp
the system, and are often implemented at the application level; this is typically done in an ad hoc manner, m
difficult to construct, maintain and integrate these applications.

The OMG Activity Service, and related J2EE Activity Service, represent the state-of-the-art in distributed
transactions. The service provides a framework for the construction of new middleware services used to sup
cific extended Unit of Work (UOW) models. One such UOW model might be used to attain strict ACID properti
a group of related activities; for example, a traditional distributed commit protocol, such as two-phase commit
In such a model, a unit of work represents a unit of failure: that is, if any single activity fails, the unit of wor
whole is implicitly undone. These semantics, however, are not always desirable (or acceptable). A different e
UOW model might be used to support long-lived computations, where a unit of work does not implicitly repre
unit of failure; rather, individual activities within the UOW can fail without necessarily abrogating the entire u
work. Such a model might use compensating actions to repair actions damaged by a failure, and then cont
cessing within the same unit of work. Another extended UOW model might be appropriate for inter-business t
tions, where business partners are less willing to submit to external commit coordination. Many other models,
support different types of extended units of work, can be considered.

3 Towards Web Transactions

The flexibility offered by the Activity Service is particularly desirable in the Web Services world, where the sph
distribution extends beyond individual enterprises. This change in scope places additional requirements on
used to support these services. In particular, while Web Services demand reliability, they also require flexib
how it is attained. We expect the need to support this flexibility to stimulate new extended UOW models –
which could be supported by a standard framework such as the OMG/J2EE Activity Service. Further, we belie
individual Web Services, and the infrastructure software used to support them, will often rely heavily on dist
object technology, including the OMG/J2EE Activity Service. (Many vendors have already extended their e
distributed object platforms to include support for both Web Services and the Activity Service).

The communication between Web Services (or between an application and the Web Services it uses), howe
not be based on the distributed object communication model of CORBA or J2EE. Rather, as existing Web S
standards define, interactions across the web will be SOAP/XML-message-based, and instead of a remote
IDL or Java interface, a WSDL specification is required. Message communication is different from (distrib
object communication in that a different binding model, a different timing model (in particular, synchronous v
asynchronous communication), a different life-cycle dependency model (required availability versus tolera
non-availability of an object/service at connection- and/or run-time), and a different arity in communication pa
(one-to-one versus one-to-many) is possible.

The object transaction models, including the Activity Service, are based on a standard object communication
but not message communication. In order to allow an intra-Web Service object transaction to include requests
Web Services (thus, to become an inter-Web Service transaction), the transaction model and system infra
must be capable to bridge between the two communication models and technologies and support both styl
integrated fashion.

More specifically, we propose that the Activity Service be extended to support the communication models av
to Web Services. This will enable flexible “web transactions” that span multiple Web Services and the objec
implement those services.
2

cation

y equiva-
eb com-

oS) for
ing part-
rvice B.
 safely
 invoked
tract (an
loss.....).
ns clearly
 service
t is also
the tradi-

ion con-
ain, and
rvice A
e is also
ly del-
e infra-
 ignoring
o B2B
According to the Activity Service model, a Web Service (one or more of its WSDL operations) to be used would then
need to be registered as an action with the activity coordinator of the transaction originating Web Ser-
vice/application. The registration describes an interest to receive transaction signals of a defined signal set,
and to communicate back action outcomes. Such registration for signals therefore is one example of a necessary
contractual agreement between Web Services that want to participate in the same transaction. The implementation of
such a “web-enabled” Activity Service would then need to support both kinds of distribution and communi
models as described above: the distribution (of signals and other notifications) within the Web Service (“object distri-
bution” using CORBA or J2EE) and the distribution across the web (“web distribution” using SOAP/WSDL). The
notifications themselves must be either object invocations or SOAP messages, but both must be semanticall
lent. Figure 1 illustrates the idea of a web-enabled object transaction service that supports both object and w
munication models and technologies.

4 Discussion

Reliability through some notion of transactional behavior is expected to be a relevant Quality of Service (Q
Web Services. At some level, one could argue that a Web transaction is a “legal” contract between two trad
ners. Service A “tells” Service B that operation 1 can be included in an atomic transaction originated by Se
Service B chooses to do so. If the transaction fails, Service A is informed of the failure, and Service B can
assume that operation 1 is “cancelled”. As far as Service B is concerned, it is as if operation 1 had never been
(e.g., B will not assume any cost of operation 1). Service B does not care how Service A implements the con
internal classical transaction is rolled back or compensated, Service A writes off the cost of operation 1 as a
In this scenario, atomicity has clear unambiguous semantics shared by both services. Web Service transactio
will not be possible if we do not standardize the agreement/description of the transactional semantics of a
business process (these semantics could be incorporated within WSFL/WSEL and/or XLANG, for example). I
clear that the semantics of those web transactions will be much looser than the semantics associated with
tional object transactions.

In this position paper we propose an approach to build practical infrastructure support for such loose transact
tracts. The goal of the infrastructure is to automate some of that support, making it cheaper to build, maint
integrate. Service B might not care how Service A implements the contract, but the enterprise providing Se
probably prefers to roll back a transaction rather than writing off a cost as a loss. Furthermore, this enterpris
probably using its distributed object platform as the underpinning of its Web Service and Service A will typical
egate work to smaller-grained distributed objects in the distributed system that underlies the Web Service. Th
structure should therefore extend as much as possible the existing object transaction technologies rather than
them – eventually end to end integration from legacy integration to enterprise application integration (EAI) t

Web Service /

Web-enabled Object Tx Service

Implementation Infrastructure

CORBA/J2EE SOAP/WSDL

Registered Object

Registered Web

Signal
Distribution

Activity
Coordination

Objects
Object

Tx Actions
Web Service
Tx Actions

Application

Web Service

Web Service

Actions

Services Actions

Tx
Contract

Tx
Contract

FIGURE 1. Web-enabled Object Transaction Service
3

integration will be needed. The infrastructure must support different levels of service granularity for what we expect
to be highly flexible contracts between trading partners.

Concluding, we suggest three main areas of research relating to reliability of composed Web Services:

1. Application Interaction / Contractual Agreements

For example, how does a Web Service expose its ability, willingness, certification, and so on, to participate in a
web transaction?

2. Infrastructure

For example, how are object transaction contexts represented and propagated using Web Services communication
models, and how do non-object based Web Services participate in these transactions?

3. Relationship between application level and infrastructure level

For example, how do application interactions and contractual agreements relate to infrastructure constructs?
4

	1 Introduction
	2 Object Transactions
	3 Towards Web Transactions
	4 Discussion

