
Copyright CSW Informatics Ltd 2003

XML for e-Business

Eve Maler
Sun Microsystems, Inc.

Goals for this session

• Learn about the Universal Business
Language (UBL) and its significance to, and
place in, modern e-business

• Study UBL’s design center and underlying
model
– A model that may be useful for many information

domains
• Study UBL as an application of XML

– And its lessons for other large XML undertakings
• Take a look at some real UBL inputs and

outputs along the way

A little about me

• I’m an XML Standards Architect in Web
Technologies and Standards at Sun

• I co-founded the OASIS UBL Technical
Committee and formerly chaired its biggest
technical subcommittee

• In previous lives I helped develop XML itself,
DocBook, XLink, Pipeline, and more

• I also coordinate Sun’s interaction with
XML/web services security standards and
take part in several related standards efforts

Agenda

• XML for e-business:
why and how?

• EDI, ebXML
business web
services, and UBL’s
role

• Making UBL happen

• ebXML Core
Components

• The UBL modeling
methodology

• Designing the UBL
schemas

• Resources

 Thanks to Jon Bosak and others in the OASIS UBL TC for
content assistance!

Copyright CSW Informatics Ltd 2003

XML for e-Business:
Why and How?

Did you know…?

• E-commerce essentially means electronic B2B
• Modernizing and improving B2B can provide huge

benefits

Unreasonable goals for B2B

• Magically enable universal
interoperability merely through “using
XML”

• Reinvent (disrupt?) our concept of what
business means

• Abandon existing EDI (Electronic Data
Interchange) systems

• Commoditize the universe
• Stop spending lots of effort on business

relationships
• Eliminate humans from decision-making

More facts about
e-commerce

• It’s difficult to take the people out of
business process, for reasons of:
– Trust relationships
– Error handling
– Legal action

• Business is built on the concept of
standard, legally binding documents

• Legal intent requires meaning
• XML alone will never give you this

Reasonable goals for B2B

• Web-enable existing paper-based
business practices
– Save money by eliminating re-keying

• Preserve investment in existing systems
and allow businesses to migrate at their
own pace

• Integrate SMEs into existing EDI-based
supply chains

• Maintain a legally accessible audit trail
• Incrementally enable true global market

availability

A global XML standard can
help achieve these goals

• Lower cost of commercial software
• Easier learning curve

– Standardized training
– More skilled workers

• Lower cost of integration through reuse
of common structures
– Universally available pool of system

integrators
• Lower overall cost of entry

– Thus, quicker adoption by SMEs

Enter UBL, the Universal
Business Language

• An XML-based business language standard
• Leverages knowledge from existing EDI and

XML B2B systems
• Applies across all industry sectors and

domains of electronic trade
• Modular, reusable, and extensible in XML-

aware ways
• Non-proprietary and committed to freedom

from royalties
• Intended to become a legally recognized

standard for international trade

UBL’s potential fit with
existing XML B2B

Electronics
manufacturer

A

A’s industry
partners

RosettaNet

Hospital B

B’s industry
partners

HL7

Chemical
manufacturer

C

C’s industry
partners

CIDX

Copyright CSW Informatics Ltd 2003

EDI, ebXML Business
Web Services, and

UBL’s Role

The traditional EDI stack

EDIFACT,
X12

Standard
messages

MIGs Message
contextualization

Infrastructure

Payload

Packaging/
transport

VAN

Business
processes

CASE tool

Business
agreements

Ad hoc
TPA

Some EDI pressure points

• Private networks are expensive and
require extensive point-to-point
negotiation
– Though AS1 and AS2 mitigate this concern

• The business process data is “soft”, not
machine-readable

• The interchange pipeline is large, with
infinite possible subsets

• The data for adapting to different
business contexts is also “soft”

Enter ebXML, the Electronic
Business XML initiative

• A joint 18-month effort, concluding in
May 2001, of OASIS and UN/CEFACT
– The work continues in several forums

today
• Over 1000 international participants
• The vision: a global electronic

marketplace
• Enterprises of any size, anywhere, can

find each other electronically and
conduct business by exchanging XML
messages

The ebXML stack for
business web services

ebMS

BPSS

CPPA

Core
Components

Context
Methodology

eb
X

M
L

R
eg

is
try

Packaging/
transport

Business
processes

Business
agreements

Standard
messages

Message
contextualization

Discovery/
retrieval

ebXML for infrastructure is
basically ready

• Components approved as OASIS
Standards:
– ebXML Message Service (ebMS) V2.0
– ebXML Registry (formerly “ebXML

Reg/Rep”) V2.0
– ebXML Collaboration Protocol Profile and

Agreement (ebXML CPPA) V2.0
• Business Process Schema Specification

(BPSS) work is ongoing in UN/CEFACT
• Many implementations and

interoperability/test events to date

ebXML for the payload is
proceeding, but conceptual

• The ebXML Core Components
Technical Specification is at V1.90
– Syntax neutral and ready for mapping

• This includes the Context Methodology
work
– Again, syntax neutral rather than syntax

bound

UBL proposes to flesh out the
ebXML stack

ebMS

BPSS

CPPA
eb

X
M

L
R

eg
is

try

Core Components

Context Methodology

UBL Library

UBL Context Meth

The basic requirements

• Semantic clarity through a binding from
Core Components to a syntax

• Choosing XML as that syntax!
• Royalty-free IPR
• Usable “on the cheap”
• No ties to particular back-end

implementations
• Urgency
• Allow for contextualization

The special requirement for
context

• “Standard” business objects need to be
different in different business contexts
– Addresses in Japan and the U.S. have

different fields
– In some industries, addresses need GPS

coordinates rather than streets
– Invoice items for shoes need to provide

size information; for coffee, roast
information

• These differences need to be
accommodated without sacrificing
interoperability

Copyright CSW Informatics Ltd 2003

Making UBL Happen

 UBL really is
happening!

The standards venue

• UBL is being developed in an OASIS
Technical Committee (TC)

• OASIS offers:
– An objective process
– Openness of its work to public view in real

time
– Easy and inexpensive opportunities to join

• Jon Bosak is the chair and main founder
• The membership is diverse, including:

– Users, vendors, and governments
– XML and e-business experts

Formal liaisons (so far)

• ACORD (insurance)
• ARTS (retail sales)
• ebXML Asia Committee

(ebXML)
• e.centre (EAN UK)
• EIDX (electronics)
• HL7 (healthcare)
• Information Technology

Standards Committee
of Singapore

• NACS (convenience
stores)

• Open Applications
Group

• RosettaNet (information
technology)

• SWIFT (banking)
• UIG (utilities)
• VCA (optical supplies)
• XBRL (accounting)
• ASC X12 COTG
• UN/CEFACT TBG
• UN/CEFACT ATG
• OASIS eGov TC
• OASIS CIQ TC

Business documents
addressed in UBL

• The initial draft (V0p70) includes these
trading cycle documents:
– Common building blocks
– Order
– Order response (simple)
– Order response (complex)
– Order cancellation
– Despatch advice
– Receipt advice
– Invoice

• Others will follow for materials management,
payment, transport/logistics, catalogs, etc.

The trading cycle scenario

Deliverables

• The UBL Library
– Data model in spreadsheet form
– Normative W3C XML Schema (XSD) modules
– Non-normative UML class diagrams and ASN.1

schemas
• Schema naming and design rules
• Modeling methodology
• Simple (for now) context methodology
• Stylesheets for viewing and printing
• perl scripts for generating the schemas
• Sample XML instances and outputs
• Additional documentation

The work is done by
subcommittees

• Modeling and
content
– Library Content (LC)
– Context Drivers

• XML representation
and mechanisms
– Naming and Design

Rules (NDR)
– Context Methodology
– Tools and

Techniques

• Administrative
functions
– Marketing
– Liaison
– Subcommittee

Chairs

The UBL timeline

• The V0p70 review period is nearing its
end

• V0p80 was scheduled for release in
June 2003, specifically for review of
RosettaNet and eGov issues

• The plan calls for a final UBL V1.0
release in mid-October 2003

Development strategies

• Start with the low-hanging fruit
– Focus on the 20% of documents and

business objects actually used by 80% of
e-business partners

• Defer the rocket science
– Produce useful, concrete outputs ASAP

• Don’t start with a blank slate
– Work from xCBL V3.0 (with no

expectations of backwards compatibility)
• Take advantage of XML and business

expertise

Some additional principles

• Straightforward Internet use
• Account for usage of “various and

sundry” tools
• Provide only one way to encode

information
• Try to be prescriptive, within reason for

interchange
• Leverage XML technology
• Be cautious about foreign namespace

dependencies

Copyright CSW Informatics Ltd 2003

How the ebXML Core
Components Work

Why base UBL on ebXML
Core Components?

• The Core Components substrate allows for
correlation between different syntactic forms
of business data that has the same meaning
and purpose

Forms XML

Databases

Forms XML

Databases

The Core Components
specifications

• The Core Components Technical
Specification (CCTS) defines a syntax-neutral
metamodel for business semantics

• Work is ongoing to define an actual (syntax-
neutral) data dictionary based on CCTS
– Core Components Supplementary Documents

(CCSD)
– Currently non-normative

• UBL is, first and foremost, striving to use the
CCTS metamodel accurately

Core components vs.
business information entities

• If “address” is defined as a generic CC…
• …a BIE with the geopolitical region set to

“U.K.” might be a “U.K. address”
• UBL deals only in BIEs because it sets the

business process
– So we’ll stick to that terminology

Core Component
(CC)

Building block for
exchange of

semantically correct and
meaningful information

Business Information
Entity (BIE)

CC to which a business
context has been

applied

Apply business context:

Business process
Product classification

Geopolitical region
Official constraint

Business process role
Supporting role

System capabilities

The CCTS follows ISO 11179

• A standard OO-friendly basis for precision in
describing pieces of business information and their
relationships

• Governs how to define data dictionaries for object
classes, properties, and representation terms

• A tiny sample dictionary for illustration (cardinality
elided for simplicity):

Address

Street: text
Town: text
Country: identifier
Post code: text

Person

Name: text
Birth: date
Residence address: Address
Official address: Address

Summary of the BIE (and
CC) system

Basic BIE (BBIE) Singular piece of
information

Aggregate BIE
(ABIE)

Collection of
related pieces of
information

Core Component
Type (CCT)

Built-in set of
representation
terms for basic
information

Association BIE
(ASBIE)

Role of an
ABIE as a

property of
another ABIE

ABIE

Mapping our example to the
BIE system

Person

Name: text
Birth: date
Residence address: Address
Official address: Address

Object class,
aggregate BIE

Properties,
basic BIEs

Properties,
association

BIEs

Representation
terms, CCTs

Representation terms,
aggregate BIEs

The set of Core Component
Types

• Conceptually similar to W3C XML Schema
built-in types
– But they don’t come with pre-assigned syntactic

constraints
– And they are themselves “complex”: primary

content plus supplementary metadata

• Amount
• Binary Object (plus

Graphic, Picture, Sound,
and Video)

• Code
• Date Time (plus Date and

Time)

• Identifier
• Indicator
• Measure
• Numeric (plus Value, Rate,

and Percent)
• Quantity
• Text (plus Name)

Giving unique names to
dictionary entries

• Object classes:
Object_Class_Term. “Details”

• Properties:
Object_Class_Term. [Qualifier_]Property_Term.
[Qualifier_] Representation_Term

• CCTs:
CCT_Name. “Type”

Person. Details

Person. Name. Text
Person. Birth. Date
Person. Residence_Address. Address
Person. Official_Address. Address

A real excerpt from UBL’s
data dictionary

………

A post office box number or a
numbered post box in a post office
assigned to a person or
organisation where letters for them
are kept until called for, used as
part of an address.

0..1Address. Postbox.
Text

A unique identifier given to a
specific address within a scheme of
registered addresses.

1..1Address.
Identification.
Identifier

The particulars that identify and
locate the place where someone
lives or is situated, or where an
organisation is situated.

–Address. Details

DefinitionOccurrenceBIE Dictionary
Entry Name

Copyright CSW Informatics Ltd 2003

The UBL Modeling
Methodology

The modeling process, in
brief

1. Identify content components
– At three levels: atomic, aggregate, and

document
– Using xCBL V3.0 to prime the pump

2. Identify functional dependencies and
normalize the model of each component

3. Choose a single hierarchical “view” from
among the possible data relationships

4. Identify the relevant business context
5. Define the whole in terms of a “scope”

(business process scenario)

More about normalization

• “If the value of one component changes when
another component's value changes, then the
former is said to be functionally dependent
on the latter”

• “Normalization yields models that describe
the network of associations between logical
groups of components in optimal ways that
minimise redundancy and prevent inadvertent
errors or information loss when components
are added or deleted”
– Many XML information modelers do this intuitively,

if not rigorously
– XML nesting and repeatability pose challenges

here

Looking at UBL’s syntax-
neutral model

• The data dictionary in spreadsheet form
• The generated UML class diagrams
• The generated ASN.1 schemas
• The syntax-specific XML Schema

versions? Patience…

Copyright CSW Informatics Ltd 2003

Designing the UBL
Schemas

The role of design rules in
UBL schema creation

Schema modules
for functional

areas

Schema module
for reusable BIEs

Schema module
for CCTs

Schema module
for code list

adapters

Handcrafting

Modeling

Spreadsheet

Automated
process

Rules
(“must”)

Rules and
guidelines

(“must”,
“should”,

“may”)

For any one model, the
schema options are infinite

• The schema representation can vary
along many dimensions – for example:
– Elements and types in separate hierarchies
– Rich simple types
– Type inheritance and specialization in the

style of OO
– Independent local scoping of elements,

attributes, and types
– Namespace support for better federation of

component creation and reuse
• The instance might look identical in all

cases

Some of the major
constraints on our rules

• Leverage XML technology, but make
choices that keep it interoperable

• Support customization and reuse
– Allow customizers to use the same rules

that govern the UBL Library itself
• Selectively allow “outsourcing” to

foreign schemas
• Make the names of XML constructs

readable and natural
• Ensure that most of the rules are

deterministic

Are the UBL rules applicable
to your XML projects?

 It all depends…
• Do you share our design principles and

constraints?
• Do you share our business object metamodel

(or something close to it)?
• Do you have the same profile of XML vs.

application-specific tool usage?
• At the very least, you might pick up some

interesting ideas
– Many industry groups are going through this same

exercise
– We’ve communicated with several of them

A sampling of some draft
UBL rules

Minor versioning MUST be limited to declaring new optional
constructs, extending existing constructs and refinements of an
optional nature.

[R50]

For every object class identified in the syntax-neutral model, a
complex type definition and a corresponding global element
declaration bound to that type MUST be created.

[R13]

Upper-camel-case (UCC) MUST be used for naming elements
and types.

[R9]

Names MUST be in the English language, using the primary
English spellings provided in the Oxford English Dictionary.

[R4]

All UBL schema design rules MUST be based on the W3C XML
Schema Recommendations: XML Schema Part 1: Structures and
XML Schema Part 2: Datatypes.

[R1]

Rule TextRule #

Categories of rules

• Overall selection of standards to adhere to
• Constraining names assigned during modeling for

I18N and readability reasons
• Constraining the modeling process so that the results

are amenable to schema conversion
• Populating schema documentation fields

Modularity, namespaces, and versioning of schemas
Generating and naming elements, attributes, types,
and other constructs derived from the model
Handling code lists
Enabling the context methodology

Copyright CSW Informatics Ltd 2003

Modularity,
Namespaces, and

Versioning

UBL schema packaging
concepts

• Modnamver: modularity, namespaces,
and versioning, of course

• Schema module: schema document
• Root schema module: declares a

target namespace and is likely to
include or import other modules

• Internal schema module: does not
declare a target namespace and is
never imported, only included

Examples of UBL Library
packaging

Order

urn:oasis:names:tc:ubl:
schema:Order:1.0:0.70

Common
Aggregate

Types
urn:oasis:names:tc:ubl:schema:

CommonAggregateTypes:1.0:0.70

Core
Component

Types
urn:oasis:names:tc:ubl:schema:
CoreComponentTypes:1.0:0.70

Order
Response

urn:oasis:names:tc:ubl:schema:
OrderResponse:1.0:0.70

Some additional modnamver
rules

• Minor versions must remain backwards
compatible
– And can’t break software conforming to

prior versions through semantic changes
• All new versions, both major and minor,

receive unique namespaces
– All changes are thus persistent and

uniquely addressable

Copyright CSW Informatics Ltd 2003

Schema Componentry

Mapping BIEs to XML
constructs

• Object classes (such as Person. Details) become
complex types

• Properties (such as Person. Name. Text etc.)
become elements in those types’ content models

• Representation terms (such as Text, Date, and
Address – or Address. Details, actually) become the
types bound to the property elements

Person. Details

Person. Name. Text
Person. Birth. Date
Person. Residence_Address. Address
Person. Official_Address. Address

Mapping BIE names to XML
names

• Remove redundant and
nearly redundant words in
the property field (as in *.
Identification. Identifier)

• Remove periods, spaces,
and underscores

• Replace “Details” with “Type”
• When the representation

term is “Text”, remove it

• When the representation
term is “Identifier”, truncate it
to “ID”

• Remove the object class
name on properties, as the
XML parent labels it
sufficiently

 The spreadsheet does this
with some wild formulas!

PersonType

Name
BirthDate
ResidenceAddress
OfficialAddress

This doesn’t tell the whole
story

• Within a complex type, should the
elements be local (declared in situ) or
global (references to separate
declarations) or some combination?

• How does this issue interact with
namespaces?

• On what criteria should these decisions
be based?

The four most obvious
options

• The yellow squares are elements
• The blue rounded squares are types
• Roger Costello of xfront.com invented the first three
• There are many variations we won’t go into here

Russian
Doll

Salami

Slice

Venetian

Blind

The

Garden

of

Eden

Russian Doll

<xs:schema … >
<xs:element name=“Person”>
<xs:complexType> keep nesting ever more deeply…
<xs:sequence>
<xs:element name=“Name” type=“NameType”/>
<xs:element name=“BirthDate” type=“DateType”/>
<xs:element name=“ResidenceAddress”>
<xs:complexType>
<xs:element name=“Street” type=“TextType”/>
…

</xs:complexType>
</xs:element>
<xs:element name=“OfficialAddress”>
<xs:complexType> … </xs:complexType>

</xs:element>
</xs:sequence>

</xs:complexType>
</xs:element>

</xs:schema>

Salami Slice

<xs:schema … >
<xs:element name=“Person”> only elements are at the top level…
<xs:complexType>
<xs:sequence>
<xs:element ref=“Name”/>
<xs:element ref=“BirthDate”/>
<xs:element ref=“ResidenceAddress”/>
<xs:element ref=“OfficialAddress”/>

</xs:sequence>
</xs:complexType>

</xs:element>
<xs:element name=“Name” type=“TextType”/>
<xs:element name=“BirthDate” type=“DateType”/>
<xs:element name=“ResidenceAddress”>
<xs:complexType> … </xs:complexType>

</xs:element>
</xs:schema>

Venetian Blind

<xs:schema … > mostly types are at the top level…
<xs:element name=“Person” type=“PersonType”>
<xs:complexType name=“PersonType”>
<xs:sequence>
<xs:element name=“Name” type=“NameType”/>
<xs:element name=“BirthDate” type=“DateType”/>
<xs:element name=“ResidenceAddress”

type=“AddressType”/>
<xs:element name=“OfficialAddress”

type=“AddressType”/>
</xs:sequence>

</xs:complexType>
<xs:complexType name=“AddressType”>
<xs:sequence>
<xs:element name=“Street” type=“TextType”/>
<xs:element name=“PostCode” type=“TextType”/>
<xs:element name=“Town” type=“TextType”/>
<xs:element name=“CountryID” type=“…”/>

</xs:sequence>
</xs:complexType>

</xs:schema>

The Garden of Eden

<xs:schema
targetNamespace=“http://www.example.com/BIEs”
… > everything’s at the top level…
<xs:element name=“Person” type=“PersonType”>

<xs:complexType name=“PersonType”>
<xs:sequence>
<xs:element ref=“Name”/>
<xs:element ref=“BirthDate”/>
<xs:element ref=“ResidenceAddress”/>
<xs:element ref=“OfficialAddress”/>

</xs:sequence>
</xs:complexType>

<xs:element name=“Name” type=“TextType”/>

<xs:complexType name=“TextType”> … </xs:complexType>

…
</xs:schema>

Some potential criteria for
choosing

• Flexibility
– Does the vocabulary need to adapt, chameleon-

like, to different namespaces?
• Consistency

– Is it acceptable for the markup to bounce between
qualified and unqualified? between different
namespaces?

– What happens when importing schemas do
overrides?

• Reuse
– What constructs might someone want to reuse

wholesale?
• Specialization

– What constructs might someone want to modify?

UBL’s criteria

• The UBL Library is explicitly intended
for reuse and specialization

• We have two use cases:
– Tweaking document structures for a new

business context
– Creating whole new document types out of

existing piece-parts
• The challenge: make the right set of

schema components reusable to meet
both use cases, while adhering to all our
other principles

It’s easy for UBL to choose
global types

• To support our “tweaking” use case and our
requirement for leveraging XML tools, we
need to allow for XSD type specialization

• To extend or restrict a type, you must be able
to reference it; hence, named top-level types

Russian
Doll

Salami

Slice

Venetian

Blind

The

Garden

of

Eden

X X ? ?

Benefits of global elements

• A global, namespaced element can
potentially be referenced for many
purposes:
– Root element
– Head element of substitution group
– Component of wildcard content
– Component of new foreign content models

(directly applying to our “creating” use
case)

Costs of global elements

• Every element in a namespace must
have a completely unique name
– Every variation in content must result in a

new name
– This can mean a lot of elements

• Generated representations must
expand to account for the public
interface that the element is projecting
– Such as UML and JAXB-produced Java

code

Benefits of local elements

• A local element is scoped just to the
type that defined it
– Mapping neatly to properties of OO classes

• Multiple local elements can have the
same name while having different “guts”
– Useful for controlling element explosions

Costs of local elements

• You can only reuse types, not elements – breaking
non-type-aware code such as V1.0 XPaths

<my:doctype>

<my:address> <my:taxscheme> <my:buyerparty>

<ubl:Street> <ubl:City>

My New Document

UBL’s Address UBL’s Tax Scheme UBL’s Buyer Party

UBL’s Street UBL’s City

...

UBL’s choice

• Call it…the Garden of Venice?
• Every object class turns into a complex type,

and a corresponding generic global element
for use by customizers in creating new
document types
– For example, both AddressType and
<ubl:Address>

• Within complex types, element declarations
use ref= instead of name=
– With one exception: when the representation term

is *. *. Identifier, make the element local
– A compromise to account for the syntactic

divergence/semantic convergence of the many ID
elements

Copyright CSW Informatics Ltd 2003

Code Lists

The huge need for codes

• A code is a character string that represents a
definitive value

• Code lists are valuable as unambiguous
taxonomies

• In many cases, such as product
classifications, code lists are big business
– Some code list owners charge for their use

Colors
Pick one:
01=white 02=blue
03=red …

Countries
Pick one:
AW=Aruba CA=Canada
FR=France …

Options for formally
representing code lists

• Often they are merely maintained in text
documents

• But formal encodings are extremely
useful, for example:
– RDF ontologies
– The ebXML Registry Information Model’s
<ClassificationScheme> markup

– XSD (such as enumerated simple types)
• You could develop different

representations for different purposes

The attractions of code lists
in XSD form

• Schema validation can do code
checking “for free”

• This step usually occurs early in the
processing pipeline

• This encoding benefits from tool
availability
– And could even be generated from a more-

primary XML representation
• These all support UBL’s “leverage XML

technology” goal

The downsides

• Many code lists are too large (~10K
codes) or dynamic (~daily) to take
advantage of XSD
– But one study showed more than one-third

of legacy code lists to be variants of
Yes/No!

• Validation through schemas will never
be complete for some applications
– Such as codes that become dynamically

invalid depending on previous code
choices

Each user of a code list could
reproduce it in a schema

• But re-coding a code list over and over
in different schemas is costly and prone
to error

• Better to help code list owners produce
their own code list schema modules

UBL elements…
UBL types…
Colors
Pick one:
01=white 02=blue
03=red …

UBL elements…
UBL types…

Colors
Pick one:
01=white 02=blue
03=red …

UBL’s solution: code list
schema module rules

• A code list owner can choose to conform to
the rules by producing a reusable schema
module that defines a code list datatype

• The level of validation is entirely up to them
– Enumeration
– Regular expression
– No constraints

• The “normative status” of the module is also
up to them

• They just need to provide enough metadata
to uniquely identify the meaning of each code

• We’re working with a number of groups to
help them do this

UBL and others can bind the
type to their own elements

• UBL elements would be bound to a foreign
type defined by a code list owner
– This would be done in the “code list adapter

module”
• The metadata attributes could be defaulted,

or even fixed

<ubl:CountryID
xsi:type=“unece:ISO3166CountryCodeType”
various metadata attributes...>

FR
</ubl:CountryID>

A global marketplace in XML-
based code lists?

• If all goes well, we could see the
following benefits:
– Less duplication of work in XML vocabulary

development
– Wider application support for well-known

code lists
– Earlier validation of code values
– Standardization of more code lists, and

even formally described subsets and
extensions

– Greater “semantic clarity” through
identifying standard code list metadata

Copyright CSW Informatics Ltd 2003

Adding Business
Context to Documents

Recall the UBL requirement
for business context

• A lot of business factors can require changes
to the “shape” of a business object

Core Component
(CC)

Building block for
exchange of

semantically correct and
meaningful information

Business Information
Entity (BIE)

CC to which a business
context has been

applied

Apply business context:

Business process
Product classification

Geopolitical region
Official constraint

Business process role
Supporting role

System capabilities

The customization
community around UBL

• The UBL Library is intended to be an
XML-based international “core”
– Similar to UN/EDIFACT or X12

• Customization is expected
– By national and industry groups
– By smaller user communities

• These changes are driven by real-world
requirements

The EDI precedent

• EDI uses a prose-based subsetting
approach
– UN/EDIFACT industry implementation

guide trading partner IG departmental
IG

• Some XML-based B2B vocabularies
now use schema-based extension
– Core vocabulary + extensions at each level

UBL leverages both
approaches

• It picks an 80/20 point in supplying
fields likely to be needed

• Then it allows both subsetting and
extension to the limit of XSD’s abilities
– Again, leveraging existing XML software

and standards
• UBL makes a key addition: the XSD

derivations must be accompanied by a
machine-readable description of the
business context

Successive sharing and
customization

• The core standard is
subsetted and extended
further each time

• Each circle would have
its own set of
schemas/namespaces
and corresponding
business context
metadata

UBL Core

Industry
Implementation

User-Specific
Implementation

The business context
metadata

• UBL starts out identifying only the business
process

UBL
Core

geo=“US”
prod=“shoe”

• Supplying values for the eight context drivers
gives you a unique business context

The draft contextualization
process

• Customizers will need to do two things:
– Handcraft an XSD derivation, adhering to XSD

rules
– Attach the business context, adhering to UBL

rules
• One UBL rule: context drivers can be

specialized, but not reset
– US Maine, not US Japan

• Eventually, the goal is for the context
methodology to be more automated
– So that you can input the drivers to a registry and

get a freshly generated schema

An example of how the
context can be specialized

UBL Purchase
Order Line Item

Type

U.S. Purchase
Order Line Item

Type

Japan Purchase
Order Line Item

Type

U.S. Purchase
Order Shoe Line

Item Type

geo=“US”

(geo=“US”)
prod=“shoe”

geo=
“Japan”

Sometimes the 80/20 point
isn’t sufficient

• Let’s say a core UBL Address requires a
street, city, country, etc.
– (Though the cardinalities are currently looser than

this)
• But for parts delivery to a mobile oil-drilling

platform in international waters, the ship-to
information for an order must be only GPS
coordinates

• Ideally, software would be able to associate
this kind of address with a UBL Address
somehow
– To reuse whatever parts of the processing still

apply

When business requirements
and technical abilities diverge

• Several actions are needed here:
– Characterize this situation as a formally

described business context
– Add GPS coordinate data as required

fields
– Remove fields (city etc.) that are normally

required
• Neither EDI subsetting nor XSD

derivation allows this last one – even if
combined

UBL proposes to increase
interoperability even here

• One alternative is to build a whole new
core
– But this compromises the investment in the

semantic substrate
• Another alternative is to build a “prior

core” – an “Ur-Library” – on which to
layer the UBL Library itself
– Its base types would allow for optional

fields where UBL doesn’t
– The types would be abstract
– UBL would become a restriction of these

types

Customizing from the Ur-
Library

• Customizers could
derive from the Ur-
Library if necessary
– And get the benefits of

using well-defined types
underlying UBL

• However, they wouldn’t
be able to claim “UBL
conformance”

UBL Ur-
Library

UBL Core
UBL-Using

Industry
Implementation

UBL-
Conforming

Industry
Implementation

Current status of the UBL
context methodology

• Even the simpler “non-Ur” ideas are as yet
not fully tested

• Work remains to be done on the code values
for the business context drivers

• However, a good paper describing the work
to date has been written

• At least UBL has no reliance on an
application-specific mechanism that would
require significant investment in extra tools
– You can use existing tools to build derivations

Copyright CSW Informatics Ltd 2003

Resources

Learning more about UBL

• The public OASIS web page:
www.oasis-open.org/committees/ubl
– The subcommittees have their own portals, linked

from here
– White papers, presentations, and the latest draft

release are available
– You can also find instructions on how to submit

comments
• The Cover Pages roundup on UBL:

xml.coverpages.org/ubl.html
– Pointers to articles, mailing lists, and so on

• ebXML information:
– ebxml.org, ebxmlforum.org, freebxml.org

Make sure to review the UBL
release cover letter

• It supplies additional business process
scenarios and examples
– Buying Office Supplies
– Buying Joinery

• These include process diagrams and
sample UBL trading documents

Copyright CSW Informatics Ltd 2003

Conclusion

UBL offers important and
interesting solutions

• As a B2B standard:
– It is user-driven, with deep experience and

partnership resources to call on
– It is committed to truly global trade and

interoperability
– Its standards process is transparent

• As an XML application:
– It is layered on existing successful

standards
– It is tackling difficult technical problems

without losing sight of the human
dimension

Ponder this

HTTP + HTML = Web Publishing.

ebXML + UBL = Web Commerce?

Copyright CSW Informatics Ltd 2003

Thank You!
Questions?

Eve Maler
eve.maler@sun.com

