


1. Introduction 
 
The necessity for ontology building, annotating, integrating and learning tools is uncontested. 
However, the sole representation of knowledge and information is not enough. Human information 
consumers and web agents have to use and query ontologies and the resources committed to them, thus 
the need for ontology storage and querying tools arises. However, the context of storing and querying 
knowledge has changed due to the wide acceptance and use of the Web as a platform for 
communicating knowledge. New languages for querying (meta)data based on web standards (e.g., 
XML[23], RDF[17], Topic Maps [16]) have emerged to enable the acquisition of knowledge from 
dispersed information sources, while the traditional database storage techniques have been adapted to 
deal with the peculiarities of the (semi)structured data on the web.  
     The purpose of this chapter is to briefly present and evaluate a set of query languages and associated 
tools for ontology/resource storage and querying aiming to support large-scale Semantic Web [3] 
applications, the next evolution step of the Web. This list of languages and tools is by no means 
complete and the tools presented are indicative of the tendency to provide full storage and query 
support to web-based ontology/metadata standards, such as RDF [17], RDFS [4], Topic Maps [16], 
DAML+OIL [9] or the forthcoming Web Ontology Language [15]. Our work in this chapter focuses on 
the evaluation of querying languages designed for Semantic Web related knowledge representation 
formalisms rather than general-purpose querying languages (e.g., SQL, Datalog, F-logic). Although it 
has to be proven in practice, RDF-enabled search technologies have the potential to provide a 
significant improvement over the current keyword-based engines or theme navigation search, 
especially when it comes to conceptual browsing and querying [19]. Furthermore, this orientation 
facilitates the comparison of querying languages and tools, since it provides a common reference base. 
     It should be stressed that our comparison of ontology query languages and tools does not rely on 
performance figures, since these would require extensive comparative experiments, which go beyond 
the scope of this work. On the contrary, we present an overview of general system features and query 
language expressiveness, while providing the interested reader with useful references to additional 
informative material. Section 2 presents the evaluation framework we have employed for our 
comparison, while Section 3 hosts a short description of the query languages and storage/query tools 
selected for our survey. Section 4 provides the comparison of the query languages’ expressive power, 
as well as the technical characteristics of the related tools. This was considered quite useful in order to 
separate the theoretical foundations underlying a query language from its practical deployments in 
various tools. Finally, Section 5 concludes our survey. 
 

2. Evaluation framework of Query Languages and 
Storage Tools 
 
The purpose of this section is to present the evaluation framework we have adopted for comparing, on 
the one hand, the expressiveness of the query languages as opposed to the underlying data model and, 
on the other hand, the technical features of the supporting tools. Before presenting our comparison 
according to these evaluation axes, we briefly present each query language and tool in terms of general 
descriptive criteria. In particular, for both cases, we present a brief general description, some 
references from which an interested reader could acquire more information and a URL for additional 
informative material. Especially for the description of the storage and querying tools, we also provide 
the web pages from where the interested reader could find documentation material, tutorials about the 
tool or on-line demonstrations of the features supported by the tool. Furthermore, we provide 
information about the current release (version) and the software platform of the tool, as well as the 
pricing policy followed by the tool developers.  
     A general evaluation framework used to compare the ontology query languages comprises basic 
criteria for describing the language characteristics, namely the ontology/metadata standard for which 
the language has been proposed, the data model used for capturing the generated description bases and 
ontologies and the language of origin on which the query language has been based. Moreover, we 
compare the query languages on their closure, i.e., the ability of the language to support functional 
composition of queries, on their orthogonality, which indicates whether the language permits any kind 
of data as input and output of queries and their generality, i.e., whether the language exploits all the 

 1



primitives of the ontology/metadata model. This last criterion can form the basis of a more detailed 
query language evaluation framework. However, due to the fact that the query languages for Topic 
Maps [16] and DAML+OIL [9] are still in a preliminary phase, we focus our detailed comparison on 
query languages for RDF/S ([17], [4]).  
     The criteria constituting the framework for evaluating the expressive power of RDF/S ontology 
query languages are distinguished in five categories, namely criteria regarding Modeling Constructs, 
Ontology Querying, Data Querying, Data/Ontology Querying and Additional Features. The criteria in 
the category Modeling Constructs refer to the ability of the query language to support the basic 
modeling constructs of the underlying standard (RDF/S). More specifically, we record whether a 
specific query language can perform queries on classes, properties and resources coming from different 
namespaces/multiple schemas and whether it supports concrete data types, container values and the 
modeling mechanisms of multiple inheritance/ instantiation and reification. Multiple inheritance 
permits the declaration of a class (property) as subclass (sub-property) of many classes (properties), 
while reification provides mechanisms for modeling statements about statements. Instantiation is a 
mechanism for defining a resource as instance of one or more classes/properties. 
     In the category Ontology Querying there are criteria for stating whether the query language can 
exploit the presence of ontology (schema) knowledge, i.e., if the ancestor/descendant traversal of 
class/property hierarchies can be performed and what filtering conditions can be posed on 
class/property hierarchies. The basic criterion of the Data Querying is the ability of the query 
language to provide constructs for calculating the extent of a property/class, i.e., the ability to find all 
the resources defined as instances of a particular property/class. Furthermore, in this category fall 
criteria such as the support of complete Boolean filters (negation, conjunction, disjunction), set-based 
operations (union, intersection, difference), arithmetic operations on data values and container 
values constructors, i.e., language constructs that can be used to build sequences or bags. The 
category Data/Ontology Querying contains criteria referring to the competence of the query language 
in combining data and ontology querying in a query expression. The basic way to perform such an 
advanced query is to use generalized path expressions. A generalized path expression queries data 
and ontology at the same time, thus enabling the formulation of queries on description bases without 
exact knowledge of the ontologies employed. Generalized path expressions, as well as the support of 
existential/universal quantifiers and nested queries are indicative criteria of the expressive power of 
a query language. Lastly, the category Additional Features hosts a number of criteria that can be used 
to evaluate the effectiveness of the query language and the added value of its use when it comes to real, 
large scale applications. The support of aggregate (min, max, average, sum, count), grouping (e.g., an 
SQL-equivalent to group_by clause), sorting (for ordering querying results) and built-in data 
functions (e.g., math and string/date converting functions), in combination with the facilities to support 
the definition of arbitrary functions and user-defined inference rules are features that add to the 
expressive power of the query language. To this last category we can also include the existence of view 
definition primitives, i.e., the facility for the user to define views over the description bases.  
     As far as the evaluation of the ontology storage and querying tools is concerned, we adopt an 
evaluation framework, which can provide an overview of the most important technical features 
supported by the tools presented. The criteria falling into this evaluation framework are focused on the 
technical characteristics of the tools, i.e., the supported Query language, the Implementation 
language the developers have used for deploying the tool and the Storage database system used to 
store the ontology/data. The criterion of Inference support indicates whether the tool permits arbitrary 
deduction rules for inferring new knowledge, while the criterion of Update support signifies the 
capability of the tool to modify the contents of existing ontology schema and (meta)data. A criterion 
that can be used to judge the extensibility and the ability of the tool to collaborate with other 
applications is the API support (querying and updating), i.e., the ability for interfacing with clients, 
while the Export data format indicates the formats supported for exporting the ontology. Lastly, we 
can perform a preliminary comparison of the tools on terms of their Scalability/Performance. The 
data stated for this criterion is taken from a survey of RDF/Triple data stores by W3C1. More detailed 
data on scalability and performance would require extensive comparative testing, which go beyond the 
scope of our survey.  

                                                 
1 http://www.w3.org/2001/05/rdf-ds/DataStore 

 2



3. Description of ontology query languages and tools 
The support of querying facilities has always been a primary requirement for repositories of any kind. 
The proliferation of knowledge caused by the widespread use of the Web as a knowledge 
communication platform has posed the same and even more imperative requirements for performing 
queries and thus locating desirable resources into the vast information space. However, the data models 
used to represent and encode knowledge on the Web differ from the traditional data structures. RDF 
[17], RDFS [4], DAML+OIL [9] and Topic Map [16] are the emerging standards used to encode web-
based data. Thus, the functionality a querying language should support must take into account the 
structure and the peculiarities of the new paradigms. In particular, RDF and DAML+OIL are based on 
a directed labelled graph data model, which allows labels both on nodes and edges, while XML [23] 
uses labels only on edges. Both models can be serialized in a number of different representations, one 
of which is the use of triples in the form of <predicate, subject, object>. Topic Maps can also be 
expressed using XML. One difference between RDF and Topic Map is that the latter is centred on 
topics while the former on resources. Furthermore, while RDF annotates directly the resources, Topic 
Map creates a semantic network layer - a “virtual map”- above the information resources, thus leaving 
the information resources unchanged.   
     In this section we will focus on query languages for RDF, DAML+OIL and Topic Maps. The 
reason is that RDF, with the aid of RDF Schema Language [4], provides a rich infrastructure for 
representing meaningful information in the form of ontologies. Topic Maps, on the other hand, 
provides mechanisms for creating user-editable views of heterogeneous information repositories, while 
DAML+OIL extends RDF/S with richer modelling primitives commonly found in frame-based 
languages. Since for a query language to be deployed there must exist storage tools, we also present a 
set of ontology storage tools providing querying capabilities, as well as inference engines attached to 
them. 

 
3.1 Ontology Query Languages 

3.1.1 ICS-FORTH RQL 
RQL, developed in the context of the EU projects C-Web (IST-1999-13479) and MesMuses (IST-
2001- 26074), is a typed, declarative query language for querying RDF description bases following a 
functional approach a la OQL. It is defined by a set of basic queries and iterators, which can be used to 
build new ones through functional decomposition. RQL relies on a formal graph model that enables the 
interpretation of superimposed resource descriptions by representing properties as self-existent 
individuals and introducing a graph instantiation mechanism that permits multiple classification of 
resources. It adapts the functionality of semi-structured or XML query languages to the peculiarities of 
RDF (i.e., labels on both graph nodes and edges, taxonomies of labels) but, foremost, it extends this 
functionality by uniformly querying both resource descriptions and (meta)schemas. In particular, the 
novelty of RQL lies in its ability to smoothly combine ontology and data querying while exploiting - in 
a transparent way - the taxonomies of labels and multiple classification of resources. Thus, users are 
able to query resources described according to their preferred ontology, while discovering in the sequel 
how the same resources are also described using another classification ontology (schema). RQL can 
compose schema paths to perform more complex ontology navigation, a kind of query not expressible 
in existing languages with ontology querying capabilities, while it supports generalized path 
expressions featuring variables on both labels for nodes (i.e., classes) and edges (i.e., properties). 
Furthermore, it features set-based queries and supports XML Schema data types, grouping primitives, 
aggregate functions and arithmetic operations on data values. 
URL: http://139.91.183.30:9090/RDF/RQL/index.html 
References: - Gregory Karvounarakis, Sofia Alexaki, Vassilis Christophides, Dimitris Plexousakis, 
Michel Scholl. “RQL: A Declarative Query Language for RDF”. WWW2002, May 7-11, 2002, 
Honolulu, Hawaii, USA. ACM 1-58116-449-5/02/0005 
- Grigoris Karvounarakis, Vassilis Christophides. “The RQL v1.5 User Manual”.  
<http://139.91.183.30:9090/RDF/RQL/Manual.html>    

 3



3.1.2 ILRT SquishQL 
SquishQL constitutes the proposition of the ILRT2 Semantic Web Research Group to the need of a 
query language for RDF description bases. Being a simple graph-navigation query language for RDF 
based on a subgraph matching mechanism, SquishQL uses SQL-like constructs to reflect RDF’s graph 
syntax. Apart from supporting a query model based on a graph pattern formed from variables for nodes, 
arcs and literals, it introduces filter functions in the form of Boolean expressions over the variables. 
Thus, in SquishQL there are two classes of constraints: patterns and filter expressions. The pattern 
language is formed from triple patterns <subject, predicate, object> describing edges of the graph and a 
conjunction operator. For each component of a triple, i.e., subject, predicate and object it allows either 
a variable or an explicit value. Filter functions restrict the values that the variables over the components 
of a triple can take. In general, the patterns are generative, since they create bindings and the filters are 
restrictive, in view of the fact that they remove possibilities. In particular, the WHERE clause 
corresponds to the generative part of an SquishQL query by specifying the graph pattern as a list of 
triple patterns and the AND clause corresponds to the restrictive part, which specifies the Boolean 
expressions.  
     SquishQL supports a considerable functionality for RDF query expression and has formed the basis 
of a number of RDF query languages of diverse complexity. A language derived from SquishQL is 
RDQL, which is being developed by the Hewlett Packard Semantic Web Group [21]. RDQL is a syntax 
and query API whose purpose is to act as a model-level access mechanism that is of a higher level than 
an RDF API. It extracts information from an RDF model by treating RDF as data and providing query 
with triple patterns and constraints over a single RDF model. However, SquishQL does not provide an 
explicit syntax for reification. Furthermore, it does not express transitivity or other forms of unknown 
length paths in the graph and does not support disjunction or repetition.  
URL: http://ilrt.org/discovery/2001/02/squish/ 
References: Libby Miller, Andy Seaborne, Alberto Reggiori. “Three Implementations of SquishQL, a 
Simple RDF Query Language”. To appear in the 1st International Semantic Web Conference 
(ISWC2002), June 9-12, 2002. Sardinia, Italy.  

3.1.3 Intellidimension RDFQL  
Developed by Intellidimension, RDFQL is an SQL-style, statement-based query language that supports 
the RDF model and syntax. In addition to providing facilities for querying RDF structured data, an 
important feature of RDFQL is its ability to infer new statements from existing ones by using user-
defined inference rules of the form “if A is the case then so is B” for powerful deductive searches (rules 
are themselves stored as RDF statements with a table). In particular, the CREATE RULE command 
creates a new inference rule in a datasource, its IN clause specifies the datasource, the INFER clause 
specifies the head of the rule -the fact to be inferred if the correct conditions are met and the FROM 
clause specifies the body of the rule -the set of conditions that must be met in order for the head to be 
true. As an SQL-style language, it also uses commands such as INSERT, DELETE and SELECT to 
perform query and inference operations on RDF triples, as well as data definition commands like 
CREATE TABLE or CREATE VIEW. RDFQL views, which can be used in data reporting packages 
such as Crystal Reports, are pre-built queries that can be used to present RDF tables as a traditional 
tabular data structure. More specifically, the SELECT command is very similar to its SQL counterpart, 
with the differences that RDFQL utilizes the USING clause, instead of the FROM clause, to specify the 
data sources to use (similar to a table in SQL) and that field names in the select list are replaced by 
variables (e.g. ?predicate, ?myvar). RDFQL also includes most of the SQL functions and operators to 
support complex query conditions, which are defined in the WHERE clause. As an optional facility, the 
ORDER BY clause provides ways to order the results in an order direction (ascending or descending). 
The INSERT command, on the other hand, inserts a list of statements into a data source and consists of 
the INTO, USING and WHERE clauses. The INTO clause specifies the destination data source, the 
USING clause specifies a data source from which to copy statements and the WHERE clause defines 
any conditions that should be met by the statements being copied.  Furthermore, RDFQL supports 
aggregation functions (Count), comparison operators (e.g., =, <, >) and aliases for each namespace 
using the NAMESPACE command. 
URL: http://www.intellidimension.com/RDFGateway/Docs/rdfqlgettingstarted.asp 
References: RDFQL Reference Manual  
<http://www.intellidimension.com/RDFGateway/Docs/rdfqlmanual.asp> 
                                                 
2 ILRT: Institute for Learning and Research Technology, University of Bristol (http://ilrt.org/). 

 4



3.1.4 RDFPath  
Although still under development by the RDFPath group and other interested parties, RDFPath 
constitutes a language - similar to XPath [8] for XML - for localizing information encoded in an RDF 
graph. Its purpose is to provide general techniques for specifying paths between two arbitrary nodes of 
an RDF graph. In general, an RDFPath expression is a composition of a primary selection and several 
location steps and filters. Primary selections, localization steps and filters are RDFPath language 
constructs used to formulate queries against RDF graphs. In particular, a primary selection selects an 
initial set of nodes of a given RDF graph, e.g., the resource() and literal() constructs select all 
resources and literals of an RDF graph respectively, a location step specifies a set of nodes that can be 
reached by “one step” from a given context object, e.g., the child() clause selects the children of a 
context node and a filter selects a subset of a given set of objects. Thus, every primary selection or 
location step selects a set of objects relative to the current context and the role of the RDFPath filters is 
to refine these sets of objects. RDFPath is mainly focused on RDF graphs, but among the intentions of 
the RDFPath group is to provide compliance with the RDF Schema and support the class/property 
subsumption relations of the RDF Schema specification [4], i.e., the subClassOf and subPropertyOf 
relations.    
URL: http://zoe.mathematik.uni-osnabrueck.de/RDFPath/ 
References: - Stefan Kokkelink, “Transforming RDF with RDFPath”. Working Draft. March 2001.  
<http://zoe.mathematik.uni-osnabrueck.de/QAT/Transform/RDFTransform.pdf>  

3.1.5 VERSA RDF Query Language 
Versa is an evolving, graph-based language for querying RDF models (sets of statements), initially 
developed by the implementers of 4RDF3. Its main features include traversal of arcs, processing of 
node contents and general expression evaluation. In fact, (transitive) traversal expressions are a core 
Versa feature, since they allow to match patterns in the model by respecting their structure as directed 
graphs. Versa also supports forward and backward traversal. In a forward traversal, we move along the 
specified arcs from subjects to objects, and then filtering the result, while in a backward traversal, we 
move from objects to subjects, and then filtering the subjects. In any case, the nature of the query 
results depends on the underlying RDF implementation, which determines what is considered to be a 
resource for Versa purposes. For instance, in the presence of an RDF schema, the object of a statement 
might be treated as a resource, in case the predicate of the statement is defined with a resource range. 
Generally, in order to support the functionality needed, Versa provides built-in functions, e.g., the all() 
function retrieves all the resources in the model. Due to its heavy use of functions, Versa sometimes 
has a LISP-like feel. Versa also provides facilities -such as boolean logic and set operations, 
aggregates, substring matching, and other core data type manipulation. Furthermore, for ease of 
expressing queries, it permits an abbreviated form for expressing resources, which consists of the 
namespace prefix and the latter part of the URI joined by a colon. The quester can also form a query 
expressed with more sophisticated criteria, e.g., to use all()-rdfs:label-> contains("ab"), if he/she wants 
all resources whose label contains the string "ab", as well as request the presentation of query results in 
a sorted way.    
URL: 
http://uche.ogbuji.net:8080/uche.ogbuji.net/tech/rdf/versa/versa.doc?xslt=/ftss/data/docbook_html1.xslt 
References: Uche Ogbuji. “Versa by example”.   
<http://uche.ogbuji.net:8080/uche.ogbuji.net/tech/rdf/versa/versa-by-example.txt> 

3.1.6 TRIPLE  
TRIPLE language is an RDF query, inference, and transformation language, developed as a joint work 
by Stefan Decker (Stanford University Database Group) and Michael Sintek (DFKI GmbH 
Kaiserslautern, Knowledge Management Department and Stanford University Database Group). 
TRIPLE’s layered and modular nature, based on Horn Logic and F-Logic, aims to support applications 
in need of RDF reasoning and transformation, i.e., to provide mechanisms to query web resources in a 
declarative way. However, contrary to many other RDF query languages, TRIPLE allows the semantics 
of languages on top of RDF, such as RDF Schema [4] and Topic Maps [16], to be defined with rules, 
instead of supporting the same functionality with built-in semantics.  Wherever the definition of 
language semantics is not easily possible with rules (e.g., DAML+OIL [9]), TRIPLE provides access to 

                                                 
3 http://www.xml.com/pub/a/2000/10/11/rdf/index.html 

 5



external programs, like description logics classifiers. Thus, two different kinds of layers are supported: 
syntactical extensions of Horn Logic to support basic RDF constructs, like resources and statements, 
and modules for semantic extensions of RDF, like RDF Schema [4], OIL [18] and DAML+OIL [9], 
implemented either directly in TRIPLE or via interaction with external reasoning components, such as 
a DL classifier. In particular, TRIPLE provides native support for resources and namespaces, 
abbreviations (e.g., isa:=rdf:SubClassOf), models (sets of RDF statements), reification and rules with 
expressive bodies (full First Order Logic syntax). TRIPLE also allows Skolem functions, which, when 
used in rules, can be used to transform one or several models (i.e., a set of RDF statements) into a new 
one, a functionality especially useful for ontology mapping or integration. Furthermore, instead of 
subject, predicate or object definitions, TRIPLE permits the usage of path expressions. For example, 
we can define (horn) rules that search for documents with a specified subject. TRIPLE provides a 
human-readable ASCII-syntax, as well as an RDF-based syntax for exchanging queries and rules, e.g., 
between communicating agents.  
URL: http://www.dfki.uni-kl.de/frodo/triple/ 
References: Michael Sintek, Stefan Decker. “TRIPLE-An RDF Query, Inference, and Transformation 
Language”. In Proceedings of the Deductive Databases and Knowledge Management Workshop 
(DDLP' 2001). Japan, October 2001. 

3.1.7 DAML+OIL Query Language  
DAML+OIL [9] is a language elaborated on top of RDF/RDFS for expressing more sophisticated 
classifications and properties of resources than RDFS. It provides modeling primitives commonly 
found in frame-based languages while its formal semantics is defined in description logics. However, a 
query language for the (meta)data expressed in DAML+OIL is still an ongoing work. For example, 
DAML-S (for “DAML Search engine”) is an engine that enables querying a DAML ontology. The 
form of query language used is “FIND … SUCH-THAT …END”, that allows finding resources 
satisfying a conjunction of statements (triples). We can also find a discussion about the DQL language 
(DAML+OIL Query Language) in the archives of joint-committee@daml.org email list. Although 
DQL is still under development, it is defined with two parts, a Query Premise and a Query Pattern. The 
Query Premise is a condition checking on the queried KB. A query premise seems important in that it 
allows a query to hypothesize an object (e.g., "if Foo is a Person with two male siblings …") and then 
make questions about that hypothesized object. The Query Pattern corresponds to the “from” clause in 
RQL [section 3.1.1], but there is nothing in DQL corresponding to the RQL “select” and “where” 
clause. Continuously, in an internet paper, Arnold deVos had proposed an RDF query language based 
on DAML+OIL which allows to query both RDF(S) and DAML+OIL (meta)data. A query in this 
language is formulated with an expression of the form “select … from …”, while the query results are 
only the triples. Nevertheless, the “from” clause, which is an expression describing a DAML class 
(where the statements are found), can be used for expressing DAML+OIL complex concept properties. 
Finally, a query language for DAML+OIL proposed by the University of Manchester [12] also allows 
exploiting DL systems in order to provide complete reasoning services. This language once again relies 
on a triple data model. While concrete data types have been introduced, a query in this language 
representing a boolean conjunction of statements can return a true/false answer or a set of arbitrary 
tuples.  
URL: http://www.daml.org/listarchive/joint-committee/0665.html, 
http://www.csl.sri.com/papers/denkeretal01/ 
References: - Arnold deVos. “An RDF query language based on DAML”  
<http://www.langdale.com.au/RDF/DAML-Query.html> 
- Grit Denker, Jerry R. Hobbs, David Martin, Srini Narayanan, Richard Waldinger, “Accessing 
Information and Services on the DAML-Enabled Web”, SRI International Menlo Park, California. 
<http://www.ai.sri.com/daml/notes/HW2/SemanticWeb/paper.html> 

3.1.8 Topic Maps Query Language 
Topic Maps Query Language (TMQL) is a standardization project of ISO (JTC1 SC34 WG3) and 
topicmaps.org, the organizations who contributed to the development of ISO Topic Maps [16] and 
XTM (XML Topic Maps) [20]. Although at requirements phase, TQML aspires to constitute the SQL 
equivalent for Topic Maps, i.e., an XML-based query language suited to satisfy the data access 
requirements of Topic Maps (TMs). TMQL is intended to use SQL-ish constructs familiar to most 
developers, so as to simplify its use. However, the context of use for SQL and TMQL are different: 
SQL was developed for use in relational database environments, where data have well-defined 
structure. On the other hand, TMQL must be applicable to environments of vast amount, semi-

 6



structured and constantly changing information. Thus, the semantics of expressing a typical SQL select 
query (used to retrieve data from a table in a database) must be adapted to retrieving data from a Topic 
Map. One of the requirements posed for TMQL is the conformance with the reference data model, as 
well as the support of operations on the information content of a topic map, i.e., adding/ removing/ 
retrieving information and manipulation of information integrity constraints.   
URL: http://www.garshol.priv.no/download/tmlinks.html,  
http://groups.yahoo.com/group/tmql-wg/files/official-docs/tmqlreqs.html 
References: Rafal Ksiezyk. “Answer is just a question [of matching Topic Maps]”. In Proceedings of 
XML Europe 2000, 12-16 June 2000. Palais de Congres, Paris, France. 
 <http://www.gca.org/papers/xmleurope2000/papers/s22-03.html> 

3.1.9 Ontopia Tolog 
Proposed and deployed by Ontopia4, tolog combines elements from Prolog and SQL to query topic 
maps bases. The language consists of predicates, which can be thought of as tables of values. In this 
context, queries are executed by matching them against the predicates and binding logical variables in 
the queries to the values produced by the predicates. Tolog supports two kinds of predicates: built-in 
predicates and association predicates, which are like the built-in ones except that one must explicitly 
define the association roles used in the query. The built-in predicates, namely instance-
of(instance,class), direct-instance-of(instance,class) and a/=b (for comparing two values) are part of 
the language definition and can be used as queries themselves. Apart from querying instance-of 
relationships and associations, tolog supports projection of query results (that is, leave out variables 
only used for intermediate computations), counting of query matches, ordering of query results 
according to specific variables, a form of negation (the not operator is used as a filter) and alternative 
sets of predicates in computations that can be used to query more than one alternative path through a 
topic map in a single query. Furthermore, inference rules can be used to infer associations not explicitly 
present in the topic map. The addition of inference rules to tolog enables the query language to perform 
logical inference to deduce new facts that are implied by the information already in the topic map, even 
if they are not explicitly stated anywhere. Rules, in the form of [head(predicates):-body of the rule], 
can be kept in special rules files, which are attached to the topic map as topic map metadata, or they 
can be fed to the query processor whenever they are wanted or needed. 
URL: http://www.ontopia.net/omnigator/docs/query/tutorial.html 
References: - Lars Marius Garshol. “tolog. A topic map query language”. In Proceedings of XML 
Europe 2001, 21-25 May 2001, Berlin, Germany.   
- “Tolog: Language Tutorial”. Version 1.3.  
<http://www.ontopia.net/omnigator/docs/query/tutorial.html> 
 

3.2 Ontology Storing and Querying Tools  

3.2.1 ICS-FORTH RDFSuite  
The ICS-FORTH RDFSuite, partially supported by EU projects C-Web (IST-1999-13479) and 
MesMuses (IST-2001- 26074), is a suite of tools for RDF metadata management, addressing the need 
of RDF metadata processing for large-scale Web-based applications. It consists of tools for parsing, 
validating, storing and querying RDF descriptions, namely the Validating RDF Parser (VRP), the RDF 
Schema Specific DataBase (RSSDB) and the RDF Query Language (RQL). RSSDB is a persistent tool 
for loading resource descriptions in an object-relational DBMS (e.g., PostgresSql) by exploiting the 
available RDF schema knowledge. It preserves the flexibility of RDF in refining schemas and/or 
enriching descriptions at any time whilst it can be customized in several ways (as opposed to triple-
based repositories) according to the specificities of both the manipulated RDF descriptions (i.e., 
schemas) and the underlying RDF application queries. Its main goal is the separation of RDF schema 
information from data information, as well as the distinction between unary and binary relations 
holding the instances of classes and properties. Querying of stored RDF descriptions is accomplished 
by the query module, which implements the RQL language [section 3.1.1]. For performance reasons, 
the module pushes as much as possible query evaluation to the underlying DBMS, while benefiting 
from robust SQL3 query engines and DB indices. The RQL module is easy to integrate with web 
application servers and it is easy to couple with other commercial ORDBMS.  

                                                 
4 http://www.ontopia.net/  

 7



URL: http://139.91.183.30:9090/RDF/index.html 
References: -S. Alexaki, V. Christophides, G. Karvounarakis, D. Plexousakis, K. Tolle. “The ICS-
FORTH RDFSuite: Managing Voluminous RDF Description Bases”. 2nd International Workshop on 
the Semantic Web (SemWeb'01), in conjunction with Tenth International World Wide Web Conference 
(WWW10), pp. 1-13, Hong Kong. May 1, 2001.  
- S. Alexaki, V. Christophides, G. Karvounarakis, D. Plexousakis. “On Storing Voluminous RDF 
Descriptions: The case of Web Portal Catalogs”. In Proceedings of the 4th International Workshop on 
the Web and Databases (WebDB'01)- In conjunction with ACM SIGMOD/PODS, Santa Barbara, CA. 
May 24-25, 2001. 
Documentation: http://athena.ics.forth.gr:9090/RDF/RQL/Design.html 
Tutorial: http://139.91.183.30:9090/RDF/RQL/Manual.html 
Version: 1.5 
Platform: Sun Solaris and Linux 
Demonstration: available at http://139.91.183.30:8999/RQLdemo/ 
Pricing Policy: open source/free software under RDFSuite License (GPL compatible). 

3.2.2 Sesame 
Sesame, an RDF Schema-based Repository and querying facility, is being developed by Aidministrator 
Nederland bv as one of the key deliverables in the European IST project On-To-Knowledge (EU-IST-
1999-10132). It is a system consisting of a repository, a query engine and an administration module for 
adding and deleting RDF data and Schema information. It supports expressive querying of RDF data 
and schema (ontology) information, using the RQL query language [section 3.1.1] and understands the 
semantics of most of the RDF Schema classes and properties. Thus, it supports the basic inferencing 
needed for supporting RDF Schema, such as transitivity of subClassOf- and subPropertyOf-properties. 
The RQL implementation of Sesame is slightly different from the ICS-FORTH RDFSuite’s, since the 
interpretation of the RDF Schema differs in the two cases and the Sesame’s query engine does not 
support all features of RQL. To facilitate querying, Sesame supports the storage of large quantities of 
RDF and RDF Schema information. The RDF is parsed using the SiRPAC parser, and stored in the 
Object-Relational DBMS PostgreSQL. A public demo server running Sesame is available for 
experimentation.  
URL: http://sesame.aidministrator.nl/ 
References: - Jeen Broekstra, Arjohn Kampman. “Query Language Definition”. On-To-Knowledge 
project deliverable 9. March 2001. <http://sesame.aidministrator.nl/doc/del9.pdf> 
- Arjohn Kampman, Frank van Harmelen. “Sesame’s Interpretation of RDF Schema”. Aidministrator 
Nederland bv. Version 1.2. April 24, 2001.<http://sesame.aidministrator.nl/doc/rdf-interpretation.html> 
- Jeen Broekstra, Arjohn Kampman, Frank van Harmelen. “Sesame: a Generic Architecture for Storing 
and Querying RDF and RDF Schema”. To appear in the 1st International Semantic Web Conference 
(ISWC2002), June 9-12, 2002. Sardinia, Italy.   
Documentation: http://sesame.aidministrator.nl/docs.jsp 
Tutorial: http://sesame.aidministrator.nl/publications/rql-babysteps.pdf 
Version: 3- Alpha 
Platform: any platform supporting a Java 2 runtime environment 
Demonstration: available at http://sesame.aidministrator.nl/demo.jsp 
Pricing Policy: Open source tool under the terms of GNU Lesser General Public License (LGPL). 

3.2.3 Inkling 
The Inkling query engine was developed under partial funding from the Harmony5 and Imesh6 projects 
at the ILRT (Institute for Learning and Research Technology, University of Bristol) and can be used to 
create, query and display RDF documents. It is a Java™ implementation of SquishQL [section 3.1.2] 
created to be API and database-independent for testing the usefulness of SquishQL for comparatively 
small-scale projects. To ensure the validity of the input RDF data, it uses and upgrades the SiRPAC 
parser. Inkling can be used with almost any RDF database implementation written in Java (either in-
memory or using some persistent storage) and uses the JDBC interfaces to make SquishQL queries. 
URL: http://swordfish.rdfweb.org/rdfquery/  
References: -Miller,L. “Inkling: RDF Query using SquishQL”. <http://swordfish.rdfweb.org/rdfquery> 
Documentation: http://swordfish.rdfweb.org/rdfquery/documents.html 

                                                 
5 http://metadata.net/harmony/index.html 
6 http://www.imesh.org/ 

 8

http://www.difa.unibas.it/webdb2001/
http://www.difa.unibas.it/webdb2001/
http://www.cs.ucsb.edu/conferences/sigmod2001/


Tutorial: not available 
Version: alpha release (0.50) 
Platform: any platform supporting Java  
Demonstration: available at http://swordfish.rdfweb.org/rdfquery/demos.html 
Pricing Policy: freely released under the GPL or a modified version of the MPL Licenses. 

3.2.4 rdfDB  
Implemented by R.V. Guha, rdfDB is intended to be a simple, scalable, open-source database for RDF 
metadata. Although at an early stage, the goals of the rdfDB implementation are to support a graph-
oriented API via a textual query language a la SQL and to provide support for RDF ontologies and 
some basic forms of inference.  The rdfDB uses a high-level, simple graph matching, triple-based SQL-
like query language. This query language differs slightly in syntax from SquishQL [section 3.1.2] and 
also does not contain the constraints on the variables used by SquishQL. rdfDB is designed to act as a 
cache for RDF, RSS, edge-labelled XML and other data out on the network. To facilitate this, it 
supports the ability to load the contents of a URL into the database.   
URL: http://guha.com/rdfdb/ 
References: Edd Dumbill. “Putting RDF to Work”. Article on XML.com. August 09, 2000. 
(http://www.xml.com/pub/a/2000/08/09/rdfdb/)  
Documentation: http://guha.com/rdfdb/ 
Tutorial: not available 
Version: 0.46 
Platform: Unix (linux, bsd, solaris)  
Demonstration: not available 
Pricing Policy: sources are available under the Mozilla Public License. 

3.2.5 RDFStore   
RDFStore is a set of Perl modules to manage RDF model databases in an easy and straightforward way. 
It consists of a Perl API, a streaming SiRPAC parser and a generic hashed data storage custom-
designed for the RDF model. The storage subsystem allows transparent storage and retrieval of RDF 
nodes, arcs and labels from a variety of storage systems, i.e., either from an in-memory structure, from 
the local disk or from a very fast and scalable remote storage. Currently, it supports several different 
persistent storage models such as SDBM and BerkeleyDB. RDFStore implements the SquishQL 
language [section 3.1.2] to query RDF repositories and all query-filtering operations on the values are 
processed using pure Perl regular expressions. The query parsing, processing and execution is 
performed on the client side, which makes the DBMS server back-end much more generic and 
lightweight. RDFStore contains a module to make basic RDF Schema inference on triples. By using 
free-text words present into literal values it is possible to select the nodes matching a query criteria in a 
much more selective way.  
URL: http://rdfstore.sourceforge.net/  
References: not available 
Documentation: http://rdfstore.sourceforge.net/documentation/api.html 
Tutorial: not available 
Version: 0.42 
Platform: tested on FreeBSD and Linux, can run on any platform running Perl 
Demonstration: available at http://rdfstoredemo.jrc.it/ 
Pricing Policy: free distribution. 

3.2.6 Extensible Open RDF (EOR) 
The Extensible Open RDF constitutes an open source project resulting from the cooperation of the 
OCLC Office of Research and the Dublin Core Metadata Initiative. Its goal is to facilitate the rapid 
development of RDF applications by providing generic interface design capabilities with focus on the 
discovery, management, integration and navigation of metadata. It consists of a collection of extensible 
Java classes and services, which serve as a code base, demonstrating by example functions and services 
common to RDF applications, i.e., metadata capture, search engines, etc. Thus, the base level 
functionality supported by this toolkit includes the creation, deletion and management of RDF 
databases. The current release provides services designed to validate RDF, to infuse RDF instance data 
into RDF databases, to build and search via triple-matching with wildcards RDF triple stores and 
render RDF data using XSLT. Hence, it provides the basic building blocks for supporting search 

 9



services, topic-maps, site-maps, annotation environments and semantic metadata registries based on 
RDF.  
URL: http://eor.dublincore.org/ 
References: not available 
Documentation: http://eor.dublincore.org/project_docs.html 
Tutorial: not available 
Version: 1.01 
Platform: all platforms running Java  
Demonstration: available at http://wip.dublincore.org:8080/eor/index.html 
Pricing Policy: software available under the Dublin Core Open Source Software License. 

3.2.7 Redland 
Developed at the University of Bristol, Redland is a library that provides a high-level interface for 
storing, querying and manipulating RDF models. Redland implements each of the RDF model concepts 
in its own class, thus providing an object-based API for them. Some of the classes providing the 
parsers, storage mechanisms and other elements are built as modules that can be added or removed as 
required. In a nutshell, Redland provides a modular, object based library written in C, Perl, Python and 
Tcl, Java interfaces for manipulating the RDF Model and parts (Statements, Resources and Literals), 
parsers for reading RDF/XML and other syntaxes (DAML+OIL and N-Triples7), storage mechanisms 
for models in memory and on disk via Sleepcat/Berkeley DB, query APIs for the model by Statement 
(triples) or by Nodes and Arcs and streams for construction, parsing and de/serialisation of models.  
URL: http://www.redland.opensource.ac.uk/ 
References: Dave Beckett. “Design and Implementation of the Redland RDF Application Framework”. 
WWW10 Presentation. 2001-05-03.  
Documentation: http://www.redland.opensource.ac.uk/docs/ 
Tutorial: not available 
Version: 0.9.10 
Platform: Linux, Solaris, OSF/1 Alpha, FreeBSD, MacOS X 
Demonstration: available at http://www.redland.opensource.ac.uk/demo/ 
Pricing Policy: free software/open source software released under the GNU Lesser General Public 
License (LGPL) Version 2 or the Mozilla Public License V1.1. 

3.2.8 Jena 
Developed by the Hewlett-Packard Company, Jena is a collection of RDF tools written in Java that 
includes: a Java model/graph API, an RDF Parser (supporting an N-Triples filter), a query system 
based on RDQL [section 3.1.2], support classes for DAML+OIL ontologies and persistent/in-memory 
storage on BerkeleyDB or various other storage implementations. Due to its storage abstraction, Jena 
enables new storage subsystems to be integrated. To facilitate querying, Jena provides statement-
centric methods for manipulating an RDF model as a set of RDF triples and resource-centric methods 
for manipulating an RDF model as a set of resources with properties, as well as built-in support for 
RDF containers. The current toolkit does not provide any inferencing mechanisms, since the query 
language used, i.e., RDQL, does not provide inference.  
URL: http://www.hpl.hp.com/semweb/jena-top.html 
References: B. McBride. “Jena: Implementing the RDF Model and Syntax Specification”. In: Steffen 
Staab et al (eds.): Proceedings of the Second International Workshop on the Semantic Web- 
SemWeb2001. May 2001.  
Documentation: http://www.hpl.hp.com/semweb/javadoc/index.html 
Tutorial: not available 
Version: 1.3.2 
Platform: any platform with Java 1.2 and up runtime environment. Tested on MS Windows and Linux 
Demonstration: not available 
Pricing Policy: source code distribution under (a BSD style) Jena License.  

3.2.9 RDF Gateway 
The Resource Description Framework Gateway (RDF Gateway), developed by Intellidimension 
Company, is a distributed data semantic query service and inference infrastructure. It follows a 

                                                 
7 http://www.w3.org/2001/sw/RDFCore/ntriples/ 

 10



modularised approach and is comprised of two basic modules: Data Services, that translate structured 
data into a knowledge base of RDF triples, and a Query Service that takes queries and inference rules, 
processed through a query Language, namely RDFQL [section 3.1.3], and applies them to the 
knowledge base through a logic layer. In particular, an RDF Query Service (RDFQS) processes 
RDFQL queries from applications, while an RDF Data Service (RDFDS) eposes underlying data via an 
RDFDS Connection Interface. The Data Service module can interface with any data source, i.e., RDF 
structured data, XML files via http, databases, or email accounts, all of which can be regimented into 
RDF triples. This ability comes from the full exploitation of RDF's abstract data model, which offers a 
logical view into any structured datasource. All of the RDF statements generated by the Data Services 
constitute the common knowledge base, which cannot be considered a data repository, but a dynamic 
knowledge representation framework. The role of the Query Service, on the other hand, is to perform 
semantic queries on the knowledge base, and extend the knowledge base with the addition of inference 
rules. Since the Data Services can compile multiple data sources into a single knowledge base for 
querying and knowledge discovery, independently authored schemas can yield new information about 
common elements.  
URL: http://www.intellidimension.com/RDFGateway/beta2/ 
References: not available  
Documentation: http://www.intellidimension.com/RDFGateway/Docs/ 
Tutorial: http://www.intellidimension.com/RDFGateway/Docs/rdfqlgettingstarted.asp 
Version: 0.6 
Platform: Windows NT/2000 
Demonstration  available at http://www.intellidimension.com/itdsw/default.asp :
Pricing Policy: beta version of RDF Gateway available under License. 

3.2.10 TRIPLE 
The TRIPLE query engine constitutes the implementation of the TRIPLE query language [section 
3.1.6]. Apart from the features of the query language, TRIPLE also contains a standalone DAML+OIL 
implementation with the following features: it parses DAML+OIL ontologies with Jena, provides 
output in various syntaxes (LISP, XML for FaCT DTD, while others can easily be added), supports an 
external DL classifier that can be automatically invoked (at the moment, it supports RACER but FaCT 
will follow) and the output from the DL classifier (taxonomy only) can be returned in various formats: 
DAML, LISP, XML, DOT (for visualization with GraphViz [14]). The set of the facilities presented 
make TRIPLE a powerful inference and querying engine.  
URL: http://triple.semanticweb.org/ 
References: Michael Sintek, Stefan Decker. “TRIPLE-An RDF Query, Inference, and Transformation 
Language”. In Proceedings of the Deductive Databases and Knowledge Management Workshop 
(DDLP' 2001). Japan, October 2001.  
Documentation: not available 
Tutorial: not available 
Version: 2002/03/14 
Platform: platforms supporting Java  
Demonstration: available at http://ontoagents.stanford.edu:8080/triple/index.html 
Pricing Policy: distributed under the terms of The Semantic Web Foundation for Open Source 
Software (SFO) License. 

3.2.11 KAON Tool Suite 
The Karlsruhe Ontology (KAON) tool suite has been developed in the context of the KAON Semantic 
Web infrastructure. To access an ontology, KAON tools use a programmable interface in Java called 
KAON-API. The same interface is implemented for several storage mechanisms, thus independence 
from the data store (database, text file, KAON server or another server such as RQL [section 3.1.1]) is 
achieved. This allows us to use the KAON front-ends (e.g., OntoMat - an authoring and annotation 
tool, KAON-CRAWL – a RDF crawler, etc) with different ontology storage tools. The main-memory 
based implementation of the KAON-API maps directly onto the RDF-API (an implementation of the 
graph-model for processing RDF, see http://www.w3.org/RDF/Validator/). Due to the existence of 
different representation languages for ontologies, the KAON-API tries to be (as far as possible) 
representation language neutral. The user can work with ontologies in different representation 
languages as long as the representation primitives have been defined to be semantically equivalent to 
the primitives of the KAON language that especially works with RDF Schema and DAML+OIL 
ontologies. The KAON vocabulary builds on an extension of the RDFS vocabulary (from RDF-API). 

 11

http://www.w3.org/RDF/Validator/


This backwards compatibility allows KAON ontologies to be treated as extensions of RDF and RDF 
Schema ontologies. However, KAON-API only supports some simple queries for browsing the 
ontology (e.g., get all classes or get all resources of a class) and does not allow specifying a filter or an 
expression path within the query (i.e., users will have many difficulties for exploring the ontology). 
URL: http://kaon.semanticweb.org/ 
References: - Alexander Maedche, Boris Motik and Raphael Volz. “KAON-A Framework for 
Semantics-based E-Services”. Institute AIFB, University of Karlsruhe. 
- Siegfried Handschuh, Alexander Maedche, Ljiljana Stojanovic and Raphael Volz. “KAON-The 
KArlsruhe ONtology and Semantic Web Infrastructure”. White paper available at http://kaon.aifb.uni-
karlsruhe.de/white-paper 
Documentation: http://kaon.aifb.uni-karlsruhe.de/documentation 
Tutorial: not available 
Version: 17/01/2002 
Platform: any platform supporting Java 
Demonstration: not available 
Pricing Policy: software available under KAON license 

3.2.12 Cerebra® 
Cerebra® is an RDF Inference Engine (an automated reasoner) developed by Network Inference. Its 
supporting facilities are similar to the University of Manchester’s FaCT Description Logics engine, 
with the difference that it supports instances and concrete datatypes. Cerebra allows for collaboration 
and has been reported to collaborate successfully with OilEd (version 2.0 and above) and Protegé-2000 
with the OIL plug-in. Demonstration versions of Cerebra® for all major platforms (Windows and 
Linux) are available from the download section of the Network Inference website. 
URL: http://www.networkinference.com/ 
References: not available  
Documentation: http://www.networkinference.com/products.asp?id=54&menu=7 
Tutorial: not available 
Version: 1.2 
Platform: Windows, Linux 
Demonstration: not available 
Pricing Policy: evaluation copy available under Cerebra Licence. 

3.2.13 Empolis K42 
Empolis K42 Knowledge Server, deployed by Empolis UK Ltd with Jini and RMI technology, 
constitutes a collaborative, web-based integrated authoring environment for capturing, expressing and 
delivering knowledge. It is based on the Topic Map standards technology and is able to import, export 
and merge Topic Maps (XTM) [20]. Furthermore, in order to empower the applicability of Topic Map 
technology to knowledge management problems, it supports a number of features, such as a framework 
for topic map visualization and navigation, a 100% JAVA Topic Map modeling API, a persistence 
model along with the Data Fetcher architecture, which allows k42 to be configured to connect to any 
data source apart from using its native storage mechanism, and a first Topic Map Query Language 
[section 3.1.8] implementation. In order to support the use of complex knowledge relationships in 
Topic Maps, k42 delivers also an inferencing engine interface that allows Topic Map developers to 
create advanced logic applications. Inferencing allows the creation of associations based on defined 
rules, which are defined in terms of topics and associations. When the rules are applied, the inference 
engine looks for combinations of topics that meet rules and associate them in the way that the rule 
defines. This means that not all of the associations in a Topic Map need to be explicitly created but can 
be inferred, thus facilitating the creation of new information from existing one.  
URL: http://k42.empolis.co.uk/ 
References: not available 
Documentation: http://k42.empolis.co.uk/ 
Tutorial: not available 
Version: 1.1.1 
Platform: all platforms supporting Java 
Demonstration: available at http://k42.empolis.co.uk/demo/demo.html  
Pricing Policy: evaluation copy of k42 available for free download under Empolis UK Ltd Licence. 

 12



3.2.14 Ontopia Knowledge Suite 
The Ontopia Knowledge Suite, developed by the homonymous company, is a set of tools for building, 
maintaining and deploying topic map-based applications. It consists of three main products, namely the 
Ontopia Topic Map Engine, the Ontopia Navigator Framework and the RDBMS Backend Connector 
and of several smaller add-on components, while more products and components are under 
development. The Topic Map Engine, developed in Java SDK, constitutes the building block of the 
Suite, since it loads, stores, keeps track of the topic maps and provides interfaces through which 
applications can access and manage the topic maps. The engine has APIs for importing and exporting 
topic maps to and from XML documents. There is full support for the XTM 1.0 format and all its 
features, as well as for an XML version of the ISO 13250 format. There is also support for validating 
XTM topic maps against a DTD. To support the storage of topic maps using relational technology, the 
Suite provides the RDBMS Backend Connector, which enables the storage, access and modification of 
topic maps in relational databases (most RDBMS servers are supported). The query engine, which 
supports the tolog topic map query language [section 3.1.9], the schema tools, which implement a topic 
map schema language, and the full-text integration tool, which adds support for full-text search of topic 
maps are the add-on components that provide the Engine with additional power for advanced 
applications. The Suite also supports the development of topic map web applications with the Topic 
Map Navigator, a web application framework based on Java Servlets and Java Server Pages (JSP) 
offering a set of tag libraries and Java components for this purpose. A demonstration tool built with the 
Navigator Framework is the Omnigator, a topic map browser that can be used to browse any topic map. 
Omnigator is freely available by Ontopia, but it also forms part of the Ontopia Knowledge Suite. 
URL: http://www.ontopia.net/solutions/products.html 
References: “The Ontopia Knowledge Suite: An introduction”. WHITE PAPER (Version 1.3), 
MARCH 2002. <http://www.ontopia.net/ontopia/texts/product-wp.html> 
Documentation: not available 
Tutorial: not available 
Version: 1.3 
Platform: platforms supporting Java 1.3  
Demonstration: An Ontopia Topic Map Engine and Navigator demo is available at 
http://www.ontopia.net/solutions/demos.html 
Pricing Policy: A free evaluation version of the Ontopia Omnigator is available at 
http://www.ontopia.net/download/index.html.  The OKS is offered in three different editions, each of 
which is available under either a Developer License or a Runtime License.  

 

4. Comparison of Query Languages and Storage Tools  
 
The purpose of this section is to present a comparison of ontology query languages and storage/ 
querying tools against the evaluation frameworks adopted in Section 2. We have already given a brief 
description with basic descriptive criteria of selected ontology query languages and accompanying 
storage and querying tools based on three standards: RDF/S [17,4], DAML+OIL [9] and Topic Maps 
[16].  However, our interest as far as the evaluation of querying languages is concerned, will be in 
RDF/S querying languages, due to the fact that query languages for the other ontology standards are 
still ongoing. On the contrary, the evaluation framework designed for comparing tools will be applied 
on the set of the presented tools, since our orientation in this case has been mainly technical.  
     The context of storing and querying knowledge has significantly evolved due to the wide acceptance 
of the Web. The effort of RDF/S and other web-based metadata standards has been to satisfy the new 
requirements posed in this context by providing a common framework for the encoding and exchange 
of resource-related knowledge. In parallel with the research work dealing with issues related to syntax 
and semantics of RDF/S, efforts have been made to provide querying mechanisms for extracting 
information from description bases encoded in this standard. However, the RDF/S modeling primitives 
are substantially different from those defined in traditional database models such as object, relational or 
semi-structured, a fact that calls for different treatment. Many query languages, even those for XML 
(e.g., LOREL[1], StruQL[11], XML-QL[10], XML-GL[5], Quilt[13] or XQuery[6]), fail to capture the 
semantics of RDF description bases. This reason has lead many research contributions on creating new 
languages for querying RDF, namely RQL [3.1.1], SquishQL/RDQL [3.1.2], RDFQL [3.1.3], VERSA 
[3.1.5], RDFPath [3.1.4] and TRIPLE [3.1.6]. Apart from RDF/S query languages, two other types of 

 13



languages situated in the same context and also used for the comparison in this chapter are Description 
Logics8 and Topic Map [16] query languages. Clearly, the above languages do not rely on the same 
data modeling and each language has different characteristics. To facilitate understanding, Table 1 
presents a general comparison for all these languages on some basic criteria describing the language 
characteristics.  
 

                Criteria 
 
Query Lang. 

Standard Data 
model

Language 
of origin 

Closure 
of queries

Orthogonality 
of input/ output 

data 

Generality

RQL RDF/S Graph OQL like Yes Yes No 

SquishQL/RDQL RDF/S Triple SQL like No No No 

RDFQL RDF/S Triple SQL like No No No 

RDFPath RDF/S Tree XPath like No No No 

VERSA RDF/S Graph LISP like Yes No No 

TRIPLE RDF/S Triple F-logic like No No No 

Description Logics 
QLs 

DAML/OIL Triple DL like No No No 

TMQL Topic Maps Graph SQL like No No Yes 

Tolog Topic Maps Triple Datalog like No No No 
Table 1: Ontology Query Languages 

 
As we can note from Table1, most of the query languages rely on a triple data model, i.e., they use 
collections of statements of the form <subject, predicate, object>9 to encode RDF/S description bases 
and Schemas. RQL, Versa and TMQL follow a graph data model, which enables them to perform more 
complex queries over the resource description graphs. RDFPath, on the other hand, adopts a tree model 
and its constructs enable to specify paths between two arbitrary nodes of a given RDF graph. Triple as 
well as tree data models necessitate exact knowledge of the RDF graph structure in order to perform 
querying, knowledge that is not need in most graph-based data models. Furthermore, languages like 
TRIPLE, Description Logics QLs and Tolog rely on logic-based models (i.e. we can define inference 
rules within these languages). A partial support of user-defined inference rules is also provided by 
RDFQL, e.g., for capturing traversable transitive properties. The rest of the languages follow either an 
SQL or an OQL approach, mainly with the purpose to provide constructs and functionality commonly 
known to database developers. 
     Regarding the respect to primary properties, RQL is the only language having both the properties of 
closure and orthogonality, i.e., supports functional composition of queries (i.e., results of a query could 
be used as input of another query). It also permits any kind of data as input and output of queries. 
VERSA also permits the composition of queries. However, the majority of studied languages, except 
RQL, do not satisfy the orthogonality property because they privilege some kind of data as input or 
output of data. For instance, the languages using the triple data model (e.g., SquishQL/RDQL, RDFQL, 
VERSA) take a set of triples as input and return as output a bag/list of resources or literal values. In 
contrast, there are not privileged input or output data for RQL, i.e., input or output data can be a class, a 
property, a resource or a container/literal value, etc. RQL however lacks the property of generality, i.e., 
the ability to support all the primitives of the ontology/metadata model. In particular, RQL exploits 
most of the RDF/S modeling constructs, e.g., single/multiple inheritance, single/multiple instantiation, 
container values and typed literal values but it does not support reification. In fact, Table 1 indicates 
that none of the RDF/S querying languages respects the generality property, as most of them either do 
not capture the reification mechanism (only TRIPLE supports it) or they do not support container 
values. On the contrary, TMQL, a language for ontologies in the Topic Maps standard, seems to 
support all the modeling primitives of its underlying standard (e.g., support of topics, topic types, 
associations, association roles).  

                                                 
8 http://www.dl.kr.org/ 
9 The structure of the statements may differ in each query language. Most of them follow the <subject, 
predicate, object> convention, while others use triples of the form <predicate, subject, object>. 

 14



     Table 2 hosts a comparison of RDF/S query languages according to five axes: Modeling constructs 
supported, Ontology Querying, Data Querying, Data/Ontology Querying and Additional Features 
provided. Regarding the first comparison axis (Modeling constructs), we can observe from Table 2 that 
all query languages taking part in the comparison, i.e., RQL, SquishQL, RDFQL, RDFPath, VERSA 
and TRIPLE, support namespaces and multiple schemas, as well as multiple inheritance and 
instantiation. This means that all query languages can perform queries on resources described in terms 
of classes and properties from multiple namespaces and that the underlying data model employed in 
each case is able to capture multiple inheritance and instantiation. However, all query languages do not 
support container values and reification. In fact, reification is only supported by TRIPLE. Furthermore, 
most query languages support the basic data types, i.e., strings and integers, with the exception of RQL, 
VERSA and RDFQL that provide more elaborated data types, e.g., reals, dates, URIs or enumerated 
types. 
     We also compare the RDF/S querying languages in terms of their ability to perform Ontology 
Querying. The ability to traverse the ancestor/descendant hierarchies of classes and properties requires 
the use of ontology (schema) knowledge and only RQL and TRIPLE can perform it transitively. 
Moreover, only RQL can pose sophisticated filtering conditions on class/property hierarchies. Apart 
from (in)equality and “like” conditions on the names of ontology constructs, RQL can also pose 
selection filters based on subsumption testing, i.e., on the subsumption relations among classes or 
properties, and on the namespaces in which these ontology constructs are defined. Furthermore, the 
ability of query languages to perform Data querying is of major importance. Based on this set of 
criteria, we can note from Table 2 that all query language provide constructs for finding the extent of a 
class or property, either directly or transitively. What most query languages do not support is set-based 
operations (union, intersection, difference) as well as arithmetic operations on data values. The former 
is mainly attributed to the fact that they do not support container values constructors (only RQL nad 
VERSA feature this facility). Furthermore, complete Boolean filters, i.e., conjunction, disjunction and 
negation, are only supported by RQL, RDFQL, VERSA and TRIPLE, since the other query languages 
support only conjunction.  
     The set of the criteria referring to Data/Ontology Querying are indicative of the expressive power 
of an RDF query language, i.e., its ability to combine data and ontology (schema) querying at the same 
time. The basic criterion for judging this ability is the use of generalized path expressions. Generalized 
path expressions are very useful primitives because they allow data and ontology to be uniformly 
queried. As indicated from Table 2, only RQL is capable of incorporating knowledge from ontologies 
into data querying. In fact, RQL features generalized path expressions with variables on labels of both 
nodes and edges. On the contrary, TRIPLE and RDFPath can support only data paths, while VERSA 
provides transitive traversal of properties. Furthermore, RQL and TRIPLE are the only query 
languages supporting existential or universal quantifiers. Moreover, the ability to perform nested 
queries is only supported by RQL and Versa.  
     To evaluate the effectiveness of the query languages when used in large-scale Semantic Web 
applications we can also use a set of criteria referring to Additional Features supported by the query 
languages. Table 2 records whether the query languages under evaluation support aggregate, grouping 
and sorting functions. More specifically, RDFQL supports only a count function, VERSA supports min 
and max, while RQL features min, max, count, average and sum functions, as known from relational 
databases. Sorting functions are only supported by RDFQL and VERSA, with both of them also 
supporting built-in data functions for e.g., converting date and string values or calculating arithmetic 
values. A functionality not supported by any of the query languages is the grouping of querying results. 
Furthermore, RDFQL, apart from providing data definition capabilities (e.g., creation of tables), 
provides also primitives for defining views and user-defined inference rules. User-defined inference 
rules are also definable in TRIPLE and can be used for instance, to inversely traverse properties. 
Lastly, among additional features we can include the ability of the user to define arbitrary functions. 
This capability is only viable in RDFQL.  
     Τable 4 is used to evaluate the technical features of practical implementations supporting storage 
and querying facilities for description bases and schemas encoded in RDF/S [17,4], DAML+OIL [9] or 
Topic Maps [16]. This comparison gives an overview of the 14 ontology storage and querying tools 
studied in section 3.2. To facilitate comparison of technical features, Table 3 provides a synopsis of 
the basic criteria used for the description of the tools. As one can see, most of the tools provide a web-
based demonstration of the facilities they support, while open source distribution in the form of public 
licenses and the existence of documentation assist third-party developers when building applications 
on top of these tools. On the contrary, the lack of tutorials does not facilitate the overview of the 
system’s. 
 

 15



 Languages
Criteria 

RQL SquishQL RDFQL RDFPath VERSA TRIPLE 

Namespaces/ Multiple schemas YES      YES YES YES YES YES
Data types  strings, integers,

reals, dates, URI,
enumerated and
thesauri types  

 
 
 

strings and
integers 

 strings, integers,
reals, dates and 
URI types  

 strings strings, numbers, URI,
lists, sets, booleans 

 strings, integers

Multiple inheritance/ 
Instantiation 

YES      YES YES YES YES YES

Container values YES      YES YES YES NO(?) NO

M
od

el
in

g 
 

C
on

st
ru

ct
s 

Reification NO      NO NO NO NO YES

Ancestor/ descendant traversal 
of class/property hierarchies 

YES  NO
(only direct) 

NO 
(only direct) 

NO 
(only direct) 

NO 
(only direct) 

YES 

O
nt

ol
og

y 
 

Q
ue

ry
in

g 

Filtering conditions on 
class/property hierarchies 

(in)equality, like,
subsumption 
check, namespace 
querying 

 like (~), equality lexicographical 
ordering on class
/property names, 
equality 

 
equality (in)equality, string

containment 
 (in)equality, 
subsumption 
check 

Class/property extent queries YES    YES
(only direct) 

YES 
(only direct) 

YES 
(only direct) 

YES YES

Complete Boolean Filters 
(negation, (con/dis)junction) 

YES    NO
(only conjunction) 

YES 
 

NO 
(only conjunction)

YES YES

Set-based operations YES  NO NO    NO YES YES
Arithmetic operations YES    NO NO NO NO NO 

D
at

a 
 Q

ue
ry

in
g 

Container values constructors YES      NO NO NO YES NO
Generalized path expressions YES      NO NO NO NO NO

Existential/ Universal 
quantifiers  

YES      NO NO NO NO YES

D
at

a/
  

O
nt

ol
og

y 
Q

ue
ry

in
g 

Nested queries YES      NO NO NO YES NO

Aggregate functions YES      NO YES
(only count) 

NO YES NO

Grouping functions NO      NO NO NO NO NO
Sorting functions NO      NO YES NO YES NO
Built-in data functions YES  

(thesauri terms) 
NO    YES

(math/ string/date)
NO YES

(conversion functions) 
NO 

Arbitrary function support NO     NO YES NO NO NO
User-defined inference rules NO      NO YES NO NO YES

A
dd

iti
on

al
 

Fe
at

ur
es

 

View definition primitives NO      NO YES NO NO NO
Table 2: Expressive power of RDF/S query language

 16



 

 Ref. Doc. Tutorial Version Platform Demo Pricing Policy 
ICS-RDFSuite YES YES YES 1.5 Solaris/ Linux YES GPL compatible 

License 
SESAME YES YES YES 3-Alpha Any (Java) YES LGPL License 
INKLING YES YES NO Alpha Any (Java) YES GPL/MPL License 
RDFDB YES YES NO 0.46 Linux, Bsd, Solaris NO Mozilla License 
RDFSTORE NO YES NO 0.42 Any (Perl) YES Free distribution 
EOR NO YES NO 1.01 Any (Java) YES Dublin Core Open 

Source License 
REDLAND YES YES NO 0.9.10 Linux, Solaris, 

OSF/1, FreeBSD, 
MacOS X 

YES LGPL/Mozilla 
License 

JENA YES YES NO 1.3.2 Any (Java) NO Jena License 
RDF 
GATEWAY 

NO YES YES 0.6 Windows NT/2000 YES RDF Gateway 
License 

TRIPLE YES NO NO 2002/03/14 Any (Java) YES Semantic Web 
Foundation for Open 
Source License 

KAON YES YES NO 2002/01/17 Any (Java) NO KAON License 
CEREBRA NO YES NO 1.1 Windows/ Linux NO Cerebra License 
Empolis k42 NO YES NO 1.1.1 Any (Java) YES Empolis Ltd License
Ontopia KS YES NO NO 1.3 Any (Java 1.3) YES Developer/ Runtime 

Licenses  

Table 3: Overview of ontology storage/querying tools 
 
     Furthermore, most of the tools presented can be used with any software platform (supporting 
though the Java runtime environment). This can also be concluded from Table 4, when referring to the 
language used for the implementation of the tool. As we can see from column Implementation 
Language, 10 out of 14 tools were developed with Java, thus profiting from the platform 
independence endorsed by Java. The next most popular implementation language of ontology tool 
developers is C, a language whose stability and functionality has already been tested for years in the 
deployment of large-scale applications. The popularity of Java as an implementation medium can also 
be noted when examining the API support provided by the tools. However, apart from Java and C, the 
developers provide a set of APIs written in different languages, e.g., Perl, Python and Tcl in an attempt 
to facilitate the collaboration of their tool with other applications. These APIs provide functions for 
querying and updating description bases and can be used for interfacing with clients. Hence, they offer 
third party-developers the ability to deploy their applications on top of these tools. For this reason, the 
criterion of API support can be thought of as a measure of the extensibility and the degree of 
collaboration with other applications characterizing by the tool. 
     One general comment that can be made regards the tendency to provide storage and querying 
support for RDF/S description bases. Although a number of tools also provide support for 
DAML+OIL, the focus of developers has been to provide facilities for description bases encoded in the 
RDF/S standard, while the contributions for the Topic Map standard are also few. Most of the query 
languages rely on a triple-based model, such as SquishQL/RDQL, RDFQL or TRIPLE (their 
functionality has already been compared above). EOR and REDLAND do not implement a specific 
query language and they support a straiforward triple-matching mechanism for querying. Furthermore, 
most of the presented tools exploit relational technology to store RDF/Topic Map data. In fact, 
(O)RDBMSs are preferred for persistent data storage (namely PostgreSQL, BerkeleyDB, MySQL), 
since there is no specific database implementation for RDF or Topic Maps native model (with the 
exception of the Empolis K42, which implements its own storage system). The BerkeleyDBN and 
PostgresSQL are mostly preferred due to their free distribution. Apart from persistent storage, the 
majority of the tools also support in-memory storage, in an attempt to minimize the query response 
time. The scalability and performance features obtained from a survey of the W3C10 are quite 
preliminary and more exhaustive comparative performance tests are required in order to draw useful 
conclusions. In addition, we consider the ability of the tool to support updates, both in the ontology 
and in the (meta)data. Table 4 indicates that the majority of the tools are able to perform updates more 
by inserting (or deleting) new information to the database and less by modifying existing one.  

                                                 
10 http://www.w3.org/2001/05/rdf-ds/DataStore 

 17

http://www.gnu.org/philosophy/license-list.html


Tools Query 
Language

Impl. 
Language 

Storage DB Inference 
support 

Update 
support 

(Ontology + 
Data) 

API 
support 

(Querying 
+ 

Updating) 

Scalability / Performance Export data format 

ICS-RDFSuite RQL      Java/C++ ORDBMS
(SQL3 compliant, e.g., 

PostgreSQL) 

Yes Yes C++/Java/SQ
L functions 

DBMS scales linearly with the number 
of triples/ 505650 schema + 5331603 
data triples= 5837253 triples total  

RDF 

SESAME RQL*       Java ORDBMS (PostgreSQL) Yes Yes HTTP/SOAP ? RDF

INKLING SquishQL        Java In-memory/persistence
(supporting JDBC, e.g., SQL, 

Postgres SQL) 

No No Java ? Triples in ASCII 

RDFDB SquishQL*   C Persistence
(SleepyCat) 

Yes Yes C, Perl ~20 million triples tested Triples in ASCII 

RDFSTORE SquishQL C, Perl In-memory / persistence  
(e.g., file, BerkeleyDB, SDBM) 

Yes No Perl 1470000 triples stored in a ~98MB 
database/ ~183 read operations/second

N-Triples, RDF 

EOR Triple-
matching 

Java     Persistence
(SQL databases, e.g. MySQL) 

No Yes HTTP, Java,
SQL/JDBC 

? Triples rendered with XSL 

REDLAND Triple-
matching 

C In memory / persistence 
 (SleepyCat / BerkerleyDB) 

No Yes Java, C, Perl, 
Python, Tcl 

tested with 1.5M stored statements/ 
query speed is 6,200 statements/ 
second 

Triples 

JENA RDQL Java In-memory / persistence 
(e.g., BerkeleyDB, Interbase, 

PostgreSQL ) 

No Yes Java In-memory storage has been used with 
600K statements/ for the SQL store is 
around 10ms/statement load, 1-7ms/ 
returned-statement search 

Triples in ASCII 

RDF 
GATEWAY 

RDFQL      ? RDBMS Yes Yes Microsoft
ADO, JDBC 

? Triples in ASCII 

TRIPLE TRIPLE Java In-memory Yes ? Java ? Lisp, XML for FaCT DTD, DOT, 
DAML, ASCII 

KAON F-logic Java, Python In-memory / persistence 
(KAON server/ Files, RDBMS) 

Yes     Yes Java ? ?

CEREBRA DL-based Java Distributed data (CORBA) Yes - Java ? ? 

Empolis k42 TMQL   Java Persistence storage
(K42 Generic Store, other DBMS)

Yes Yes Java/RMI ~500MB tested/ 0.08 sec for look-up 
of an object by name for first access 

Topic Maps (XTM) 

Ontopia KS Tolog Java In-memory / RDBMS / OODB Yes Yes   Java/J2EE ? XTM, XML version of ISO 13250 
Table 4: Technical table of ontology storage/querying tools 

* Differs slightly from the original language 

 18



     As far as inference support is concerned, we note that the majority of the studied tools provide 
some inference support especially for recursively traversing ontology class/property hierarchies as well 
as of data paths involving transitive properties. We can distinguish between two kinds of inference 
support: (a) seamless integration with the underlying query language engine (e.g., RQL and TRIPLE) 
or (b) loose coupling of the tool with an external inference engine. For instance, RDFSTORE and 
RDFGATEWAY enrich their triple-matching mechanism with an inference engine. Finally, the most 
common export data format is triples in ASCII. Some tools, e.g., the ICS-RDFSuite and Sesame, are 
able to export ontologies and query results in RDF, while Topic Maps tools export XTM topic maps. 
TRIPLE, on the other hand, due to its ability to support a variety of ontology/metadata standards 
outputs in Lisp, ASCII etc, while it can visualize query results (DOT files are used by GraphViz[14])    
 
 

        5. Conclusions and main recommendations 
      
In the previous sections, we have briefly presented and compared a set of query languages and storage/ 
querying tools for specific knowledge representation formalisms, namely RDF/S [17,4], DAML+OIL 
[9] and Topic Maps [16], in terms of the evaluation frameworks presented in section 2. Due to the 
preliminary functionality status of query languages for DAML+OIL and Topic Maps, our focus has 
been on RDF/S query languages, which despite the fact that they commit to the same 
ontology/metadata standard, are based on quite different data representation paradigms (triples vs. trees 
vs. graphs) and they target quite different query functionality. One of the conclusions drawn from this 
survey is that the majority of the query languages do not yet support the complete set of modeling 
constructs offered by the above standards. Furthermore, the frontiers between querying and inferring 
capabilities offered by these languages are not clear. In most cases, inference is limited to a recursive 
traversal of ontology class/property hierarchies as well as of data paths involving transitive properties.  
We believe that the target functionality of the proposed query languages still has to be justified with 
respect to real large-scale Semantic Web applications.  
     In addition, from an industrial perspective, the various storage and query tools yet seem immature. 
In most cases, they are (academic) prototypes implementing parts of the query language they aim to 
support, while they do not provide the necessary programming/administration facilities in order to 
make them really operational into a working environment. Moreover, exhaustive scalability and 
performance figures are not yet available (with the exception of RDFSuite[2]).  
     In this context, we believe that an extensive set of use cases from large-scale Semantic applications 
is required, as conducted by the W3C XML Query Group [7]. The use of queries on data from different 
application contexts would not only give credible arguments about the target query functionality, but it 
could also provide a common testbed for the various implementations of query languages and storage 
tools. A first effort towards this direction has been proposed in [22].        
 
         

        6. References 
 
[1] S. Abiteboul, D. Quass, J. McHugh, J. Widom, and J. Wiener. “The Lorel Query Language for 
Semistructured Data”. International Journal on Digital Libraries, 1(1): 68-88. April 1997. 
[2] S. Alexaki, V. Christophides, G. Karvounarakis, D. Plexousakis. “On Storing Voluminous RDF 
Descriptions: The case of Web Portal Catalogs”. In Proceedings of the 4th International Workshop on 
the Web and Databases (WebDB'01) - In conjunction with ACM SIGMOD/PODS, Santa Barbara, CA. 
May 24-25, 2001. 
[3] Tim Berners-Lee, James Hendler, Ora Lassila. “The Semantic Web”. Scientific American. May 
2001. <http://www.sciam.com/2001/0501issue/0501berners-lee.html>   
[4] D. Brickley, R.V. Guha. “Resource Description Framework Schema (RDF/S) Specification 1.0”. 
W3C Recommendation. March 27, 2000. <http://www.w3.org/TR/rdf-schema> 
[5] S. Ceri, S. Comai, E. Damiani, P. Fraternali, S. Paraboschi, and L. Tanca. “XML-GL: a Graphical 
Language for Querying and Restructuring XML Documents”. In Proceedings of International World 
Wide Web Conference, Toronto, Canada. 1999 

 19



[6] D. Chamberlin, D. Florescu, J. Robie, J. Simeon, and M. Stefanescu. “XQuery: A Query Language 
for XML”. Working draft, World Wide Web Consortium. June 2001. <http://www.w3.org/TR/xquery/>  
[7] Don Chamberlin, Peter Fankhauser, Massimo Marchiori, Jonathan Robie. “XML Query Use Cases”. 
W3C Working Draft, 20 December 2001. <http://www.w3.org/TR/xmlquery-use-cases> 
[8] James Clark, Steve DeRose. “XML Path Language (Xpath)”. W3C Recommendation, Version 1.0. 
16 November 1999.  <http://www.w3.org/TR/xpath> 
[9] DAML+ OIL (March 2001) <http://www.daml.org/2001/03/daml+oil-index> 
[10] A. Deutsch, M.F. Fernandez, D. Florescu, A. Levy, and D. Suciu. “A Query Language for XML”. 
In Proceedings of the 8th International World Wide Web Conference, Toronto. 1999. 
[11] M.F. Fernandez, D. Florescu, J. Kang, A.Y. Levy, and D. Suciu. “System Demonstration - Strudel: 
A Web-site Management System”. In Proceedings of ACM SIGMOD Conf. on Management of Data, 
Tucson, AZ. May 1997. Exhibition Program. 
[12] Ian Horrocks and Sergio Tessaris. “Querying the Semantic Web: a Formal Approach”. To appear 
in the 1st International Semantic Web Conference (ISWC2002), June 9-12, 2002. Sardinia, Italy. 
[13] D. Florescu, D. Chamberlin, J. Robie. “Quilt: An XML query language for heterogeneous data 
sources”. In WebDB'2000, pages 53-62, Dallas, US. May 2000. 
[14] GraphViz, open source graph drawing software: http://www.research.att.com/sw/tools/graphviz/ 
[15] Jeff Heflin, Raphael Volz, Jonathan Dale. “Requirements for a Web Ontology Language”. W3C 
Working Draft. 7 March 2002. 
[16] ISO/IEC 13250, Topic Maps <http://www.y12.doe.gov/sgml/sc34/document/0129.pdf> 
[17] O. Lassila, R. Swick. “Resource Description Framework (RDF) Model and Syntax Specification”.  
W3C Candidate Recommendation. February 1999. <http://www.w3.org/TR/REC-rdf-syntax> 
[18] Ontology Inference Layer (OIL) <http://www.ontoknowledge.org/oil/> 
[19] J.R. Ossenbruggen, H.L Hardman, L. Rutledge. “Hypermedia and the Semantic Web: A Research 
agenda”. INS-R0105. May 31,2001 
[20] Steve Pepper, Graham Moore. “XML Topic Maps (XTM) 1.0”. TopicMaps.org Specification. 
2001.  
[21] RDF Data Query Language <http://www.hpl.hp.com/semweb/rdql.html/>  
[22] Jonathan Robie. “The Syntactic Web- Syntax and Semantics on the Web”. XML Conference and 
Exposition 2001, December 9-14 2001, Orlando, Florida, USA. 
[23] XML: Extensible Markup Language <http://www.w3.org/XML/> 
 

 20


	TECHNICAL REPORT No 308
	April 2002
	1. Introduction
	2. Evaluation framework of Query Languages and Storage Tools
	3. Description of ontology query languages and tools
	3.1 Ontology Query Languages
	3.1.1 ICS-FORTH RQL
	3.1.2 ILRT SquishQL
	3.1.3 Intellidimension RDFQL
	3.1.4 RDFPath
	3.1.5 VERSA RDF Query Language
	3.1.6 TRIPLE
	3.1.7 DAML+OIL Query Language
	3.1.8 Topic Maps Query Language
	3.1.9 Ontopia Tolog

	3.2 Ontology Storing and Querying Tools
	3.2.1 ICS-FORTH RDFSuite
	3.2.2 Sesame
	3.2.3 Inkling
	3.2.4 rdfDB
	3.2.5 RDFStore
	3.2.6 Extensible Open RDF (EOR)
	3.2.7 Redland
	3.2.8 Jena
	3.2.9 RDF Gateway
	3.2.10 TRIPLE
	3.2.11 KAON Tool Suite
	3.2.12 Cerebra®
	3.2.13 Empolis K42
	3.2.14 Ontopia Knowledge Suite


	4. Comparison of Query Languages and Storage Tools
	
	
	
	
	RQL
	Table 1: Ontology Query Languages


	RQL
	SquishQL
	
	
	
	Doc.





	ICS-RDFSuite
	ICS-RDFSuite



	5. Conclusions and main recommendations
	6. References

